xref: /dragonfly/sys/dev/netif/em/if_em.c (revision ee48961f)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.3.4"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	/* required last entry */
237 	EM_DEVICE_NULL
238 };
239 
240 static int	em_probe(device_t);
241 static int	em_attach(device_t);
242 static int	em_detach(device_t);
243 static int	em_shutdown(device_t);
244 static int	em_suspend(device_t);
245 static int	em_resume(device_t);
246 
247 static void	em_init(void *);
248 static void	em_stop(struct adapter *);
249 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
250 static void	em_start(struct ifnet *, struct ifaltq_subque *);
251 #ifdef IFPOLL_ENABLE
252 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
253 static void	em_npoll_compat(struct ifnet *, void *, int);
254 #endif
255 static void	em_watchdog(struct ifnet *);
256 static void	em_media_status(struct ifnet *, struct ifmediareq *);
257 static int	em_media_change(struct ifnet *);
258 static void	em_timer(void *);
259 
260 static void	em_intr(void *);
261 static void	em_intr_mask(void *);
262 static void	em_intr_body(struct adapter *, boolean_t);
263 static void	em_rxeof(struct adapter *, int);
264 static void	em_txeof(struct adapter *);
265 static void	em_tx_collect(struct adapter *);
266 static void	em_tx_purge(struct adapter *);
267 static void	em_enable_intr(struct adapter *);
268 static void	em_disable_intr(struct adapter *);
269 
270 static int	em_dma_malloc(struct adapter *, bus_size_t,
271 		    struct em_dma_alloc *);
272 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
273 static void	em_init_tx_ring(struct adapter *);
274 static int	em_init_rx_ring(struct adapter *);
275 static int	em_create_tx_ring(struct adapter *);
276 static int	em_create_rx_ring(struct adapter *);
277 static void	em_destroy_tx_ring(struct adapter *, int);
278 static void	em_destroy_rx_ring(struct adapter *, int);
279 static int	em_newbuf(struct adapter *, int, int);
280 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
281 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
282 		    struct mbuf *);
283 static int	em_txcsum(struct adapter *, struct mbuf *,
284 		    uint32_t *, uint32_t *);
285 static int	em_tso_pullup(struct adapter *, struct mbuf **);
286 static int	em_tso_setup(struct adapter *, struct mbuf *,
287 		    uint32_t *, uint32_t *);
288 
289 static int	em_get_hw_info(struct adapter *);
290 static int 	em_is_valid_eaddr(const uint8_t *);
291 static int	em_alloc_pci_res(struct adapter *);
292 static void	em_free_pci_res(struct adapter *);
293 static int	em_reset(struct adapter *);
294 static void	em_setup_ifp(struct adapter *);
295 static void	em_init_tx_unit(struct adapter *);
296 static void	em_init_rx_unit(struct adapter *);
297 static void	em_update_stats(struct adapter *);
298 static void	em_set_promisc(struct adapter *);
299 static void	em_disable_promisc(struct adapter *);
300 static void	em_set_multi(struct adapter *);
301 static void	em_update_link_status(struct adapter *);
302 static void	em_smartspeed(struct adapter *);
303 static void	em_set_itr(struct adapter *, uint32_t);
304 static void	em_disable_aspm(struct adapter *);
305 
306 /* Hardware workarounds */
307 static int	em_82547_fifo_workaround(struct adapter *, int);
308 static void	em_82547_update_fifo_head(struct adapter *, int);
309 static int	em_82547_tx_fifo_reset(struct adapter *);
310 static void	em_82547_move_tail(void *);
311 static void	em_82547_move_tail_serialized(struct adapter *);
312 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
313 
314 static void	em_print_debug_info(struct adapter *);
315 static void	em_print_nvm_info(struct adapter *);
316 static void	em_print_hw_stats(struct adapter *);
317 
318 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
319 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
320 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
321 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
322 static void	em_add_sysctl(struct adapter *adapter);
323 
324 /* Management and WOL Support */
325 static void	em_get_mgmt(struct adapter *);
326 static void	em_rel_mgmt(struct adapter *);
327 static void	em_get_hw_control(struct adapter *);
328 static void	em_rel_hw_control(struct adapter *);
329 static void	em_enable_wol(device_t);
330 
331 static device_method_t em_methods[] = {
332 	/* Device interface */
333 	DEVMETHOD(device_probe,		em_probe),
334 	DEVMETHOD(device_attach,	em_attach),
335 	DEVMETHOD(device_detach,	em_detach),
336 	DEVMETHOD(device_shutdown,	em_shutdown),
337 	DEVMETHOD(device_suspend,	em_suspend),
338 	DEVMETHOD(device_resume,	em_resume),
339 	DEVMETHOD_END
340 };
341 
342 static driver_t em_driver = {
343 	"em",
344 	em_methods,
345 	sizeof(struct adapter),
346 };
347 
348 static devclass_t em_devclass;
349 
350 DECLARE_DUMMY_MODULE(if_em);
351 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
352 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
353 
354 /*
355  * Tunables
356  */
357 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
358 static int	em_rxd = EM_DEFAULT_RXD;
359 static int	em_txd = EM_DEFAULT_TXD;
360 static int	em_smart_pwr_down = 0;
361 
362 /* Controls whether promiscuous also shows bad packets */
363 static int	em_debug_sbp = FALSE;
364 
365 static int	em_82573_workaround = 1;
366 static int	em_msi_enable = 1;
367 
368 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
369 TUNABLE_INT("hw.em.rxd", &em_rxd);
370 TUNABLE_INT("hw.em.txd", &em_txd);
371 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
372 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
373 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
374 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
375 
376 /* Global used in WOL setup with multiport cards */
377 static int	em_global_quad_port_a = 0;
378 
379 /* Set this to one to display debug statistics */
380 static int	em_display_debug_stats = 0;
381 
382 #if !defined(KTR_IF_EM)
383 #define KTR_IF_EM	KTR_ALL
384 #endif
385 KTR_INFO_MASTER(if_em);
386 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
387 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
388 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
389 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
390 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
391 #define logif(name)	KTR_LOG(if_em_ ## name)
392 
393 static int
394 em_probe(device_t dev)
395 {
396 	const struct em_vendor_info *ent;
397 	uint16_t vid, did;
398 
399 	vid = pci_get_vendor(dev);
400 	did = pci_get_device(dev);
401 
402 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
403 		if (vid == ent->vendor_id && did == ent->device_id) {
404 			device_set_desc(dev, ent->desc);
405 			device_set_async_attach(dev, TRUE);
406 			return (ent->ret);
407 		}
408 	}
409 	return (ENXIO);
410 }
411 
412 static int
413 em_attach(device_t dev)
414 {
415 	struct adapter *adapter = device_get_softc(dev);
416 	struct ifnet *ifp = &adapter->arpcom.ac_if;
417 	int tsize, rsize;
418 	int error = 0;
419 	uint16_t eeprom_data, device_id, apme_mask;
420 	driver_intr_t *intr_func;
421 
422 	adapter->dev = adapter->osdep.dev = dev;
423 
424 	callout_init_mp(&adapter->timer);
425 	callout_init_mp(&adapter->tx_fifo_timer);
426 
427 	/* Determine hardware and mac info */
428 	error = em_get_hw_info(adapter);
429 	if (error) {
430 		device_printf(dev, "Identify hardware failed\n");
431 		goto fail;
432 	}
433 
434 	/* Setup PCI resources */
435 	error = em_alloc_pci_res(adapter);
436 	if (error) {
437 		device_printf(dev, "Allocation of PCI resources failed\n");
438 		goto fail;
439 	}
440 
441 	/*
442 	 * For ICH8 and family we need to map the flash memory,
443 	 * and this must happen after the MAC is identified.
444 	 */
445 	if (adapter->hw.mac.type == e1000_ich8lan ||
446 	    adapter->hw.mac.type == e1000_ich9lan ||
447 	    adapter->hw.mac.type == e1000_ich10lan ||
448 	    adapter->hw.mac.type == e1000_pchlan ||
449 	    adapter->hw.mac.type == e1000_pch2lan) {
450 		adapter->flash_rid = EM_BAR_FLASH;
451 
452 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
453 					&adapter->flash_rid, RF_ACTIVE);
454 		if (adapter->flash == NULL) {
455 			device_printf(dev, "Mapping of Flash failed\n");
456 			error = ENXIO;
457 			goto fail;
458 		}
459 		adapter->osdep.flash_bus_space_tag =
460 		    rman_get_bustag(adapter->flash);
461 		adapter->osdep.flash_bus_space_handle =
462 		    rman_get_bushandle(adapter->flash);
463 
464 		/*
465 		 * This is used in the shared code
466 		 * XXX this goof is actually not used.
467 		 */
468 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
469 	}
470 
471 	switch (adapter->hw.mac.type) {
472 	case e1000_82571:
473 	case e1000_82572:
474 		/*
475 		 * Pullup extra 4bytes into the first data segment, see:
476 		 * 82571/82572 specification update errata #7
477 		 *
478 		 * NOTE:
479 		 * 4bytes instead of 2bytes, which are mentioned in the
480 		 * errata, are pulled; mainly to keep rest of the data
481 		 * properly aligned.
482 		 */
483 		adapter->flags |= EM_FLAG_TSO_PULLEX;
484 		/* FALL THROUGH */
485 
486 	case e1000_82573:
487 	case e1000_82574:
488 	case e1000_80003es2lan:
489 		adapter->flags |= EM_FLAG_TSO;
490 		break;
491 
492 	default:
493 		break;
494 	}
495 
496 	/* Do Shared Code initialization */
497 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
498 		device_printf(dev, "Setup of Shared code failed\n");
499 		error = ENXIO;
500 		goto fail;
501 	}
502 
503 	e1000_get_bus_info(&adapter->hw);
504 
505 	/*
506 	 * Validate number of transmit and receive descriptors.  It
507 	 * must not exceed hardware maximum, and must be multiple
508 	 * of E1000_DBA_ALIGN.
509 	 */
510 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
511 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
512 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
513 	    em_txd < EM_MIN_TXD) {
514 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
515 		    EM_DEFAULT_TXD, em_txd);
516 		adapter->num_tx_desc = EM_DEFAULT_TXD;
517 	} else {
518 		adapter->num_tx_desc = em_txd;
519 	}
520 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
521 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
522 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
523 	    em_rxd < EM_MIN_RXD) {
524 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
525 		    EM_DEFAULT_RXD, em_rxd);
526 		adapter->num_rx_desc = EM_DEFAULT_RXD;
527 	} else {
528 		adapter->num_rx_desc = em_rxd;
529 	}
530 
531 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
532 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
533 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
534 	adapter->rx_buffer_len = MCLBYTES;
535 
536 	/*
537 	 * Interrupt throttle rate
538 	 */
539 	if (em_int_throttle_ceil == 0) {
540 		adapter->int_throttle_ceil = 0;
541 	} else {
542 		int throttle = em_int_throttle_ceil;
543 
544 		if (throttle < 0)
545 			throttle = EM_DEFAULT_ITR;
546 
547 		/* Recalculate the tunable value to get the exact frequency. */
548 		throttle = 1000000000 / 256 / throttle;
549 
550 		/* Upper 16bits of ITR is reserved and should be zero */
551 		if (throttle & 0xffff0000)
552 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
553 
554 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
555 	}
556 
557 	e1000_init_script_state_82541(&adapter->hw, TRUE);
558 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
559 
560 	/* Copper options */
561 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
562 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
563 		adapter->hw.phy.disable_polarity_correction = FALSE;
564 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
565 	}
566 
567 	/* Set the frame limits assuming standard ethernet sized frames. */
568 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
569 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
570 
571 	/* This controls when hardware reports transmit completion status. */
572 	adapter->hw.mac.report_tx_early = 1;
573 
574 	/*
575 	 * Create top level busdma tag
576 	 */
577 	error = bus_dma_tag_create(NULL, 1, 0,
578 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
579 			NULL, NULL,
580 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
581 			0, &adapter->parent_dtag);
582 	if (error) {
583 		device_printf(dev, "could not create top level DMA tag\n");
584 		goto fail;
585 	}
586 
587 	/*
588 	 * Allocate Transmit Descriptor ring
589 	 */
590 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
591 			 EM_DBA_ALIGN);
592 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
593 	if (error) {
594 		device_printf(dev, "Unable to allocate tx_desc memory\n");
595 		goto fail;
596 	}
597 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
598 
599 	/*
600 	 * Allocate Receive Descriptor ring
601 	 */
602 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
603 			 EM_DBA_ALIGN);
604 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
605 	if (error) {
606 		device_printf(dev, "Unable to allocate rx_desc memory\n");
607 		goto fail;
608 	}
609 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
610 
611 	/* Allocate multicast array memory. */
612 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
613 	    M_DEVBUF, M_WAITOK);
614 
615 	/* Indicate SOL/IDER usage */
616 	if (e1000_check_reset_block(&adapter->hw)) {
617 		device_printf(dev,
618 		    "PHY reset is blocked due to SOL/IDER session.\n");
619 	}
620 
621 	/*
622 	 * Start from a known state, this is important in reading the
623 	 * nvm and mac from that.
624 	 */
625 	e1000_reset_hw(&adapter->hw);
626 
627 	/* Make sure we have a good EEPROM before we read from it */
628 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
629 		/*
630 		 * Some PCI-E parts fail the first check due to
631 		 * the link being in sleep state, call it again,
632 		 * if it fails a second time its a real issue.
633 		 */
634 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
635 			device_printf(dev,
636 			    "The EEPROM Checksum Is Not Valid\n");
637 			error = EIO;
638 			goto fail;
639 		}
640 	}
641 
642 	/* Copy the permanent MAC address out of the EEPROM */
643 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
644 		device_printf(dev, "EEPROM read error while reading MAC"
645 		    " address\n");
646 		error = EIO;
647 		goto fail;
648 	}
649 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
650 		device_printf(dev, "Invalid MAC address\n");
651 		error = EIO;
652 		goto fail;
653 	}
654 
655 	/* Allocate transmit descriptors and buffers */
656 	error = em_create_tx_ring(adapter);
657 	if (error) {
658 		device_printf(dev, "Could not setup transmit structures\n");
659 		goto fail;
660 	}
661 
662 	/* Allocate receive descriptors and buffers */
663 	error = em_create_rx_ring(adapter);
664 	if (error) {
665 		device_printf(dev, "Could not setup receive structures\n");
666 		goto fail;
667 	}
668 
669 	/* Manually turn off all interrupts */
670 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
671 
672 	/* Determine if we have to control management hardware */
673 	if (e1000_enable_mng_pass_thru(&adapter->hw))
674 		adapter->flags |= EM_FLAG_HAS_MGMT;
675 
676 	/*
677 	 * Setup Wake-on-Lan
678 	 */
679 	apme_mask = EM_EEPROM_APME;
680 	eeprom_data = 0;
681 	switch (adapter->hw.mac.type) {
682 	case e1000_82542:
683 	case e1000_82543:
684 		break;
685 
686 	case e1000_82573:
687 	case e1000_82583:
688 		adapter->flags |= EM_FLAG_HAS_AMT;
689 		/* FALL THROUGH */
690 
691 	case e1000_82546:
692 	case e1000_82546_rev_3:
693 	case e1000_82571:
694 	case e1000_82572:
695 	case e1000_80003es2lan:
696 		if (adapter->hw.bus.func == 1) {
697 			e1000_read_nvm(&adapter->hw,
698 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
699 		} else {
700 			e1000_read_nvm(&adapter->hw,
701 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
702 		}
703 		break;
704 
705 	case e1000_ich8lan:
706 	case e1000_ich9lan:
707 	case e1000_ich10lan:
708 	case e1000_pchlan:
709 	case e1000_pch2lan:
710 		apme_mask = E1000_WUC_APME;
711 		adapter->flags |= EM_FLAG_HAS_AMT;
712 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
713 		break;
714 
715 	default:
716 		e1000_read_nvm(&adapter->hw,
717 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
718 		break;
719 	}
720 	if (eeprom_data & apme_mask)
721 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
722 
723 	/*
724          * We have the eeprom settings, now apply the special cases
725          * where the eeprom may be wrong or the board won't support
726          * wake on lan on a particular port
727 	 */
728 	device_id = pci_get_device(dev);
729         switch (device_id) {
730 	case E1000_DEV_ID_82546GB_PCIE:
731 		adapter->wol = 0;
732 		break;
733 
734 	case E1000_DEV_ID_82546EB_FIBER:
735 	case E1000_DEV_ID_82546GB_FIBER:
736 	case E1000_DEV_ID_82571EB_FIBER:
737 		/*
738 		 * Wake events only supported on port A for dual fiber
739 		 * regardless of eeprom setting
740 		 */
741 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
742 		    E1000_STATUS_FUNC_1)
743 			adapter->wol = 0;
744 		break;
745 
746 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
747 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
748 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
749 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
750                 /* if quad port adapter, disable WoL on all but port A */
751 		if (em_global_quad_port_a != 0)
752 			adapter->wol = 0;
753 		/* Reset for multiple quad port adapters */
754 		if (++em_global_quad_port_a == 4)
755 			em_global_quad_port_a = 0;
756                 break;
757 	}
758 
759 	/* XXX disable wol */
760 	adapter->wol = 0;
761 
762 	/* Setup OS specific network interface */
763 	em_setup_ifp(adapter);
764 
765 	/* Add sysctl tree, must after em_setup_ifp() */
766 	em_add_sysctl(adapter);
767 
768 #ifdef IFPOLL_ENABLE
769 	/* Polling setup */
770 	ifpoll_compat_setup(&adapter->npoll,
771 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
772 	    ifp->if_serializer);
773 #endif
774 
775 	/* Reset the hardware */
776 	error = em_reset(adapter);
777 	if (error) {
778 		device_printf(dev, "Unable to reset the hardware\n");
779 		goto fail;
780 	}
781 
782 	/* Initialize statistics */
783 	em_update_stats(adapter);
784 
785 	adapter->hw.mac.get_link_status = 1;
786 	em_update_link_status(adapter);
787 
788 	/* Do we need workaround for 82544 PCI-X adapter? */
789 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
790 	    adapter->hw.mac.type == e1000_82544)
791 		adapter->pcix_82544 = TRUE;
792 	else
793 		adapter->pcix_82544 = FALSE;
794 
795 	if (adapter->pcix_82544) {
796 		/*
797 		 * 82544 on PCI-X may split one TX segment
798 		 * into two TX descs, so we double its number
799 		 * of spare TX desc here.
800 		 */
801 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
802 	} else {
803 		adapter->spare_tx_desc = EM_TX_SPARE;
804 	}
805 	if (adapter->flags & EM_FLAG_TSO)
806 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
807 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
808 
809 	/*
810 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
811 	 * and tx_int_nsegs:
812 	 * (spare_tx_desc + EM_TX_RESERVED) <=
813 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
814 	 */
815 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
816 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
817 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
818 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
819 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
820 
821 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
822 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
823 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
824 
825 	/* Non-AMT based hardware can now take control from firmware */
826 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
827 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
828 		em_get_hw_control(adapter);
829 
830 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
831 
832 	/*
833 	 * Missing Interrupt Following ICR read:
834 	 *
835 	 * 82571/82572 specification update errata #76
836 	 * 82573 specification update errata #31
837 	 * 82574 specification update errata #12
838 	 * 82583 specification update errata #4
839 	 */
840 	intr_func = em_intr;
841 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
842 	    (adapter->hw.mac.type == e1000_82571 ||
843 	     adapter->hw.mac.type == e1000_82572 ||
844 	     adapter->hw.mac.type == e1000_82573 ||
845 	     adapter->hw.mac.type == e1000_82574 ||
846 	     adapter->hw.mac.type == e1000_82583))
847 		intr_func = em_intr_mask;
848 
849 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
850 			       intr_func, adapter, &adapter->intr_tag,
851 			       ifp->if_serializer);
852 	if (error) {
853 		device_printf(dev, "Failed to register interrupt handler");
854 		ether_ifdetach(&adapter->arpcom.ac_if);
855 		goto fail;
856 	}
857 	return (0);
858 fail:
859 	em_detach(dev);
860 	return (error);
861 }
862 
863 static int
864 em_detach(device_t dev)
865 {
866 	struct adapter *adapter = device_get_softc(dev);
867 
868 	if (device_is_attached(dev)) {
869 		struct ifnet *ifp = &adapter->arpcom.ac_if;
870 
871 		lwkt_serialize_enter(ifp->if_serializer);
872 
873 		em_stop(adapter);
874 
875 		e1000_phy_hw_reset(&adapter->hw);
876 
877 		em_rel_mgmt(adapter);
878 		em_rel_hw_control(adapter);
879 
880 		if (adapter->wol) {
881 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
882 					E1000_WUC_PME_EN);
883 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
884 			em_enable_wol(dev);
885 		}
886 
887 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
888 
889 		lwkt_serialize_exit(ifp->if_serializer);
890 
891 		ether_ifdetach(ifp);
892 	} else if (adapter->memory != NULL) {
893 		em_rel_hw_control(adapter);
894 	}
895 	bus_generic_detach(dev);
896 
897 	em_free_pci_res(adapter);
898 
899 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
900 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
901 
902 	/* Free Transmit Descriptor ring */
903 	if (adapter->tx_desc_base)
904 		em_dma_free(adapter, &adapter->txdma);
905 
906 	/* Free Receive Descriptor ring */
907 	if (adapter->rx_desc_base)
908 		em_dma_free(adapter, &adapter->rxdma);
909 
910 	/* Free top level busdma tag */
911 	if (adapter->parent_dtag != NULL)
912 		bus_dma_tag_destroy(adapter->parent_dtag);
913 
914 	/* Free sysctl tree */
915 	if (adapter->sysctl_tree != NULL)
916 		sysctl_ctx_free(&adapter->sysctl_ctx);
917 
918 	if (adapter->mta != NULL)
919 		kfree(adapter->mta, M_DEVBUF);
920 
921 	return (0);
922 }
923 
924 static int
925 em_shutdown(device_t dev)
926 {
927 	return em_suspend(dev);
928 }
929 
930 static int
931 em_suspend(device_t dev)
932 {
933 	struct adapter *adapter = device_get_softc(dev);
934 	struct ifnet *ifp = &adapter->arpcom.ac_if;
935 
936 	lwkt_serialize_enter(ifp->if_serializer);
937 
938 	em_stop(adapter);
939 
940 	em_rel_mgmt(adapter);
941 	em_rel_hw_control(adapter);
942 
943 	if (adapter->wol) {
944 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
945 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
946 		em_enable_wol(dev);
947 	}
948 
949 	lwkt_serialize_exit(ifp->if_serializer);
950 
951 	return bus_generic_suspend(dev);
952 }
953 
954 static int
955 em_resume(device_t dev)
956 {
957 	struct adapter *adapter = device_get_softc(dev);
958 	struct ifnet *ifp = &adapter->arpcom.ac_if;
959 
960 	lwkt_serialize_enter(ifp->if_serializer);
961 
962 	if (adapter->hw.mac.type == e1000_pch2lan)
963 		e1000_resume_workarounds_pchlan(&adapter->hw);
964 
965 	em_init(adapter);
966 	em_get_mgmt(adapter);
967 	if_devstart(ifp);
968 
969 	lwkt_serialize_exit(ifp->if_serializer);
970 
971 	return bus_generic_resume(dev);
972 }
973 
974 static void
975 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
976 {
977 	struct adapter *adapter = ifp->if_softc;
978 	struct mbuf *m_head;
979 	int idx = -1, nsegs = 0;
980 
981 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
982 	ASSERT_SERIALIZED(ifp->if_serializer);
983 
984 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
985 		return;
986 
987 	if (!adapter->link_active) {
988 		ifq_purge(&ifp->if_snd);
989 		return;
990 	}
991 
992 	while (!ifq_is_empty(&ifp->if_snd)) {
993 		/* Now do we at least have a minimal? */
994 		if (EM_IS_OACTIVE(adapter)) {
995 			em_tx_collect(adapter);
996 			if (EM_IS_OACTIVE(adapter)) {
997 				ifq_set_oactive(&ifp->if_snd);
998 				adapter->no_tx_desc_avail1++;
999 				break;
1000 			}
1001 		}
1002 
1003 		logif(pkt_txqueue);
1004 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1005 		if (m_head == NULL)
1006 			break;
1007 
1008 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1009 			IFNET_STAT_INC(ifp, oerrors, 1);
1010 			em_tx_collect(adapter);
1011 			continue;
1012 		}
1013 
1014 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1015 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1016 			nsegs = 0;
1017 			idx = -1;
1018 		}
1019 
1020 		/* Send a copy of the frame to the BPF listener */
1021 		ETHER_BPF_MTAP(ifp, m_head);
1022 
1023 		/* Set timeout in case hardware has problems transmitting. */
1024 		ifp->if_timer = EM_TX_TIMEOUT;
1025 	}
1026 	if (idx >= 0)
1027 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1028 }
1029 
1030 static int
1031 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1032 {
1033 	struct adapter *adapter = ifp->if_softc;
1034 	struct ifreq *ifr = (struct ifreq *)data;
1035 	uint16_t eeprom_data = 0;
1036 	int max_frame_size, mask, reinit;
1037 	int error = 0;
1038 
1039 	ASSERT_SERIALIZED(ifp->if_serializer);
1040 
1041 	switch (command) {
1042 	case SIOCSIFMTU:
1043 		switch (adapter->hw.mac.type) {
1044 		case e1000_82573:
1045 			/*
1046 			 * 82573 only supports jumbo frames
1047 			 * if ASPM is disabled.
1048 			 */
1049 			e1000_read_nvm(&adapter->hw,
1050 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1051 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1052 				max_frame_size = ETHER_MAX_LEN;
1053 				break;
1054 			}
1055 			/* FALL THROUGH */
1056 
1057 		/* Limit Jumbo Frame size */
1058 		case e1000_82571:
1059 		case e1000_82572:
1060 		case e1000_ich9lan:
1061 		case e1000_ich10lan:
1062 		case e1000_pch2lan:
1063 		case e1000_82574:
1064 		case e1000_82583:
1065 		case e1000_80003es2lan:
1066 			max_frame_size = 9234;
1067 			break;
1068 
1069 		case e1000_pchlan:
1070 			max_frame_size = 4096;
1071 			break;
1072 
1073 		/* Adapters that do not support jumbo frames */
1074 		case e1000_82542:
1075 		case e1000_ich8lan:
1076 			max_frame_size = ETHER_MAX_LEN;
1077 			break;
1078 
1079 		default:
1080 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1081 			break;
1082 		}
1083 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1084 		    ETHER_CRC_LEN) {
1085 			error = EINVAL;
1086 			break;
1087 		}
1088 
1089 		ifp->if_mtu = ifr->ifr_mtu;
1090 		adapter->max_frame_size =
1091 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1092 
1093 		if (ifp->if_flags & IFF_RUNNING)
1094 			em_init(adapter);
1095 		break;
1096 
1097 	case SIOCSIFFLAGS:
1098 		if (ifp->if_flags & IFF_UP) {
1099 			if ((ifp->if_flags & IFF_RUNNING)) {
1100 				if ((ifp->if_flags ^ adapter->if_flags) &
1101 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1102 					em_disable_promisc(adapter);
1103 					em_set_promisc(adapter);
1104 				}
1105 			} else {
1106 				em_init(adapter);
1107 			}
1108 		} else if (ifp->if_flags & IFF_RUNNING) {
1109 			em_stop(adapter);
1110 		}
1111 		adapter->if_flags = ifp->if_flags;
1112 		break;
1113 
1114 	case SIOCADDMULTI:
1115 	case SIOCDELMULTI:
1116 		if (ifp->if_flags & IFF_RUNNING) {
1117 			em_disable_intr(adapter);
1118 			em_set_multi(adapter);
1119 			if (adapter->hw.mac.type == e1000_82542 &&
1120 			    adapter->hw.revision_id == E1000_REVISION_2)
1121 				em_init_rx_unit(adapter);
1122 #ifdef IFPOLL_ENABLE
1123 			if (!(ifp->if_flags & IFF_NPOLLING))
1124 #endif
1125 				em_enable_intr(adapter);
1126 		}
1127 		break;
1128 
1129 	case SIOCSIFMEDIA:
1130 		/* Check SOL/IDER usage */
1131 		if (e1000_check_reset_block(&adapter->hw)) {
1132 			device_printf(adapter->dev, "Media change is"
1133 			    " blocked due to SOL/IDER session.\n");
1134 			break;
1135 		}
1136 		/* FALL THROUGH */
1137 
1138 	case SIOCGIFMEDIA:
1139 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1140 		break;
1141 
1142 	case SIOCSIFCAP:
1143 		reinit = 0;
1144 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1145 		if (mask & IFCAP_RXCSUM) {
1146 			ifp->if_capenable ^= IFCAP_RXCSUM;
1147 			reinit = 1;
1148 		}
1149 		if (mask & IFCAP_TXCSUM) {
1150 			ifp->if_capenable ^= IFCAP_TXCSUM;
1151 			if (ifp->if_capenable & IFCAP_TXCSUM)
1152 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1153 			else
1154 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1155 		}
1156 		if (mask & IFCAP_TSO) {
1157 			ifp->if_capenable ^= IFCAP_TSO;
1158 			if (ifp->if_capenable & IFCAP_TSO)
1159 				ifp->if_hwassist |= CSUM_TSO;
1160 			else
1161 				ifp->if_hwassist &= ~CSUM_TSO;
1162 		}
1163 		if (mask & IFCAP_VLAN_HWTAGGING) {
1164 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1165 			reinit = 1;
1166 		}
1167 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1168 			em_init(adapter);
1169 		break;
1170 
1171 	default:
1172 		error = ether_ioctl(ifp, command, data);
1173 		break;
1174 	}
1175 	return (error);
1176 }
1177 
1178 static void
1179 em_watchdog(struct ifnet *ifp)
1180 {
1181 	struct adapter *adapter = ifp->if_softc;
1182 
1183 	ASSERT_SERIALIZED(ifp->if_serializer);
1184 
1185 	/*
1186 	 * The timer is set to 5 every time start queues a packet.
1187 	 * Then txeof keeps resetting it as long as it cleans at
1188 	 * least one descriptor.
1189 	 * Finally, anytime all descriptors are clean the timer is
1190 	 * set to 0.
1191 	 */
1192 
1193 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1194 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1195 		/*
1196 		 * If we reach here, all TX jobs are completed and
1197 		 * the TX engine should have been idled for some time.
1198 		 * We don't need to call if_devstart() here.
1199 		 */
1200 		ifq_clr_oactive(&ifp->if_snd);
1201 		ifp->if_timer = 0;
1202 		return;
1203 	}
1204 
1205 	/*
1206 	 * If we are in this routine because of pause frames, then
1207 	 * don't reset the hardware.
1208 	 */
1209 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1210 	    E1000_STATUS_TXOFF) {
1211 		ifp->if_timer = EM_TX_TIMEOUT;
1212 		return;
1213 	}
1214 
1215 	if (e1000_check_for_link(&adapter->hw) == 0)
1216 		if_printf(ifp, "watchdog timeout -- resetting\n");
1217 
1218 	IFNET_STAT_INC(ifp, oerrors, 1);
1219 	adapter->watchdog_events++;
1220 
1221 	em_init(adapter);
1222 
1223 	if (!ifq_is_empty(&ifp->if_snd))
1224 		if_devstart(ifp);
1225 }
1226 
1227 static void
1228 em_init(void *xsc)
1229 {
1230 	struct adapter *adapter = xsc;
1231 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1232 	device_t dev = adapter->dev;
1233 
1234 	ASSERT_SERIALIZED(ifp->if_serializer);
1235 
1236 	em_stop(adapter);
1237 
1238 	/* Get the latest mac address, User can use a LAA */
1239         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1240 
1241 	/* Put the address into the Receive Address Array */
1242 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1243 
1244 	/*
1245 	 * With the 82571 adapter, RAR[0] may be overwritten
1246 	 * when the other port is reset, we make a duplicate
1247 	 * in RAR[14] for that eventuality, this assures
1248 	 * the interface continues to function.
1249 	 */
1250 	if (adapter->hw.mac.type == e1000_82571) {
1251 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1252 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1253 		    E1000_RAR_ENTRIES - 1);
1254 	}
1255 
1256 	/* Reset the hardware */
1257 	if (em_reset(adapter)) {
1258 		device_printf(dev, "Unable to reset the hardware\n");
1259 		/* XXX em_stop()? */
1260 		return;
1261 	}
1262 	em_update_link_status(adapter);
1263 
1264 	/* Setup VLAN support, basic and offload if available */
1265 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1266 
1267 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1268 		uint32_t ctrl;
1269 
1270 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1271 		ctrl |= E1000_CTRL_VME;
1272 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1273 	}
1274 
1275 	/* Configure for OS presence */
1276 	em_get_mgmt(adapter);
1277 
1278 	/* Prepare transmit descriptors and buffers */
1279 	em_init_tx_ring(adapter);
1280 	em_init_tx_unit(adapter);
1281 
1282 	/* Setup Multicast table */
1283 	em_set_multi(adapter);
1284 
1285 	/* Prepare receive descriptors and buffers */
1286 	if (em_init_rx_ring(adapter)) {
1287 		device_printf(dev, "Could not setup receive structures\n");
1288 		em_stop(adapter);
1289 		return;
1290 	}
1291 	em_init_rx_unit(adapter);
1292 
1293 	/* Don't lose promiscuous settings */
1294 	em_set_promisc(adapter);
1295 
1296 	ifp->if_flags |= IFF_RUNNING;
1297 	ifq_clr_oactive(&ifp->if_snd);
1298 
1299 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1300 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1301 
1302 	/* MSI/X configuration for 82574 */
1303 	if (adapter->hw.mac.type == e1000_82574) {
1304 		int tmp;
1305 
1306 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1307 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1308 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1309 		/*
1310 		 * XXX MSIX
1311 		 * Set the IVAR - interrupt vector routing.
1312 		 * Each nibble represents a vector, high bit
1313 		 * is enable, other 3 bits are the MSIX table
1314 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1315 		 * Link (other) to 2, hence the magic number.
1316 		 */
1317 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1318 	}
1319 
1320 #ifdef IFPOLL_ENABLE
1321 	/*
1322 	 * Only enable interrupts if we are not polling, make sure
1323 	 * they are off otherwise.
1324 	 */
1325 	if (ifp->if_flags & IFF_NPOLLING)
1326 		em_disable_intr(adapter);
1327 	else
1328 #endif /* IFPOLL_ENABLE */
1329 		em_enable_intr(adapter);
1330 
1331 	/* AMT based hardware can now take control from firmware */
1332 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1333 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1334 	    adapter->hw.mac.type >= e1000_82571)
1335 		em_get_hw_control(adapter);
1336 }
1337 
1338 #ifdef IFPOLL_ENABLE
1339 
1340 static void
1341 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1342 {
1343 	struct adapter *adapter = ifp->if_softc;
1344 
1345 	ASSERT_SERIALIZED(ifp->if_serializer);
1346 
1347 	if (adapter->npoll.ifpc_stcount-- == 0) {
1348 		uint32_t reg_icr;
1349 
1350 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1351 
1352 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1353 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1354 			callout_stop(&adapter->timer);
1355 			adapter->hw.mac.get_link_status = 1;
1356 			em_update_link_status(adapter);
1357 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1358 		}
1359 	}
1360 
1361 	em_rxeof(adapter, count);
1362 	em_txeof(adapter);
1363 
1364 	if (!ifq_is_empty(&ifp->if_snd))
1365 		if_devstart(ifp);
1366 }
1367 
1368 static void
1369 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1370 {
1371 	struct adapter *adapter = ifp->if_softc;
1372 
1373 	ASSERT_SERIALIZED(ifp->if_serializer);
1374 
1375 	if (info != NULL) {
1376 		int cpuid = adapter->npoll.ifpc_cpuid;
1377 
1378                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1379 		info->ifpi_rx[cpuid].arg = NULL;
1380 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1381 
1382 		if (ifp->if_flags & IFF_RUNNING)
1383 			em_disable_intr(adapter);
1384 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1385 	} else {
1386 		if (ifp->if_flags & IFF_RUNNING)
1387 			em_enable_intr(adapter);
1388 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1389 	}
1390 }
1391 
1392 #endif /* IFPOLL_ENABLE */
1393 
1394 static void
1395 em_intr(void *xsc)
1396 {
1397 	em_intr_body(xsc, TRUE);
1398 }
1399 
1400 static void
1401 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1402 {
1403 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1404 	uint32_t reg_icr;
1405 
1406 	logif(intr_beg);
1407 	ASSERT_SERIALIZED(ifp->if_serializer);
1408 
1409 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1410 
1411 	if (chk_asserted &&
1412 	    ((adapter->hw.mac.type >= e1000_82571 &&
1413 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1414 	     reg_icr == 0)) {
1415 		logif(intr_end);
1416 		return;
1417 	}
1418 
1419 	/*
1420 	 * XXX: some laptops trigger several spurious interrupts
1421 	 * on em(4) when in the resume cycle. The ICR register
1422 	 * reports all-ones value in this case. Processing such
1423 	 * interrupts would lead to a freeze. I don't know why.
1424 	 */
1425 	if (reg_icr == 0xffffffff) {
1426 		logif(intr_end);
1427 		return;
1428 	}
1429 
1430 	if (ifp->if_flags & IFF_RUNNING) {
1431 		if (reg_icr &
1432 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1433 			em_rxeof(adapter, -1);
1434 		if (reg_icr & E1000_ICR_TXDW) {
1435 			em_txeof(adapter);
1436 			if (!ifq_is_empty(&ifp->if_snd))
1437 				if_devstart(ifp);
1438 		}
1439 	}
1440 
1441 	/* Link status change */
1442 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1443 		callout_stop(&adapter->timer);
1444 		adapter->hw.mac.get_link_status = 1;
1445 		em_update_link_status(adapter);
1446 
1447 		/* Deal with TX cruft when link lost */
1448 		em_tx_purge(adapter);
1449 
1450 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1451 	}
1452 
1453 	if (reg_icr & E1000_ICR_RXO)
1454 		adapter->rx_overruns++;
1455 
1456 	logif(intr_end);
1457 }
1458 
1459 static void
1460 em_intr_mask(void *xsc)
1461 {
1462 	struct adapter *adapter = xsc;
1463 
1464 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1465 	/*
1466 	 * NOTE:
1467 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1468 	 * so don't check it.
1469 	 */
1470 	em_intr_body(adapter, FALSE);
1471 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1472 }
1473 
1474 static void
1475 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1476 {
1477 	struct adapter *adapter = ifp->if_softc;
1478 	u_char fiber_type = IFM_1000_SX;
1479 
1480 	ASSERT_SERIALIZED(ifp->if_serializer);
1481 
1482 	em_update_link_status(adapter);
1483 
1484 	ifmr->ifm_status = IFM_AVALID;
1485 	ifmr->ifm_active = IFM_ETHER;
1486 
1487 	if (!adapter->link_active)
1488 		return;
1489 
1490 	ifmr->ifm_status |= IFM_ACTIVE;
1491 
1492 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1493 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1494 		if (adapter->hw.mac.type == e1000_82545)
1495 			fiber_type = IFM_1000_LX;
1496 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1497 	} else {
1498 		switch (adapter->link_speed) {
1499 		case 10:
1500 			ifmr->ifm_active |= IFM_10_T;
1501 			break;
1502 		case 100:
1503 			ifmr->ifm_active |= IFM_100_TX;
1504 			break;
1505 
1506 		case 1000:
1507 			ifmr->ifm_active |= IFM_1000_T;
1508 			break;
1509 		}
1510 		if (adapter->link_duplex == FULL_DUPLEX)
1511 			ifmr->ifm_active |= IFM_FDX;
1512 		else
1513 			ifmr->ifm_active |= IFM_HDX;
1514 	}
1515 }
1516 
1517 static int
1518 em_media_change(struct ifnet *ifp)
1519 {
1520 	struct adapter *adapter = ifp->if_softc;
1521 	struct ifmedia *ifm = &adapter->media;
1522 
1523 	ASSERT_SERIALIZED(ifp->if_serializer);
1524 
1525 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1526 		return (EINVAL);
1527 
1528 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1529 	case IFM_AUTO:
1530 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1531 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1532 		break;
1533 
1534 	case IFM_1000_LX:
1535 	case IFM_1000_SX:
1536 	case IFM_1000_T:
1537 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1538 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1539 		break;
1540 
1541 	case IFM_100_TX:
1542 		adapter->hw.mac.autoneg = FALSE;
1543 		adapter->hw.phy.autoneg_advertised = 0;
1544 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1545 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1546 		else
1547 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1548 		break;
1549 
1550 	case IFM_10_T:
1551 		adapter->hw.mac.autoneg = FALSE;
1552 		adapter->hw.phy.autoneg_advertised = 0;
1553 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1554 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1555 		else
1556 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1557 		break;
1558 
1559 	default:
1560 		if_printf(ifp, "Unsupported media type\n");
1561 		break;
1562 	}
1563 
1564 	em_init(adapter);
1565 
1566 	return (0);
1567 }
1568 
1569 static int
1570 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1571     int *segs_used, int *idx)
1572 {
1573 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1574 	bus_dmamap_t map;
1575 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1576 	struct e1000_tx_desc *ctxd = NULL;
1577 	struct mbuf *m_head = *m_headp;
1578 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1579 	int maxsegs, nsegs, i, j, first, last = 0, error;
1580 
1581 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1582 		error = em_tso_pullup(adapter, m_headp);
1583 		if (error)
1584 			return error;
1585 		m_head = *m_headp;
1586 	}
1587 
1588 	txd_upper = txd_lower = 0;
1589 	txd_used = 0;
1590 
1591 	/*
1592 	 * Capture the first descriptor index, this descriptor
1593 	 * will have the index of the EOP which is the only one
1594 	 * that now gets a DONE bit writeback.
1595 	 */
1596 	first = adapter->next_avail_tx_desc;
1597 	tx_buffer = &adapter->tx_buffer_area[first];
1598 	tx_buffer_mapped = tx_buffer;
1599 	map = tx_buffer->map;
1600 
1601 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1602 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1603 		("not enough spare TX desc"));
1604 	if (adapter->pcix_82544) {
1605 		/* Half it; see the comment in em_attach() */
1606 		maxsegs >>= 1;
1607 	}
1608 	if (maxsegs > EM_MAX_SCATTER)
1609 		maxsegs = EM_MAX_SCATTER;
1610 
1611 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1612 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1613 	if (error) {
1614 		if (error == ENOBUFS)
1615 			adapter->mbuf_alloc_failed++;
1616 		else
1617 			adapter->no_tx_dma_setup++;
1618 
1619 		m_freem(*m_headp);
1620 		*m_headp = NULL;
1621 		return error;
1622 	}
1623         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1624 
1625 	m_head = *m_headp;
1626 	adapter->tx_nsegs += nsegs;
1627 	*segs_used += nsegs;
1628 
1629 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1630 		/* TSO will consume one TX desc */
1631 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1632 		adapter->tx_nsegs += i;
1633 		*segs_used += i;
1634 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1635 		/* TX csum offloading will consume one TX desc */
1636 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1637 		adapter->tx_nsegs += i;
1638 		*segs_used += i;
1639 	}
1640 
1641         /* Handle VLAN tag */
1642 	if (m_head->m_flags & M_VLANTAG) {
1643 		/* Set the vlan id. */
1644 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1645 		/* Tell hardware to add tag */
1646 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1647 	}
1648 
1649 	i = adapter->next_avail_tx_desc;
1650 
1651 	/* Set up our transmit descriptors */
1652 	for (j = 0; j < nsegs; j++) {
1653 		/* If adapter is 82544 and on PCIX bus */
1654 		if(adapter->pcix_82544) {
1655 			DESC_ARRAY desc_array;
1656 			uint32_t array_elements, counter;
1657 
1658 			/*
1659 			 * Check the Address and Length combination and
1660 			 * split the data accordingly
1661 			 */
1662 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1663 						segs[j].ds_len, &desc_array);
1664 			for (counter = 0; counter < array_elements; counter++) {
1665 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1666 
1667 				tx_buffer = &adapter->tx_buffer_area[i];
1668 				ctxd = &adapter->tx_desc_base[i];
1669 
1670 				ctxd->buffer_addr = htole64(
1671 				    desc_array.descriptor[counter].address);
1672 				ctxd->lower.data = htole32(
1673 				    E1000_TXD_CMD_IFCS | txd_lower |
1674 				    desc_array.descriptor[counter].length);
1675 				ctxd->upper.data = htole32(txd_upper);
1676 
1677 				last = i;
1678 				if (++i == adapter->num_tx_desc)
1679 					i = 0;
1680 
1681 				txd_used++;
1682                         }
1683 		} else {
1684 			tx_buffer = &adapter->tx_buffer_area[i];
1685 			ctxd = &adapter->tx_desc_base[i];
1686 
1687 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1688 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1689 						   txd_lower | segs[j].ds_len);
1690 			ctxd->upper.data = htole32(txd_upper);
1691 
1692 			last = i;
1693 			if (++i == adapter->num_tx_desc)
1694 				i = 0;
1695 		}
1696 	}
1697 
1698 	adapter->next_avail_tx_desc = i;
1699 	if (adapter->pcix_82544) {
1700 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1701 		adapter->num_tx_desc_avail -= txd_used;
1702 	} else {
1703 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1704 		adapter->num_tx_desc_avail -= nsegs;
1705 	}
1706 
1707 	tx_buffer->m_head = m_head;
1708 	tx_buffer_mapped->map = tx_buffer->map;
1709 	tx_buffer->map = map;
1710 
1711 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1712 		adapter->tx_nsegs = 0;
1713 
1714 		/*
1715 		 * Report Status (RS) is turned on
1716 		 * every tx_int_nsegs descriptors.
1717 		 */
1718 		cmd = E1000_TXD_CMD_RS;
1719 
1720 		/*
1721 		 * Keep track of the descriptor, which will
1722 		 * be written back by hardware.
1723 		 */
1724 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1725 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1726 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1727 	}
1728 
1729 	/*
1730 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1731 	 */
1732 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1733 
1734 	if (adapter->hw.mac.type == e1000_82547) {
1735 		/*
1736 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1737 		 * E1000 that this frame is available to transmit.
1738 		 */
1739 		if (adapter->link_duplex == HALF_DUPLEX) {
1740 			em_82547_move_tail_serialized(adapter);
1741 		} else {
1742 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1743 			em_82547_update_fifo_head(adapter,
1744 			    m_head->m_pkthdr.len);
1745 		}
1746 	} else {
1747 		/*
1748 		 * Defer TDT updating, until enough descriptors are setup
1749 		 */
1750 		*idx = i;
1751 	}
1752 	return (0);
1753 }
1754 
1755 /*
1756  * 82547 workaround to avoid controller hang in half-duplex environment.
1757  * The workaround is to avoid queuing a large packet that would span
1758  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1759  * in this case.  We do that only when FIFO is quiescent.
1760  */
1761 static void
1762 em_82547_move_tail_serialized(struct adapter *adapter)
1763 {
1764 	struct e1000_tx_desc *tx_desc;
1765 	uint16_t hw_tdt, sw_tdt, length = 0;
1766 	bool eop = 0;
1767 
1768 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1769 
1770 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1771 	sw_tdt = adapter->next_avail_tx_desc;
1772 
1773 	while (hw_tdt != sw_tdt) {
1774 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1775 		length += tx_desc->lower.flags.length;
1776 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1777 		if (++hw_tdt == adapter->num_tx_desc)
1778 			hw_tdt = 0;
1779 
1780 		if (eop) {
1781 			if (em_82547_fifo_workaround(adapter, length)) {
1782 				adapter->tx_fifo_wrk_cnt++;
1783 				callout_reset(&adapter->tx_fifo_timer, 1,
1784 					em_82547_move_tail, adapter);
1785 				break;
1786 			}
1787 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1788 			em_82547_update_fifo_head(adapter, length);
1789 			length = 0;
1790 		}
1791 	}
1792 }
1793 
1794 static void
1795 em_82547_move_tail(void *xsc)
1796 {
1797 	struct adapter *adapter = xsc;
1798 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1799 
1800 	lwkt_serialize_enter(ifp->if_serializer);
1801 	em_82547_move_tail_serialized(adapter);
1802 	lwkt_serialize_exit(ifp->if_serializer);
1803 }
1804 
1805 static int
1806 em_82547_fifo_workaround(struct adapter *adapter, int len)
1807 {
1808 	int fifo_space, fifo_pkt_len;
1809 
1810 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1811 
1812 	if (adapter->link_duplex == HALF_DUPLEX) {
1813 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1814 
1815 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1816 			if (em_82547_tx_fifo_reset(adapter))
1817 				return (0);
1818 			else
1819 				return (1);
1820 		}
1821 	}
1822 	return (0);
1823 }
1824 
1825 static void
1826 em_82547_update_fifo_head(struct adapter *adapter, int len)
1827 {
1828 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1829 
1830 	/* tx_fifo_head is always 16 byte aligned */
1831 	adapter->tx_fifo_head += fifo_pkt_len;
1832 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1833 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1834 }
1835 
1836 static int
1837 em_82547_tx_fifo_reset(struct adapter *adapter)
1838 {
1839 	uint32_t tctl;
1840 
1841 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1842 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1843 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1844 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1845 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1846 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1847 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1848 		/* Disable TX unit */
1849 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1850 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1851 		    tctl & ~E1000_TCTL_EN);
1852 
1853 		/* Reset FIFO pointers */
1854 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1855 		    adapter->tx_head_addr);
1856 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1857 		    adapter->tx_head_addr);
1858 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1859 		    adapter->tx_head_addr);
1860 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1861 		    adapter->tx_head_addr);
1862 
1863 		/* Re-enable TX unit */
1864 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1865 		E1000_WRITE_FLUSH(&adapter->hw);
1866 
1867 		adapter->tx_fifo_head = 0;
1868 		adapter->tx_fifo_reset_cnt++;
1869 
1870 		return (TRUE);
1871 	} else {
1872 		return (FALSE);
1873 	}
1874 }
1875 
1876 static void
1877 em_set_promisc(struct adapter *adapter)
1878 {
1879 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1880 	uint32_t reg_rctl;
1881 
1882 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1883 
1884 	if (ifp->if_flags & IFF_PROMISC) {
1885 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1886 		/* Turn this on if you want to see bad packets */
1887 		if (em_debug_sbp)
1888 			reg_rctl |= E1000_RCTL_SBP;
1889 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1890 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1891 		reg_rctl |= E1000_RCTL_MPE;
1892 		reg_rctl &= ~E1000_RCTL_UPE;
1893 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1894 	}
1895 }
1896 
1897 static void
1898 em_disable_promisc(struct adapter *adapter)
1899 {
1900 	uint32_t reg_rctl;
1901 
1902 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1903 
1904 	reg_rctl &= ~E1000_RCTL_UPE;
1905 	reg_rctl &= ~E1000_RCTL_MPE;
1906 	reg_rctl &= ~E1000_RCTL_SBP;
1907 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1908 }
1909 
1910 static void
1911 em_set_multi(struct adapter *adapter)
1912 {
1913 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1914 	struct ifmultiaddr *ifma;
1915 	uint32_t reg_rctl = 0;
1916 	uint8_t *mta;
1917 	int mcnt = 0;
1918 
1919 	mta = adapter->mta;
1920 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1921 
1922 	if (adapter->hw.mac.type == e1000_82542 &&
1923 	    adapter->hw.revision_id == E1000_REVISION_2) {
1924 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1925 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1926 			e1000_pci_clear_mwi(&adapter->hw);
1927 		reg_rctl |= E1000_RCTL_RST;
1928 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1929 		msec_delay(5);
1930 	}
1931 
1932 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1933 		if (ifma->ifma_addr->sa_family != AF_LINK)
1934 			continue;
1935 
1936 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1937 			break;
1938 
1939 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1940 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1941 		mcnt++;
1942 	}
1943 
1944 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1945 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1946 		reg_rctl |= E1000_RCTL_MPE;
1947 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1948 	} else {
1949 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1950 	}
1951 
1952 	if (adapter->hw.mac.type == e1000_82542 &&
1953 	    adapter->hw.revision_id == E1000_REVISION_2) {
1954 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1955 		reg_rctl &= ~E1000_RCTL_RST;
1956 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1957 		msec_delay(5);
1958 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1959 			e1000_pci_set_mwi(&adapter->hw);
1960 	}
1961 }
1962 
1963 /*
1964  * This routine checks for link status and updates statistics.
1965  */
1966 static void
1967 em_timer(void *xsc)
1968 {
1969 	struct adapter *adapter = xsc;
1970 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1971 
1972 	lwkt_serialize_enter(ifp->if_serializer);
1973 
1974 	em_update_link_status(adapter);
1975 	em_update_stats(adapter);
1976 
1977 	/* Reset LAA into RAR[0] on 82571 */
1978 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1979 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1980 
1981 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1982 		em_print_hw_stats(adapter);
1983 
1984 	em_smartspeed(adapter);
1985 
1986 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1987 
1988 	lwkt_serialize_exit(ifp->if_serializer);
1989 }
1990 
1991 static void
1992 em_update_link_status(struct adapter *adapter)
1993 {
1994 	struct e1000_hw *hw = &adapter->hw;
1995 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1996 	device_t dev = adapter->dev;
1997 	uint32_t link_check = 0;
1998 
1999 	/* Get the cached link value or read phy for real */
2000 	switch (hw->phy.media_type) {
2001 	case e1000_media_type_copper:
2002 		if (hw->mac.get_link_status) {
2003 			/* Do the work to read phy */
2004 			e1000_check_for_link(hw);
2005 			link_check = !hw->mac.get_link_status;
2006 			if (link_check) /* ESB2 fix */
2007 				e1000_cfg_on_link_up(hw);
2008 		} else {
2009 			link_check = TRUE;
2010 		}
2011 		break;
2012 
2013 	case e1000_media_type_fiber:
2014 		e1000_check_for_link(hw);
2015 		link_check =
2016 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2017 		break;
2018 
2019 	case e1000_media_type_internal_serdes:
2020 		e1000_check_for_link(hw);
2021 		link_check = adapter->hw.mac.serdes_has_link;
2022 		break;
2023 
2024 	case e1000_media_type_unknown:
2025 	default:
2026 		break;
2027 	}
2028 
2029 	/* Now check for a transition */
2030 	if (link_check && adapter->link_active == 0) {
2031 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2032 		    &adapter->link_duplex);
2033 
2034 		/*
2035 		 * Check if we should enable/disable SPEED_MODE bit on
2036 		 * 82571/82572
2037 		 */
2038 		if (adapter->link_speed != SPEED_1000 &&
2039 		    (hw->mac.type == e1000_82571 ||
2040 		     hw->mac.type == e1000_82572)) {
2041 			int tarc0;
2042 
2043 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2044 			tarc0 &= ~SPEED_MODE_BIT;
2045 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2046 		}
2047 		if (bootverbose) {
2048 			device_printf(dev, "Link is up %d Mbps %s\n",
2049 			    adapter->link_speed,
2050 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2051 			    "Full Duplex" : "Half Duplex"));
2052 		}
2053 		adapter->link_active = 1;
2054 		adapter->smartspeed = 0;
2055 		ifp->if_baudrate = adapter->link_speed * 1000000;
2056 		ifp->if_link_state = LINK_STATE_UP;
2057 		if_link_state_change(ifp);
2058 	} else if (!link_check && adapter->link_active == 1) {
2059 		ifp->if_baudrate = adapter->link_speed = 0;
2060 		adapter->link_duplex = 0;
2061 		if (bootverbose)
2062 			device_printf(dev, "Link is Down\n");
2063 		adapter->link_active = 0;
2064 #if 0
2065 		/* Link down, disable watchdog */
2066 		if->if_timer = 0;
2067 #endif
2068 		ifp->if_link_state = LINK_STATE_DOWN;
2069 		if_link_state_change(ifp);
2070 	}
2071 }
2072 
2073 static void
2074 em_stop(struct adapter *adapter)
2075 {
2076 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2077 	int i;
2078 
2079 	ASSERT_SERIALIZED(ifp->if_serializer);
2080 
2081 	em_disable_intr(adapter);
2082 
2083 	callout_stop(&adapter->timer);
2084 	callout_stop(&adapter->tx_fifo_timer);
2085 
2086 	ifp->if_flags &= ~IFF_RUNNING;
2087 	ifq_clr_oactive(&ifp->if_snd);
2088 	ifp->if_timer = 0;
2089 
2090 	e1000_reset_hw(&adapter->hw);
2091 	if (adapter->hw.mac.type >= e1000_82544)
2092 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2093 
2094 	for (i = 0; i < adapter->num_tx_desc; i++) {
2095 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2096 
2097 		if (tx_buffer->m_head != NULL) {
2098 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2099 			m_freem(tx_buffer->m_head);
2100 			tx_buffer->m_head = NULL;
2101 		}
2102 	}
2103 
2104 	for (i = 0; i < adapter->num_rx_desc; i++) {
2105 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2106 
2107 		if (rx_buffer->m_head != NULL) {
2108 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2109 			m_freem(rx_buffer->m_head);
2110 			rx_buffer->m_head = NULL;
2111 		}
2112 	}
2113 
2114 	if (adapter->fmp != NULL)
2115 		m_freem(adapter->fmp);
2116 	adapter->fmp = NULL;
2117 	adapter->lmp = NULL;
2118 
2119 	adapter->csum_flags = 0;
2120 	adapter->csum_lhlen = 0;
2121 	adapter->csum_iphlen = 0;
2122 	adapter->csum_thlen = 0;
2123 	adapter->csum_mss = 0;
2124 	adapter->csum_pktlen = 0;
2125 
2126 	adapter->tx_dd_head = 0;
2127 	adapter->tx_dd_tail = 0;
2128 	adapter->tx_nsegs = 0;
2129 }
2130 
2131 static int
2132 em_get_hw_info(struct adapter *adapter)
2133 {
2134 	device_t dev = adapter->dev;
2135 
2136 	/* Save off the information about this board */
2137 	adapter->hw.vendor_id = pci_get_vendor(dev);
2138 	adapter->hw.device_id = pci_get_device(dev);
2139 	adapter->hw.revision_id = pci_get_revid(dev);
2140 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2141 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2142 
2143 	/* Do Shared Code Init and Setup */
2144 	if (e1000_set_mac_type(&adapter->hw))
2145 		return ENXIO;
2146 	return 0;
2147 }
2148 
2149 static int
2150 em_alloc_pci_res(struct adapter *adapter)
2151 {
2152 	device_t dev = adapter->dev;
2153 	u_int intr_flags;
2154 	int val, rid, msi_enable;
2155 
2156 	/* Enable bus mastering */
2157 	pci_enable_busmaster(dev);
2158 
2159 	adapter->memory_rid = EM_BAR_MEM;
2160 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2161 				&adapter->memory_rid, RF_ACTIVE);
2162 	if (adapter->memory == NULL) {
2163 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2164 		return (ENXIO);
2165 	}
2166 	adapter->osdep.mem_bus_space_tag =
2167 	    rman_get_bustag(adapter->memory);
2168 	adapter->osdep.mem_bus_space_handle =
2169 	    rman_get_bushandle(adapter->memory);
2170 
2171 	/* XXX This is quite goofy, it is not actually used */
2172 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2173 
2174 	/* Only older adapters use IO mapping */
2175 	if (adapter->hw.mac.type > e1000_82543 &&
2176 	    adapter->hw.mac.type < e1000_82571) {
2177 		/* Figure our where our IO BAR is ? */
2178 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2179 			val = pci_read_config(dev, rid, 4);
2180 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2181 				adapter->io_rid = rid;
2182 				break;
2183 			}
2184 			rid += 4;
2185 			/* check for 64bit BAR */
2186 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2187 				rid += 4;
2188 		}
2189 		if (rid >= PCIR_CARDBUSCIS) {
2190 			device_printf(dev, "Unable to locate IO BAR\n");
2191 			return (ENXIO);
2192 		}
2193 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2194 					&adapter->io_rid, RF_ACTIVE);
2195 		if (adapter->ioport == NULL) {
2196 			device_printf(dev, "Unable to allocate bus resource: "
2197 			    "ioport\n");
2198 			return (ENXIO);
2199 		}
2200 		adapter->hw.io_base = 0;
2201 		adapter->osdep.io_bus_space_tag =
2202 		    rman_get_bustag(adapter->ioport);
2203 		adapter->osdep.io_bus_space_handle =
2204 		    rman_get_bushandle(adapter->ioport);
2205 	}
2206 
2207 	/*
2208 	 * Don't enable MSI-X on 82574, see:
2209 	 * 82574 specification update errata #15
2210 	 *
2211 	 * Don't enable MSI on PCI/PCI-X chips, see:
2212 	 * 82540 specification update errata #6
2213 	 * 82545 specification update errata #4
2214 	 *
2215 	 * Don't enable MSI on 82571/82572, see:
2216 	 * 82571/82572 specification update errata #63
2217 	 */
2218 	msi_enable = em_msi_enable;
2219 	if (msi_enable &&
2220 	    (!pci_is_pcie(dev) ||
2221 	     adapter->hw.mac.type == e1000_82571 ||
2222 	     adapter->hw.mac.type == e1000_82572))
2223 		msi_enable = 0;
2224 
2225 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2226 	    &adapter->intr_rid, &intr_flags);
2227 
2228 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2229 		int unshared;
2230 
2231 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2232 		if (!unshared) {
2233 			adapter->flags |= EM_FLAG_SHARED_INTR;
2234 			if (bootverbose)
2235 				device_printf(dev, "IRQ shared\n");
2236 		} else {
2237 			intr_flags &= ~RF_SHAREABLE;
2238 			if (bootverbose)
2239 				device_printf(dev, "IRQ unshared\n");
2240 		}
2241 	}
2242 
2243 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2244 	    &adapter->intr_rid, intr_flags);
2245 	if (adapter->intr_res == NULL) {
2246 		device_printf(dev, "Unable to allocate bus resource: "
2247 		    "interrupt\n");
2248 		return (ENXIO);
2249 	}
2250 
2251 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2252 	adapter->hw.back = &adapter->osdep;
2253 	return (0);
2254 }
2255 
2256 static void
2257 em_free_pci_res(struct adapter *adapter)
2258 {
2259 	device_t dev = adapter->dev;
2260 
2261 	if (adapter->intr_res != NULL) {
2262 		bus_release_resource(dev, SYS_RES_IRQ,
2263 		    adapter->intr_rid, adapter->intr_res);
2264 	}
2265 
2266 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2267 		pci_release_msi(dev);
2268 
2269 	if (adapter->memory != NULL) {
2270 		bus_release_resource(dev, SYS_RES_MEMORY,
2271 		    adapter->memory_rid, adapter->memory);
2272 	}
2273 
2274 	if (adapter->flash != NULL) {
2275 		bus_release_resource(dev, SYS_RES_MEMORY,
2276 		    adapter->flash_rid, adapter->flash);
2277 	}
2278 
2279 	if (adapter->ioport != NULL) {
2280 		bus_release_resource(dev, SYS_RES_IOPORT,
2281 		    adapter->io_rid, adapter->ioport);
2282 	}
2283 }
2284 
2285 static int
2286 em_reset(struct adapter *adapter)
2287 {
2288 	device_t dev = adapter->dev;
2289 	uint16_t rx_buffer_size;
2290 	uint32_t pba;
2291 
2292 	/* When hardware is reset, fifo_head is also reset */
2293 	adapter->tx_fifo_head = 0;
2294 
2295 	/* Set up smart power down as default off on newer adapters. */
2296 	if (!em_smart_pwr_down &&
2297 	    (adapter->hw.mac.type == e1000_82571 ||
2298 	     adapter->hw.mac.type == e1000_82572)) {
2299 		uint16_t phy_tmp = 0;
2300 
2301 		/* Speed up time to link by disabling smart power down. */
2302 		e1000_read_phy_reg(&adapter->hw,
2303 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2304 		phy_tmp &= ~IGP02E1000_PM_SPD;
2305 		e1000_write_phy_reg(&adapter->hw,
2306 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2307 	}
2308 
2309 	/*
2310 	 * Packet Buffer Allocation (PBA)
2311 	 * Writing PBA sets the receive portion of the buffer
2312 	 * the remainder is used for the transmit buffer.
2313 	 *
2314 	 * Devices before the 82547 had a Packet Buffer of 64K.
2315 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2316 	 * After the 82547 the buffer was reduced to 40K.
2317 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2318 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2319 	 */
2320 	switch (adapter->hw.mac.type) {
2321 	case e1000_82547:
2322 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2323 		if (adapter->max_frame_size > 8192)
2324 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2325 		else
2326 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2327 		adapter->tx_fifo_head = 0;
2328 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2329 		adapter->tx_fifo_size =
2330 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2331 		break;
2332 
2333 	/* Total Packet Buffer on these is 48K */
2334 	case e1000_82571:
2335 	case e1000_82572:
2336 	case e1000_80003es2lan:
2337 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2338 		break;
2339 
2340 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2341 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2342 		break;
2343 
2344 	case e1000_82574:
2345 	case e1000_82583:
2346 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2347 		break;
2348 
2349 	case e1000_ich8lan:
2350 		pba = E1000_PBA_8K;
2351 		break;
2352 
2353 	case e1000_ich9lan:
2354 	case e1000_ich10lan:
2355 #define E1000_PBA_10K	0x000A
2356 		pba = E1000_PBA_10K;
2357 		break;
2358 
2359 	case e1000_pchlan:
2360 	case e1000_pch2lan:
2361 		pba = E1000_PBA_26K;
2362 		break;
2363 
2364 	default:
2365 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2366 		if (adapter->max_frame_size > 8192)
2367 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2368 		else
2369 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2370 	}
2371 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2372 
2373 	/*
2374 	 * These parameters control the automatic generation (Tx) and
2375 	 * response (Rx) to Ethernet PAUSE frames.
2376 	 * - High water mark should allow for at least two frames to be
2377 	 *   received after sending an XOFF.
2378 	 * - Low water mark works best when it is very near the high water mark.
2379 	 *   This allows the receiver to restart by sending XON when it has
2380 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2381 	 *   restart after one full frame is pulled from the buffer. There
2382 	 *   could be several smaller frames in the buffer and if so they will
2383 	 *   not trigger the XON until their total number reduces the buffer
2384 	 *   by 1500.
2385 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2386 	 */
2387 	rx_buffer_size =
2388 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2389 
2390 	adapter->hw.fc.high_water = rx_buffer_size -
2391 				    roundup2(adapter->max_frame_size, 1024);
2392 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2393 
2394 	if (adapter->hw.mac.type == e1000_80003es2lan)
2395 		adapter->hw.fc.pause_time = 0xFFFF;
2396 	else
2397 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2398 
2399 	adapter->hw.fc.send_xon = TRUE;
2400 
2401 	adapter->hw.fc.requested_mode = e1000_fc_full;
2402 
2403 	/*
2404 	 * Device specific overrides/settings
2405 	 */
2406 	switch (adapter->hw.mac.type) {
2407 	case e1000_pchlan:
2408 		/* Workaround: no TX flow ctrl for PCH */
2409 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2410 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2411 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2412 			adapter->hw.fc.high_water = 0x3500;
2413 			adapter->hw.fc.low_water = 0x1500;
2414 		} else {
2415 			adapter->hw.fc.high_water = 0x5000;
2416 			adapter->hw.fc.low_water = 0x3000;
2417 		}
2418 		adapter->hw.fc.refresh_time = 0x1000;
2419 		break;
2420 
2421 	case e1000_pch2lan:
2422 		adapter->hw.fc.high_water = 0x5C20;
2423 		adapter->hw.fc.low_water = 0x5048;
2424 		adapter->hw.fc.pause_time = 0x0650;
2425 		adapter->hw.fc.refresh_time = 0x0400;
2426 		/* Jumbos need adjusted PBA */
2427 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2428 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2429 		else
2430 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2431 		break;
2432 
2433 	case e1000_ich9lan:
2434 	case e1000_ich10lan:
2435 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2436 			adapter->hw.fc.high_water = 0x2800;
2437 			adapter->hw.fc.low_water =
2438 			    adapter->hw.fc.high_water - 8;
2439 			break;
2440 		}
2441 		/* FALL THROUGH */
2442 	default:
2443 		if (adapter->hw.mac.type == e1000_80003es2lan)
2444 			adapter->hw.fc.pause_time = 0xFFFF;
2445 		break;
2446 	}
2447 
2448 	/* Issue a global reset */
2449 	e1000_reset_hw(&adapter->hw);
2450 	if (adapter->hw.mac.type >= e1000_82544)
2451 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2452 	em_disable_aspm(adapter);
2453 
2454 	if (e1000_init_hw(&adapter->hw) < 0) {
2455 		device_printf(dev, "Hardware Initialization Failed\n");
2456 		return (EIO);
2457 	}
2458 
2459 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2460 	e1000_get_phy_info(&adapter->hw);
2461 	e1000_check_for_link(&adapter->hw);
2462 
2463 	return (0);
2464 }
2465 
2466 static void
2467 em_setup_ifp(struct adapter *adapter)
2468 {
2469 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2470 
2471 	if_initname(ifp, device_get_name(adapter->dev),
2472 		    device_get_unit(adapter->dev));
2473 	ifp->if_softc = adapter;
2474 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2475 	ifp->if_init =  em_init;
2476 	ifp->if_ioctl = em_ioctl;
2477 	ifp->if_start = em_start;
2478 #ifdef IFPOLL_ENABLE
2479 	ifp->if_npoll = em_npoll;
2480 #endif
2481 	ifp->if_watchdog = em_watchdog;
2482 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2483 	ifq_set_ready(&ifp->if_snd);
2484 
2485 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2486 
2487 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2488 	if (adapter->hw.mac.type >= e1000_82543)
2489 		ifp->if_capabilities |= IFCAP_HWCSUM;
2490 	if (adapter->flags & EM_FLAG_TSO)
2491 		ifp->if_capabilities |= IFCAP_TSO;
2492 	ifp->if_capenable = ifp->if_capabilities;
2493 
2494 	if (ifp->if_capenable & IFCAP_TXCSUM)
2495 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2496 	if (ifp->if_capenable & IFCAP_TSO)
2497 		ifp->if_hwassist |= CSUM_TSO;
2498 
2499 	/*
2500 	 * Tell the upper layer(s) we support long frames.
2501 	 */
2502 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2503 
2504 	/*
2505 	 * Specify the media types supported by this adapter and register
2506 	 * callbacks to update media and link information
2507 	 */
2508 	ifmedia_init(&adapter->media, IFM_IMASK,
2509 		     em_media_change, em_media_status);
2510 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2511 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2512 		u_char fiber_type = IFM_1000_SX; /* default type */
2513 
2514 		if (adapter->hw.mac.type == e1000_82545)
2515 			fiber_type = IFM_1000_LX;
2516 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2517 			    0, NULL);
2518 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2519 	} else {
2520 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2521 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2522 			    0, NULL);
2523 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2524 			    0, NULL);
2525 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2526 			    0, NULL);
2527 		if (adapter->hw.phy.type != e1000_phy_ife) {
2528 			ifmedia_add(&adapter->media,
2529 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2530 			ifmedia_add(&adapter->media,
2531 				IFM_ETHER | IFM_1000_T, 0, NULL);
2532 		}
2533 	}
2534 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2535 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2536 }
2537 
2538 
2539 /*
2540  * Workaround for SmartSpeed on 82541 and 82547 controllers
2541  */
2542 static void
2543 em_smartspeed(struct adapter *adapter)
2544 {
2545 	uint16_t phy_tmp;
2546 
2547 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2548 	    adapter->hw.mac.autoneg == 0 ||
2549 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2550 		return;
2551 
2552 	if (adapter->smartspeed == 0) {
2553 		/*
2554 		 * If Master/Slave config fault is asserted twice,
2555 		 * we assume back-to-back
2556 		 */
2557 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2558 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2559 			return;
2560 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2561 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2562 			e1000_read_phy_reg(&adapter->hw,
2563 			    PHY_1000T_CTRL, &phy_tmp);
2564 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2565 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2566 				e1000_write_phy_reg(&adapter->hw,
2567 				    PHY_1000T_CTRL, phy_tmp);
2568 				adapter->smartspeed++;
2569 				if (adapter->hw.mac.autoneg &&
2570 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2571 				    !e1000_read_phy_reg(&adapter->hw,
2572 				     PHY_CONTROL, &phy_tmp)) {
2573 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2574 						   MII_CR_RESTART_AUTO_NEG;
2575 					e1000_write_phy_reg(&adapter->hw,
2576 					    PHY_CONTROL, phy_tmp);
2577 				}
2578 			}
2579 		}
2580 		return;
2581 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2582 		/* If still no link, perhaps using 2/3 pair cable */
2583 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2584 		phy_tmp |= CR_1000T_MS_ENABLE;
2585 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2586 		if (adapter->hw.mac.autoneg &&
2587 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2588 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2589 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2590 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2591 		}
2592 	}
2593 
2594 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2595 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2596 		adapter->smartspeed = 0;
2597 }
2598 
2599 static int
2600 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2601 	      struct em_dma_alloc *dma)
2602 {
2603 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2604 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2605 				&dma->dma_tag, &dma->dma_map,
2606 				&dma->dma_paddr);
2607 	if (dma->dma_vaddr == NULL)
2608 		return ENOMEM;
2609 	else
2610 		return 0;
2611 }
2612 
2613 static void
2614 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2615 {
2616 	if (dma->dma_tag == NULL)
2617 		return;
2618 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2619 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2620 	bus_dma_tag_destroy(dma->dma_tag);
2621 }
2622 
2623 static int
2624 em_create_tx_ring(struct adapter *adapter)
2625 {
2626 	device_t dev = adapter->dev;
2627 	struct em_buffer *tx_buffer;
2628 	int error, i;
2629 
2630 	adapter->tx_buffer_area =
2631 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2632 			M_DEVBUF, M_WAITOK | M_ZERO);
2633 
2634 	/*
2635 	 * Create DMA tags for tx buffers
2636 	 */
2637 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2638 			1, 0,			/* alignment, bounds */
2639 			BUS_SPACE_MAXADDR,	/* lowaddr */
2640 			BUS_SPACE_MAXADDR,	/* highaddr */
2641 			NULL, NULL,		/* filter, filterarg */
2642 			EM_TSO_SIZE,		/* maxsize */
2643 			EM_MAX_SCATTER,		/* nsegments */
2644 			PAGE_SIZE,		/* maxsegsize */
2645 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2646 			BUS_DMA_ONEBPAGE,	/* flags */
2647 			&adapter->txtag);
2648 	if (error) {
2649 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2650 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2651 		adapter->tx_buffer_area = NULL;
2652 		return error;
2653 	}
2654 
2655 	/*
2656 	 * Create DMA maps for tx buffers
2657 	 */
2658 	for (i = 0; i < adapter->num_tx_desc; i++) {
2659 		tx_buffer = &adapter->tx_buffer_area[i];
2660 
2661 		error = bus_dmamap_create(adapter->txtag,
2662 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2663 					  &tx_buffer->map);
2664 		if (error) {
2665 			device_printf(dev, "Unable to create TX DMA map\n");
2666 			em_destroy_tx_ring(adapter, i);
2667 			return error;
2668 		}
2669 	}
2670 	return (0);
2671 }
2672 
2673 static void
2674 em_init_tx_ring(struct adapter *adapter)
2675 {
2676 	/* Clear the old ring contents */
2677 	bzero(adapter->tx_desc_base,
2678 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2679 
2680 	/* Reset state */
2681 	adapter->next_avail_tx_desc = 0;
2682 	adapter->next_tx_to_clean = 0;
2683 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2684 }
2685 
2686 static void
2687 em_init_tx_unit(struct adapter *adapter)
2688 {
2689 	uint32_t tctl, tarc, tipg = 0;
2690 	uint64_t bus_addr;
2691 
2692 	/* Setup the Base and Length of the Tx Descriptor Ring */
2693 	bus_addr = adapter->txdma.dma_paddr;
2694 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2695 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2696 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2697 	    (uint32_t)(bus_addr >> 32));
2698 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2699 	    (uint32_t)bus_addr);
2700 	/* Setup the HW Tx Head and Tail descriptor pointers */
2701 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2702 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2703 
2704 	/* Set the default values for the Tx Inter Packet Gap timer */
2705 	switch (adapter->hw.mac.type) {
2706 	case e1000_82542:
2707 		tipg = DEFAULT_82542_TIPG_IPGT;
2708 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2709 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2710 		break;
2711 
2712 	case e1000_80003es2lan:
2713 		tipg = DEFAULT_82543_TIPG_IPGR1;
2714 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2715 		    E1000_TIPG_IPGR2_SHIFT;
2716 		break;
2717 
2718 	default:
2719 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2720 		    adapter->hw.phy.media_type ==
2721 		    e1000_media_type_internal_serdes)
2722 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2723 		else
2724 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2725 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2726 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2727 		break;
2728 	}
2729 
2730 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2731 
2732 	/* NOTE: 0 is not allowed for TIDV */
2733 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2734 	if(adapter->hw.mac.type >= e1000_82540)
2735 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2736 
2737 	if (adapter->hw.mac.type == e1000_82571 ||
2738 	    adapter->hw.mac.type == e1000_82572) {
2739 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2740 		tarc |= SPEED_MODE_BIT;
2741 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2742 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2743 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2744 		tarc |= 1;
2745 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2746 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2747 		tarc |= 1;
2748 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2749 	}
2750 
2751 	/* Program the Transmit Control Register */
2752 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2753 	tctl &= ~E1000_TCTL_CT;
2754 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2755 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2756 
2757 	if (adapter->hw.mac.type >= e1000_82571)
2758 		tctl |= E1000_TCTL_MULR;
2759 
2760 	/* This write will effectively turn on the transmit unit. */
2761 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2762 
2763 	if (adapter->hw.mac.type == e1000_82571 ||
2764 	    adapter->hw.mac.type == e1000_82572 ||
2765 	    adapter->hw.mac.type == e1000_80003es2lan) {
2766 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2767 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2768 		tarc &= ~(1 << 28);
2769 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2770 	}
2771 }
2772 
2773 static void
2774 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2775 {
2776 	struct em_buffer *tx_buffer;
2777 	int i;
2778 
2779 	if (adapter->tx_buffer_area == NULL)
2780 		return;
2781 
2782 	for (i = 0; i < ndesc; i++) {
2783 		tx_buffer = &adapter->tx_buffer_area[i];
2784 
2785 		KKASSERT(tx_buffer->m_head == NULL);
2786 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2787 	}
2788 	bus_dma_tag_destroy(adapter->txtag);
2789 
2790 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2791 	adapter->tx_buffer_area = NULL;
2792 }
2793 
2794 /*
2795  * The offload context needs to be set when we transfer the first
2796  * packet of a particular protocol (TCP/UDP).  This routine has been
2797  * enhanced to deal with inserted VLAN headers.
2798  *
2799  * If the new packet's ether header length, ip header length and
2800  * csum offloading type are same as the previous packet, we should
2801  * avoid allocating a new csum context descriptor; mainly to take
2802  * advantage of the pipeline effect of the TX data read request.
2803  *
2804  * This function returns number of TX descrptors allocated for
2805  * csum context.
2806  */
2807 static int
2808 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2809 	  uint32_t *txd_upper, uint32_t *txd_lower)
2810 {
2811 	struct e1000_context_desc *TXD;
2812 	int curr_txd, ehdrlen, csum_flags;
2813 	uint32_t cmd, hdr_len, ip_hlen;
2814 
2815 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2816 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2817 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2818 
2819 	if (adapter->csum_lhlen == ehdrlen &&
2820 	    adapter->csum_iphlen == ip_hlen &&
2821 	    adapter->csum_flags == csum_flags) {
2822 		/*
2823 		 * Same csum offload context as the previous packets;
2824 		 * just return.
2825 		 */
2826 		*txd_upper = adapter->csum_txd_upper;
2827 		*txd_lower = adapter->csum_txd_lower;
2828 		return 0;
2829 	}
2830 
2831 	/*
2832 	 * Setup a new csum offload context.
2833 	 */
2834 
2835 	curr_txd = adapter->next_avail_tx_desc;
2836 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2837 
2838 	cmd = 0;
2839 
2840 	/* Setup of IP header checksum. */
2841 	if (csum_flags & CSUM_IP) {
2842 		/*
2843 		 * Start offset for header checksum calculation.
2844 		 * End offset for header checksum calculation.
2845 		 * Offset of place to put the checksum.
2846 		 */
2847 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2848 		TXD->lower_setup.ip_fields.ipcse =
2849 		    htole16(ehdrlen + ip_hlen - 1);
2850 		TXD->lower_setup.ip_fields.ipcso =
2851 		    ehdrlen + offsetof(struct ip, ip_sum);
2852 		cmd |= E1000_TXD_CMD_IP;
2853 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2854 	}
2855 	hdr_len = ehdrlen + ip_hlen;
2856 
2857 	if (csum_flags & CSUM_TCP) {
2858 		/*
2859 		 * Start offset for payload checksum calculation.
2860 		 * End offset for payload checksum calculation.
2861 		 * Offset of place to put the checksum.
2862 		 */
2863 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2864 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2865 		TXD->upper_setup.tcp_fields.tucso =
2866 		    hdr_len + offsetof(struct tcphdr, th_sum);
2867 		cmd |= E1000_TXD_CMD_TCP;
2868 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2869 	} else if (csum_flags & CSUM_UDP) {
2870 		/*
2871 		 * Start offset for header checksum calculation.
2872 		 * End offset for header checksum calculation.
2873 		 * Offset of place to put the checksum.
2874 		 */
2875 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2876 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2877 		TXD->upper_setup.tcp_fields.tucso =
2878 		    hdr_len + offsetof(struct udphdr, uh_sum);
2879 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2880 	}
2881 
2882 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2883 		     E1000_TXD_DTYP_D;		/* Data descr */
2884 
2885 	/* Save the information for this csum offloading context */
2886 	adapter->csum_lhlen = ehdrlen;
2887 	adapter->csum_iphlen = ip_hlen;
2888 	adapter->csum_flags = csum_flags;
2889 	adapter->csum_txd_upper = *txd_upper;
2890 	adapter->csum_txd_lower = *txd_lower;
2891 
2892 	TXD->tcp_seg_setup.data = htole32(0);
2893 	TXD->cmd_and_length =
2894 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2895 
2896 	if (++curr_txd == adapter->num_tx_desc)
2897 		curr_txd = 0;
2898 
2899 	KKASSERT(adapter->num_tx_desc_avail > 0);
2900 	adapter->num_tx_desc_avail--;
2901 
2902 	adapter->next_avail_tx_desc = curr_txd;
2903 	return 1;
2904 }
2905 
2906 static void
2907 em_txeof(struct adapter *adapter)
2908 {
2909 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2910 	struct em_buffer *tx_buffer;
2911 	int first, num_avail;
2912 
2913 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2914 		return;
2915 
2916 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2917 		return;
2918 
2919 	num_avail = adapter->num_tx_desc_avail;
2920 	first = adapter->next_tx_to_clean;
2921 
2922 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2923 		struct e1000_tx_desc *tx_desc;
2924 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2925 
2926 		tx_desc = &adapter->tx_desc_base[dd_idx];
2927 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2928 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2929 
2930 			if (++dd_idx == adapter->num_tx_desc)
2931 				dd_idx = 0;
2932 
2933 			while (first != dd_idx) {
2934 				logif(pkt_txclean);
2935 
2936 				num_avail++;
2937 
2938 				tx_buffer = &adapter->tx_buffer_area[first];
2939 				if (tx_buffer->m_head) {
2940 					IFNET_STAT_INC(ifp, opackets, 1);
2941 					bus_dmamap_unload(adapter->txtag,
2942 							  tx_buffer->map);
2943 					m_freem(tx_buffer->m_head);
2944 					tx_buffer->m_head = NULL;
2945 				}
2946 
2947 				if (++first == adapter->num_tx_desc)
2948 					first = 0;
2949 			}
2950 		} else {
2951 			break;
2952 		}
2953 	}
2954 	adapter->next_tx_to_clean = first;
2955 	adapter->num_tx_desc_avail = num_avail;
2956 
2957 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2958 		adapter->tx_dd_head = 0;
2959 		adapter->tx_dd_tail = 0;
2960 	}
2961 
2962 	if (!EM_IS_OACTIVE(adapter)) {
2963 		ifq_clr_oactive(&ifp->if_snd);
2964 
2965 		/* All clean, turn off the timer */
2966 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2967 			ifp->if_timer = 0;
2968 	}
2969 }
2970 
2971 static void
2972 em_tx_collect(struct adapter *adapter)
2973 {
2974 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2975 	struct em_buffer *tx_buffer;
2976 	int tdh, first, num_avail, dd_idx = -1;
2977 
2978 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2979 		return;
2980 
2981 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2982 	if (tdh == adapter->next_tx_to_clean)
2983 		return;
2984 
2985 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2986 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2987 
2988 	num_avail = adapter->num_tx_desc_avail;
2989 	first = adapter->next_tx_to_clean;
2990 
2991 	while (first != tdh) {
2992 		logif(pkt_txclean);
2993 
2994 		num_avail++;
2995 
2996 		tx_buffer = &adapter->tx_buffer_area[first];
2997 		if (tx_buffer->m_head) {
2998 			IFNET_STAT_INC(ifp, opackets, 1);
2999 			bus_dmamap_unload(adapter->txtag,
3000 					  tx_buffer->map);
3001 			m_freem(tx_buffer->m_head);
3002 			tx_buffer->m_head = NULL;
3003 		}
3004 
3005 		if (first == dd_idx) {
3006 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3007 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3008 				adapter->tx_dd_head = 0;
3009 				adapter->tx_dd_tail = 0;
3010 				dd_idx = -1;
3011 			} else {
3012 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3013 			}
3014 		}
3015 
3016 		if (++first == adapter->num_tx_desc)
3017 			first = 0;
3018 	}
3019 	adapter->next_tx_to_clean = first;
3020 	adapter->num_tx_desc_avail = num_avail;
3021 
3022 	if (!EM_IS_OACTIVE(adapter)) {
3023 		ifq_clr_oactive(&ifp->if_snd);
3024 
3025 		/* All clean, turn off the timer */
3026 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3027 			ifp->if_timer = 0;
3028 	}
3029 }
3030 
3031 /*
3032  * When Link is lost sometimes there is work still in the TX ring
3033  * which will result in a watchdog, rather than allow that do an
3034  * attempted cleanup and then reinit here.  Note that this has been
3035  * seens mostly with fiber adapters.
3036  */
3037 static void
3038 em_tx_purge(struct adapter *adapter)
3039 {
3040 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3041 
3042 	if (!adapter->link_active && ifp->if_timer) {
3043 		em_tx_collect(adapter);
3044 		if (ifp->if_timer) {
3045 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3046 			ifp->if_timer = 0;
3047 			em_init(adapter);
3048 		}
3049 	}
3050 }
3051 
3052 static int
3053 em_newbuf(struct adapter *adapter, int i, int init)
3054 {
3055 	struct mbuf *m;
3056 	bus_dma_segment_t seg;
3057 	bus_dmamap_t map;
3058 	struct em_buffer *rx_buffer;
3059 	int error, nseg;
3060 
3061 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3062 	if (m == NULL) {
3063 		adapter->mbuf_cluster_failed++;
3064 		if (init) {
3065 			if_printf(&adapter->arpcom.ac_if,
3066 				  "Unable to allocate RX mbuf\n");
3067 		}
3068 		return (ENOBUFS);
3069 	}
3070 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3071 
3072 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3073 		m_adj(m, ETHER_ALIGN);
3074 
3075 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3076 			adapter->rx_sparemap, m,
3077 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3078 	if (error) {
3079 		m_freem(m);
3080 		if (init) {
3081 			if_printf(&adapter->arpcom.ac_if,
3082 				  "Unable to load RX mbuf\n");
3083 		}
3084 		return (error);
3085 	}
3086 
3087 	rx_buffer = &adapter->rx_buffer_area[i];
3088 	if (rx_buffer->m_head != NULL)
3089 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3090 
3091 	map = rx_buffer->map;
3092 	rx_buffer->map = adapter->rx_sparemap;
3093 	adapter->rx_sparemap = map;
3094 
3095 	rx_buffer->m_head = m;
3096 
3097 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3098 	return (0);
3099 }
3100 
3101 static int
3102 em_create_rx_ring(struct adapter *adapter)
3103 {
3104 	device_t dev = adapter->dev;
3105 	struct em_buffer *rx_buffer;
3106 	int i, error;
3107 
3108 	adapter->rx_buffer_area =
3109 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3110 			M_DEVBUF, M_WAITOK | M_ZERO);
3111 
3112 	/*
3113 	 * Create DMA tag for rx buffers
3114 	 */
3115 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3116 			1, 0,			/* alignment, bounds */
3117 			BUS_SPACE_MAXADDR,	/* lowaddr */
3118 			BUS_SPACE_MAXADDR,	/* highaddr */
3119 			NULL, NULL,		/* filter, filterarg */
3120 			MCLBYTES,		/* maxsize */
3121 			1,			/* nsegments */
3122 			MCLBYTES,		/* maxsegsize */
3123 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3124 			&adapter->rxtag);
3125 	if (error) {
3126 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3127 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3128 		adapter->rx_buffer_area = NULL;
3129 		return error;
3130 	}
3131 
3132 	/*
3133 	 * Create spare DMA map for rx buffers
3134 	 */
3135 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3136 				  &adapter->rx_sparemap);
3137 	if (error) {
3138 		device_printf(dev, "Unable to create spare RX DMA map\n");
3139 		bus_dma_tag_destroy(adapter->rxtag);
3140 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3141 		adapter->rx_buffer_area = NULL;
3142 		return error;
3143 	}
3144 
3145 	/*
3146 	 * Create DMA maps for rx buffers
3147 	 */
3148 	for (i = 0; i < adapter->num_rx_desc; i++) {
3149 		rx_buffer = &adapter->rx_buffer_area[i];
3150 
3151 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3152 					  &rx_buffer->map);
3153 		if (error) {
3154 			device_printf(dev, "Unable to create RX DMA map\n");
3155 			em_destroy_rx_ring(adapter, i);
3156 			return error;
3157 		}
3158 	}
3159 	return (0);
3160 }
3161 
3162 static int
3163 em_init_rx_ring(struct adapter *adapter)
3164 {
3165 	int i, error;
3166 
3167 	/* Reset descriptor ring */
3168 	bzero(adapter->rx_desc_base,
3169 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3170 
3171 	/* Allocate new ones. */
3172 	for (i = 0; i < adapter->num_rx_desc; i++) {
3173 		error = em_newbuf(adapter, i, 1);
3174 		if (error)
3175 			return (error);
3176 	}
3177 
3178 	/* Setup our descriptor pointers */
3179 	adapter->next_rx_desc_to_check = 0;
3180 
3181 	return (0);
3182 }
3183 
3184 static void
3185 em_init_rx_unit(struct adapter *adapter)
3186 {
3187 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3188 	uint64_t bus_addr;
3189 	uint32_t rctl;
3190 
3191 	/*
3192 	 * Make sure receives are disabled while setting
3193 	 * up the descriptor ring
3194 	 */
3195 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3196 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3197 
3198 	if (adapter->hw.mac.type >= e1000_82540) {
3199 		uint32_t itr;
3200 
3201 		/*
3202 		 * Set the interrupt throttling rate. Value is calculated
3203 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3204 		 */
3205 		if (adapter->int_throttle_ceil)
3206 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3207 		else
3208 			itr = 0;
3209 		em_set_itr(adapter, itr);
3210 	}
3211 
3212 	/* Disable accelerated ackknowledge */
3213 	if (adapter->hw.mac.type == e1000_82574) {
3214 		E1000_WRITE_REG(&adapter->hw,
3215 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3216 	}
3217 
3218 	/* Receive Checksum Offload for TCP and UDP */
3219 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3220 		uint32_t rxcsum;
3221 
3222 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3223 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3224 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3225 	}
3226 
3227 	/*
3228 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3229 	 * long latencies are observed, like Lenovo X60. This
3230 	 * change eliminates the problem, but since having positive
3231 	 * values in RDTR is a known source of problems on other
3232 	 * platforms another solution is being sought.
3233 	 */
3234 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3235 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3236 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3237 	}
3238 
3239 	/*
3240 	 * Setup the Base and Length of the Rx Descriptor Ring
3241 	 */
3242 	bus_addr = adapter->rxdma.dma_paddr;
3243 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3244 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3245 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3246 	    (uint32_t)(bus_addr >> 32));
3247 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3248 	    (uint32_t)bus_addr);
3249 
3250 	/*
3251 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3252 	 */
3253 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3254 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3255 
3256 	/* Set PTHRESH for improved jumbo performance */
3257 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3258 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3259 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3260 	    (ifp->if_mtu > ETHERMTU)) {
3261 		uint32_t rxdctl;
3262 
3263 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3264 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3265 	}
3266 
3267 	if (adapter->hw.mac.type == e1000_pch2lan) {
3268 		if (ifp->if_mtu > ETHERMTU)
3269 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3270 		else
3271 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3272 	}
3273 
3274 	/* Setup the Receive Control Register */
3275 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3276 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3277 		E1000_RCTL_RDMTS_HALF |
3278 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3279 
3280 	/* Make sure VLAN Filters are off */
3281 	rctl &= ~E1000_RCTL_VFE;
3282 
3283 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3284 		rctl |= E1000_RCTL_SBP;
3285 	else
3286 		rctl &= ~E1000_RCTL_SBP;
3287 
3288 	switch (adapter->rx_buffer_len) {
3289 	default:
3290 	case 2048:
3291 		rctl |= E1000_RCTL_SZ_2048;
3292 		break;
3293 
3294 	case 4096:
3295 		rctl |= E1000_RCTL_SZ_4096 |
3296 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3297 		break;
3298 
3299 	case 8192:
3300 		rctl |= E1000_RCTL_SZ_8192 |
3301 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3302 		break;
3303 
3304 	case 16384:
3305 		rctl |= E1000_RCTL_SZ_16384 |
3306 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3307 		break;
3308 	}
3309 
3310 	if (ifp->if_mtu > ETHERMTU)
3311 		rctl |= E1000_RCTL_LPE;
3312 	else
3313 		rctl &= ~E1000_RCTL_LPE;
3314 
3315 	/* Enable Receives */
3316 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3317 }
3318 
3319 static void
3320 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3321 {
3322 	struct em_buffer *rx_buffer;
3323 	int i;
3324 
3325 	if (adapter->rx_buffer_area == NULL)
3326 		return;
3327 
3328 	for (i = 0; i < ndesc; i++) {
3329 		rx_buffer = &adapter->rx_buffer_area[i];
3330 
3331 		KKASSERT(rx_buffer->m_head == NULL);
3332 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3333 	}
3334 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3335 	bus_dma_tag_destroy(adapter->rxtag);
3336 
3337 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3338 	adapter->rx_buffer_area = NULL;
3339 }
3340 
3341 static void
3342 em_rxeof(struct adapter *adapter, int count)
3343 {
3344 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3345 	uint8_t status, accept_frame = 0, eop = 0;
3346 	uint16_t len, desc_len, prev_len_adj;
3347 	struct e1000_rx_desc *current_desc;
3348 	struct mbuf *mp;
3349 	int i;
3350 
3351 	i = adapter->next_rx_desc_to_check;
3352 	current_desc = &adapter->rx_desc_base[i];
3353 
3354 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3355 		return;
3356 
3357 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3358 		struct mbuf *m = NULL;
3359 
3360 		logif(pkt_receive);
3361 
3362 		mp = adapter->rx_buffer_area[i].m_head;
3363 
3364 		/*
3365 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3366 		 * needs to access the last received byte in the mbuf.
3367 		 */
3368 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3369 				BUS_DMASYNC_POSTREAD);
3370 
3371 		accept_frame = 1;
3372 		prev_len_adj = 0;
3373 		desc_len = le16toh(current_desc->length);
3374 		status = current_desc->status;
3375 		if (status & E1000_RXD_STAT_EOP) {
3376 			count--;
3377 			eop = 1;
3378 			if (desc_len < ETHER_CRC_LEN) {
3379 				len = 0;
3380 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3381 			} else {
3382 				len = desc_len - ETHER_CRC_LEN;
3383 			}
3384 		} else {
3385 			eop = 0;
3386 			len = desc_len;
3387 		}
3388 
3389 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3390 			uint8_t	last_byte;
3391 			uint32_t pkt_len = desc_len;
3392 
3393 			if (adapter->fmp != NULL)
3394 				pkt_len += adapter->fmp->m_pkthdr.len;
3395 
3396 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3397 			if (TBI_ACCEPT(&adapter->hw, status,
3398 			    current_desc->errors, pkt_len, last_byte,
3399 			    adapter->min_frame_size, adapter->max_frame_size)) {
3400 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3401 				    &adapter->stats, pkt_len,
3402 				    adapter->hw.mac.addr,
3403 				    adapter->max_frame_size);
3404 				if (len > 0)
3405 					len--;
3406 			} else {
3407 				accept_frame = 0;
3408 			}
3409 		}
3410 
3411 		if (accept_frame) {
3412 			if (em_newbuf(adapter, i, 0) != 0) {
3413 				IFNET_STAT_INC(ifp, iqdrops, 1);
3414 				goto discard;
3415 			}
3416 
3417 			/* Assign correct length to the current fragment */
3418 			mp->m_len = len;
3419 
3420 			if (adapter->fmp == NULL) {
3421 				mp->m_pkthdr.len = len;
3422 				adapter->fmp = mp; /* Store the first mbuf */
3423 				adapter->lmp = mp;
3424 			} else {
3425 				/*
3426 				 * Chain mbuf's together
3427 				 */
3428 
3429 				/*
3430 				 * Adjust length of previous mbuf in chain if
3431 				 * we received less than 4 bytes in the last
3432 				 * descriptor.
3433 				 */
3434 				if (prev_len_adj > 0) {
3435 					adapter->lmp->m_len -= prev_len_adj;
3436 					adapter->fmp->m_pkthdr.len -=
3437 					    prev_len_adj;
3438 				}
3439 				adapter->lmp->m_next = mp;
3440 				adapter->lmp = adapter->lmp->m_next;
3441 				adapter->fmp->m_pkthdr.len += len;
3442 			}
3443 
3444 			if (eop) {
3445 				adapter->fmp->m_pkthdr.rcvif = ifp;
3446 				IFNET_STAT_INC(ifp, ipackets, 1);
3447 
3448 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3449 					em_rxcsum(adapter, current_desc,
3450 						  adapter->fmp);
3451 				}
3452 
3453 				if (status & E1000_RXD_STAT_VP) {
3454 					adapter->fmp->m_pkthdr.ether_vlantag =
3455 					    (le16toh(current_desc->special) &
3456 					    E1000_RXD_SPC_VLAN_MASK);
3457 					adapter->fmp->m_flags |= M_VLANTAG;
3458 				}
3459 				m = adapter->fmp;
3460 				adapter->fmp = NULL;
3461 				adapter->lmp = NULL;
3462 			}
3463 		} else {
3464 			IFNET_STAT_INC(ifp, ierrors, 1);
3465 discard:
3466 #ifdef foo
3467 			/* Reuse loaded DMA map and just update mbuf chain */
3468 			mp = adapter->rx_buffer_area[i].m_head;
3469 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3470 			mp->m_data = mp->m_ext.ext_buf;
3471 			mp->m_next = NULL;
3472 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3473 				m_adj(mp, ETHER_ALIGN);
3474 #endif
3475 			if (adapter->fmp != NULL) {
3476 				m_freem(adapter->fmp);
3477 				adapter->fmp = NULL;
3478 				adapter->lmp = NULL;
3479 			}
3480 			m = NULL;
3481 		}
3482 
3483 		/* Zero out the receive descriptors status. */
3484 		current_desc->status = 0;
3485 
3486 		if (m != NULL)
3487 			ifp->if_input(ifp, m);
3488 
3489 		/* Advance our pointers to the next descriptor. */
3490 		if (++i == adapter->num_rx_desc)
3491 			i = 0;
3492 		current_desc = &adapter->rx_desc_base[i];
3493 	}
3494 	adapter->next_rx_desc_to_check = i;
3495 
3496 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3497 	if (--i < 0)
3498 		i = adapter->num_rx_desc - 1;
3499 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3500 }
3501 
3502 static void
3503 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3504 	  struct mbuf *mp)
3505 {
3506 	/* 82543 or newer only */
3507 	if (adapter->hw.mac.type < e1000_82543 ||
3508 	    /* Ignore Checksum bit is set */
3509 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3510 		return;
3511 
3512 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3513 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3514 		/* IP Checksum Good */
3515 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3516 	}
3517 
3518 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3519 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3520 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3521 					   CSUM_PSEUDO_HDR |
3522 					   CSUM_FRAG_NOT_CHECKED;
3523 		mp->m_pkthdr.csum_data = htons(0xffff);
3524 	}
3525 }
3526 
3527 static void
3528 em_enable_intr(struct adapter *adapter)
3529 {
3530 	uint32_t ims_mask = IMS_ENABLE_MASK;
3531 
3532 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3533 
3534 #if 0
3535 	/* XXX MSIX */
3536 	if (adapter->hw.mac.type == e1000_82574) {
3537 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3538 		ims_mask |= EM_MSIX_MASK;
3539         }
3540 #endif
3541 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3542 }
3543 
3544 static void
3545 em_disable_intr(struct adapter *adapter)
3546 {
3547 	uint32_t clear = 0xffffffff;
3548 
3549 	/*
3550 	 * The first version of 82542 had an errata where when link was forced
3551 	 * it would stay up even up even if the cable was disconnected.
3552 	 * Sequence errors were used to detect the disconnect and then the
3553 	 * driver would unforce the link.  This code in the in the ISR.  For
3554 	 * this to work correctly the Sequence error interrupt had to be
3555 	 * enabled all the time.
3556 	 */
3557 	if (adapter->hw.mac.type == e1000_82542 &&
3558 	    adapter->hw.revision_id == E1000_REVISION_2)
3559 		clear &= ~E1000_ICR_RXSEQ;
3560 	else if (adapter->hw.mac.type == e1000_82574)
3561 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3562 
3563 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3564 
3565 	adapter->npoll.ifpc_stcount = 0;
3566 
3567 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3568 }
3569 
3570 /*
3571  * Bit of a misnomer, what this really means is
3572  * to enable OS management of the system... aka
3573  * to disable special hardware management features
3574  */
3575 static void
3576 em_get_mgmt(struct adapter *adapter)
3577 {
3578 	/* A shared code workaround */
3579 #define E1000_82542_MANC2H E1000_MANC2H
3580 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3581 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3582 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3583 
3584 		/* disable hardware interception of ARP */
3585 		manc &= ~(E1000_MANC_ARP_EN);
3586 
3587                 /* enable receiving management packets to the host */
3588                 if (adapter->hw.mac.type >= e1000_82571) {
3589 			manc |= E1000_MANC_EN_MNG2HOST;
3590 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3591 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3592 			manc2h |= E1000_MNG2HOST_PORT_623;
3593 			manc2h |= E1000_MNG2HOST_PORT_664;
3594 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3595 		}
3596 
3597 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3598 	}
3599 }
3600 
3601 /*
3602  * Give control back to hardware management
3603  * controller if there is one.
3604  */
3605 static void
3606 em_rel_mgmt(struct adapter *adapter)
3607 {
3608 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3609 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3610 
3611 		/* re-enable hardware interception of ARP */
3612 		manc |= E1000_MANC_ARP_EN;
3613 
3614 		if (adapter->hw.mac.type >= e1000_82571)
3615 			manc &= ~E1000_MANC_EN_MNG2HOST;
3616 
3617 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3618 	}
3619 }
3620 
3621 /*
3622  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3623  * For ASF and Pass Through versions of f/w this means that
3624  * the driver is loaded.  For AMT version (only with 82573)
3625  * of the f/w this means that the network i/f is open.
3626  */
3627 static void
3628 em_get_hw_control(struct adapter *adapter)
3629 {
3630 	/* Let firmware know the driver has taken over */
3631 	if (adapter->hw.mac.type == e1000_82573) {
3632 		uint32_t swsm;
3633 
3634 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3635 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3636 		    swsm | E1000_SWSM_DRV_LOAD);
3637 	} else {
3638 		uint32_t ctrl_ext;
3639 
3640 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3641 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3642 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3643 	}
3644 	adapter->flags |= EM_FLAG_HW_CTRL;
3645 }
3646 
3647 /*
3648  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3649  * For ASF and Pass Through versions of f/w this means that the
3650  * driver is no longer loaded.  For AMT version (only with 82573)
3651  * of the f/w this means that the network i/f is closed.
3652  */
3653 static void
3654 em_rel_hw_control(struct adapter *adapter)
3655 {
3656 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3657 		return;
3658 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3659 
3660 	/* Let firmware taken over control of h/w */
3661 	if (adapter->hw.mac.type == e1000_82573) {
3662 		uint32_t swsm;
3663 
3664 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3665 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3666 		    swsm & ~E1000_SWSM_DRV_LOAD);
3667 	} else {
3668 		uint32_t ctrl_ext;
3669 
3670 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3671 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3672 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3673 	}
3674 }
3675 
3676 static int
3677 em_is_valid_eaddr(const uint8_t *addr)
3678 {
3679 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3680 
3681 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3682 		return (FALSE);
3683 
3684 	return (TRUE);
3685 }
3686 
3687 /*
3688  * Enable PCI Wake On Lan capability
3689  */
3690 void
3691 em_enable_wol(device_t dev)
3692 {
3693 	uint16_t cap, status;
3694 	uint8_t id;
3695 
3696 	/* First find the capabilities pointer*/
3697 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3698 
3699 	/* Read the PM Capabilities */
3700 	id = pci_read_config(dev, cap, 1);
3701 	if (id != PCIY_PMG)     /* Something wrong */
3702 		return;
3703 
3704 	/*
3705 	 * OK, we have the power capabilities,
3706 	 * so now get the status register
3707 	 */
3708 	cap += PCIR_POWER_STATUS;
3709 	status = pci_read_config(dev, cap, 2);
3710 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3711 	pci_write_config(dev, cap, status, 2);
3712 }
3713 
3714 
3715 /*
3716  * 82544 Coexistence issue workaround.
3717  *    There are 2 issues.
3718  *       1. Transmit Hang issue.
3719  *    To detect this issue, following equation can be used...
3720  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3721  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3722  *
3723  *       2. DAC issue.
3724  *    To detect this issue, following equation can be used...
3725  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3726  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3727  *
3728  *    WORKAROUND:
3729  *	  Make sure we do not have ending address
3730  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3731  */
3732 static uint32_t
3733 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3734 {
3735 	uint32_t safe_terminator;
3736 
3737 	/*
3738 	 * Since issue is sensitive to length and address.
3739 	 * Let us first check the address...
3740 	 */
3741 	if (length <= 4) {
3742 		desc_array->descriptor[0].address = address;
3743 		desc_array->descriptor[0].length = length;
3744 		desc_array->elements = 1;
3745 		return (desc_array->elements);
3746 	}
3747 
3748 	safe_terminator =
3749 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3750 
3751 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3752 	if (safe_terminator == 0 ||
3753 	    (safe_terminator > 4 && safe_terminator < 9) ||
3754 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3755 		desc_array->descriptor[0].address = address;
3756 		desc_array->descriptor[0].length = length;
3757 		desc_array->elements = 1;
3758 		return (desc_array->elements);
3759 	}
3760 
3761 	desc_array->descriptor[0].address = address;
3762 	desc_array->descriptor[0].length = length - 4;
3763 	desc_array->descriptor[1].address = address + (length - 4);
3764 	desc_array->descriptor[1].length = 4;
3765 	desc_array->elements = 2;
3766 	return (desc_array->elements);
3767 }
3768 
3769 static void
3770 em_update_stats(struct adapter *adapter)
3771 {
3772 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3773 
3774 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3775 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3776 		adapter->stats.symerrs +=
3777 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3778 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3779 	}
3780 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3781 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3782 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3783 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3784 
3785 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3786 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3787 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3788 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3789 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3790 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3791 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3792 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3793 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3794 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3795 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3796 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3797 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3798 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3799 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3800 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3801 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3802 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3803 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3804 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3805 
3806 	/* For the 64-bit byte counters the low dword must be read first. */
3807 	/* Both registers clear on the read of the high dword */
3808 
3809 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3810 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3811 
3812 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3813 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3814 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3815 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3816 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3817 
3818 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3819 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3820 
3821 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3822 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3823 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3824 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3825 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3826 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3827 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3828 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3829 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3830 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3831 
3832 	if (adapter->hw.mac.type >= e1000_82543) {
3833 		adapter->stats.algnerrc +=
3834 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3835 		adapter->stats.rxerrc +=
3836 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3837 		adapter->stats.tncrs +=
3838 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3839 		adapter->stats.cexterr +=
3840 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3841 		adapter->stats.tsctc +=
3842 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3843 		adapter->stats.tsctfc +=
3844 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3845 	}
3846 
3847 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3848 
3849 	/* Rx Errors */
3850 	IFNET_STAT_SET(ifp, ierrors,
3851 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3852 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3853 	    adapter->stats.ruc + adapter->stats.roc +
3854 	    adapter->stats.mpc + adapter->stats.cexterr);
3855 
3856 	/* Tx Errors */
3857 	IFNET_STAT_SET(ifp, oerrors,
3858 	    adapter->stats.ecol + adapter->stats.latecol +
3859 	    adapter->watchdog_events);
3860 }
3861 
3862 static void
3863 em_print_debug_info(struct adapter *adapter)
3864 {
3865 	device_t dev = adapter->dev;
3866 	uint8_t *hw_addr = adapter->hw.hw_addr;
3867 
3868 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3869 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3870 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3871 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3872 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3873 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3874 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3875 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3876 	    adapter->hw.fc.high_water,
3877 	    adapter->hw.fc.low_water);
3878 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3879 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3880 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3881 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3882 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3883 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3884 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3885 	    (long long)adapter->tx_fifo_wrk_cnt,
3886 	    (long long)adapter->tx_fifo_reset_cnt);
3887 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3888 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3889 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3890 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3891 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3892 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3893 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3894 	    adapter->num_tx_desc_avail);
3895 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3896 	    adapter->no_tx_desc_avail1);
3897 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3898 	    adapter->no_tx_desc_avail2);
3899 	device_printf(dev, "Std mbuf failed = %ld\n",
3900 	    adapter->mbuf_alloc_failed);
3901 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3902 	    adapter->mbuf_cluster_failed);
3903 	device_printf(dev, "Driver dropped packets = %ld\n",
3904 	    adapter->dropped_pkts);
3905 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3906 	    adapter->no_tx_dma_setup);
3907 }
3908 
3909 static void
3910 em_print_hw_stats(struct adapter *adapter)
3911 {
3912 	device_t dev = adapter->dev;
3913 
3914 	device_printf(dev, "Excessive collisions = %lld\n",
3915 	    (long long)adapter->stats.ecol);
3916 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3917 	device_printf(dev, "Symbol errors = %lld\n",
3918 	    (long long)adapter->stats.symerrs);
3919 #endif
3920 	device_printf(dev, "Sequence errors = %lld\n",
3921 	    (long long)adapter->stats.sec);
3922 	device_printf(dev, "Defer count = %lld\n",
3923 	    (long long)adapter->stats.dc);
3924 	device_printf(dev, "Missed Packets = %lld\n",
3925 	    (long long)adapter->stats.mpc);
3926 	device_printf(dev, "Receive No Buffers = %lld\n",
3927 	    (long long)adapter->stats.rnbc);
3928 	/* RLEC is inaccurate on some hardware, calculate our own. */
3929 	device_printf(dev, "Receive Length Errors = %lld\n",
3930 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3931 	device_printf(dev, "Receive errors = %lld\n",
3932 	    (long long)adapter->stats.rxerrc);
3933 	device_printf(dev, "Crc errors = %lld\n",
3934 	    (long long)adapter->stats.crcerrs);
3935 	device_printf(dev, "Alignment errors = %lld\n",
3936 	    (long long)adapter->stats.algnerrc);
3937 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3938 	    (long long)adapter->stats.cexterr);
3939 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3940 	device_printf(dev, "watchdog timeouts = %ld\n",
3941 	    adapter->watchdog_events);
3942 	device_printf(dev, "XON Rcvd = %lld\n",
3943 	    (long long)adapter->stats.xonrxc);
3944 	device_printf(dev, "XON Xmtd = %lld\n",
3945 	    (long long)adapter->stats.xontxc);
3946 	device_printf(dev, "XOFF Rcvd = %lld\n",
3947 	    (long long)adapter->stats.xoffrxc);
3948 	device_printf(dev, "XOFF Xmtd = %lld\n",
3949 	    (long long)adapter->stats.xofftxc);
3950 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3951 	    (long long)adapter->stats.gprc);
3952 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3953 	    (long long)adapter->stats.gptc);
3954 }
3955 
3956 static void
3957 em_print_nvm_info(struct adapter *adapter)
3958 {
3959 	uint16_t eeprom_data;
3960 	int i, j, row = 0;
3961 
3962 	/* Its a bit crude, but it gets the job done */
3963 	kprintf("\nInterface EEPROM Dump:\n");
3964 	kprintf("Offset\n0x0000  ");
3965 	for (i = 0, j = 0; i < 32; i++, j++) {
3966 		if (j == 8) { /* Make the offset block */
3967 			j = 0; ++row;
3968 			kprintf("\n0x00%x0  ",row);
3969 		}
3970 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3971 		kprintf("%04x ", eeprom_data);
3972 	}
3973 	kprintf("\n");
3974 }
3975 
3976 static int
3977 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3978 {
3979 	struct adapter *adapter;
3980 	struct ifnet *ifp;
3981 	int error, result;
3982 
3983 	result = -1;
3984 	error = sysctl_handle_int(oidp, &result, 0, req);
3985 	if (error || !req->newptr)
3986 		return (error);
3987 
3988 	adapter = (struct adapter *)arg1;
3989 	ifp = &adapter->arpcom.ac_if;
3990 
3991 	lwkt_serialize_enter(ifp->if_serializer);
3992 
3993 	if (result == 1)
3994 		em_print_debug_info(adapter);
3995 
3996 	/*
3997 	 * This value will cause a hex dump of the
3998 	 * first 32 16-bit words of the EEPROM to
3999 	 * the screen.
4000 	 */
4001 	if (result == 2)
4002 		em_print_nvm_info(adapter);
4003 
4004 	lwkt_serialize_exit(ifp->if_serializer);
4005 
4006 	return (error);
4007 }
4008 
4009 static int
4010 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4011 {
4012 	int error, result;
4013 
4014 	result = -1;
4015 	error = sysctl_handle_int(oidp, &result, 0, req);
4016 	if (error || !req->newptr)
4017 		return (error);
4018 
4019 	if (result == 1) {
4020 		struct adapter *adapter = (struct adapter *)arg1;
4021 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4022 
4023 		lwkt_serialize_enter(ifp->if_serializer);
4024 		em_print_hw_stats(adapter);
4025 		lwkt_serialize_exit(ifp->if_serializer);
4026 	}
4027 	return (error);
4028 }
4029 
4030 static void
4031 em_add_sysctl(struct adapter *adapter)
4032 {
4033 	sysctl_ctx_init(&adapter->sysctl_ctx);
4034 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4035 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4036 					device_get_nameunit(adapter->dev),
4037 					CTLFLAG_RD, 0, "");
4038 	if (adapter->sysctl_tree == NULL) {
4039 		device_printf(adapter->dev, "can't add sysctl node\n");
4040 	} else {
4041 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4042 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4043 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4044 		    em_sysctl_debug_info, "I", "Debug Information");
4045 
4046 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4047 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4048 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4049 		    em_sysctl_stats, "I", "Statistics");
4050 
4051 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4052 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4053 		    OID_AUTO, "rxd", CTLFLAG_RD,
4054 		    &adapter->num_rx_desc, 0, NULL);
4055 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4056 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4057 		    OID_AUTO, "txd", CTLFLAG_RD,
4058 		    &adapter->num_tx_desc, 0, NULL);
4059 
4060 		if (adapter->hw.mac.type >= e1000_82540) {
4061 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4062 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4063 			    OID_AUTO, "int_throttle_ceil",
4064 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4065 			    em_sysctl_int_throttle, "I",
4066 			    "interrupt throttling rate");
4067 		}
4068 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4069 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4070 		    OID_AUTO, "int_tx_nsegs",
4071 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4072 		    em_sysctl_int_tx_nsegs, "I",
4073 		    "# segments per TX interrupt");
4074 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4075 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4076 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4077 		    &adapter->tx_wreg_nsegs, 0,
4078 		    "# segments before write to hardware register");
4079 	}
4080 }
4081 
4082 static int
4083 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4084 {
4085 	struct adapter *adapter = (void *)arg1;
4086 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4087 	int error, throttle;
4088 
4089 	throttle = adapter->int_throttle_ceil;
4090 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4091 	if (error || req->newptr == NULL)
4092 		return error;
4093 	if (throttle < 0 || throttle > 1000000000 / 256)
4094 		return EINVAL;
4095 
4096 	if (throttle) {
4097 		/*
4098 		 * Set the interrupt throttling rate in 256ns increments,
4099 		 * recalculate sysctl value assignment to get exact frequency.
4100 		 */
4101 		throttle = 1000000000 / 256 / throttle;
4102 
4103 		/* Upper 16bits of ITR is reserved and should be zero */
4104 		if (throttle & 0xffff0000)
4105 			return EINVAL;
4106 	}
4107 
4108 	lwkt_serialize_enter(ifp->if_serializer);
4109 
4110 	if (throttle)
4111 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4112 	else
4113 		adapter->int_throttle_ceil = 0;
4114 
4115 	if (ifp->if_flags & IFF_RUNNING)
4116 		em_set_itr(adapter, throttle);
4117 
4118 	lwkt_serialize_exit(ifp->if_serializer);
4119 
4120 	if (bootverbose) {
4121 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4122 			  adapter->int_throttle_ceil);
4123 	}
4124 	return 0;
4125 }
4126 
4127 static int
4128 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4129 {
4130 	struct adapter *adapter = (void *)arg1;
4131 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4132 	int error, segs;
4133 
4134 	segs = adapter->tx_int_nsegs;
4135 	error = sysctl_handle_int(oidp, &segs, 0, req);
4136 	if (error || req->newptr == NULL)
4137 		return error;
4138 	if (segs <= 0)
4139 		return EINVAL;
4140 
4141 	lwkt_serialize_enter(ifp->if_serializer);
4142 
4143 	/*
4144 	 * Don't allow int_tx_nsegs to become:
4145 	 * o  Less the oact_tx_desc
4146 	 * o  Too large that no TX desc will cause TX interrupt to
4147 	 *    be generated (OACTIVE will never recover)
4148 	 * o  Too small that will cause tx_dd[] overflow
4149 	 */
4150 	if (segs < adapter->oact_tx_desc ||
4151 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4152 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4153 		error = EINVAL;
4154 	} else {
4155 		error = 0;
4156 		adapter->tx_int_nsegs = segs;
4157 	}
4158 
4159 	lwkt_serialize_exit(ifp->if_serializer);
4160 
4161 	return error;
4162 }
4163 
4164 static void
4165 em_set_itr(struct adapter *adapter, uint32_t itr)
4166 {
4167 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4168 	if (adapter->hw.mac.type == e1000_82574) {
4169 		int i;
4170 
4171 		/*
4172 		 * When using MSIX interrupts we need to
4173 		 * throttle using the EITR register
4174 		 */
4175 		for (i = 0; i < 4; ++i) {
4176 			E1000_WRITE_REG(&adapter->hw,
4177 			    E1000_EITR_82574(i), itr);
4178 		}
4179 	}
4180 }
4181 
4182 static void
4183 em_disable_aspm(struct adapter *adapter)
4184 {
4185 	uint16_t link_cap, link_ctrl, disable;
4186 	uint8_t pcie_ptr, reg;
4187 	device_t dev = adapter->dev;
4188 
4189 	switch (adapter->hw.mac.type) {
4190 	case e1000_82571:
4191 	case e1000_82572:
4192 	case e1000_82573:
4193 		/*
4194 		 * 82573 specification update
4195 		 * errata #8 disable L0s
4196 		 * errata #41 disable L1
4197 		 *
4198 		 * 82571/82572 specification update
4199 		 # errata #13 disable L1
4200 		 * errata #68 disable L0s
4201 		 */
4202 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4203 		break;
4204 
4205 	case e1000_82574:
4206 	case e1000_82583:
4207 		/*
4208 		 * 82574 specification update errata #20
4209 		 * 82583 specification update errata #9
4210 		 *
4211 		 * There is no need to disable L1
4212 		 */
4213 		disable = PCIEM_LNKCTL_ASPM_L0S;
4214 		break;
4215 
4216 	default:
4217 		return;
4218 	}
4219 
4220 	pcie_ptr = pci_get_pciecap_ptr(dev);
4221 	if (pcie_ptr == 0)
4222 		return;
4223 
4224 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4225 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4226 		return;
4227 
4228 	if (bootverbose) {
4229 		if_printf(&adapter->arpcom.ac_if,
4230 		    "disable ASPM %#02x\n", disable);
4231 	}
4232 
4233 	reg = pcie_ptr + PCIER_LINKCTRL;
4234 	link_ctrl = pci_read_config(dev, reg, 2);
4235 	link_ctrl &= ~disable;
4236 	pci_write_config(dev, reg, link_ctrl, 2);
4237 }
4238 
4239 static int
4240 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4241 {
4242 	int iphlen, hoff, thoff, ex = 0;
4243 	struct mbuf *m;
4244 	struct ip *ip;
4245 
4246 	m = *mp;
4247 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4248 
4249 	iphlen = m->m_pkthdr.csum_iphlen;
4250 	thoff = m->m_pkthdr.csum_thlen;
4251 	hoff = m->m_pkthdr.csum_lhlen;
4252 
4253 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4254 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4255 	KASSERT(hoff > 0, ("invalid ether hlen"));
4256 
4257 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4258 		ex = 4;
4259 
4260 	if (m->m_len < hoff + iphlen + thoff + ex) {
4261 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4262 		if (m == NULL) {
4263 			*mp = NULL;
4264 			return ENOBUFS;
4265 		}
4266 		*mp = m;
4267 	}
4268 	ip = mtodoff(m, struct ip *, hoff);
4269 	ip->ip_len = 0;
4270 
4271 	return 0;
4272 }
4273 
4274 static int
4275 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4276     uint32_t *txd_upper, uint32_t *txd_lower)
4277 {
4278 	struct e1000_context_desc *TXD;
4279 	int hoff, iphlen, thoff, hlen;
4280 	int mss, pktlen, curr_txd;
4281 
4282 	iphlen = mp->m_pkthdr.csum_iphlen;
4283 	thoff = mp->m_pkthdr.csum_thlen;
4284 	hoff = mp->m_pkthdr.csum_lhlen;
4285 	mss = mp->m_pkthdr.tso_segsz;
4286 	pktlen = mp->m_pkthdr.len;
4287 
4288 	if (adapter->csum_flags == CSUM_TSO &&
4289 	    adapter->csum_iphlen == iphlen &&
4290 	    adapter->csum_lhlen == hoff &&
4291 	    adapter->csum_thlen == thoff &&
4292 	    adapter->csum_mss == mss &&
4293 	    adapter->csum_pktlen == pktlen) {
4294 		*txd_upper = adapter->csum_txd_upper;
4295 		*txd_lower = adapter->csum_txd_lower;
4296 		return 0;
4297 	}
4298 	hlen = hoff + iphlen + thoff;
4299 
4300 	/*
4301 	 * Setup a new TSO context.
4302 	 */
4303 
4304 	curr_txd = adapter->next_avail_tx_desc;
4305 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4306 
4307 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4308 		     E1000_TXD_DTYP_D |		/* Data descr type */
4309 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4310 
4311 	/* IP and/or TCP header checksum calculation and insertion. */
4312 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4313 
4314 	/*
4315 	 * Start offset for header checksum calculation.
4316 	 * End offset for header checksum calculation.
4317 	 * Offset of place put the checksum.
4318 	 */
4319 	TXD->lower_setup.ip_fields.ipcss = hoff;
4320 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4321 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4322 
4323 	/*
4324 	 * Start offset for payload checksum calculation.
4325 	 * End offset for payload checksum calculation.
4326 	 * Offset of place to put the checksum.
4327 	 */
4328 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4329 	TXD->upper_setup.tcp_fields.tucse = 0;
4330 	TXD->upper_setup.tcp_fields.tucso =
4331 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4332 
4333 	/*
4334 	 * Payload size per packet w/o any headers.
4335 	 * Length of all headers up to payload.
4336 	 */
4337 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4338 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4339 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4340 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4341 				E1000_TXD_CMD_TSE |	/* TSE context */
4342 				E1000_TXD_CMD_IP |	/* Do IP csum */
4343 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4344 				(pktlen - hlen));	/* Total len */
4345 
4346 	/* Save the information for this TSO context */
4347 	adapter->csum_flags = CSUM_TSO;
4348 	adapter->csum_lhlen = hoff;
4349 	adapter->csum_iphlen = iphlen;
4350 	adapter->csum_thlen = thoff;
4351 	adapter->csum_mss = mss;
4352 	adapter->csum_pktlen = pktlen;
4353 	adapter->csum_txd_upper = *txd_upper;
4354 	adapter->csum_txd_lower = *txd_lower;
4355 
4356 	if (++curr_txd == adapter->num_tx_desc)
4357 		curr_txd = 0;
4358 
4359 	KKASSERT(adapter->num_tx_desc_avail > 0);
4360 	adapter->num_tx_desc_avail--;
4361 
4362 	adapter->next_avail_tx_desc = curr_txd;
4363 	return 1;
4364 }
4365