xref: /dragonfly/sys/dev/netif/em/if_em.c (revision ce7a3582)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 #include <net/vlan/if_vlan_ether.h>
123 
124 #include <netinet/in_systm.h>
125 #include <netinet/in.h>
126 #include <netinet/ip.h>
127 #include <netinet/tcp.h>
128 #include <netinet/udp.h>
129 
130 #include <bus/pci/pcivar.h>
131 #include <bus/pci/pcireg.h>
132 
133 #include <dev/netif/ig_hal/e1000_api.h>
134 #include <dev/netif/ig_hal/e1000_82571.h>
135 #include <dev/netif/em/if_em.h>
136 
137 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
138 #define EM_VER	" 7.1.7"
139 
140 #define _EM_DEVICE(id, ret)	\
141 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
142 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
143 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
144 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
145 
146 static const struct em_vendor_info em_vendor_info_array[] = {
147 	EM_DEVICE(82540EM),
148 	EM_DEVICE(82540EM_LOM),
149 	EM_DEVICE(82540EP),
150 	EM_DEVICE(82540EP_LOM),
151 	EM_DEVICE(82540EP_LP),
152 
153 	EM_DEVICE(82541EI),
154 	EM_DEVICE(82541ER),
155 	EM_DEVICE(82541ER_LOM),
156 	EM_DEVICE(82541EI_MOBILE),
157 	EM_DEVICE(82541GI),
158 	EM_DEVICE(82541GI_LF),
159 	EM_DEVICE(82541GI_MOBILE),
160 
161 	EM_DEVICE(82542),
162 
163 	EM_DEVICE(82543GC_FIBER),
164 	EM_DEVICE(82543GC_COPPER),
165 
166 	EM_DEVICE(82544EI_COPPER),
167 	EM_DEVICE(82544EI_FIBER),
168 	EM_DEVICE(82544GC_COPPER),
169 	EM_DEVICE(82544GC_LOM),
170 
171 	EM_DEVICE(82545EM_COPPER),
172 	EM_DEVICE(82545EM_FIBER),
173 	EM_DEVICE(82545GM_COPPER),
174 	EM_DEVICE(82545GM_FIBER),
175 	EM_DEVICE(82545GM_SERDES),
176 
177 	EM_DEVICE(82546EB_COPPER),
178 	EM_DEVICE(82546EB_FIBER),
179 	EM_DEVICE(82546EB_QUAD_COPPER),
180 	EM_DEVICE(82546GB_COPPER),
181 	EM_DEVICE(82546GB_FIBER),
182 	EM_DEVICE(82546GB_SERDES),
183 	EM_DEVICE(82546GB_PCIE),
184 	EM_DEVICE(82546GB_QUAD_COPPER),
185 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
186 
187 	EM_DEVICE(82547EI),
188 	EM_DEVICE(82547EI_MOBILE),
189 	EM_DEVICE(82547GI),
190 
191 	EM_EMX_DEVICE(82571EB_COPPER),
192 	EM_EMX_DEVICE(82571EB_FIBER),
193 	EM_EMX_DEVICE(82571EB_SERDES),
194 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
195 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
199 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
200 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
201 
202 	EM_EMX_DEVICE(82572EI_COPPER),
203 	EM_EMX_DEVICE(82572EI_FIBER),
204 	EM_EMX_DEVICE(82572EI_SERDES),
205 	EM_EMX_DEVICE(82572EI),
206 
207 	EM_EMX_DEVICE(82573E),
208 	EM_EMX_DEVICE(82573E_IAMT),
209 	EM_EMX_DEVICE(82573L),
210 
211 	EM_DEVICE(82583V),
212 
213 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
215 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
216 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
217 
218 	EM_DEVICE(ICH8_IGP_M_AMT),
219 	EM_DEVICE(ICH8_IGP_AMT),
220 	EM_DEVICE(ICH8_IGP_C),
221 	EM_DEVICE(ICH8_IFE),
222 	EM_DEVICE(ICH8_IFE_GT),
223 	EM_DEVICE(ICH8_IFE_G),
224 	EM_DEVICE(ICH8_IGP_M),
225 	EM_DEVICE(ICH8_82567V_3),
226 
227 	EM_DEVICE(ICH9_IGP_M_AMT),
228 	EM_DEVICE(ICH9_IGP_AMT),
229 	EM_DEVICE(ICH9_IGP_C),
230 	EM_DEVICE(ICH9_IGP_M),
231 	EM_DEVICE(ICH9_IGP_M_V),
232 	EM_DEVICE(ICH9_IFE),
233 	EM_DEVICE(ICH9_IFE_GT),
234 	EM_DEVICE(ICH9_IFE_G),
235 	EM_DEVICE(ICH9_BM),
236 
237 	EM_EMX_DEVICE(82574L),
238 	EM_EMX_DEVICE(82574LA),
239 
240 	EM_DEVICE(ICH10_R_BM_LM),
241 	EM_DEVICE(ICH10_R_BM_LF),
242 	EM_DEVICE(ICH10_R_BM_V),
243 	EM_DEVICE(ICH10_D_BM_LM),
244 	EM_DEVICE(ICH10_D_BM_LF),
245 	EM_DEVICE(ICH10_D_BM_V),
246 
247 	EM_DEVICE(PCH_M_HV_LM),
248 	EM_DEVICE(PCH_M_HV_LC),
249 	EM_DEVICE(PCH_D_HV_DM),
250 	EM_DEVICE(PCH_D_HV_DC),
251 
252 	EM_DEVICE(PCH2_LV_LM),
253 	EM_DEVICE(PCH2_LV_V),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *);
270 #ifdef DEVICE_POLLING
271 static void	em_poll(struct ifnet *, enum poll_cmd, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_rxeof(struct adapter *, int);
280 static void	em_txeof(struct adapter *);
281 static void	em_tx_collect(struct adapter *);
282 static void	em_tx_purge(struct adapter *);
283 static void	em_enable_intr(struct adapter *);
284 static void	em_disable_intr(struct adapter *);
285 
286 static int	em_dma_malloc(struct adapter *, bus_size_t,
287 		    struct em_dma_alloc *);
288 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
289 static void	em_init_tx_ring(struct adapter *);
290 static int	em_init_rx_ring(struct adapter *);
291 static int	em_create_tx_ring(struct adapter *);
292 static int	em_create_rx_ring(struct adapter *);
293 static void	em_destroy_tx_ring(struct adapter *, int);
294 static void	em_destroy_rx_ring(struct adapter *, int);
295 static int	em_newbuf(struct adapter *, int, int);
296 static int	em_encap(struct adapter *, struct mbuf **);
297 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
298 		    struct mbuf *);
299 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
300 static int	em_txcsum(struct adapter *, struct mbuf *,
301 		    uint32_t *, uint32_t *);
302 
303 static int	em_get_hw_info(struct adapter *);
304 static int 	em_is_valid_eaddr(const uint8_t *);
305 static int	em_alloc_pci_res(struct adapter *);
306 static void	em_free_pci_res(struct adapter *);
307 static int	em_reset(struct adapter *);
308 static void	em_setup_ifp(struct adapter *);
309 static void	em_init_tx_unit(struct adapter *);
310 static void	em_init_rx_unit(struct adapter *);
311 static void	em_update_stats(struct adapter *);
312 static void	em_set_promisc(struct adapter *);
313 static void	em_disable_promisc(struct adapter *);
314 static void	em_set_multi(struct adapter *);
315 static void	em_update_link_status(struct adapter *);
316 static void	em_smartspeed(struct adapter *);
317 static void	em_set_itr(struct adapter *, uint32_t);
318 
319 /* Hardware workarounds */
320 static int	em_82547_fifo_workaround(struct adapter *, int);
321 static void	em_82547_update_fifo_head(struct adapter *, int);
322 static int	em_82547_tx_fifo_reset(struct adapter *);
323 static void	em_82547_move_tail(void *);
324 static void	em_82547_move_tail_serialized(struct adapter *);
325 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
326 
327 static void	em_print_debug_info(struct adapter *);
328 static void	em_print_nvm_info(struct adapter *);
329 static void	em_print_hw_stats(struct adapter *);
330 
331 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
332 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
333 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
334 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
335 static void	em_add_sysctl(struct adapter *adapter);
336 
337 /* Management and WOL Support */
338 static void	em_get_mgmt(struct adapter *);
339 static void	em_rel_mgmt(struct adapter *);
340 static void	em_get_hw_control(struct adapter *);
341 static void	em_rel_hw_control(struct adapter *);
342 static void	em_enable_wol(device_t);
343 
344 static device_method_t em_methods[] = {
345 	/* Device interface */
346 	DEVMETHOD(device_probe,		em_probe),
347 	DEVMETHOD(device_attach,	em_attach),
348 	DEVMETHOD(device_detach,	em_detach),
349 	DEVMETHOD(device_shutdown,	em_shutdown),
350 	DEVMETHOD(device_suspend,	em_suspend),
351 	DEVMETHOD(device_resume,	em_resume),
352 	{ 0, 0 }
353 };
354 
355 static driver_t em_driver = {
356 	"em",
357 	em_methods,
358 	sizeof(struct adapter),
359 };
360 
361 static devclass_t em_devclass;
362 
363 DECLARE_DUMMY_MODULE(if_em);
364 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
365 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
366 
367 /*
368  * Tunables
369  */
370 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
371 static int	em_rxd = EM_DEFAULT_RXD;
372 static int	em_txd = EM_DEFAULT_TXD;
373 static int	em_smart_pwr_down = 0;
374 
375 /* Controls whether promiscuous also shows bad packets */
376 static int	em_debug_sbp = FALSE;
377 
378 static int	em_82573_workaround = 1;
379 static int	em_msi_enable = 1;
380 
381 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
382 TUNABLE_INT("hw.em.rxd", &em_rxd);
383 TUNABLE_INT("hw.em.txd", &em_txd);
384 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
385 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
386 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
387 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
388 
389 /* Global used in WOL setup with multiport cards */
390 static int	em_global_quad_port_a = 0;
391 
392 /* Set this to one to display debug statistics */
393 static int	em_display_debug_stats = 0;
394 
395 #if !defined(KTR_IF_EM)
396 #define KTR_IF_EM	KTR_ALL
397 #endif
398 KTR_INFO_MASTER(if_em);
399 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
400 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
401 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
403 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
404 #define logif(name)	KTR_LOG(if_em_ ## name)
405 
406 static int
407 em_probe(device_t dev)
408 {
409 	const struct em_vendor_info *ent;
410 	uint16_t vid, did;
411 
412 	vid = pci_get_vendor(dev);
413 	did = pci_get_device(dev);
414 
415 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
416 		if (vid == ent->vendor_id && did == ent->device_id) {
417 			device_set_desc(dev, ent->desc);
418 			device_set_async_attach(dev, TRUE);
419 			return (ent->ret);
420 		}
421 	}
422 	return (ENXIO);
423 }
424 
425 static int
426 em_attach(device_t dev)
427 {
428 	struct adapter *adapter = device_get_softc(dev);
429 	struct ifnet *ifp = &adapter->arpcom.ac_if;
430 	int tsize, rsize;
431 	int error = 0;
432 	uint16_t eeprom_data, device_id, apme_mask;
433 
434 	adapter->dev = adapter->osdep.dev = dev;
435 
436 	callout_init_mp(&adapter->timer);
437 	callout_init_mp(&adapter->tx_fifo_timer);
438 
439 	/* Determine hardware and mac info */
440 	error = em_get_hw_info(adapter);
441 	if (error) {
442 		device_printf(dev, "Identify hardware failed\n");
443 		goto fail;
444 	}
445 
446 	/* Setup PCI resources */
447 	error = em_alloc_pci_res(adapter);
448 	if (error) {
449 		device_printf(dev, "Allocation of PCI resources failed\n");
450 		goto fail;
451 	}
452 
453 	/*
454 	 * For ICH8 and family we need to map the flash memory,
455 	 * and this must happen after the MAC is identified.
456 	 */
457 	if (adapter->hw.mac.type == e1000_ich8lan ||
458 	    adapter->hw.mac.type == e1000_ich9lan ||
459 	    adapter->hw.mac.type == e1000_ich10lan ||
460 	    adapter->hw.mac.type == e1000_pchlan ||
461 	    adapter->hw.mac.type == e1000_pch2lan) {
462 		adapter->flash_rid = EM_BAR_FLASH;
463 
464 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
465 					&adapter->flash_rid, RF_ACTIVE);
466 		if (adapter->flash == NULL) {
467 			device_printf(dev, "Mapping of Flash failed\n");
468 			error = ENXIO;
469 			goto fail;
470 		}
471 		adapter->osdep.flash_bus_space_tag =
472 		    rman_get_bustag(adapter->flash);
473 		adapter->osdep.flash_bus_space_handle =
474 		    rman_get_bushandle(adapter->flash);
475 
476 		/*
477 		 * This is used in the shared code
478 		 * XXX this goof is actually not used.
479 		 */
480 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
481 	}
482 
483 	/* Do Shared Code initialization */
484 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
485 		device_printf(dev, "Setup of Shared code failed\n");
486 		error = ENXIO;
487 		goto fail;
488 	}
489 
490 	e1000_get_bus_info(&adapter->hw);
491 
492 	/*
493 	 * Validate number of transmit and receive descriptors.  It
494 	 * must not exceed hardware maximum, and must be multiple
495 	 * of E1000_DBA_ALIGN.
496 	 */
497 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
498 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
499 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
500 	    em_txd < EM_MIN_TXD) {
501 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
502 		    EM_DEFAULT_TXD, em_txd);
503 		adapter->num_tx_desc = EM_DEFAULT_TXD;
504 	} else {
505 		adapter->num_tx_desc = em_txd;
506 	}
507 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
508 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
509 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
510 	    em_rxd < EM_MIN_RXD) {
511 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
512 		    EM_DEFAULT_RXD, em_rxd);
513 		adapter->num_rx_desc = EM_DEFAULT_RXD;
514 	} else {
515 		adapter->num_rx_desc = em_rxd;
516 	}
517 
518 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
519 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
520 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
521 	adapter->rx_buffer_len = MCLBYTES;
522 
523 	/*
524 	 * Interrupt throttle rate
525 	 */
526 	if (em_int_throttle_ceil == 0) {
527 		adapter->int_throttle_ceil = 0;
528 	} else {
529 		int throttle = em_int_throttle_ceil;
530 
531 		if (throttle < 0)
532 			throttle = EM_DEFAULT_ITR;
533 
534 		/* Recalculate the tunable value to get the exact frequency. */
535 		throttle = 1000000000 / 256 / throttle;
536 
537 		/* Upper 16bits of ITR is reserved and should be zero */
538 		if (throttle & 0xffff0000)
539 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
540 
541 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
542 	}
543 
544 	e1000_init_script_state_82541(&adapter->hw, TRUE);
545 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
546 
547 	/* Copper options */
548 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
549 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
550 		adapter->hw.phy.disable_polarity_correction = FALSE;
551 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
552 	}
553 
554 	/* Set the frame limits assuming standard ethernet sized frames. */
555 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
556 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
557 
558 	/* This controls when hardware reports transmit completion status. */
559 	adapter->hw.mac.report_tx_early = 1;
560 
561 	/*
562 	 * Create top level busdma tag
563 	 */
564 	error = bus_dma_tag_create(NULL, 1, 0,
565 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
566 			NULL, NULL,
567 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
568 			0, &adapter->parent_dtag);
569 	if (error) {
570 		device_printf(dev, "could not create top level DMA tag\n");
571 		goto fail;
572 	}
573 
574 	/*
575 	 * Allocate Transmit Descriptor ring
576 	 */
577 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
578 			 EM_DBA_ALIGN);
579 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
580 	if (error) {
581 		device_printf(dev, "Unable to allocate tx_desc memory\n");
582 		goto fail;
583 	}
584 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
585 
586 	/*
587 	 * Allocate Receive Descriptor ring
588 	 */
589 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
590 			 EM_DBA_ALIGN);
591 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
592 	if (error) {
593 		device_printf(dev, "Unable to allocate rx_desc memory\n");
594 		goto fail;
595 	}
596 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
597 
598 	/* Allocate multicast array memory. */
599 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
600 	    M_DEVBUF, M_WAITOK);
601 
602 	/* Indicate SOL/IDER usage */
603 	if (e1000_check_reset_block(&adapter->hw)) {
604 		device_printf(dev,
605 		    "PHY reset is blocked due to SOL/IDER session.\n");
606 	}
607 
608 	/*
609 	 * Start from a known state, this is important in reading the
610 	 * nvm and mac from that.
611 	 */
612 	e1000_reset_hw(&adapter->hw);
613 
614 	/* Make sure we have a good EEPROM before we read from it */
615 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
616 		/*
617 		 * Some PCI-E parts fail the first check due to
618 		 * the link being in sleep state, call it again,
619 		 * if it fails a second time its a real issue.
620 		 */
621 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
622 			device_printf(dev,
623 			    "The EEPROM Checksum Is Not Valid\n");
624 			error = EIO;
625 			goto fail;
626 		}
627 	}
628 
629 	/* Copy the permanent MAC address out of the EEPROM */
630 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
631 		device_printf(dev, "EEPROM read error while reading MAC"
632 		    " address\n");
633 		error = EIO;
634 		goto fail;
635 	}
636 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
637 		device_printf(dev, "Invalid MAC address\n");
638 		error = EIO;
639 		goto fail;
640 	}
641 
642 	/* Allocate transmit descriptors and buffers */
643 	error = em_create_tx_ring(adapter);
644 	if (error) {
645 		device_printf(dev, "Could not setup transmit structures\n");
646 		goto fail;
647 	}
648 
649 	/* Allocate receive descriptors and buffers */
650 	error = em_create_rx_ring(adapter);
651 	if (error) {
652 		device_printf(dev, "Could not setup receive structures\n");
653 		goto fail;
654 	}
655 
656 	/* Manually turn off all interrupts */
657 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
658 
659 	/* Determine if we have to control management hardware */
660 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
661 
662 	/*
663 	 * Setup Wake-on-Lan
664 	 */
665 	apme_mask = EM_EEPROM_APME;
666 	eeprom_data = 0;
667 	switch (adapter->hw.mac.type) {
668 	case e1000_82542:
669 	case e1000_82543:
670 		break;
671 
672 	case e1000_82573:
673 	case e1000_82583:
674 		adapter->has_amt = 1;
675 		/* FALL THROUGH */
676 
677 	case e1000_82546:
678 	case e1000_82546_rev_3:
679 	case e1000_82571:
680 	case e1000_82572:
681 	case e1000_80003es2lan:
682 		if (adapter->hw.bus.func == 1) {
683 			e1000_read_nvm(&adapter->hw,
684 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
685 		} else {
686 			e1000_read_nvm(&adapter->hw,
687 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
688 		}
689 		break;
690 
691 	case e1000_ich8lan:
692 	case e1000_ich9lan:
693 	case e1000_ich10lan:
694 	case e1000_pchlan:
695 	case e1000_pch2lan:
696 		apme_mask = E1000_WUC_APME;
697 		adapter->has_amt = TRUE;
698 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
699 		break;
700 
701 	default:
702 		e1000_read_nvm(&adapter->hw,
703 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
704 		break;
705 	}
706 	if (eeprom_data & apme_mask)
707 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
708 
709 	/*
710          * We have the eeprom settings, now apply the special cases
711          * where the eeprom may be wrong or the board won't support
712          * wake on lan on a particular port
713 	 */
714 	device_id = pci_get_device(dev);
715         switch (device_id) {
716 	case E1000_DEV_ID_82546GB_PCIE:
717 		adapter->wol = 0;
718 		break;
719 
720 	case E1000_DEV_ID_82546EB_FIBER:
721 	case E1000_DEV_ID_82546GB_FIBER:
722 	case E1000_DEV_ID_82571EB_FIBER:
723 		/*
724 		 * Wake events only supported on port A for dual fiber
725 		 * regardless of eeprom setting
726 		 */
727 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
728 		    E1000_STATUS_FUNC_1)
729 			adapter->wol = 0;
730 		break;
731 
732 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
733 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
734 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
735 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
736                 /* if quad port adapter, disable WoL on all but port A */
737 		if (em_global_quad_port_a != 0)
738 			adapter->wol = 0;
739 		/* Reset for multiple quad port adapters */
740 		if (++em_global_quad_port_a == 4)
741 			em_global_quad_port_a = 0;
742                 break;
743 	}
744 
745 	/* XXX disable wol */
746 	adapter->wol = 0;
747 
748 	/* Setup OS specific network interface */
749 	em_setup_ifp(adapter);
750 
751 	/* Add sysctl tree, must after em_setup_ifp() */
752 	em_add_sysctl(adapter);
753 
754 	/* Reset the hardware */
755 	error = em_reset(adapter);
756 	if (error) {
757 		device_printf(dev, "Unable to reset the hardware\n");
758 		goto fail;
759 	}
760 
761 	/* Initialize statistics */
762 	em_update_stats(adapter);
763 
764 	adapter->hw.mac.get_link_status = 1;
765 	em_update_link_status(adapter);
766 
767 	/* Do we need workaround for 82544 PCI-X adapter? */
768 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
769 	    adapter->hw.mac.type == e1000_82544)
770 		adapter->pcix_82544 = TRUE;
771 	else
772 		adapter->pcix_82544 = FALSE;
773 
774 	if (adapter->pcix_82544) {
775 		/*
776 		 * 82544 on PCI-X may split one TX segment
777 		 * into two TX descs, so we double its number
778 		 * of spare TX desc here.
779 		 */
780 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
781 	} else {
782 		adapter->spare_tx_desc = EM_TX_SPARE;
783 	}
784 
785 	/*
786 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
787 	 * and tx_int_nsegs:
788 	 * (spare_tx_desc + EM_TX_RESERVED) <=
789 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
790 	 */
791 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
792 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
793 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
794 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
795 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
796 
797 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
798 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
799 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
800 
801 	/* Non-AMT based hardware can now take control from firmware */
802 	if (adapter->has_manage && !adapter->has_amt &&
803 	    adapter->hw.mac.type >= e1000_82571)
804 		em_get_hw_control(adapter);
805 
806 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
807 			       em_intr, adapter, &adapter->intr_tag,
808 			       ifp->if_serializer);
809 	if (error) {
810 		device_printf(dev, "Failed to register interrupt handler");
811 		ether_ifdetach(&adapter->arpcom.ac_if);
812 		goto fail;
813 	}
814 
815 	ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
816 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
817 	return (0);
818 fail:
819 	em_detach(dev);
820 	return (error);
821 }
822 
823 static int
824 em_detach(device_t dev)
825 {
826 	struct adapter *adapter = device_get_softc(dev);
827 
828 	if (device_is_attached(dev)) {
829 		struct ifnet *ifp = &adapter->arpcom.ac_if;
830 
831 		lwkt_serialize_enter(ifp->if_serializer);
832 
833 		em_stop(adapter);
834 
835 		e1000_phy_hw_reset(&adapter->hw);
836 
837 		em_rel_mgmt(adapter);
838 		em_rel_hw_control(adapter);
839 
840 		if (adapter->wol) {
841 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
842 					E1000_WUC_PME_EN);
843 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
844 			em_enable_wol(dev);
845 		}
846 
847 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
848 
849 		lwkt_serialize_exit(ifp->if_serializer);
850 
851 		ether_ifdetach(ifp);
852 	} else {
853 		em_rel_hw_control(adapter);
854 	}
855 	bus_generic_detach(dev);
856 
857 	em_free_pci_res(adapter);
858 
859 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
860 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
861 
862 	/* Free Transmit Descriptor ring */
863 	if (adapter->tx_desc_base)
864 		em_dma_free(adapter, &adapter->txdma);
865 
866 	/* Free Receive Descriptor ring */
867 	if (adapter->rx_desc_base)
868 		em_dma_free(adapter, &adapter->rxdma);
869 
870 	/* Free top level busdma tag */
871 	if (adapter->parent_dtag != NULL)
872 		bus_dma_tag_destroy(adapter->parent_dtag);
873 
874 	/* Free sysctl tree */
875 	if (adapter->sysctl_tree != NULL)
876 		sysctl_ctx_free(&adapter->sysctl_ctx);
877 
878 	return (0);
879 }
880 
881 static int
882 em_shutdown(device_t dev)
883 {
884 	return em_suspend(dev);
885 }
886 
887 static int
888 em_suspend(device_t dev)
889 {
890 	struct adapter *adapter = device_get_softc(dev);
891 	struct ifnet *ifp = &adapter->arpcom.ac_if;
892 
893 	lwkt_serialize_enter(ifp->if_serializer);
894 
895 	em_stop(adapter);
896 
897 	em_rel_mgmt(adapter);
898 	em_rel_hw_control(adapter);
899 
900 	if (adapter->wol) {
901 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
902 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
903 		em_enable_wol(dev);
904 	}
905 
906 	lwkt_serialize_exit(ifp->if_serializer);
907 
908 	return bus_generic_suspend(dev);
909 }
910 
911 static int
912 em_resume(device_t dev)
913 {
914 	struct adapter *adapter = device_get_softc(dev);
915 	struct ifnet *ifp = &adapter->arpcom.ac_if;
916 
917 	lwkt_serialize_enter(ifp->if_serializer);
918 
919 	em_init(adapter);
920 	em_get_mgmt(adapter);
921 	if_devstart(ifp);
922 
923 	lwkt_serialize_exit(ifp->if_serializer);
924 
925 	return bus_generic_resume(dev);
926 }
927 
928 static void
929 em_start(struct ifnet *ifp)
930 {
931 	struct adapter *adapter = ifp->if_softc;
932 	struct mbuf *m_head;
933 
934 	ASSERT_SERIALIZED(ifp->if_serializer);
935 
936 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
937 		return;
938 
939 	if (!adapter->link_active) {
940 		ifq_purge(&ifp->if_snd);
941 		return;
942 	}
943 
944 	while (!ifq_is_empty(&ifp->if_snd)) {
945 		/* Now do we at least have a minimal? */
946 		if (EM_IS_OACTIVE(adapter)) {
947 			em_tx_collect(adapter);
948 			if (EM_IS_OACTIVE(adapter)) {
949 				ifp->if_flags |= IFF_OACTIVE;
950 				adapter->no_tx_desc_avail1++;
951 				break;
952 			}
953 		}
954 
955 		logif(pkt_txqueue);
956 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
957 		if (m_head == NULL)
958 			break;
959 
960 		if (em_encap(adapter, &m_head)) {
961 			ifp->if_oerrors++;
962 			em_tx_collect(adapter);
963 			continue;
964 		}
965 
966 		/* Send a copy of the frame to the BPF listener */
967 		ETHER_BPF_MTAP(ifp, m_head);
968 
969 		/* Set timeout in case hardware has problems transmitting. */
970 		ifp->if_timer = EM_TX_TIMEOUT;
971 	}
972 }
973 
974 static int
975 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
976 {
977 	struct adapter *adapter = ifp->if_softc;
978 	struct ifreq *ifr = (struct ifreq *)data;
979 	uint16_t eeprom_data = 0;
980 	int max_frame_size, mask, reinit;
981 	int error = 0;
982 
983 	ASSERT_SERIALIZED(ifp->if_serializer);
984 
985 	switch (command) {
986 	case SIOCSIFMTU:
987 		switch (adapter->hw.mac.type) {
988 		case e1000_82573:
989 			/*
990 			 * 82573 only supports jumbo frames
991 			 * if ASPM is disabled.
992 			 */
993 			e1000_read_nvm(&adapter->hw,
994 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
995 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
996 				max_frame_size = ETHER_MAX_LEN;
997 				break;
998 			}
999 			/* FALL THROUGH */
1000 
1001 		/* Limit Jumbo Frame size */
1002 		case e1000_82571:
1003 		case e1000_82572:
1004 		case e1000_ich9lan:
1005 		case e1000_ich10lan:
1006 		case e1000_pch2lan:
1007 		case e1000_82574:
1008 		case e1000_80003es2lan:
1009 			max_frame_size = 9234;
1010 			break;
1011 
1012 		case e1000_pchlan:
1013 			max_frame_size = 4096;
1014 			break;
1015 
1016 		/* Adapters that do not support jumbo frames */
1017 		case e1000_82542:
1018 		case e1000_82583:
1019 		case e1000_ich8lan:
1020 			max_frame_size = ETHER_MAX_LEN;
1021 			break;
1022 
1023 		default:
1024 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1025 			break;
1026 		}
1027 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1028 		    ETHER_CRC_LEN) {
1029 			error = EINVAL;
1030 			break;
1031 		}
1032 
1033 		ifp->if_mtu = ifr->ifr_mtu;
1034 		adapter->max_frame_size =
1035 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1036 
1037 		if (ifp->if_flags & IFF_RUNNING)
1038 			em_init(adapter);
1039 		break;
1040 
1041 	case SIOCSIFFLAGS:
1042 		if (ifp->if_flags & IFF_UP) {
1043 			if ((ifp->if_flags & IFF_RUNNING)) {
1044 				if ((ifp->if_flags ^ adapter->if_flags) &
1045 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1046 					em_disable_promisc(adapter);
1047 					em_set_promisc(adapter);
1048 				}
1049 			} else {
1050 				em_init(adapter);
1051 			}
1052 		} else if (ifp->if_flags & IFF_RUNNING) {
1053 			em_stop(adapter);
1054 		}
1055 		adapter->if_flags = ifp->if_flags;
1056 		break;
1057 
1058 	case SIOCADDMULTI:
1059 	case SIOCDELMULTI:
1060 		if (ifp->if_flags & IFF_RUNNING) {
1061 			em_disable_intr(adapter);
1062 			em_set_multi(adapter);
1063 			if (adapter->hw.mac.type == e1000_82542 &&
1064 			    adapter->hw.revision_id == E1000_REVISION_2)
1065 				em_init_rx_unit(adapter);
1066 #ifdef DEVICE_POLLING
1067 			if (!(ifp->if_flags & IFF_POLLING))
1068 #endif
1069 				em_enable_intr(adapter);
1070 		}
1071 		break;
1072 
1073 	case SIOCSIFMEDIA:
1074 		/* Check SOL/IDER usage */
1075 		if (e1000_check_reset_block(&adapter->hw)) {
1076 			device_printf(adapter->dev, "Media change is"
1077 			    " blocked due to SOL/IDER session.\n");
1078 			break;
1079 		}
1080 		/* FALL THROUGH */
1081 
1082 	case SIOCGIFMEDIA:
1083 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1084 		break;
1085 
1086 	case SIOCSIFCAP:
1087 		reinit = 0;
1088 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1089 		if (mask & IFCAP_HWCSUM) {
1090 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1091 			reinit = 1;
1092 		}
1093 		if (mask & IFCAP_VLAN_HWTAGGING) {
1094 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1095 			reinit = 1;
1096 		}
1097 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1098 			em_init(adapter);
1099 		break;
1100 
1101 	default:
1102 		error = ether_ioctl(ifp, command, data);
1103 		break;
1104 	}
1105 	return (error);
1106 }
1107 
1108 static void
1109 em_watchdog(struct ifnet *ifp)
1110 {
1111 	struct adapter *adapter = ifp->if_softc;
1112 
1113 	ASSERT_SERIALIZED(ifp->if_serializer);
1114 
1115 	/*
1116 	 * The timer is set to 5 every time start queues a packet.
1117 	 * Then txeof keeps resetting it as long as it cleans at
1118 	 * least one descriptor.
1119 	 * Finally, anytime all descriptors are clean the timer is
1120 	 * set to 0.
1121 	 */
1122 
1123 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1124 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1125 		/*
1126 		 * If we reach here, all TX jobs are completed and
1127 		 * the TX engine should have been idled for some time.
1128 		 * We don't need to call if_devstart() here.
1129 		 */
1130 		ifp->if_flags &= ~IFF_OACTIVE;
1131 		ifp->if_timer = 0;
1132 		return;
1133 	}
1134 
1135 	/*
1136 	 * If we are in this routine because of pause frames, then
1137 	 * don't reset the hardware.
1138 	 */
1139 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1140 	    E1000_STATUS_TXOFF) {
1141 		ifp->if_timer = EM_TX_TIMEOUT;
1142 		return;
1143 	}
1144 
1145 	if (e1000_check_for_link(&adapter->hw) == 0)
1146 		if_printf(ifp, "watchdog timeout -- resetting\n");
1147 
1148 	ifp->if_oerrors++;
1149 	adapter->watchdog_events++;
1150 
1151 	em_init(adapter);
1152 
1153 	if (!ifq_is_empty(&ifp->if_snd))
1154 		if_devstart(ifp);
1155 }
1156 
1157 static void
1158 em_init(void *xsc)
1159 {
1160 	struct adapter *adapter = xsc;
1161 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1162 	device_t dev = adapter->dev;
1163 	uint32_t pba;
1164 
1165 	ASSERT_SERIALIZED(ifp->if_serializer);
1166 
1167 	em_stop(adapter);
1168 
1169 	/*
1170 	 * Packet Buffer Allocation (PBA)
1171 	 * Writing PBA sets the receive portion of the buffer
1172 	 * the remainder is used for the transmit buffer.
1173 	 *
1174 	 * Devices before the 82547 had a Packet Buffer of 64K.
1175 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1176 	 * After the 82547 the buffer was reduced to 40K.
1177 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1178 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1179 	 */
1180 	switch (adapter->hw.mac.type) {
1181 	case e1000_82547:
1182 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1183 		if (adapter->max_frame_size > 8192)
1184 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1185 		else
1186 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1187 		adapter->tx_fifo_head = 0;
1188 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1189 		adapter->tx_fifo_size =
1190 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1191 		break;
1192 
1193 	/* Total Packet Buffer on these is 48K */
1194 	case e1000_82571:
1195 	case e1000_82572:
1196 	case e1000_80003es2lan:
1197 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1198 		break;
1199 
1200 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1201 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1202 		break;
1203 
1204 	case e1000_82574:
1205 	case e1000_82583:
1206 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1207 		break;
1208 
1209 	case e1000_ich8lan:
1210 		pba = E1000_PBA_8K;
1211 		break;
1212 
1213 	case e1000_ich9lan:
1214 	case e1000_ich10lan:
1215 #define E1000_PBA_10K	0x000A
1216 		pba = E1000_PBA_10K;
1217 		break;
1218 
1219 	case e1000_pchlan:
1220 	case e1000_pch2lan:
1221 		pba = E1000_PBA_26K;
1222 		break;
1223 
1224 	default:
1225 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1226 		if (adapter->max_frame_size > 8192)
1227 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1228 		else
1229 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1230 	}
1231 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1232 
1233 	/* Get the latest mac address, User can use a LAA */
1234         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1235 
1236 	/* Put the address into the Receive Address Array */
1237 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1238 
1239 	/*
1240 	 * With the 82571 adapter, RAR[0] may be overwritten
1241 	 * when the other port is reset, we make a duplicate
1242 	 * in RAR[14] for that eventuality, this assures
1243 	 * the interface continues to function.
1244 	 */
1245 	if (adapter->hw.mac.type == e1000_82571) {
1246 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1247 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1248 		    E1000_RAR_ENTRIES - 1);
1249 	}
1250 
1251 	/* Reset the hardware */
1252 	if (em_reset(adapter)) {
1253 		device_printf(dev, "Unable to reset the hardware\n");
1254 		/* XXX em_stop()? */
1255 		return;
1256 	}
1257 	em_update_link_status(adapter);
1258 
1259 	/* Setup VLAN support, basic and offload if available */
1260 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1261 
1262 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1263 		uint32_t ctrl;
1264 
1265 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1266 		ctrl |= E1000_CTRL_VME;
1267 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1268 	}
1269 
1270 	/* Set hardware offload abilities */
1271 	if (ifp->if_capenable & IFCAP_TXCSUM)
1272 		ifp->if_hwassist = EM_CSUM_FEATURES;
1273 	else
1274 		ifp->if_hwassist = 0;
1275 
1276 	/* Configure for OS presence */
1277 	em_get_mgmt(adapter);
1278 
1279 	/* Prepare transmit descriptors and buffers */
1280 	em_init_tx_ring(adapter);
1281 	em_init_tx_unit(adapter);
1282 
1283 	/* Setup Multicast table */
1284 	em_set_multi(adapter);
1285 
1286 	/* Prepare receive descriptors and buffers */
1287 	if (em_init_rx_ring(adapter)) {
1288 		device_printf(dev, "Could not setup receive structures\n");
1289 		em_stop(adapter);
1290 		return;
1291 	}
1292 	em_init_rx_unit(adapter);
1293 
1294 	/* Don't lose promiscuous settings */
1295 	em_set_promisc(adapter);
1296 
1297 	ifp->if_flags |= IFF_RUNNING;
1298 	ifp->if_flags &= ~IFF_OACTIVE;
1299 
1300 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1301 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1302 
1303 	/* MSI/X configuration for 82574 */
1304 	if (adapter->hw.mac.type == e1000_82574) {
1305 		int tmp;
1306 
1307 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1308 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1309 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1310 		/*
1311 		 * XXX MSIX
1312 		 * Set the IVAR - interrupt vector routing.
1313 		 * Each nibble represents a vector, high bit
1314 		 * is enable, other 3 bits are the MSIX table
1315 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1316 		 * Link (other) to 2, hence the magic number.
1317 		 */
1318 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1319 	}
1320 
1321 #ifdef DEVICE_POLLING
1322 	/*
1323 	 * Only enable interrupts if we are not polling, make sure
1324 	 * they are off otherwise.
1325 	 */
1326 	if (ifp->if_flags & IFF_POLLING)
1327 		em_disable_intr(adapter);
1328 	else
1329 #endif /* DEVICE_POLLING */
1330 		em_enable_intr(adapter);
1331 
1332 	/* AMT based hardware can now take control from firmware */
1333 	if (adapter->has_manage && adapter->has_amt &&
1334 	    adapter->hw.mac.type >= e1000_82571)
1335 		em_get_hw_control(adapter);
1336 
1337 	/* Don't reset the phy next time init gets called */
1338 	adapter->hw.phy.reset_disable = TRUE;
1339 }
1340 
1341 #ifdef DEVICE_POLLING
1342 
1343 static void
1344 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1345 {
1346 	struct adapter *adapter = ifp->if_softc;
1347 	uint32_t reg_icr;
1348 
1349 	ASSERT_SERIALIZED(ifp->if_serializer);
1350 
1351 	switch (cmd) {
1352 	case POLL_REGISTER:
1353 		em_disable_intr(adapter);
1354 		break;
1355 
1356 	case POLL_DEREGISTER:
1357 		em_enable_intr(adapter);
1358 		break;
1359 
1360 	case POLL_AND_CHECK_STATUS:
1361 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1362 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1363 			callout_stop(&adapter->timer);
1364 			adapter->hw.mac.get_link_status = 1;
1365 			em_update_link_status(adapter);
1366 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1367 		}
1368 		/* FALL THROUGH */
1369 	case POLL_ONLY:
1370 		if (ifp->if_flags & IFF_RUNNING) {
1371 			em_rxeof(adapter, count);
1372 			em_txeof(adapter);
1373 
1374 			if (!ifq_is_empty(&ifp->if_snd))
1375 				if_devstart(ifp);
1376 		}
1377 		break;
1378 	}
1379 }
1380 
1381 #endif /* DEVICE_POLLING */
1382 
1383 static void
1384 em_intr(void *xsc)
1385 {
1386 	struct adapter *adapter = xsc;
1387 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1388 	uint32_t reg_icr;
1389 
1390 	logif(intr_beg);
1391 	ASSERT_SERIALIZED(ifp->if_serializer);
1392 
1393 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1394 
1395 	if ((adapter->hw.mac.type >= e1000_82571 &&
1396 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1397 	    reg_icr == 0) {
1398 		logif(intr_end);
1399 		return;
1400 	}
1401 
1402 	/*
1403 	 * XXX: some laptops trigger several spurious interrupts
1404 	 * on em(4) when in the resume cycle. The ICR register
1405 	 * reports all-ones value in this case. Processing such
1406 	 * interrupts would lead to a freeze. I don't know why.
1407 	 */
1408 	if (reg_icr == 0xffffffff) {
1409 		logif(intr_end);
1410 		return;
1411 	}
1412 
1413 	if (ifp->if_flags & IFF_RUNNING) {
1414 		if (reg_icr &
1415 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1416 			em_rxeof(adapter, -1);
1417 		if (reg_icr & E1000_ICR_TXDW) {
1418 			em_txeof(adapter);
1419 			if (!ifq_is_empty(&ifp->if_snd))
1420 				if_devstart(ifp);
1421 		}
1422 	}
1423 
1424 	/* Link status change */
1425 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1426 		callout_stop(&adapter->timer);
1427 		adapter->hw.mac.get_link_status = 1;
1428 		em_update_link_status(adapter);
1429 
1430 		/* Deal with TX cruft when link lost */
1431 		em_tx_purge(adapter);
1432 
1433 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1434 	}
1435 
1436 	if (reg_icr & E1000_ICR_RXO)
1437 		adapter->rx_overruns++;
1438 
1439 	logif(intr_end);
1440 }
1441 
1442 static void
1443 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1444 {
1445 	struct adapter *adapter = ifp->if_softc;
1446 	u_char fiber_type = IFM_1000_SX;
1447 
1448 	ASSERT_SERIALIZED(ifp->if_serializer);
1449 
1450 	em_update_link_status(adapter);
1451 
1452 	ifmr->ifm_status = IFM_AVALID;
1453 	ifmr->ifm_active = IFM_ETHER;
1454 
1455 	if (!adapter->link_active)
1456 		return;
1457 
1458 	ifmr->ifm_status |= IFM_ACTIVE;
1459 
1460 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1461 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1462 		if (adapter->hw.mac.type == e1000_82545)
1463 			fiber_type = IFM_1000_LX;
1464 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1465 	} else {
1466 		switch (adapter->link_speed) {
1467 		case 10:
1468 			ifmr->ifm_active |= IFM_10_T;
1469 			break;
1470 		case 100:
1471 			ifmr->ifm_active |= IFM_100_TX;
1472 			break;
1473 
1474 		case 1000:
1475 			ifmr->ifm_active |= IFM_1000_T;
1476 			break;
1477 		}
1478 		if (adapter->link_duplex == FULL_DUPLEX)
1479 			ifmr->ifm_active |= IFM_FDX;
1480 		else
1481 			ifmr->ifm_active |= IFM_HDX;
1482 	}
1483 }
1484 
1485 static int
1486 em_media_change(struct ifnet *ifp)
1487 {
1488 	struct adapter *adapter = ifp->if_softc;
1489 	struct ifmedia *ifm = &adapter->media;
1490 
1491 	ASSERT_SERIALIZED(ifp->if_serializer);
1492 
1493 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1494 		return (EINVAL);
1495 
1496 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1497 	case IFM_AUTO:
1498 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1499 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1500 		break;
1501 
1502 	case IFM_1000_LX:
1503 	case IFM_1000_SX:
1504 	case IFM_1000_T:
1505 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1506 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1507 		break;
1508 
1509 	case IFM_100_TX:
1510 		adapter->hw.mac.autoneg = FALSE;
1511 		adapter->hw.phy.autoneg_advertised = 0;
1512 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1513 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1514 		else
1515 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1516 		break;
1517 
1518 	case IFM_10_T:
1519 		adapter->hw.mac.autoneg = FALSE;
1520 		adapter->hw.phy.autoneg_advertised = 0;
1521 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1522 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1523 		else
1524 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1525 		break;
1526 
1527 	default:
1528 		if_printf(ifp, "Unsupported media type\n");
1529 		break;
1530 	}
1531 
1532 	/*
1533 	 * As the speed/duplex settings my have changed we need to
1534 	 * reset the PHY.
1535 	 */
1536 	adapter->hw.phy.reset_disable = FALSE;
1537 
1538 	em_init(adapter);
1539 
1540 	return (0);
1541 }
1542 
1543 static int
1544 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1545 {
1546 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1547 	bus_dmamap_t map;
1548 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1549 	struct e1000_tx_desc *ctxd = NULL;
1550 	struct mbuf *m_head = *m_headp;
1551 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1552 	int maxsegs, nsegs, i, j, first, last = 0, error;
1553 
1554 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1555 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1556 		/*
1557 		 * Make sure that ethernet header and ip.ip_hl are in
1558 		 * contiguous memory, since if TXCSUM is enabled, later
1559 		 * TX context descriptor's setup need to access ip.ip_hl.
1560 		 */
1561 		error = em_txcsum_pullup(adapter, m_headp);
1562 		if (error) {
1563 			KKASSERT(*m_headp == NULL);
1564 			return error;
1565 		}
1566 		m_head = *m_headp;
1567 	}
1568 
1569 	txd_upper = txd_lower = 0;
1570 	txd_used = 0;
1571 
1572 	/*
1573 	 * Capture the first descriptor index, this descriptor
1574 	 * will have the index of the EOP which is the only one
1575 	 * that now gets a DONE bit writeback.
1576 	 */
1577 	first = adapter->next_avail_tx_desc;
1578 	tx_buffer = &adapter->tx_buffer_area[first];
1579 	tx_buffer_mapped = tx_buffer;
1580 	map = tx_buffer->map;
1581 
1582 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1583 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1584 		("not enough spare TX desc\n"));
1585 	if (adapter->pcix_82544) {
1586 		/* Half it; see the comment in em_attach() */
1587 		maxsegs >>= 1;
1588 	}
1589 	if (maxsegs > EM_MAX_SCATTER)
1590 		maxsegs = EM_MAX_SCATTER;
1591 
1592 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1593 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1594 	if (error) {
1595 		if (error == ENOBUFS)
1596 			adapter->mbuf_alloc_failed++;
1597 		else
1598 			adapter->no_tx_dma_setup++;
1599 
1600 		m_freem(*m_headp);
1601 		*m_headp = NULL;
1602 		return error;
1603 	}
1604         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1605 
1606 	m_head = *m_headp;
1607 	adapter->tx_nsegs += nsegs;
1608 
1609 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1610 		/* TX csum offloading will consume one TX desc */
1611 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1612 					       &txd_upper, &txd_lower);
1613 	}
1614 	i = adapter->next_avail_tx_desc;
1615 
1616 	/* Set up our transmit descriptors */
1617 	for (j = 0; j < nsegs; j++) {
1618 		/* If adapter is 82544 and on PCIX bus */
1619 		if(adapter->pcix_82544) {
1620 			DESC_ARRAY desc_array;
1621 			uint32_t array_elements, counter;
1622 
1623 			/*
1624 			 * Check the Address and Length combination and
1625 			 * split the data accordingly
1626 			 */
1627 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1628 						segs[j].ds_len, &desc_array);
1629 			for (counter = 0; counter < array_elements; counter++) {
1630 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1631 
1632 				tx_buffer = &adapter->tx_buffer_area[i];
1633 				ctxd = &adapter->tx_desc_base[i];
1634 
1635 				ctxd->buffer_addr = htole64(
1636 				    desc_array.descriptor[counter].address);
1637 				ctxd->lower.data = htole32(
1638 				    E1000_TXD_CMD_IFCS | txd_lower |
1639 				    desc_array.descriptor[counter].length);
1640 				ctxd->upper.data = htole32(txd_upper);
1641 
1642 				last = i;
1643 				if (++i == adapter->num_tx_desc)
1644 					i = 0;
1645 
1646 				txd_used++;
1647                         }
1648 		} else {
1649 			tx_buffer = &adapter->tx_buffer_area[i];
1650 			ctxd = &adapter->tx_desc_base[i];
1651 
1652 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1653 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1654 						   txd_lower | segs[j].ds_len);
1655 			ctxd->upper.data = htole32(txd_upper);
1656 
1657 			last = i;
1658 			if (++i == adapter->num_tx_desc)
1659 				i = 0;
1660 		}
1661 	}
1662 
1663 	adapter->next_avail_tx_desc = i;
1664 	if (adapter->pcix_82544) {
1665 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1666 		adapter->num_tx_desc_avail -= txd_used;
1667 	} else {
1668 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1669 		adapter->num_tx_desc_avail -= nsegs;
1670 	}
1671 
1672         /* Handle VLAN tag */
1673 	if (m_head->m_flags & M_VLANTAG) {
1674 		/* Set the vlan id. */
1675 		ctxd->upper.fields.special =
1676 		    htole16(m_head->m_pkthdr.ether_vlantag);
1677 
1678 		/* Tell hardware to add tag */
1679 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1680 	}
1681 
1682 	tx_buffer->m_head = m_head;
1683 	tx_buffer_mapped->map = tx_buffer->map;
1684 	tx_buffer->map = map;
1685 
1686 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1687 		adapter->tx_nsegs = 0;
1688 
1689 		/*
1690 		 * Report Status (RS) is turned on
1691 		 * every tx_int_nsegs descriptors.
1692 		 */
1693 		cmd = E1000_TXD_CMD_RS;
1694 
1695 		/*
1696 		 * Keep track of the descriptor, which will
1697 		 * be written back by hardware.
1698 		 */
1699 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1700 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1701 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1702 	}
1703 
1704 	/*
1705 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1706 	 */
1707 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1708 
1709 	/*
1710 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1711 	 * that this frame is available to transmit.
1712 	 */
1713 	if (adapter->hw.mac.type == e1000_82547 &&
1714 	    adapter->link_duplex == HALF_DUPLEX) {
1715 		em_82547_move_tail_serialized(adapter);
1716 	} else {
1717 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1718 		if (adapter->hw.mac.type == e1000_82547) {
1719 			em_82547_update_fifo_head(adapter,
1720 			    m_head->m_pkthdr.len);
1721 		}
1722 	}
1723 	return (0);
1724 }
1725 
1726 /*
1727  * 82547 workaround to avoid controller hang in half-duplex environment.
1728  * The workaround is to avoid queuing a large packet that would span
1729  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1730  * in this case.  We do that only when FIFO is quiescent.
1731  */
1732 static void
1733 em_82547_move_tail_serialized(struct adapter *adapter)
1734 {
1735 	struct e1000_tx_desc *tx_desc;
1736 	uint16_t hw_tdt, sw_tdt, length = 0;
1737 	bool eop = 0;
1738 
1739 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1740 
1741 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1742 	sw_tdt = adapter->next_avail_tx_desc;
1743 
1744 	while (hw_tdt != sw_tdt) {
1745 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1746 		length += tx_desc->lower.flags.length;
1747 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1748 		if (++hw_tdt == adapter->num_tx_desc)
1749 			hw_tdt = 0;
1750 
1751 		if (eop) {
1752 			if (em_82547_fifo_workaround(adapter, length)) {
1753 				adapter->tx_fifo_wrk_cnt++;
1754 				callout_reset(&adapter->tx_fifo_timer, 1,
1755 					em_82547_move_tail, adapter);
1756 				break;
1757 			}
1758 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1759 			em_82547_update_fifo_head(adapter, length);
1760 			length = 0;
1761 		}
1762 	}
1763 }
1764 
1765 static void
1766 em_82547_move_tail(void *xsc)
1767 {
1768 	struct adapter *adapter = xsc;
1769 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1770 
1771 	lwkt_serialize_enter(ifp->if_serializer);
1772 	em_82547_move_tail_serialized(adapter);
1773 	lwkt_serialize_exit(ifp->if_serializer);
1774 }
1775 
1776 static int
1777 em_82547_fifo_workaround(struct adapter *adapter, int len)
1778 {
1779 	int fifo_space, fifo_pkt_len;
1780 
1781 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1782 
1783 	if (adapter->link_duplex == HALF_DUPLEX) {
1784 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1785 
1786 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1787 			if (em_82547_tx_fifo_reset(adapter))
1788 				return (0);
1789 			else
1790 				return (1);
1791 		}
1792 	}
1793 	return (0);
1794 }
1795 
1796 static void
1797 em_82547_update_fifo_head(struct adapter *adapter, int len)
1798 {
1799 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1800 
1801 	/* tx_fifo_head is always 16 byte aligned */
1802 	adapter->tx_fifo_head += fifo_pkt_len;
1803 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1804 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1805 }
1806 
1807 static int
1808 em_82547_tx_fifo_reset(struct adapter *adapter)
1809 {
1810 	uint32_t tctl;
1811 
1812 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1813 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1814 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1815 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1816 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1817 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1818 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1819 		/* Disable TX unit */
1820 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1821 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1822 		    tctl & ~E1000_TCTL_EN);
1823 
1824 		/* Reset FIFO pointers */
1825 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1826 		    adapter->tx_head_addr);
1827 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1828 		    adapter->tx_head_addr);
1829 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1830 		    adapter->tx_head_addr);
1831 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1832 		    adapter->tx_head_addr);
1833 
1834 		/* Re-enable TX unit */
1835 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1836 		E1000_WRITE_FLUSH(&adapter->hw);
1837 
1838 		adapter->tx_fifo_head = 0;
1839 		adapter->tx_fifo_reset_cnt++;
1840 
1841 		return (TRUE);
1842 	} else {
1843 		return (FALSE);
1844 	}
1845 }
1846 
1847 static void
1848 em_set_promisc(struct adapter *adapter)
1849 {
1850 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1851 	uint32_t reg_rctl;
1852 
1853 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1854 
1855 	if (ifp->if_flags & IFF_PROMISC) {
1856 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1857 		/* Turn this on if you want to see bad packets */
1858 		if (em_debug_sbp)
1859 			reg_rctl |= E1000_RCTL_SBP;
1860 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1861 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1862 		reg_rctl |= E1000_RCTL_MPE;
1863 		reg_rctl &= ~E1000_RCTL_UPE;
1864 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1865 	}
1866 }
1867 
1868 static void
1869 em_disable_promisc(struct adapter *adapter)
1870 {
1871 	uint32_t reg_rctl;
1872 
1873 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1874 
1875 	reg_rctl &= ~E1000_RCTL_UPE;
1876 	reg_rctl &= ~E1000_RCTL_MPE;
1877 	reg_rctl &= ~E1000_RCTL_SBP;
1878 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1879 }
1880 
1881 static void
1882 em_set_multi(struct adapter *adapter)
1883 {
1884 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1885 	struct ifmultiaddr *ifma;
1886 	uint32_t reg_rctl = 0;
1887 	uint8_t *mta;
1888 	int mcnt = 0;
1889 
1890 	mta = adapter->mta;
1891 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1892 
1893 	if (adapter->hw.mac.type == e1000_82542 &&
1894 	    adapter->hw.revision_id == E1000_REVISION_2) {
1895 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1896 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1897 			e1000_pci_clear_mwi(&adapter->hw);
1898 		reg_rctl |= E1000_RCTL_RST;
1899 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1900 		msec_delay(5);
1901 	}
1902 
1903 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1904 		if (ifma->ifma_addr->sa_family != AF_LINK)
1905 			continue;
1906 
1907 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1908 			break;
1909 
1910 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1911 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1912 		mcnt++;
1913 	}
1914 
1915 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1916 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1917 		reg_rctl |= E1000_RCTL_MPE;
1918 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1919 	} else {
1920 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1921 	}
1922 
1923 	if (adapter->hw.mac.type == e1000_82542 &&
1924 	    adapter->hw.revision_id == E1000_REVISION_2) {
1925 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1926 		reg_rctl &= ~E1000_RCTL_RST;
1927 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1928 		msec_delay(5);
1929 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1930 			e1000_pci_set_mwi(&adapter->hw);
1931 	}
1932 }
1933 
1934 /*
1935  * This routine checks for link status and updates statistics.
1936  */
1937 static void
1938 em_timer(void *xsc)
1939 {
1940 	struct adapter *adapter = xsc;
1941 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1942 
1943 	lwkt_serialize_enter(ifp->if_serializer);
1944 
1945 	em_update_link_status(adapter);
1946 	em_update_stats(adapter);
1947 
1948 	/* Reset LAA into RAR[0] on 82571 */
1949 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1950 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1951 
1952 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1953 		em_print_hw_stats(adapter);
1954 
1955 	em_smartspeed(adapter);
1956 
1957 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1958 
1959 	lwkt_serialize_exit(ifp->if_serializer);
1960 }
1961 
1962 static void
1963 em_update_link_status(struct adapter *adapter)
1964 {
1965 	struct e1000_hw *hw = &adapter->hw;
1966 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1967 	device_t dev = adapter->dev;
1968 	uint32_t link_check = 0;
1969 
1970 	/* Get the cached link value or read phy for real */
1971 	switch (hw->phy.media_type) {
1972 	case e1000_media_type_copper:
1973 		if (hw->mac.get_link_status) {
1974 			/* Do the work to read phy */
1975 			e1000_check_for_link(hw);
1976 			link_check = !hw->mac.get_link_status;
1977 			if (link_check) /* ESB2 fix */
1978 				e1000_cfg_on_link_up(hw);
1979 		} else {
1980 			link_check = TRUE;
1981 		}
1982 		break;
1983 
1984 	case e1000_media_type_fiber:
1985 		e1000_check_for_link(hw);
1986 		link_check =
1987 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1988 		break;
1989 
1990 	case e1000_media_type_internal_serdes:
1991 		e1000_check_for_link(hw);
1992 		link_check = adapter->hw.mac.serdes_has_link;
1993 		break;
1994 
1995 	case e1000_media_type_unknown:
1996 	default:
1997 		break;
1998 	}
1999 
2000 	/* Now check for a transition */
2001 	if (link_check && adapter->link_active == 0) {
2002 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2003 		    &adapter->link_duplex);
2004 
2005 		/*
2006 		 * Check if we should enable/disable SPEED_MODE bit on
2007 		 * 82571/82572
2008 		 */
2009 		if (adapter->link_speed != SPEED_1000 &&
2010 		    (hw->mac.type == e1000_82571 ||
2011 		     hw->mac.type == e1000_82572)) {
2012 			int tarc0;
2013 
2014 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2015 			tarc0 &= ~SPEED_MODE_BIT;
2016 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2017 		}
2018 		if (bootverbose) {
2019 			device_printf(dev, "Link is up %d Mbps %s\n",
2020 			    adapter->link_speed,
2021 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2022 			    "Full Duplex" : "Half Duplex"));
2023 		}
2024 		adapter->link_active = 1;
2025 		adapter->smartspeed = 0;
2026 		ifp->if_baudrate = adapter->link_speed * 1000000;
2027 		ifp->if_link_state = LINK_STATE_UP;
2028 		if_link_state_change(ifp);
2029 	} else if (!link_check && adapter->link_active == 1) {
2030 		ifp->if_baudrate = adapter->link_speed = 0;
2031 		adapter->link_duplex = 0;
2032 		if (bootverbose)
2033 			device_printf(dev, "Link is Down\n");
2034 		adapter->link_active = 0;
2035 #if 0
2036 		/* Link down, disable watchdog */
2037 		if->if_timer = 0;
2038 #endif
2039 		ifp->if_link_state = LINK_STATE_DOWN;
2040 		if_link_state_change(ifp);
2041 	}
2042 }
2043 
2044 static void
2045 em_stop(struct adapter *adapter)
2046 {
2047 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2048 	int i;
2049 
2050 	ASSERT_SERIALIZED(ifp->if_serializer);
2051 
2052 	em_disable_intr(adapter);
2053 
2054 	callout_stop(&adapter->timer);
2055 	callout_stop(&adapter->tx_fifo_timer);
2056 
2057 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2058 	ifp->if_timer = 0;
2059 
2060 	e1000_reset_hw(&adapter->hw);
2061 	if (adapter->hw.mac.type >= e1000_82544)
2062 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2063 
2064 	for (i = 0; i < adapter->num_tx_desc; i++) {
2065 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2066 
2067 		if (tx_buffer->m_head != NULL) {
2068 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2069 			m_freem(tx_buffer->m_head);
2070 			tx_buffer->m_head = NULL;
2071 		}
2072 	}
2073 
2074 	for (i = 0; i < adapter->num_rx_desc; i++) {
2075 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2076 
2077 		if (rx_buffer->m_head != NULL) {
2078 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2079 			m_freem(rx_buffer->m_head);
2080 			rx_buffer->m_head = NULL;
2081 		}
2082 	}
2083 
2084 	if (adapter->fmp != NULL)
2085 		m_freem(adapter->fmp);
2086 	adapter->fmp = NULL;
2087 	adapter->lmp = NULL;
2088 
2089 	adapter->csum_flags = 0;
2090 	adapter->csum_ehlen = 0;
2091 	adapter->csum_iphlen = 0;
2092 
2093 	adapter->tx_dd_head = 0;
2094 	adapter->tx_dd_tail = 0;
2095 	adapter->tx_nsegs = 0;
2096 }
2097 
2098 static int
2099 em_get_hw_info(struct adapter *adapter)
2100 {
2101 	device_t dev = adapter->dev;
2102 
2103 	/* Save off the information about this board */
2104 	adapter->hw.vendor_id = pci_get_vendor(dev);
2105 	adapter->hw.device_id = pci_get_device(dev);
2106 	adapter->hw.revision_id = pci_get_revid(dev);
2107 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2108 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2109 
2110 	/* Do Shared Code Init and Setup */
2111 	if (e1000_set_mac_type(&adapter->hw))
2112 		return ENXIO;
2113 	return 0;
2114 }
2115 
2116 static int
2117 em_alloc_pci_res(struct adapter *adapter)
2118 {
2119 	device_t dev = adapter->dev;
2120 	u_int intr_flags;
2121 	int val, rid;
2122 
2123 	/* Enable bus mastering */
2124 	pci_enable_busmaster(dev);
2125 
2126 	adapter->memory_rid = EM_BAR_MEM;
2127 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2128 				&adapter->memory_rid, RF_ACTIVE);
2129 	if (adapter->memory == NULL) {
2130 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2131 		return (ENXIO);
2132 	}
2133 	adapter->osdep.mem_bus_space_tag =
2134 	    rman_get_bustag(adapter->memory);
2135 	adapter->osdep.mem_bus_space_handle =
2136 	    rman_get_bushandle(adapter->memory);
2137 
2138 	/* XXX This is quite goofy, it is not actually used */
2139 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2140 
2141 	/* Only older adapters use IO mapping */
2142 	if (adapter->hw.mac.type > e1000_82543 &&
2143 	    adapter->hw.mac.type < e1000_82571) {
2144 		/* Figure our where our IO BAR is ? */
2145 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2146 			val = pci_read_config(dev, rid, 4);
2147 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2148 				adapter->io_rid = rid;
2149 				break;
2150 			}
2151 			rid += 4;
2152 			/* check for 64bit BAR */
2153 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2154 				rid += 4;
2155 		}
2156 		if (rid >= PCIR_CARDBUSCIS) {
2157 			device_printf(dev, "Unable to locate IO BAR\n");
2158 			return (ENXIO);
2159 		}
2160 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2161 					&adapter->io_rid, RF_ACTIVE);
2162 		if (adapter->ioport == NULL) {
2163 			device_printf(dev, "Unable to allocate bus resource: "
2164 			    "ioport\n");
2165 			return (ENXIO);
2166 		}
2167 		adapter->hw.io_base = 0;
2168 		adapter->osdep.io_bus_space_tag =
2169 		    rman_get_bustag(adapter->ioport);
2170 		adapter->osdep.io_bus_space_handle =
2171 		    rman_get_bushandle(adapter->ioport);
2172 	}
2173 
2174 	adapter->intr_type = pci_alloc_1intr(dev, em_msi_enable,
2175 	    &adapter->intr_rid, &intr_flags);
2176 
2177 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2178 	    &adapter->intr_rid, intr_flags);
2179 	if (adapter->intr_res == NULL) {
2180 		device_printf(dev, "Unable to allocate bus resource: "
2181 		    "interrupt\n");
2182 		return (ENXIO);
2183 	}
2184 
2185 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2186 	adapter->hw.back = &adapter->osdep;
2187 	return (0);
2188 }
2189 
2190 static void
2191 em_free_pci_res(struct adapter *adapter)
2192 {
2193 	device_t dev = adapter->dev;
2194 
2195 	if (adapter->intr_res != NULL) {
2196 		bus_release_resource(dev, SYS_RES_IRQ,
2197 		    adapter->intr_rid, adapter->intr_res);
2198 	}
2199 
2200 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2201 		pci_release_msi(dev);
2202 
2203 	if (adapter->memory != NULL) {
2204 		bus_release_resource(dev, SYS_RES_MEMORY,
2205 		    adapter->memory_rid, adapter->memory);
2206 	}
2207 
2208 	if (adapter->flash != NULL) {
2209 		bus_release_resource(dev, SYS_RES_MEMORY,
2210 		    adapter->flash_rid, adapter->flash);
2211 	}
2212 
2213 	if (adapter->ioport != NULL) {
2214 		bus_release_resource(dev, SYS_RES_IOPORT,
2215 		    adapter->io_rid, adapter->ioport);
2216 	}
2217 }
2218 
2219 static int
2220 em_reset(struct adapter *adapter)
2221 {
2222 	device_t dev = adapter->dev;
2223 	uint16_t rx_buffer_size;
2224 
2225 	/* When hardware is reset, fifo_head is also reset */
2226 	adapter->tx_fifo_head = 0;
2227 
2228 	/* Set up smart power down as default off on newer adapters. */
2229 	if (!em_smart_pwr_down &&
2230 	    (adapter->hw.mac.type == e1000_82571 ||
2231 	     adapter->hw.mac.type == e1000_82572)) {
2232 		uint16_t phy_tmp = 0;
2233 
2234 		/* Speed up time to link by disabling smart power down. */
2235 		e1000_read_phy_reg(&adapter->hw,
2236 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2237 		phy_tmp &= ~IGP02E1000_PM_SPD;
2238 		e1000_write_phy_reg(&adapter->hw,
2239 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2240 	}
2241 
2242 	/*
2243 	 * These parameters control the automatic generation (Tx) and
2244 	 * response (Rx) to Ethernet PAUSE frames.
2245 	 * - High water mark should allow for at least two frames to be
2246 	 *   received after sending an XOFF.
2247 	 * - Low water mark works best when it is very near the high water mark.
2248 	 *   This allows the receiver to restart by sending XON when it has
2249 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2250 	 *   restart after one full frame is pulled from the buffer. There
2251 	 *   could be several smaller frames in the buffer and if so they will
2252 	 *   not trigger the XON until their total number reduces the buffer
2253 	 *   by 1500.
2254 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2255 	 */
2256 	rx_buffer_size =
2257 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2258 
2259 	adapter->hw.fc.high_water = rx_buffer_size -
2260 				    roundup2(adapter->max_frame_size, 1024);
2261 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2262 
2263 	if (adapter->hw.mac.type == e1000_80003es2lan)
2264 		adapter->hw.fc.pause_time = 0xFFFF;
2265 	else
2266 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2267 
2268 	adapter->hw.fc.send_xon = TRUE;
2269 
2270 	adapter->hw.fc.requested_mode = e1000_fc_full;
2271 
2272 	/* Workaround: no TX flow ctrl for PCH */
2273 	if (adapter->hw.mac.type == e1000_pchlan)
2274 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2275 
2276 	/* Override - settings for PCH2LAN, ya its magic :) */
2277 	if (adapter->hw.mac.type == e1000_pch2lan) {
2278 		adapter->hw.fc.high_water = 0x5C20;
2279 		adapter->hw.fc.low_water = 0x5048;
2280 		adapter->hw.fc.pause_time = 0x0650;
2281 		adapter->hw.fc.refresh_time = 0x0400;
2282 
2283 		/* Jumbos need adjusted PBA */
2284 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2285 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2286 		else
2287 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2288 	}
2289 
2290 	/* Issue a global reset */
2291 	e1000_reset_hw(&adapter->hw);
2292 	if (adapter->hw.mac.type >= e1000_82544)
2293 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2294 
2295 	if (e1000_init_hw(&adapter->hw) < 0) {
2296 		device_printf(dev, "Hardware Initialization Failed\n");
2297 		return (EIO);
2298 	}
2299 
2300 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2301 	e1000_get_phy_info(&adapter->hw);
2302 	e1000_check_for_link(&adapter->hw);
2303 
2304 	return (0);
2305 }
2306 
2307 static void
2308 em_setup_ifp(struct adapter *adapter)
2309 {
2310 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2311 
2312 	if_initname(ifp, device_get_name(adapter->dev),
2313 		    device_get_unit(adapter->dev));
2314 	ifp->if_softc = adapter;
2315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2316 	ifp->if_init =  em_init;
2317 	ifp->if_ioctl = em_ioctl;
2318 	ifp->if_start = em_start;
2319 #ifdef DEVICE_POLLING
2320 	ifp->if_poll = em_poll;
2321 #endif
2322 	ifp->if_watchdog = em_watchdog;
2323 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2324 	ifq_set_ready(&ifp->if_snd);
2325 
2326 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2327 
2328 	if (adapter->hw.mac.type >= e1000_82543)
2329 		ifp->if_capabilities = IFCAP_HWCSUM;
2330 
2331 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2332 	ifp->if_capenable = ifp->if_capabilities;
2333 
2334 	if (ifp->if_capenable & IFCAP_TXCSUM)
2335 		ifp->if_hwassist = EM_CSUM_FEATURES;
2336 
2337 	/*
2338 	 * Tell the upper layer(s) we support long frames.
2339 	 */
2340 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2341 
2342 	/*
2343 	 * Specify the media types supported by this adapter and register
2344 	 * callbacks to update media and link information
2345 	 */
2346 	ifmedia_init(&adapter->media, IFM_IMASK,
2347 		     em_media_change, em_media_status);
2348 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2349 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2350 		u_char fiber_type = IFM_1000_SX; /* default type */
2351 
2352 		if (adapter->hw.mac.type == e1000_82545)
2353 			fiber_type = IFM_1000_LX;
2354 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2355 			    0, NULL);
2356 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2357 	} else {
2358 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2359 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2360 			    0, NULL);
2361 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2362 			    0, NULL);
2363 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2364 			    0, NULL);
2365 		if (adapter->hw.phy.type != e1000_phy_ife) {
2366 			ifmedia_add(&adapter->media,
2367 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2368 			ifmedia_add(&adapter->media,
2369 				IFM_ETHER | IFM_1000_T, 0, NULL);
2370 		}
2371 	}
2372 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2373 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2374 }
2375 
2376 
2377 /*
2378  * Workaround for SmartSpeed on 82541 and 82547 controllers
2379  */
2380 static void
2381 em_smartspeed(struct adapter *adapter)
2382 {
2383 	uint16_t phy_tmp;
2384 
2385 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2386 	    adapter->hw.mac.autoneg == 0 ||
2387 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2388 		return;
2389 
2390 	if (adapter->smartspeed == 0) {
2391 		/*
2392 		 * If Master/Slave config fault is asserted twice,
2393 		 * we assume back-to-back
2394 		 */
2395 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2396 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2397 			return;
2398 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2399 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2400 			e1000_read_phy_reg(&adapter->hw,
2401 			    PHY_1000T_CTRL, &phy_tmp);
2402 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2403 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2404 				e1000_write_phy_reg(&adapter->hw,
2405 				    PHY_1000T_CTRL, phy_tmp);
2406 				adapter->smartspeed++;
2407 				if (adapter->hw.mac.autoneg &&
2408 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2409 				    !e1000_read_phy_reg(&adapter->hw,
2410 				     PHY_CONTROL, &phy_tmp)) {
2411 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2412 						   MII_CR_RESTART_AUTO_NEG;
2413 					e1000_write_phy_reg(&adapter->hw,
2414 					    PHY_CONTROL, phy_tmp);
2415 				}
2416 			}
2417 		}
2418 		return;
2419 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2420 		/* If still no link, perhaps using 2/3 pair cable */
2421 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2422 		phy_tmp |= CR_1000T_MS_ENABLE;
2423 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2424 		if (adapter->hw.mac.autoneg &&
2425 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2426 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2427 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2428 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2429 		}
2430 	}
2431 
2432 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2433 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2434 		adapter->smartspeed = 0;
2435 }
2436 
2437 static int
2438 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2439 	      struct em_dma_alloc *dma)
2440 {
2441 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2442 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2443 				&dma->dma_tag, &dma->dma_map,
2444 				&dma->dma_paddr);
2445 	if (dma->dma_vaddr == NULL)
2446 		return ENOMEM;
2447 	else
2448 		return 0;
2449 }
2450 
2451 static void
2452 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2453 {
2454 	if (dma->dma_tag == NULL)
2455 		return;
2456 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2457 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2458 	bus_dma_tag_destroy(dma->dma_tag);
2459 }
2460 
2461 static int
2462 em_create_tx_ring(struct adapter *adapter)
2463 {
2464 	device_t dev = adapter->dev;
2465 	struct em_buffer *tx_buffer;
2466 	int error, i;
2467 
2468 	adapter->tx_buffer_area =
2469 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2470 			M_DEVBUF, M_WAITOK | M_ZERO);
2471 
2472 	/*
2473 	 * Create DMA tags for tx buffers
2474 	 */
2475 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2476 			1, 0,			/* alignment, bounds */
2477 			BUS_SPACE_MAXADDR,	/* lowaddr */
2478 			BUS_SPACE_MAXADDR,	/* highaddr */
2479 			NULL, NULL,		/* filter, filterarg */
2480 			EM_TSO_SIZE,		/* maxsize */
2481 			EM_MAX_SCATTER,		/* nsegments */
2482 			EM_MAX_SEGSIZE,		/* maxsegsize */
2483 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2484 			BUS_DMA_ONEBPAGE,	/* flags */
2485 			&adapter->txtag);
2486 	if (error) {
2487 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2488 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2489 		adapter->tx_buffer_area = NULL;
2490 		return error;
2491 	}
2492 
2493 	/*
2494 	 * Create DMA maps for tx buffers
2495 	 */
2496 	for (i = 0; i < adapter->num_tx_desc; i++) {
2497 		tx_buffer = &adapter->tx_buffer_area[i];
2498 
2499 		error = bus_dmamap_create(adapter->txtag,
2500 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2501 					  &tx_buffer->map);
2502 		if (error) {
2503 			device_printf(dev, "Unable to create TX DMA map\n");
2504 			em_destroy_tx_ring(adapter, i);
2505 			return error;
2506 		}
2507 	}
2508 	return (0);
2509 }
2510 
2511 static void
2512 em_init_tx_ring(struct adapter *adapter)
2513 {
2514 	/* Clear the old ring contents */
2515 	bzero(adapter->tx_desc_base,
2516 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2517 
2518 	/* Reset state */
2519 	adapter->next_avail_tx_desc = 0;
2520 	adapter->next_tx_to_clean = 0;
2521 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2522 }
2523 
2524 static void
2525 em_init_tx_unit(struct adapter *adapter)
2526 {
2527 	uint32_t tctl, tarc, tipg = 0;
2528 	uint64_t bus_addr;
2529 
2530 	/* Setup the Base and Length of the Tx Descriptor Ring */
2531 	bus_addr = adapter->txdma.dma_paddr;
2532 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2533 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2534 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2535 	    (uint32_t)(bus_addr >> 32));
2536 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2537 	    (uint32_t)bus_addr);
2538 	/* Setup the HW Tx Head and Tail descriptor pointers */
2539 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2540 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2541 
2542 	/* Set the default values for the Tx Inter Packet Gap timer */
2543 	switch (adapter->hw.mac.type) {
2544 	case e1000_82542:
2545 		tipg = DEFAULT_82542_TIPG_IPGT;
2546 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2547 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2548 		break;
2549 
2550 	case e1000_80003es2lan:
2551 		tipg = DEFAULT_82543_TIPG_IPGR1;
2552 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2553 		    E1000_TIPG_IPGR2_SHIFT;
2554 		break;
2555 
2556 	default:
2557 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2558 		    adapter->hw.phy.media_type ==
2559 		    e1000_media_type_internal_serdes)
2560 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2561 		else
2562 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2563 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2564 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2565 		break;
2566 	}
2567 
2568 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2569 
2570 	/* NOTE: 0 is not allowed for TIDV */
2571 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2572 	if(adapter->hw.mac.type >= e1000_82540)
2573 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2574 
2575 	if (adapter->hw.mac.type == e1000_82571 ||
2576 	    adapter->hw.mac.type == e1000_82572) {
2577 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2578 		tarc |= SPEED_MODE_BIT;
2579 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2580 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2581 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2582 		tarc |= 1;
2583 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2584 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2585 		tarc |= 1;
2586 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2587 	}
2588 
2589 	/* Program the Transmit Control Register */
2590 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2591 	tctl &= ~E1000_TCTL_CT;
2592 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2593 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2594 
2595 	if (adapter->hw.mac.type >= e1000_82571)
2596 		tctl |= E1000_TCTL_MULR;
2597 
2598 	/* This write will effectively turn on the transmit unit. */
2599 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2600 }
2601 
2602 static void
2603 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2604 {
2605 	struct em_buffer *tx_buffer;
2606 	int i;
2607 
2608 	if (adapter->tx_buffer_area == NULL)
2609 		return;
2610 
2611 	for (i = 0; i < ndesc; i++) {
2612 		tx_buffer = &adapter->tx_buffer_area[i];
2613 
2614 		KKASSERT(tx_buffer->m_head == NULL);
2615 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2616 	}
2617 	bus_dma_tag_destroy(adapter->txtag);
2618 
2619 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2620 	adapter->tx_buffer_area = NULL;
2621 }
2622 
2623 /*
2624  * The offload context needs to be set when we transfer the first
2625  * packet of a particular protocol (TCP/UDP).  This routine has been
2626  * enhanced to deal with inserted VLAN headers.
2627  *
2628  * If the new packet's ether header length, ip header length and
2629  * csum offloading type are same as the previous packet, we should
2630  * avoid allocating a new csum context descriptor; mainly to take
2631  * advantage of the pipeline effect of the TX data read request.
2632  *
2633  * This function returns number of TX descrptors allocated for
2634  * csum context.
2635  */
2636 static int
2637 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2638 	  uint32_t *txd_upper, uint32_t *txd_lower)
2639 {
2640 	struct e1000_context_desc *TXD;
2641 	struct em_buffer *tx_buffer;
2642 	struct ether_vlan_header *eh;
2643 	struct ip *ip;
2644 	int curr_txd, ehdrlen, csum_flags;
2645 	uint32_t cmd, hdr_len, ip_hlen;
2646 	uint16_t etype;
2647 
2648 	/*
2649 	 * Determine where frame payload starts.
2650 	 * Jump over vlan headers if already present,
2651 	 * helpful for QinQ too.
2652 	 */
2653 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2654 		("em_txcsum_pullup is not called (eh)?\n"));
2655 	eh = mtod(mp, struct ether_vlan_header *);
2656 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2657 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2658 			("em_txcsum_pullup is not called (evh)?\n"));
2659 		etype = ntohs(eh->evl_proto);
2660 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2661 	} else {
2662 		etype = ntohs(eh->evl_encap_proto);
2663 		ehdrlen = ETHER_HDR_LEN;
2664 	}
2665 
2666 	/*
2667 	 * We only support TCP/UDP for IPv4 for the moment.
2668 	 * TODO: Support SCTP too when it hits the tree.
2669 	 */
2670 	if (etype != ETHERTYPE_IP)
2671 		return 0;
2672 
2673 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2674 		("em_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2675 
2676 	/* NOTE: We could only safely access ip.ip_vhl part */
2677 	ip = (struct ip *)(mp->m_data + ehdrlen);
2678 	ip_hlen = ip->ip_hl << 2;
2679 
2680 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2681 
2682 	if (adapter->csum_ehlen == ehdrlen &&
2683 	    adapter->csum_iphlen == ip_hlen &&
2684 	    adapter->csum_flags == csum_flags) {
2685 		/*
2686 		 * Same csum offload context as the previous packets;
2687 		 * just return.
2688 		 */
2689 		*txd_upper = adapter->csum_txd_upper;
2690 		*txd_lower = adapter->csum_txd_lower;
2691 		return 0;
2692 	}
2693 
2694 	/*
2695 	 * Setup a new csum offload context.
2696 	 */
2697 
2698 	curr_txd = adapter->next_avail_tx_desc;
2699 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2700 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2701 
2702 	cmd = 0;
2703 
2704 	/* Setup of IP header checksum. */
2705 	if (csum_flags & CSUM_IP) {
2706 		/*
2707 		 * Start offset for header checksum calculation.
2708 		 * End offset for header checksum calculation.
2709 		 * Offset of place to put the checksum.
2710 		 */
2711 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2712 		TXD->lower_setup.ip_fields.ipcse =
2713 		    htole16(ehdrlen + ip_hlen - 1);
2714 		TXD->lower_setup.ip_fields.ipcso =
2715 		    ehdrlen + offsetof(struct ip, ip_sum);
2716 		cmd |= E1000_TXD_CMD_IP;
2717 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2718 	}
2719 	hdr_len = ehdrlen + ip_hlen;
2720 
2721 	if (csum_flags & CSUM_TCP) {
2722 		/*
2723 		 * Start offset for payload checksum calculation.
2724 		 * End offset for payload checksum calculation.
2725 		 * Offset of place to put the checksum.
2726 		 */
2727 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2728 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2729 		TXD->upper_setup.tcp_fields.tucso =
2730 		    hdr_len + offsetof(struct tcphdr, th_sum);
2731 		cmd |= E1000_TXD_CMD_TCP;
2732 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2733 	} else if (csum_flags & CSUM_UDP) {
2734 		/*
2735 		 * Start offset for header checksum calculation.
2736 		 * End offset for header checksum calculation.
2737 		 * Offset of place to put the checksum.
2738 		 */
2739 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2740 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2741 		TXD->upper_setup.tcp_fields.tucso =
2742 		    hdr_len + offsetof(struct udphdr, uh_sum);
2743 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2744 	}
2745 
2746 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2747 		     E1000_TXD_DTYP_D;		/* Data descr */
2748 
2749 	/* Save the information for this csum offloading context */
2750 	adapter->csum_ehlen = ehdrlen;
2751 	adapter->csum_iphlen = ip_hlen;
2752 	adapter->csum_flags = csum_flags;
2753 	adapter->csum_txd_upper = *txd_upper;
2754 	adapter->csum_txd_lower = *txd_lower;
2755 
2756 	TXD->tcp_seg_setup.data = htole32(0);
2757 	TXD->cmd_and_length =
2758 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2759 
2760 	if (++curr_txd == adapter->num_tx_desc)
2761 		curr_txd = 0;
2762 
2763 	KKASSERT(adapter->num_tx_desc_avail > 0);
2764 	adapter->num_tx_desc_avail--;
2765 
2766 	adapter->next_avail_tx_desc = curr_txd;
2767 	return 1;
2768 }
2769 
2770 static int
2771 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2772 {
2773 	struct mbuf *m = *m0;
2774 	struct ether_header *eh;
2775 	int len;
2776 
2777 	adapter->tx_csum_try_pullup++;
2778 
2779 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2780 
2781 	if (__predict_false(!M_WRITABLE(m))) {
2782 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2783 			adapter->tx_csum_drop1++;
2784 			m_freem(m);
2785 			*m0 = NULL;
2786 			return ENOBUFS;
2787 		}
2788 		eh = mtod(m, struct ether_header *);
2789 
2790 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2791 			len += EVL_ENCAPLEN;
2792 
2793 		if (m->m_len < len) {
2794 			adapter->tx_csum_drop2++;
2795 			m_freem(m);
2796 			*m0 = NULL;
2797 			return ENOBUFS;
2798 		}
2799 		return 0;
2800 	}
2801 
2802 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2803 		adapter->tx_csum_pullup1++;
2804 		m = m_pullup(m, ETHER_HDR_LEN);
2805 		if (m == NULL) {
2806 			adapter->tx_csum_pullup1_failed++;
2807 			*m0 = NULL;
2808 			return ENOBUFS;
2809 		}
2810 		*m0 = m;
2811 	}
2812 	eh = mtod(m, struct ether_header *);
2813 
2814 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2815 		len += EVL_ENCAPLEN;
2816 
2817 	if (m->m_len < len) {
2818 		adapter->tx_csum_pullup2++;
2819 		m = m_pullup(m, len);
2820 		if (m == NULL) {
2821 			adapter->tx_csum_pullup2_failed++;
2822 			*m0 = NULL;
2823 			return ENOBUFS;
2824 		}
2825 		*m0 = m;
2826 	}
2827 	return 0;
2828 }
2829 
2830 static void
2831 em_txeof(struct adapter *adapter)
2832 {
2833 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2834 	struct em_buffer *tx_buffer;
2835 	int first, num_avail;
2836 
2837 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2838 		return;
2839 
2840 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2841 		return;
2842 
2843 	num_avail = adapter->num_tx_desc_avail;
2844 	first = adapter->next_tx_to_clean;
2845 
2846 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2847 		struct e1000_tx_desc *tx_desc;
2848 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2849 
2850 		tx_desc = &adapter->tx_desc_base[dd_idx];
2851 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2852 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2853 
2854 			if (++dd_idx == adapter->num_tx_desc)
2855 				dd_idx = 0;
2856 
2857 			while (first != dd_idx) {
2858 				logif(pkt_txclean);
2859 
2860 				num_avail++;
2861 
2862 				tx_buffer = &adapter->tx_buffer_area[first];
2863 				if (tx_buffer->m_head) {
2864 					ifp->if_opackets++;
2865 					bus_dmamap_unload(adapter->txtag,
2866 							  tx_buffer->map);
2867 					m_freem(tx_buffer->m_head);
2868 					tx_buffer->m_head = NULL;
2869 				}
2870 
2871 				if (++first == adapter->num_tx_desc)
2872 					first = 0;
2873 			}
2874 		} else {
2875 			break;
2876 		}
2877 	}
2878 	adapter->next_tx_to_clean = first;
2879 	adapter->num_tx_desc_avail = num_avail;
2880 
2881 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2882 		adapter->tx_dd_head = 0;
2883 		adapter->tx_dd_tail = 0;
2884 	}
2885 
2886 	if (!EM_IS_OACTIVE(adapter)) {
2887 		ifp->if_flags &= ~IFF_OACTIVE;
2888 
2889 		/* All clean, turn off the timer */
2890 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2891 			ifp->if_timer = 0;
2892 	}
2893 }
2894 
2895 static void
2896 em_tx_collect(struct adapter *adapter)
2897 {
2898 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2899 	struct em_buffer *tx_buffer;
2900 	int tdh, first, num_avail, dd_idx = -1;
2901 
2902 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2903 		return;
2904 
2905 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2906 	if (tdh == adapter->next_tx_to_clean)
2907 		return;
2908 
2909 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2910 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2911 
2912 	num_avail = adapter->num_tx_desc_avail;
2913 	first = adapter->next_tx_to_clean;
2914 
2915 	while (first != tdh) {
2916 		logif(pkt_txclean);
2917 
2918 		num_avail++;
2919 
2920 		tx_buffer = &adapter->tx_buffer_area[first];
2921 		if (tx_buffer->m_head) {
2922 			ifp->if_opackets++;
2923 			bus_dmamap_unload(adapter->txtag,
2924 					  tx_buffer->map);
2925 			m_freem(tx_buffer->m_head);
2926 			tx_buffer->m_head = NULL;
2927 		}
2928 
2929 		if (first == dd_idx) {
2930 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2931 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2932 				adapter->tx_dd_head = 0;
2933 				adapter->tx_dd_tail = 0;
2934 				dd_idx = -1;
2935 			} else {
2936 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2937 			}
2938 		}
2939 
2940 		if (++first == adapter->num_tx_desc)
2941 			first = 0;
2942 	}
2943 	adapter->next_tx_to_clean = first;
2944 	adapter->num_tx_desc_avail = num_avail;
2945 
2946 	if (!EM_IS_OACTIVE(adapter)) {
2947 		ifp->if_flags &= ~IFF_OACTIVE;
2948 
2949 		/* All clean, turn off the timer */
2950 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2951 			ifp->if_timer = 0;
2952 	}
2953 }
2954 
2955 /*
2956  * When Link is lost sometimes there is work still in the TX ring
2957  * which will result in a watchdog, rather than allow that do an
2958  * attempted cleanup and then reinit here.  Note that this has been
2959  * seens mostly with fiber adapters.
2960  */
2961 static void
2962 em_tx_purge(struct adapter *adapter)
2963 {
2964 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2965 
2966 	if (!adapter->link_active && ifp->if_timer) {
2967 		em_tx_collect(adapter);
2968 		if (ifp->if_timer) {
2969 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2970 			ifp->if_timer = 0;
2971 			em_init(adapter);
2972 		}
2973 	}
2974 }
2975 
2976 static int
2977 em_newbuf(struct adapter *adapter, int i, int init)
2978 {
2979 	struct mbuf *m;
2980 	bus_dma_segment_t seg;
2981 	bus_dmamap_t map;
2982 	struct em_buffer *rx_buffer;
2983 	int error, nseg;
2984 
2985 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2986 	if (m == NULL) {
2987 		adapter->mbuf_cluster_failed++;
2988 		if (init) {
2989 			if_printf(&adapter->arpcom.ac_if,
2990 				  "Unable to allocate RX mbuf\n");
2991 		}
2992 		return (ENOBUFS);
2993 	}
2994 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2995 
2996 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2997 		m_adj(m, ETHER_ALIGN);
2998 
2999 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3000 			adapter->rx_sparemap, m,
3001 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3002 	if (error) {
3003 		m_freem(m);
3004 		if (init) {
3005 			if_printf(&adapter->arpcom.ac_if,
3006 				  "Unable to load RX mbuf\n");
3007 		}
3008 		return (error);
3009 	}
3010 
3011 	rx_buffer = &adapter->rx_buffer_area[i];
3012 	if (rx_buffer->m_head != NULL)
3013 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3014 
3015 	map = rx_buffer->map;
3016 	rx_buffer->map = adapter->rx_sparemap;
3017 	adapter->rx_sparemap = map;
3018 
3019 	rx_buffer->m_head = m;
3020 
3021 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3022 	return (0);
3023 }
3024 
3025 static int
3026 em_create_rx_ring(struct adapter *adapter)
3027 {
3028 	device_t dev = adapter->dev;
3029 	struct em_buffer *rx_buffer;
3030 	int i, error;
3031 
3032 	adapter->rx_buffer_area =
3033 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3034 			M_DEVBUF, M_WAITOK | M_ZERO);
3035 
3036 	/*
3037 	 * Create DMA tag for rx buffers
3038 	 */
3039 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3040 			1, 0,			/* alignment, bounds */
3041 			BUS_SPACE_MAXADDR,	/* lowaddr */
3042 			BUS_SPACE_MAXADDR,	/* highaddr */
3043 			NULL, NULL,		/* filter, filterarg */
3044 			MCLBYTES,		/* maxsize */
3045 			1,			/* nsegments */
3046 			MCLBYTES,		/* maxsegsize */
3047 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3048 			&adapter->rxtag);
3049 	if (error) {
3050 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3051 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3052 		adapter->rx_buffer_area = NULL;
3053 		return error;
3054 	}
3055 
3056 	/*
3057 	 * Create spare DMA map for rx buffers
3058 	 */
3059 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3060 				  &adapter->rx_sparemap);
3061 	if (error) {
3062 		device_printf(dev, "Unable to create spare RX DMA map\n");
3063 		bus_dma_tag_destroy(adapter->rxtag);
3064 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3065 		adapter->rx_buffer_area = NULL;
3066 		return error;
3067 	}
3068 
3069 	/*
3070 	 * Create DMA maps for rx buffers
3071 	 */
3072 	for (i = 0; i < adapter->num_rx_desc; i++) {
3073 		rx_buffer = &adapter->rx_buffer_area[i];
3074 
3075 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3076 					  &rx_buffer->map);
3077 		if (error) {
3078 			device_printf(dev, "Unable to create RX DMA map\n");
3079 			em_destroy_rx_ring(adapter, i);
3080 			return error;
3081 		}
3082 	}
3083 	return (0);
3084 }
3085 
3086 static int
3087 em_init_rx_ring(struct adapter *adapter)
3088 {
3089 	int i, error;
3090 
3091 	/* Reset descriptor ring */
3092 	bzero(adapter->rx_desc_base,
3093 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3094 
3095 	/* Allocate new ones. */
3096 	for (i = 0; i < adapter->num_rx_desc; i++) {
3097 		error = em_newbuf(adapter, i, 1);
3098 		if (error)
3099 			return (error);
3100 	}
3101 
3102 	/* Setup our descriptor pointers */
3103 	adapter->next_rx_desc_to_check = 0;
3104 
3105 	return (0);
3106 }
3107 
3108 static void
3109 em_init_rx_unit(struct adapter *adapter)
3110 {
3111 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3112 	uint64_t bus_addr;
3113 	uint32_t rctl;
3114 
3115 	/*
3116 	 * Make sure receives are disabled while setting
3117 	 * up the descriptor ring
3118 	 */
3119 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3120 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3121 
3122 	if (adapter->hw.mac.type >= e1000_82540) {
3123 		uint32_t itr;
3124 
3125 		/*
3126 		 * Set the interrupt throttling rate. Value is calculated
3127 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3128 		 */
3129 		if (adapter->int_throttle_ceil)
3130 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3131 		else
3132 			itr = 0;
3133 		em_set_itr(adapter, itr);
3134 	}
3135 
3136 	/* Disable accelerated ackknowledge */
3137 	if (adapter->hw.mac.type == e1000_82574) {
3138 		E1000_WRITE_REG(&adapter->hw,
3139 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3140 	}
3141 
3142 	/* Receive Checksum Offload for TCP and UDP */
3143 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3144 		uint32_t rxcsum;
3145 
3146 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3147 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3148 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3149 	}
3150 
3151 	/*
3152 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3153 	 * long latencies are observed, like Lenovo X60. This
3154 	 * change eliminates the problem, but since having positive
3155 	 * values in RDTR is a known source of problems on other
3156 	 * platforms another solution is being sought.
3157 	 */
3158 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3159 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3160 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3161 	}
3162 
3163 	/*
3164 	 * Setup the Base and Length of the Rx Descriptor Ring
3165 	 */
3166 	bus_addr = adapter->rxdma.dma_paddr;
3167 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3168 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3169 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3170 	    (uint32_t)(bus_addr >> 32));
3171 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3172 	    (uint32_t)bus_addr);
3173 
3174 	/*
3175 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3176 	 */
3177 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3178 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3179 
3180 	/* Set early receive threshold on appropriate hw */
3181 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3182 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3183 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3184 	    (ifp->if_mtu > ETHERMTU)) {
3185 		uint32_t rxdctl;
3186 
3187 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3188 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3189 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3190 	}
3191 
3192 	if (adapter->hw.mac.type == e1000_pch2lan) {
3193 		if (ifp->if_mtu > ETHERMTU)
3194 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3195 		else
3196 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3197 	}
3198 
3199 	/* Setup the Receive Control Register */
3200 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3201 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3202 		E1000_RCTL_RDMTS_HALF |
3203 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3204 
3205 	/* Make sure VLAN Filters are off */
3206 	rctl &= ~E1000_RCTL_VFE;
3207 
3208 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3209 		rctl |= E1000_RCTL_SBP;
3210 	else
3211 		rctl &= ~E1000_RCTL_SBP;
3212 
3213 	switch (adapter->rx_buffer_len) {
3214 	default:
3215 	case 2048:
3216 		rctl |= E1000_RCTL_SZ_2048;
3217 		break;
3218 
3219 	case 4096:
3220 		rctl |= E1000_RCTL_SZ_4096 |
3221 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3222 		break;
3223 
3224 	case 8192:
3225 		rctl |= E1000_RCTL_SZ_8192 |
3226 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3227 		break;
3228 
3229 	case 16384:
3230 		rctl |= E1000_RCTL_SZ_16384 |
3231 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3232 		break;
3233 	}
3234 
3235 	if (ifp->if_mtu > ETHERMTU)
3236 		rctl |= E1000_RCTL_LPE;
3237 	else
3238 		rctl &= ~E1000_RCTL_LPE;
3239 
3240 	/* Enable Receives */
3241 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3242 }
3243 
3244 static void
3245 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3246 {
3247 	struct em_buffer *rx_buffer;
3248 	int i;
3249 
3250 	if (adapter->rx_buffer_area == NULL)
3251 		return;
3252 
3253 	for (i = 0; i < ndesc; i++) {
3254 		rx_buffer = &adapter->rx_buffer_area[i];
3255 
3256 		KKASSERT(rx_buffer->m_head == NULL);
3257 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3258 	}
3259 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3260 	bus_dma_tag_destroy(adapter->rxtag);
3261 
3262 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3263 	adapter->rx_buffer_area = NULL;
3264 }
3265 
3266 static void
3267 em_rxeof(struct adapter *adapter, int count)
3268 {
3269 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3270 	uint8_t status, accept_frame = 0, eop = 0;
3271 	uint16_t len, desc_len, prev_len_adj;
3272 	struct e1000_rx_desc *current_desc;
3273 	struct mbuf *mp;
3274 	int i;
3275 	struct mbuf_chain chain[MAXCPU];
3276 
3277 	i = adapter->next_rx_desc_to_check;
3278 	current_desc = &adapter->rx_desc_base[i];
3279 
3280 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3281 		return;
3282 
3283 	ether_input_chain_init(chain);
3284 
3285 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3286 		struct mbuf *m = NULL;
3287 
3288 		logif(pkt_receive);
3289 
3290 		mp = adapter->rx_buffer_area[i].m_head;
3291 
3292 		/*
3293 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3294 		 * needs to access the last received byte in the mbuf.
3295 		 */
3296 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3297 				BUS_DMASYNC_POSTREAD);
3298 
3299 		accept_frame = 1;
3300 		prev_len_adj = 0;
3301 		desc_len = le16toh(current_desc->length);
3302 		status = current_desc->status;
3303 		if (status & E1000_RXD_STAT_EOP) {
3304 			count--;
3305 			eop = 1;
3306 			if (desc_len < ETHER_CRC_LEN) {
3307 				len = 0;
3308 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3309 			} else {
3310 				len = desc_len - ETHER_CRC_LEN;
3311 			}
3312 		} else {
3313 			eop = 0;
3314 			len = desc_len;
3315 		}
3316 
3317 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3318 			uint8_t	last_byte;
3319 			uint32_t pkt_len = desc_len;
3320 
3321 			if (adapter->fmp != NULL)
3322 				pkt_len += adapter->fmp->m_pkthdr.len;
3323 
3324 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3325 			if (TBI_ACCEPT(&adapter->hw, status,
3326 			    current_desc->errors, pkt_len, last_byte,
3327 			    adapter->min_frame_size, adapter->max_frame_size)) {
3328 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3329 				    &adapter->stats, pkt_len,
3330 				    adapter->hw.mac.addr,
3331 				    adapter->max_frame_size);
3332 				if (len > 0)
3333 					len--;
3334 			} else {
3335 				accept_frame = 0;
3336 			}
3337 		}
3338 
3339 		if (accept_frame) {
3340 			if (em_newbuf(adapter, i, 0) != 0) {
3341 				ifp->if_iqdrops++;
3342 				goto discard;
3343 			}
3344 
3345 			/* Assign correct length to the current fragment */
3346 			mp->m_len = len;
3347 
3348 			if (adapter->fmp == NULL) {
3349 				mp->m_pkthdr.len = len;
3350 				adapter->fmp = mp; /* Store the first mbuf */
3351 				adapter->lmp = mp;
3352 			} else {
3353 				/*
3354 				 * Chain mbuf's together
3355 				 */
3356 
3357 				/*
3358 				 * Adjust length of previous mbuf in chain if
3359 				 * we received less than 4 bytes in the last
3360 				 * descriptor.
3361 				 */
3362 				if (prev_len_adj > 0) {
3363 					adapter->lmp->m_len -= prev_len_adj;
3364 					adapter->fmp->m_pkthdr.len -=
3365 					    prev_len_adj;
3366 				}
3367 				adapter->lmp->m_next = mp;
3368 				adapter->lmp = adapter->lmp->m_next;
3369 				adapter->fmp->m_pkthdr.len += len;
3370 			}
3371 
3372 			if (eop) {
3373 				adapter->fmp->m_pkthdr.rcvif = ifp;
3374 				ifp->if_ipackets++;
3375 
3376 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3377 					em_rxcsum(adapter, current_desc,
3378 						  adapter->fmp);
3379 				}
3380 
3381 				if (status & E1000_RXD_STAT_VP) {
3382 					adapter->fmp->m_pkthdr.ether_vlantag =
3383 					    (le16toh(current_desc->special) &
3384 					    E1000_RXD_SPC_VLAN_MASK);
3385 					adapter->fmp->m_flags |= M_VLANTAG;
3386 				}
3387 				m = adapter->fmp;
3388 				adapter->fmp = NULL;
3389 				adapter->lmp = NULL;
3390 			}
3391 		} else {
3392 			ifp->if_ierrors++;
3393 discard:
3394 #ifdef foo
3395 			/* Reuse loaded DMA map and just update mbuf chain */
3396 			mp = adapter->rx_buffer_area[i].m_head;
3397 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3398 			mp->m_data = mp->m_ext.ext_buf;
3399 			mp->m_next = NULL;
3400 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3401 				m_adj(mp, ETHER_ALIGN);
3402 #endif
3403 			if (adapter->fmp != NULL) {
3404 				m_freem(adapter->fmp);
3405 				adapter->fmp = NULL;
3406 				adapter->lmp = NULL;
3407 			}
3408 			m = NULL;
3409 		}
3410 
3411 		/* Zero out the receive descriptors status. */
3412 		current_desc->status = 0;
3413 
3414 		if (m != NULL)
3415 			ether_input_chain(ifp, m, NULL, chain);
3416 
3417 		/* Advance our pointers to the next descriptor. */
3418 		if (++i == adapter->num_rx_desc)
3419 			i = 0;
3420 		current_desc = &adapter->rx_desc_base[i];
3421 	}
3422 	adapter->next_rx_desc_to_check = i;
3423 
3424 	ether_input_dispatch(chain);
3425 
3426 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3427 	if (--i < 0)
3428 		i = adapter->num_rx_desc - 1;
3429 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3430 }
3431 
3432 static void
3433 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3434 	  struct mbuf *mp)
3435 {
3436 	/* 82543 or newer only */
3437 	if (adapter->hw.mac.type < e1000_82543 ||
3438 	    /* Ignore Checksum bit is set */
3439 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3440 		return;
3441 
3442 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3443 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3444 		/* IP Checksum Good */
3445 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3446 	}
3447 
3448 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3449 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3450 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3451 					   CSUM_PSEUDO_HDR |
3452 					   CSUM_FRAG_NOT_CHECKED;
3453 		mp->m_pkthdr.csum_data = htons(0xffff);
3454 	}
3455 }
3456 
3457 static void
3458 em_enable_intr(struct adapter *adapter)
3459 {
3460 	uint32_t ims_mask = IMS_ENABLE_MASK;
3461 
3462 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3463 
3464 #if 0
3465 	/* XXX MSIX */
3466 	if (adapter->hw.mac.type == e1000_82574) {
3467 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3468 		ims_mask |= EM_MSIX_MASK;
3469         }
3470 #endif
3471 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3472 }
3473 
3474 static void
3475 em_disable_intr(struct adapter *adapter)
3476 {
3477 	uint32_t clear = 0xffffffff;
3478 
3479 	/*
3480 	 * The first version of 82542 had an errata where when link was forced
3481 	 * it would stay up even up even if the cable was disconnected.
3482 	 * Sequence errors were used to detect the disconnect and then the
3483 	 * driver would unforce the link.  This code in the in the ISR.  For
3484 	 * this to work correctly the Sequence error interrupt had to be
3485 	 * enabled all the time.
3486 	 */
3487 	if (adapter->hw.mac.type == e1000_82542 &&
3488 	    adapter->hw.revision_id == E1000_REVISION_2)
3489 		clear &= ~E1000_IMC_RXSEQ;
3490 	else if (adapter->hw.mac.type == e1000_82574)
3491 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3492 
3493 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3494 
3495 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3496 }
3497 
3498 /*
3499  * Bit of a misnomer, what this really means is
3500  * to enable OS management of the system... aka
3501  * to disable special hardware management features
3502  */
3503 static void
3504 em_get_mgmt(struct adapter *adapter)
3505 {
3506 	/* A shared code workaround */
3507 #define E1000_82542_MANC2H E1000_MANC2H
3508 	if (adapter->has_manage) {
3509 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3510 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3511 
3512 		/* disable hardware interception of ARP */
3513 		manc &= ~(E1000_MANC_ARP_EN);
3514 
3515                 /* enable receiving management packets to the host */
3516                 if (adapter->hw.mac.type >= e1000_82571) {
3517 			manc |= E1000_MANC_EN_MNG2HOST;
3518 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3519 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3520 			manc2h |= E1000_MNG2HOST_PORT_623;
3521 			manc2h |= E1000_MNG2HOST_PORT_664;
3522 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3523 		}
3524 
3525 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3526 	}
3527 }
3528 
3529 /*
3530  * Give control back to hardware management
3531  * controller if there is one.
3532  */
3533 static void
3534 em_rel_mgmt(struct adapter *adapter)
3535 {
3536 	if (adapter->has_manage) {
3537 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3538 
3539 		/* re-enable hardware interception of ARP */
3540 		manc |= E1000_MANC_ARP_EN;
3541 
3542 		if (adapter->hw.mac.type >= e1000_82571)
3543 			manc &= ~E1000_MANC_EN_MNG2HOST;
3544 
3545 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3546 	}
3547 }
3548 
3549 /*
3550  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3551  * For ASF and Pass Through versions of f/w this means that
3552  * the driver is loaded.  For AMT version (only with 82573)
3553  * of the f/w this means that the network i/f is open.
3554  */
3555 static void
3556 em_get_hw_control(struct adapter *adapter)
3557 {
3558 	/* Let firmware know the driver has taken over */
3559 	if (adapter->hw.mac.type == e1000_82573) {
3560 		uint32_t swsm;
3561 
3562 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3563 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3564 		    swsm | E1000_SWSM_DRV_LOAD);
3565 	} else {
3566 		uint32_t ctrl_ext;
3567 
3568 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3569 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3570 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3571 	}
3572 	adapter->control_hw = 1;
3573 }
3574 
3575 /*
3576  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3577  * For ASF and Pass Through versions of f/w this means that the
3578  * driver is no longer loaded.  For AMT version (only with 82573)
3579  * of the f/w this means that the network i/f is closed.
3580  */
3581 static void
3582 em_rel_hw_control(struct adapter *adapter)
3583 {
3584 	if (!adapter->control_hw)
3585 		return;
3586 	adapter->control_hw = 0;
3587 
3588 	/* Let firmware taken over control of h/w */
3589 	if (adapter->hw.mac.type == e1000_82573) {
3590 		uint32_t swsm;
3591 
3592 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3593 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3594 		    swsm & ~E1000_SWSM_DRV_LOAD);
3595 	} else {
3596 		uint32_t ctrl_ext;
3597 
3598 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3599 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3600 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3601 	}
3602 }
3603 
3604 static int
3605 em_is_valid_eaddr(const uint8_t *addr)
3606 {
3607 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3608 
3609 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3610 		return (FALSE);
3611 
3612 	return (TRUE);
3613 }
3614 
3615 /*
3616  * Enable PCI Wake On Lan capability
3617  */
3618 void
3619 em_enable_wol(device_t dev)
3620 {
3621 	uint16_t cap, status;
3622 	uint8_t id;
3623 
3624 	/* First find the capabilities pointer*/
3625 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3626 
3627 	/* Read the PM Capabilities */
3628 	id = pci_read_config(dev, cap, 1);
3629 	if (id != PCIY_PMG)     /* Something wrong */
3630 		return;
3631 
3632 	/*
3633 	 * OK, we have the power capabilities,
3634 	 * so now get the status register
3635 	 */
3636 	cap += PCIR_POWER_STATUS;
3637 	status = pci_read_config(dev, cap, 2);
3638 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3639 	pci_write_config(dev, cap, status, 2);
3640 }
3641 
3642 
3643 /*
3644  * 82544 Coexistence issue workaround.
3645  *    There are 2 issues.
3646  *       1. Transmit Hang issue.
3647  *    To detect this issue, following equation can be used...
3648  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3649  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3650  *
3651  *       2. DAC issue.
3652  *    To detect this issue, following equation can be used...
3653  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3654  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3655  *
3656  *    WORKAROUND:
3657  *	  Make sure we do not have ending address
3658  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3659  */
3660 static uint32_t
3661 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3662 {
3663 	uint32_t safe_terminator;
3664 
3665 	/*
3666 	 * Since issue is sensitive to length and address.
3667 	 * Let us first check the address...
3668 	 */
3669 	if (length <= 4) {
3670 		desc_array->descriptor[0].address = address;
3671 		desc_array->descriptor[0].length = length;
3672 		desc_array->elements = 1;
3673 		return (desc_array->elements);
3674 	}
3675 
3676 	safe_terminator =
3677 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3678 
3679 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3680 	if (safe_terminator == 0 ||
3681 	    (safe_terminator > 4 && safe_terminator < 9) ||
3682 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3683 		desc_array->descriptor[0].address = address;
3684 		desc_array->descriptor[0].length = length;
3685 		desc_array->elements = 1;
3686 		return (desc_array->elements);
3687 	}
3688 
3689 	desc_array->descriptor[0].address = address;
3690 	desc_array->descriptor[0].length = length - 4;
3691 	desc_array->descriptor[1].address = address + (length - 4);
3692 	desc_array->descriptor[1].length = 4;
3693 	desc_array->elements = 2;
3694 	return (desc_array->elements);
3695 }
3696 
3697 static void
3698 em_update_stats(struct adapter *adapter)
3699 {
3700 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3701 
3702 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3703 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3704 		adapter->stats.symerrs +=
3705 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3706 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3707 	}
3708 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3709 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3710 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3711 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3712 
3713 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3714 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3715 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3716 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3717 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3718 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3719 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3720 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3721 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3722 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3723 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3724 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3725 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3726 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3727 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3728 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3729 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3730 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3731 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3732 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3733 
3734 	/* For the 64-bit byte counters the low dword must be read first. */
3735 	/* Both registers clear on the read of the high dword */
3736 
3737 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3738 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3739 
3740 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3741 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3742 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3743 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3744 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3745 
3746 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3747 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3748 
3749 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3750 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3751 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3752 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3753 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3754 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3755 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3756 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3757 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3758 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3759 
3760 	if (adapter->hw.mac.type >= e1000_82543) {
3761 		adapter->stats.algnerrc +=
3762 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3763 		adapter->stats.rxerrc +=
3764 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3765 		adapter->stats.tncrs +=
3766 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3767 		adapter->stats.cexterr +=
3768 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3769 		adapter->stats.tsctc +=
3770 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3771 		adapter->stats.tsctfc +=
3772 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3773 	}
3774 
3775 	ifp->if_collisions = adapter->stats.colc;
3776 
3777 	/* Rx Errors */
3778 	ifp->if_ierrors =
3779 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3780 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3781 	    adapter->stats.ruc + adapter->stats.roc +
3782 	    adapter->stats.mpc + adapter->stats.cexterr;
3783 
3784 	/* Tx Errors */
3785 	ifp->if_oerrors =
3786 	    adapter->stats.ecol + adapter->stats.latecol +
3787 	    adapter->watchdog_events;
3788 }
3789 
3790 static void
3791 em_print_debug_info(struct adapter *adapter)
3792 {
3793 	device_t dev = adapter->dev;
3794 	uint8_t *hw_addr = adapter->hw.hw_addr;
3795 
3796 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3797 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3798 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3799 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3800 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3801 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3802 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3803 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3804 	    adapter->hw.fc.high_water,
3805 	    adapter->hw.fc.low_water);
3806 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3807 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3808 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3809 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3810 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3811 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3812 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3813 	    (long long)adapter->tx_fifo_wrk_cnt,
3814 	    (long long)adapter->tx_fifo_reset_cnt);
3815 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3816 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3817 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3818 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3819 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3820 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3821 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3822 	    adapter->num_tx_desc_avail);
3823 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3824 	    adapter->no_tx_desc_avail1);
3825 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3826 	    adapter->no_tx_desc_avail2);
3827 	device_printf(dev, "Std mbuf failed = %ld\n",
3828 	    adapter->mbuf_alloc_failed);
3829 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3830 	    adapter->mbuf_cluster_failed);
3831 	device_printf(dev, "Driver dropped packets = %ld\n",
3832 	    adapter->dropped_pkts);
3833 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3834 	    adapter->no_tx_dma_setup);
3835 
3836 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3837 	    adapter->tx_csum_try_pullup);
3838 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3839 	    adapter->tx_csum_pullup1);
3840 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3841 	    adapter->tx_csum_pullup1_failed);
3842 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3843 	    adapter->tx_csum_pullup2);
3844 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3845 	    adapter->tx_csum_pullup2_failed);
3846 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3847 	    adapter->tx_csum_drop1);
3848 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3849 	    adapter->tx_csum_drop2);
3850 }
3851 
3852 static void
3853 em_print_hw_stats(struct adapter *adapter)
3854 {
3855 	device_t dev = adapter->dev;
3856 
3857 	device_printf(dev, "Excessive collisions = %lld\n",
3858 	    (long long)adapter->stats.ecol);
3859 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3860 	device_printf(dev, "Symbol errors = %lld\n",
3861 	    (long long)adapter->stats.symerrs);
3862 #endif
3863 	device_printf(dev, "Sequence errors = %lld\n",
3864 	    (long long)adapter->stats.sec);
3865 	device_printf(dev, "Defer count = %lld\n",
3866 	    (long long)adapter->stats.dc);
3867 	device_printf(dev, "Missed Packets = %lld\n",
3868 	    (long long)adapter->stats.mpc);
3869 	device_printf(dev, "Receive No Buffers = %lld\n",
3870 	    (long long)adapter->stats.rnbc);
3871 	/* RLEC is inaccurate on some hardware, calculate our own. */
3872 	device_printf(dev, "Receive Length Errors = %lld\n",
3873 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3874 	device_printf(dev, "Receive errors = %lld\n",
3875 	    (long long)adapter->stats.rxerrc);
3876 	device_printf(dev, "Crc errors = %lld\n",
3877 	    (long long)adapter->stats.crcerrs);
3878 	device_printf(dev, "Alignment errors = %lld\n",
3879 	    (long long)adapter->stats.algnerrc);
3880 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3881 	    (long long)adapter->stats.cexterr);
3882 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3883 	device_printf(dev, "watchdog timeouts = %ld\n",
3884 	    adapter->watchdog_events);
3885 	device_printf(dev, "XON Rcvd = %lld\n",
3886 	    (long long)adapter->stats.xonrxc);
3887 	device_printf(dev, "XON Xmtd = %lld\n",
3888 	    (long long)adapter->stats.xontxc);
3889 	device_printf(dev, "XOFF Rcvd = %lld\n",
3890 	    (long long)adapter->stats.xoffrxc);
3891 	device_printf(dev, "XOFF Xmtd = %lld\n",
3892 	    (long long)adapter->stats.xofftxc);
3893 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3894 	    (long long)adapter->stats.gprc);
3895 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3896 	    (long long)adapter->stats.gptc);
3897 }
3898 
3899 static void
3900 em_print_nvm_info(struct adapter *adapter)
3901 {
3902 	uint16_t eeprom_data;
3903 	int i, j, row = 0;
3904 
3905 	/* Its a bit crude, but it gets the job done */
3906 	kprintf("\nInterface EEPROM Dump:\n");
3907 	kprintf("Offset\n0x0000  ");
3908 	for (i = 0, j = 0; i < 32; i++, j++) {
3909 		if (j == 8) { /* Make the offset block */
3910 			j = 0; ++row;
3911 			kprintf("\n0x00%x0  ",row);
3912 		}
3913 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3914 		kprintf("%04x ", eeprom_data);
3915 	}
3916 	kprintf("\n");
3917 }
3918 
3919 static int
3920 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3921 {
3922 	struct adapter *adapter;
3923 	struct ifnet *ifp;
3924 	int error, result;
3925 
3926 	result = -1;
3927 	error = sysctl_handle_int(oidp, &result, 0, req);
3928 	if (error || !req->newptr)
3929 		return (error);
3930 
3931 	adapter = (struct adapter *)arg1;
3932 	ifp = &adapter->arpcom.ac_if;
3933 
3934 	lwkt_serialize_enter(ifp->if_serializer);
3935 
3936 	if (result == 1)
3937 		em_print_debug_info(adapter);
3938 
3939 	/*
3940 	 * This value will cause a hex dump of the
3941 	 * first 32 16-bit words of the EEPROM to
3942 	 * the screen.
3943 	 */
3944 	if (result == 2)
3945 		em_print_nvm_info(adapter);
3946 
3947 	lwkt_serialize_exit(ifp->if_serializer);
3948 
3949 	return (error);
3950 }
3951 
3952 static int
3953 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3954 {
3955 	int error, result;
3956 
3957 	result = -1;
3958 	error = sysctl_handle_int(oidp, &result, 0, req);
3959 	if (error || !req->newptr)
3960 		return (error);
3961 
3962 	if (result == 1) {
3963 		struct adapter *adapter = (struct adapter *)arg1;
3964 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3965 
3966 		lwkt_serialize_enter(ifp->if_serializer);
3967 		em_print_hw_stats(adapter);
3968 		lwkt_serialize_exit(ifp->if_serializer);
3969 	}
3970 	return (error);
3971 }
3972 
3973 static void
3974 em_add_sysctl(struct adapter *adapter)
3975 {
3976 	sysctl_ctx_init(&adapter->sysctl_ctx);
3977 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3978 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3979 					device_get_nameunit(adapter->dev),
3980 					CTLFLAG_RD, 0, "");
3981 	if (adapter->sysctl_tree == NULL) {
3982 		device_printf(adapter->dev, "can't add sysctl node\n");
3983 	} else {
3984 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3985 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3986 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3987 		    em_sysctl_debug_info, "I", "Debug Information");
3988 
3989 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3990 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3991 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3992 		    em_sysctl_stats, "I", "Statistics");
3993 
3994 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3995 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3996 		    OID_AUTO, "rxd", CTLFLAG_RD,
3997 		    &adapter->num_rx_desc, 0, NULL);
3998 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3999 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4000 		    OID_AUTO, "txd", CTLFLAG_RD,
4001 		    &adapter->num_tx_desc, 0, NULL);
4002 
4003 		if (adapter->hw.mac.type >= e1000_82540) {
4004 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4005 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4006 			    OID_AUTO, "int_throttle_ceil",
4007 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4008 			    em_sysctl_int_throttle, "I",
4009 			    "interrupt throttling rate");
4010 		}
4011 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4012 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4013 		    OID_AUTO, "int_tx_nsegs",
4014 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4015 		    em_sysctl_int_tx_nsegs, "I",
4016 		    "# segments per TX interrupt");
4017 	}
4018 }
4019 
4020 static int
4021 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4022 {
4023 	struct adapter *adapter = (void *)arg1;
4024 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4025 	int error, throttle;
4026 
4027 	throttle = adapter->int_throttle_ceil;
4028 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4029 	if (error || req->newptr == NULL)
4030 		return error;
4031 	if (throttle < 0 || throttle > 1000000000 / 256)
4032 		return EINVAL;
4033 
4034 	if (throttle) {
4035 		/*
4036 		 * Set the interrupt throttling rate in 256ns increments,
4037 		 * recalculate sysctl value assignment to get exact frequency.
4038 		 */
4039 		throttle = 1000000000 / 256 / throttle;
4040 
4041 		/* Upper 16bits of ITR is reserved and should be zero */
4042 		if (throttle & 0xffff0000)
4043 			return EINVAL;
4044 	}
4045 
4046 	lwkt_serialize_enter(ifp->if_serializer);
4047 
4048 	if (throttle)
4049 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4050 	else
4051 		adapter->int_throttle_ceil = 0;
4052 
4053 	if (ifp->if_flags & IFF_RUNNING)
4054 		em_set_itr(adapter, throttle);
4055 
4056 	lwkt_serialize_exit(ifp->if_serializer);
4057 
4058 	if (bootverbose) {
4059 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4060 			  adapter->int_throttle_ceil);
4061 	}
4062 	return 0;
4063 }
4064 
4065 static int
4066 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4067 {
4068 	struct adapter *adapter = (void *)arg1;
4069 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4070 	int error, segs;
4071 
4072 	segs = adapter->tx_int_nsegs;
4073 	error = sysctl_handle_int(oidp, &segs, 0, req);
4074 	if (error || req->newptr == NULL)
4075 		return error;
4076 	if (segs <= 0)
4077 		return EINVAL;
4078 
4079 	lwkt_serialize_enter(ifp->if_serializer);
4080 
4081 	/*
4082 	 * Don't allow int_tx_nsegs to become:
4083 	 * o  Less the oact_tx_desc
4084 	 * o  Too large that no TX desc will cause TX interrupt to
4085 	 *    be generated (OACTIVE will never recover)
4086 	 * o  Too small that will cause tx_dd[] overflow
4087 	 */
4088 	if (segs < adapter->oact_tx_desc ||
4089 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4090 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4091 		error = EINVAL;
4092 	} else {
4093 		error = 0;
4094 		adapter->tx_int_nsegs = segs;
4095 	}
4096 
4097 	lwkt_serialize_exit(ifp->if_serializer);
4098 
4099 	return error;
4100 }
4101 
4102 static void
4103 em_set_itr(struct adapter *adapter, uint32_t itr)
4104 {
4105 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4106 	if (adapter->hw.mac.type == e1000_82574) {
4107 		int i;
4108 
4109 		/*
4110 		 * When using MSIX interrupts we need to
4111 		 * throttle using the EITR register
4112 		 */
4113 		for (i = 0; i < 4; ++i) {
4114 			E1000_WRITE_REG(&adapter->hw,
4115 			    E1000_EITR_82574(i), itr);
4116 		}
4117 	}
4118 }
4119