xref: /dragonfly/sys/dev/netif/em/if_em.c (revision d8d5b238)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2015, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.6.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 	EM_EMX_DEVICE(PCH_LBG_I219_LM3),
250 	EM_EMX_DEVICE(PCH_SPT_I219_LM4),
251 	EM_EMX_DEVICE(PCH_SPT_I219_V4),
252 	EM_EMX_DEVICE(PCH_SPT_I219_LM5),
253 	EM_EMX_DEVICE(PCH_SPT_I219_V5),
254 	EM_EMX_DEVICE(PCH_CNP_I219_LM6),
255 	EM_EMX_DEVICE(PCH_CNP_I219_V6),
256 	EM_EMX_DEVICE(PCH_CNP_I219_LM7),
257 	EM_EMX_DEVICE(PCH_CNP_I219_V7),
258 
259 	/* required last entry */
260 	EM_DEVICE_NULL
261 };
262 
263 static int	em_probe(device_t);
264 static int	em_attach(device_t);
265 static int	em_detach(device_t);
266 static int	em_shutdown(device_t);
267 static int	em_suspend(device_t);
268 static int	em_resume(device_t);
269 
270 static void	em_init(void *);
271 static void	em_stop(struct adapter *);
272 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
273 static void	em_start(struct ifnet *, struct ifaltq_subque *);
274 #ifdef IFPOLL_ENABLE
275 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
276 static void	em_npoll_compat(struct ifnet *, void *, int);
277 #endif
278 static void	em_watchdog(struct ifnet *);
279 static void	em_media_status(struct ifnet *, struct ifmediareq *);
280 static int	em_media_change(struct ifnet *);
281 static void	em_timer(void *);
282 
283 static void	em_intr(void *);
284 static void	em_intr_mask(void *);
285 static void	em_intr_body(struct adapter *, boolean_t);
286 static void	em_rxeof(struct adapter *, int);
287 static void	em_txeof(struct adapter *);
288 static void	em_tx_collect(struct adapter *, boolean_t);
289 static void	em_tx_purge(struct adapter *);
290 static void	em_txgc_timer(void *);
291 static void	em_enable_intr(struct adapter *);
292 static void	em_disable_intr(struct adapter *);
293 
294 static int	em_dma_malloc(struct adapter *, bus_size_t,
295 		    struct em_dma_alloc *);
296 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
297 static void	em_init_tx_ring(struct adapter *);
298 static int	em_init_rx_ring(struct adapter *);
299 static int	em_create_tx_ring(struct adapter *);
300 static int	em_create_rx_ring(struct adapter *);
301 static void	em_destroy_tx_ring(struct adapter *, int);
302 static void	em_destroy_rx_ring(struct adapter *, int);
303 static int	em_newbuf(struct adapter *, int, int);
304 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
305 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
306 		    struct mbuf *);
307 static int	em_txcsum(struct adapter *, struct mbuf *,
308 		    uint32_t *, uint32_t *);
309 static int	em_tso_pullup(struct adapter *, struct mbuf **);
310 static int	em_tso_setup(struct adapter *, struct mbuf *,
311 		    uint32_t *, uint32_t *);
312 
313 static int	em_get_hw_info(struct adapter *);
314 static int 	em_is_valid_eaddr(const uint8_t *);
315 static int	em_alloc_pci_res(struct adapter *);
316 static void	em_free_pci_res(struct adapter *);
317 static int	em_reset(struct adapter *);
318 static void	em_setup_ifp(struct adapter *);
319 static void	em_init_tx_unit(struct adapter *);
320 static void	em_init_rx_unit(struct adapter *);
321 static void	em_update_stats(struct adapter *);
322 static void	em_set_promisc(struct adapter *);
323 static void	em_disable_promisc(struct adapter *);
324 static void	em_set_multi(struct adapter *);
325 static void	em_update_link_status(struct adapter *);
326 static void	em_smartspeed(struct adapter *);
327 static void	em_set_itr(struct adapter *, uint32_t);
328 static void	em_disable_aspm(struct adapter *);
329 static void	em_flush_tx_ring(struct adapter *);
330 static void	em_flush_rx_ring(struct adapter *);
331 static void	em_flush_txrx_ring(struct adapter *);
332 
333 /* Hardware workarounds */
334 static int	em_82547_fifo_workaround(struct adapter *, int);
335 static void	em_82547_update_fifo_head(struct adapter *, int);
336 static int	em_82547_tx_fifo_reset(struct adapter *);
337 static void	em_82547_move_tail(void *);
338 static void	em_82547_move_tail_serialized(struct adapter *);
339 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
340 
341 static void	em_print_debug_info(struct adapter *);
342 static void	em_print_nvm_info(struct adapter *);
343 static void	em_print_hw_stats(struct adapter *);
344 
345 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
346 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
347 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
348 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
349 static void	em_add_sysctl(struct adapter *adapter);
350 
351 /* Management and WOL Support */
352 static void	em_get_mgmt(struct adapter *);
353 static void	em_rel_mgmt(struct adapter *);
354 static void	em_get_hw_control(struct adapter *);
355 static void	em_rel_hw_control(struct adapter *);
356 static void	em_enable_wol(device_t);
357 
358 static device_method_t em_methods[] = {
359 	/* Device interface */
360 	DEVMETHOD(device_probe,		em_probe),
361 	DEVMETHOD(device_attach,	em_attach),
362 	DEVMETHOD(device_detach,	em_detach),
363 	DEVMETHOD(device_shutdown,	em_shutdown),
364 	DEVMETHOD(device_suspend,	em_suspend),
365 	DEVMETHOD(device_resume,	em_resume),
366 	DEVMETHOD_END
367 };
368 
369 static driver_t em_driver = {
370 	"em",
371 	em_methods,
372 	sizeof(struct adapter),
373 };
374 
375 static devclass_t em_devclass;
376 
377 DECLARE_DUMMY_MODULE(if_em);
378 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
379 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
380 
381 /*
382  * Tunables
383  */
384 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
385 static int	em_rxd = EM_DEFAULT_RXD;
386 static int	em_txd = EM_DEFAULT_TXD;
387 static int	em_smart_pwr_down = 0;
388 
389 /* Controls whether promiscuous also shows bad packets */
390 static int	em_debug_sbp = FALSE;
391 
392 static int	em_82573_workaround = 1;
393 static int	em_msi_enable = 1;
394 
395 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
396 
397 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
398 TUNABLE_INT("hw.em.rxd", &em_rxd);
399 TUNABLE_INT("hw.em.txd", &em_txd);
400 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
401 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
402 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
403 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
404 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
405 
406 /* Global used in WOL setup with multiport cards */
407 static int	em_global_quad_port_a = 0;
408 
409 /* Set this to one to display debug statistics */
410 static int	em_display_debug_stats = 0;
411 
412 #if !defined(KTR_IF_EM)
413 #define KTR_IF_EM	KTR_ALL
414 #endif
415 KTR_INFO_MASTER(if_em);
416 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
417 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
418 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
419 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
420 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
421 #define logif(name)	KTR_LOG(if_em_ ## name)
422 
423 static __inline void
424 em_tx_intr(struct adapter *adapter)
425 {
426 	struct ifnet *ifp = &adapter->arpcom.ac_if;
427 
428 	em_txeof(adapter);
429 	if (!ifq_is_empty(&ifp->if_snd))
430 		if_devstart(ifp);
431 }
432 
433 static __inline void
434 em_free_txbuffer(struct adapter *adapter, struct em_buffer *tx_buffer)
435 {
436 
437 	KKASSERT(tx_buffer->m_head != NULL);
438 	KKASSERT(adapter->tx_nmbuf > 0);
439 	adapter->tx_nmbuf--;
440 
441 	bus_dmamap_unload(adapter->txtag, tx_buffer->map);
442 	m_freem(tx_buffer->m_head);
443 	tx_buffer->m_head = NULL;
444 }
445 
446 static __inline void
447 em_try_txgc(struct adapter *adapter, int dec)
448 {
449 
450 	if (adapter->tx_running > 0) {
451 		adapter->tx_running -= dec;
452 		if (adapter->tx_running <= 0 && adapter->tx_nmbuf &&
453 		    adapter->num_tx_desc_avail < adapter->num_tx_desc &&
454 		    adapter->num_tx_desc_avail + adapter->tx_int_nsegs >
455 		    adapter->num_tx_desc)
456 			em_tx_collect(adapter, TRUE);
457 	}
458 }
459 
460 static void
461 em_txgc_timer(void *xadapter)
462 {
463 	struct adapter *adapter = xadapter;
464 	struct ifnet *ifp = &adapter->arpcom.ac_if;
465 
466 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
467 	    (IFF_RUNNING | IFF_UP))
468 		return;
469 
470 	if (!lwkt_serialize_try(ifp->if_serializer))
471 		goto done;
472 
473 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
474 	    (IFF_RUNNING | IFF_UP)) {
475 		lwkt_serialize_exit(ifp->if_serializer);
476 		return;
477 	}
478 	em_try_txgc(adapter, EM_TX_RUNNING_DEC);
479 
480 	lwkt_serialize_exit(ifp->if_serializer);
481 done:
482 	callout_reset(&adapter->tx_gc_timer, 1, em_txgc_timer, adapter);
483 }
484 
485 static int
486 em_probe(device_t dev)
487 {
488 	const struct em_vendor_info *ent;
489 	uint16_t vid, did;
490 
491 	vid = pci_get_vendor(dev);
492 	did = pci_get_device(dev);
493 
494 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
495 		if (vid == ent->vendor_id && did == ent->device_id) {
496 			device_set_desc(dev, ent->desc);
497 			device_set_async_attach(dev, TRUE);
498 			return (ent->ret);
499 		}
500 	}
501 	return (ENXIO);
502 }
503 
504 static int
505 em_attach(device_t dev)
506 {
507 	struct adapter *adapter = device_get_softc(dev);
508 	struct ifnet *ifp = &adapter->arpcom.ac_if;
509 	int tsize, rsize;
510 	int error = 0;
511 	int cap;
512 	uint16_t eeprom_data, device_id, apme_mask;
513 	driver_intr_t *intr_func;
514 	char flowctrl[IFM_ETH_FC_STRLEN];
515 
516 	adapter->dev = adapter->osdep.dev = dev;
517 
518 	/*
519 	 * Some versions of I219 only have PCI AF.
520 	 */
521 	if (pci_is_pcie(dev) || pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0)
522 		adapter->flags |= EM_FLAG_GEN2;
523 
524 	callout_init_mp(&adapter->timer);
525 	callout_init_mp(&adapter->tx_fifo_timer);
526 	callout_init_mp(&adapter->tx_gc_timer);
527 
528 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
529 	    em_media_change, em_media_status);
530 
531 	/* Determine hardware and mac info */
532 	error = em_get_hw_info(adapter);
533 	if (error) {
534 		device_printf(dev, "Identify hardware failed\n");
535 		goto fail;
536 	}
537 
538 	/* Setup PCI resources */
539 	error = em_alloc_pci_res(adapter);
540 	if (error) {
541 		device_printf(dev, "Allocation of PCI resources failed\n");
542 		goto fail;
543 	}
544 
545 	/*
546 	 * For ICH8 and family we need to map the flash memory,
547 	 * and this must happen after the MAC is identified.
548 	 *
549 	 * (SPT does not map the flash with a separate BAR)
550 	 */
551 	if (adapter->hw.mac.type == e1000_ich8lan ||
552 	    adapter->hw.mac.type == e1000_ich9lan ||
553 	    adapter->hw.mac.type == e1000_ich10lan ||
554 	    adapter->hw.mac.type == e1000_pchlan ||
555 	    adapter->hw.mac.type == e1000_pch2lan ||
556 	    adapter->hw.mac.type == e1000_pch_lpt) {
557 		adapter->flash_rid = EM_BAR_FLASH;
558 
559 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
560 					&adapter->flash_rid, RF_ACTIVE);
561 		if (adapter->flash == NULL) {
562 			device_printf(dev, "Mapping of Flash failed\n");
563 			error = ENXIO;
564 			goto fail;
565 		}
566 		adapter->osdep.flash_bus_space_tag =
567 		    rman_get_bustag(adapter->flash);
568 		adapter->osdep.flash_bus_space_handle =
569 		    rman_get_bushandle(adapter->flash);
570 
571 		/*
572 		 * This is used in the shared code
573 		 * XXX this goof is actually not used.
574 		 */
575 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
576 	} else if (adapter->hw.mac.type >= e1000_pch_spt) {
577 		/*
578 		 * In the new SPT device flash is not a seperate BAR,
579 		 * rather it is also in BAR0, so use the same tag and
580 		 * an offset handle for the FLASH read/write macros
581 		 * in the shared code.
582 		 */
583 		adapter->osdep.flash_bus_space_tag =
584 		    adapter->osdep.mem_bus_space_tag;
585 		adapter->osdep.flash_bus_space_handle =
586 		    adapter->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
587 	}
588 
589 	switch (adapter->hw.mac.type) {
590 	case e1000_82571:
591 	case e1000_82572:
592 	case e1000_pch_lpt:
593 	case e1000_pch_spt:
594 	case e1000_pch_cnp:
595 		/*
596 		 * Pullup extra 4bytes into the first data segment for
597 		 * TSO, see:
598 		 * 82571/82572 specification update errata #7
599 		 *
600 		 * Same applies to I217 (and maybe I218 and I219).
601 		 *
602 		 * NOTE:
603 		 * 4bytes instead of 2bytes, which are mentioned in the
604 		 * errata, are pulled; mainly to keep rest of the data
605 		 * properly aligned.
606 		 */
607 		adapter->flags |= EM_FLAG_TSO_PULLEX;
608 		/* FALL THROUGH */
609 
610 	default:
611 		if (adapter->flags & EM_FLAG_GEN2)
612 			adapter->flags |= EM_FLAG_TSO;
613 		break;
614 	}
615 
616 	/* Do Shared Code initialization */
617 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
618 		device_printf(dev, "Setup of Shared code failed\n");
619 		error = ENXIO;
620 		goto fail;
621 	}
622 
623 	e1000_get_bus_info(&adapter->hw);
624 
625 	/*
626 	 * Validate number of transmit and receive descriptors.  It
627 	 * must not exceed hardware maximum, and must be multiple
628 	 * of E1000_DBA_ALIGN.
629 	 */
630 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
631 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
632 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
633 	    em_txd < EM_MIN_TXD) {
634 		if (adapter->hw.mac.type < e1000_82544)
635 			adapter->num_tx_desc = EM_MAX_TXD_82543;
636 		else
637 			adapter->num_tx_desc = EM_DEFAULT_TXD;
638 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
639 		    adapter->num_tx_desc, em_txd);
640 	} else {
641 		adapter->num_tx_desc = em_txd;
642 	}
643 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
644 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
645 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
646 	    em_rxd < EM_MIN_RXD) {
647 		if (adapter->hw.mac.type < e1000_82544)
648 			adapter->num_rx_desc = EM_MAX_RXD_82543;
649 		else
650 			adapter->num_rx_desc = EM_DEFAULT_RXD;
651 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
652 		    adapter->num_rx_desc, em_rxd);
653 	} else {
654 		adapter->num_rx_desc = em_rxd;
655 	}
656 
657 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
658 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
659 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
660 	adapter->rx_buffer_len = MCLBYTES;
661 
662 	/*
663 	 * Interrupt throttle rate
664 	 */
665 	if (em_int_throttle_ceil == 0) {
666 		adapter->int_throttle_ceil = 0;
667 	} else {
668 		int throttle = em_int_throttle_ceil;
669 
670 		if (throttle < 0)
671 			throttle = EM_DEFAULT_ITR;
672 
673 		/* Recalculate the tunable value to get the exact frequency. */
674 		throttle = 1000000000 / 256 / throttle;
675 
676 		/* Upper 16bits of ITR is reserved and should be zero */
677 		if (throttle & 0xffff0000)
678 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
679 
680 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
681 	}
682 
683 	e1000_init_script_state_82541(&adapter->hw, TRUE);
684 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
685 
686 	/* Copper options */
687 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
688 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
689 		adapter->hw.phy.disable_polarity_correction = FALSE;
690 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
691 	}
692 
693 	/* Set the frame limits assuming standard ethernet sized frames. */
694 	adapter->hw.mac.max_frame_size =
695 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
696 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
697 
698 	/* This controls when hardware reports transmit completion status. */
699 	adapter->hw.mac.report_tx_early = 1;
700 
701 	/*
702 	 * Create top level busdma tag
703 	 */
704 	error = bus_dma_tag_create(NULL, 1, 0,
705 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
706 			NULL, NULL,
707 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
708 			0, &adapter->parent_dtag);
709 	if (error) {
710 		device_printf(dev, "could not create top level DMA tag\n");
711 		goto fail;
712 	}
713 
714 	/*
715 	 * Allocate Transmit Descriptor ring
716 	 */
717 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
718 			 EM_DBA_ALIGN);
719 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
720 	if (error) {
721 		device_printf(dev, "Unable to allocate tx_desc memory\n");
722 		goto fail;
723 	}
724 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
725 
726 	/*
727 	 * Allocate Receive Descriptor ring
728 	 */
729 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
730 			 EM_DBA_ALIGN);
731 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
732 	if (error) {
733 		device_printf(dev, "Unable to allocate rx_desc memory\n");
734 		goto fail;
735 	}
736 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
737 
738 	/* Allocate multicast array memory. */
739 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
740 	    M_DEVBUF, M_WAITOK);
741 
742 	/* Indicate SOL/IDER usage */
743 	if (e1000_check_reset_block(&adapter->hw)) {
744 		device_printf(dev,
745 		    "PHY reset is blocked due to SOL/IDER session.\n");
746 	}
747 
748 	/* Disable EEE */
749 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
750 
751 	/*
752 	 * Start from a known state, this is important in reading the
753 	 * nvm and mac from that.
754 	 */
755 	e1000_reset_hw(&adapter->hw);
756 
757 	/* Make sure we have a good EEPROM before we read from it */
758 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
759 		/*
760 		 * Some PCI-E parts fail the first check due to
761 		 * the link being in sleep state, call it again,
762 		 * if it fails a second time its a real issue.
763 		 */
764 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
765 			device_printf(dev,
766 			    "The EEPROM Checksum Is Not Valid\n");
767 			error = EIO;
768 			goto fail;
769 		}
770 	}
771 
772 	/* Copy the permanent MAC address out of the EEPROM */
773 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
774 		device_printf(dev, "EEPROM read error while reading MAC"
775 		    " address\n");
776 		error = EIO;
777 		goto fail;
778 	}
779 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
780 		device_printf(dev, "Invalid MAC address\n");
781 		error = EIO;
782 		goto fail;
783 	}
784 
785 	/* Disable ULP support */
786 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
787 
788 	/* Allocate transmit descriptors and buffers */
789 	error = em_create_tx_ring(adapter);
790 	if (error) {
791 		device_printf(dev, "Could not setup transmit structures\n");
792 		goto fail;
793 	}
794 
795 	/* Allocate receive descriptors and buffers */
796 	error = em_create_rx_ring(adapter);
797 	if (error) {
798 		device_printf(dev, "Could not setup receive structures\n");
799 		goto fail;
800 	}
801 
802 	/* Manually turn off all interrupts */
803 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
804 
805 	/* Determine if we have to control management hardware */
806 	if (e1000_enable_mng_pass_thru(&adapter->hw))
807 		adapter->flags |= EM_FLAG_HAS_MGMT;
808 
809 	/*
810 	 * Setup Wake-on-Lan
811 	 */
812 	apme_mask = EM_EEPROM_APME;
813 	eeprom_data = 0;
814 	switch (adapter->hw.mac.type) {
815 	case e1000_82542:
816 	case e1000_82543:
817 		break;
818 
819 	case e1000_82573:
820 	case e1000_82583:
821 		adapter->flags |= EM_FLAG_HAS_AMT;
822 		/* FALL THROUGH */
823 
824 	case e1000_82546:
825 	case e1000_82546_rev_3:
826 	case e1000_82571:
827 	case e1000_82572:
828 	case e1000_80003es2lan:
829 		if (adapter->hw.bus.func == 1) {
830 			e1000_read_nvm(&adapter->hw,
831 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
832 		} else {
833 			e1000_read_nvm(&adapter->hw,
834 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
835 		}
836 		break;
837 
838 	case e1000_ich8lan:
839 	case e1000_ich9lan:
840 	case e1000_ich10lan:
841 	case e1000_pchlan:
842 	case e1000_pch2lan:
843 	case e1000_pch_lpt:
844 	case e1000_pch_spt:
845 	case e1000_pch_cnp:
846 		apme_mask = E1000_WUC_APME;
847 		adapter->flags |= EM_FLAG_HAS_AMT;
848 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
849 		break;
850 
851 	default:
852 		e1000_read_nvm(&adapter->hw,
853 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
854 		break;
855 	}
856 	if (eeprom_data & apme_mask)
857 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
858 
859 	/*
860          * We have the eeprom settings, now apply the special cases
861          * where the eeprom may be wrong or the board won't support
862          * wake on lan on a particular port
863 	 */
864 	device_id = pci_get_device(dev);
865         switch (device_id) {
866 	case E1000_DEV_ID_82546GB_PCIE:
867 		adapter->wol = 0;
868 		break;
869 
870 	case E1000_DEV_ID_82546EB_FIBER:
871 	case E1000_DEV_ID_82546GB_FIBER:
872 	case E1000_DEV_ID_82571EB_FIBER:
873 		/*
874 		 * Wake events only supported on port A for dual fiber
875 		 * regardless of eeprom setting
876 		 */
877 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
878 		    E1000_STATUS_FUNC_1)
879 			adapter->wol = 0;
880 		break;
881 
882 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
883 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
884 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
885 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
886                 /* if quad port adapter, disable WoL on all but port A */
887 		if (em_global_quad_port_a != 0)
888 			adapter->wol = 0;
889 		/* Reset for multiple quad port adapters */
890 		if (++em_global_quad_port_a == 4)
891 			em_global_quad_port_a = 0;
892                 break;
893 	}
894 
895 	/* XXX disable wol */
896 	adapter->wol = 0;
897 
898 	/* Setup flow control. */
899 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
900 	    em_flowctrl);
901 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
902 	if (adapter->hw.mac.type == e1000_pchlan) {
903 		/* Only PAUSE reception is supported on PCH */
904 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
905 	}
906 
907 	/* Setup OS specific network interface */
908 	em_setup_ifp(adapter);
909 
910 	/* Add sysctl tree, must after em_setup_ifp() */
911 	em_add_sysctl(adapter);
912 
913 #ifdef IFPOLL_ENABLE
914 	/* Polling setup */
915 	ifpoll_compat_setup(&adapter->npoll,
916 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
917 	    device_get_unit(dev), ifp->if_serializer);
918 #endif
919 
920 	/* Reset the hardware */
921 	error = em_reset(adapter);
922 	if (error) {
923 		/*
924 		 * Some 82573 parts fail the first reset, call it again,
925 		 * if it fails a second time its a real issue.
926 		 */
927 		error = em_reset(adapter);
928 		if (error) {
929 			device_printf(dev, "Unable to reset the hardware\n");
930 			ether_ifdetach(ifp);
931 			goto fail;
932 		}
933 	}
934 
935 	/* Initialize statistics */
936 	em_update_stats(adapter);
937 
938 	adapter->hw.mac.get_link_status = 1;
939 	em_update_link_status(adapter);
940 
941 	/* Do we need workaround for 82544 PCI-X adapter? */
942 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
943 	    adapter->hw.mac.type == e1000_82544)
944 		adapter->pcix_82544 = TRUE;
945 	else
946 		adapter->pcix_82544 = FALSE;
947 
948 	if (adapter->pcix_82544) {
949 		/*
950 		 * 82544 on PCI-X may split one TX segment
951 		 * into two TX descs, so we double its number
952 		 * of spare TX desc here.
953 		 */
954 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
955 	} else {
956 		adapter->spare_tx_desc = EM_TX_SPARE;
957 	}
958 	if (adapter->flags & EM_FLAG_TSO)
959 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
960 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
961 
962 	/*
963 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
964 	 * and tx_int_nsegs:
965 	 * (spare_tx_desc + EM_TX_RESERVED) <=
966 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
967 	 */
968 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
969 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
970 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
971 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
972 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
973 
974 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
975 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
976 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
977 
978 	/* Non-AMT based hardware can now take control from firmware */
979 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
980 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
981 		em_get_hw_control(adapter);
982 
983 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
984 
985 	/*
986 	 * Missing Interrupt Following ICR read:
987 	 *
988 	 * 82571/82572 specification update errata #76
989 	 * 82573 specification update errata #31
990 	 * 82574 specification update errata #12
991 	 * 82583 specification update errata #4
992 	 */
993 	intr_func = em_intr;
994 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
995 	    (adapter->hw.mac.type == e1000_82571 ||
996 	     adapter->hw.mac.type == e1000_82572 ||
997 	     adapter->hw.mac.type == e1000_82573 ||
998 	     adapter->hw.mac.type == e1000_82574 ||
999 	     adapter->hw.mac.type == e1000_82583))
1000 		intr_func = em_intr_mask;
1001 
1002 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
1003 			       intr_func, adapter, &adapter->intr_tag,
1004 			       ifp->if_serializer);
1005 	if (error) {
1006 		device_printf(dev, "Failed to register interrupt handler");
1007 		ether_ifdetach(ifp);
1008 		goto fail;
1009 	}
1010 	return (0);
1011 fail:
1012 	em_detach(dev);
1013 	return (error);
1014 }
1015 
1016 static int
1017 em_detach(device_t dev)
1018 {
1019 	struct adapter *adapter = device_get_softc(dev);
1020 
1021 	if (device_is_attached(dev)) {
1022 		struct ifnet *ifp = &adapter->arpcom.ac_if;
1023 
1024 		lwkt_serialize_enter(ifp->if_serializer);
1025 
1026 		em_stop(adapter);
1027 
1028 		e1000_phy_hw_reset(&adapter->hw);
1029 
1030 		em_rel_mgmt(adapter);
1031 		em_rel_hw_control(adapter);
1032 
1033 		if (adapter->wol) {
1034 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
1035 					E1000_WUC_PME_EN);
1036 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1037 			em_enable_wol(dev);
1038 		}
1039 
1040 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
1041 
1042 		lwkt_serialize_exit(ifp->if_serializer);
1043 
1044 		ether_ifdetach(ifp);
1045 	} else if (adapter->memory != NULL) {
1046 		em_rel_hw_control(adapter);
1047 	}
1048 
1049 	ifmedia_removeall(&adapter->media);
1050 	bus_generic_detach(dev);
1051 
1052 	em_free_pci_res(adapter);
1053 
1054 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
1055 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
1056 
1057 	/* Free Transmit Descriptor ring */
1058 	if (adapter->tx_desc_base)
1059 		em_dma_free(adapter, &adapter->txdma);
1060 
1061 	/* Free Receive Descriptor ring */
1062 	if (adapter->rx_desc_base)
1063 		em_dma_free(adapter, &adapter->rxdma);
1064 
1065 	/* Free top level busdma tag */
1066 	if (adapter->parent_dtag != NULL)
1067 		bus_dma_tag_destroy(adapter->parent_dtag);
1068 
1069 	if (adapter->mta != NULL)
1070 		kfree(adapter->mta, M_DEVBUF);
1071 
1072 	return (0);
1073 }
1074 
1075 static int
1076 em_shutdown(device_t dev)
1077 {
1078 	return em_suspend(dev);
1079 }
1080 
1081 static int
1082 em_suspend(device_t dev)
1083 {
1084 	struct adapter *adapter = device_get_softc(dev);
1085 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1086 
1087 	lwkt_serialize_enter(ifp->if_serializer);
1088 
1089 	em_stop(adapter);
1090 
1091 	em_rel_mgmt(adapter);
1092 	em_rel_hw_control(adapter);
1093 
1094 	if (adapter->wol) {
1095 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
1096 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1097 		em_enable_wol(dev);
1098 	}
1099 
1100 	lwkt_serialize_exit(ifp->if_serializer);
1101 
1102 	return bus_generic_suspend(dev);
1103 }
1104 
1105 static int
1106 em_resume(device_t dev)
1107 {
1108 	struct adapter *adapter = device_get_softc(dev);
1109 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1110 
1111 	lwkt_serialize_enter(ifp->if_serializer);
1112 
1113 	if (adapter->hw.mac.type == e1000_pch2lan)
1114 		e1000_resume_workarounds_pchlan(&adapter->hw);
1115 
1116 	em_init(adapter);
1117 	em_get_mgmt(adapter);
1118 	if_devstart(ifp);
1119 
1120 	lwkt_serialize_exit(ifp->if_serializer);
1121 
1122 	return bus_generic_resume(dev);
1123 }
1124 
1125 static void
1126 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1127 {
1128 	struct adapter *adapter = ifp->if_softc;
1129 	struct mbuf *m_head;
1130 	int idx = -1, nsegs = 0;
1131 
1132 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1133 	ASSERT_SERIALIZED(ifp->if_serializer);
1134 
1135 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1136 		return;
1137 
1138 	if (!adapter->link_active) {
1139 		ifq_purge(&ifp->if_snd);
1140 		return;
1141 	}
1142 
1143 	while (!ifq_is_empty(&ifp->if_snd)) {
1144 		/* Now do we at least have a minimal? */
1145 		if (EM_IS_OACTIVE(adapter)) {
1146 			em_tx_collect(adapter, FALSE);
1147 			if (EM_IS_OACTIVE(adapter)) {
1148 				ifq_set_oactive(&ifp->if_snd);
1149 				adapter->no_tx_desc_avail1++;
1150 				break;
1151 			}
1152 		}
1153 
1154 		logif(pkt_txqueue);
1155 		m_head = ifq_dequeue(&ifp->if_snd);
1156 		if (m_head == NULL)
1157 			break;
1158 
1159 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1160 			IFNET_STAT_INC(ifp, oerrors, 1);
1161 			em_tx_collect(adapter, FALSE);
1162 			continue;
1163 		}
1164 
1165 		/*
1166 		 * TX interrupt are aggressively aggregated, so increasing
1167 		 * opackets at TX interrupt time will make the opackets
1168 		 * statistics vastly inaccurate; we do the opackets increment
1169 		 * now.
1170 		 */
1171 		IFNET_STAT_INC(ifp, opackets, 1);
1172 
1173 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1174 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1175 			nsegs = 0;
1176 			idx = -1;
1177 		}
1178 
1179 		/* Send a copy of the frame to the BPF listener */
1180 		ETHER_BPF_MTAP(ifp, m_head);
1181 
1182 		/* Set timeout in case hardware has problems transmitting. */
1183 		ifp->if_timer = EM_TX_TIMEOUT;
1184 	}
1185 	if (idx >= 0)
1186 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1187 	adapter->tx_running = EM_TX_RUNNING;
1188 }
1189 
1190 static int
1191 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1192 {
1193 	struct adapter *adapter = ifp->if_softc;
1194 	struct ifreq *ifr = (struct ifreq *)data;
1195 	uint16_t eeprom_data = 0;
1196 	int max_frame_size, mask, reinit;
1197 	int error = 0;
1198 
1199 	ASSERT_SERIALIZED(ifp->if_serializer);
1200 
1201 	switch (command) {
1202 	case SIOCSIFMTU:
1203 		switch (adapter->hw.mac.type) {
1204 		case e1000_82573:
1205 			/*
1206 			 * 82573 only supports jumbo frames
1207 			 * if ASPM is disabled.
1208 			 */
1209 			e1000_read_nvm(&adapter->hw,
1210 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1211 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1212 				max_frame_size = ETHER_MAX_LEN;
1213 				break;
1214 			}
1215 			/* FALL THROUGH */
1216 
1217 		/* Limit Jumbo Frame size */
1218 		case e1000_82571:
1219 		case e1000_82572:
1220 		case e1000_ich9lan:
1221 		case e1000_ich10lan:
1222 		case e1000_pch2lan:
1223 		case e1000_pch_lpt:
1224 		case e1000_pch_spt:
1225 		case e1000_pch_cnp:
1226 		case e1000_82574:
1227 		case e1000_82583:
1228 		case e1000_80003es2lan:
1229 			max_frame_size = 9234;
1230 			break;
1231 
1232 		case e1000_pchlan:
1233 			max_frame_size = 4096;
1234 			break;
1235 
1236 		/* Adapters that do not support jumbo frames */
1237 		case e1000_82542:
1238 		case e1000_ich8lan:
1239 			max_frame_size = ETHER_MAX_LEN;
1240 			break;
1241 
1242 		default:
1243 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1244 			break;
1245 		}
1246 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1247 		    ETHER_CRC_LEN) {
1248 			error = EINVAL;
1249 			break;
1250 		}
1251 
1252 		ifp->if_mtu = ifr->ifr_mtu;
1253 		adapter->hw.mac.max_frame_size =
1254 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1255 
1256 		if (ifp->if_flags & IFF_RUNNING)
1257 			em_init(adapter);
1258 		break;
1259 
1260 	case SIOCSIFFLAGS:
1261 		if (ifp->if_flags & IFF_UP) {
1262 			if ((ifp->if_flags & IFF_RUNNING)) {
1263 				if ((ifp->if_flags ^ adapter->if_flags) &
1264 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1265 					em_disable_promisc(adapter);
1266 					em_set_promisc(adapter);
1267 				}
1268 			} else {
1269 				em_init(adapter);
1270 			}
1271 		} else if (ifp->if_flags & IFF_RUNNING) {
1272 			em_stop(adapter);
1273 		}
1274 		adapter->if_flags = ifp->if_flags;
1275 		break;
1276 
1277 	case SIOCADDMULTI:
1278 	case SIOCDELMULTI:
1279 		if (ifp->if_flags & IFF_RUNNING) {
1280 			em_disable_intr(adapter);
1281 			em_set_multi(adapter);
1282 			if (adapter->hw.mac.type == e1000_82542 &&
1283 			    adapter->hw.revision_id == E1000_REVISION_2)
1284 				em_init_rx_unit(adapter);
1285 #ifdef IFPOLL_ENABLE
1286 			if (!(ifp->if_flags & IFF_NPOLLING))
1287 #endif
1288 				em_enable_intr(adapter);
1289 		}
1290 		break;
1291 
1292 	case SIOCSIFMEDIA:
1293 		/* Check SOL/IDER usage */
1294 		if (e1000_check_reset_block(&adapter->hw)) {
1295 			device_printf(adapter->dev, "Media change is"
1296 			    " blocked due to SOL/IDER session.\n");
1297 			break;
1298 		}
1299 		/* FALL THROUGH */
1300 
1301 	case SIOCGIFMEDIA:
1302 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1303 		break;
1304 
1305 	case SIOCSIFCAP:
1306 		reinit = 0;
1307 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1308 		if (mask & IFCAP_RXCSUM) {
1309 			ifp->if_capenable ^= IFCAP_RXCSUM;
1310 			reinit = 1;
1311 		}
1312 		if (mask & IFCAP_TXCSUM) {
1313 			ifp->if_capenable ^= IFCAP_TXCSUM;
1314 			if (ifp->if_capenable & IFCAP_TXCSUM)
1315 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1316 			else
1317 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1318 		}
1319 		if (mask & IFCAP_TSO) {
1320 			ifp->if_capenable ^= IFCAP_TSO;
1321 			if (ifp->if_capenable & IFCAP_TSO)
1322 				ifp->if_hwassist |= CSUM_TSO;
1323 			else
1324 				ifp->if_hwassist &= ~CSUM_TSO;
1325 		}
1326 		if (mask & IFCAP_VLAN_HWTAGGING) {
1327 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1328 			reinit = 1;
1329 		}
1330 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1331 			em_init(adapter);
1332 		break;
1333 
1334 	default:
1335 		error = ether_ioctl(ifp, command, data);
1336 		break;
1337 	}
1338 	return (error);
1339 }
1340 
1341 static void
1342 em_watchdog(struct ifnet *ifp)
1343 {
1344 	struct adapter *adapter = ifp->if_softc;
1345 
1346 	ASSERT_SERIALIZED(ifp->if_serializer);
1347 
1348 	/*
1349 	 * The timer is set to 5 every time start queues a packet.
1350 	 * Then txeof keeps resetting it as long as it cleans at
1351 	 * least one descriptor.
1352 	 * Finally, anytime all descriptors are clean the timer is
1353 	 * set to 0.
1354 	 */
1355 
1356 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1357 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1358 		/*
1359 		 * If we reach here, all TX jobs are completed and
1360 		 * the TX engine should have been idled for some time.
1361 		 * We don't need to call if_devstart() here.
1362 		 */
1363 		ifq_clr_oactive(&ifp->if_snd);
1364 		ifp->if_timer = 0;
1365 		return;
1366 	}
1367 
1368 	/*
1369 	 * If we are in this routine because of pause frames, then
1370 	 * don't reset the hardware.
1371 	 */
1372 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1373 	    E1000_STATUS_TXOFF) {
1374 		ifp->if_timer = EM_TX_TIMEOUT;
1375 		return;
1376 	}
1377 
1378 	if (e1000_check_for_link(&adapter->hw) == 0)
1379 		if_printf(ifp, "watchdog timeout -- resetting\n");
1380 
1381 	IFNET_STAT_INC(ifp, oerrors, 1);
1382 	adapter->watchdog_events++;
1383 
1384 	em_init(adapter);
1385 
1386 	if (!ifq_is_empty(&ifp->if_snd))
1387 		if_devstart(ifp);
1388 }
1389 
1390 static void
1391 em_init(void *xsc)
1392 {
1393 	struct adapter *adapter = xsc;
1394 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1395 	device_t dev = adapter->dev;
1396 
1397 	ASSERT_SERIALIZED(ifp->if_serializer);
1398 
1399 	em_stop(adapter);
1400 
1401 	/* Get the latest mac address, User can use a LAA */
1402         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1403 
1404 	/* Put the address into the Receive Address Array */
1405 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1406 
1407 	/*
1408 	 * With the 82571 adapter, RAR[0] may be overwritten
1409 	 * when the other port is reset, we make a duplicate
1410 	 * in RAR[14] for that eventuality, this assures
1411 	 * the interface continues to function.
1412 	 */
1413 	if (adapter->hw.mac.type == e1000_82571) {
1414 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1415 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1416 		    E1000_RAR_ENTRIES - 1);
1417 	}
1418 
1419 	/* Reset the hardware */
1420 	if (em_reset(adapter)) {
1421 		device_printf(dev, "Unable to reset the hardware\n");
1422 		/* XXX em_stop()? */
1423 		return;
1424 	}
1425 	em_update_link_status(adapter);
1426 
1427 	/* Setup VLAN support, basic and offload if available */
1428 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1429 
1430 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1431 		uint32_t ctrl;
1432 
1433 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1434 		ctrl |= E1000_CTRL_VME;
1435 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1436 	}
1437 
1438 	/* Configure for OS presence */
1439 	em_get_mgmt(adapter);
1440 
1441 	/* Prepare transmit descriptors and buffers */
1442 	em_init_tx_ring(adapter);
1443 	em_init_tx_unit(adapter);
1444 
1445 	/* Setup Multicast table */
1446 	em_set_multi(adapter);
1447 
1448 	/* Prepare receive descriptors and buffers */
1449 	if (em_init_rx_ring(adapter)) {
1450 		device_printf(dev, "Could not setup receive structures\n");
1451 		em_stop(adapter);
1452 		return;
1453 	}
1454 	em_init_rx_unit(adapter);
1455 
1456 	/* Don't lose promiscuous settings */
1457 	em_set_promisc(adapter);
1458 
1459 	/* Reset hardware counters */
1460 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1461 
1462 	/* MSI/X configuration for 82574 */
1463 	if (adapter->hw.mac.type == e1000_82574) {
1464 		int tmp;
1465 
1466 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1467 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1468 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1469 		/*
1470 		 * XXX MSIX
1471 		 * Set the IVAR - interrupt vector routing.
1472 		 * Each nibble represents a vector, high bit
1473 		 * is enable, other 3 bits are the MSIX table
1474 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1475 		 * Link (other) to 2, hence the magic number.
1476 		 */
1477 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1478 	}
1479 
1480 #ifdef IFPOLL_ENABLE
1481 	/*
1482 	 * Only enable interrupts if we are not polling, make sure
1483 	 * they are off otherwise.
1484 	 */
1485 	if (ifp->if_flags & IFF_NPOLLING)
1486 		em_disable_intr(adapter);
1487 	else
1488 #endif /* IFPOLL_ENABLE */
1489 		em_enable_intr(adapter);
1490 
1491 	/* AMT based hardware can now take control from firmware */
1492 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1493 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1494 	    adapter->hw.mac.type >= e1000_82571)
1495 		em_get_hw_control(adapter);
1496 
1497 	ifp->if_flags |= IFF_RUNNING;
1498 	ifq_clr_oactive(&ifp->if_snd);
1499 
1500 #ifdef IFPOLL_ENABLE
1501 	if ((ifp->if_flags & IFF_NPOLLING) == 0)
1502 #endif
1503 	{
1504 		callout_reset_bycpu(&adapter->tx_gc_timer, 1,
1505 		    em_txgc_timer, adapter,
1506 		    rman_get_cpuid(adapter->intr_res));
1507 	}
1508 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1509 }
1510 
1511 #ifdef IFPOLL_ENABLE
1512 
1513 static void
1514 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1515 {
1516 	struct adapter *adapter = ifp->if_softc;
1517 
1518 	ASSERT_SERIALIZED(ifp->if_serializer);
1519 
1520 	if (adapter->npoll.ifpc_stcount-- == 0) {
1521 		uint32_t reg_icr;
1522 
1523 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1524 
1525 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1526 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1527 			callout_stop(&adapter->timer);
1528 			adapter->hw.mac.get_link_status = 1;
1529 			em_update_link_status(adapter);
1530 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1531 		}
1532 	}
1533 
1534 	em_rxeof(adapter, count);
1535 
1536 	em_tx_intr(adapter);
1537 	em_try_txgc(adapter, 1);
1538 }
1539 
1540 static void
1541 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1542 {
1543 	struct adapter *adapter = ifp->if_softc;
1544 
1545 	ASSERT_SERIALIZED(ifp->if_serializer);
1546 
1547 	if (info != NULL) {
1548 		int cpuid = adapter->npoll.ifpc_cpuid;
1549 
1550                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1551 		info->ifpi_rx[cpuid].arg = NULL;
1552 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1553 
1554 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1555 	} else {
1556 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1557 	}
1558 	if (ifp->if_flags & IFF_RUNNING)
1559 		em_init(adapter);
1560 }
1561 
1562 #endif /* IFPOLL_ENABLE */
1563 
1564 static void
1565 em_intr(void *xsc)
1566 {
1567 	em_intr_body(xsc, TRUE);
1568 }
1569 
1570 static void
1571 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1572 {
1573 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1574 	uint32_t reg_icr;
1575 
1576 	logif(intr_beg);
1577 	ASSERT_SERIALIZED(ifp->if_serializer);
1578 
1579 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1580 
1581 	if (chk_asserted &&
1582 	    ((adapter->hw.mac.type >= e1000_82571 &&
1583 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1584 	     reg_icr == 0)) {
1585 		logif(intr_end);
1586 		return;
1587 	}
1588 
1589 	/*
1590 	 * XXX: some laptops trigger several spurious interrupts
1591 	 * on em(4) when in the resume cycle. The ICR register
1592 	 * reports all-ones value in this case. Processing such
1593 	 * interrupts would lead to a freeze. I don't know why.
1594 	 */
1595 	if (reg_icr == 0xffffffff) {
1596 		logif(intr_end);
1597 		return;
1598 	}
1599 
1600 	if (ifp->if_flags & IFF_RUNNING) {
1601 		if (reg_icr &
1602 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1603 			em_rxeof(adapter, -1);
1604 		if (reg_icr & E1000_ICR_TXDW)
1605 			em_tx_intr(adapter);
1606 	}
1607 
1608 	/* Link status change */
1609 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1610 		callout_stop(&adapter->timer);
1611 		adapter->hw.mac.get_link_status = 1;
1612 		em_update_link_status(adapter);
1613 
1614 		/* Deal with TX cruft when link lost */
1615 		em_tx_purge(adapter);
1616 
1617 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1618 	}
1619 
1620 	if (reg_icr & E1000_ICR_RXO)
1621 		adapter->rx_overruns++;
1622 
1623 	logif(intr_end);
1624 }
1625 
1626 static void
1627 em_intr_mask(void *xsc)
1628 {
1629 	struct adapter *adapter = xsc;
1630 
1631 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1632 	/*
1633 	 * NOTE:
1634 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1635 	 * so don't check it.
1636 	 */
1637 	em_intr_body(adapter, FALSE);
1638 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1639 }
1640 
1641 static void
1642 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1643 {
1644 	struct adapter *adapter = ifp->if_softc;
1645 
1646 	ASSERT_SERIALIZED(ifp->if_serializer);
1647 
1648 	em_update_link_status(adapter);
1649 
1650 	ifmr->ifm_status = IFM_AVALID;
1651 	ifmr->ifm_active = IFM_ETHER;
1652 
1653 	if (!adapter->link_active) {
1654 		if (adapter->hw.mac.autoneg)
1655 			ifmr->ifm_active |= IFM_NONE;
1656 		else
1657 			ifmr->ifm_active = adapter->media.ifm_media;
1658 		return;
1659 	}
1660 
1661 	ifmr->ifm_status |= IFM_ACTIVE;
1662 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1663 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1664 
1665 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1666 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1667 		u_char fiber_type = IFM_1000_SX;
1668 
1669 		if (adapter->hw.mac.type == e1000_82545)
1670 			fiber_type = IFM_1000_LX;
1671 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1672 	} else {
1673 		switch (adapter->link_speed) {
1674 		case 10:
1675 			ifmr->ifm_active |= IFM_10_T;
1676 			break;
1677 		case 100:
1678 			ifmr->ifm_active |= IFM_100_TX;
1679 			break;
1680 
1681 		case 1000:
1682 			ifmr->ifm_active |= IFM_1000_T;
1683 			break;
1684 		}
1685 		if (adapter->link_duplex == FULL_DUPLEX)
1686 			ifmr->ifm_active |= IFM_FDX;
1687 		else
1688 			ifmr->ifm_active |= IFM_HDX;
1689 	}
1690 	if (ifmr->ifm_active & IFM_FDX) {
1691 		ifmr->ifm_active |=
1692 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1693 	}
1694 }
1695 
1696 static int
1697 em_media_change(struct ifnet *ifp)
1698 {
1699 	struct adapter *adapter = ifp->if_softc;
1700 	struct ifmedia *ifm = &adapter->media;
1701 
1702 	ASSERT_SERIALIZED(ifp->if_serializer);
1703 
1704 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1705 		return (EINVAL);
1706 
1707 	if (adapter->hw.mac.type == e1000_pchlan &&
1708 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1709 		if (bootverbose)
1710 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1711 		return EINVAL;
1712 	}
1713 
1714 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1715 	case IFM_AUTO:
1716 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1717 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1718 		break;
1719 
1720 	case IFM_1000_LX:
1721 	case IFM_1000_SX:
1722 	case IFM_1000_T:
1723 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1724 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1725 		break;
1726 
1727 	case IFM_100_TX:
1728 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1729 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1730 		} else {
1731 			if (IFM_OPTIONS(ifm->ifm_media) &
1732 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1733 				if (bootverbose) {
1734 					if_printf(ifp, "Flow control is not "
1735 					    "allowed for half-duplex\n");
1736 				}
1737 				return EINVAL;
1738 			}
1739 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1740 		}
1741 		adapter->hw.mac.autoneg = FALSE;
1742 		adapter->hw.phy.autoneg_advertised = 0;
1743 		break;
1744 
1745 	case IFM_10_T:
1746 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1747 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1748 		} else {
1749 			if (IFM_OPTIONS(ifm->ifm_media) &
1750 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1751 				if (bootverbose) {
1752 					if_printf(ifp, "Flow control is not "
1753 					    "allowed for half-duplex\n");
1754 				}
1755 				return EINVAL;
1756 			}
1757 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1758 		}
1759 		adapter->hw.mac.autoneg = FALSE;
1760 		adapter->hw.phy.autoneg_advertised = 0;
1761 		break;
1762 
1763 	default:
1764 		if (bootverbose) {
1765 			if_printf(ifp, "Unsupported media type %d\n",
1766 			    IFM_SUBTYPE(ifm->ifm_media));
1767 		}
1768 		return EINVAL;
1769 	}
1770 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1771 
1772 	if (ifp->if_flags & IFF_RUNNING)
1773 		em_init(adapter);
1774 
1775 	return (0);
1776 }
1777 
1778 static int
1779 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1780     int *segs_used, int *idx)
1781 {
1782 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1783 	bus_dmamap_t map;
1784 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1785 	struct e1000_tx_desc *ctxd = NULL;
1786 	struct mbuf *m_head = *m_headp;
1787 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1788 	int maxsegs, nsegs, i, j, first, last = 0, error;
1789 
1790 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1791 		error = em_tso_pullup(adapter, m_headp);
1792 		if (error)
1793 			return error;
1794 		m_head = *m_headp;
1795 	}
1796 
1797 	txd_upper = txd_lower = 0;
1798 	txd_used = 0;
1799 
1800 	/*
1801 	 * Capture the first descriptor index, this descriptor
1802 	 * will have the index of the EOP which is the only one
1803 	 * that now gets a DONE bit writeback.
1804 	 */
1805 	first = adapter->next_avail_tx_desc;
1806 	tx_buffer = &adapter->tx_buffer_area[first];
1807 	tx_buffer_mapped = tx_buffer;
1808 	map = tx_buffer->map;
1809 
1810 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1811 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1812 		("not enough spare TX desc"));
1813 	if (adapter->pcix_82544) {
1814 		/* Half it; see the comment in em_attach() */
1815 		maxsegs >>= 1;
1816 	}
1817 	if (maxsegs > EM_MAX_SCATTER)
1818 		maxsegs = EM_MAX_SCATTER;
1819 
1820 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1821 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1822 	if (error) {
1823 		if (error == ENOBUFS)
1824 			adapter->mbuf_alloc_failed++;
1825 		else
1826 			adapter->no_tx_dma_setup++;
1827 
1828 		m_freem(*m_headp);
1829 		*m_headp = NULL;
1830 		return error;
1831 	}
1832         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1833 
1834 	m_head = *m_headp;
1835 	adapter->tx_nsegs += nsegs;
1836 	*segs_used += nsegs;
1837 
1838 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1839 		/* TSO will consume one TX desc */
1840 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1841 		adapter->tx_nsegs += i;
1842 		*segs_used += i;
1843 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1844 		/* TX csum offloading will consume one TX desc */
1845 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1846 		adapter->tx_nsegs += i;
1847 		*segs_used += i;
1848 	}
1849 
1850         /* Handle VLAN tag */
1851 	if (m_head->m_flags & M_VLANTAG) {
1852 		/* Set the vlan id. */
1853 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1854 		/* Tell hardware to add tag */
1855 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1856 	}
1857 
1858 	i = adapter->next_avail_tx_desc;
1859 
1860 	/* Set up our transmit descriptors */
1861 	for (j = 0; j < nsegs; j++) {
1862 		/* If adapter is 82544 and on PCIX bus */
1863 		if(adapter->pcix_82544) {
1864 			DESC_ARRAY desc_array;
1865 			uint32_t array_elements, counter;
1866 
1867 			/*
1868 			 * Check the Address and Length combination and
1869 			 * split the data accordingly
1870 			 */
1871 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1872 						segs[j].ds_len, &desc_array);
1873 			for (counter = 0; counter < array_elements; counter++) {
1874 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1875 
1876 				tx_buffer = &adapter->tx_buffer_area[i];
1877 				ctxd = &adapter->tx_desc_base[i];
1878 
1879 				ctxd->buffer_addr = htole64(
1880 				    desc_array.descriptor[counter].address);
1881 				ctxd->lower.data = htole32(
1882 				    E1000_TXD_CMD_IFCS | txd_lower |
1883 				    desc_array.descriptor[counter].length);
1884 				ctxd->upper.data = htole32(txd_upper);
1885 
1886 				last = i;
1887 				if (++i == adapter->num_tx_desc)
1888 					i = 0;
1889 
1890 				txd_used++;
1891                         }
1892 		} else {
1893 			tx_buffer = &adapter->tx_buffer_area[i];
1894 			ctxd = &adapter->tx_desc_base[i];
1895 
1896 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1897 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1898 						   txd_lower | segs[j].ds_len);
1899 			ctxd->upper.data = htole32(txd_upper);
1900 
1901 			last = i;
1902 			if (++i == adapter->num_tx_desc)
1903 				i = 0;
1904 		}
1905 	}
1906 
1907 	adapter->next_avail_tx_desc = i;
1908 	if (adapter->pcix_82544) {
1909 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1910 		adapter->num_tx_desc_avail -= txd_used;
1911 	} else {
1912 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1913 		adapter->num_tx_desc_avail -= nsegs;
1914 	}
1915 	adapter->tx_nmbuf++;
1916 
1917 	tx_buffer->m_head = m_head;
1918 	tx_buffer_mapped->map = tx_buffer->map;
1919 	tx_buffer->map = map;
1920 
1921 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1922 		adapter->tx_nsegs = 0;
1923 
1924 		/*
1925 		 * Report Status (RS) is turned on
1926 		 * every tx_int_nsegs descriptors.
1927 		 */
1928 		cmd = E1000_TXD_CMD_RS;
1929 
1930 		/*
1931 		 * Keep track of the descriptor, which will
1932 		 * be written back by hardware.
1933 		 */
1934 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1935 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1936 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1937 	}
1938 
1939 	/*
1940 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1941 	 */
1942 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1943 
1944 	if (adapter->hw.mac.type == e1000_82547) {
1945 		/*
1946 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1947 		 * E1000 that this frame is available to transmit.
1948 		 */
1949 		if (adapter->link_duplex == HALF_DUPLEX) {
1950 			em_82547_move_tail_serialized(adapter);
1951 		} else {
1952 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1953 			em_82547_update_fifo_head(adapter,
1954 			    m_head->m_pkthdr.len);
1955 		}
1956 	} else {
1957 		/*
1958 		 * Defer TDT updating, until enough descriptors are setup
1959 		 */
1960 		*idx = i;
1961 	}
1962 	return (0);
1963 }
1964 
1965 /*
1966  * 82547 workaround to avoid controller hang in half-duplex environment.
1967  * The workaround is to avoid queuing a large packet that would span
1968  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1969  * in this case.  We do that only when FIFO is quiescent.
1970  */
1971 static void
1972 em_82547_move_tail_serialized(struct adapter *adapter)
1973 {
1974 	struct e1000_tx_desc *tx_desc;
1975 	uint16_t hw_tdt, sw_tdt, length = 0;
1976 	bool eop = 0;
1977 
1978 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1979 
1980 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1981 	sw_tdt = adapter->next_avail_tx_desc;
1982 
1983 	while (hw_tdt != sw_tdt) {
1984 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1985 		length += tx_desc->lower.flags.length;
1986 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1987 		if (++hw_tdt == adapter->num_tx_desc)
1988 			hw_tdt = 0;
1989 
1990 		if (eop) {
1991 			if (em_82547_fifo_workaround(adapter, length)) {
1992 				adapter->tx_fifo_wrk_cnt++;
1993 				callout_reset(&adapter->tx_fifo_timer, 1,
1994 					em_82547_move_tail, adapter);
1995 				break;
1996 			}
1997 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1998 			em_82547_update_fifo_head(adapter, length);
1999 			length = 0;
2000 		}
2001 	}
2002 }
2003 
2004 static void
2005 em_82547_move_tail(void *xsc)
2006 {
2007 	struct adapter *adapter = xsc;
2008 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2009 
2010 	lwkt_serialize_enter(ifp->if_serializer);
2011 	em_82547_move_tail_serialized(adapter);
2012 	lwkt_serialize_exit(ifp->if_serializer);
2013 }
2014 
2015 static int
2016 em_82547_fifo_workaround(struct adapter *adapter, int len)
2017 {
2018 	int fifo_space, fifo_pkt_len;
2019 
2020 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2021 
2022 	if (adapter->link_duplex == HALF_DUPLEX) {
2023 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2024 
2025 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
2026 			if (em_82547_tx_fifo_reset(adapter))
2027 				return (0);
2028 			else
2029 				return (1);
2030 		}
2031 	}
2032 	return (0);
2033 }
2034 
2035 static void
2036 em_82547_update_fifo_head(struct adapter *adapter, int len)
2037 {
2038 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2039 
2040 	/* tx_fifo_head is always 16 byte aligned */
2041 	adapter->tx_fifo_head += fifo_pkt_len;
2042 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2043 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
2044 }
2045 
2046 static int
2047 em_82547_tx_fifo_reset(struct adapter *adapter)
2048 {
2049 	uint32_t tctl;
2050 
2051 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
2052 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
2053 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
2054 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
2055 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
2056 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
2057 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
2058 		/* Disable TX unit */
2059 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2060 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
2061 		    tctl & ~E1000_TCTL_EN);
2062 
2063 		/* Reset FIFO pointers */
2064 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
2065 		    adapter->tx_head_addr);
2066 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
2067 		    adapter->tx_head_addr);
2068 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
2069 		    adapter->tx_head_addr);
2070 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
2071 		    adapter->tx_head_addr);
2072 
2073 		/* Re-enable TX unit */
2074 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2075 		E1000_WRITE_FLUSH(&adapter->hw);
2076 
2077 		adapter->tx_fifo_head = 0;
2078 		adapter->tx_fifo_reset_cnt++;
2079 
2080 		return (TRUE);
2081 	} else {
2082 		return (FALSE);
2083 	}
2084 }
2085 
2086 static void
2087 em_set_promisc(struct adapter *adapter)
2088 {
2089 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2090 	uint32_t reg_rctl;
2091 
2092 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2093 
2094 	if (ifp->if_flags & IFF_PROMISC) {
2095 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2096 		/* Turn this on if you want to see bad packets */
2097 		if (em_debug_sbp)
2098 			reg_rctl |= E1000_RCTL_SBP;
2099 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2100 	} else if (ifp->if_flags & IFF_ALLMULTI) {
2101 		reg_rctl |= E1000_RCTL_MPE;
2102 		reg_rctl &= ~E1000_RCTL_UPE;
2103 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2104 	}
2105 }
2106 
2107 static void
2108 em_disable_promisc(struct adapter *adapter)
2109 {
2110 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2111 	uint32_t reg_rctl;
2112 	int mcnt = 0;
2113 
2114 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2115 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
2116 
2117 	if (ifp->if_flags & IFF_ALLMULTI) {
2118 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2119 	} else {
2120 		const struct ifmultiaddr *ifma;
2121 
2122 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2123 			if (ifma->ifma_addr->sa_family != AF_LINK)
2124 				continue;
2125 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2126 				break;
2127 			mcnt++;
2128 		}
2129 	}
2130 	/* Don't disable if in MAX groups */
2131 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2132 		reg_rctl &= ~E1000_RCTL_MPE;
2133 
2134 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2135 }
2136 
2137 static void
2138 em_set_multi(struct adapter *adapter)
2139 {
2140 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2141 	struct ifmultiaddr *ifma;
2142 	uint32_t reg_rctl = 0;
2143 	uint8_t *mta;
2144 	int mcnt = 0;
2145 
2146 	mta = adapter->mta;
2147 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2148 
2149 	if (adapter->hw.mac.type == e1000_82542 &&
2150 	    adapter->hw.revision_id == E1000_REVISION_2) {
2151 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2152 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2153 			e1000_pci_clear_mwi(&adapter->hw);
2154 		reg_rctl |= E1000_RCTL_RST;
2155 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2156 		msec_delay(5);
2157 	}
2158 
2159 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2160 		if (ifma->ifma_addr->sa_family != AF_LINK)
2161 			continue;
2162 
2163 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2164 			break;
2165 
2166 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2167 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2168 		mcnt++;
2169 	}
2170 
2171 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2172 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2173 		reg_rctl |= E1000_RCTL_MPE;
2174 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2175 	} else {
2176 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2177 	}
2178 
2179 	if (adapter->hw.mac.type == e1000_82542 &&
2180 	    adapter->hw.revision_id == E1000_REVISION_2) {
2181 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2182 		reg_rctl &= ~E1000_RCTL_RST;
2183 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2184 		msec_delay(5);
2185 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2186 			e1000_pci_set_mwi(&adapter->hw);
2187 	}
2188 }
2189 
2190 /*
2191  * This routine checks for link status and updates statistics.
2192  */
2193 static void
2194 em_timer(void *xsc)
2195 {
2196 	struct adapter *adapter = xsc;
2197 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2198 
2199 	lwkt_serialize_enter(ifp->if_serializer);
2200 
2201 	em_update_link_status(adapter);
2202 	em_update_stats(adapter);
2203 
2204 	/* Reset LAA into RAR[0] on 82571 */
2205 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2206 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2207 
2208 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2209 		em_print_hw_stats(adapter);
2210 
2211 	em_smartspeed(adapter);
2212 
2213 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2214 
2215 	lwkt_serialize_exit(ifp->if_serializer);
2216 }
2217 
2218 static void
2219 em_update_link_status(struct adapter *adapter)
2220 {
2221 	struct e1000_hw *hw = &adapter->hw;
2222 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2223 	device_t dev = adapter->dev;
2224 	uint32_t link_check = 0;
2225 
2226 	/* Get the cached link value or read phy for real */
2227 	switch (hw->phy.media_type) {
2228 	case e1000_media_type_copper:
2229 		if (hw->mac.get_link_status) {
2230 			if (hw->mac.type >= e1000_pch_spt)
2231 				msec_delay(50);
2232 			/* Do the work to read phy */
2233 			e1000_check_for_link(hw);
2234 			link_check = !hw->mac.get_link_status;
2235 			if (link_check) /* ESB2 fix */
2236 				e1000_cfg_on_link_up(hw);
2237 		} else {
2238 			link_check = TRUE;
2239 		}
2240 		break;
2241 
2242 	case e1000_media_type_fiber:
2243 		e1000_check_for_link(hw);
2244 		link_check =
2245 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2246 		break;
2247 
2248 	case e1000_media_type_internal_serdes:
2249 		e1000_check_for_link(hw);
2250 		link_check = adapter->hw.mac.serdes_has_link;
2251 		break;
2252 
2253 	case e1000_media_type_unknown:
2254 	default:
2255 		break;
2256 	}
2257 
2258 	/* Now check for a transition */
2259 	if (link_check && adapter->link_active == 0) {
2260 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2261 		    &adapter->link_duplex);
2262 
2263 		/*
2264 		 * Check if we should enable/disable SPEED_MODE bit on
2265 		 * 82571/82572
2266 		 */
2267 		if (adapter->link_speed != SPEED_1000 &&
2268 		    (hw->mac.type == e1000_82571 ||
2269 		     hw->mac.type == e1000_82572)) {
2270 			int tarc0;
2271 
2272 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2273 			tarc0 &= ~TARC_SPEED_MODE_BIT;
2274 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2275 		}
2276 		if (bootverbose) {
2277 			char flowctrl[IFM_ETH_FC_STRLEN];
2278 
2279 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2280 			    sizeof(flowctrl));
2281 			device_printf(dev, "Link is up %d Mbps %s, "
2282 			    "Flow control: %s\n",
2283 			    adapter->link_speed,
2284 			    (adapter->link_duplex == FULL_DUPLEX) ?
2285 			    "Full Duplex" : "Half Duplex",
2286 			    flowctrl);
2287 		}
2288 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2289 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2290 		adapter->link_active = 1;
2291 		adapter->smartspeed = 0;
2292 		ifp->if_baudrate = adapter->link_speed * 1000000;
2293 		ifp->if_link_state = LINK_STATE_UP;
2294 		if_link_state_change(ifp);
2295 	} else if (!link_check && adapter->link_active == 1) {
2296 		ifp->if_baudrate = adapter->link_speed = 0;
2297 		adapter->link_duplex = 0;
2298 		if (bootverbose)
2299 			device_printf(dev, "Link is Down\n");
2300 		adapter->link_active = 0;
2301 #if 0
2302 		/* Link down, disable watchdog */
2303 		if->if_timer = 0;
2304 #endif
2305 		ifp->if_link_state = LINK_STATE_DOWN;
2306 		if_link_state_change(ifp);
2307 	}
2308 }
2309 
2310 static void
2311 em_stop(struct adapter *adapter)
2312 {
2313 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2314 	int i;
2315 
2316 	ASSERT_SERIALIZED(ifp->if_serializer);
2317 
2318 	em_disable_intr(adapter);
2319 
2320 	callout_stop(&adapter->timer);
2321 	callout_stop(&adapter->tx_fifo_timer);
2322 
2323 	ifp->if_flags &= ~IFF_RUNNING;
2324 	ifq_clr_oactive(&ifp->if_snd);
2325 	ifp->if_timer = 0;
2326 	adapter->tx_running = 0;
2327 	callout_stop(&adapter->tx_gc_timer);
2328 
2329 	/* I219 needs some special flushing to avoid hangs */
2330 	if (adapter->hw.mac.type >= e1000_pch_spt)
2331 		em_flush_txrx_ring(adapter);
2332 
2333 	e1000_reset_hw(&adapter->hw);
2334 	if (adapter->hw.mac.type >= e1000_82544)
2335 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2336 
2337 	for (i = 0; i < adapter->num_tx_desc; i++) {
2338 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2339 
2340 		if (tx_buffer->m_head != NULL)
2341 			em_free_txbuffer(adapter, tx_buffer);
2342 	}
2343 
2344 	for (i = 0; i < adapter->num_rx_desc; i++) {
2345 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2346 
2347 		if (rx_buffer->m_head != NULL) {
2348 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2349 			m_freem(rx_buffer->m_head);
2350 			rx_buffer->m_head = NULL;
2351 		}
2352 	}
2353 
2354 	if (adapter->fmp != NULL)
2355 		m_freem(adapter->fmp);
2356 	adapter->fmp = NULL;
2357 	adapter->lmp = NULL;
2358 
2359 	adapter->csum_flags = 0;
2360 	adapter->csum_lhlen = 0;
2361 	adapter->csum_iphlen = 0;
2362 	adapter->csum_thlen = 0;
2363 	adapter->csum_mss = 0;
2364 	adapter->csum_pktlen = 0;
2365 
2366 	adapter->tx_dd_head = 0;
2367 	adapter->tx_dd_tail = 0;
2368 	adapter->tx_nsegs = 0;
2369 }
2370 
2371 static int
2372 em_get_hw_info(struct adapter *adapter)
2373 {
2374 	device_t dev = adapter->dev;
2375 
2376 	/* Save off the information about this board */
2377 	adapter->hw.vendor_id = pci_get_vendor(dev);
2378 	adapter->hw.device_id = pci_get_device(dev);
2379 	adapter->hw.revision_id = pci_get_revid(dev);
2380 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2381 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2382 
2383 	/* Do Shared Code Init and Setup */
2384 	if (e1000_set_mac_type(&adapter->hw))
2385 		return ENXIO;
2386 	return 0;
2387 }
2388 
2389 static int
2390 em_alloc_pci_res(struct adapter *adapter)
2391 {
2392 	device_t dev = adapter->dev;
2393 	u_int intr_flags;
2394 	int val, rid, msi_enable;
2395 
2396 	/* Enable bus mastering */
2397 	pci_enable_busmaster(dev);
2398 
2399 	adapter->memory_rid = EM_BAR_MEM;
2400 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2401 				&adapter->memory_rid, RF_ACTIVE);
2402 	if (adapter->memory == NULL) {
2403 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2404 		return (ENXIO);
2405 	}
2406 	adapter->osdep.mem_bus_space_tag =
2407 	    rman_get_bustag(adapter->memory);
2408 	adapter->osdep.mem_bus_space_handle =
2409 	    rman_get_bushandle(adapter->memory);
2410 
2411 	/* XXX This is quite goofy, it is not actually used */
2412 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2413 
2414 	/* Only older adapters use IO mapping */
2415 	if (adapter->hw.mac.type > e1000_82543 &&
2416 	    adapter->hw.mac.type < e1000_82571) {
2417 		/* Figure our where our IO BAR is ? */
2418 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2419 			val = pci_read_config(dev, rid, 4);
2420 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2421 				adapter->io_rid = rid;
2422 				break;
2423 			}
2424 			rid += 4;
2425 			/* check for 64bit BAR */
2426 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2427 				rid += 4;
2428 		}
2429 		if (rid >= PCIR_CARDBUSCIS) {
2430 			device_printf(dev, "Unable to locate IO BAR\n");
2431 			return (ENXIO);
2432 		}
2433 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2434 					&adapter->io_rid, RF_ACTIVE);
2435 		if (adapter->ioport == NULL) {
2436 			device_printf(dev, "Unable to allocate bus resource: "
2437 			    "ioport\n");
2438 			return (ENXIO);
2439 		}
2440 		adapter->hw.io_base = 0;
2441 		adapter->osdep.io_bus_space_tag =
2442 		    rman_get_bustag(adapter->ioport);
2443 		adapter->osdep.io_bus_space_handle =
2444 		    rman_get_bushandle(adapter->ioport);
2445 	}
2446 
2447 	/*
2448 	 * Don't enable MSI-X on 82574, see:
2449 	 * 82574 specification update errata #15
2450 	 *
2451 	 * Don't enable MSI on PCI/PCI-X chips, see:
2452 	 * 82540 specification update errata #6
2453 	 * 82545 specification update errata #4
2454 	 *
2455 	 * Don't enable MSI on 82571/82572, see:
2456 	 * 82571/82572 specification update errata #63
2457 	 */
2458 	msi_enable = em_msi_enable;
2459 	if (msi_enable &&
2460 	    ((adapter->flags & EM_FLAG_GEN2) == 0 ||
2461 	     adapter->hw.mac.type == e1000_82571 ||
2462 	     adapter->hw.mac.type == e1000_82572))
2463 		msi_enable = 0;
2464 again:
2465 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2466 	    &adapter->intr_rid, &intr_flags);
2467 
2468 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2469 		int unshared;
2470 
2471 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2472 		if (!unshared) {
2473 			adapter->flags |= EM_FLAG_SHARED_INTR;
2474 			if (bootverbose)
2475 				device_printf(dev, "IRQ shared\n");
2476 		} else {
2477 			intr_flags &= ~RF_SHAREABLE;
2478 			if (bootverbose)
2479 				device_printf(dev, "IRQ unshared\n");
2480 		}
2481 	}
2482 
2483 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2484 	    &adapter->intr_rid, intr_flags);
2485 	if (adapter->intr_res == NULL) {
2486 		device_printf(dev, "Unable to allocate bus resource: %s\n",
2487 		    adapter->intr_type == PCI_INTR_TYPE_MSI ?
2488 		    "MSI" : "legacy intr");
2489 		if (!msi_enable) {
2490 			/* Retry with MSI. */
2491 			msi_enable = 1;
2492 			adapter->flags &= ~EM_FLAG_SHARED_INTR;
2493 			goto again;
2494 		}
2495 		return (ENXIO);
2496 	}
2497 
2498 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2499 	adapter->hw.back = &adapter->osdep;
2500 	return (0);
2501 }
2502 
2503 static void
2504 em_free_pci_res(struct adapter *adapter)
2505 {
2506 	device_t dev = adapter->dev;
2507 
2508 	if (adapter->intr_res != NULL) {
2509 		bus_release_resource(dev, SYS_RES_IRQ,
2510 		    adapter->intr_rid, adapter->intr_res);
2511 	}
2512 
2513 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2514 		pci_release_msi(dev);
2515 
2516 	if (adapter->memory != NULL) {
2517 		bus_release_resource(dev, SYS_RES_MEMORY,
2518 		    adapter->memory_rid, adapter->memory);
2519 	}
2520 
2521 	if (adapter->flash != NULL) {
2522 		bus_release_resource(dev, SYS_RES_MEMORY,
2523 		    adapter->flash_rid, adapter->flash);
2524 	}
2525 
2526 	if (adapter->ioport != NULL) {
2527 		bus_release_resource(dev, SYS_RES_IOPORT,
2528 		    adapter->io_rid, adapter->ioport);
2529 	}
2530 }
2531 
2532 static int
2533 em_reset(struct adapter *adapter)
2534 {
2535 	device_t dev = adapter->dev;
2536 	uint16_t rx_buffer_size;
2537 	uint32_t pba;
2538 
2539 	/* When hardware is reset, fifo_head is also reset */
2540 	adapter->tx_fifo_head = 0;
2541 
2542 	/* Set up smart power down as default off on newer adapters. */
2543 	if (!em_smart_pwr_down &&
2544 	    (adapter->hw.mac.type == e1000_82571 ||
2545 	     adapter->hw.mac.type == e1000_82572)) {
2546 		uint16_t phy_tmp = 0;
2547 
2548 		/* Speed up time to link by disabling smart power down. */
2549 		e1000_read_phy_reg(&adapter->hw,
2550 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2551 		phy_tmp &= ~IGP02E1000_PM_SPD;
2552 		e1000_write_phy_reg(&adapter->hw,
2553 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2554 	}
2555 
2556 	/*
2557 	 * Packet Buffer Allocation (PBA)
2558 	 * Writing PBA sets the receive portion of the buffer
2559 	 * the remainder is used for the transmit buffer.
2560 	 *
2561 	 * Devices before the 82547 had a Packet Buffer of 64K.
2562 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2563 	 * After the 82547 the buffer was reduced to 40K.
2564 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2565 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2566 	 */
2567 	switch (adapter->hw.mac.type) {
2568 	case e1000_82547:
2569 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2570 		if (adapter->hw.mac.max_frame_size > 8192)
2571 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2572 		else
2573 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2574 		adapter->tx_fifo_head = 0;
2575 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2576 		adapter->tx_fifo_size =
2577 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2578 		break;
2579 
2580 	/* Total Packet Buffer on these is 48K */
2581 	case e1000_82571:
2582 	case e1000_82572:
2583 	case e1000_80003es2lan:
2584 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2585 		break;
2586 
2587 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2588 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2589 		break;
2590 
2591 	case e1000_82574:
2592 	case e1000_82583:
2593 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2594 		break;
2595 
2596 	case e1000_ich8lan:
2597 		pba = E1000_PBA_8K;
2598 		break;
2599 
2600 	case e1000_ich9lan:
2601 	case e1000_ich10lan:
2602 #define E1000_PBA_10K	0x000A
2603 		pba = E1000_PBA_10K;
2604 		break;
2605 
2606 	case e1000_pchlan:
2607 	case e1000_pch2lan:
2608 	case e1000_pch_lpt:
2609 	case e1000_pch_spt:
2610 	case e1000_pch_cnp:
2611 		pba = E1000_PBA_26K;
2612 		break;
2613 
2614 	default:
2615 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2616 		if (adapter->hw.mac.max_frame_size > 8192)
2617 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2618 		else
2619 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2620 	}
2621 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2622 
2623 	/*
2624 	 * These parameters control the automatic generation (Tx) and
2625 	 * response (Rx) to Ethernet PAUSE frames.
2626 	 * - High water mark should allow for at least two frames to be
2627 	 *   received after sending an XOFF.
2628 	 * - Low water mark works best when it is very near the high water mark.
2629 	 *   This allows the receiver to restart by sending XON when it has
2630 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2631 	 *   restart after one full frame is pulled from the buffer. There
2632 	 *   could be several smaller frames in the buffer and if so they will
2633 	 *   not trigger the XON until their total number reduces the buffer
2634 	 *   by 1500.
2635 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2636 	 */
2637 	rx_buffer_size =
2638 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2639 
2640 	adapter->hw.fc.high_water = rx_buffer_size -
2641 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2642 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2643 
2644 	if (adapter->hw.mac.type == e1000_80003es2lan)
2645 		adapter->hw.fc.pause_time = 0xFFFF;
2646 	else
2647 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2648 
2649 	adapter->hw.fc.send_xon = TRUE;
2650 
2651 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2652 
2653 	/*
2654 	 * Device specific overrides/settings
2655 	 */
2656 	switch (adapter->hw.mac.type) {
2657 	case e1000_pchlan:
2658 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2659 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2660 		    ("unsupported flow control on PCH %d",
2661 		     adapter->hw.fc.requested_mode));
2662 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2663 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2664 			adapter->hw.fc.high_water = 0x3500;
2665 			adapter->hw.fc.low_water = 0x1500;
2666 		} else {
2667 			adapter->hw.fc.high_water = 0x5000;
2668 			adapter->hw.fc.low_water = 0x3000;
2669 		}
2670 		adapter->hw.fc.refresh_time = 0x1000;
2671 		break;
2672 
2673 	case e1000_pch2lan:
2674 	case e1000_pch_lpt:
2675 	case e1000_pch_spt:
2676 	case e1000_pch_cnp:
2677 		adapter->hw.fc.high_water = 0x5C20;
2678 		adapter->hw.fc.low_water = 0x5048;
2679 		adapter->hw.fc.pause_time = 0x0650;
2680 		adapter->hw.fc.refresh_time = 0x0400;
2681 		/* Jumbos need adjusted PBA */
2682 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2683 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2684 		else
2685 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2686 		break;
2687 
2688 	case e1000_ich9lan:
2689 	case e1000_ich10lan:
2690 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2691 			adapter->hw.fc.high_water = 0x2800;
2692 			adapter->hw.fc.low_water =
2693 			    adapter->hw.fc.high_water - 8;
2694 			break;
2695 		}
2696 		/* FALL THROUGH */
2697 	default:
2698 		if (adapter->hw.mac.type == e1000_80003es2lan)
2699 			adapter->hw.fc.pause_time = 0xFFFF;
2700 		break;
2701 	}
2702 
2703 	/* I219 needs some special flushing to avoid hangs */
2704 	if (adapter->hw.mac.type >= e1000_pch_spt)
2705 		em_flush_txrx_ring(adapter);
2706 
2707 	/* Issue a global reset */
2708 	e1000_reset_hw(&adapter->hw);
2709 	if (adapter->hw.mac.type >= e1000_82544)
2710 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2711 	em_disable_aspm(adapter);
2712 
2713 	if (e1000_init_hw(&adapter->hw) < 0) {
2714 		device_printf(dev, "Hardware Initialization Failed\n");
2715 		return (EIO);
2716 	}
2717 
2718 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2719 	e1000_get_phy_info(&adapter->hw);
2720 	e1000_check_for_link(&adapter->hw);
2721 
2722 	return (0);
2723 }
2724 
2725 static void
2726 em_setup_ifp(struct adapter *adapter)
2727 {
2728 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2729 
2730 	if_initname(ifp, device_get_name(adapter->dev),
2731 		    device_get_unit(adapter->dev));
2732 	ifp->if_softc = adapter;
2733 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2734 	ifp->if_init =  em_init;
2735 	ifp->if_ioctl = em_ioctl;
2736 	ifp->if_start = em_start;
2737 #ifdef IFPOLL_ENABLE
2738 	ifp->if_npoll = em_npoll;
2739 #endif
2740 	ifp->if_watchdog = em_watchdog;
2741 	ifp->if_nmbclusters = adapter->num_rx_desc;
2742 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2743 	ifq_set_ready(&ifp->if_snd);
2744 
2745 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2746 
2747 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2748 	if (adapter->hw.mac.type >= e1000_82543)
2749 		ifp->if_capabilities |= IFCAP_HWCSUM;
2750 	if (adapter->flags & EM_FLAG_TSO)
2751 		ifp->if_capabilities |= IFCAP_TSO;
2752 	ifp->if_capenable = ifp->if_capabilities;
2753 
2754 	if (ifp->if_capenable & IFCAP_TXCSUM)
2755 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2756 	if (ifp->if_capenable & IFCAP_TSO)
2757 		ifp->if_hwassist |= CSUM_TSO;
2758 
2759 	/*
2760 	 * Tell the upper layer(s) we support long frames.
2761 	 */
2762 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2763 
2764 	/*
2765 	 * Specify the media types supported by this adapter and register
2766 	 * callbacks to update media and link information
2767 	 */
2768 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2769 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2770 		u_char fiber_type = IFM_1000_SX; /* default type */
2771 
2772 		if (adapter->hw.mac.type == e1000_82545)
2773 			fiber_type = IFM_1000_LX;
2774 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2775 			    0, NULL);
2776 	} else {
2777 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2778 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2779 			    0, NULL);
2780 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2781 			    0, NULL);
2782 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2783 			    0, NULL);
2784 		if (adapter->hw.phy.type != e1000_phy_ife) {
2785 			ifmedia_add(&adapter->media,
2786 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2787 		}
2788 	}
2789 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2790 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2791 	    adapter->ifm_flowctrl);
2792 }
2793 
2794 
2795 /*
2796  * Workaround for SmartSpeed on 82541 and 82547 controllers
2797  */
2798 static void
2799 em_smartspeed(struct adapter *adapter)
2800 {
2801 	uint16_t phy_tmp;
2802 
2803 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2804 	    adapter->hw.mac.autoneg == 0 ||
2805 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2806 		return;
2807 
2808 	if (adapter->smartspeed == 0) {
2809 		/*
2810 		 * If Master/Slave config fault is asserted twice,
2811 		 * we assume back-to-back
2812 		 */
2813 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2814 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2815 			return;
2816 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2817 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2818 			e1000_read_phy_reg(&adapter->hw,
2819 			    PHY_1000T_CTRL, &phy_tmp);
2820 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2821 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2822 				e1000_write_phy_reg(&adapter->hw,
2823 				    PHY_1000T_CTRL, phy_tmp);
2824 				adapter->smartspeed++;
2825 				if (adapter->hw.mac.autoneg &&
2826 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2827 				    !e1000_read_phy_reg(&adapter->hw,
2828 				     PHY_CONTROL, &phy_tmp)) {
2829 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2830 						   MII_CR_RESTART_AUTO_NEG;
2831 					e1000_write_phy_reg(&adapter->hw,
2832 					    PHY_CONTROL, phy_tmp);
2833 				}
2834 			}
2835 		}
2836 		return;
2837 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2838 		/* If still no link, perhaps using 2/3 pair cable */
2839 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2840 		phy_tmp |= CR_1000T_MS_ENABLE;
2841 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2842 		if (adapter->hw.mac.autoneg &&
2843 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2844 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2845 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2846 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2847 		}
2848 	}
2849 
2850 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2851 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2852 		adapter->smartspeed = 0;
2853 }
2854 
2855 static int
2856 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2857 	      struct em_dma_alloc *dma)
2858 {
2859 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2860 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2861 				&dma->dma_tag, &dma->dma_map,
2862 				&dma->dma_paddr);
2863 	if (dma->dma_vaddr == NULL)
2864 		return ENOMEM;
2865 	else
2866 		return 0;
2867 }
2868 
2869 static void
2870 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2871 {
2872 	if (dma->dma_tag == NULL)
2873 		return;
2874 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2875 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2876 	bus_dma_tag_destroy(dma->dma_tag);
2877 }
2878 
2879 static int
2880 em_create_tx_ring(struct adapter *adapter)
2881 {
2882 	device_t dev = adapter->dev;
2883 	struct em_buffer *tx_buffer;
2884 	int error, i;
2885 
2886 	adapter->tx_buffer_area =
2887 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2888 			M_DEVBUF, M_WAITOK | M_ZERO);
2889 
2890 	/*
2891 	 * Create DMA tags for tx buffers
2892 	 */
2893 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2894 			1, 0,			/* alignment, bounds */
2895 			BUS_SPACE_MAXADDR,	/* lowaddr */
2896 			BUS_SPACE_MAXADDR,	/* highaddr */
2897 			NULL, NULL,		/* filter, filterarg */
2898 			EM_TSO_SIZE,		/* maxsize */
2899 			EM_MAX_SCATTER,		/* nsegments */
2900 			PAGE_SIZE,		/* maxsegsize */
2901 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2902 			BUS_DMA_ONEBPAGE,	/* flags */
2903 			&adapter->txtag);
2904 	if (error) {
2905 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2906 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2907 		adapter->tx_buffer_area = NULL;
2908 		return error;
2909 	}
2910 
2911 	/*
2912 	 * Create DMA maps for tx buffers
2913 	 */
2914 	for (i = 0; i < adapter->num_tx_desc; i++) {
2915 		tx_buffer = &adapter->tx_buffer_area[i];
2916 
2917 		error = bus_dmamap_create(adapter->txtag,
2918 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2919 					  &tx_buffer->map);
2920 		if (error) {
2921 			device_printf(dev, "Unable to create TX DMA map\n");
2922 			em_destroy_tx_ring(adapter, i);
2923 			return error;
2924 		}
2925 	}
2926 	return (0);
2927 }
2928 
2929 static void
2930 em_init_tx_ring(struct adapter *adapter)
2931 {
2932 	/* Clear the old ring contents */
2933 	bzero(adapter->tx_desc_base,
2934 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2935 
2936 	/* Reset state */
2937 	adapter->next_avail_tx_desc = 0;
2938 	adapter->next_tx_to_clean = 0;
2939 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2940 	adapter->tx_nmbuf = 0;
2941 	adapter->tx_running = 0;
2942 }
2943 
2944 static void
2945 em_init_tx_unit(struct adapter *adapter)
2946 {
2947 	uint32_t tctl, tarc, tipg = 0;
2948 	uint64_t bus_addr;
2949 
2950 	/* Setup the Base and Length of the Tx Descriptor Ring */
2951 	bus_addr = adapter->txdma.dma_paddr;
2952 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2953 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2954 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2955 	    (uint32_t)(bus_addr >> 32));
2956 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2957 	    (uint32_t)bus_addr);
2958 	/* Setup the HW Tx Head and Tail descriptor pointers */
2959 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2960 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2961 	if (adapter->flags & EM_FLAG_GEN2) {
2962 		uint32_t txdctl = 0;
2963 
2964 		txdctl |= 0x1f;		/* PTHRESH */
2965 		txdctl |= 1 << 8;	/* HTHRESH */
2966 		txdctl |= 1 << 16;	/* WTHRESH */
2967 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2968 		txdctl |= E1000_TXDCTL_GRAN;
2969 		txdctl |= 1 << 25;	/* LWTHRESH */
2970 
2971 		E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(0), txdctl);
2972 	}
2973 
2974 	/* Set the default values for the Tx Inter Packet Gap timer */
2975 	switch (adapter->hw.mac.type) {
2976 	case e1000_82542:
2977 		tipg = DEFAULT_82542_TIPG_IPGT;
2978 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2979 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2980 		break;
2981 
2982 	case e1000_80003es2lan:
2983 		tipg = DEFAULT_82543_TIPG_IPGR1;
2984 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2985 		    E1000_TIPG_IPGR2_SHIFT;
2986 		break;
2987 
2988 	default:
2989 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2990 		    adapter->hw.phy.media_type ==
2991 		    e1000_media_type_internal_serdes)
2992 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2993 		else
2994 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2995 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2996 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2997 		break;
2998 	}
2999 
3000 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3001 
3002 	/* NOTE: 0 is not allowed for TIDV */
3003 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
3004 	if(adapter->hw.mac.type >= e1000_82540)
3005 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
3006 
3007 	if (adapter->hw.mac.type == e1000_82571 ||
3008 	    adapter->hw.mac.type == e1000_82572) {
3009 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3010 		tarc |= TARC_SPEED_MODE_BIT;
3011 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3012 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3013 		/* errata: program both queues to unweighted RR */
3014 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3015 		tarc |= 1;
3016 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3017 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3018 		tarc |= 1;
3019 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3020 	} else if (adapter->hw.mac.type == e1000_82574) {
3021 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3022 		tarc |= TARC_ERRATA_BIT;
3023 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3024 	}
3025 
3026 	/* Program the Transmit Control Register */
3027 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3028 	tctl &= ~E1000_TCTL_CT;
3029 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3030 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3031 
3032 	if (adapter->hw.mac.type >= e1000_82571)
3033 		tctl |= E1000_TCTL_MULR;
3034 
3035 	/* This write will effectively turn on the transmit unit. */
3036 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3037 
3038 	if (adapter->hw.mac.type == e1000_82571 ||
3039 	    adapter->hw.mac.type == e1000_82572 ||
3040 	    adapter->hw.mac.type == e1000_80003es2lan) {
3041 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
3042 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3043 		tarc &= ~(1 << 28);
3044 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3045 	} else if (adapter->hw.mac.type >= e1000_pch_spt) {
3046 		uint32_t reg;
3047 
3048 		reg = E1000_READ_REG(&adapter->hw, E1000_IOSFPC);
3049 		reg |= E1000_RCTL_RDMTS_HEX;
3050 		E1000_WRITE_REG(&adapter->hw, E1000_IOSFPC, reg);
3051 		reg = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3052 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
3053 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), reg);
3054 	}
3055 }
3056 
3057 static void
3058 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
3059 {
3060 	struct em_buffer *tx_buffer;
3061 	int i;
3062 
3063 	if (adapter->tx_buffer_area == NULL)
3064 		return;
3065 
3066 	for (i = 0; i < ndesc; i++) {
3067 		tx_buffer = &adapter->tx_buffer_area[i];
3068 
3069 		KKASSERT(tx_buffer->m_head == NULL);
3070 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
3071 	}
3072 	bus_dma_tag_destroy(adapter->txtag);
3073 
3074 	kfree(adapter->tx_buffer_area, M_DEVBUF);
3075 	adapter->tx_buffer_area = NULL;
3076 }
3077 
3078 /*
3079  * The offload context needs to be set when we transfer the first
3080  * packet of a particular protocol (TCP/UDP).  This routine has been
3081  * enhanced to deal with inserted VLAN headers.
3082  *
3083  * If the new packet's ether header length, ip header length and
3084  * csum offloading type are same as the previous packet, we should
3085  * avoid allocating a new csum context descriptor; mainly to take
3086  * advantage of the pipeline effect of the TX data read request.
3087  *
3088  * This function returns number of TX descrptors allocated for
3089  * csum context.
3090  */
3091 static int
3092 em_txcsum(struct adapter *adapter, struct mbuf *mp,
3093 	  uint32_t *txd_upper, uint32_t *txd_lower)
3094 {
3095 	struct e1000_context_desc *TXD;
3096 	int curr_txd, ehdrlen, csum_flags;
3097 	uint32_t cmd, hdr_len, ip_hlen;
3098 
3099 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
3100 	ip_hlen = mp->m_pkthdr.csum_iphlen;
3101 	ehdrlen = mp->m_pkthdr.csum_lhlen;
3102 
3103 	if (adapter->csum_lhlen == ehdrlen &&
3104 	    adapter->csum_iphlen == ip_hlen &&
3105 	    adapter->csum_flags == csum_flags) {
3106 		/*
3107 		 * Same csum offload context as the previous packets;
3108 		 * just return.
3109 		 */
3110 		*txd_upper = adapter->csum_txd_upper;
3111 		*txd_lower = adapter->csum_txd_lower;
3112 		return 0;
3113 	}
3114 
3115 	/*
3116 	 * Setup a new csum offload context.
3117 	 */
3118 
3119 	curr_txd = adapter->next_avail_tx_desc;
3120 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
3121 
3122 	cmd = 0;
3123 
3124 	/* Setup of IP header checksum. */
3125 	if (csum_flags & CSUM_IP) {
3126 		/*
3127 		 * Start offset for header checksum calculation.
3128 		 * End offset for header checksum calculation.
3129 		 * Offset of place to put the checksum.
3130 		 */
3131 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
3132 		TXD->lower_setup.ip_fields.ipcse =
3133 		    htole16(ehdrlen + ip_hlen - 1);
3134 		TXD->lower_setup.ip_fields.ipcso =
3135 		    ehdrlen + offsetof(struct ip, ip_sum);
3136 		cmd |= E1000_TXD_CMD_IP;
3137 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3138 	}
3139 	hdr_len = ehdrlen + ip_hlen;
3140 
3141 	if (csum_flags & CSUM_TCP) {
3142 		/*
3143 		 * Start offset for payload checksum calculation.
3144 		 * End offset for payload checksum calculation.
3145 		 * Offset of place to put the checksum.
3146 		 */
3147 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3148 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3149 		TXD->upper_setup.tcp_fields.tucso =
3150 		    hdr_len + offsetof(struct tcphdr, th_sum);
3151 		cmd |= E1000_TXD_CMD_TCP;
3152 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3153 	} else if (csum_flags & CSUM_UDP) {
3154 		/*
3155 		 * Start offset for header checksum calculation.
3156 		 * End offset for header checksum calculation.
3157 		 * Offset of place to put the checksum.
3158 		 */
3159 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3160 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3161 		TXD->upper_setup.tcp_fields.tucso =
3162 		    hdr_len + offsetof(struct udphdr, uh_sum);
3163 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3164 	}
3165 
3166 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3167 		     E1000_TXD_DTYP_D;		/* Data descr */
3168 
3169 	/* Save the information for this csum offloading context */
3170 	adapter->csum_lhlen = ehdrlen;
3171 	adapter->csum_iphlen = ip_hlen;
3172 	adapter->csum_flags = csum_flags;
3173 	adapter->csum_txd_upper = *txd_upper;
3174 	adapter->csum_txd_lower = *txd_lower;
3175 
3176 	TXD->tcp_seg_setup.data = htole32(0);
3177 	TXD->cmd_and_length =
3178 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3179 
3180 	if (++curr_txd == adapter->num_tx_desc)
3181 		curr_txd = 0;
3182 
3183 	KKASSERT(adapter->num_tx_desc_avail > 0);
3184 	adapter->num_tx_desc_avail--;
3185 
3186 	adapter->next_avail_tx_desc = curr_txd;
3187 	return 1;
3188 }
3189 
3190 static void
3191 em_txeof(struct adapter *adapter)
3192 {
3193 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3194 	struct em_buffer *tx_buffer;
3195 	int first, num_avail;
3196 
3197 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3198 		return;
3199 
3200 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3201 		return;
3202 
3203 	num_avail = adapter->num_tx_desc_avail;
3204 	first = adapter->next_tx_to_clean;
3205 
3206 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3207 		struct e1000_tx_desc *tx_desc;
3208 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3209 
3210 		tx_desc = &adapter->tx_desc_base[dd_idx];
3211 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3212 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3213 
3214 			if (++dd_idx == adapter->num_tx_desc)
3215 				dd_idx = 0;
3216 
3217 			while (first != dd_idx) {
3218 				logif(pkt_txclean);
3219 
3220 				KKASSERT(num_avail < adapter->num_tx_desc);
3221 				num_avail++;
3222 
3223 				tx_buffer = &adapter->tx_buffer_area[first];
3224 				if (tx_buffer->m_head != NULL)
3225 					em_free_txbuffer(adapter, tx_buffer);
3226 
3227 				if (++first == adapter->num_tx_desc)
3228 					first = 0;
3229 			}
3230 		} else {
3231 			break;
3232 		}
3233 	}
3234 	adapter->next_tx_to_clean = first;
3235 	adapter->num_tx_desc_avail = num_avail;
3236 
3237 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3238 		adapter->tx_dd_head = 0;
3239 		adapter->tx_dd_tail = 0;
3240 	}
3241 
3242 	if (!EM_IS_OACTIVE(adapter)) {
3243 		ifq_clr_oactive(&ifp->if_snd);
3244 
3245 		/* All clean, turn off the timer */
3246 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3247 			ifp->if_timer = 0;
3248 	}
3249 	adapter->tx_running = EM_TX_RUNNING;
3250 }
3251 
3252 static void
3253 em_tx_collect(struct adapter *adapter, boolean_t gc)
3254 {
3255 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3256 	struct em_buffer *tx_buffer;
3257 	int tdh, first, num_avail, dd_idx = -1;
3258 
3259 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3260 		return;
3261 
3262 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3263 	if (tdh == adapter->next_tx_to_clean) {
3264 		if (gc && adapter->tx_nmbuf > 0)
3265 			adapter->tx_running = EM_TX_RUNNING;
3266 		return;
3267 	}
3268 	if (gc)
3269 		adapter->tx_gc++;
3270 
3271 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3272 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3273 
3274 	num_avail = adapter->num_tx_desc_avail;
3275 	first = adapter->next_tx_to_clean;
3276 
3277 	while (first != tdh) {
3278 		logif(pkt_txclean);
3279 
3280 		KKASSERT(num_avail < adapter->num_tx_desc);
3281 		num_avail++;
3282 
3283 		tx_buffer = &adapter->tx_buffer_area[first];
3284 		if (tx_buffer->m_head != NULL)
3285 			em_free_txbuffer(adapter, tx_buffer);
3286 
3287 		if (first == dd_idx) {
3288 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3289 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3290 				adapter->tx_dd_head = 0;
3291 				adapter->tx_dd_tail = 0;
3292 				dd_idx = -1;
3293 			} else {
3294 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3295 			}
3296 		}
3297 
3298 		if (++first == adapter->num_tx_desc)
3299 			first = 0;
3300 	}
3301 	adapter->next_tx_to_clean = first;
3302 	adapter->num_tx_desc_avail = num_avail;
3303 
3304 	if (!EM_IS_OACTIVE(adapter)) {
3305 		ifq_clr_oactive(&ifp->if_snd);
3306 
3307 		/* All clean, turn off the timer */
3308 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3309 			ifp->if_timer = 0;
3310 	}
3311 	if (!gc || adapter->tx_nmbuf > 0)
3312 		adapter->tx_running = EM_TX_RUNNING;
3313 }
3314 
3315 /*
3316  * When Link is lost sometimes there is work still in the TX ring
3317  * which will result in a watchdog, rather than allow that do an
3318  * attempted cleanup and then reinit here.  Note that this has been
3319  * seens mostly with fiber adapters.
3320  */
3321 static void
3322 em_tx_purge(struct adapter *adapter)
3323 {
3324 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3325 
3326 	if (!adapter->link_active && ifp->if_timer) {
3327 		em_tx_collect(adapter, FALSE);
3328 		if (ifp->if_timer) {
3329 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3330 			ifp->if_timer = 0;
3331 			em_init(adapter);
3332 		}
3333 	}
3334 }
3335 
3336 static int
3337 em_newbuf(struct adapter *adapter, int i, int init)
3338 {
3339 	struct mbuf *m;
3340 	bus_dma_segment_t seg;
3341 	bus_dmamap_t map;
3342 	struct em_buffer *rx_buffer;
3343 	int error, nseg;
3344 
3345 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3346 	if (m == NULL) {
3347 		adapter->mbuf_cluster_failed++;
3348 		if (init) {
3349 			if_printf(&adapter->arpcom.ac_if,
3350 				  "Unable to allocate RX mbuf\n");
3351 		}
3352 		return (ENOBUFS);
3353 	}
3354 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3355 
3356 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3357 		m_adj(m, ETHER_ALIGN);
3358 
3359 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3360 			adapter->rx_sparemap, m,
3361 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3362 	if (error) {
3363 		m_freem(m);
3364 		if (init) {
3365 			if_printf(&adapter->arpcom.ac_if,
3366 				  "Unable to load RX mbuf\n");
3367 		}
3368 		return (error);
3369 	}
3370 
3371 	rx_buffer = &adapter->rx_buffer_area[i];
3372 	if (rx_buffer->m_head != NULL)
3373 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3374 
3375 	map = rx_buffer->map;
3376 	rx_buffer->map = adapter->rx_sparemap;
3377 	adapter->rx_sparemap = map;
3378 
3379 	rx_buffer->m_head = m;
3380 
3381 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3382 	return (0);
3383 }
3384 
3385 static int
3386 em_create_rx_ring(struct adapter *adapter)
3387 {
3388 	device_t dev = adapter->dev;
3389 	struct em_buffer *rx_buffer;
3390 	int i, error;
3391 
3392 	adapter->rx_buffer_area =
3393 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3394 			M_DEVBUF, M_WAITOK | M_ZERO);
3395 
3396 	/*
3397 	 * Create DMA tag for rx buffers
3398 	 */
3399 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3400 			1, 0,			/* alignment, bounds */
3401 			BUS_SPACE_MAXADDR,	/* lowaddr */
3402 			BUS_SPACE_MAXADDR,	/* highaddr */
3403 			NULL, NULL,		/* filter, filterarg */
3404 			MCLBYTES,		/* maxsize */
3405 			1,			/* nsegments */
3406 			MCLBYTES,		/* maxsegsize */
3407 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3408 			&adapter->rxtag);
3409 	if (error) {
3410 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3411 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3412 		adapter->rx_buffer_area = NULL;
3413 		return error;
3414 	}
3415 
3416 	/*
3417 	 * Create spare DMA map for rx buffers
3418 	 */
3419 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3420 				  &adapter->rx_sparemap);
3421 	if (error) {
3422 		device_printf(dev, "Unable to create spare RX DMA map\n");
3423 		bus_dma_tag_destroy(adapter->rxtag);
3424 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3425 		adapter->rx_buffer_area = NULL;
3426 		return error;
3427 	}
3428 
3429 	/*
3430 	 * Create DMA maps for rx buffers
3431 	 */
3432 	for (i = 0; i < adapter->num_rx_desc; i++) {
3433 		rx_buffer = &adapter->rx_buffer_area[i];
3434 
3435 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3436 					  &rx_buffer->map);
3437 		if (error) {
3438 			device_printf(dev, "Unable to create RX DMA map\n");
3439 			em_destroy_rx_ring(adapter, i);
3440 			return error;
3441 		}
3442 	}
3443 	return (0);
3444 }
3445 
3446 static int
3447 em_init_rx_ring(struct adapter *adapter)
3448 {
3449 	int i, error;
3450 
3451 	/* Reset descriptor ring */
3452 	bzero(adapter->rx_desc_base,
3453 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3454 
3455 	/* Allocate new ones. */
3456 	for (i = 0; i < adapter->num_rx_desc; i++) {
3457 		error = em_newbuf(adapter, i, 1);
3458 		if (error)
3459 			return (error);
3460 	}
3461 
3462 	/* Setup our descriptor pointers */
3463 	adapter->next_rx_desc_to_check = 0;
3464 
3465 	return (0);
3466 }
3467 
3468 static void
3469 em_init_rx_unit(struct adapter *adapter)
3470 {
3471 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3472 	uint64_t bus_addr;
3473 	uint32_t rctl, rxcsum;
3474 
3475 	/*
3476 	 * Make sure receives are disabled while setting
3477 	 * up the descriptor ring
3478 	 */
3479 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3480 	/* Do not disable if ever enabled on this hardware */
3481 	if (adapter->hw.mac.type != e1000_82574 &&
3482 	    adapter->hw.mac.type != e1000_82583)
3483 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3484 
3485 	if (adapter->hw.mac.type >= e1000_82540) {
3486 		uint32_t itr;
3487 
3488 		/*
3489 		 * Set the interrupt throttling rate. Value is calculated
3490 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3491 		 */
3492 		if (adapter->int_throttle_ceil)
3493 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3494 		else
3495 			itr = 0;
3496 		em_set_itr(adapter, itr);
3497 	}
3498 
3499 	/* Disable accelerated ackknowledge */
3500 	if (adapter->hw.mac.type == e1000_82574) {
3501 		uint32_t rfctl;
3502 
3503 		rfctl = E1000_READ_REG(&adapter->hw, E1000_RFCTL);
3504 		rfctl |= E1000_RFCTL_ACK_DIS;
3505 		E1000_WRITE_REG(&adapter->hw, E1000_RFCTL, rfctl);
3506 	}
3507 
3508 	/* Receive Checksum Offload for IP and TCP/UDP */
3509 	rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3510 	if (ifp->if_capenable & IFCAP_RXCSUM)
3511 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3512 	else
3513 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3514 	E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3515 
3516 	/*
3517 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3518 	 * long latencies are observed, like Lenovo X60. This
3519 	 * change eliminates the problem, but since having positive
3520 	 * values in RDTR is a known source of problems on other
3521 	 * platforms another solution is being sought.
3522 	 */
3523 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3524 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3525 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3526 	}
3527 
3528 	/*
3529 	 * Setup the Base and Length of the Rx Descriptor Ring
3530 	 */
3531 	bus_addr = adapter->rxdma.dma_paddr;
3532 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3533 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3534 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3535 	    (uint32_t)(bus_addr >> 32));
3536 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3537 	    (uint32_t)bus_addr);
3538 
3539 	/*
3540 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3541 	 */
3542 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3543 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3544 
3545 	/* Set PTHRESH for improved jumbo performance */
3546 	if (ifp->if_mtu > ETHERMTU) {
3547 		uint32_t rxdctl;
3548 
3549 		if (adapter->hw.mac.type == e1000_ich9lan ||
3550 		    adapter->hw.mac.type == e1000_pch2lan ||
3551 		    adapter->hw.mac.type == e1000_ich10lan) {
3552 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3553 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0),
3554 			    rxdctl | 3);
3555 		} else if (adapter->hw.mac.type == e1000_82574) {
3556 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3557                 	rxdctl |= 0x20;		/* PTHRESH */
3558                 	rxdctl |= 4 << 8;	/* HTHRESH */
3559                 	rxdctl |= 4 << 16;	/* WTHRESH */
3560 			rxdctl |= 1 << 24;	/* Switch to granularity */
3561 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl);
3562 		}
3563 	}
3564 
3565 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3566 		if (ifp->if_mtu > ETHERMTU)
3567 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3568 		else
3569 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3570 	}
3571 
3572 	/* Setup the Receive Control Register */
3573 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3574 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3575 		E1000_RCTL_RDMTS_HALF |
3576 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3577 
3578 	/* Make sure VLAN Filters are off */
3579 	rctl &= ~E1000_RCTL_VFE;
3580 
3581 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3582 		rctl |= E1000_RCTL_SBP;
3583 	else
3584 		rctl &= ~E1000_RCTL_SBP;
3585 
3586 	switch (adapter->rx_buffer_len) {
3587 	default:
3588 	case 2048:
3589 		rctl |= E1000_RCTL_SZ_2048;
3590 		break;
3591 
3592 	case 4096:
3593 		rctl |= E1000_RCTL_SZ_4096 |
3594 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3595 		break;
3596 
3597 	case 8192:
3598 		rctl |= E1000_RCTL_SZ_8192 |
3599 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3600 		break;
3601 
3602 	case 16384:
3603 		rctl |= E1000_RCTL_SZ_16384 |
3604 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3605 		break;
3606 	}
3607 
3608 	if (ifp->if_mtu > ETHERMTU)
3609 		rctl |= E1000_RCTL_LPE;
3610 	else
3611 		rctl &= ~E1000_RCTL_LPE;
3612 
3613 	/* Enable Receives */
3614 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3615 }
3616 
3617 static void
3618 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3619 {
3620 	struct em_buffer *rx_buffer;
3621 	int i;
3622 
3623 	if (adapter->rx_buffer_area == NULL)
3624 		return;
3625 
3626 	for (i = 0; i < ndesc; i++) {
3627 		rx_buffer = &adapter->rx_buffer_area[i];
3628 
3629 		KKASSERT(rx_buffer->m_head == NULL);
3630 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3631 	}
3632 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3633 	bus_dma_tag_destroy(adapter->rxtag);
3634 
3635 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3636 	adapter->rx_buffer_area = NULL;
3637 }
3638 
3639 static void
3640 em_rxeof(struct adapter *adapter, int count)
3641 {
3642 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3643 	uint8_t status, accept_frame = 0, eop = 0;
3644 	uint16_t len, desc_len, prev_len_adj;
3645 	struct e1000_rx_desc *current_desc;
3646 	struct mbuf *mp;
3647 	int i;
3648 
3649 	i = adapter->next_rx_desc_to_check;
3650 	current_desc = &adapter->rx_desc_base[i];
3651 
3652 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3653 		return;
3654 
3655 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3656 		struct mbuf *m = NULL;
3657 
3658 		logif(pkt_receive);
3659 
3660 		mp = adapter->rx_buffer_area[i].m_head;
3661 
3662 		/*
3663 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3664 		 * needs to access the last received byte in the mbuf.
3665 		 */
3666 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3667 				BUS_DMASYNC_POSTREAD);
3668 
3669 		accept_frame = 1;
3670 		prev_len_adj = 0;
3671 		desc_len = le16toh(current_desc->length);
3672 		status = current_desc->status;
3673 		if (status & E1000_RXD_STAT_EOP) {
3674 			count--;
3675 			eop = 1;
3676 			if (desc_len < ETHER_CRC_LEN) {
3677 				len = 0;
3678 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3679 			} else {
3680 				len = desc_len - ETHER_CRC_LEN;
3681 			}
3682 		} else {
3683 			eop = 0;
3684 			len = desc_len;
3685 		}
3686 
3687 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3688 			uint8_t	last_byte;
3689 			uint32_t pkt_len = desc_len;
3690 
3691 			if (adapter->fmp != NULL)
3692 				pkt_len += adapter->fmp->m_pkthdr.len;
3693 
3694 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3695 			if (TBI_ACCEPT(&adapter->hw, status,
3696 			    current_desc->errors, pkt_len, last_byte,
3697 			    adapter->min_frame_size,
3698 			    adapter->hw.mac.max_frame_size)) {
3699 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3700 				    &adapter->stats, pkt_len,
3701 				    adapter->hw.mac.addr,
3702 				    adapter->hw.mac.max_frame_size);
3703 				if (len > 0)
3704 					len--;
3705 			} else {
3706 				accept_frame = 0;
3707 			}
3708 		}
3709 
3710 		if (accept_frame) {
3711 			if (em_newbuf(adapter, i, 0) != 0) {
3712 				IFNET_STAT_INC(ifp, iqdrops, 1);
3713 				goto discard;
3714 			}
3715 
3716 			/* Assign correct length to the current fragment */
3717 			mp->m_len = len;
3718 
3719 			if (adapter->fmp == NULL) {
3720 				mp->m_pkthdr.len = len;
3721 				adapter->fmp = mp; /* Store the first mbuf */
3722 				adapter->lmp = mp;
3723 			} else {
3724 				/*
3725 				 * Chain mbuf's together
3726 				 */
3727 
3728 				/*
3729 				 * Adjust length of previous mbuf in chain if
3730 				 * we received less than 4 bytes in the last
3731 				 * descriptor.
3732 				 */
3733 				if (prev_len_adj > 0) {
3734 					adapter->lmp->m_len -= prev_len_adj;
3735 					adapter->fmp->m_pkthdr.len -=
3736 					    prev_len_adj;
3737 				}
3738 				adapter->lmp->m_next = mp;
3739 				adapter->lmp = adapter->lmp->m_next;
3740 				adapter->fmp->m_pkthdr.len += len;
3741 			}
3742 
3743 			if (eop) {
3744 				adapter->fmp->m_pkthdr.rcvif = ifp;
3745 				IFNET_STAT_INC(ifp, ipackets, 1);
3746 
3747 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3748 					em_rxcsum(adapter, current_desc,
3749 						  adapter->fmp);
3750 				}
3751 
3752 				if (status & E1000_RXD_STAT_VP) {
3753 					adapter->fmp->m_pkthdr.ether_vlantag =
3754 					    (le16toh(current_desc->special) &
3755 					    E1000_RXD_SPC_VLAN_MASK);
3756 					adapter->fmp->m_flags |= M_VLANTAG;
3757 				}
3758 				m = adapter->fmp;
3759 				adapter->fmp = NULL;
3760 				adapter->lmp = NULL;
3761 			}
3762 		} else {
3763 			IFNET_STAT_INC(ifp, ierrors, 1);
3764 discard:
3765 #ifdef foo
3766 			/* Reuse loaded DMA map and just update mbuf chain */
3767 			mp = adapter->rx_buffer_area[i].m_head;
3768 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3769 			mp->m_data = mp->m_ext.ext_buf;
3770 			mp->m_next = NULL;
3771 			if (adapter->hw.mac.max_frame_size <=
3772 			    (MCLBYTES - ETHER_ALIGN))
3773 				m_adj(mp, ETHER_ALIGN);
3774 #endif
3775 			if (adapter->fmp != NULL) {
3776 				m_freem(adapter->fmp);
3777 				adapter->fmp = NULL;
3778 				adapter->lmp = NULL;
3779 			}
3780 			m = NULL;
3781 		}
3782 
3783 		/* Zero out the receive descriptors status. */
3784 		current_desc->status = 0;
3785 
3786 		if (m != NULL)
3787 			ifp->if_input(ifp, m, NULL, -1);
3788 
3789 		/* Advance our pointers to the next descriptor. */
3790 		if (++i == adapter->num_rx_desc)
3791 			i = 0;
3792 		current_desc = &adapter->rx_desc_base[i];
3793 	}
3794 	adapter->next_rx_desc_to_check = i;
3795 
3796 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3797 	if (--i < 0)
3798 		i = adapter->num_rx_desc - 1;
3799 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3800 }
3801 
3802 static void
3803 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3804 	  struct mbuf *mp)
3805 {
3806 	/* 82543 or newer only */
3807 	if (adapter->hw.mac.type < e1000_82543 ||
3808 	    /* Ignore Checksum bit is set */
3809 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3810 		return;
3811 
3812 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3813 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3814 		/* IP Checksum Good */
3815 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3816 	}
3817 
3818 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3819 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3820 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3821 					   CSUM_PSEUDO_HDR |
3822 					   CSUM_FRAG_NOT_CHECKED;
3823 		mp->m_pkthdr.csum_data = htons(0xffff);
3824 	}
3825 }
3826 
3827 static void
3828 em_enable_intr(struct adapter *adapter)
3829 {
3830 	uint32_t ims_mask = IMS_ENABLE_MASK;
3831 
3832 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3833 
3834 #if 0
3835 	/* XXX MSIX */
3836 	if (adapter->hw.mac.type == e1000_82574) {
3837 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3838 		ims_mask |= EM_MSIX_MASK;
3839         }
3840 #endif
3841 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3842 }
3843 
3844 static void
3845 em_disable_intr(struct adapter *adapter)
3846 {
3847 	uint32_t clear = 0xffffffff;
3848 
3849 	/*
3850 	 * The first version of 82542 had an errata where when link was forced
3851 	 * it would stay up even up even if the cable was disconnected.
3852 	 * Sequence errors were used to detect the disconnect and then the
3853 	 * driver would unforce the link.  This code in the in the ISR.  For
3854 	 * this to work correctly the Sequence error interrupt had to be
3855 	 * enabled all the time.
3856 	 */
3857 	if (adapter->hw.mac.type == e1000_82542 &&
3858 	    adapter->hw.revision_id == E1000_REVISION_2)
3859 		clear &= ~E1000_ICR_RXSEQ;
3860 	else if (adapter->hw.mac.type == e1000_82574)
3861 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3862 
3863 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3864 
3865 	adapter->npoll.ifpc_stcount = 0;
3866 
3867 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3868 }
3869 
3870 /*
3871  * Bit of a misnomer, what this really means is
3872  * to enable OS management of the system... aka
3873  * to disable special hardware management features
3874  */
3875 static void
3876 em_get_mgmt(struct adapter *adapter)
3877 {
3878 	/* A shared code workaround */
3879 #define E1000_82542_MANC2H E1000_MANC2H
3880 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3881 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3882 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3883 
3884 		/* disable hardware interception of ARP */
3885 		manc &= ~(E1000_MANC_ARP_EN);
3886 
3887                 /* enable receiving management packets to the host */
3888                 if (adapter->hw.mac.type >= e1000_82571) {
3889 			manc |= E1000_MANC_EN_MNG2HOST;
3890 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3891 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3892 			manc2h |= E1000_MNG2HOST_PORT_623;
3893 			manc2h |= E1000_MNG2HOST_PORT_664;
3894 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3895 		}
3896 
3897 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3898 	}
3899 }
3900 
3901 /*
3902  * Give control back to hardware management
3903  * controller if there is one.
3904  */
3905 static void
3906 em_rel_mgmt(struct adapter *adapter)
3907 {
3908 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3909 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3910 
3911 		/* re-enable hardware interception of ARP */
3912 		manc |= E1000_MANC_ARP_EN;
3913 
3914 		if (adapter->hw.mac.type >= e1000_82571)
3915 			manc &= ~E1000_MANC_EN_MNG2HOST;
3916 
3917 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3918 	}
3919 }
3920 
3921 /*
3922  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3923  * For ASF and Pass Through versions of f/w this means that
3924  * the driver is loaded.  For AMT version (only with 82573)
3925  * of the f/w this means that the network i/f is open.
3926  */
3927 static void
3928 em_get_hw_control(struct adapter *adapter)
3929 {
3930 	/* Let firmware know the driver has taken over */
3931 	if (adapter->hw.mac.type == e1000_82573) {
3932 		uint32_t swsm;
3933 
3934 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3935 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3936 		    swsm | E1000_SWSM_DRV_LOAD);
3937 	} else {
3938 		uint32_t ctrl_ext;
3939 
3940 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3941 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3942 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3943 	}
3944 	adapter->flags |= EM_FLAG_HW_CTRL;
3945 }
3946 
3947 /*
3948  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3949  * For ASF and Pass Through versions of f/w this means that the
3950  * driver is no longer loaded.  For AMT version (only with 82573)
3951  * of the f/w this means that the network i/f is closed.
3952  */
3953 static void
3954 em_rel_hw_control(struct adapter *adapter)
3955 {
3956 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3957 		return;
3958 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3959 
3960 	/* Let firmware taken over control of h/w */
3961 	if (adapter->hw.mac.type == e1000_82573) {
3962 		uint32_t swsm;
3963 
3964 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3965 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3966 		    swsm & ~E1000_SWSM_DRV_LOAD);
3967 	} else {
3968 		uint32_t ctrl_ext;
3969 
3970 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3971 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3972 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3973 	}
3974 }
3975 
3976 static int
3977 em_is_valid_eaddr(const uint8_t *addr)
3978 {
3979 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3980 
3981 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3982 		return (FALSE);
3983 
3984 	return (TRUE);
3985 }
3986 
3987 /*
3988  * Enable PCI Wake On Lan capability
3989  */
3990 static void
3991 em_enable_wol(device_t dev)
3992 {
3993 	uint16_t cap, status;
3994 	uint8_t id;
3995 
3996 	/* First find the capabilities pointer*/
3997 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3998 
3999 	/* Read the PM Capabilities */
4000 	id = pci_read_config(dev, cap, 1);
4001 	if (id != PCIY_PMG)     /* Something wrong */
4002 		return;
4003 
4004 	/*
4005 	 * OK, we have the power capabilities,
4006 	 * so now get the status register
4007 	 */
4008 	cap += PCIR_POWER_STATUS;
4009 	status = pci_read_config(dev, cap, 2);
4010 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4011 	pci_write_config(dev, cap, status, 2);
4012 }
4013 
4014 
4015 /*
4016  * 82544 Coexistence issue workaround.
4017  *    There are 2 issues.
4018  *       1. Transmit Hang issue.
4019  *    To detect this issue, following equation can be used...
4020  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4021  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
4022  *
4023  *       2. DAC issue.
4024  *    To detect this issue, following equation can be used...
4025  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4026  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
4027  *
4028  *    WORKAROUND:
4029  *	  Make sure we do not have ending address
4030  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
4031  */
4032 static uint32_t
4033 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
4034 {
4035 	uint32_t safe_terminator;
4036 
4037 	/*
4038 	 * Since issue is sensitive to length and address.
4039 	 * Let us first check the address...
4040 	 */
4041 	if (length <= 4) {
4042 		desc_array->descriptor[0].address = address;
4043 		desc_array->descriptor[0].length = length;
4044 		desc_array->elements = 1;
4045 		return (desc_array->elements);
4046 	}
4047 
4048 	safe_terminator =
4049 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
4050 
4051 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
4052 	if (safe_terminator == 0 ||
4053 	    (safe_terminator > 4 && safe_terminator < 9) ||
4054 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
4055 		desc_array->descriptor[0].address = address;
4056 		desc_array->descriptor[0].length = length;
4057 		desc_array->elements = 1;
4058 		return (desc_array->elements);
4059 	}
4060 
4061 	desc_array->descriptor[0].address = address;
4062 	desc_array->descriptor[0].length = length - 4;
4063 	desc_array->descriptor[1].address = address + (length - 4);
4064 	desc_array->descriptor[1].length = 4;
4065 	desc_array->elements = 2;
4066 	return (desc_array->elements);
4067 }
4068 
4069 static void
4070 em_update_stats(struct adapter *adapter)
4071 {
4072 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4073 
4074 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
4075 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4076 		adapter->stats.symerrs +=
4077 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
4078 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
4079 	}
4080 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
4081 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
4082 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
4083 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
4084 
4085 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
4086 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
4087 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
4088 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
4089 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
4090 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
4091 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
4092 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
4093 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4094 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4095 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4096 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4097 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4098 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4099 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4100 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4101 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4102 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4103 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4104 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4105 
4106 	/* For the 64-bit byte counters the low dword must be read first. */
4107 	/* Both registers clear on the read of the high dword */
4108 
4109 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
4110 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
4111 
4112 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4113 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4114 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4115 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4116 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4117 
4118 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4119 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4120 
4121 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4122 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4123 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4124 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4125 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4126 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4127 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4128 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4129 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4130 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4131 
4132 	if (adapter->hw.mac.type >= e1000_82543) {
4133 		adapter->stats.algnerrc +=
4134 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4135 		adapter->stats.rxerrc +=
4136 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4137 		adapter->stats.tncrs +=
4138 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4139 		adapter->stats.cexterr +=
4140 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4141 		adapter->stats.tsctc +=
4142 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4143 		adapter->stats.tsctfc +=
4144 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4145 	}
4146 
4147 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
4148 
4149 	/* Rx Errors */
4150 	IFNET_STAT_SET(ifp, ierrors,
4151 	    adapter->dropped_pkts + adapter->stats.rxerrc +
4152 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4153 	    adapter->stats.ruc + adapter->stats.roc +
4154 	    adapter->stats.mpc + adapter->stats.cexterr);
4155 
4156 	/* Tx Errors */
4157 	IFNET_STAT_SET(ifp, oerrors,
4158 	    adapter->stats.ecol + adapter->stats.latecol +
4159 	    adapter->watchdog_events);
4160 }
4161 
4162 static void
4163 em_print_debug_info(struct adapter *adapter)
4164 {
4165 	device_t dev = adapter->dev;
4166 	uint8_t *hw_addr = adapter->hw.hw_addr;
4167 
4168 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
4169 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
4170 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
4171 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
4172 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
4173 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4174 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4175 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4176 	    adapter->hw.fc.high_water,
4177 	    adapter->hw.fc.low_water);
4178 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4179 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
4180 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
4181 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4182 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
4183 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4184 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4185 	    (long long)adapter->tx_fifo_wrk_cnt,
4186 	    (long long)adapter->tx_fifo_reset_cnt);
4187 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4188 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4189 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4190 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4191 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4192 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4193 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4194 	    adapter->num_tx_desc_avail);
4195 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4196 	    adapter->no_tx_desc_avail1);
4197 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4198 	    adapter->no_tx_desc_avail2);
4199 	device_printf(dev, "Std mbuf failed = %ld\n",
4200 	    adapter->mbuf_alloc_failed);
4201 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4202 	    adapter->mbuf_cluster_failed);
4203 	device_printf(dev, "Driver dropped packets = %ld\n",
4204 	    adapter->dropped_pkts);
4205 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4206 	    adapter->no_tx_dma_setup);
4207 }
4208 
4209 static void
4210 em_print_hw_stats(struct adapter *adapter)
4211 {
4212 	device_t dev = adapter->dev;
4213 
4214 	device_printf(dev, "Excessive collisions = %lld\n",
4215 	    (long long)adapter->stats.ecol);
4216 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4217 	device_printf(dev, "Symbol errors = %lld\n",
4218 	    (long long)adapter->stats.symerrs);
4219 #endif
4220 	device_printf(dev, "Sequence errors = %lld\n",
4221 	    (long long)adapter->stats.sec);
4222 	device_printf(dev, "Defer count = %lld\n",
4223 	    (long long)adapter->stats.dc);
4224 	device_printf(dev, "Missed Packets = %lld\n",
4225 	    (long long)adapter->stats.mpc);
4226 	device_printf(dev, "Receive No Buffers = %lld\n",
4227 	    (long long)adapter->stats.rnbc);
4228 	/* RLEC is inaccurate on some hardware, calculate our own. */
4229 	device_printf(dev, "Receive Length Errors = %lld\n",
4230 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4231 	device_printf(dev, "Receive errors = %lld\n",
4232 	    (long long)adapter->stats.rxerrc);
4233 	device_printf(dev, "Crc errors = %lld\n",
4234 	    (long long)adapter->stats.crcerrs);
4235 	device_printf(dev, "Alignment errors = %lld\n",
4236 	    (long long)adapter->stats.algnerrc);
4237 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4238 	    (long long)adapter->stats.cexterr);
4239 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4240 	device_printf(dev, "watchdog timeouts = %ld\n",
4241 	    adapter->watchdog_events);
4242 	device_printf(dev, "XON Rcvd = %lld\n",
4243 	    (long long)adapter->stats.xonrxc);
4244 	device_printf(dev, "XON Xmtd = %lld\n",
4245 	    (long long)adapter->stats.xontxc);
4246 	device_printf(dev, "XOFF Rcvd = %lld\n",
4247 	    (long long)adapter->stats.xoffrxc);
4248 	device_printf(dev, "XOFF Xmtd = %lld\n",
4249 	    (long long)adapter->stats.xofftxc);
4250 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4251 	    (long long)adapter->stats.gprc);
4252 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4253 	    (long long)adapter->stats.gptc);
4254 }
4255 
4256 static void
4257 em_print_nvm_info(struct adapter *adapter)
4258 {
4259 	uint16_t eeprom_data;
4260 	int i, j, row = 0;
4261 
4262 	/* Its a bit crude, but it gets the job done */
4263 	kprintf("\nInterface EEPROM Dump:\n");
4264 	kprintf("Offset\n0x0000  ");
4265 	for (i = 0, j = 0; i < 32; i++, j++) {
4266 		if (j == 8) { /* Make the offset block */
4267 			j = 0; ++row;
4268 			kprintf("\n0x00%x0  ",row);
4269 		}
4270 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4271 		kprintf("%04x ", eeprom_data);
4272 	}
4273 	kprintf("\n");
4274 }
4275 
4276 static int
4277 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4278 {
4279 	struct adapter *adapter;
4280 	struct ifnet *ifp;
4281 	int error, result;
4282 
4283 	result = -1;
4284 	error = sysctl_handle_int(oidp, &result, 0, req);
4285 	if (error || !req->newptr)
4286 		return (error);
4287 
4288 	adapter = (struct adapter *)arg1;
4289 	ifp = &adapter->arpcom.ac_if;
4290 
4291 	lwkt_serialize_enter(ifp->if_serializer);
4292 
4293 	if (result == 1)
4294 		em_print_debug_info(adapter);
4295 
4296 	/*
4297 	 * This value will cause a hex dump of the
4298 	 * first 32 16-bit words of the EEPROM to
4299 	 * the screen.
4300 	 */
4301 	if (result == 2)
4302 		em_print_nvm_info(adapter);
4303 
4304 	lwkt_serialize_exit(ifp->if_serializer);
4305 
4306 	return (error);
4307 }
4308 
4309 static int
4310 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4311 {
4312 	int error, result;
4313 
4314 	result = -1;
4315 	error = sysctl_handle_int(oidp, &result, 0, req);
4316 	if (error || !req->newptr)
4317 		return (error);
4318 
4319 	if (result == 1) {
4320 		struct adapter *adapter = (struct adapter *)arg1;
4321 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4322 
4323 		lwkt_serialize_enter(ifp->if_serializer);
4324 		em_print_hw_stats(adapter);
4325 		lwkt_serialize_exit(ifp->if_serializer);
4326 	}
4327 	return (error);
4328 }
4329 
4330 static void
4331 em_add_sysctl(struct adapter *adapter)
4332 {
4333 	struct sysctl_ctx_list *ctx;
4334 	struct sysctl_oid *tree;
4335 
4336 	ctx = device_get_sysctl_ctx(adapter->dev);
4337 	tree = device_get_sysctl_tree(adapter->dev);
4338 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4339 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4340 	    em_sysctl_debug_info, "I", "Debug Information");
4341 
4342 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4343 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4344 	    em_sysctl_stats, "I", "Statistics");
4345 
4346 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4347 	    OID_AUTO, "rxd", CTLFLAG_RD,
4348 	    &adapter->num_rx_desc, 0, NULL);
4349 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4350 	    OID_AUTO, "txd", CTLFLAG_RD,
4351 	    &adapter->num_tx_desc, 0, NULL);
4352 
4353 	if (adapter->hw.mac.type >= e1000_82540) {
4354 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4355 		    OID_AUTO, "int_throttle_ceil",
4356 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4357 		    em_sysctl_int_throttle, "I",
4358 		    "interrupt throttling rate");
4359 	}
4360 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4361 	    OID_AUTO, "int_tx_nsegs",
4362 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4363 	    em_sysctl_int_tx_nsegs, "I",
4364 	    "# segments per TX interrupt");
4365 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4366 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4367 	    &adapter->tx_wreg_nsegs, 0,
4368 	    "# segments before write to hardware register");
4369 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_nmbuf",
4370 	    CTLFLAG_RD, &adapter->tx_nmbuf, 0, "# of pending TX mbufs");
4371 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_gc",
4372 	    CTLFLAG_RW, &adapter->tx_gc, "# of TX GC");
4373 }
4374 
4375 static int
4376 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4377 {
4378 	struct adapter *adapter = (void *)arg1;
4379 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4380 	int error, throttle;
4381 
4382 	throttle = adapter->int_throttle_ceil;
4383 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4384 	if (error || req->newptr == NULL)
4385 		return error;
4386 	if (throttle < 0 || throttle > 1000000000 / 256)
4387 		return EINVAL;
4388 
4389 	if (throttle) {
4390 		/*
4391 		 * Set the interrupt throttling rate in 256ns increments,
4392 		 * recalculate sysctl value assignment to get exact frequency.
4393 		 */
4394 		throttle = 1000000000 / 256 / throttle;
4395 
4396 		/* Upper 16bits of ITR is reserved and should be zero */
4397 		if (throttle & 0xffff0000)
4398 			return EINVAL;
4399 	}
4400 
4401 	lwkt_serialize_enter(ifp->if_serializer);
4402 
4403 	if (throttle)
4404 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4405 	else
4406 		adapter->int_throttle_ceil = 0;
4407 
4408 	if (ifp->if_flags & IFF_RUNNING)
4409 		em_set_itr(adapter, throttle);
4410 
4411 	lwkt_serialize_exit(ifp->if_serializer);
4412 
4413 	if (bootverbose) {
4414 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4415 			  adapter->int_throttle_ceil);
4416 	}
4417 	return 0;
4418 }
4419 
4420 static int
4421 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4422 {
4423 	struct adapter *adapter = (void *)arg1;
4424 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4425 	int error, segs;
4426 
4427 	segs = adapter->tx_int_nsegs;
4428 	error = sysctl_handle_int(oidp, &segs, 0, req);
4429 	if (error || req->newptr == NULL)
4430 		return error;
4431 	if (segs <= 0)
4432 		return EINVAL;
4433 
4434 	lwkt_serialize_enter(ifp->if_serializer);
4435 
4436 	/*
4437 	 * Don't allow int_tx_nsegs to become:
4438 	 * o  Less the oact_tx_desc
4439 	 * o  Too large that no TX desc will cause TX interrupt to
4440 	 *    be generated (OACTIVE will never recover)
4441 	 * o  Too small that will cause tx_dd[] overflow
4442 	 */
4443 	if (segs < adapter->oact_tx_desc ||
4444 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4445 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4446 		error = EINVAL;
4447 	} else {
4448 		error = 0;
4449 		adapter->tx_int_nsegs = segs;
4450 	}
4451 
4452 	lwkt_serialize_exit(ifp->if_serializer);
4453 
4454 	return error;
4455 }
4456 
4457 static void
4458 em_set_itr(struct adapter *adapter, uint32_t itr)
4459 {
4460 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4461 	if (adapter->hw.mac.type == e1000_82574) {
4462 		int i;
4463 
4464 		/*
4465 		 * When using MSIX interrupts we need to
4466 		 * throttle using the EITR register
4467 		 */
4468 		for (i = 0; i < 4; ++i) {
4469 			E1000_WRITE_REG(&adapter->hw,
4470 			    E1000_EITR_82574(i), itr);
4471 		}
4472 	}
4473 }
4474 
4475 static void
4476 em_disable_aspm(struct adapter *adapter)
4477 {
4478 	uint16_t link_cap, link_ctrl, disable;
4479 	uint8_t pcie_ptr, reg;
4480 	device_t dev = adapter->dev;
4481 
4482 	switch (adapter->hw.mac.type) {
4483 	case e1000_82571:
4484 	case e1000_82572:
4485 	case e1000_82573:
4486 		/*
4487 		 * 82573 specification update
4488 		 * errata #8 disable L0s
4489 		 * errata #41 disable L1
4490 		 *
4491 		 * 82571/82572 specification update
4492 		 # errata #13 disable L1
4493 		 * errata #68 disable L0s
4494 		 */
4495 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4496 		break;
4497 
4498 	case e1000_82574:
4499 	case e1000_82583:
4500 		/*
4501 		 * 82574 specification update errata #20
4502 		 * 82583 specification update errata #9
4503 		 *
4504 		 * There is no need to disable L1
4505 		 */
4506 		disable = PCIEM_LNKCTL_ASPM_L0S;
4507 		break;
4508 
4509 	default:
4510 		return;
4511 	}
4512 
4513 	pcie_ptr = pci_get_pciecap_ptr(dev);
4514 	if (pcie_ptr == 0)
4515 		return;
4516 
4517 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4518 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4519 		return;
4520 
4521 	if (bootverbose) {
4522 		if_printf(&adapter->arpcom.ac_if,
4523 		    "disable ASPM %#02x\n", disable);
4524 	}
4525 
4526 	reg = pcie_ptr + PCIER_LINKCTRL;
4527 	link_ctrl = pci_read_config(dev, reg, 2);
4528 	link_ctrl &= ~disable;
4529 	pci_write_config(dev, reg, link_ctrl, 2);
4530 }
4531 
4532 static int
4533 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4534 {
4535 	int iphlen, hoff, thoff, ex = 0;
4536 	struct mbuf *m;
4537 	struct ip *ip;
4538 
4539 	m = *mp;
4540 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4541 
4542 	iphlen = m->m_pkthdr.csum_iphlen;
4543 	thoff = m->m_pkthdr.csum_thlen;
4544 	hoff = m->m_pkthdr.csum_lhlen;
4545 
4546 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4547 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4548 	KASSERT(hoff > 0, ("invalid ether hlen"));
4549 
4550 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4551 		ex = 4;
4552 
4553 	if (m->m_len < hoff + iphlen + thoff + ex) {
4554 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4555 		if (m == NULL) {
4556 			*mp = NULL;
4557 			return ENOBUFS;
4558 		}
4559 		*mp = m;
4560 	}
4561 	ip = mtodoff(m, struct ip *, hoff);
4562 	ip->ip_len = 0;
4563 
4564 	return 0;
4565 }
4566 
4567 static int
4568 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4569     uint32_t *txd_upper, uint32_t *txd_lower)
4570 {
4571 	struct e1000_context_desc *TXD;
4572 	int hoff, iphlen, thoff, hlen;
4573 	int mss, pktlen, curr_txd;
4574 
4575 	iphlen = mp->m_pkthdr.csum_iphlen;
4576 	thoff = mp->m_pkthdr.csum_thlen;
4577 	hoff = mp->m_pkthdr.csum_lhlen;
4578 	mss = mp->m_pkthdr.tso_segsz;
4579 	pktlen = mp->m_pkthdr.len;
4580 
4581 	if (adapter->csum_flags == CSUM_TSO &&
4582 	    adapter->csum_iphlen == iphlen &&
4583 	    adapter->csum_lhlen == hoff &&
4584 	    adapter->csum_thlen == thoff &&
4585 	    adapter->csum_mss == mss &&
4586 	    adapter->csum_pktlen == pktlen) {
4587 		*txd_upper = adapter->csum_txd_upper;
4588 		*txd_lower = adapter->csum_txd_lower;
4589 		return 0;
4590 	}
4591 	hlen = hoff + iphlen + thoff;
4592 
4593 	/*
4594 	 * Setup a new TSO context.
4595 	 */
4596 
4597 	curr_txd = adapter->next_avail_tx_desc;
4598 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4599 
4600 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4601 		     E1000_TXD_DTYP_D |		/* Data descr type */
4602 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4603 
4604 	/* IP and/or TCP header checksum calculation and insertion. */
4605 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4606 
4607 	/*
4608 	 * Start offset for header checksum calculation.
4609 	 * End offset for header checksum calculation.
4610 	 * Offset of place put the checksum.
4611 	 */
4612 	TXD->lower_setup.ip_fields.ipcss = hoff;
4613 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4614 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4615 
4616 	/*
4617 	 * Start offset for payload checksum calculation.
4618 	 * End offset for payload checksum calculation.
4619 	 * Offset of place to put the checksum.
4620 	 */
4621 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4622 	TXD->upper_setup.tcp_fields.tucse = 0;
4623 	TXD->upper_setup.tcp_fields.tucso =
4624 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4625 
4626 	/*
4627 	 * Payload size per packet w/o any headers.
4628 	 * Length of all headers up to payload.
4629 	 */
4630 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4631 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4632 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4633 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4634 				E1000_TXD_CMD_TSE |	/* TSE context */
4635 				E1000_TXD_CMD_IP |	/* Do IP csum */
4636 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4637 				(pktlen - hlen));	/* Total len */
4638 
4639 	/* Save the information for this TSO context */
4640 	adapter->csum_flags = CSUM_TSO;
4641 	adapter->csum_lhlen = hoff;
4642 	adapter->csum_iphlen = iphlen;
4643 	adapter->csum_thlen = thoff;
4644 	adapter->csum_mss = mss;
4645 	adapter->csum_pktlen = pktlen;
4646 	adapter->csum_txd_upper = *txd_upper;
4647 	adapter->csum_txd_lower = *txd_lower;
4648 
4649 	if (++curr_txd == adapter->num_tx_desc)
4650 		curr_txd = 0;
4651 
4652 	KKASSERT(adapter->num_tx_desc_avail > 0);
4653 	adapter->num_tx_desc_avail--;
4654 
4655 	adapter->next_avail_tx_desc = curr_txd;
4656 	return 1;
4657 }
4658 
4659 /*
4660  * Remove all descriptors from the TX ring.
4661  *
4662  * We want to clear all pending descriptors from the TX ring.  Zeroing
4663  * happens when the HW reads the regs.  We assign the ring itself as
4664  * the data of the next descriptor.  We don't care about the data we
4665  * are about to reset the HW.
4666  */
4667 static void
4668 em_flush_tx_ring(struct adapter *adapter)
4669 {
4670 	struct e1000_hw *hw = &adapter->hw;
4671 	struct e1000_tx_desc *txd;
4672 	uint32_t tctl;
4673 
4674 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4675 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4676 
4677 	txd = &adapter->tx_desc_base[adapter->next_avail_tx_desc++];
4678 	if (adapter->next_avail_tx_desc == adapter->num_tx_desc)
4679 		adapter->next_avail_tx_desc = 0;
4680 
4681 	/* Just use the ring as a dummy buffer addr */
4682 	txd->buffer_addr = adapter->txdma.dma_paddr;
4683 	txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4684 	txd->upper.data = 0;
4685 
4686 	E1000_WRITE_REG(hw, E1000_TDT(0), adapter->next_avail_tx_desc);
4687 	usec_delay(250);
4688 }
4689 
4690 /*
4691  * Remove all descriptors from the RX ring.
4692  *
4693  * Mark all descriptors in the RX ring as consumed and disable the RX ring.
4694  */
4695 static void
4696 em_flush_rx_ring(struct adapter *adapter)
4697 {
4698 	struct e1000_hw	*hw = &adapter->hw;
4699 	uint32_t rctl, rxdctl;
4700 
4701 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4702 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4703 	E1000_WRITE_FLUSH(hw);
4704 	usec_delay(150);
4705 
4706 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
4707 	/* Zero the lower 14 bits (prefetch and host thresholds) */
4708 	rxdctl &= 0xffffc000;
4709 	/*
4710 	 * Update thresholds: prefetch threshold to 31, host threshold to 1
4711 	 * and make sure the granularity is "descriptors" and not "cache
4712 	 * lines".
4713 	 */
4714 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4715 	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
4716 
4717 	/* Momentarily enable the RX ring for the changes to take effect */
4718 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4719 	E1000_WRITE_FLUSH(hw);
4720 	usec_delay(150);
4721 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4722 }
4723 
4724 /*
4725  * Remove all descriptors from the descriptor rings.
4726  *
4727  * In i219, the descriptor rings must be emptied before resetting the HW
4728  * or before changing the device state to D3 during runtime (runtime PM).
4729  *
4730  * Failure to do this will cause the HW to enter a unit hang state which
4731  * can only be released by PCI reset on the device.
4732  */
4733 static void
4734 em_flush_txrx_ring(struct adapter *adapter)
4735 {
4736 	struct e1000_hw *hw = &adapter->hw;
4737 	device_t dev = adapter->dev;
4738 	uint16_t hang_state;
4739 	uint32_t fext_nvm11;
4740 
4741 	/*
4742 	 * First, disable MULR fix in FEXTNVM11.
4743 	 */
4744 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4745 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4746 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4747 
4748 	/*
4749 	 * Do nothing if we're not in faulty state, or if the queue is
4750 	 * empty.
4751 	 */
4752 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4753 	if ((hang_state & FLUSH_DESC_REQUIRED) &&
4754 	    E1000_READ_REG(hw, E1000_TDLEN(0)))
4755 		em_flush_tx_ring(adapter);
4756 
4757 	/*
4758 	 * Recheck, maybe the fault is caused by the RX ring.
4759 	 */
4760 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4761 	if (hang_state & FLUSH_DESC_REQUIRED)
4762 		em_flush_rx_ring(adapter);
4763 }
4764