xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 07a2f99c)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_TX_SERIALIZE	1
124 #define EMX_RX_SERIALIZE	2
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	/* required last entry */
166 	EMX_DEVICE_NULL
167 };
168 
169 static int	emx_probe(device_t);
170 static int	emx_attach(device_t);
171 static int	emx_detach(device_t);
172 static int	emx_shutdown(device_t);
173 static int	emx_suspend(device_t);
174 static int	emx_resume(device_t);
175 
176 static void	emx_init(void *);
177 static void	emx_stop(struct emx_softc *);
178 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
179 static void	emx_start(struct ifnet *);
180 #ifdef IFPOLL_ENABLE
181 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
182 static void	emx_npoll_status(struct ifnet *);
183 static void	emx_npoll_tx(struct ifnet *, void *, int);
184 static void	emx_npoll_rx(struct ifnet *, void *, int);
185 #endif
186 static void	emx_watchdog(struct ifnet *);
187 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
188 static int	emx_media_change(struct ifnet *);
189 static void	emx_timer(void *);
190 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
191 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
192 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
193 #ifdef INVARIANTS
194 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
195 		    boolean_t);
196 #endif
197 
198 static void	emx_intr(void *);
199 static void	emx_intr_mask(void *);
200 static void	emx_intr_body(struct emx_softc *, boolean_t);
201 static void	emx_rxeof(struct emx_rxdata *, int);
202 static void	emx_txeof(struct emx_txdata *);
203 static void	emx_tx_collect(struct emx_txdata *);
204 static void	emx_tx_purge(struct emx_softc *);
205 static void	emx_enable_intr(struct emx_softc *);
206 static void	emx_disable_intr(struct emx_softc *);
207 
208 static int	emx_dma_alloc(struct emx_softc *);
209 static void	emx_dma_free(struct emx_softc *);
210 static void	emx_init_tx_ring(struct emx_txdata *);
211 static int	emx_init_rx_ring(struct emx_rxdata *);
212 static void	emx_free_rx_ring(struct emx_rxdata *);
213 static int	emx_create_tx_ring(struct emx_txdata *);
214 static int	emx_create_rx_ring(struct emx_rxdata *);
215 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
216 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
217 static int	emx_newbuf(struct emx_rxdata *, int, int);
218 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
219 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
220 		    uint32_t *, uint32_t *);
221 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
222 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
223 		    uint32_t *, uint32_t *);
224 
225 static int 	emx_is_valid_eaddr(const uint8_t *);
226 static int	emx_reset(struct emx_softc *);
227 static void	emx_setup_ifp(struct emx_softc *);
228 static void	emx_init_tx_unit(struct emx_softc *);
229 static void	emx_init_rx_unit(struct emx_softc *);
230 static void	emx_update_stats(struct emx_softc *);
231 static void	emx_set_promisc(struct emx_softc *);
232 static void	emx_disable_promisc(struct emx_softc *);
233 static void	emx_set_multi(struct emx_softc *);
234 static void	emx_update_link_status(struct emx_softc *);
235 static void	emx_smartspeed(struct emx_softc *);
236 static void	emx_set_itr(struct emx_softc *, uint32_t);
237 static void	emx_disable_aspm(struct emx_softc *);
238 
239 static void	emx_print_debug_info(struct emx_softc *);
240 static void	emx_print_nvm_info(struct emx_softc *);
241 static void	emx_print_hw_stats(struct emx_softc *);
242 
243 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
245 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
246 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
247 #ifdef IFPOLL_ENABLE
248 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
249 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
250 #endif
251 static void	emx_add_sysctl(struct emx_softc *);
252 
253 static void	emx_serialize_skipmain(struct emx_softc *);
254 static void	emx_deserialize_skipmain(struct emx_softc *);
255 
256 /* Management and WOL Support */
257 static void	emx_get_mgmt(struct emx_softc *);
258 static void	emx_rel_mgmt(struct emx_softc *);
259 static void	emx_get_hw_control(struct emx_softc *);
260 static void	emx_rel_hw_control(struct emx_softc *);
261 static void	emx_enable_wol(device_t);
262 
263 static device_method_t emx_methods[] = {
264 	/* Device interface */
265 	DEVMETHOD(device_probe,		emx_probe),
266 	DEVMETHOD(device_attach,	emx_attach),
267 	DEVMETHOD(device_detach,	emx_detach),
268 	DEVMETHOD(device_shutdown,	emx_shutdown),
269 	DEVMETHOD(device_suspend,	emx_suspend),
270 	DEVMETHOD(device_resume,	emx_resume),
271 	{ 0, 0 }
272 };
273 
274 static driver_t emx_driver = {
275 	"emx",
276 	emx_methods,
277 	sizeof(struct emx_softc),
278 };
279 
280 static devclass_t emx_devclass;
281 
282 DECLARE_DUMMY_MODULE(if_emx);
283 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
284 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
285 
286 /*
287  * Tunables
288  */
289 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
290 static int	emx_rxd = EMX_DEFAULT_RXD;
291 static int	emx_txd = EMX_DEFAULT_TXD;
292 static int	emx_smart_pwr_down = 0;
293 static int	emx_rxr = 0;
294 
295 /* Controls whether promiscuous also shows bad packets */
296 static int	emx_debug_sbp = 0;
297 
298 static int	emx_82573_workaround = 1;
299 static int	emx_msi_enable = 1;
300 
301 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
302 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
303 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
304 TUNABLE_INT("hw.emx.txd", &emx_txd);
305 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
306 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
307 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
308 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
309 
310 /* Global used in WOL setup with multiport cards */
311 static int	emx_global_quad_port_a = 0;
312 
313 /* Set this to one to display debug statistics */
314 static int	emx_display_debug_stats = 0;
315 
316 #if !defined(KTR_IF_EMX)
317 #define KTR_IF_EMX	KTR_ALL
318 #endif
319 KTR_INFO_MASTER(if_emx);
320 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
321 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
322 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
323 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
324 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
325 #define logif(name)	KTR_LOG(if_emx_ ## name)
326 
327 static __inline void
328 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
329 {
330 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
331 	/* DD bit must be cleared */
332 	rxd->rxd_staterr = 0;
333 }
334 
335 static __inline void
336 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
337 {
338 	/* Ignore Checksum bit is set */
339 	if (staterr & E1000_RXD_STAT_IXSM)
340 		return;
341 
342 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
343 	    E1000_RXD_STAT_IPCS)
344 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
345 
346 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
347 	    E1000_RXD_STAT_TCPCS) {
348 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
349 					   CSUM_PSEUDO_HDR |
350 					   CSUM_FRAG_NOT_CHECKED;
351 		mp->m_pkthdr.csum_data = htons(0xffff);
352 	}
353 }
354 
355 static __inline struct pktinfo *
356 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
357 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
358 {
359 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
360 	case EMX_RXDMRQ_IPV4_TCP:
361 		pi->pi_netisr = NETISR_IP;
362 		pi->pi_flags = 0;
363 		pi->pi_l3proto = IPPROTO_TCP;
364 		break;
365 
366 	case EMX_RXDMRQ_IPV6_TCP:
367 		pi->pi_netisr = NETISR_IPV6;
368 		pi->pi_flags = 0;
369 		pi->pi_l3proto = IPPROTO_TCP;
370 		break;
371 
372 	case EMX_RXDMRQ_IPV4:
373 		if (staterr & E1000_RXD_STAT_IXSM)
374 			return NULL;
375 
376 		if ((staterr &
377 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
378 		    E1000_RXD_STAT_TCPCS) {
379 			pi->pi_netisr = NETISR_IP;
380 			pi->pi_flags = 0;
381 			pi->pi_l3proto = IPPROTO_UDP;
382 			break;
383 		}
384 		/* FALL THROUGH */
385 	default:
386 		return NULL;
387 	}
388 
389 	m->m_flags |= M_HASH;
390 	m->m_pkthdr.hash = toeplitz_hash(hash);
391 	return pi;
392 }
393 
394 static int
395 emx_probe(device_t dev)
396 {
397 	const struct emx_device *d;
398 	uint16_t vid, did;
399 
400 	vid = pci_get_vendor(dev);
401 	did = pci_get_device(dev);
402 
403 	for (d = emx_devices; d->desc != NULL; ++d) {
404 		if (vid == d->vid && did == d->did) {
405 			device_set_desc(dev, d->desc);
406 			device_set_async_attach(dev, TRUE);
407 			return 0;
408 		}
409 	}
410 	return ENXIO;
411 }
412 
413 static int
414 emx_attach(device_t dev)
415 {
416 	struct emx_softc *sc = device_get_softc(dev);
417 	struct ifnet *ifp = &sc->arpcom.ac_if;
418 	int error = 0, i, throttle, msi_enable;
419 	u_int intr_flags;
420 	uint16_t eeprom_data, device_id, apme_mask;
421 	driver_intr_t *intr_func;
422 #ifdef IFPOLL_ENABLE
423 	int offset, offset_def;
424 #endif
425 
426 	/*
427 	 * Setup RX rings
428 	 */
429 	for (i = 0; i < EMX_NRX_RING; ++i) {
430 		sc->rx_data[i].sc = sc;
431 		sc->rx_data[i].idx = i;
432 	}
433 
434 	/*
435 	 * Setup TX ring
436 	 */
437 	sc->tx_data.sc = sc;
438 	sc->tx_data.idx = 0;
439 
440 	/*
441 	 * Initialize serializers
442 	 */
443 	lwkt_serialize_init(&sc->main_serialize);
444 	lwkt_serialize_init(&sc->tx_data.tx_serialize);
445 	for (i = 0; i < EMX_NRX_RING; ++i)
446 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
447 
448 	/*
449 	 * Initialize serializer array
450 	 */
451 	i = 0;
452 	sc->serializes[i++] = &sc->main_serialize;
453 
454 	KKASSERT(i == EMX_TX_SERIALIZE);
455 	sc->serializes[i++] = &sc->tx_data.tx_serialize;
456 
457 	KKASSERT(i == EMX_RX_SERIALIZE);
458 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
459 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
460 	KKASSERT(i == EMX_NSERIALIZE);
461 
462 	callout_init_mp(&sc->timer);
463 
464 	sc->dev = sc->osdep.dev = dev;
465 
466 	/*
467 	 * Determine hardware and mac type
468 	 */
469 	sc->hw.vendor_id = pci_get_vendor(dev);
470 	sc->hw.device_id = pci_get_device(dev);
471 	sc->hw.revision_id = pci_get_revid(dev);
472 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
473 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
474 
475 	if (e1000_set_mac_type(&sc->hw))
476 		return ENXIO;
477 
478 	/*
479 	 * Pullup extra 4bytes into the first data segment, see:
480 	 * 82571/82572 specification update errata #7
481 	 *
482 	 * NOTE:
483 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
484 	 * are pulled; mainly to keep rest of the data properly aligned.
485 	 */
486 	if (sc->hw.mac.type == e1000_82571 || sc->hw.mac.type == e1000_82572)
487 		sc->flags |= EMX_FLAG_TSO_PULLEX;
488 
489 	/* Enable bus mastering */
490 	pci_enable_busmaster(dev);
491 
492 	/*
493 	 * Allocate IO memory
494 	 */
495 	sc->memory_rid = EMX_BAR_MEM;
496 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
497 					    &sc->memory_rid, RF_ACTIVE);
498 	if (sc->memory == NULL) {
499 		device_printf(dev, "Unable to allocate bus resource: memory\n");
500 		error = ENXIO;
501 		goto fail;
502 	}
503 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
504 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
505 
506 	/* XXX This is quite goofy, it is not actually used */
507 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
508 
509 	/*
510 	 * Don't enable MSI-X on 82574, see:
511 	 * 82574 specification update errata #15
512 	 *
513 	 * Don't enable MSI on 82571/82572, see:
514 	 * 82571/82572 specification update errata #63
515 	 */
516 	msi_enable = emx_msi_enable;
517 	if (msi_enable &&
518 	    (sc->hw.mac.type == e1000_82571 ||
519 	     sc->hw.mac.type == e1000_82572))
520 		msi_enable = 0;
521 
522 	/*
523 	 * Allocate interrupt
524 	 */
525 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
526 	    &sc->intr_rid, &intr_flags);
527 
528 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
529 		int unshared;
530 
531 		unshared = device_getenv_int(dev, "irq.unshared", 0);
532 		if (!unshared) {
533 			sc->flags |= EMX_FLAG_SHARED_INTR;
534 			if (bootverbose)
535 				device_printf(dev, "IRQ shared\n");
536 		} else {
537 			intr_flags &= ~RF_SHAREABLE;
538 			if (bootverbose)
539 				device_printf(dev, "IRQ unshared\n");
540 		}
541 	}
542 
543 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
544 	    intr_flags);
545 	if (sc->intr_res == NULL) {
546 		device_printf(dev, "Unable to allocate bus resource: "
547 		    "interrupt\n");
548 		error = ENXIO;
549 		goto fail;
550 	}
551 
552 	/* Save PCI command register for Shared Code */
553 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
554 	sc->hw.back = &sc->osdep;
555 
556 	/* Do Shared Code initialization */
557 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
558 		device_printf(dev, "Setup of Shared code failed\n");
559 		error = ENXIO;
560 		goto fail;
561 	}
562 	e1000_get_bus_info(&sc->hw);
563 
564 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
565 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
566 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
567 
568 	/*
569 	 * Interrupt throttle rate
570 	 */
571 	throttle = device_getenv_int(dev, "int_throttle_ceil",
572 	    emx_int_throttle_ceil);
573 	if (throttle == 0) {
574 		sc->int_throttle_ceil = 0;
575 	} else {
576 		if (throttle < 0)
577 			throttle = EMX_DEFAULT_ITR;
578 
579 		/* Recalculate the tunable value to get the exact frequency. */
580 		throttle = 1000000000 / 256 / throttle;
581 
582 		/* Upper 16bits of ITR is reserved and should be zero */
583 		if (throttle & 0xffff0000)
584 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
585 
586 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
587 	}
588 
589 	e1000_init_script_state_82541(&sc->hw, TRUE);
590 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
591 
592 	/* Copper options */
593 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
594 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
595 		sc->hw.phy.disable_polarity_correction = FALSE;
596 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
597 	}
598 
599 	/* Set the frame limits assuming standard ethernet sized frames. */
600 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
601 	sc->min_frame_size = ETHER_MIN_LEN;
602 
603 	/* This controls when hardware reports transmit completion status. */
604 	sc->hw.mac.report_tx_early = 1;
605 
606 	/* Calculate # of RX rings */
607 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
608 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
609 
610 	/* Allocate RX/TX rings' busdma(9) stuffs */
611 	error = emx_dma_alloc(sc);
612 	if (error)
613 		goto fail;
614 
615 	/* Allocate multicast array memory. */
616 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
617 	    M_DEVBUF, M_WAITOK);
618 
619 	/* Indicate SOL/IDER usage */
620 	if (e1000_check_reset_block(&sc->hw)) {
621 		device_printf(dev,
622 		    "PHY reset is blocked due to SOL/IDER session.\n");
623 	}
624 
625 	/*
626 	 * Start from a known state, this is important in reading the
627 	 * nvm and mac from that.
628 	 */
629 	e1000_reset_hw(&sc->hw);
630 
631 	/* Make sure we have a good EEPROM before we read from it */
632 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
633 		/*
634 		 * Some PCI-E parts fail the first check due to
635 		 * the link being in sleep state, call it again,
636 		 * if it fails a second time its a real issue.
637 		 */
638 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
639 			device_printf(dev,
640 			    "The EEPROM Checksum Is Not Valid\n");
641 			error = EIO;
642 			goto fail;
643 		}
644 	}
645 
646 	/* Copy the permanent MAC address out of the EEPROM */
647 	if (e1000_read_mac_addr(&sc->hw) < 0) {
648 		device_printf(dev, "EEPROM read error while reading MAC"
649 		    " address\n");
650 		error = EIO;
651 		goto fail;
652 	}
653 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
654 		device_printf(dev, "Invalid MAC address\n");
655 		error = EIO;
656 		goto fail;
657 	}
658 
659 	/* Determine if we have to control management hardware */
660 	if (e1000_enable_mng_pass_thru(&sc->hw))
661 		sc->flags |= EMX_FLAG_HAS_MGMT;
662 
663 	/*
664 	 * Setup Wake-on-Lan
665 	 */
666 	apme_mask = EMX_EEPROM_APME;
667 	eeprom_data = 0;
668 	switch (sc->hw.mac.type) {
669 	case e1000_82573:
670 		sc->flags |= EMX_FLAG_HAS_AMT;
671 		/* FALL THROUGH */
672 
673 	case e1000_82571:
674 	case e1000_82572:
675 	case e1000_80003es2lan:
676 		if (sc->hw.bus.func == 1) {
677 			e1000_read_nvm(&sc->hw,
678 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
679 		} else {
680 			e1000_read_nvm(&sc->hw,
681 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
682 		}
683 		break;
684 
685 	default:
686 		e1000_read_nvm(&sc->hw,
687 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
688 		break;
689 	}
690 	if (eeprom_data & apme_mask)
691 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
692 
693 	/*
694          * We have the eeprom settings, now apply the special cases
695          * where the eeprom may be wrong or the board won't support
696          * wake on lan on a particular port
697 	 */
698 	device_id = pci_get_device(dev);
699         switch (device_id) {
700 	case E1000_DEV_ID_82571EB_FIBER:
701 		/*
702 		 * Wake events only supported on port A for dual fiber
703 		 * regardless of eeprom setting
704 		 */
705 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
706 		    E1000_STATUS_FUNC_1)
707 			sc->wol = 0;
708 		break;
709 
710 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
711 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
712 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
713                 /* if quad port sc, disable WoL on all but port A */
714 		if (emx_global_quad_port_a != 0)
715 			sc->wol = 0;
716 		/* Reset for multiple quad port adapters */
717 		if (++emx_global_quad_port_a == 4)
718 			emx_global_quad_port_a = 0;
719                 break;
720 	}
721 
722 	/* XXX disable wol */
723 	sc->wol = 0;
724 
725 #ifdef IFPOLL_ENABLE
726 	/*
727 	 * NPOLLING RX CPU offset
728 	 */
729 	if (sc->rx_ring_cnt == ncpus2) {
730 		offset = 0;
731 	} else {
732 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
733 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
734 		if (offset >= ncpus2 ||
735 		    offset % sc->rx_ring_cnt != 0) {
736 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
737 			    offset, offset_def);
738 			offset = offset_def;
739 		}
740 	}
741 	sc->rx_npoll_off = offset;
742 
743 	/*
744 	 * NPOLLING TX CPU offset
745 	 */
746 	offset_def = sc->rx_npoll_off;
747 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
748 	if (offset >= ncpus2) {
749 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
750 		    offset, offset_def);
751 		offset = offset_def;
752 	}
753 	sc->tx_npoll_off = offset;
754 #endif
755 
756 	/* Setup OS specific network interface */
757 	emx_setup_ifp(sc);
758 
759 	/* Add sysctl tree, must after em_setup_ifp() */
760 	emx_add_sysctl(sc);
761 
762 	/* Reset the hardware */
763 	error = emx_reset(sc);
764 	if (error) {
765 		device_printf(dev, "Unable to reset the hardware\n");
766 		goto fail;
767 	}
768 
769 	/* Initialize statistics */
770 	emx_update_stats(sc);
771 
772 	sc->hw.mac.get_link_status = 1;
773 	emx_update_link_status(sc);
774 
775 	sc->tx_data.spare_tx_desc = EMX_TX_SPARE;
776 	sc->tx_data.tx_wreg_nsegs = 8;
777 
778 	/*
779 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
780 	 * and tx_int_nsegs:
781 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
782 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
783 	 */
784 	sc->tx_data.oact_tx_desc = sc->tx_data.num_tx_desc / 8;
785 	if (sc->tx_data.oact_tx_desc > EMX_TX_OACTIVE_MAX)
786 		sc->tx_data.oact_tx_desc = EMX_TX_OACTIVE_MAX;
787 	if (sc->tx_data.oact_tx_desc <
788 	    sc->tx_data.spare_tx_desc + EMX_TX_RESERVED) {
789 		sc->tx_data.oact_tx_desc = sc->tx_data.spare_tx_desc +
790 		    EMX_TX_RESERVED;
791 	}
792 
793 	sc->tx_data.tx_int_nsegs = sc->tx_data.num_tx_desc / 16;
794 	if (sc->tx_data.tx_int_nsegs < sc->tx_data.oact_tx_desc)
795 		sc->tx_data.tx_int_nsegs = sc->tx_data.oact_tx_desc;
796 
797 	/* Non-AMT based hardware can now take control from firmware */
798 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
799 	    EMX_FLAG_HAS_MGMT)
800 		emx_get_hw_control(sc);
801 
802 	/*
803 	 * Missing Interrupt Following ICR read:
804 	 *
805 	 * 82571/82572 specification update errata #76
806 	 * 82573 specification update errata #31
807 	 * 82574 specification update errata #12
808 	 */
809 	intr_func = emx_intr;
810 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
811 	    (sc->hw.mac.type == e1000_82571 ||
812 	     sc->hw.mac.type == e1000_82572 ||
813 	     sc->hw.mac.type == e1000_82573 ||
814 	     sc->hw.mac.type == e1000_82574))
815 		intr_func = emx_intr_mask;
816 
817 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
818 			       &sc->intr_tag, &sc->main_serialize);
819 	if (error) {
820 		device_printf(dev, "Failed to register interrupt handler");
821 		ether_ifdetach(&sc->arpcom.ac_if);
822 		goto fail;
823 	}
824 
825 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
826 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
827 	return (0);
828 fail:
829 	emx_detach(dev);
830 	return (error);
831 }
832 
833 static int
834 emx_detach(device_t dev)
835 {
836 	struct emx_softc *sc = device_get_softc(dev);
837 
838 	if (device_is_attached(dev)) {
839 		struct ifnet *ifp = &sc->arpcom.ac_if;
840 
841 		ifnet_serialize_all(ifp);
842 
843 		emx_stop(sc);
844 
845 		e1000_phy_hw_reset(&sc->hw);
846 
847 		emx_rel_mgmt(sc);
848 		emx_rel_hw_control(sc);
849 
850 		if (sc->wol) {
851 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
852 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
853 			emx_enable_wol(dev);
854 		}
855 
856 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
857 
858 		ifnet_deserialize_all(ifp);
859 
860 		ether_ifdetach(ifp);
861 	} else if (sc->memory != NULL) {
862 		emx_rel_hw_control(sc);
863 	}
864 	bus_generic_detach(dev);
865 
866 	if (sc->intr_res != NULL) {
867 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
868 				     sc->intr_res);
869 	}
870 
871 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
872 		pci_release_msi(dev);
873 
874 	if (sc->memory != NULL) {
875 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
876 				     sc->memory);
877 	}
878 
879 	emx_dma_free(sc);
880 
881 	/* Free sysctl tree */
882 	if (sc->sysctl_tree != NULL)
883 		sysctl_ctx_free(&sc->sysctl_ctx);
884 
885 	if (sc->mta != NULL)
886 		kfree(sc->mta, M_DEVBUF);
887 
888 	return (0);
889 }
890 
891 static int
892 emx_shutdown(device_t dev)
893 {
894 	return emx_suspend(dev);
895 }
896 
897 static int
898 emx_suspend(device_t dev)
899 {
900 	struct emx_softc *sc = device_get_softc(dev);
901 	struct ifnet *ifp = &sc->arpcom.ac_if;
902 
903 	ifnet_serialize_all(ifp);
904 
905 	emx_stop(sc);
906 
907 	emx_rel_mgmt(sc);
908 	emx_rel_hw_control(sc);
909 
910 	if (sc->wol) {
911 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
912 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
913 		emx_enable_wol(dev);
914 	}
915 
916 	ifnet_deserialize_all(ifp);
917 
918 	return bus_generic_suspend(dev);
919 }
920 
921 static int
922 emx_resume(device_t dev)
923 {
924 	struct emx_softc *sc = device_get_softc(dev);
925 	struct ifnet *ifp = &sc->arpcom.ac_if;
926 
927 	ifnet_serialize_all(ifp);
928 
929 	emx_init(sc);
930 	emx_get_mgmt(sc);
931 	if_devstart(ifp);
932 
933 	ifnet_deserialize_all(ifp);
934 
935 	return bus_generic_resume(dev);
936 }
937 
938 static void
939 emx_start(struct ifnet *ifp)
940 {
941 	struct emx_softc *sc = ifp->if_softc;
942 	struct emx_txdata *tdata = &sc->tx_data;
943 	struct mbuf *m_head;
944 	int idx = -1, nsegs = 0;
945 
946 	ASSERT_SERIALIZED(&sc->tx_data.tx_serialize);
947 
948 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
949 		return;
950 
951 	if (!sc->link_active) {
952 		ifq_purge(&ifp->if_snd);
953 		return;
954 	}
955 
956 	while (!ifq_is_empty(&ifp->if_snd)) {
957 		/* Now do we at least have a minimal? */
958 		if (EMX_IS_OACTIVE(tdata)) {
959 			emx_tx_collect(tdata);
960 			if (EMX_IS_OACTIVE(tdata)) {
961 				ifp->if_flags |= IFF_OACTIVE;
962 				break;
963 			}
964 		}
965 
966 		logif(pkt_txqueue);
967 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
968 		if (m_head == NULL)
969 			break;
970 
971 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
972 			ifp->if_oerrors++;
973 			emx_tx_collect(tdata);
974 			continue;
975 		}
976 
977 		if (nsegs >= tdata->tx_wreg_nsegs) {
978 			E1000_WRITE_REG(&sc->hw, E1000_TDT(0), idx);
979 			nsegs = 0;
980 			idx = -1;
981 		}
982 
983 		/* Send a copy of the frame to the BPF listener */
984 		ETHER_BPF_MTAP(ifp, m_head);
985 
986 		/* Set timeout in case hardware has problems transmitting. */
987 		ifp->if_timer = EMX_TX_TIMEOUT;
988 	}
989 	if (idx >= 0)
990 		E1000_WRITE_REG(&sc->hw, E1000_TDT(0), idx);
991 }
992 
993 static int
994 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
995 {
996 	struct emx_softc *sc = ifp->if_softc;
997 	struct ifreq *ifr = (struct ifreq *)data;
998 	uint16_t eeprom_data = 0;
999 	int max_frame_size, mask, reinit;
1000 	int error = 0;
1001 
1002 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1003 
1004 	switch (command) {
1005 	case SIOCSIFMTU:
1006 		switch (sc->hw.mac.type) {
1007 		case e1000_82573:
1008 			/*
1009 			 * 82573 only supports jumbo frames
1010 			 * if ASPM is disabled.
1011 			 */
1012 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1013 				       &eeprom_data);
1014 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1015 				max_frame_size = ETHER_MAX_LEN;
1016 				break;
1017 			}
1018 			/* FALL THROUGH */
1019 
1020 		/* Limit Jumbo Frame size */
1021 		case e1000_82571:
1022 		case e1000_82572:
1023 		case e1000_82574:
1024 		case e1000_80003es2lan:
1025 			max_frame_size = 9234;
1026 			break;
1027 
1028 		default:
1029 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1030 			break;
1031 		}
1032 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1033 		    ETHER_CRC_LEN) {
1034 			error = EINVAL;
1035 			break;
1036 		}
1037 
1038 		ifp->if_mtu = ifr->ifr_mtu;
1039 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1040 				     ETHER_CRC_LEN;
1041 
1042 		if (ifp->if_flags & IFF_RUNNING)
1043 			emx_init(sc);
1044 		break;
1045 
1046 	case SIOCSIFFLAGS:
1047 		if (ifp->if_flags & IFF_UP) {
1048 			if ((ifp->if_flags & IFF_RUNNING)) {
1049 				if ((ifp->if_flags ^ sc->if_flags) &
1050 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1051 					emx_disable_promisc(sc);
1052 					emx_set_promisc(sc);
1053 				}
1054 			} else {
1055 				emx_init(sc);
1056 			}
1057 		} else if (ifp->if_flags & IFF_RUNNING) {
1058 			emx_stop(sc);
1059 		}
1060 		sc->if_flags = ifp->if_flags;
1061 		break;
1062 
1063 	case SIOCADDMULTI:
1064 	case SIOCDELMULTI:
1065 		if (ifp->if_flags & IFF_RUNNING) {
1066 			emx_disable_intr(sc);
1067 			emx_set_multi(sc);
1068 #ifdef IFPOLL_ENABLE
1069 			if (!(ifp->if_flags & IFF_NPOLLING))
1070 #endif
1071 				emx_enable_intr(sc);
1072 		}
1073 		break;
1074 
1075 	case SIOCSIFMEDIA:
1076 		/* Check SOL/IDER usage */
1077 		if (e1000_check_reset_block(&sc->hw)) {
1078 			device_printf(sc->dev, "Media change is"
1079 			    " blocked due to SOL/IDER session.\n");
1080 			break;
1081 		}
1082 		/* FALL THROUGH */
1083 
1084 	case SIOCGIFMEDIA:
1085 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1086 		break;
1087 
1088 	case SIOCSIFCAP:
1089 		reinit = 0;
1090 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1091 		if (mask & IFCAP_RXCSUM) {
1092 			ifp->if_capenable ^= IFCAP_RXCSUM;
1093 			reinit = 1;
1094 		}
1095 		if (mask & IFCAP_VLAN_HWTAGGING) {
1096 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1097 			reinit = 1;
1098 		}
1099 		if (mask & IFCAP_TXCSUM) {
1100 			ifp->if_capenable ^= IFCAP_TXCSUM;
1101 			if (ifp->if_capenable & IFCAP_TXCSUM)
1102 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1103 			else
1104 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1105 		}
1106 		if (mask & IFCAP_TSO) {
1107 			ifp->if_capenable ^= IFCAP_TSO;
1108 			if (ifp->if_capenable & IFCAP_TSO)
1109 				ifp->if_hwassist |= CSUM_TSO;
1110 			else
1111 				ifp->if_hwassist &= ~CSUM_TSO;
1112 		}
1113 		if (mask & IFCAP_RSS)
1114 			ifp->if_capenable ^= IFCAP_RSS;
1115 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1116 			emx_init(sc);
1117 		break;
1118 
1119 	default:
1120 		error = ether_ioctl(ifp, command, data);
1121 		break;
1122 	}
1123 	return (error);
1124 }
1125 
1126 static void
1127 emx_watchdog(struct ifnet *ifp)
1128 {
1129 	struct emx_softc *sc = ifp->if_softc;
1130 
1131 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1132 
1133 	/*
1134 	 * The timer is set to 5 every time start queues a packet.
1135 	 * Then txeof keeps resetting it as long as it cleans at
1136 	 * least one descriptor.
1137 	 * Finally, anytime all descriptors are clean the timer is
1138 	 * set to 0.
1139 	 */
1140 
1141 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1142 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1143 		/*
1144 		 * If we reach here, all TX jobs are completed and
1145 		 * the TX engine should have been idled for some time.
1146 		 * We don't need to call if_devstart() here.
1147 		 */
1148 		ifp->if_flags &= ~IFF_OACTIVE;
1149 		ifp->if_timer = 0;
1150 		return;
1151 	}
1152 
1153 	/*
1154 	 * If we are in this routine because of pause frames, then
1155 	 * don't reset the hardware.
1156 	 */
1157 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1158 		ifp->if_timer = EMX_TX_TIMEOUT;
1159 		return;
1160 	}
1161 
1162 	if (e1000_check_for_link(&sc->hw) == 0)
1163 		if_printf(ifp, "watchdog timeout -- resetting\n");
1164 
1165 	ifp->if_oerrors++;
1166 
1167 	emx_init(sc);
1168 
1169 	if (!ifq_is_empty(&ifp->if_snd))
1170 		if_devstart(ifp);
1171 }
1172 
1173 static void
1174 emx_init(void *xsc)
1175 {
1176 	struct emx_softc *sc = xsc;
1177 	struct ifnet *ifp = &sc->arpcom.ac_if;
1178 	device_t dev = sc->dev;
1179 	uint32_t pba;
1180 	int i;
1181 
1182 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1183 
1184 	emx_stop(sc);
1185 
1186 	/*
1187 	 * Packet Buffer Allocation (PBA)
1188 	 * Writing PBA sets the receive portion of the buffer
1189 	 * the remainder is used for the transmit buffer.
1190 	 */
1191 	switch (sc->hw.mac.type) {
1192 	/* Total Packet Buffer on these is 48K */
1193 	case e1000_82571:
1194 	case e1000_82572:
1195 	case e1000_80003es2lan:
1196 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1197 		break;
1198 
1199 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1200 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1201 		break;
1202 
1203 	case e1000_82574:
1204 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1205 		break;
1206 
1207 	default:
1208 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1209 		if (sc->max_frame_size > 8192)
1210 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1211 		else
1212 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1213 	}
1214 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1215 
1216 	/* Get the latest mac address, User can use a LAA */
1217         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1218 
1219 	/* Put the address into the Receive Address Array */
1220 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1221 
1222 	/*
1223 	 * With the 82571 sc, RAR[0] may be overwritten
1224 	 * when the other port is reset, we make a duplicate
1225 	 * in RAR[14] for that eventuality, this assures
1226 	 * the interface continues to function.
1227 	 */
1228 	if (sc->hw.mac.type == e1000_82571) {
1229 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1230 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1231 		    E1000_RAR_ENTRIES - 1);
1232 	}
1233 
1234 	/* Initialize the hardware */
1235 	if (emx_reset(sc)) {
1236 		device_printf(dev, "Unable to reset the hardware\n");
1237 		/* XXX emx_stop()? */
1238 		return;
1239 	}
1240 	emx_update_link_status(sc);
1241 
1242 	/* Setup VLAN support, basic and offload if available */
1243 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1244 
1245 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1246 		uint32_t ctrl;
1247 
1248 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1249 		ctrl |= E1000_CTRL_VME;
1250 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1251 	}
1252 
1253 	/* Configure for OS presence */
1254 	emx_get_mgmt(sc);
1255 
1256 	/* Prepare transmit descriptors and buffers */
1257 	emx_init_tx_ring(&sc->tx_data);
1258 	emx_init_tx_unit(sc);
1259 
1260 	/* Setup Multicast table */
1261 	emx_set_multi(sc);
1262 
1263 	/* Prepare receive descriptors and buffers */
1264 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1265 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1266 			device_printf(dev,
1267 			    "Could not setup receive structures\n");
1268 			emx_stop(sc);
1269 			return;
1270 		}
1271 	}
1272 	emx_init_rx_unit(sc);
1273 
1274 	/* Don't lose promiscuous settings */
1275 	emx_set_promisc(sc);
1276 
1277 	ifp->if_flags |= IFF_RUNNING;
1278 	ifp->if_flags &= ~IFF_OACTIVE;
1279 
1280 	callout_reset(&sc->timer, hz, emx_timer, sc);
1281 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1282 
1283 	/* MSI/X configuration for 82574 */
1284 	if (sc->hw.mac.type == e1000_82574) {
1285 		int tmp;
1286 
1287 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1288 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1289 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1290 		/*
1291 		 * XXX MSIX
1292 		 * Set the IVAR - interrupt vector routing.
1293 		 * Each nibble represents a vector, high bit
1294 		 * is enable, other 3 bits are the MSIX table
1295 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1296 		 * Link (other) to 2, hence the magic number.
1297 		 */
1298 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1299 	}
1300 
1301 #ifdef IFPOLL_ENABLE
1302 	/*
1303 	 * Only enable interrupts if we are not polling, make sure
1304 	 * they are off otherwise.
1305 	 */
1306 	if (ifp->if_flags & IFF_NPOLLING)
1307 		emx_disable_intr(sc);
1308 	else
1309 #endif /* IFPOLL_ENABLE */
1310 		emx_enable_intr(sc);
1311 
1312 	/* AMT based hardware can now take control from firmware */
1313 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1314 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1315 		emx_get_hw_control(sc);
1316 
1317 	/* Don't reset the phy next time init gets called */
1318 	sc->hw.phy.reset_disable = TRUE;
1319 }
1320 
1321 static void
1322 emx_intr(void *xsc)
1323 {
1324 	emx_intr_body(xsc, TRUE);
1325 }
1326 
1327 static void
1328 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1329 {
1330 	struct ifnet *ifp = &sc->arpcom.ac_if;
1331 	uint32_t reg_icr;
1332 
1333 	logif(intr_beg);
1334 	ASSERT_SERIALIZED(&sc->main_serialize);
1335 
1336 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1337 
1338 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1339 		logif(intr_end);
1340 		return;
1341 	}
1342 
1343 	/*
1344 	 * XXX: some laptops trigger several spurious interrupts
1345 	 * on emx(4) when in the resume cycle. The ICR register
1346 	 * reports all-ones value in this case. Processing such
1347 	 * interrupts would lead to a freeze. I don't know why.
1348 	 */
1349 	if (reg_icr == 0xffffffff) {
1350 		logif(intr_end);
1351 		return;
1352 	}
1353 
1354 	if (ifp->if_flags & IFF_RUNNING) {
1355 		if (reg_icr &
1356 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1357 			int i;
1358 
1359 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1360 				lwkt_serialize_enter(
1361 				&sc->rx_data[i].rx_serialize);
1362 				emx_rxeof(&sc->rx_data[i], -1);
1363 				lwkt_serialize_exit(
1364 				&sc->rx_data[i].rx_serialize);
1365 			}
1366 		}
1367 		if (reg_icr & E1000_ICR_TXDW) {
1368 			lwkt_serialize_enter(&sc->tx_data.tx_serialize);
1369 			emx_txeof(&sc->tx_data);
1370 			if (!ifq_is_empty(&ifp->if_snd))
1371 				if_devstart(ifp);
1372 			lwkt_serialize_exit(&sc->tx_data.tx_serialize);
1373 		}
1374 	}
1375 
1376 	/* Link status change */
1377 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1378 		emx_serialize_skipmain(sc);
1379 
1380 		callout_stop(&sc->timer);
1381 		sc->hw.mac.get_link_status = 1;
1382 		emx_update_link_status(sc);
1383 
1384 		/* Deal with TX cruft when link lost */
1385 		emx_tx_purge(sc);
1386 
1387 		callout_reset(&sc->timer, hz, emx_timer, sc);
1388 
1389 		emx_deserialize_skipmain(sc);
1390 	}
1391 
1392 	if (reg_icr & E1000_ICR_RXO)
1393 		sc->rx_overruns++;
1394 
1395 	logif(intr_end);
1396 }
1397 
1398 static void
1399 emx_intr_mask(void *xsc)
1400 {
1401 	struct emx_softc *sc = xsc;
1402 
1403 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1404 	/*
1405 	 * NOTE:
1406 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1407 	 * so don't check it.
1408 	 */
1409 	emx_intr_body(sc, FALSE);
1410 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1411 }
1412 
1413 static void
1414 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1415 {
1416 	struct emx_softc *sc = ifp->if_softc;
1417 
1418 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1419 
1420 	emx_update_link_status(sc);
1421 
1422 	ifmr->ifm_status = IFM_AVALID;
1423 	ifmr->ifm_active = IFM_ETHER;
1424 
1425 	if (!sc->link_active)
1426 		return;
1427 
1428 	ifmr->ifm_status |= IFM_ACTIVE;
1429 
1430 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1431 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1432 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1433 	} else {
1434 		switch (sc->link_speed) {
1435 		case 10:
1436 			ifmr->ifm_active |= IFM_10_T;
1437 			break;
1438 		case 100:
1439 			ifmr->ifm_active |= IFM_100_TX;
1440 			break;
1441 
1442 		case 1000:
1443 			ifmr->ifm_active |= IFM_1000_T;
1444 			break;
1445 		}
1446 		if (sc->link_duplex == FULL_DUPLEX)
1447 			ifmr->ifm_active |= IFM_FDX;
1448 		else
1449 			ifmr->ifm_active |= IFM_HDX;
1450 	}
1451 }
1452 
1453 static int
1454 emx_media_change(struct ifnet *ifp)
1455 {
1456 	struct emx_softc *sc = ifp->if_softc;
1457 	struct ifmedia *ifm = &sc->media;
1458 
1459 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1460 
1461 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1462 		return (EINVAL);
1463 
1464 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1465 	case IFM_AUTO:
1466 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1467 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1468 		break;
1469 
1470 	case IFM_1000_LX:
1471 	case IFM_1000_SX:
1472 	case IFM_1000_T:
1473 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1474 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1475 		break;
1476 
1477 	case IFM_100_TX:
1478 		sc->hw.mac.autoneg = FALSE;
1479 		sc->hw.phy.autoneg_advertised = 0;
1480 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1481 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1482 		else
1483 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1484 		break;
1485 
1486 	case IFM_10_T:
1487 		sc->hw.mac.autoneg = FALSE;
1488 		sc->hw.phy.autoneg_advertised = 0;
1489 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1490 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1491 		else
1492 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1493 		break;
1494 
1495 	default:
1496 		if_printf(ifp, "Unsupported media type\n");
1497 		break;
1498 	}
1499 
1500 	/*
1501 	 * As the speed/duplex settings my have changed we need to
1502 	 * reset the PHY.
1503 	 */
1504 	sc->hw.phy.reset_disable = FALSE;
1505 
1506 	emx_init(sc);
1507 
1508 	return (0);
1509 }
1510 
1511 static int
1512 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1513     int *segs_used, int *idx)
1514 {
1515 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1516 	bus_dmamap_t map;
1517 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1518 	struct e1000_tx_desc *ctxd = NULL;
1519 	struct mbuf *m_head = *m_headp;
1520 	uint32_t txd_upper, txd_lower, cmd = 0;
1521 	int maxsegs, nsegs, i, j, first, last = 0, error;
1522 
1523 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1524 		error = emx_tso_pullup(tdata, m_headp);
1525 		if (error)
1526 			return error;
1527 		m_head = *m_headp;
1528 	}
1529 
1530 	txd_upper = txd_lower = 0;
1531 
1532 	/*
1533 	 * Capture the first descriptor index, this descriptor
1534 	 * will have the index of the EOP which is the only one
1535 	 * that now gets a DONE bit writeback.
1536 	 */
1537 	first = tdata->next_avail_tx_desc;
1538 	tx_buffer = &tdata->tx_buf[first];
1539 	tx_buffer_mapped = tx_buffer;
1540 	map = tx_buffer->map;
1541 
1542 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1543 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1544 	if (maxsegs > EMX_MAX_SCATTER)
1545 		maxsegs = EMX_MAX_SCATTER;
1546 
1547 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1548 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1549 	if (error) {
1550 		m_freem(*m_headp);
1551 		*m_headp = NULL;
1552 		return error;
1553 	}
1554         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1555 
1556 	m_head = *m_headp;
1557 	tdata->tx_nsegs += nsegs;
1558 	*segs_used += nsegs;
1559 
1560 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1561 		/* TSO will consume one TX desc */
1562 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1563 		tdata->tx_nsegs += i;
1564 		*segs_used += i;
1565 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1566 		/* TX csum offloading will consume one TX desc */
1567 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1568 		tdata->tx_nsegs += i;
1569 		*segs_used += i;
1570 	}
1571 	i = tdata->next_avail_tx_desc;
1572 
1573 	/* Set up our transmit descriptors */
1574 	for (j = 0; j < nsegs; j++) {
1575 		tx_buffer = &tdata->tx_buf[i];
1576 		ctxd = &tdata->tx_desc_base[i];
1577 
1578 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1579 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1580 					   txd_lower | segs[j].ds_len);
1581 		ctxd->upper.data = htole32(txd_upper);
1582 
1583 		last = i;
1584 		if (++i == tdata->num_tx_desc)
1585 			i = 0;
1586 	}
1587 
1588 	tdata->next_avail_tx_desc = i;
1589 
1590 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1591 	tdata->num_tx_desc_avail -= nsegs;
1592 
1593         /* Handle VLAN tag */
1594 	if (m_head->m_flags & M_VLANTAG) {
1595 		/* Set the vlan id. */
1596 		ctxd->upper.fields.special =
1597 		    htole16(m_head->m_pkthdr.ether_vlantag);
1598 
1599 		/* Tell hardware to add tag */
1600 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1601 	}
1602 
1603 	tx_buffer->m_head = m_head;
1604 	tx_buffer_mapped->map = tx_buffer->map;
1605 	tx_buffer->map = map;
1606 
1607 	if (tdata->tx_nsegs >= tdata->tx_int_nsegs) {
1608 		tdata->tx_nsegs = 0;
1609 
1610 		/*
1611 		 * Report Status (RS) is turned on
1612 		 * every tx_int_nsegs descriptors.
1613 		 */
1614 		cmd = E1000_TXD_CMD_RS;
1615 
1616 		/*
1617 		 * Keep track of the descriptor, which will
1618 		 * be written back by hardware.
1619 		 */
1620 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1621 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1622 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1623 	}
1624 
1625 	/*
1626 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1627 	 */
1628 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1629 
1630 	/*
1631 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1632 	 * the E1000 that this frame is available to transmit.
1633 	 */
1634 	*idx = i;
1635 
1636 	return (0);
1637 }
1638 
1639 static void
1640 emx_set_promisc(struct emx_softc *sc)
1641 {
1642 	struct ifnet *ifp = &sc->arpcom.ac_if;
1643 	uint32_t reg_rctl;
1644 
1645 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1646 
1647 	if (ifp->if_flags & IFF_PROMISC) {
1648 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1649 		/* Turn this on if you want to see bad packets */
1650 		if (emx_debug_sbp)
1651 			reg_rctl |= E1000_RCTL_SBP;
1652 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1653 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1654 		reg_rctl |= E1000_RCTL_MPE;
1655 		reg_rctl &= ~E1000_RCTL_UPE;
1656 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1657 	}
1658 }
1659 
1660 static void
1661 emx_disable_promisc(struct emx_softc *sc)
1662 {
1663 	uint32_t reg_rctl;
1664 
1665 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1666 
1667 	reg_rctl &= ~E1000_RCTL_UPE;
1668 	reg_rctl &= ~E1000_RCTL_MPE;
1669 	reg_rctl &= ~E1000_RCTL_SBP;
1670 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1671 }
1672 
1673 static void
1674 emx_set_multi(struct emx_softc *sc)
1675 {
1676 	struct ifnet *ifp = &sc->arpcom.ac_if;
1677 	struct ifmultiaddr *ifma;
1678 	uint32_t reg_rctl = 0;
1679 	uint8_t *mta;
1680 	int mcnt = 0;
1681 
1682 	mta = sc->mta;
1683 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1684 
1685 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1686 		if (ifma->ifma_addr->sa_family != AF_LINK)
1687 			continue;
1688 
1689 		if (mcnt == EMX_MCAST_ADDR_MAX)
1690 			break;
1691 
1692 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1693 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1694 		mcnt++;
1695 	}
1696 
1697 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1698 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1699 		reg_rctl |= E1000_RCTL_MPE;
1700 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1701 	} else {
1702 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1703 	}
1704 }
1705 
1706 /*
1707  * This routine checks for link status and updates statistics.
1708  */
1709 static void
1710 emx_timer(void *xsc)
1711 {
1712 	struct emx_softc *sc = xsc;
1713 	struct ifnet *ifp = &sc->arpcom.ac_if;
1714 
1715 	lwkt_serialize_enter(&sc->main_serialize);
1716 
1717 	emx_update_link_status(sc);
1718 	emx_update_stats(sc);
1719 
1720 	/* Reset LAA into RAR[0] on 82571 */
1721 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1722 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1723 
1724 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1725 		emx_print_hw_stats(sc);
1726 
1727 	emx_smartspeed(sc);
1728 
1729 	callout_reset(&sc->timer, hz, emx_timer, sc);
1730 
1731 	lwkt_serialize_exit(&sc->main_serialize);
1732 }
1733 
1734 static void
1735 emx_update_link_status(struct emx_softc *sc)
1736 {
1737 	struct e1000_hw *hw = &sc->hw;
1738 	struct ifnet *ifp = &sc->arpcom.ac_if;
1739 	device_t dev = sc->dev;
1740 	uint32_t link_check = 0;
1741 
1742 	/* Get the cached link value or read phy for real */
1743 	switch (hw->phy.media_type) {
1744 	case e1000_media_type_copper:
1745 		if (hw->mac.get_link_status) {
1746 			/* Do the work to read phy */
1747 			e1000_check_for_link(hw);
1748 			link_check = !hw->mac.get_link_status;
1749 			if (link_check) /* ESB2 fix */
1750 				e1000_cfg_on_link_up(hw);
1751 		} else {
1752 			link_check = TRUE;
1753 		}
1754 		break;
1755 
1756 	case e1000_media_type_fiber:
1757 		e1000_check_for_link(hw);
1758 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1759 		break;
1760 
1761 	case e1000_media_type_internal_serdes:
1762 		e1000_check_for_link(hw);
1763 		link_check = sc->hw.mac.serdes_has_link;
1764 		break;
1765 
1766 	case e1000_media_type_unknown:
1767 	default:
1768 		break;
1769 	}
1770 
1771 	/* Now check for a transition */
1772 	if (link_check && sc->link_active == 0) {
1773 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1774 		    &sc->link_duplex);
1775 
1776 		/*
1777 		 * Check if we should enable/disable SPEED_MODE bit on
1778 		 * 82571EB/82572EI
1779 		 */
1780 		if (sc->link_speed != SPEED_1000 &&
1781 		    (hw->mac.type == e1000_82571 ||
1782 		     hw->mac.type == e1000_82572)) {
1783 			int tarc0;
1784 
1785 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1786 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1787 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1788 		}
1789 		if (bootverbose) {
1790 			device_printf(dev, "Link is up %d Mbps %s\n",
1791 			    sc->link_speed,
1792 			    ((sc->link_duplex == FULL_DUPLEX) ?
1793 			    "Full Duplex" : "Half Duplex"));
1794 		}
1795 		sc->link_active = 1;
1796 		sc->smartspeed = 0;
1797 		ifp->if_baudrate = sc->link_speed * 1000000;
1798 		ifp->if_link_state = LINK_STATE_UP;
1799 		if_link_state_change(ifp);
1800 	} else if (!link_check && sc->link_active == 1) {
1801 		ifp->if_baudrate = sc->link_speed = 0;
1802 		sc->link_duplex = 0;
1803 		if (bootverbose)
1804 			device_printf(dev, "Link is Down\n");
1805 		sc->link_active = 0;
1806 #if 0
1807 		/* Link down, disable watchdog */
1808 		if->if_timer = 0;
1809 #endif
1810 		ifp->if_link_state = LINK_STATE_DOWN;
1811 		if_link_state_change(ifp);
1812 	}
1813 }
1814 
1815 static void
1816 emx_stop(struct emx_softc *sc)
1817 {
1818 	struct ifnet *ifp = &sc->arpcom.ac_if;
1819 	struct emx_txdata *tdata = &sc->tx_data;
1820 	int i;
1821 
1822 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1823 
1824 	emx_disable_intr(sc);
1825 
1826 	callout_stop(&sc->timer);
1827 
1828 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1829 	ifp->if_timer = 0;
1830 
1831 	/*
1832 	 * Disable multiple receive queues.
1833 	 *
1834 	 * NOTE:
1835 	 * We should disable multiple receive queues before
1836 	 * resetting the hardware.
1837 	 */
1838 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1839 
1840 	e1000_reset_hw(&sc->hw);
1841 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1842 
1843 	for (i = 0; i < tdata->num_tx_desc; i++) {
1844 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
1845 
1846 		if (tx_buffer->m_head != NULL) {
1847 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
1848 			m_freem(tx_buffer->m_head);
1849 			tx_buffer->m_head = NULL;
1850 		}
1851 	}
1852 
1853 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1854 		emx_free_rx_ring(&sc->rx_data[i]);
1855 
1856 	tdata->csum_flags = 0;
1857 	tdata->csum_lhlen = 0;
1858 	tdata->csum_iphlen = 0;
1859 	tdata->csum_thlen = 0;
1860 	tdata->csum_mss = 0;
1861 	tdata->csum_pktlen = 0;
1862 
1863 	tdata->tx_dd_head = 0;
1864 	tdata->tx_dd_tail = 0;
1865 	tdata->tx_nsegs = 0;
1866 }
1867 
1868 static int
1869 emx_reset(struct emx_softc *sc)
1870 {
1871 	device_t dev = sc->dev;
1872 	uint16_t rx_buffer_size;
1873 
1874 	/* Set up smart power down as default off on newer adapters. */
1875 	if (!emx_smart_pwr_down &&
1876 	    (sc->hw.mac.type == e1000_82571 ||
1877 	     sc->hw.mac.type == e1000_82572)) {
1878 		uint16_t phy_tmp = 0;
1879 
1880 		/* Speed up time to link by disabling smart power down. */
1881 		e1000_read_phy_reg(&sc->hw,
1882 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1883 		phy_tmp &= ~IGP02E1000_PM_SPD;
1884 		e1000_write_phy_reg(&sc->hw,
1885 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1886 	}
1887 
1888 	/*
1889 	 * These parameters control the automatic generation (Tx) and
1890 	 * response (Rx) to Ethernet PAUSE frames.
1891 	 * - High water mark should allow for at least two frames to be
1892 	 *   received after sending an XOFF.
1893 	 * - Low water mark works best when it is very near the high water mark.
1894 	 *   This allows the receiver to restart by sending XON when it has
1895 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1896 	 *   restart after one full frame is pulled from the buffer. There
1897 	 *   could be several smaller frames in the buffer and if so they will
1898 	 *   not trigger the XON until their total number reduces the buffer
1899 	 *   by 1500.
1900 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1901 	 */
1902 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1903 
1904 	sc->hw.fc.high_water = rx_buffer_size -
1905 			       roundup2(sc->max_frame_size, 1024);
1906 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1907 
1908 	if (sc->hw.mac.type == e1000_80003es2lan)
1909 		sc->hw.fc.pause_time = 0xFFFF;
1910 	else
1911 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1912 	sc->hw.fc.send_xon = TRUE;
1913 	sc->hw.fc.requested_mode = e1000_fc_full;
1914 
1915 	/* Issue a global reset */
1916 	e1000_reset_hw(&sc->hw);
1917 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1918 	emx_disable_aspm(sc);
1919 
1920 	if (e1000_init_hw(&sc->hw) < 0) {
1921 		device_printf(dev, "Hardware Initialization Failed\n");
1922 		return (EIO);
1923 	}
1924 
1925 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1926 	e1000_get_phy_info(&sc->hw);
1927 	e1000_check_for_link(&sc->hw);
1928 
1929 	return (0);
1930 }
1931 
1932 static void
1933 emx_setup_ifp(struct emx_softc *sc)
1934 {
1935 	struct ifnet *ifp = &sc->arpcom.ac_if;
1936 
1937 	if_initname(ifp, device_get_name(sc->dev),
1938 		    device_get_unit(sc->dev));
1939 	ifp->if_softc = sc;
1940 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1941 	ifp->if_init =  emx_init;
1942 	ifp->if_ioctl = emx_ioctl;
1943 	ifp->if_start = emx_start;
1944 #ifdef IFPOLL_ENABLE
1945 	ifp->if_npoll = emx_npoll;
1946 #endif
1947 	ifp->if_watchdog = emx_watchdog;
1948 	ifp->if_serialize = emx_serialize;
1949 	ifp->if_deserialize = emx_deserialize;
1950 	ifp->if_tryserialize = emx_tryserialize;
1951 #ifdef INVARIANTS
1952 	ifp->if_serialize_assert = emx_serialize_assert;
1953 #endif
1954 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data.num_tx_desc - 1);
1955 	ifq_set_ready(&ifp->if_snd);
1956 
1957 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1958 
1959 	ifp->if_capabilities = IFCAP_HWCSUM |
1960 			       IFCAP_VLAN_HWTAGGING |
1961 			       IFCAP_VLAN_MTU |
1962 			       IFCAP_TSO;
1963 	if (sc->rx_ring_cnt > 1)
1964 		ifp->if_capabilities |= IFCAP_RSS;
1965 	ifp->if_capenable = ifp->if_capabilities;
1966 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1967 
1968 	/*
1969 	 * Tell the upper layer(s) we support long frames.
1970 	 */
1971 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1972 
1973 	/*
1974 	 * Specify the media types supported by this sc and register
1975 	 * callbacks to update media and link information
1976 	 */
1977 	ifmedia_init(&sc->media, IFM_IMASK,
1978 		     emx_media_change, emx_media_status);
1979 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1980 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1981 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1982 			    0, NULL);
1983 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1984 	} else {
1985 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1986 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1987 			    0, NULL);
1988 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1989 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1990 			    0, NULL);
1991 		if (sc->hw.phy.type != e1000_phy_ife) {
1992 			ifmedia_add(&sc->media,
1993 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1994 			ifmedia_add(&sc->media,
1995 				IFM_ETHER | IFM_1000_T, 0, NULL);
1996 		}
1997 	}
1998 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1999 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2000 }
2001 
2002 /*
2003  * Workaround for SmartSpeed on 82541 and 82547 controllers
2004  */
2005 static void
2006 emx_smartspeed(struct emx_softc *sc)
2007 {
2008 	uint16_t phy_tmp;
2009 
2010 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2011 	    sc->hw.mac.autoneg == 0 ||
2012 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2013 		return;
2014 
2015 	if (sc->smartspeed == 0) {
2016 		/*
2017 		 * If Master/Slave config fault is asserted twice,
2018 		 * we assume back-to-back
2019 		 */
2020 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2021 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2022 			return;
2023 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2024 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2025 			e1000_read_phy_reg(&sc->hw,
2026 			    PHY_1000T_CTRL, &phy_tmp);
2027 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2028 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2029 				e1000_write_phy_reg(&sc->hw,
2030 				    PHY_1000T_CTRL, phy_tmp);
2031 				sc->smartspeed++;
2032 				if (sc->hw.mac.autoneg &&
2033 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2034 				    !e1000_read_phy_reg(&sc->hw,
2035 				     PHY_CONTROL, &phy_tmp)) {
2036 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2037 						   MII_CR_RESTART_AUTO_NEG;
2038 					e1000_write_phy_reg(&sc->hw,
2039 					    PHY_CONTROL, phy_tmp);
2040 				}
2041 			}
2042 		}
2043 		return;
2044 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2045 		/* If still no link, perhaps using 2/3 pair cable */
2046 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2047 		phy_tmp |= CR_1000T_MS_ENABLE;
2048 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2049 		if (sc->hw.mac.autoneg &&
2050 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2051 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2052 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2053 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2054 		}
2055 	}
2056 
2057 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2058 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2059 		sc->smartspeed = 0;
2060 }
2061 
2062 static int
2063 emx_create_tx_ring(struct emx_txdata *tdata)
2064 {
2065 	device_t dev = tdata->sc->dev;
2066 	struct emx_txbuf *tx_buffer;
2067 	int error, i, tsize, ntxd;
2068 
2069 	/*
2070 	 * Validate number of transmit descriptors.  It must not exceed
2071 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2072 	 */
2073 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2074 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2075 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2076 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2077 		    EMX_DEFAULT_TXD, ntxd);
2078 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2079 	} else {
2080 		tdata->num_tx_desc = ntxd;
2081 	}
2082 
2083 	/*
2084 	 * Allocate Transmit Descriptor ring
2085 	 */
2086 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2087 			 EMX_DBA_ALIGN);
2088 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2089 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2090 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2091 				&tdata->tx_desc_paddr);
2092 	if (tdata->tx_desc_base == NULL) {
2093 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2094 		return ENOMEM;
2095 	}
2096 
2097 	tsize = __VM_CACHELINE_ALIGN(
2098 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2099 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2100 
2101 	/*
2102 	 * Create DMA tags for tx buffers
2103 	 */
2104 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2105 			1, 0,			/* alignment, bounds */
2106 			BUS_SPACE_MAXADDR,	/* lowaddr */
2107 			BUS_SPACE_MAXADDR,	/* highaddr */
2108 			NULL, NULL,		/* filter, filterarg */
2109 			EMX_TSO_SIZE,		/* maxsize */
2110 			EMX_MAX_SCATTER,	/* nsegments */
2111 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2112 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2113 			BUS_DMA_ONEBPAGE,	/* flags */
2114 			&tdata->txtag);
2115 	if (error) {
2116 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2117 		kfree(tdata->tx_buf, M_DEVBUF);
2118 		tdata->tx_buf = NULL;
2119 		return error;
2120 	}
2121 
2122 	/*
2123 	 * Create DMA maps for tx buffers
2124 	 */
2125 	for (i = 0; i < tdata->num_tx_desc; i++) {
2126 		tx_buffer = &tdata->tx_buf[i];
2127 
2128 		error = bus_dmamap_create(tdata->txtag,
2129 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2130 					  &tx_buffer->map);
2131 		if (error) {
2132 			device_printf(dev, "Unable to create TX DMA map\n");
2133 			emx_destroy_tx_ring(tdata, i);
2134 			return error;
2135 		}
2136 	}
2137 	return (0);
2138 }
2139 
2140 static void
2141 emx_init_tx_ring(struct emx_txdata *tdata)
2142 {
2143 	/* Clear the old ring contents */
2144 	bzero(tdata->tx_desc_base,
2145 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2146 
2147 	/* Reset state */
2148 	tdata->next_avail_tx_desc = 0;
2149 	tdata->next_tx_to_clean = 0;
2150 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2151 }
2152 
2153 static void
2154 emx_init_tx_unit(struct emx_softc *sc)
2155 {
2156 	uint32_t tctl, tarc, tipg = 0;
2157 	uint64_t bus_addr;
2158 
2159 	/* Setup the Base and Length of the Tx Descriptor Ring */
2160 	bus_addr = sc->tx_data.tx_desc_paddr;
2161 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2162 	    sc->tx_data.num_tx_desc * sizeof(struct e1000_tx_desc));
2163 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2164 	    (uint32_t)(bus_addr >> 32));
2165 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2166 	    (uint32_t)bus_addr);
2167 	/* Setup the HW Tx Head and Tail descriptor pointers */
2168 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2169 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2170 
2171 	/* Set the default values for the Tx Inter Packet Gap timer */
2172 	switch (sc->hw.mac.type) {
2173 	case e1000_80003es2lan:
2174 		tipg = DEFAULT_82543_TIPG_IPGR1;
2175 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2176 		    E1000_TIPG_IPGR2_SHIFT;
2177 		break;
2178 
2179 	default:
2180 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2181 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2182 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2183 		else
2184 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2185 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2186 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2187 		break;
2188 	}
2189 
2190 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2191 
2192 	/* NOTE: 0 is not allowed for TIDV */
2193 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2194 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2195 
2196 	if (sc->hw.mac.type == e1000_82571 ||
2197 	    sc->hw.mac.type == e1000_82572) {
2198 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2199 		tarc |= EMX_TARC_SPEED_MODE;
2200 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2201 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2202 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2203 		tarc |= 1;
2204 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2205 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2206 		tarc |= 1;
2207 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2208 	}
2209 
2210 	/* Program the Transmit Control Register */
2211 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2212 	tctl &= ~E1000_TCTL_CT;
2213 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2214 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2215 	tctl |= E1000_TCTL_MULR;
2216 
2217 	/* This write will effectively turn on the transmit unit. */
2218 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2219 }
2220 
2221 static void
2222 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2223 {
2224 	struct emx_txbuf *tx_buffer;
2225 	int i;
2226 
2227 	/* Free Transmit Descriptor ring */
2228 	if (tdata->tx_desc_base) {
2229 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2230 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2231 				tdata->tx_desc_dmap);
2232 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2233 
2234 		tdata->tx_desc_base = NULL;
2235 	}
2236 
2237 	if (tdata->tx_buf == NULL)
2238 		return;
2239 
2240 	for (i = 0; i < ndesc; i++) {
2241 		tx_buffer = &tdata->tx_buf[i];
2242 
2243 		KKASSERT(tx_buffer->m_head == NULL);
2244 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2245 	}
2246 	bus_dma_tag_destroy(tdata->txtag);
2247 
2248 	kfree(tdata->tx_buf, M_DEVBUF);
2249 	tdata->tx_buf = NULL;
2250 }
2251 
2252 /*
2253  * The offload context needs to be set when we transfer the first
2254  * packet of a particular protocol (TCP/UDP).  This routine has been
2255  * enhanced to deal with inserted VLAN headers.
2256  *
2257  * If the new packet's ether header length, ip header length and
2258  * csum offloading type are same as the previous packet, we should
2259  * avoid allocating a new csum context descriptor; mainly to take
2260  * advantage of the pipeline effect of the TX data read request.
2261  *
2262  * This function returns number of TX descrptors allocated for
2263  * csum context.
2264  */
2265 static int
2266 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2267 	   uint32_t *txd_upper, uint32_t *txd_lower)
2268 {
2269 	struct e1000_context_desc *TXD;
2270 	int curr_txd, ehdrlen, csum_flags;
2271 	uint32_t cmd, hdr_len, ip_hlen;
2272 
2273 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2274 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2275 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2276 
2277 	if (tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2278 	    tdata->csum_flags == csum_flags) {
2279 		/*
2280 		 * Same csum offload context as the previous packets;
2281 		 * just return.
2282 		 */
2283 		*txd_upper = tdata->csum_txd_upper;
2284 		*txd_lower = tdata->csum_txd_lower;
2285 		return 0;
2286 	}
2287 
2288 	/*
2289 	 * Setup a new csum offload context.
2290 	 */
2291 
2292 	curr_txd = tdata->next_avail_tx_desc;
2293 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2294 
2295 	cmd = 0;
2296 
2297 	/* Setup of IP header checksum. */
2298 	if (csum_flags & CSUM_IP) {
2299 		/*
2300 		 * Start offset for header checksum calculation.
2301 		 * End offset for header checksum calculation.
2302 		 * Offset of place to put the checksum.
2303 		 */
2304 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2305 		TXD->lower_setup.ip_fields.ipcse =
2306 		    htole16(ehdrlen + ip_hlen - 1);
2307 		TXD->lower_setup.ip_fields.ipcso =
2308 		    ehdrlen + offsetof(struct ip, ip_sum);
2309 		cmd |= E1000_TXD_CMD_IP;
2310 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2311 	}
2312 	hdr_len = ehdrlen + ip_hlen;
2313 
2314 	if (csum_flags & CSUM_TCP) {
2315 		/*
2316 		 * Start offset for payload checksum calculation.
2317 		 * End offset for payload checksum calculation.
2318 		 * Offset of place to put the checksum.
2319 		 */
2320 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2321 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2322 		TXD->upper_setup.tcp_fields.tucso =
2323 		    hdr_len + offsetof(struct tcphdr, th_sum);
2324 		cmd |= E1000_TXD_CMD_TCP;
2325 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2326 	} else if (csum_flags & CSUM_UDP) {
2327 		/*
2328 		 * Start offset for header checksum calculation.
2329 		 * End offset for header checksum calculation.
2330 		 * Offset of place to put the checksum.
2331 		 */
2332 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2333 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2334 		TXD->upper_setup.tcp_fields.tucso =
2335 		    hdr_len + offsetof(struct udphdr, uh_sum);
2336 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2337 	}
2338 
2339 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2340 		     E1000_TXD_DTYP_D;		/* Data descr */
2341 
2342 	/* Save the information for this csum offloading context */
2343 	tdata->csum_lhlen = ehdrlen;
2344 	tdata->csum_iphlen = ip_hlen;
2345 	tdata->csum_flags = csum_flags;
2346 	tdata->csum_txd_upper = *txd_upper;
2347 	tdata->csum_txd_lower = *txd_lower;
2348 
2349 	TXD->tcp_seg_setup.data = htole32(0);
2350 	TXD->cmd_and_length =
2351 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2352 
2353 	if (++curr_txd == tdata->num_tx_desc)
2354 		curr_txd = 0;
2355 
2356 	KKASSERT(tdata->num_tx_desc_avail > 0);
2357 	tdata->num_tx_desc_avail--;
2358 
2359 	tdata->next_avail_tx_desc = curr_txd;
2360 	return 1;
2361 }
2362 
2363 static void
2364 emx_txeof(struct emx_txdata *tdata)
2365 {
2366 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2367 	struct emx_txbuf *tx_buffer;
2368 	int first, num_avail;
2369 
2370 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2371 		return;
2372 
2373 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2374 		return;
2375 
2376 	num_avail = tdata->num_tx_desc_avail;
2377 	first = tdata->next_tx_to_clean;
2378 
2379 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2380 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2381 		struct e1000_tx_desc *tx_desc;
2382 
2383 		tx_desc = &tdata->tx_desc_base[dd_idx];
2384 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2385 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2386 
2387 			if (++dd_idx == tdata->num_tx_desc)
2388 				dd_idx = 0;
2389 
2390 			while (first != dd_idx) {
2391 				logif(pkt_txclean);
2392 
2393 				num_avail++;
2394 
2395 				tx_buffer = &tdata->tx_buf[first];
2396 				if (tx_buffer->m_head) {
2397 					ifp->if_opackets++;
2398 					bus_dmamap_unload(tdata->txtag,
2399 							  tx_buffer->map);
2400 					m_freem(tx_buffer->m_head);
2401 					tx_buffer->m_head = NULL;
2402 				}
2403 
2404 				if (++first == tdata->num_tx_desc)
2405 					first = 0;
2406 			}
2407 		} else {
2408 			break;
2409 		}
2410 	}
2411 	tdata->next_tx_to_clean = first;
2412 	tdata->num_tx_desc_avail = num_avail;
2413 
2414 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2415 		tdata->tx_dd_head = 0;
2416 		tdata->tx_dd_tail = 0;
2417 	}
2418 
2419 	if (!EMX_IS_OACTIVE(tdata)) {
2420 		ifp->if_flags &= ~IFF_OACTIVE;
2421 
2422 		/* All clean, turn off the timer */
2423 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2424 			ifp->if_timer = 0;
2425 	}
2426 }
2427 
2428 static void
2429 emx_tx_collect(struct emx_txdata *tdata)
2430 {
2431 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2432 	struct emx_txbuf *tx_buffer;
2433 	int tdh, first, num_avail, dd_idx = -1;
2434 
2435 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2436 		return;
2437 
2438 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(0));
2439 	if (tdh == tdata->next_tx_to_clean)
2440 		return;
2441 
2442 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2443 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2444 
2445 	num_avail = tdata->num_tx_desc_avail;
2446 	first = tdata->next_tx_to_clean;
2447 
2448 	while (first != tdh) {
2449 		logif(pkt_txclean);
2450 
2451 		num_avail++;
2452 
2453 		tx_buffer = &tdata->tx_buf[first];
2454 		if (tx_buffer->m_head) {
2455 			ifp->if_opackets++;
2456 			bus_dmamap_unload(tdata->txtag,
2457 					  tx_buffer->map);
2458 			m_freem(tx_buffer->m_head);
2459 			tx_buffer->m_head = NULL;
2460 		}
2461 
2462 		if (first == dd_idx) {
2463 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2464 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2465 				tdata->tx_dd_head = 0;
2466 				tdata->tx_dd_tail = 0;
2467 				dd_idx = -1;
2468 			} else {
2469 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2470 			}
2471 		}
2472 
2473 		if (++first == tdata->num_tx_desc)
2474 			first = 0;
2475 	}
2476 	tdata->next_tx_to_clean = first;
2477 	tdata->num_tx_desc_avail = num_avail;
2478 
2479 	if (!EMX_IS_OACTIVE(tdata)) {
2480 		ifp->if_flags &= ~IFF_OACTIVE;
2481 
2482 		/* All clean, turn off the timer */
2483 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2484 			ifp->if_timer = 0;
2485 	}
2486 }
2487 
2488 /*
2489  * When Link is lost sometimes there is work still in the TX ring
2490  * which will result in a watchdog, rather than allow that do an
2491  * attempted cleanup and then reinit here.  Note that this has been
2492  * seens mostly with fiber adapters.
2493  */
2494 static void
2495 emx_tx_purge(struct emx_softc *sc)
2496 {
2497 	struct ifnet *ifp = &sc->arpcom.ac_if;
2498 
2499 	if (!sc->link_active && ifp->if_timer) {
2500 		emx_tx_collect(&sc->tx_data);
2501 		if (ifp->if_timer) {
2502 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2503 			ifp->if_timer = 0;
2504 			emx_init(sc);
2505 		}
2506 	}
2507 }
2508 
2509 static int
2510 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2511 {
2512 	struct mbuf *m;
2513 	bus_dma_segment_t seg;
2514 	bus_dmamap_t map;
2515 	struct emx_rxbuf *rx_buffer;
2516 	int error, nseg;
2517 
2518 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2519 	if (m == NULL) {
2520 		if (init) {
2521 			if_printf(&rdata->sc->arpcom.ac_if,
2522 				  "Unable to allocate RX mbuf\n");
2523 		}
2524 		return (ENOBUFS);
2525 	}
2526 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2527 
2528 	if (rdata->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2529 		m_adj(m, ETHER_ALIGN);
2530 
2531 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2532 			rdata->rx_sparemap, m,
2533 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2534 	if (error) {
2535 		m_freem(m);
2536 		if (init) {
2537 			if_printf(&rdata->sc->arpcom.ac_if,
2538 				  "Unable to load RX mbuf\n");
2539 		}
2540 		return (error);
2541 	}
2542 
2543 	rx_buffer = &rdata->rx_buf[i];
2544 	if (rx_buffer->m_head != NULL)
2545 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2546 
2547 	map = rx_buffer->map;
2548 	rx_buffer->map = rdata->rx_sparemap;
2549 	rdata->rx_sparemap = map;
2550 
2551 	rx_buffer->m_head = m;
2552 	rx_buffer->paddr = seg.ds_addr;
2553 
2554 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2555 	return (0);
2556 }
2557 
2558 static int
2559 emx_create_rx_ring(struct emx_rxdata *rdata)
2560 {
2561 	device_t dev = rdata->sc->dev;
2562 	struct emx_rxbuf *rx_buffer;
2563 	int i, error, rsize, nrxd;
2564 
2565 	/*
2566 	 * Validate number of receive descriptors.  It must not exceed
2567 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2568 	 */
2569 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2570 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2571 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2572 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2573 		    EMX_DEFAULT_RXD, nrxd);
2574 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2575 	} else {
2576 		rdata->num_rx_desc = nrxd;
2577 	}
2578 
2579 	/*
2580 	 * Allocate Receive Descriptor ring
2581 	 */
2582 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2583 			 EMX_DBA_ALIGN);
2584 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2585 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2586 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2587 				&rdata->rx_desc_paddr);
2588 	if (rdata->rx_desc == NULL) {
2589 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2590 		return ENOMEM;
2591 	}
2592 
2593 	rsize = __VM_CACHELINE_ALIGN(
2594 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2595 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2596 
2597 	/*
2598 	 * Create DMA tag for rx buffers
2599 	 */
2600 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2601 			1, 0,			/* alignment, bounds */
2602 			BUS_SPACE_MAXADDR,	/* lowaddr */
2603 			BUS_SPACE_MAXADDR,	/* highaddr */
2604 			NULL, NULL,		/* filter, filterarg */
2605 			MCLBYTES,		/* maxsize */
2606 			1,			/* nsegments */
2607 			MCLBYTES,		/* maxsegsize */
2608 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2609 			&rdata->rxtag);
2610 	if (error) {
2611 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2612 		kfree(rdata->rx_buf, M_DEVBUF);
2613 		rdata->rx_buf = NULL;
2614 		return error;
2615 	}
2616 
2617 	/*
2618 	 * Create spare DMA map for rx buffers
2619 	 */
2620 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2621 				  &rdata->rx_sparemap);
2622 	if (error) {
2623 		device_printf(dev, "Unable to create spare RX DMA map\n");
2624 		bus_dma_tag_destroy(rdata->rxtag);
2625 		kfree(rdata->rx_buf, M_DEVBUF);
2626 		rdata->rx_buf = NULL;
2627 		return error;
2628 	}
2629 
2630 	/*
2631 	 * Create DMA maps for rx buffers
2632 	 */
2633 	for (i = 0; i < rdata->num_rx_desc; i++) {
2634 		rx_buffer = &rdata->rx_buf[i];
2635 
2636 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2637 					  &rx_buffer->map);
2638 		if (error) {
2639 			device_printf(dev, "Unable to create RX DMA map\n");
2640 			emx_destroy_rx_ring(rdata, i);
2641 			return error;
2642 		}
2643 	}
2644 	return (0);
2645 }
2646 
2647 static void
2648 emx_free_rx_ring(struct emx_rxdata *rdata)
2649 {
2650 	int i;
2651 
2652 	for (i = 0; i < rdata->num_rx_desc; i++) {
2653 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2654 
2655 		if (rx_buffer->m_head != NULL) {
2656 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2657 			m_freem(rx_buffer->m_head);
2658 			rx_buffer->m_head = NULL;
2659 		}
2660 	}
2661 
2662 	if (rdata->fmp != NULL)
2663 		m_freem(rdata->fmp);
2664 	rdata->fmp = NULL;
2665 	rdata->lmp = NULL;
2666 }
2667 
2668 static int
2669 emx_init_rx_ring(struct emx_rxdata *rdata)
2670 {
2671 	int i, error;
2672 
2673 	/* Reset descriptor ring */
2674 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2675 
2676 	/* Allocate new ones. */
2677 	for (i = 0; i < rdata->num_rx_desc; i++) {
2678 		error = emx_newbuf(rdata, i, 1);
2679 		if (error)
2680 			return (error);
2681 	}
2682 
2683 	/* Setup our descriptor pointers */
2684 	rdata->next_rx_desc_to_check = 0;
2685 
2686 	return (0);
2687 }
2688 
2689 static void
2690 emx_init_rx_unit(struct emx_softc *sc)
2691 {
2692 	struct ifnet *ifp = &sc->arpcom.ac_if;
2693 	uint64_t bus_addr;
2694 	uint32_t rctl, itr, rfctl;
2695 	int i;
2696 
2697 	/*
2698 	 * Make sure receives are disabled while setting
2699 	 * up the descriptor ring
2700 	 */
2701 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2702 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2703 
2704 	/*
2705 	 * Set the interrupt throttling rate. Value is calculated
2706 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2707 	 */
2708 	if (sc->int_throttle_ceil)
2709 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2710 	else
2711 		itr = 0;
2712 	emx_set_itr(sc, itr);
2713 
2714 	/* Use extended RX descriptor */
2715 	rfctl = E1000_RFCTL_EXTEN;
2716 
2717 	/* Disable accelerated ackknowledge */
2718 	if (sc->hw.mac.type == e1000_82574)
2719 		rfctl |= E1000_RFCTL_ACK_DIS;
2720 
2721 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2722 
2723 	/*
2724 	 * Receive Checksum Offload for TCP and UDP
2725 	 *
2726 	 * Checksum offloading is also enabled if multiple receive
2727 	 * queue is to be supported, since we need it to figure out
2728 	 * packet type.
2729 	 */
2730 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2731 	    sc->rx_ring_cnt > 1) {
2732 		uint32_t rxcsum;
2733 
2734 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2735 
2736 		/*
2737 		 * NOTE:
2738 		 * PCSD must be enabled to enable multiple
2739 		 * receive queues.
2740 		 */
2741 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2742 			  E1000_RXCSUM_PCSD;
2743 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2744 	}
2745 
2746 	/*
2747 	 * Configure multiple receive queue (RSS)
2748 	 */
2749 	if (sc->rx_ring_cnt > 1) {
2750 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2751 		uint32_t reta;
2752 
2753 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2754 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2755 
2756 		/*
2757 		 * NOTE:
2758 		 * When we reach here, RSS has already been disabled
2759 		 * in emx_stop(), so we could safely configure RSS key
2760 		 * and redirect table.
2761 		 */
2762 
2763 		/*
2764 		 * Configure RSS key
2765 		 */
2766 		toeplitz_get_key(key, sizeof(key));
2767 		for (i = 0; i < EMX_NRSSRK; ++i) {
2768 			uint32_t rssrk;
2769 
2770 			rssrk = EMX_RSSRK_VAL(key, i);
2771 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2772 
2773 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2774 		}
2775 
2776 		/*
2777 		 * Configure RSS redirect table in following fashion:
2778 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2779 		 */
2780 		reta = 0;
2781 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2782 			uint32_t q;
2783 
2784 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2785 			reta |= q << (8 * i);
2786 		}
2787 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2788 
2789 		for (i = 0; i < EMX_NRETA; ++i)
2790 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2791 
2792 		/*
2793 		 * Enable multiple receive queues.
2794 		 * Enable IPv4 RSS standard hash functions.
2795 		 * Disable RSS interrupt.
2796 		 */
2797 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2798 				E1000_MRQC_ENABLE_RSS_2Q |
2799 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2800 				E1000_MRQC_RSS_FIELD_IPV4);
2801 	}
2802 
2803 	/*
2804 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2805 	 * long latencies are observed, like Lenovo X60. This
2806 	 * change eliminates the problem, but since having positive
2807 	 * values in RDTR is a known source of problems on other
2808 	 * platforms another solution is being sought.
2809 	 */
2810 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2811 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2812 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2813 	}
2814 
2815 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2816 		struct emx_rxdata *rdata = &sc->rx_data[i];
2817 
2818 		/*
2819 		 * Setup the Base and Length of the Rx Descriptor Ring
2820 		 */
2821 		bus_addr = rdata->rx_desc_paddr;
2822 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2823 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2824 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2825 		    (uint32_t)(bus_addr >> 32));
2826 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2827 		    (uint32_t)bus_addr);
2828 
2829 		/*
2830 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2831 		 */
2832 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2833 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2834 		    sc->rx_data[i].num_rx_desc - 1);
2835 	}
2836 
2837 	/* Setup the Receive Control Register */
2838 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2839 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2840 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2841 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2842 
2843 	/* Make sure VLAN Filters are off */
2844 	rctl &= ~E1000_RCTL_VFE;
2845 
2846 	/* Don't store bad paket */
2847 	rctl &= ~E1000_RCTL_SBP;
2848 
2849 	/* MCLBYTES */
2850 	rctl |= E1000_RCTL_SZ_2048;
2851 
2852 	if (ifp->if_mtu > ETHERMTU)
2853 		rctl |= E1000_RCTL_LPE;
2854 	else
2855 		rctl &= ~E1000_RCTL_LPE;
2856 
2857 	/* Enable Receives */
2858 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2859 }
2860 
2861 static void
2862 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
2863 {
2864 	struct emx_rxbuf *rx_buffer;
2865 	int i;
2866 
2867 	/* Free Receive Descriptor ring */
2868 	if (rdata->rx_desc) {
2869 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2870 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2871 				rdata->rx_desc_dmap);
2872 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2873 
2874 		rdata->rx_desc = NULL;
2875 	}
2876 
2877 	if (rdata->rx_buf == NULL)
2878 		return;
2879 
2880 	for (i = 0; i < ndesc; i++) {
2881 		rx_buffer = &rdata->rx_buf[i];
2882 
2883 		KKASSERT(rx_buffer->m_head == NULL);
2884 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2885 	}
2886 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2887 	bus_dma_tag_destroy(rdata->rxtag);
2888 
2889 	kfree(rdata->rx_buf, M_DEVBUF);
2890 	rdata->rx_buf = NULL;
2891 }
2892 
2893 static void
2894 emx_rxeof(struct emx_rxdata *rdata, int count)
2895 {
2896 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
2897 	uint32_t staterr;
2898 	emx_rxdesc_t *current_desc;
2899 	struct mbuf *mp;
2900 	int i;
2901 
2902 	i = rdata->next_rx_desc_to_check;
2903 	current_desc = &rdata->rx_desc[i];
2904 	staterr = le32toh(current_desc->rxd_staterr);
2905 
2906 	if (!(staterr & E1000_RXD_STAT_DD))
2907 		return;
2908 
2909 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2910 		struct pktinfo *pi = NULL, pi0;
2911 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2912 		struct mbuf *m = NULL;
2913 		int eop, len;
2914 
2915 		logif(pkt_receive);
2916 
2917 		mp = rx_buf->m_head;
2918 
2919 		/*
2920 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2921 		 * needs to access the last received byte in the mbuf.
2922 		 */
2923 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2924 				BUS_DMASYNC_POSTREAD);
2925 
2926 		len = le16toh(current_desc->rxd_length);
2927 		if (staterr & E1000_RXD_STAT_EOP) {
2928 			count--;
2929 			eop = 1;
2930 		} else {
2931 			eop = 0;
2932 		}
2933 
2934 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2935 			uint16_t vlan = 0;
2936 			uint32_t mrq, rss_hash;
2937 
2938 			/*
2939 			 * Save several necessary information,
2940 			 * before emx_newbuf() destroy it.
2941 			 */
2942 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2943 				vlan = le16toh(current_desc->rxd_vlan);
2944 
2945 			mrq = le32toh(current_desc->rxd_mrq);
2946 			rss_hash = le32toh(current_desc->rxd_rss);
2947 
2948 			EMX_RSS_DPRINTF(rdata->sc, 10,
2949 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2950 			    rdata->idx, mrq, rss_hash);
2951 
2952 			if (emx_newbuf(rdata, i, 0) != 0) {
2953 				ifp->if_iqdrops++;
2954 				goto discard;
2955 			}
2956 
2957 			/* Assign correct length to the current fragment */
2958 			mp->m_len = len;
2959 
2960 			if (rdata->fmp == NULL) {
2961 				mp->m_pkthdr.len = len;
2962 				rdata->fmp = mp; /* Store the first mbuf */
2963 				rdata->lmp = mp;
2964 			} else {
2965 				/*
2966 				 * Chain mbuf's together
2967 				 */
2968 				rdata->lmp->m_next = mp;
2969 				rdata->lmp = rdata->lmp->m_next;
2970 				rdata->fmp->m_pkthdr.len += len;
2971 			}
2972 
2973 			if (eop) {
2974 				rdata->fmp->m_pkthdr.rcvif = ifp;
2975 				ifp->if_ipackets++;
2976 
2977 				if (ifp->if_capenable & IFCAP_RXCSUM)
2978 					emx_rxcsum(staterr, rdata->fmp);
2979 
2980 				if (staterr & E1000_RXD_STAT_VP) {
2981 					rdata->fmp->m_pkthdr.ether_vlantag =
2982 					    vlan;
2983 					rdata->fmp->m_flags |= M_VLANTAG;
2984 				}
2985 				m = rdata->fmp;
2986 				rdata->fmp = NULL;
2987 				rdata->lmp = NULL;
2988 
2989 				if (ifp->if_capenable & IFCAP_RSS) {
2990 					pi = emx_rssinfo(m, &pi0, mrq,
2991 							 rss_hash, staterr);
2992 				}
2993 #ifdef EMX_RSS_DEBUG
2994 				rdata->rx_pkts++;
2995 #endif
2996 			}
2997 		} else {
2998 			ifp->if_ierrors++;
2999 discard:
3000 			emx_setup_rxdesc(current_desc, rx_buf);
3001 			if (rdata->fmp != NULL) {
3002 				m_freem(rdata->fmp);
3003 				rdata->fmp = NULL;
3004 				rdata->lmp = NULL;
3005 			}
3006 			m = NULL;
3007 		}
3008 
3009 		if (m != NULL)
3010 			ether_input_pkt(ifp, m, pi);
3011 
3012 		/* Advance our pointers to the next descriptor. */
3013 		if (++i == rdata->num_rx_desc)
3014 			i = 0;
3015 
3016 		current_desc = &rdata->rx_desc[i];
3017 		staterr = le32toh(current_desc->rxd_staterr);
3018 	}
3019 	rdata->next_rx_desc_to_check = i;
3020 
3021 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3022 	if (--i < 0)
3023 		i = rdata->num_rx_desc - 1;
3024 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3025 }
3026 
3027 static void
3028 emx_enable_intr(struct emx_softc *sc)
3029 {
3030 	uint32_t ims_mask = IMS_ENABLE_MASK;
3031 
3032 	lwkt_serialize_handler_enable(&sc->main_serialize);
3033 
3034 #if 0
3035 	if (sc->hw.mac.type == e1000_82574) {
3036 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3037 		ims_mask |= EM_MSIX_MASK;
3038 	}
3039 #endif
3040 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3041 }
3042 
3043 static void
3044 emx_disable_intr(struct emx_softc *sc)
3045 {
3046 	if (sc->hw.mac.type == e1000_82574)
3047 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3048 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3049 
3050 	lwkt_serialize_handler_disable(&sc->main_serialize);
3051 }
3052 
3053 /*
3054  * Bit of a misnomer, what this really means is
3055  * to enable OS management of the system... aka
3056  * to disable special hardware management features
3057  */
3058 static void
3059 emx_get_mgmt(struct emx_softc *sc)
3060 {
3061 	/* A shared code workaround */
3062 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3063 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3064 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3065 
3066 		/* disable hardware interception of ARP */
3067 		manc &= ~(E1000_MANC_ARP_EN);
3068 
3069                 /* enable receiving management packets to the host */
3070 		manc |= E1000_MANC_EN_MNG2HOST;
3071 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3072 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3073 		manc2h |= E1000_MNG2HOST_PORT_623;
3074 		manc2h |= E1000_MNG2HOST_PORT_664;
3075 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3076 
3077 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3078 	}
3079 }
3080 
3081 /*
3082  * Give control back to hardware management
3083  * controller if there is one.
3084  */
3085 static void
3086 emx_rel_mgmt(struct emx_softc *sc)
3087 {
3088 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3089 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3090 
3091 		/* re-enable hardware interception of ARP */
3092 		manc |= E1000_MANC_ARP_EN;
3093 		manc &= ~E1000_MANC_EN_MNG2HOST;
3094 
3095 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3096 	}
3097 }
3098 
3099 /*
3100  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3101  * For ASF and Pass Through versions of f/w this means that
3102  * the driver is loaded.  For AMT version (only with 82573)
3103  * of the f/w this means that the network i/f is open.
3104  */
3105 static void
3106 emx_get_hw_control(struct emx_softc *sc)
3107 {
3108 	/* Let firmware know the driver has taken over */
3109 	if (sc->hw.mac.type == e1000_82573) {
3110 		uint32_t swsm;
3111 
3112 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3113 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3114 		    swsm | E1000_SWSM_DRV_LOAD);
3115 	} else {
3116 		uint32_t ctrl_ext;
3117 
3118 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3119 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3120 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3121 	}
3122 	sc->flags |= EMX_FLAG_HW_CTRL;
3123 }
3124 
3125 /*
3126  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3127  * For ASF and Pass Through versions of f/w this means that the
3128  * driver is no longer loaded.  For AMT version (only with 82573)
3129  * of the f/w this means that the network i/f is closed.
3130  */
3131 static void
3132 emx_rel_hw_control(struct emx_softc *sc)
3133 {
3134 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3135 		return;
3136 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3137 
3138 	/* Let firmware taken over control of h/w */
3139 	if (sc->hw.mac.type == e1000_82573) {
3140 		uint32_t swsm;
3141 
3142 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3143 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3144 		    swsm & ~E1000_SWSM_DRV_LOAD);
3145 	} else {
3146 		uint32_t ctrl_ext;
3147 
3148 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3149 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3150 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3151 	}
3152 }
3153 
3154 static int
3155 emx_is_valid_eaddr(const uint8_t *addr)
3156 {
3157 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3158 
3159 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3160 		return (FALSE);
3161 
3162 	return (TRUE);
3163 }
3164 
3165 /*
3166  * Enable PCI Wake On Lan capability
3167  */
3168 void
3169 emx_enable_wol(device_t dev)
3170 {
3171 	uint16_t cap, status;
3172 	uint8_t id;
3173 
3174 	/* First find the capabilities pointer*/
3175 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3176 
3177 	/* Read the PM Capabilities */
3178 	id = pci_read_config(dev, cap, 1);
3179 	if (id != PCIY_PMG)     /* Something wrong */
3180 		return;
3181 
3182 	/*
3183 	 * OK, we have the power capabilities,
3184 	 * so now get the status register
3185 	 */
3186 	cap += PCIR_POWER_STATUS;
3187 	status = pci_read_config(dev, cap, 2);
3188 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3189 	pci_write_config(dev, cap, status, 2);
3190 }
3191 
3192 static void
3193 emx_update_stats(struct emx_softc *sc)
3194 {
3195 	struct ifnet *ifp = &sc->arpcom.ac_if;
3196 
3197 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3198 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3199 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3200 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3201 	}
3202 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3203 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3204 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3205 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3206 
3207 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3208 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3209 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3210 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3211 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3212 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3213 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3214 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3215 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3216 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3217 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3218 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3219 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3220 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3221 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3222 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3223 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3224 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3225 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3226 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3227 
3228 	/* For the 64-bit byte counters the low dword must be read first. */
3229 	/* Both registers clear on the read of the high dword */
3230 
3231 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3232 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3233 
3234 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3235 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3236 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3237 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3238 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3239 
3240 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3241 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3242 
3243 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3244 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3245 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3246 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3247 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3248 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3249 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3250 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3251 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3252 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3253 
3254 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3255 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3256 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3257 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3258 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3259 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3260 
3261 	ifp->if_collisions = sc->stats.colc;
3262 
3263 	/* Rx Errors */
3264 	ifp->if_ierrors = sc->stats.rxerrc +
3265 			  sc->stats.crcerrs + sc->stats.algnerrc +
3266 			  sc->stats.ruc + sc->stats.roc +
3267 			  sc->stats.mpc + sc->stats.cexterr;
3268 
3269 	/* Tx Errors */
3270 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol;
3271 }
3272 
3273 static void
3274 emx_print_debug_info(struct emx_softc *sc)
3275 {
3276 	device_t dev = sc->dev;
3277 	uint8_t *hw_addr = sc->hw.hw_addr;
3278 
3279 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3280 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3281 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3282 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3283 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3284 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3285 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3286 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3287 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3288 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3289 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3290 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3291 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3292 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3293 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3294 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3295 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3296 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3297 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3298 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3299 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3300 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3301 	    sc->tx_data.num_tx_desc_avail);
3302 
3303 	device_printf(dev, "TSO segments %lu\n", sc->tx_data.tso_segments);
3304 	device_printf(dev, "TSO ctx reused %lu\n", sc->tx_data.tso_ctx_reused);
3305 }
3306 
3307 static void
3308 emx_print_hw_stats(struct emx_softc *sc)
3309 {
3310 	device_t dev = sc->dev;
3311 
3312 	device_printf(dev, "Excessive collisions = %lld\n",
3313 	    (long long)sc->stats.ecol);
3314 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3315 	device_printf(dev, "Symbol errors = %lld\n",
3316 	    (long long)sc->stats.symerrs);
3317 #endif
3318 	device_printf(dev, "Sequence errors = %lld\n",
3319 	    (long long)sc->stats.sec);
3320 	device_printf(dev, "Defer count = %lld\n",
3321 	    (long long)sc->stats.dc);
3322 	device_printf(dev, "Missed Packets = %lld\n",
3323 	    (long long)sc->stats.mpc);
3324 	device_printf(dev, "Receive No Buffers = %lld\n",
3325 	    (long long)sc->stats.rnbc);
3326 	/* RLEC is inaccurate on some hardware, calculate our own. */
3327 	device_printf(dev, "Receive Length Errors = %lld\n",
3328 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3329 	device_printf(dev, "Receive errors = %lld\n",
3330 	    (long long)sc->stats.rxerrc);
3331 	device_printf(dev, "Crc errors = %lld\n",
3332 	    (long long)sc->stats.crcerrs);
3333 	device_printf(dev, "Alignment errors = %lld\n",
3334 	    (long long)sc->stats.algnerrc);
3335 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3336 	    (long long)sc->stats.cexterr);
3337 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3338 	device_printf(dev, "XON Rcvd = %lld\n",
3339 	    (long long)sc->stats.xonrxc);
3340 	device_printf(dev, "XON Xmtd = %lld\n",
3341 	    (long long)sc->stats.xontxc);
3342 	device_printf(dev, "XOFF Rcvd = %lld\n",
3343 	    (long long)sc->stats.xoffrxc);
3344 	device_printf(dev, "XOFF Xmtd = %lld\n",
3345 	    (long long)sc->stats.xofftxc);
3346 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3347 	    (long long)sc->stats.gprc);
3348 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3349 	    (long long)sc->stats.gptc);
3350 }
3351 
3352 static void
3353 emx_print_nvm_info(struct emx_softc *sc)
3354 {
3355 	uint16_t eeprom_data;
3356 	int i, j, row = 0;
3357 
3358 	/* Its a bit crude, but it gets the job done */
3359 	kprintf("\nInterface EEPROM Dump:\n");
3360 	kprintf("Offset\n0x0000  ");
3361 	for (i = 0, j = 0; i < 32; i++, j++) {
3362 		if (j == 8) { /* Make the offset block */
3363 			j = 0; ++row;
3364 			kprintf("\n0x00%x0  ",row);
3365 		}
3366 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3367 		kprintf("%04x ", eeprom_data);
3368 	}
3369 	kprintf("\n");
3370 }
3371 
3372 static int
3373 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3374 {
3375 	struct emx_softc *sc;
3376 	struct ifnet *ifp;
3377 	int error, result;
3378 
3379 	result = -1;
3380 	error = sysctl_handle_int(oidp, &result, 0, req);
3381 	if (error || !req->newptr)
3382 		return (error);
3383 
3384 	sc = (struct emx_softc *)arg1;
3385 	ifp = &sc->arpcom.ac_if;
3386 
3387 	ifnet_serialize_all(ifp);
3388 
3389 	if (result == 1)
3390 		emx_print_debug_info(sc);
3391 
3392 	/*
3393 	 * This value will cause a hex dump of the
3394 	 * first 32 16-bit words of the EEPROM to
3395 	 * the screen.
3396 	 */
3397 	if (result == 2)
3398 		emx_print_nvm_info(sc);
3399 
3400 	ifnet_deserialize_all(ifp);
3401 
3402 	return (error);
3403 }
3404 
3405 static int
3406 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3407 {
3408 	int error, result;
3409 
3410 	result = -1;
3411 	error = sysctl_handle_int(oidp, &result, 0, req);
3412 	if (error || !req->newptr)
3413 		return (error);
3414 
3415 	if (result == 1) {
3416 		struct emx_softc *sc = (struct emx_softc *)arg1;
3417 		struct ifnet *ifp = &sc->arpcom.ac_if;
3418 
3419 		ifnet_serialize_all(ifp);
3420 		emx_print_hw_stats(sc);
3421 		ifnet_deserialize_all(ifp);
3422 	}
3423 	return (error);
3424 }
3425 
3426 static void
3427 emx_add_sysctl(struct emx_softc *sc)
3428 {
3429 #ifdef EMX_RSS_DEBUG
3430 	char rx_pkt[32];
3431 	int i;
3432 #endif
3433 
3434 	sysctl_ctx_init(&sc->sysctl_ctx);
3435 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3436 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3437 				device_get_nameunit(sc->dev),
3438 				CTLFLAG_RD, 0, "");
3439 	if (sc->sysctl_tree == NULL) {
3440 		device_printf(sc->dev, "can't add sysctl node\n");
3441 		return;
3442 	}
3443 
3444 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3445 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3446 			emx_sysctl_debug_info, "I", "Debug Information");
3447 
3448 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3449 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3450 			emx_sysctl_stats, "I", "Statistics");
3451 
3452 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3453 		       OID_AUTO, "rxd", CTLFLAG_RD,
3454 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3455 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3456 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data.num_tx_desc, 0, NULL);
3457 
3458 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3459 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3460 			sc, 0, emx_sysctl_int_throttle, "I",
3461 			"interrupt throttling rate");
3462 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3463 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3464 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3465 			"# segments per TX interrupt");
3466 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3467 		       OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
3468 		       &sc->tx_data.tx_wreg_nsegs, 0,
3469 		       "# segments before write to hardware register");
3470 
3471 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3472 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3473 		       &sc->rx_ring_cnt, 0, "RX ring count");
3474 
3475 #ifdef IFPOLL_ENABLE
3476 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3477 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3478 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3479 			"NPOLLING RX cpu offset");
3480 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3481 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3482 			sc, 0, emx_sysctl_npoll_txoff, "I",
3483 			"NPOLLING TX cpu offset");
3484 #endif
3485 
3486 #ifdef EMX_RSS_DEBUG
3487 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3488 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3489 		       0, "RSS debug level");
3490 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3491 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3492 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3493 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3494 				rx_pkt, CTLFLAG_RW,
3495 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3496 	}
3497 #endif
3498 }
3499 
3500 static int
3501 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3502 {
3503 	struct emx_softc *sc = (void *)arg1;
3504 	struct ifnet *ifp = &sc->arpcom.ac_if;
3505 	int error, throttle;
3506 
3507 	throttle = sc->int_throttle_ceil;
3508 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3509 	if (error || req->newptr == NULL)
3510 		return error;
3511 	if (throttle < 0 || throttle > 1000000000 / 256)
3512 		return EINVAL;
3513 
3514 	if (throttle) {
3515 		/*
3516 		 * Set the interrupt throttling rate in 256ns increments,
3517 		 * recalculate sysctl value assignment to get exact frequency.
3518 		 */
3519 		throttle = 1000000000 / 256 / throttle;
3520 
3521 		/* Upper 16bits of ITR is reserved and should be zero */
3522 		if (throttle & 0xffff0000)
3523 			return EINVAL;
3524 	}
3525 
3526 	ifnet_serialize_all(ifp);
3527 
3528 	if (throttle)
3529 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3530 	else
3531 		sc->int_throttle_ceil = 0;
3532 
3533 	if (ifp->if_flags & IFF_RUNNING)
3534 		emx_set_itr(sc, throttle);
3535 
3536 	ifnet_deserialize_all(ifp);
3537 
3538 	if (bootverbose) {
3539 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3540 			  sc->int_throttle_ceil);
3541 	}
3542 	return 0;
3543 }
3544 
3545 static int
3546 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3547 {
3548 	struct emx_softc *sc = (void *)arg1;
3549 	struct ifnet *ifp = &sc->arpcom.ac_if;
3550 	int error, segs;
3551 
3552 	segs = sc->tx_data.tx_int_nsegs;
3553 	error = sysctl_handle_int(oidp, &segs, 0, req);
3554 	if (error || req->newptr == NULL)
3555 		return error;
3556 	if (segs <= 0)
3557 		return EINVAL;
3558 
3559 	ifnet_serialize_all(ifp);
3560 
3561 	/*
3562 	 * Don't allow int_tx_nsegs to become:
3563 	 * o  Less the oact_tx_desc
3564 	 * o  Too large that no TX desc will cause TX interrupt to
3565 	 *    be generated (OACTIVE will never recover)
3566 	 * o  Too small that will cause tx_dd[] overflow
3567 	 */
3568 	if (segs < sc->tx_data.oact_tx_desc ||
3569 	    segs >= sc->tx_data.num_tx_desc - sc->tx_data.oact_tx_desc ||
3570 	    segs < sc->tx_data.num_tx_desc / EMX_TXDD_SAFE) {
3571 		error = EINVAL;
3572 	} else {
3573 		error = 0;
3574 		sc->tx_data.tx_int_nsegs = segs;
3575 	}
3576 
3577 	ifnet_deserialize_all(ifp);
3578 
3579 	return error;
3580 }
3581 
3582 #ifdef IFPOLL_ENABLE
3583 
3584 static int
3585 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3586 {
3587 	struct emx_softc *sc = (void *)arg1;
3588 	struct ifnet *ifp = &sc->arpcom.ac_if;
3589 	int error, off;
3590 
3591 	off = sc->rx_npoll_off;
3592 	error = sysctl_handle_int(oidp, &off, 0, req);
3593 	if (error || req->newptr == NULL)
3594 		return error;
3595 	if (off < 0)
3596 		return EINVAL;
3597 
3598 	ifnet_serialize_all(ifp);
3599 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3600 		error = EINVAL;
3601 	} else {
3602 		error = 0;
3603 		sc->rx_npoll_off = off;
3604 	}
3605 	ifnet_deserialize_all(ifp);
3606 
3607 	return error;
3608 }
3609 
3610 static int
3611 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3612 {
3613 	struct emx_softc *sc = (void *)arg1;
3614 	struct ifnet *ifp = &sc->arpcom.ac_if;
3615 	int error, off;
3616 
3617 	off = sc->tx_npoll_off;
3618 	error = sysctl_handle_int(oidp, &off, 0, req);
3619 	if (error || req->newptr == NULL)
3620 		return error;
3621 	if (off < 0)
3622 		return EINVAL;
3623 
3624 	ifnet_serialize_all(ifp);
3625 	if (off >= ncpus2) {
3626 		error = EINVAL;
3627 	} else {
3628 		error = 0;
3629 		sc->tx_npoll_off = off;
3630 	}
3631 	ifnet_deserialize_all(ifp);
3632 
3633 	return error;
3634 }
3635 
3636 #endif	/* IFPOLL_ENABLE */
3637 
3638 static int
3639 emx_dma_alloc(struct emx_softc *sc)
3640 {
3641 	int error, i;
3642 
3643 	/*
3644 	 * Create top level busdma tag
3645 	 */
3646 	error = bus_dma_tag_create(NULL, 1, 0,
3647 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3648 			NULL, NULL,
3649 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3650 			0, &sc->parent_dtag);
3651 	if (error) {
3652 		device_printf(sc->dev, "could not create top level DMA tag\n");
3653 		return error;
3654 	}
3655 
3656 	/*
3657 	 * Allocate transmit descriptors ring and buffers
3658 	 */
3659 	error = emx_create_tx_ring(&sc->tx_data);
3660 	if (error) {
3661 		device_printf(sc->dev, "Could not setup transmit structures\n");
3662 		return error;
3663 	}
3664 
3665 	/*
3666 	 * Allocate receive descriptors ring and buffers
3667 	 */
3668 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3669 		error = emx_create_rx_ring(&sc->rx_data[i]);
3670 		if (error) {
3671 			device_printf(sc->dev,
3672 			    "Could not setup receive structures\n");
3673 			return error;
3674 		}
3675 	}
3676 	return 0;
3677 }
3678 
3679 static void
3680 emx_dma_free(struct emx_softc *sc)
3681 {
3682 	int i;
3683 
3684 	emx_destroy_tx_ring(&sc->tx_data, sc->tx_data.num_tx_desc);
3685 
3686 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3687 		emx_destroy_rx_ring(&sc->rx_data[i],
3688 				    sc->rx_data[i].num_rx_desc);
3689 	}
3690 
3691 	/* Free top level busdma tag */
3692 	if (sc->parent_dtag != NULL)
3693 		bus_dma_tag_destroy(sc->parent_dtag);
3694 }
3695 
3696 static void
3697 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3698 {
3699 	struct emx_softc *sc = ifp->if_softc;
3700 
3701 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3702 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3703 }
3704 
3705 static void
3706 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3707 {
3708 	struct emx_softc *sc = ifp->if_softc;
3709 
3710 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3711 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3712 }
3713 
3714 static int
3715 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3716 {
3717 	struct emx_softc *sc = ifp->if_softc;
3718 
3719 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3720 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3721 }
3722 
3723 static void
3724 emx_serialize_skipmain(struct emx_softc *sc)
3725 {
3726 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3727 }
3728 
3729 static void
3730 emx_deserialize_skipmain(struct emx_softc *sc)
3731 {
3732 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3733 }
3734 
3735 #ifdef INVARIANTS
3736 
3737 static void
3738 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3739     boolean_t serialized)
3740 {
3741 	struct emx_softc *sc = ifp->if_softc;
3742 
3743 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3744 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3745 }
3746 
3747 #endif	/* INVARIANTS */
3748 
3749 #ifdef IFPOLL_ENABLE
3750 
3751 static void
3752 emx_npoll_status(struct ifnet *ifp)
3753 {
3754 	struct emx_softc *sc = ifp->if_softc;
3755 	uint32_t reg_icr;
3756 
3757 	ASSERT_SERIALIZED(&sc->main_serialize);
3758 
3759 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3760 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3761 		callout_stop(&sc->timer);
3762 		sc->hw.mac.get_link_status = 1;
3763 		emx_update_link_status(sc);
3764 		callout_reset(&sc->timer, hz, emx_timer, sc);
3765 	}
3766 }
3767 
3768 static void
3769 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3770 {
3771 	struct emx_txdata *tdata = arg;
3772 
3773 	ASSERT_SERIALIZED(&tdata->tx_serialize);
3774 
3775 	emx_txeof(tdata);
3776 	if (!ifq_is_empty(&ifp->if_snd))
3777 		if_devstart(ifp);
3778 }
3779 
3780 static void
3781 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3782 {
3783 	struct emx_rxdata *rdata = arg;
3784 
3785 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3786 
3787 	emx_rxeof(rdata, cycle);
3788 }
3789 
3790 static void
3791 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3792 {
3793 	struct emx_softc *sc = ifp->if_softc;
3794 
3795 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3796 
3797 	if (info) {
3798 		int i, off;
3799 
3800 		info->ifpi_status.status_func = emx_npoll_status;
3801 		info->ifpi_status.serializer = &sc->main_serialize;
3802 
3803 		off = sc->tx_npoll_off;
3804 		KKASSERT(off < ncpus2);
3805 		info->ifpi_tx[off].poll_func = emx_npoll_tx;
3806 		info->ifpi_tx[off].arg = &sc->tx_data;
3807 		info->ifpi_tx[off].serializer = &sc->tx_data.tx_serialize;
3808 
3809 		off = sc->rx_npoll_off;
3810 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3811 			struct emx_rxdata *rdata = &sc->rx_data[i];
3812 			int idx = i + off;
3813 
3814 			KKASSERT(idx < ncpus2);
3815 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
3816 			info->ifpi_rx[idx].arg = rdata;
3817 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
3818 		}
3819 
3820 		if (ifp->if_flags & IFF_RUNNING)
3821 			emx_disable_intr(sc);
3822 		ifp->if_npoll_cpuid = sc->tx_npoll_off;
3823 	} else {
3824 		if (ifp->if_flags & IFF_RUNNING)
3825 			emx_enable_intr(sc);
3826 		ifp->if_npoll_cpuid = -1;
3827 	}
3828 }
3829 
3830 #endif	/* IFPOLL_ENABLE */
3831 
3832 static void
3833 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3834 {
3835 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3836 	if (sc->hw.mac.type == e1000_82574) {
3837 		int i;
3838 
3839 		/*
3840 		 * When using MSIX interrupts we need to
3841 		 * throttle using the EITR register
3842 		 */
3843 		for (i = 0; i < 4; ++i)
3844 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3845 	}
3846 }
3847 
3848 /*
3849  * Disable the L0s, 82574L Errata #20
3850  */
3851 static void
3852 emx_disable_aspm(struct emx_softc *sc)
3853 {
3854 	uint16_t link_cap, link_ctrl, disable;
3855 	uint8_t pcie_ptr, reg;
3856 	device_t dev = sc->dev;
3857 
3858 	switch (sc->hw.mac.type) {
3859 	case e1000_82571:
3860 	case e1000_82572:
3861 	case e1000_82573:
3862 		/*
3863 		 * 82573 specification update
3864 		 * errata #8 disable L0s
3865 		 * errata #41 disable L1
3866 		 *
3867 		 * 82571/82572 specification update
3868 		 # errata #13 disable L1
3869 		 * errata #68 disable L0s
3870 		 */
3871 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3872 		break;
3873 
3874 	case e1000_82574:
3875 		/*
3876 		 * 82574 specification update errata #20
3877 		 *
3878 		 * There is no need to disable L1
3879 		 */
3880 		disable = PCIEM_LNKCTL_ASPM_L0S;
3881 		break;
3882 
3883 	default:
3884 		return;
3885 	}
3886 
3887 	pcie_ptr = pci_get_pciecap_ptr(dev);
3888 	if (pcie_ptr == 0)
3889 		return;
3890 
3891 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3892 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3893 		return;
3894 
3895 	if (bootverbose)
3896 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3897 
3898 	reg = pcie_ptr + PCIER_LINKCTRL;
3899 	link_ctrl = pci_read_config(dev, reg, 2);
3900 	link_ctrl &= ~disable;
3901 	pci_write_config(dev, reg, link_ctrl, 2);
3902 }
3903 
3904 static int
3905 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
3906 {
3907 	int iphlen, hoff, thoff, ex = 0;
3908 	struct mbuf *m;
3909 	struct ip *ip;
3910 
3911 	m = *mp;
3912 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
3913 
3914 	iphlen = m->m_pkthdr.csum_iphlen;
3915 	thoff = m->m_pkthdr.csum_thlen;
3916 	hoff = m->m_pkthdr.csum_lhlen;
3917 
3918 	KASSERT(iphlen > 0, ("invalid ip hlen"));
3919 	KASSERT(thoff > 0, ("invalid tcp hlen"));
3920 	KASSERT(hoff > 0, ("invalid ether hlen"));
3921 
3922 	if (tdata->sc->flags & EMX_FLAG_TSO_PULLEX)
3923 		ex = 4;
3924 
3925 	if (m->m_len < hoff + iphlen + thoff + ex) {
3926 		m = m_pullup(m, hoff + iphlen + thoff + ex);
3927 		if (m == NULL) {
3928 			*mp = NULL;
3929 			return ENOBUFS;
3930 		}
3931 		*mp = m;
3932 	}
3933 	ip = mtodoff(m, struct ip *, hoff);
3934 	ip->ip_len = 0;
3935 
3936 	return 0;
3937 }
3938 
3939 static int
3940 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
3941     uint32_t *txd_upper, uint32_t *txd_lower)
3942 {
3943 	struct e1000_context_desc *TXD;
3944 	int hoff, iphlen, thoff, hlen;
3945 	int mss, pktlen, curr_txd;
3946 
3947 #ifdef EMX_TSO_DEBUG
3948 	tdata->tso_segments++;
3949 #endif
3950 
3951 	iphlen = mp->m_pkthdr.csum_iphlen;
3952 	thoff = mp->m_pkthdr.csum_thlen;
3953 	hoff = mp->m_pkthdr.csum_lhlen;
3954 	mss = mp->m_pkthdr.tso_segsz;
3955 	pktlen = mp->m_pkthdr.len;
3956 
3957 	if (tdata->csum_flags == CSUM_TSO &&
3958 	    tdata->csum_iphlen == iphlen &&
3959 	    tdata->csum_lhlen == hoff &&
3960 	    tdata->csum_thlen == thoff &&
3961 	    tdata->csum_mss == mss &&
3962 	    tdata->csum_pktlen == pktlen) {
3963 		*txd_upper = tdata->csum_txd_upper;
3964 		*txd_lower = tdata->csum_txd_lower;
3965 #ifdef EMX_TSO_DEBUG
3966 		tdata->tso_ctx_reused++;
3967 #endif
3968 		return 0;
3969 	}
3970 	hlen = hoff + iphlen + thoff;
3971 
3972 	/*
3973 	 * Setup a new TSO context.
3974 	 */
3975 
3976 	curr_txd = tdata->next_avail_tx_desc;
3977 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
3978 
3979 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3980 		     E1000_TXD_DTYP_D |		/* Data descr type */
3981 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
3982 
3983 	/* IP and/or TCP header checksum calculation and insertion. */
3984 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
3985 
3986 	/*
3987 	 * Start offset for header checksum calculation.
3988 	 * End offset for header checksum calculation.
3989 	 * Offset of place put the checksum.
3990 	 */
3991 	TXD->lower_setup.ip_fields.ipcss = hoff;
3992 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
3993 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
3994 
3995 	/*
3996 	 * Start offset for payload checksum calculation.
3997 	 * End offset for payload checksum calculation.
3998 	 * Offset of place to put the checksum.
3999 	 */
4000 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4001 	TXD->upper_setup.tcp_fields.tucse = 0;
4002 	TXD->upper_setup.tcp_fields.tucso =
4003 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4004 
4005 	/*
4006 	 * Payload size per packet w/o any headers.
4007 	 * Length of all headers up to payload.
4008 	 */
4009 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4010 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4011 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4012 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4013 				E1000_TXD_CMD_TSE |	/* TSE context */
4014 				E1000_TXD_CMD_IP |	/* Do IP csum */
4015 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4016 				(pktlen - hlen));	/* Total len */
4017 
4018 	/* Save the information for this TSO context */
4019 	tdata->csum_flags = CSUM_TSO;
4020 	tdata->csum_lhlen = hoff;
4021 	tdata->csum_iphlen = iphlen;
4022 	tdata->csum_thlen = thoff;
4023 	tdata->csum_mss = mss;
4024 	tdata->csum_pktlen = pktlen;
4025 	tdata->csum_txd_upper = *txd_upper;
4026 	tdata->csum_txd_lower = *txd_lower;
4027 
4028 	if (++curr_txd == tdata->num_tx_desc)
4029 		curr_txd = 0;
4030 
4031 	KKASSERT(tdata->num_tx_desc_avail > 0);
4032 	tdata->num_tx_desc_avail--;
4033 
4034 	tdata->next_avail_tx_desc = curr_txd;
4035 	return 1;
4036 }
4037