xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 2249b4bc)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	EMX_DEVICE(PCH_LPT_I217_LM),
165 	EMX_DEVICE(PCH_LPT_I217_V),
166 	EMX_DEVICE(PCH_LPTLP_I218_LM),
167 	EMX_DEVICE(PCH_LPTLP_I218_V),
168 	EMX_DEVICE(PCH_I218_LM2),
169 	EMX_DEVICE(PCH_I218_V2),
170 	EMX_DEVICE(PCH_I218_LM3),
171 	EMX_DEVICE(PCH_I218_V3),
172 
173 	/* required last entry */
174 	EMX_DEVICE_NULL
175 };
176 
177 static int	emx_probe(device_t);
178 static int	emx_attach(device_t);
179 static int	emx_detach(device_t);
180 static int	emx_shutdown(device_t);
181 static int	emx_suspend(device_t);
182 static int	emx_resume(device_t);
183 
184 static void	emx_init(void *);
185 static void	emx_stop(struct emx_softc *);
186 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
187 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
188 #ifdef IFPOLL_ENABLE
189 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
190 static void	emx_npoll_status(struct ifnet *);
191 static void	emx_npoll_tx(struct ifnet *, void *, int);
192 static void	emx_npoll_rx(struct ifnet *, void *, int);
193 #endif
194 static void	emx_watchdog(struct ifaltq_subque *);
195 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
196 static int	emx_media_change(struct ifnet *);
197 static void	emx_timer(void *);
198 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
199 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
200 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
201 #ifdef INVARIANTS
202 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
203 		    boolean_t);
204 #endif
205 
206 static void	emx_intr(void *);
207 static void	emx_intr_mask(void *);
208 static void	emx_intr_body(struct emx_softc *, boolean_t);
209 static void	emx_rxeof(struct emx_rxdata *, int);
210 static void	emx_txeof(struct emx_txdata *);
211 static void	emx_tx_collect(struct emx_txdata *);
212 static void	emx_tx_purge(struct emx_softc *);
213 static void	emx_enable_intr(struct emx_softc *);
214 static void	emx_disable_intr(struct emx_softc *);
215 
216 static int	emx_dma_alloc(struct emx_softc *);
217 static void	emx_dma_free(struct emx_softc *);
218 static void	emx_init_tx_ring(struct emx_txdata *);
219 static int	emx_init_rx_ring(struct emx_rxdata *);
220 static void	emx_free_tx_ring(struct emx_txdata *);
221 static void	emx_free_rx_ring(struct emx_rxdata *);
222 static int	emx_create_tx_ring(struct emx_txdata *);
223 static int	emx_create_rx_ring(struct emx_rxdata *);
224 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
225 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
226 static int	emx_newbuf(struct emx_rxdata *, int, int);
227 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
228 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
229 		    uint32_t *, uint32_t *);
230 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
231 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
232 		    uint32_t *, uint32_t *);
233 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
234 
235 static int 	emx_is_valid_eaddr(const uint8_t *);
236 static int	emx_reset(struct emx_softc *);
237 static void	emx_setup_ifp(struct emx_softc *);
238 static void	emx_init_tx_unit(struct emx_softc *);
239 static void	emx_init_rx_unit(struct emx_softc *);
240 static void	emx_update_stats(struct emx_softc *);
241 static void	emx_set_promisc(struct emx_softc *);
242 static void	emx_disable_promisc(struct emx_softc *);
243 static void	emx_set_multi(struct emx_softc *);
244 static void	emx_update_link_status(struct emx_softc *);
245 static void	emx_smartspeed(struct emx_softc *);
246 static void	emx_set_itr(struct emx_softc *, uint32_t);
247 static void	emx_disable_aspm(struct emx_softc *);
248 
249 static void	emx_print_debug_info(struct emx_softc *);
250 static void	emx_print_nvm_info(struct emx_softc *);
251 static void	emx_print_hw_stats(struct emx_softc *);
252 
253 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
254 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
255 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
256 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
257 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
258 #ifdef IFPOLL_ENABLE
259 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
260 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
261 #endif
262 static void	emx_add_sysctl(struct emx_softc *);
263 
264 static void	emx_serialize_skipmain(struct emx_softc *);
265 static void	emx_deserialize_skipmain(struct emx_softc *);
266 
267 /* Management and WOL Support */
268 static void	emx_get_mgmt(struct emx_softc *);
269 static void	emx_rel_mgmt(struct emx_softc *);
270 static void	emx_get_hw_control(struct emx_softc *);
271 static void	emx_rel_hw_control(struct emx_softc *);
272 static void	emx_enable_wol(device_t);
273 
274 static device_method_t emx_methods[] = {
275 	/* Device interface */
276 	DEVMETHOD(device_probe,		emx_probe),
277 	DEVMETHOD(device_attach,	emx_attach),
278 	DEVMETHOD(device_detach,	emx_detach),
279 	DEVMETHOD(device_shutdown,	emx_shutdown),
280 	DEVMETHOD(device_suspend,	emx_suspend),
281 	DEVMETHOD(device_resume,	emx_resume),
282 	DEVMETHOD_END
283 };
284 
285 static driver_t emx_driver = {
286 	"emx",
287 	emx_methods,
288 	sizeof(struct emx_softc),
289 };
290 
291 static devclass_t emx_devclass;
292 
293 DECLARE_DUMMY_MODULE(if_emx);
294 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
295 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
296 
297 /*
298  * Tunables
299  */
300 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
301 static int	emx_rxd = EMX_DEFAULT_RXD;
302 static int	emx_txd = EMX_DEFAULT_TXD;
303 static int	emx_smart_pwr_down = 0;
304 static int	emx_rxr = 0;
305 static int	emx_txr = 1;
306 
307 /* Controls whether promiscuous also shows bad packets */
308 static int	emx_debug_sbp = 0;
309 
310 static int	emx_82573_workaround = 1;
311 static int	emx_msi_enable = 1;
312 
313 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
314 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
315 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
316 TUNABLE_INT("hw.emx.txd", &emx_txd);
317 TUNABLE_INT("hw.emx.txr", &emx_txr);
318 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
319 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
320 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
321 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
322 
323 /* Global used in WOL setup with multiport cards */
324 static int	emx_global_quad_port_a = 0;
325 
326 /* Set this to one to display debug statistics */
327 static int	emx_display_debug_stats = 0;
328 
329 #if !defined(KTR_IF_EMX)
330 #define KTR_IF_EMX	KTR_ALL
331 #endif
332 KTR_INFO_MASTER(if_emx);
333 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
334 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
335 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
336 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
337 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
338 #define logif(name)	KTR_LOG(if_emx_ ## name)
339 
340 static __inline void
341 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
342 {
343 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
344 	/* DD bit must be cleared */
345 	rxd->rxd_staterr = 0;
346 }
347 
348 static __inline void
349 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
350 {
351 	/* Ignore Checksum bit is set */
352 	if (staterr & E1000_RXD_STAT_IXSM)
353 		return;
354 
355 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
356 	    E1000_RXD_STAT_IPCS)
357 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
358 
359 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
360 	    E1000_RXD_STAT_TCPCS) {
361 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
362 					   CSUM_PSEUDO_HDR |
363 					   CSUM_FRAG_NOT_CHECKED;
364 		mp->m_pkthdr.csum_data = htons(0xffff);
365 	}
366 }
367 
368 static __inline struct pktinfo *
369 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
370 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
371 {
372 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
373 	case EMX_RXDMRQ_IPV4_TCP:
374 		pi->pi_netisr = NETISR_IP;
375 		pi->pi_flags = 0;
376 		pi->pi_l3proto = IPPROTO_TCP;
377 		break;
378 
379 	case EMX_RXDMRQ_IPV6_TCP:
380 		pi->pi_netisr = NETISR_IPV6;
381 		pi->pi_flags = 0;
382 		pi->pi_l3proto = IPPROTO_TCP;
383 		break;
384 
385 	case EMX_RXDMRQ_IPV4:
386 		if (staterr & E1000_RXD_STAT_IXSM)
387 			return NULL;
388 
389 		if ((staterr &
390 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
391 		    E1000_RXD_STAT_TCPCS) {
392 			pi->pi_netisr = NETISR_IP;
393 			pi->pi_flags = 0;
394 			pi->pi_l3proto = IPPROTO_UDP;
395 			break;
396 		}
397 		/* FALL THROUGH */
398 	default:
399 		return NULL;
400 	}
401 
402 	m->m_flags |= M_HASH;
403 	m->m_pkthdr.hash = toeplitz_hash(hash);
404 	return pi;
405 }
406 
407 static int
408 emx_probe(device_t dev)
409 {
410 	const struct emx_device *d;
411 	uint16_t vid, did;
412 
413 	vid = pci_get_vendor(dev);
414 	did = pci_get_device(dev);
415 
416 	for (d = emx_devices; d->desc != NULL; ++d) {
417 		if (vid == d->vid && did == d->did) {
418 			device_set_desc(dev, d->desc);
419 			device_set_async_attach(dev, TRUE);
420 			return 0;
421 		}
422 	}
423 	return ENXIO;
424 }
425 
426 static int
427 emx_attach(device_t dev)
428 {
429 	struct emx_softc *sc = device_get_softc(dev);
430 	int error = 0, i, throttle, msi_enable, tx_ring_max;
431 	u_int intr_flags;
432 	uint16_t eeprom_data, device_id, apme_mask;
433 	driver_intr_t *intr_func;
434 #ifdef IFPOLL_ENABLE
435 	int offset, offset_def;
436 #endif
437 
438 	/*
439 	 * Setup RX rings
440 	 */
441 	for (i = 0; i < EMX_NRX_RING; ++i) {
442 		sc->rx_data[i].sc = sc;
443 		sc->rx_data[i].idx = i;
444 	}
445 
446 	/*
447 	 * Setup TX ring
448 	 */
449 	for (i = 0; i < EMX_NTX_RING; ++i) {
450 		sc->tx_data[i].sc = sc;
451 		sc->tx_data[i].idx = i;
452 	}
453 
454 	/*
455 	 * Initialize serializers
456 	 */
457 	lwkt_serialize_init(&sc->main_serialize);
458 	for (i = 0; i < EMX_NTX_RING; ++i)
459 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
460 	for (i = 0; i < EMX_NRX_RING; ++i)
461 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
462 
463 	/*
464 	 * Initialize serializer array
465 	 */
466 	i = 0;
467 
468 	KKASSERT(i < EMX_NSERIALIZE);
469 	sc->serializes[i++] = &sc->main_serialize;
470 
471 	KKASSERT(i < EMX_NSERIALIZE);
472 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
473 	KKASSERT(i < EMX_NSERIALIZE);
474 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
475 
476 	KKASSERT(i < EMX_NSERIALIZE);
477 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
478 	KKASSERT(i < EMX_NSERIALIZE);
479 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
480 
481 	KKASSERT(i == EMX_NSERIALIZE);
482 
483 	ifmedia_init(&sc->media, IFM_IMASK, emx_media_change, emx_media_status);
484 	callout_init_mp(&sc->timer);
485 
486 	sc->dev = sc->osdep.dev = dev;
487 
488 	/*
489 	 * Determine hardware and mac type
490 	 */
491 	sc->hw.vendor_id = pci_get_vendor(dev);
492 	sc->hw.device_id = pci_get_device(dev);
493 	sc->hw.revision_id = pci_get_revid(dev);
494 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
495 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
496 
497 	if (e1000_set_mac_type(&sc->hw))
498 		return ENXIO;
499 
500 	/* Enable bus mastering */
501 	pci_enable_busmaster(dev);
502 
503 	/*
504 	 * Allocate IO memory
505 	 */
506 	sc->memory_rid = EMX_BAR_MEM;
507 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
508 					    &sc->memory_rid, RF_ACTIVE);
509 	if (sc->memory == NULL) {
510 		device_printf(dev, "Unable to allocate bus resource: memory\n");
511 		error = ENXIO;
512 		goto fail;
513 	}
514 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
515 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
516 
517 	/* XXX This is quite goofy, it is not actually used */
518 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
519 
520 	/*
521 	 * Don't enable MSI-X on 82574, see:
522 	 * 82574 specification update errata #15
523 	 *
524 	 * Don't enable MSI on 82571/82572, see:
525 	 * 82571/82572 specification update errata #63
526 	 */
527 	msi_enable = emx_msi_enable;
528 	if (msi_enable &&
529 	    (sc->hw.mac.type == e1000_82571 ||
530 	     sc->hw.mac.type == e1000_82572))
531 		msi_enable = 0;
532 
533 	/*
534 	 * Allocate interrupt
535 	 */
536 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
537 	    &sc->intr_rid, &intr_flags);
538 
539 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
540 		int unshared;
541 
542 		unshared = device_getenv_int(dev, "irq.unshared", 0);
543 		if (!unshared) {
544 			sc->flags |= EMX_FLAG_SHARED_INTR;
545 			if (bootverbose)
546 				device_printf(dev, "IRQ shared\n");
547 		} else {
548 			intr_flags &= ~RF_SHAREABLE;
549 			if (bootverbose)
550 				device_printf(dev, "IRQ unshared\n");
551 		}
552 	}
553 
554 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
555 	    intr_flags);
556 	if (sc->intr_res == NULL) {
557 		device_printf(dev, "Unable to allocate bus resource: "
558 		    "interrupt\n");
559 		error = ENXIO;
560 		goto fail;
561 	}
562 
563 	/* Save PCI command register for Shared Code */
564 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
565 	sc->hw.back = &sc->osdep;
566 
567 	/*
568 	 * For I217/I218, we need to map the flash memory and this
569 	 * must happen after the MAC is identified.
570 	 */
571 	if (sc->hw.mac.type == e1000_pch_lpt) {
572 		sc->flash_rid = EMX_BAR_FLASH;
573 
574 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
575 		    &sc->flash_rid, RF_ACTIVE);
576 		if (sc->flash == NULL) {
577 			device_printf(dev, "Mapping of Flash failed\n");
578 			error = ENXIO;
579 			goto fail;
580 		}
581 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
582 		sc->osdep.flash_bus_space_handle =
583 		    rman_get_bushandle(sc->flash);
584 
585 		/*
586 		 * This is used in the shared code
587 		 * XXX this goof is actually not used.
588 		 */
589 		sc->hw.flash_address = (uint8_t *)sc->flash;
590 	}
591 
592 	/* Do Shared Code initialization */
593 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
594 		device_printf(dev, "Setup of Shared code failed\n");
595 		error = ENXIO;
596 		goto fail;
597 	}
598 	e1000_get_bus_info(&sc->hw);
599 
600 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
601 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
602 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
603 
604 	/*
605 	 * Interrupt throttle rate
606 	 */
607 	throttle = device_getenv_int(dev, "int_throttle_ceil",
608 	    emx_int_throttle_ceil);
609 	if (throttle == 0) {
610 		sc->int_throttle_ceil = 0;
611 	} else {
612 		if (throttle < 0)
613 			throttle = EMX_DEFAULT_ITR;
614 
615 		/* Recalculate the tunable value to get the exact frequency. */
616 		throttle = 1000000000 / 256 / throttle;
617 
618 		/* Upper 16bits of ITR is reserved and should be zero */
619 		if (throttle & 0xffff0000)
620 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
621 
622 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
623 	}
624 
625 	e1000_init_script_state_82541(&sc->hw, TRUE);
626 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
627 
628 	/* Copper options */
629 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
630 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
631 		sc->hw.phy.disable_polarity_correction = FALSE;
632 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
633 	}
634 
635 	/* Set the frame limits assuming standard ethernet sized frames. */
636 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
637 
638 	/* This controls when hardware reports transmit completion status. */
639 	sc->hw.mac.report_tx_early = 1;
640 
641 	/* Calculate # of RX rings */
642 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
643 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
644 
645 	/*
646 	 * Calculate # of TX rings
647 	 *
648 	 * XXX
649 	 * I217/I218 claims to have 2 TX queues
650 	 *
651 	 * NOTE:
652 	 * Don't enable multiple TX queues on 82574; it always gives
653 	 * watchdog timeout on TX queue0, when multiple TCP streams are
654 	 * received.  It was originally suspected that the hardware TX
655 	 * checksum offloading caused this watchdog timeout, since only
656 	 * TCP ACKs are sent during TCP receiving tests.  However, even
657 	 * if the hardware TX checksum offloading is disable, TX queue0
658 	 * still will give watchdog.
659 	 */
660 	tx_ring_max = 1;
661 	if (sc->hw.mac.type == e1000_82571 ||
662 	    sc->hw.mac.type == e1000_82572 ||
663 	    sc->hw.mac.type == e1000_80003es2lan)
664 		tx_ring_max = EMX_NTX_RING;
665 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
666 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
667 
668 	/* Allocate RX/TX rings' busdma(9) stuffs */
669 	error = emx_dma_alloc(sc);
670 	if (error)
671 		goto fail;
672 
673 	/* Allocate multicast array memory. */
674 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
675 	    M_DEVBUF, M_WAITOK);
676 
677 	/* Indicate SOL/IDER usage */
678 	if (e1000_check_reset_block(&sc->hw)) {
679 		device_printf(dev,
680 		    "PHY reset is blocked due to SOL/IDER session.\n");
681 	}
682 
683 	/* Disable EEE on I217/I218 */
684 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
685 
686 	/*
687 	 * Start from a known state, this is important in reading the
688 	 * nvm and mac from that.
689 	 */
690 	e1000_reset_hw(&sc->hw);
691 
692 	/* Make sure we have a good EEPROM before we read from it */
693 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
694 		/*
695 		 * Some PCI-E parts fail the first check due to
696 		 * the link being in sleep state, call it again,
697 		 * if it fails a second time its a real issue.
698 		 */
699 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
700 			device_printf(dev,
701 			    "The EEPROM Checksum Is Not Valid\n");
702 			error = EIO;
703 			goto fail;
704 		}
705 	}
706 
707 	/* Copy the permanent MAC address out of the EEPROM */
708 	if (e1000_read_mac_addr(&sc->hw) < 0) {
709 		device_printf(dev, "EEPROM read error while reading MAC"
710 		    " address\n");
711 		error = EIO;
712 		goto fail;
713 	}
714 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
715 		device_printf(dev, "Invalid MAC address\n");
716 		error = EIO;
717 		goto fail;
718 	}
719 
720 	/* Disable ULP support */
721 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
722 
723 	/* Determine if we have to control management hardware */
724 	if (e1000_enable_mng_pass_thru(&sc->hw))
725 		sc->flags |= EMX_FLAG_HAS_MGMT;
726 
727 	/*
728 	 * Setup Wake-on-Lan
729 	 */
730 	apme_mask = EMX_EEPROM_APME;
731 	eeprom_data = 0;
732 	switch (sc->hw.mac.type) {
733 	case e1000_82573:
734 		sc->flags |= EMX_FLAG_HAS_AMT;
735 		/* FALL THROUGH */
736 
737 	case e1000_82571:
738 	case e1000_82572:
739 	case e1000_80003es2lan:
740 		if (sc->hw.bus.func == 1) {
741 			e1000_read_nvm(&sc->hw,
742 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
743 		} else {
744 			e1000_read_nvm(&sc->hw,
745 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
746 		}
747 		break;
748 
749 	default:
750 		e1000_read_nvm(&sc->hw,
751 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
752 		break;
753 	}
754 	if (eeprom_data & apme_mask)
755 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
756 
757 	/*
758          * We have the eeprom settings, now apply the special cases
759          * where the eeprom may be wrong or the board won't support
760          * wake on lan on a particular port
761 	 */
762 	device_id = pci_get_device(dev);
763         switch (device_id) {
764 	case E1000_DEV_ID_82571EB_FIBER:
765 		/*
766 		 * Wake events only supported on port A for dual fiber
767 		 * regardless of eeprom setting
768 		 */
769 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
770 		    E1000_STATUS_FUNC_1)
771 			sc->wol = 0;
772 		break;
773 
774 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
775 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
776 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
777                 /* if quad port sc, disable WoL on all but port A */
778 		if (emx_global_quad_port_a != 0)
779 			sc->wol = 0;
780 		/* Reset for multiple quad port adapters */
781 		if (++emx_global_quad_port_a == 4)
782 			emx_global_quad_port_a = 0;
783                 break;
784 	}
785 
786 	/* XXX disable wol */
787 	sc->wol = 0;
788 
789 #ifdef IFPOLL_ENABLE
790 	/*
791 	 * NPOLLING RX CPU offset
792 	 */
793 	if (sc->rx_ring_cnt == ncpus2) {
794 		offset = 0;
795 	} else {
796 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
797 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
798 		if (offset >= ncpus2 ||
799 		    offset % sc->rx_ring_cnt != 0) {
800 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
801 			    offset, offset_def);
802 			offset = offset_def;
803 		}
804 	}
805 	sc->rx_npoll_off = offset;
806 
807 	/*
808 	 * NPOLLING TX CPU offset
809 	 */
810 	if (sc->tx_ring_cnt == ncpus2) {
811 		offset = 0;
812 	} else {
813 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
814 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
815 		if (offset >= ncpus2 ||
816 		    offset % sc->tx_ring_cnt != 0) {
817 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
818 			    offset, offset_def);
819 			offset = offset_def;
820 		}
821 	}
822 	sc->tx_npoll_off = offset;
823 #endif
824 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
825 
826 	/* Setup OS specific network interface */
827 	emx_setup_ifp(sc);
828 
829 	/* Add sysctl tree, must after em_setup_ifp() */
830 	emx_add_sysctl(sc);
831 
832 	/* Reset the hardware */
833 	error = emx_reset(sc);
834 	if (error) {
835 		/*
836 		 * Some 82573 parts fail the first reset, call it again,
837 		 * if it fails a second time its a real issue.
838 		 */
839 		error = emx_reset(sc);
840 		if (error) {
841 			device_printf(dev, "Unable to reset the hardware\n");
842 			ether_ifdetach(&sc->arpcom.ac_if);
843 			goto fail;
844 		}
845 	}
846 
847 	/* Initialize statistics */
848 	emx_update_stats(sc);
849 
850 	sc->hw.mac.get_link_status = 1;
851 	emx_update_link_status(sc);
852 
853 	/* Non-AMT based hardware can now take control from firmware */
854 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
855 	    EMX_FLAG_HAS_MGMT)
856 		emx_get_hw_control(sc);
857 
858 	/*
859 	 * Missing Interrupt Following ICR read:
860 	 *
861 	 * 82571/82572 specification update errata #76
862 	 * 82573 specification update errata #31
863 	 * 82574 specification update errata #12
864 	 */
865 	intr_func = emx_intr;
866 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
867 	    (sc->hw.mac.type == e1000_82571 ||
868 	     sc->hw.mac.type == e1000_82572 ||
869 	     sc->hw.mac.type == e1000_82573 ||
870 	     sc->hw.mac.type == e1000_82574))
871 		intr_func = emx_intr_mask;
872 
873 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
874 			       &sc->intr_tag, &sc->main_serialize);
875 	if (error) {
876 		device_printf(dev, "Failed to register interrupt handler");
877 		ether_ifdetach(&sc->arpcom.ac_if);
878 		goto fail;
879 	}
880 	return (0);
881 fail:
882 	emx_detach(dev);
883 	return (error);
884 }
885 
886 static int
887 emx_detach(device_t dev)
888 {
889 	struct emx_softc *sc = device_get_softc(dev);
890 
891 	if (device_is_attached(dev)) {
892 		struct ifnet *ifp = &sc->arpcom.ac_if;
893 
894 		ifnet_serialize_all(ifp);
895 
896 		emx_stop(sc);
897 
898 		e1000_phy_hw_reset(&sc->hw);
899 
900 		emx_rel_mgmt(sc);
901 		emx_rel_hw_control(sc);
902 
903 		if (sc->wol) {
904 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
905 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
906 			emx_enable_wol(dev);
907 		}
908 
909 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
910 
911 		ifnet_deserialize_all(ifp);
912 
913 		ether_ifdetach(ifp);
914 	} else if (sc->memory != NULL) {
915 		emx_rel_hw_control(sc);
916 	}
917 
918 	ifmedia_removeall(&sc->media);
919 	bus_generic_detach(dev);
920 
921 	if (sc->intr_res != NULL) {
922 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
923 				     sc->intr_res);
924 	}
925 
926 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
927 		pci_release_msi(dev);
928 
929 	if (sc->memory != NULL) {
930 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
931 				     sc->memory);
932 	}
933 
934 	if (sc->flash != NULL) {
935 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
936 		    sc->flash);
937 	}
938 
939 	emx_dma_free(sc);
940 
941 	if (sc->mta != NULL)
942 		kfree(sc->mta, M_DEVBUF);
943 
944 	return (0);
945 }
946 
947 static int
948 emx_shutdown(device_t dev)
949 {
950 	return emx_suspend(dev);
951 }
952 
953 static int
954 emx_suspend(device_t dev)
955 {
956 	struct emx_softc *sc = device_get_softc(dev);
957 	struct ifnet *ifp = &sc->arpcom.ac_if;
958 
959 	ifnet_serialize_all(ifp);
960 
961 	emx_stop(sc);
962 
963 	emx_rel_mgmt(sc);
964 	emx_rel_hw_control(sc);
965 
966 	if (sc->wol) {
967 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
968 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
969 		emx_enable_wol(dev);
970 	}
971 
972 	ifnet_deserialize_all(ifp);
973 
974 	return bus_generic_suspend(dev);
975 }
976 
977 static int
978 emx_resume(device_t dev)
979 {
980 	struct emx_softc *sc = device_get_softc(dev);
981 	struct ifnet *ifp = &sc->arpcom.ac_if;
982 	int i;
983 
984 	ifnet_serialize_all(ifp);
985 
986 	emx_init(sc);
987 	emx_get_mgmt(sc);
988 	for (i = 0; i < sc->tx_ring_inuse; ++i)
989 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
990 
991 	ifnet_deserialize_all(ifp);
992 
993 	return bus_generic_resume(dev);
994 }
995 
996 static void
997 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
998 {
999 	struct emx_softc *sc = ifp->if_softc;
1000 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1001 	struct mbuf *m_head;
1002 	int idx = -1, nsegs = 0;
1003 
1004 	KKASSERT(tdata->ifsq == ifsq);
1005 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1006 
1007 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1008 		return;
1009 
1010 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1011 		ifsq_purge(ifsq);
1012 		return;
1013 	}
1014 
1015 	while (!ifsq_is_empty(ifsq)) {
1016 		/* Now do we at least have a minimal? */
1017 		if (EMX_IS_OACTIVE(tdata)) {
1018 			emx_tx_collect(tdata);
1019 			if (EMX_IS_OACTIVE(tdata)) {
1020 				ifsq_set_oactive(ifsq);
1021 				break;
1022 			}
1023 		}
1024 
1025 		logif(pkt_txqueue);
1026 		m_head = ifsq_dequeue(ifsq);
1027 		if (m_head == NULL)
1028 			break;
1029 
1030 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1031 			IFNET_STAT_INC(ifp, oerrors, 1);
1032 			emx_tx_collect(tdata);
1033 			continue;
1034 		}
1035 
1036 		if (nsegs >= tdata->tx_wreg_nsegs) {
1037 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1038 			nsegs = 0;
1039 			idx = -1;
1040 		}
1041 
1042 		/* Send a copy of the frame to the BPF listener */
1043 		ETHER_BPF_MTAP(ifp, m_head);
1044 
1045 		/* Set timeout in case hardware has problems transmitting. */
1046 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1047 	}
1048 	if (idx >= 0)
1049 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1050 }
1051 
1052 static int
1053 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1054 {
1055 	struct emx_softc *sc = ifp->if_softc;
1056 	struct ifreq *ifr = (struct ifreq *)data;
1057 	uint16_t eeprom_data = 0;
1058 	int max_frame_size, mask, reinit;
1059 	int error = 0;
1060 
1061 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1062 
1063 	switch (command) {
1064 	case SIOCSIFMTU:
1065 		switch (sc->hw.mac.type) {
1066 		case e1000_82573:
1067 			/*
1068 			 * 82573 only supports jumbo frames
1069 			 * if ASPM is disabled.
1070 			 */
1071 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1072 				       &eeprom_data);
1073 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1074 				max_frame_size = ETHER_MAX_LEN;
1075 				break;
1076 			}
1077 			/* FALL THROUGH */
1078 
1079 		/* Limit Jumbo Frame size */
1080 		case e1000_82571:
1081 		case e1000_82572:
1082 		case e1000_82574:
1083 		case e1000_pch_lpt:
1084 		case e1000_80003es2lan:
1085 			max_frame_size = 9234;
1086 			break;
1087 
1088 		default:
1089 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1090 			break;
1091 		}
1092 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1093 		    ETHER_CRC_LEN) {
1094 			error = EINVAL;
1095 			break;
1096 		}
1097 
1098 		ifp->if_mtu = ifr->ifr_mtu;
1099 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1100 		    ETHER_CRC_LEN;
1101 
1102 		if (ifp->if_flags & IFF_RUNNING)
1103 			emx_init(sc);
1104 		break;
1105 
1106 	case SIOCSIFFLAGS:
1107 		if (ifp->if_flags & IFF_UP) {
1108 			if ((ifp->if_flags & IFF_RUNNING)) {
1109 				if ((ifp->if_flags ^ sc->if_flags) &
1110 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1111 					emx_disable_promisc(sc);
1112 					emx_set_promisc(sc);
1113 				}
1114 			} else {
1115 				emx_init(sc);
1116 			}
1117 		} else if (ifp->if_flags & IFF_RUNNING) {
1118 			emx_stop(sc);
1119 		}
1120 		sc->if_flags = ifp->if_flags;
1121 		break;
1122 
1123 	case SIOCADDMULTI:
1124 	case SIOCDELMULTI:
1125 		if (ifp->if_flags & IFF_RUNNING) {
1126 			emx_disable_intr(sc);
1127 			emx_set_multi(sc);
1128 #ifdef IFPOLL_ENABLE
1129 			if (!(ifp->if_flags & IFF_NPOLLING))
1130 #endif
1131 				emx_enable_intr(sc);
1132 		}
1133 		break;
1134 
1135 	case SIOCSIFMEDIA:
1136 		/* Check SOL/IDER usage */
1137 		if (e1000_check_reset_block(&sc->hw)) {
1138 			device_printf(sc->dev, "Media change is"
1139 			    " blocked due to SOL/IDER session.\n");
1140 			break;
1141 		}
1142 		/* FALL THROUGH */
1143 
1144 	case SIOCGIFMEDIA:
1145 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1146 		break;
1147 
1148 	case SIOCSIFCAP:
1149 		reinit = 0;
1150 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1151 		if (mask & IFCAP_RXCSUM) {
1152 			ifp->if_capenable ^= IFCAP_RXCSUM;
1153 			reinit = 1;
1154 		}
1155 		if (mask & IFCAP_VLAN_HWTAGGING) {
1156 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1157 			reinit = 1;
1158 		}
1159 		if (mask & IFCAP_TXCSUM) {
1160 			ifp->if_capenable ^= IFCAP_TXCSUM;
1161 			if (ifp->if_capenable & IFCAP_TXCSUM)
1162 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1163 			else
1164 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1165 		}
1166 		if (mask & IFCAP_TSO) {
1167 			ifp->if_capenable ^= IFCAP_TSO;
1168 			if (ifp->if_capenable & IFCAP_TSO)
1169 				ifp->if_hwassist |= CSUM_TSO;
1170 			else
1171 				ifp->if_hwassist &= ~CSUM_TSO;
1172 		}
1173 		if (mask & IFCAP_RSS)
1174 			ifp->if_capenable ^= IFCAP_RSS;
1175 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1176 			emx_init(sc);
1177 		break;
1178 
1179 	default:
1180 		error = ether_ioctl(ifp, command, data);
1181 		break;
1182 	}
1183 	return (error);
1184 }
1185 
1186 static void
1187 emx_watchdog(struct ifaltq_subque *ifsq)
1188 {
1189 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1190 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1191 	struct emx_softc *sc = ifp->if_softc;
1192 	int i;
1193 
1194 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1195 
1196 	/*
1197 	 * The timer is set to 5 every time start queues a packet.
1198 	 * Then txeof keeps resetting it as long as it cleans at
1199 	 * least one descriptor.
1200 	 * Finally, anytime all descriptors are clean the timer is
1201 	 * set to 0.
1202 	 */
1203 
1204 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1205 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1206 		/*
1207 		 * If we reach here, all TX jobs are completed and
1208 		 * the TX engine should have been idled for some time.
1209 		 * We don't need to call ifsq_devstart_sched() here.
1210 		 */
1211 		ifsq_clr_oactive(ifsq);
1212 		tdata->tx_watchdog.wd_timer = 0;
1213 		return;
1214 	}
1215 
1216 	/*
1217 	 * If we are in this routine because of pause frames, then
1218 	 * don't reset the hardware.
1219 	 */
1220 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1221 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1222 		return;
1223 	}
1224 
1225 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1226 
1227 	IFNET_STAT_INC(ifp, oerrors, 1);
1228 
1229 	emx_init(sc);
1230 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1231 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1232 }
1233 
1234 static void
1235 emx_init(void *xsc)
1236 {
1237 	struct emx_softc *sc = xsc;
1238 	struct ifnet *ifp = &sc->arpcom.ac_if;
1239 	device_t dev = sc->dev;
1240 	boolean_t polling;
1241 	int i;
1242 
1243 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1244 
1245 	emx_stop(sc);
1246 
1247 	/* Get the latest mac address, User can use a LAA */
1248         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1249 
1250 	/* Put the address into the Receive Address Array */
1251 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1252 
1253 	/*
1254 	 * With the 82571 sc, RAR[0] may be overwritten
1255 	 * when the other port is reset, we make a duplicate
1256 	 * in RAR[14] for that eventuality, this assures
1257 	 * the interface continues to function.
1258 	 */
1259 	if (sc->hw.mac.type == e1000_82571) {
1260 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1261 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1262 		    E1000_RAR_ENTRIES - 1);
1263 	}
1264 
1265 	/* Initialize the hardware */
1266 	if (emx_reset(sc)) {
1267 		device_printf(dev, "Unable to reset the hardware\n");
1268 		/* XXX emx_stop()? */
1269 		return;
1270 	}
1271 	emx_update_link_status(sc);
1272 
1273 	/* Setup VLAN support, basic and offload if available */
1274 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1275 
1276 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1277 		uint32_t ctrl;
1278 
1279 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1280 		ctrl |= E1000_CTRL_VME;
1281 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1282 	}
1283 
1284 	/* Configure for OS presence */
1285 	emx_get_mgmt(sc);
1286 
1287 	polling = FALSE;
1288 #ifdef IFPOLL_ENABLE
1289 	if (ifp->if_flags & IFF_NPOLLING)
1290 		polling = TRUE;
1291 #endif
1292 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1293 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1294 
1295 	/* Prepare transmit descriptors and buffers */
1296 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1297 		emx_init_tx_ring(&sc->tx_data[i]);
1298 	emx_init_tx_unit(sc);
1299 
1300 	/* Setup Multicast table */
1301 	emx_set_multi(sc);
1302 
1303 	/* Prepare receive descriptors and buffers */
1304 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1305 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1306 			device_printf(dev,
1307 			    "Could not setup receive structures\n");
1308 			emx_stop(sc);
1309 			return;
1310 		}
1311 	}
1312 	emx_init_rx_unit(sc);
1313 
1314 	/* Don't lose promiscuous settings */
1315 	emx_set_promisc(sc);
1316 
1317 	ifp->if_flags |= IFF_RUNNING;
1318 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1319 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1320 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1321 	}
1322 
1323 	callout_reset(&sc->timer, hz, emx_timer, sc);
1324 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1325 
1326 	/* MSI/X configuration for 82574 */
1327 	if (sc->hw.mac.type == e1000_82574) {
1328 		int tmp;
1329 
1330 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1331 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1332 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1333 		/*
1334 		 * XXX MSIX
1335 		 * Set the IVAR - interrupt vector routing.
1336 		 * Each nibble represents a vector, high bit
1337 		 * is enable, other 3 bits are the MSIX table
1338 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1339 		 * Link (other) to 2, hence the magic number.
1340 		 */
1341 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1342 	}
1343 
1344 	/*
1345 	 * Only enable interrupts if we are not polling, make sure
1346 	 * they are off otherwise.
1347 	 */
1348 	if (polling)
1349 		emx_disable_intr(sc);
1350 	else
1351 		emx_enable_intr(sc);
1352 
1353 	/* AMT based hardware can now take control from firmware */
1354 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1355 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1356 		emx_get_hw_control(sc);
1357 }
1358 
1359 static void
1360 emx_intr(void *xsc)
1361 {
1362 	emx_intr_body(xsc, TRUE);
1363 }
1364 
1365 static void
1366 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1367 {
1368 	struct ifnet *ifp = &sc->arpcom.ac_if;
1369 	uint32_t reg_icr;
1370 
1371 	logif(intr_beg);
1372 	ASSERT_SERIALIZED(&sc->main_serialize);
1373 
1374 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1375 
1376 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1377 		logif(intr_end);
1378 		return;
1379 	}
1380 
1381 	/*
1382 	 * XXX: some laptops trigger several spurious interrupts
1383 	 * on emx(4) when in the resume cycle. The ICR register
1384 	 * reports all-ones value in this case. Processing such
1385 	 * interrupts would lead to a freeze. I don't know why.
1386 	 */
1387 	if (reg_icr == 0xffffffff) {
1388 		logif(intr_end);
1389 		return;
1390 	}
1391 
1392 	if (ifp->if_flags & IFF_RUNNING) {
1393 		if (reg_icr &
1394 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1395 			int i;
1396 
1397 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1398 				lwkt_serialize_enter(
1399 				&sc->rx_data[i].rx_serialize);
1400 				emx_rxeof(&sc->rx_data[i], -1);
1401 				lwkt_serialize_exit(
1402 				&sc->rx_data[i].rx_serialize);
1403 			}
1404 		}
1405 		if (reg_icr & E1000_ICR_TXDW) {
1406 			struct emx_txdata *tdata = &sc->tx_data[0];
1407 
1408 			lwkt_serialize_enter(&tdata->tx_serialize);
1409 			emx_txeof(tdata);
1410 			if (!ifsq_is_empty(tdata->ifsq))
1411 				ifsq_devstart(tdata->ifsq);
1412 			lwkt_serialize_exit(&tdata->tx_serialize);
1413 		}
1414 	}
1415 
1416 	/* Link status change */
1417 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1418 		emx_serialize_skipmain(sc);
1419 
1420 		callout_stop(&sc->timer);
1421 		sc->hw.mac.get_link_status = 1;
1422 		emx_update_link_status(sc);
1423 
1424 		/* Deal with TX cruft when link lost */
1425 		emx_tx_purge(sc);
1426 
1427 		callout_reset(&sc->timer, hz, emx_timer, sc);
1428 
1429 		emx_deserialize_skipmain(sc);
1430 	}
1431 
1432 	if (reg_icr & E1000_ICR_RXO)
1433 		sc->rx_overruns++;
1434 
1435 	logif(intr_end);
1436 }
1437 
1438 static void
1439 emx_intr_mask(void *xsc)
1440 {
1441 	struct emx_softc *sc = xsc;
1442 
1443 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1444 	/*
1445 	 * NOTE:
1446 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1447 	 * so don't check it.
1448 	 */
1449 	emx_intr_body(sc, FALSE);
1450 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1451 }
1452 
1453 static void
1454 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1455 {
1456 	struct emx_softc *sc = ifp->if_softc;
1457 
1458 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1459 
1460 	emx_update_link_status(sc);
1461 
1462 	ifmr->ifm_status = IFM_AVALID;
1463 	ifmr->ifm_active = IFM_ETHER;
1464 
1465 	if (!sc->link_active)
1466 		return;
1467 
1468 	ifmr->ifm_status |= IFM_ACTIVE;
1469 
1470 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1471 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1472 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1473 	} else {
1474 		switch (sc->link_speed) {
1475 		case 10:
1476 			ifmr->ifm_active |= IFM_10_T;
1477 			break;
1478 		case 100:
1479 			ifmr->ifm_active |= IFM_100_TX;
1480 			break;
1481 
1482 		case 1000:
1483 			ifmr->ifm_active |= IFM_1000_T;
1484 			break;
1485 		}
1486 		if (sc->link_duplex == FULL_DUPLEX)
1487 			ifmr->ifm_active |= IFM_FDX;
1488 		else
1489 			ifmr->ifm_active |= IFM_HDX;
1490 	}
1491 }
1492 
1493 static int
1494 emx_media_change(struct ifnet *ifp)
1495 {
1496 	struct emx_softc *sc = ifp->if_softc;
1497 	struct ifmedia *ifm = &sc->media;
1498 
1499 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1500 
1501 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1502 		return (EINVAL);
1503 
1504 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1505 	case IFM_AUTO:
1506 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1507 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1508 		break;
1509 
1510 	case IFM_1000_LX:
1511 	case IFM_1000_SX:
1512 	case IFM_1000_T:
1513 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1514 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1515 		break;
1516 
1517 	case IFM_100_TX:
1518 		sc->hw.mac.autoneg = FALSE;
1519 		sc->hw.phy.autoneg_advertised = 0;
1520 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1521 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1522 		else
1523 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1524 		break;
1525 
1526 	case IFM_10_T:
1527 		sc->hw.mac.autoneg = FALSE;
1528 		sc->hw.phy.autoneg_advertised = 0;
1529 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1530 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1531 		else
1532 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1533 		break;
1534 
1535 	default:
1536 		if_printf(ifp, "Unsupported media type\n");
1537 		break;
1538 	}
1539 
1540 	emx_init(sc);
1541 
1542 	return (0);
1543 }
1544 
1545 static int
1546 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1547     int *segs_used, int *idx)
1548 {
1549 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1550 	bus_dmamap_t map;
1551 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1552 	struct e1000_tx_desc *ctxd = NULL;
1553 	struct mbuf *m_head = *m_headp;
1554 	uint32_t txd_upper, txd_lower, cmd = 0;
1555 	int maxsegs, nsegs, i, j, first, last = 0, error;
1556 
1557 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1558 		error = emx_tso_pullup(tdata, m_headp);
1559 		if (error)
1560 			return error;
1561 		m_head = *m_headp;
1562 	}
1563 
1564 	txd_upper = txd_lower = 0;
1565 
1566 	/*
1567 	 * Capture the first descriptor index, this descriptor
1568 	 * will have the index of the EOP which is the only one
1569 	 * that now gets a DONE bit writeback.
1570 	 */
1571 	first = tdata->next_avail_tx_desc;
1572 	tx_buffer = &tdata->tx_buf[first];
1573 	tx_buffer_mapped = tx_buffer;
1574 	map = tx_buffer->map;
1575 
1576 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1577 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1578 	if (maxsegs > EMX_MAX_SCATTER)
1579 		maxsegs = EMX_MAX_SCATTER;
1580 
1581 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1582 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1583 	if (error) {
1584 		m_freem(*m_headp);
1585 		*m_headp = NULL;
1586 		return error;
1587 	}
1588         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1589 
1590 	m_head = *m_headp;
1591 	tdata->tx_nsegs += nsegs;
1592 	*segs_used += nsegs;
1593 
1594 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1595 		/* TSO will consume one TX desc */
1596 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1597 		tdata->tx_nsegs += i;
1598 		*segs_used += i;
1599 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1600 		/* TX csum offloading will consume one TX desc */
1601 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1602 		tdata->tx_nsegs += i;
1603 		*segs_used += i;
1604 	}
1605 
1606         /* Handle VLAN tag */
1607 	if (m_head->m_flags & M_VLANTAG) {
1608 		/* Set the vlan id. */
1609 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1610 		/* Tell hardware to add tag */
1611 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1612 	}
1613 
1614 	i = tdata->next_avail_tx_desc;
1615 
1616 	/* Set up our transmit descriptors */
1617 	for (j = 0; j < nsegs; j++) {
1618 		tx_buffer = &tdata->tx_buf[i];
1619 		ctxd = &tdata->tx_desc_base[i];
1620 
1621 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1622 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1623 					   txd_lower | segs[j].ds_len);
1624 		ctxd->upper.data = htole32(txd_upper);
1625 
1626 		last = i;
1627 		if (++i == tdata->num_tx_desc)
1628 			i = 0;
1629 	}
1630 
1631 	tdata->next_avail_tx_desc = i;
1632 
1633 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1634 	tdata->num_tx_desc_avail -= nsegs;
1635 
1636 	tx_buffer->m_head = m_head;
1637 	tx_buffer_mapped->map = tx_buffer->map;
1638 	tx_buffer->map = map;
1639 
1640 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1641 		tdata->tx_nsegs = 0;
1642 
1643 		/*
1644 		 * Report Status (RS) is turned on
1645 		 * every tx_intr_nsegs descriptors.
1646 		 */
1647 		cmd = E1000_TXD_CMD_RS;
1648 
1649 		/*
1650 		 * Keep track of the descriptor, which will
1651 		 * be written back by hardware.
1652 		 */
1653 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1654 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1655 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1656 	}
1657 
1658 	/*
1659 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1660 	 */
1661 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1662 
1663 	/*
1664 	 * Defer TDT updating, until enough descriptors are setup
1665 	 */
1666 	*idx = i;
1667 
1668 #ifdef EMX_TSS_DEBUG
1669 	tdata->tx_pkts++;
1670 #endif
1671 
1672 	return (0);
1673 }
1674 
1675 static void
1676 emx_set_promisc(struct emx_softc *sc)
1677 {
1678 	struct ifnet *ifp = &sc->arpcom.ac_if;
1679 	uint32_t reg_rctl;
1680 
1681 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1682 
1683 	if (ifp->if_flags & IFF_PROMISC) {
1684 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1685 		/* Turn this on if you want to see bad packets */
1686 		if (emx_debug_sbp)
1687 			reg_rctl |= E1000_RCTL_SBP;
1688 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1689 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1690 		reg_rctl |= E1000_RCTL_MPE;
1691 		reg_rctl &= ~E1000_RCTL_UPE;
1692 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1693 	}
1694 }
1695 
1696 static void
1697 emx_disable_promisc(struct emx_softc *sc)
1698 {
1699 	uint32_t reg_rctl;
1700 
1701 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1702 
1703 	reg_rctl &= ~E1000_RCTL_UPE;
1704 	reg_rctl &= ~E1000_RCTL_MPE;
1705 	reg_rctl &= ~E1000_RCTL_SBP;
1706 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1707 }
1708 
1709 static void
1710 emx_set_multi(struct emx_softc *sc)
1711 {
1712 	struct ifnet *ifp = &sc->arpcom.ac_if;
1713 	struct ifmultiaddr *ifma;
1714 	uint32_t reg_rctl = 0;
1715 	uint8_t *mta;
1716 	int mcnt = 0;
1717 
1718 	mta = sc->mta;
1719 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1720 
1721 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1722 		if (ifma->ifma_addr->sa_family != AF_LINK)
1723 			continue;
1724 
1725 		if (mcnt == EMX_MCAST_ADDR_MAX)
1726 			break;
1727 
1728 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1729 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1730 		mcnt++;
1731 	}
1732 
1733 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1734 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1735 		reg_rctl |= E1000_RCTL_MPE;
1736 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1737 	} else {
1738 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1739 	}
1740 }
1741 
1742 /*
1743  * This routine checks for link status and updates statistics.
1744  */
1745 static void
1746 emx_timer(void *xsc)
1747 {
1748 	struct emx_softc *sc = xsc;
1749 	struct ifnet *ifp = &sc->arpcom.ac_if;
1750 
1751 	lwkt_serialize_enter(&sc->main_serialize);
1752 
1753 	emx_update_link_status(sc);
1754 	emx_update_stats(sc);
1755 
1756 	/* Reset LAA into RAR[0] on 82571 */
1757 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1758 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1759 
1760 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1761 		emx_print_hw_stats(sc);
1762 
1763 	emx_smartspeed(sc);
1764 
1765 	callout_reset(&sc->timer, hz, emx_timer, sc);
1766 
1767 	lwkt_serialize_exit(&sc->main_serialize);
1768 }
1769 
1770 static void
1771 emx_update_link_status(struct emx_softc *sc)
1772 {
1773 	struct e1000_hw *hw = &sc->hw;
1774 	struct ifnet *ifp = &sc->arpcom.ac_if;
1775 	device_t dev = sc->dev;
1776 	uint32_t link_check = 0;
1777 
1778 	/* Get the cached link value or read phy for real */
1779 	switch (hw->phy.media_type) {
1780 	case e1000_media_type_copper:
1781 		if (hw->mac.get_link_status) {
1782 			/* Do the work to read phy */
1783 			e1000_check_for_link(hw);
1784 			link_check = !hw->mac.get_link_status;
1785 			if (link_check) /* ESB2 fix */
1786 				e1000_cfg_on_link_up(hw);
1787 		} else {
1788 			link_check = TRUE;
1789 		}
1790 		break;
1791 
1792 	case e1000_media_type_fiber:
1793 		e1000_check_for_link(hw);
1794 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1795 		break;
1796 
1797 	case e1000_media_type_internal_serdes:
1798 		e1000_check_for_link(hw);
1799 		link_check = sc->hw.mac.serdes_has_link;
1800 		break;
1801 
1802 	case e1000_media_type_unknown:
1803 	default:
1804 		break;
1805 	}
1806 
1807 	/* Now check for a transition */
1808 	if (link_check && sc->link_active == 0) {
1809 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1810 		    &sc->link_duplex);
1811 
1812 		/*
1813 		 * Check if we should enable/disable SPEED_MODE bit on
1814 		 * 82571EB/82572EI
1815 		 */
1816 		if (sc->link_speed != SPEED_1000 &&
1817 		    (hw->mac.type == e1000_82571 ||
1818 		     hw->mac.type == e1000_82572)) {
1819 			int tarc0;
1820 
1821 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1822 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1823 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1824 		}
1825 		if (bootverbose) {
1826 			device_printf(dev, "Link is up %d Mbps %s\n",
1827 			    sc->link_speed,
1828 			    ((sc->link_duplex == FULL_DUPLEX) ?
1829 			    "Full Duplex" : "Half Duplex"));
1830 		}
1831 		sc->link_active = 1;
1832 		sc->smartspeed = 0;
1833 		ifp->if_baudrate = sc->link_speed * 1000000;
1834 		ifp->if_link_state = LINK_STATE_UP;
1835 		if_link_state_change(ifp);
1836 	} else if (!link_check && sc->link_active == 1) {
1837 		ifp->if_baudrate = sc->link_speed = 0;
1838 		sc->link_duplex = 0;
1839 		if (bootverbose)
1840 			device_printf(dev, "Link is Down\n");
1841 		sc->link_active = 0;
1842 		ifp->if_link_state = LINK_STATE_DOWN;
1843 		if_link_state_change(ifp);
1844 	}
1845 }
1846 
1847 static void
1848 emx_stop(struct emx_softc *sc)
1849 {
1850 	struct ifnet *ifp = &sc->arpcom.ac_if;
1851 	int i;
1852 
1853 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1854 
1855 	emx_disable_intr(sc);
1856 
1857 	callout_stop(&sc->timer);
1858 
1859 	ifp->if_flags &= ~IFF_RUNNING;
1860 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1861 		struct emx_txdata *tdata = &sc->tx_data[i];
1862 
1863 		ifsq_clr_oactive(tdata->ifsq);
1864 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1865 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1866 	}
1867 
1868 	/*
1869 	 * Disable multiple receive queues.
1870 	 *
1871 	 * NOTE:
1872 	 * We should disable multiple receive queues before
1873 	 * resetting the hardware.
1874 	 */
1875 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1876 
1877 	e1000_reset_hw(&sc->hw);
1878 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1879 
1880 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1881 		emx_free_tx_ring(&sc->tx_data[i]);
1882 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1883 		emx_free_rx_ring(&sc->rx_data[i]);
1884 }
1885 
1886 static int
1887 emx_reset(struct emx_softc *sc)
1888 {
1889 	device_t dev = sc->dev;
1890 	uint16_t rx_buffer_size;
1891 	uint32_t pba;
1892 
1893 	/* Set up smart power down as default off on newer adapters. */
1894 	if (!emx_smart_pwr_down &&
1895 	    (sc->hw.mac.type == e1000_82571 ||
1896 	     sc->hw.mac.type == e1000_82572)) {
1897 		uint16_t phy_tmp = 0;
1898 
1899 		/* Speed up time to link by disabling smart power down. */
1900 		e1000_read_phy_reg(&sc->hw,
1901 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1902 		phy_tmp &= ~IGP02E1000_PM_SPD;
1903 		e1000_write_phy_reg(&sc->hw,
1904 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1905 	}
1906 
1907 	/*
1908 	 * Packet Buffer Allocation (PBA)
1909 	 * Writing PBA sets the receive portion of the buffer
1910 	 * the remainder is used for the transmit buffer.
1911 	 */
1912 	switch (sc->hw.mac.type) {
1913 	/* Total Packet Buffer on these is 48K */
1914 	case e1000_82571:
1915 	case e1000_82572:
1916 	case e1000_80003es2lan:
1917 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1918 		break;
1919 
1920 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1921 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1922 		break;
1923 
1924 	case e1000_82574:
1925 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1926 		break;
1927 
1928 	case e1000_pch_lpt:
1929  		pba = E1000_PBA_26K;
1930  		break;
1931 
1932 	default:
1933 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1934 		if (sc->hw.mac.max_frame_size > 8192)
1935 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1936 		else
1937 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1938 	}
1939 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1940 
1941 	/*
1942 	 * These parameters control the automatic generation (Tx) and
1943 	 * response (Rx) to Ethernet PAUSE frames.
1944 	 * - High water mark should allow for at least two frames to be
1945 	 *   received after sending an XOFF.
1946 	 * - Low water mark works best when it is very near the high water mark.
1947 	 *   This allows the receiver to restart by sending XON when it has
1948 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1949 	 *   restart after one full frame is pulled from the buffer. There
1950 	 *   could be several smaller frames in the buffer and if so they will
1951 	 *   not trigger the XON until their total number reduces the buffer
1952 	 *   by 1500.
1953 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1954 	 */
1955 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1956 
1957 	sc->hw.fc.high_water = rx_buffer_size -
1958 	    roundup2(sc->hw.mac.max_frame_size, 1024);
1959 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1960 
1961 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1962 	sc->hw.fc.send_xon = TRUE;
1963 	sc->hw.fc.requested_mode = e1000_fc_full;
1964 
1965 	/*
1966 	 * Device specific overrides/settings
1967 	 */
1968 	if (sc->hw.mac.type == e1000_pch_lpt) {
1969 		sc->hw.fc.high_water = 0x5C20;
1970 		sc->hw.fc.low_water = 0x5048;
1971 		sc->hw.fc.pause_time = 0x0650;
1972 		sc->hw.fc.refresh_time = 0x0400;
1973 		/* Jumbos need adjusted PBA */
1974 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
1975 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
1976 		else
1977 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
1978 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
1979 		sc->hw.fc.pause_time = 0xFFFF;
1980 	}
1981 
1982 	/* Issue a global reset */
1983 	e1000_reset_hw(&sc->hw);
1984 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1985 	emx_disable_aspm(sc);
1986 
1987 	if (e1000_init_hw(&sc->hw) < 0) {
1988 		device_printf(dev, "Hardware Initialization Failed\n");
1989 		return (EIO);
1990 	}
1991 
1992 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1993 	e1000_get_phy_info(&sc->hw);
1994 	e1000_check_for_link(&sc->hw);
1995 
1996 	return (0);
1997 }
1998 
1999 static void
2000 emx_setup_ifp(struct emx_softc *sc)
2001 {
2002 	struct ifnet *ifp = &sc->arpcom.ac_if;
2003 	int i;
2004 
2005 	if_initname(ifp, device_get_name(sc->dev),
2006 		    device_get_unit(sc->dev));
2007 	ifp->if_softc = sc;
2008 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2009 	ifp->if_init =  emx_init;
2010 	ifp->if_ioctl = emx_ioctl;
2011 	ifp->if_start = emx_start;
2012 #ifdef IFPOLL_ENABLE
2013 	ifp->if_npoll = emx_npoll;
2014 #endif
2015 	ifp->if_serialize = emx_serialize;
2016 	ifp->if_deserialize = emx_deserialize;
2017 	ifp->if_tryserialize = emx_tryserialize;
2018 #ifdef INVARIANTS
2019 	ifp->if_serialize_assert = emx_serialize_assert;
2020 #endif
2021 
2022 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2023 	ifq_set_ready(&ifp->if_snd);
2024 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2025 
2026 	ifp->if_mapsubq = ifq_mapsubq_mask;
2027 	ifq_set_subq_mask(&ifp->if_snd, 0);
2028 
2029 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2030 
2031 	ifp->if_capabilities = IFCAP_HWCSUM |
2032 			       IFCAP_VLAN_HWTAGGING |
2033 			       IFCAP_VLAN_MTU |
2034 			       IFCAP_TSO;
2035 	if (sc->rx_ring_cnt > 1)
2036 		ifp->if_capabilities |= IFCAP_RSS;
2037 	ifp->if_capenable = ifp->if_capabilities;
2038 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2039 
2040 	/*
2041 	 * Tell the upper layer(s) we support long frames.
2042 	 */
2043 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2044 
2045 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2046 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2047 		struct emx_txdata *tdata = &sc->tx_data[i];
2048 
2049 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2050 		ifsq_set_priv(ifsq, tdata);
2051 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2052 		tdata->ifsq = ifsq;
2053 
2054 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2055 	}
2056 
2057 	/*
2058 	 * Specify the media types supported by this sc and register
2059 	 * callbacks to update media and link information
2060 	 */
2061 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2062 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2063 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2064 			    0, NULL);
2065 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
2066 	} else {
2067 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2068 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2069 			    0, NULL);
2070 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2071 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2072 			    0, NULL);
2073 		if (sc->hw.phy.type != e1000_phy_ife) {
2074 			ifmedia_add(&sc->media,
2075 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2076 			ifmedia_add(&sc->media,
2077 				IFM_ETHER | IFM_1000_T, 0, NULL);
2078 		}
2079 	}
2080 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2081 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2082 }
2083 
2084 /*
2085  * Workaround for SmartSpeed on 82541 and 82547 controllers
2086  */
2087 static void
2088 emx_smartspeed(struct emx_softc *sc)
2089 {
2090 	uint16_t phy_tmp;
2091 
2092 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2093 	    sc->hw.mac.autoneg == 0 ||
2094 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2095 		return;
2096 
2097 	if (sc->smartspeed == 0) {
2098 		/*
2099 		 * If Master/Slave config fault is asserted twice,
2100 		 * we assume back-to-back
2101 		 */
2102 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2103 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2104 			return;
2105 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2106 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2107 			e1000_read_phy_reg(&sc->hw,
2108 			    PHY_1000T_CTRL, &phy_tmp);
2109 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2110 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2111 				e1000_write_phy_reg(&sc->hw,
2112 				    PHY_1000T_CTRL, phy_tmp);
2113 				sc->smartspeed++;
2114 				if (sc->hw.mac.autoneg &&
2115 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2116 				    !e1000_read_phy_reg(&sc->hw,
2117 				     PHY_CONTROL, &phy_tmp)) {
2118 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2119 						   MII_CR_RESTART_AUTO_NEG;
2120 					e1000_write_phy_reg(&sc->hw,
2121 					    PHY_CONTROL, phy_tmp);
2122 				}
2123 			}
2124 		}
2125 		return;
2126 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2127 		/* If still no link, perhaps using 2/3 pair cable */
2128 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2129 		phy_tmp |= CR_1000T_MS_ENABLE;
2130 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2131 		if (sc->hw.mac.autoneg &&
2132 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2133 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2134 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2135 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2136 		}
2137 	}
2138 
2139 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2140 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2141 		sc->smartspeed = 0;
2142 }
2143 
2144 static int
2145 emx_create_tx_ring(struct emx_txdata *tdata)
2146 {
2147 	device_t dev = tdata->sc->dev;
2148 	struct emx_txbuf *tx_buffer;
2149 	int error, i, tsize, ntxd;
2150 
2151 	/*
2152 	 * Validate number of transmit descriptors.  It must not exceed
2153 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2154 	 */
2155 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2156 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2157 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2158 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2159 		    EMX_DEFAULT_TXD, ntxd);
2160 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2161 	} else {
2162 		tdata->num_tx_desc = ntxd;
2163 	}
2164 
2165 	/*
2166 	 * Allocate Transmit Descriptor ring
2167 	 */
2168 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2169 			 EMX_DBA_ALIGN);
2170 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2171 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2172 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2173 				&tdata->tx_desc_paddr);
2174 	if (tdata->tx_desc_base == NULL) {
2175 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2176 		return ENOMEM;
2177 	}
2178 
2179 	tsize = __VM_CACHELINE_ALIGN(
2180 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2181 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2182 
2183 	/*
2184 	 * Create DMA tags for tx buffers
2185 	 */
2186 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2187 			1, 0,			/* alignment, bounds */
2188 			BUS_SPACE_MAXADDR,	/* lowaddr */
2189 			BUS_SPACE_MAXADDR,	/* highaddr */
2190 			NULL, NULL,		/* filter, filterarg */
2191 			EMX_TSO_SIZE,		/* maxsize */
2192 			EMX_MAX_SCATTER,	/* nsegments */
2193 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2194 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2195 			BUS_DMA_ONEBPAGE,	/* flags */
2196 			&tdata->txtag);
2197 	if (error) {
2198 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2199 		kfree(tdata->tx_buf, M_DEVBUF);
2200 		tdata->tx_buf = NULL;
2201 		return error;
2202 	}
2203 
2204 	/*
2205 	 * Create DMA maps for tx buffers
2206 	 */
2207 	for (i = 0; i < tdata->num_tx_desc; i++) {
2208 		tx_buffer = &tdata->tx_buf[i];
2209 
2210 		error = bus_dmamap_create(tdata->txtag,
2211 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2212 					  &tx_buffer->map);
2213 		if (error) {
2214 			device_printf(dev, "Unable to create TX DMA map\n");
2215 			emx_destroy_tx_ring(tdata, i);
2216 			return error;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * Setup TX parameters
2222 	 */
2223 	tdata->spare_tx_desc = EMX_TX_SPARE;
2224 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2225 
2226 	/*
2227 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2228 	 * and tx_intr_nsegs:
2229 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2230 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2231 	 */
2232 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2233 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2234 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2235 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2236 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2237 
2238 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2239 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2240 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2241 
2242 	/*
2243 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2244 	 * 82571/82572 specification update errata #7
2245 	 *
2246 	 * Same applies to I217 (and maybe I218).
2247 	 *
2248 	 * NOTE:
2249 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2250 	 * are pulled; mainly to keep rest of the data properly aligned.
2251 	 */
2252 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2253 	    tdata->sc->hw.mac.type == e1000_82572 ||
2254 	    tdata->sc->hw.mac.type == e1000_pch_lpt)
2255 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2256 
2257 	return (0);
2258 }
2259 
2260 static void
2261 emx_init_tx_ring(struct emx_txdata *tdata)
2262 {
2263 	/* Clear the old ring contents */
2264 	bzero(tdata->tx_desc_base,
2265 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2266 
2267 	/* Reset state */
2268 	tdata->next_avail_tx_desc = 0;
2269 	tdata->next_tx_to_clean = 0;
2270 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2271 
2272 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2273 	if (tdata->sc->tx_ring_inuse > 1) {
2274 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2275 		if (bootverbose) {
2276 			if_printf(&tdata->sc->arpcom.ac_if,
2277 			    "TX %d force ctx setup\n", tdata->idx);
2278 		}
2279 	}
2280 }
2281 
2282 static void
2283 emx_init_tx_unit(struct emx_softc *sc)
2284 {
2285 	uint32_t tctl, tarc, tipg = 0;
2286 	int i;
2287 
2288 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2289 		struct emx_txdata *tdata = &sc->tx_data[i];
2290 		uint64_t bus_addr;
2291 
2292 		/* Setup the Base and Length of the Tx Descriptor Ring */
2293 		bus_addr = tdata->tx_desc_paddr;
2294 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2295 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2296 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2297 		    (uint32_t)(bus_addr >> 32));
2298 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2299 		    (uint32_t)bus_addr);
2300 		/* Setup the HW Tx Head and Tail descriptor pointers */
2301 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2302 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2303 	}
2304 
2305 	/* Set the default values for the Tx Inter Packet Gap timer */
2306 	switch (sc->hw.mac.type) {
2307 	case e1000_80003es2lan:
2308 		tipg = DEFAULT_82543_TIPG_IPGR1;
2309 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2310 		    E1000_TIPG_IPGR2_SHIFT;
2311 		break;
2312 
2313 	default:
2314 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2315 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2316 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2317 		else
2318 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2319 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2320 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2321 		break;
2322 	}
2323 
2324 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2325 
2326 	/* NOTE: 0 is not allowed for TIDV */
2327 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2328 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2329 
2330 	if (sc->hw.mac.type == e1000_82571 ||
2331 	    sc->hw.mac.type == e1000_82572) {
2332 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2333 		tarc |= EMX_TARC_SPEED_MODE;
2334 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2335 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2336 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2337 		tarc |= 1;
2338 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2339 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2340 		tarc |= 1;
2341 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2342 	}
2343 
2344 	/* Program the Transmit Control Register */
2345 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2346 	tctl &= ~E1000_TCTL_CT;
2347 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2348 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2349 	tctl |= E1000_TCTL_MULR;
2350 
2351 	/* This write will effectively turn on the transmit unit. */
2352 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2353 
2354 	if (sc->hw.mac.type == e1000_82571 ||
2355 	    sc->hw.mac.type == e1000_82572 ||
2356 	    sc->hw.mac.type == e1000_80003es2lan) {
2357 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2358 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2359 		tarc &= ~(1 << 28);
2360 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2361 	}
2362 
2363 	if (sc->tx_ring_inuse > 1) {
2364 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2365 		tarc &= ~EMX_TARC_COUNT_MASK;
2366 		tarc |= 1;
2367 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2368 
2369 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2370 		tarc &= ~EMX_TARC_COUNT_MASK;
2371 		tarc |= 1;
2372 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2373 	}
2374 }
2375 
2376 static void
2377 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2378 {
2379 	struct emx_txbuf *tx_buffer;
2380 	int i;
2381 
2382 	/* Free Transmit Descriptor ring */
2383 	if (tdata->tx_desc_base) {
2384 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2385 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2386 				tdata->tx_desc_dmap);
2387 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2388 
2389 		tdata->tx_desc_base = NULL;
2390 	}
2391 
2392 	if (tdata->tx_buf == NULL)
2393 		return;
2394 
2395 	for (i = 0; i < ndesc; i++) {
2396 		tx_buffer = &tdata->tx_buf[i];
2397 
2398 		KKASSERT(tx_buffer->m_head == NULL);
2399 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2400 	}
2401 	bus_dma_tag_destroy(tdata->txtag);
2402 
2403 	kfree(tdata->tx_buf, M_DEVBUF);
2404 	tdata->tx_buf = NULL;
2405 }
2406 
2407 /*
2408  * The offload context needs to be set when we transfer the first
2409  * packet of a particular protocol (TCP/UDP).  This routine has been
2410  * enhanced to deal with inserted VLAN headers.
2411  *
2412  * If the new packet's ether header length, ip header length and
2413  * csum offloading type are same as the previous packet, we should
2414  * avoid allocating a new csum context descriptor; mainly to take
2415  * advantage of the pipeline effect of the TX data read request.
2416  *
2417  * This function returns number of TX descrptors allocated for
2418  * csum context.
2419  */
2420 static int
2421 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2422 	   uint32_t *txd_upper, uint32_t *txd_lower)
2423 {
2424 	struct e1000_context_desc *TXD;
2425 	int curr_txd, ehdrlen, csum_flags;
2426 	uint32_t cmd, hdr_len, ip_hlen;
2427 
2428 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2429 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2430 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2431 
2432 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2433 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2434 	    tdata->csum_flags == csum_flags) {
2435 		/*
2436 		 * Same csum offload context as the previous packets;
2437 		 * just return.
2438 		 */
2439 		*txd_upper = tdata->csum_txd_upper;
2440 		*txd_lower = tdata->csum_txd_lower;
2441 		return 0;
2442 	}
2443 
2444 	/*
2445 	 * Setup a new csum offload context.
2446 	 */
2447 
2448 	curr_txd = tdata->next_avail_tx_desc;
2449 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2450 
2451 	cmd = 0;
2452 
2453 	/* Setup of IP header checksum. */
2454 	if (csum_flags & CSUM_IP) {
2455 		/*
2456 		 * Start offset for header checksum calculation.
2457 		 * End offset for header checksum calculation.
2458 		 * Offset of place to put the checksum.
2459 		 */
2460 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2461 		TXD->lower_setup.ip_fields.ipcse =
2462 		    htole16(ehdrlen + ip_hlen - 1);
2463 		TXD->lower_setup.ip_fields.ipcso =
2464 		    ehdrlen + offsetof(struct ip, ip_sum);
2465 		cmd |= E1000_TXD_CMD_IP;
2466 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2467 	}
2468 	hdr_len = ehdrlen + ip_hlen;
2469 
2470 	if (csum_flags & CSUM_TCP) {
2471 		/*
2472 		 * Start offset for payload checksum calculation.
2473 		 * End offset for payload checksum calculation.
2474 		 * Offset of place to put the checksum.
2475 		 */
2476 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2477 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2478 		TXD->upper_setup.tcp_fields.tucso =
2479 		    hdr_len + offsetof(struct tcphdr, th_sum);
2480 		cmd |= E1000_TXD_CMD_TCP;
2481 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2482 	} else if (csum_flags & CSUM_UDP) {
2483 		/*
2484 		 * Start offset for header checksum calculation.
2485 		 * End offset for header checksum calculation.
2486 		 * Offset of place to put the checksum.
2487 		 */
2488 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2489 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2490 		TXD->upper_setup.tcp_fields.tucso =
2491 		    hdr_len + offsetof(struct udphdr, uh_sum);
2492 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2493 	}
2494 
2495 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2496 		     E1000_TXD_DTYP_D;		/* Data descr */
2497 
2498 	/* Save the information for this csum offloading context */
2499 	tdata->csum_lhlen = ehdrlen;
2500 	tdata->csum_iphlen = ip_hlen;
2501 	tdata->csum_flags = csum_flags;
2502 	tdata->csum_txd_upper = *txd_upper;
2503 	tdata->csum_txd_lower = *txd_lower;
2504 
2505 	TXD->tcp_seg_setup.data = htole32(0);
2506 	TXD->cmd_and_length =
2507 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2508 
2509 	if (++curr_txd == tdata->num_tx_desc)
2510 		curr_txd = 0;
2511 
2512 	KKASSERT(tdata->num_tx_desc_avail > 0);
2513 	tdata->num_tx_desc_avail--;
2514 
2515 	tdata->next_avail_tx_desc = curr_txd;
2516 	return 1;
2517 }
2518 
2519 static void
2520 emx_txeof(struct emx_txdata *tdata)
2521 {
2522 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2523 	struct emx_txbuf *tx_buffer;
2524 	int first, num_avail;
2525 
2526 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2527 		return;
2528 
2529 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2530 		return;
2531 
2532 	num_avail = tdata->num_tx_desc_avail;
2533 	first = tdata->next_tx_to_clean;
2534 
2535 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2536 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2537 		struct e1000_tx_desc *tx_desc;
2538 
2539 		tx_desc = &tdata->tx_desc_base[dd_idx];
2540 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2541 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2542 
2543 			if (++dd_idx == tdata->num_tx_desc)
2544 				dd_idx = 0;
2545 
2546 			while (first != dd_idx) {
2547 				logif(pkt_txclean);
2548 
2549 				num_avail++;
2550 
2551 				tx_buffer = &tdata->tx_buf[first];
2552 				if (tx_buffer->m_head) {
2553 					IFNET_STAT_INC(ifp, opackets, 1);
2554 					bus_dmamap_unload(tdata->txtag,
2555 							  tx_buffer->map);
2556 					m_freem(tx_buffer->m_head);
2557 					tx_buffer->m_head = NULL;
2558 				}
2559 
2560 				if (++first == tdata->num_tx_desc)
2561 					first = 0;
2562 			}
2563 		} else {
2564 			break;
2565 		}
2566 	}
2567 	tdata->next_tx_to_clean = first;
2568 	tdata->num_tx_desc_avail = num_avail;
2569 
2570 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2571 		tdata->tx_dd_head = 0;
2572 		tdata->tx_dd_tail = 0;
2573 	}
2574 
2575 	if (!EMX_IS_OACTIVE(tdata)) {
2576 		ifsq_clr_oactive(tdata->ifsq);
2577 
2578 		/* All clean, turn off the timer */
2579 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2580 			tdata->tx_watchdog.wd_timer = 0;
2581 	}
2582 }
2583 
2584 static void
2585 emx_tx_collect(struct emx_txdata *tdata)
2586 {
2587 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2588 	struct emx_txbuf *tx_buffer;
2589 	int tdh, first, num_avail, dd_idx = -1;
2590 
2591 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2592 		return;
2593 
2594 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2595 	if (tdh == tdata->next_tx_to_clean)
2596 		return;
2597 
2598 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2599 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2600 
2601 	num_avail = tdata->num_tx_desc_avail;
2602 	first = tdata->next_tx_to_clean;
2603 
2604 	while (first != tdh) {
2605 		logif(pkt_txclean);
2606 
2607 		num_avail++;
2608 
2609 		tx_buffer = &tdata->tx_buf[first];
2610 		if (tx_buffer->m_head) {
2611 			IFNET_STAT_INC(ifp, opackets, 1);
2612 			bus_dmamap_unload(tdata->txtag,
2613 					  tx_buffer->map);
2614 			m_freem(tx_buffer->m_head);
2615 			tx_buffer->m_head = NULL;
2616 		}
2617 
2618 		if (first == dd_idx) {
2619 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2620 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2621 				tdata->tx_dd_head = 0;
2622 				tdata->tx_dd_tail = 0;
2623 				dd_idx = -1;
2624 			} else {
2625 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2626 			}
2627 		}
2628 
2629 		if (++first == tdata->num_tx_desc)
2630 			first = 0;
2631 	}
2632 	tdata->next_tx_to_clean = first;
2633 	tdata->num_tx_desc_avail = num_avail;
2634 
2635 	if (!EMX_IS_OACTIVE(tdata)) {
2636 		ifsq_clr_oactive(tdata->ifsq);
2637 
2638 		/* All clean, turn off the timer */
2639 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2640 			tdata->tx_watchdog.wd_timer = 0;
2641 	}
2642 }
2643 
2644 /*
2645  * When Link is lost sometimes there is work still in the TX ring
2646  * which will result in a watchdog, rather than allow that do an
2647  * attempted cleanup and then reinit here.  Note that this has been
2648  * seens mostly with fiber adapters.
2649  */
2650 static void
2651 emx_tx_purge(struct emx_softc *sc)
2652 {
2653 	int i;
2654 
2655 	if (sc->link_active)
2656 		return;
2657 
2658 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2659 		struct emx_txdata *tdata = &sc->tx_data[i];
2660 
2661 		if (tdata->tx_watchdog.wd_timer) {
2662 			emx_tx_collect(tdata);
2663 			if (tdata->tx_watchdog.wd_timer) {
2664 				if_printf(&sc->arpcom.ac_if,
2665 				    "Link lost, TX pending, reinit\n");
2666 				emx_init(sc);
2667 				return;
2668 			}
2669 		}
2670 	}
2671 }
2672 
2673 static int
2674 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2675 {
2676 	struct mbuf *m;
2677 	bus_dma_segment_t seg;
2678 	bus_dmamap_t map;
2679 	struct emx_rxbuf *rx_buffer;
2680 	int error, nseg;
2681 
2682 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2683 	if (m == NULL) {
2684 		if (init) {
2685 			if_printf(&rdata->sc->arpcom.ac_if,
2686 				  "Unable to allocate RX mbuf\n");
2687 		}
2688 		return (ENOBUFS);
2689 	}
2690 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2691 
2692 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2693 		m_adj(m, ETHER_ALIGN);
2694 
2695 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2696 			rdata->rx_sparemap, m,
2697 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2698 	if (error) {
2699 		m_freem(m);
2700 		if (init) {
2701 			if_printf(&rdata->sc->arpcom.ac_if,
2702 				  "Unable to load RX mbuf\n");
2703 		}
2704 		return (error);
2705 	}
2706 
2707 	rx_buffer = &rdata->rx_buf[i];
2708 	if (rx_buffer->m_head != NULL)
2709 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2710 
2711 	map = rx_buffer->map;
2712 	rx_buffer->map = rdata->rx_sparemap;
2713 	rdata->rx_sparemap = map;
2714 
2715 	rx_buffer->m_head = m;
2716 	rx_buffer->paddr = seg.ds_addr;
2717 
2718 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2719 	return (0);
2720 }
2721 
2722 static int
2723 emx_create_rx_ring(struct emx_rxdata *rdata)
2724 {
2725 	device_t dev = rdata->sc->dev;
2726 	struct emx_rxbuf *rx_buffer;
2727 	int i, error, rsize, nrxd;
2728 
2729 	/*
2730 	 * Validate number of receive descriptors.  It must not exceed
2731 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2732 	 */
2733 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2734 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2735 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2736 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2737 		    EMX_DEFAULT_RXD, nrxd);
2738 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2739 	} else {
2740 		rdata->num_rx_desc = nrxd;
2741 	}
2742 
2743 	/*
2744 	 * Allocate Receive Descriptor ring
2745 	 */
2746 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2747 			 EMX_DBA_ALIGN);
2748 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2749 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2750 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2751 				&rdata->rx_desc_paddr);
2752 	if (rdata->rx_desc == NULL) {
2753 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2754 		return ENOMEM;
2755 	}
2756 
2757 	rsize = __VM_CACHELINE_ALIGN(
2758 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2759 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2760 
2761 	/*
2762 	 * Create DMA tag for rx buffers
2763 	 */
2764 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2765 			1, 0,			/* alignment, bounds */
2766 			BUS_SPACE_MAXADDR,	/* lowaddr */
2767 			BUS_SPACE_MAXADDR,	/* highaddr */
2768 			NULL, NULL,		/* filter, filterarg */
2769 			MCLBYTES,		/* maxsize */
2770 			1,			/* nsegments */
2771 			MCLBYTES,		/* maxsegsize */
2772 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2773 			&rdata->rxtag);
2774 	if (error) {
2775 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2776 		kfree(rdata->rx_buf, M_DEVBUF);
2777 		rdata->rx_buf = NULL;
2778 		return error;
2779 	}
2780 
2781 	/*
2782 	 * Create spare DMA map for rx buffers
2783 	 */
2784 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2785 				  &rdata->rx_sparemap);
2786 	if (error) {
2787 		device_printf(dev, "Unable to create spare RX DMA map\n");
2788 		bus_dma_tag_destroy(rdata->rxtag);
2789 		kfree(rdata->rx_buf, M_DEVBUF);
2790 		rdata->rx_buf = NULL;
2791 		return error;
2792 	}
2793 
2794 	/*
2795 	 * Create DMA maps for rx buffers
2796 	 */
2797 	for (i = 0; i < rdata->num_rx_desc; i++) {
2798 		rx_buffer = &rdata->rx_buf[i];
2799 
2800 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2801 					  &rx_buffer->map);
2802 		if (error) {
2803 			device_printf(dev, "Unable to create RX DMA map\n");
2804 			emx_destroy_rx_ring(rdata, i);
2805 			return error;
2806 		}
2807 	}
2808 	return (0);
2809 }
2810 
2811 static void
2812 emx_free_rx_ring(struct emx_rxdata *rdata)
2813 {
2814 	int i;
2815 
2816 	for (i = 0; i < rdata->num_rx_desc; i++) {
2817 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2818 
2819 		if (rx_buffer->m_head != NULL) {
2820 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2821 			m_freem(rx_buffer->m_head);
2822 			rx_buffer->m_head = NULL;
2823 		}
2824 	}
2825 
2826 	if (rdata->fmp != NULL)
2827 		m_freem(rdata->fmp);
2828 	rdata->fmp = NULL;
2829 	rdata->lmp = NULL;
2830 }
2831 
2832 static void
2833 emx_free_tx_ring(struct emx_txdata *tdata)
2834 {
2835 	int i;
2836 
2837 	for (i = 0; i < tdata->num_tx_desc; i++) {
2838 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2839 
2840 		if (tx_buffer->m_head != NULL) {
2841 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2842 			m_freem(tx_buffer->m_head);
2843 			tx_buffer->m_head = NULL;
2844 		}
2845 	}
2846 
2847 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2848 
2849 	tdata->csum_flags = 0;
2850 	tdata->csum_lhlen = 0;
2851 	tdata->csum_iphlen = 0;
2852 	tdata->csum_thlen = 0;
2853 	tdata->csum_mss = 0;
2854 	tdata->csum_pktlen = 0;
2855 
2856 	tdata->tx_dd_head = 0;
2857 	tdata->tx_dd_tail = 0;
2858 	tdata->tx_nsegs = 0;
2859 }
2860 
2861 static int
2862 emx_init_rx_ring(struct emx_rxdata *rdata)
2863 {
2864 	int i, error;
2865 
2866 	/* Reset descriptor ring */
2867 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2868 
2869 	/* Allocate new ones. */
2870 	for (i = 0; i < rdata->num_rx_desc; i++) {
2871 		error = emx_newbuf(rdata, i, 1);
2872 		if (error)
2873 			return (error);
2874 	}
2875 
2876 	/* Setup our descriptor pointers */
2877 	rdata->next_rx_desc_to_check = 0;
2878 
2879 	return (0);
2880 }
2881 
2882 static void
2883 emx_init_rx_unit(struct emx_softc *sc)
2884 {
2885 	struct ifnet *ifp = &sc->arpcom.ac_if;
2886 	uint64_t bus_addr;
2887 	uint32_t rctl, itr, rfctl;
2888 	int i;
2889 
2890 	/*
2891 	 * Make sure receives are disabled while setting
2892 	 * up the descriptor ring
2893 	 */
2894 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2895 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2896 
2897 	/*
2898 	 * Set the interrupt throttling rate. Value is calculated
2899 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2900 	 */
2901 	if (sc->int_throttle_ceil)
2902 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2903 	else
2904 		itr = 0;
2905 	emx_set_itr(sc, itr);
2906 
2907 	/* Use extended RX descriptor */
2908 	rfctl = E1000_RFCTL_EXTEN;
2909 
2910 	/* Disable accelerated ackknowledge */
2911 	if (sc->hw.mac.type == e1000_82574)
2912 		rfctl |= E1000_RFCTL_ACK_DIS;
2913 
2914 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2915 
2916 	/*
2917 	 * Receive Checksum Offload for TCP and UDP
2918 	 *
2919 	 * Checksum offloading is also enabled if multiple receive
2920 	 * queue is to be supported, since we need it to figure out
2921 	 * packet type.
2922 	 */
2923 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2924 	    sc->rx_ring_cnt > 1) {
2925 		uint32_t rxcsum;
2926 
2927 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2928 
2929 		/*
2930 		 * NOTE:
2931 		 * PCSD must be enabled to enable multiple
2932 		 * receive queues.
2933 		 */
2934 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2935 			  E1000_RXCSUM_PCSD;
2936 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2937 	}
2938 
2939 	/*
2940 	 * Configure multiple receive queue (RSS)
2941 	 */
2942 	if (sc->rx_ring_cnt > 1) {
2943 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2944 		uint32_t reta;
2945 
2946 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2947 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2948 
2949 		/*
2950 		 * NOTE:
2951 		 * When we reach here, RSS has already been disabled
2952 		 * in emx_stop(), so we could safely configure RSS key
2953 		 * and redirect table.
2954 		 */
2955 
2956 		/*
2957 		 * Configure RSS key
2958 		 */
2959 		toeplitz_get_key(key, sizeof(key));
2960 		for (i = 0; i < EMX_NRSSRK; ++i) {
2961 			uint32_t rssrk;
2962 
2963 			rssrk = EMX_RSSRK_VAL(key, i);
2964 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2965 
2966 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2967 		}
2968 
2969 		/*
2970 		 * Configure RSS redirect table in following fashion:
2971 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2972 		 */
2973 		reta = 0;
2974 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2975 			uint32_t q;
2976 
2977 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2978 			reta |= q << (8 * i);
2979 		}
2980 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2981 
2982 		for (i = 0; i < EMX_NRETA; ++i)
2983 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2984 
2985 		/*
2986 		 * Enable multiple receive queues.
2987 		 * Enable IPv4 RSS standard hash functions.
2988 		 * Disable RSS interrupt.
2989 		 */
2990 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2991 				E1000_MRQC_ENABLE_RSS_2Q |
2992 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2993 				E1000_MRQC_RSS_FIELD_IPV4);
2994 	}
2995 
2996 	/*
2997 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2998 	 * long latencies are observed, like Lenovo X60. This
2999 	 * change eliminates the problem, but since having positive
3000 	 * values in RDTR is a known source of problems on other
3001 	 * platforms another solution is being sought.
3002 	 */
3003 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3004 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3005 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3006 	}
3007 
3008 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3009 		struct emx_rxdata *rdata = &sc->rx_data[i];
3010 
3011 		/*
3012 		 * Setup the Base and Length of the Rx Descriptor Ring
3013 		 */
3014 		bus_addr = rdata->rx_desc_paddr;
3015 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3016 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3017 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3018 		    (uint32_t)(bus_addr >> 32));
3019 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3020 		    (uint32_t)bus_addr);
3021 
3022 		/*
3023 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3024 		 */
3025 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3026 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3027 		    sc->rx_data[i].num_rx_desc - 1);
3028 	}
3029 
3030 	if (sc->hw.mac.type >= e1000_pch2lan) {
3031 		if (ifp->if_mtu > ETHERMTU)
3032 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3033 		else
3034 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3035 	}
3036 
3037 	/* Setup the Receive Control Register */
3038 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3039 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3040 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3041 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3042 
3043 	/* Make sure VLAN Filters are off */
3044 	rctl &= ~E1000_RCTL_VFE;
3045 
3046 	/* Don't store bad paket */
3047 	rctl &= ~E1000_RCTL_SBP;
3048 
3049 	/* MCLBYTES */
3050 	rctl |= E1000_RCTL_SZ_2048;
3051 
3052 	if (ifp->if_mtu > ETHERMTU)
3053 		rctl |= E1000_RCTL_LPE;
3054 	else
3055 		rctl &= ~E1000_RCTL_LPE;
3056 
3057 	/* Enable Receives */
3058 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3059 }
3060 
3061 static void
3062 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3063 {
3064 	struct emx_rxbuf *rx_buffer;
3065 	int i;
3066 
3067 	/* Free Receive Descriptor ring */
3068 	if (rdata->rx_desc) {
3069 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3070 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3071 				rdata->rx_desc_dmap);
3072 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3073 
3074 		rdata->rx_desc = NULL;
3075 	}
3076 
3077 	if (rdata->rx_buf == NULL)
3078 		return;
3079 
3080 	for (i = 0; i < ndesc; i++) {
3081 		rx_buffer = &rdata->rx_buf[i];
3082 
3083 		KKASSERT(rx_buffer->m_head == NULL);
3084 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3085 	}
3086 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3087 	bus_dma_tag_destroy(rdata->rxtag);
3088 
3089 	kfree(rdata->rx_buf, M_DEVBUF);
3090 	rdata->rx_buf = NULL;
3091 }
3092 
3093 static void
3094 emx_rxeof(struct emx_rxdata *rdata, int count)
3095 {
3096 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3097 	uint32_t staterr;
3098 	emx_rxdesc_t *current_desc;
3099 	struct mbuf *mp;
3100 	int i, cpuid = mycpuid;
3101 
3102 	i = rdata->next_rx_desc_to_check;
3103 	current_desc = &rdata->rx_desc[i];
3104 	staterr = le32toh(current_desc->rxd_staterr);
3105 
3106 	if (!(staterr & E1000_RXD_STAT_DD))
3107 		return;
3108 
3109 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3110 		struct pktinfo *pi = NULL, pi0;
3111 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3112 		struct mbuf *m = NULL;
3113 		int eop, len;
3114 
3115 		logif(pkt_receive);
3116 
3117 		mp = rx_buf->m_head;
3118 
3119 		/*
3120 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3121 		 * needs to access the last received byte in the mbuf.
3122 		 */
3123 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3124 				BUS_DMASYNC_POSTREAD);
3125 
3126 		len = le16toh(current_desc->rxd_length);
3127 		if (staterr & E1000_RXD_STAT_EOP) {
3128 			count--;
3129 			eop = 1;
3130 		} else {
3131 			eop = 0;
3132 		}
3133 
3134 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3135 			uint16_t vlan = 0;
3136 			uint32_t mrq, rss_hash;
3137 
3138 			/*
3139 			 * Save several necessary information,
3140 			 * before emx_newbuf() destroy it.
3141 			 */
3142 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3143 				vlan = le16toh(current_desc->rxd_vlan);
3144 
3145 			mrq = le32toh(current_desc->rxd_mrq);
3146 			rss_hash = le32toh(current_desc->rxd_rss);
3147 
3148 			EMX_RSS_DPRINTF(rdata->sc, 10,
3149 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3150 			    rdata->idx, mrq, rss_hash);
3151 
3152 			if (emx_newbuf(rdata, i, 0) != 0) {
3153 				IFNET_STAT_INC(ifp, iqdrops, 1);
3154 				goto discard;
3155 			}
3156 
3157 			/* Assign correct length to the current fragment */
3158 			mp->m_len = len;
3159 
3160 			if (rdata->fmp == NULL) {
3161 				mp->m_pkthdr.len = len;
3162 				rdata->fmp = mp; /* Store the first mbuf */
3163 				rdata->lmp = mp;
3164 			} else {
3165 				/*
3166 				 * Chain mbuf's together
3167 				 */
3168 				rdata->lmp->m_next = mp;
3169 				rdata->lmp = rdata->lmp->m_next;
3170 				rdata->fmp->m_pkthdr.len += len;
3171 			}
3172 
3173 			if (eop) {
3174 				rdata->fmp->m_pkthdr.rcvif = ifp;
3175 				IFNET_STAT_INC(ifp, ipackets, 1);
3176 
3177 				if (ifp->if_capenable & IFCAP_RXCSUM)
3178 					emx_rxcsum(staterr, rdata->fmp);
3179 
3180 				if (staterr & E1000_RXD_STAT_VP) {
3181 					rdata->fmp->m_pkthdr.ether_vlantag =
3182 					    vlan;
3183 					rdata->fmp->m_flags |= M_VLANTAG;
3184 				}
3185 				m = rdata->fmp;
3186 				rdata->fmp = NULL;
3187 				rdata->lmp = NULL;
3188 
3189 				if (ifp->if_capenable & IFCAP_RSS) {
3190 					pi = emx_rssinfo(m, &pi0, mrq,
3191 							 rss_hash, staterr);
3192 				}
3193 #ifdef EMX_RSS_DEBUG
3194 				rdata->rx_pkts++;
3195 #endif
3196 			}
3197 		} else {
3198 			IFNET_STAT_INC(ifp, ierrors, 1);
3199 discard:
3200 			emx_setup_rxdesc(current_desc, rx_buf);
3201 			if (rdata->fmp != NULL) {
3202 				m_freem(rdata->fmp);
3203 				rdata->fmp = NULL;
3204 				rdata->lmp = NULL;
3205 			}
3206 			m = NULL;
3207 		}
3208 
3209 		if (m != NULL)
3210 			ifp->if_input(ifp, m, pi, cpuid);
3211 
3212 		/* Advance our pointers to the next descriptor. */
3213 		if (++i == rdata->num_rx_desc)
3214 			i = 0;
3215 
3216 		current_desc = &rdata->rx_desc[i];
3217 		staterr = le32toh(current_desc->rxd_staterr);
3218 	}
3219 	rdata->next_rx_desc_to_check = i;
3220 
3221 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3222 	if (--i < 0)
3223 		i = rdata->num_rx_desc - 1;
3224 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3225 }
3226 
3227 static void
3228 emx_enable_intr(struct emx_softc *sc)
3229 {
3230 	uint32_t ims_mask = IMS_ENABLE_MASK;
3231 
3232 	lwkt_serialize_handler_enable(&sc->main_serialize);
3233 
3234 #if 0
3235 	if (sc->hw.mac.type == e1000_82574) {
3236 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3237 		ims_mask |= EM_MSIX_MASK;
3238 	}
3239 #endif
3240 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3241 }
3242 
3243 static void
3244 emx_disable_intr(struct emx_softc *sc)
3245 {
3246 	if (sc->hw.mac.type == e1000_82574)
3247 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3248 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3249 
3250 	lwkt_serialize_handler_disable(&sc->main_serialize);
3251 }
3252 
3253 /*
3254  * Bit of a misnomer, what this really means is
3255  * to enable OS management of the system... aka
3256  * to disable special hardware management features
3257  */
3258 static void
3259 emx_get_mgmt(struct emx_softc *sc)
3260 {
3261 	/* A shared code workaround */
3262 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3263 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3264 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3265 
3266 		/* disable hardware interception of ARP */
3267 		manc &= ~(E1000_MANC_ARP_EN);
3268 
3269                 /* enable receiving management packets to the host */
3270 		manc |= E1000_MANC_EN_MNG2HOST;
3271 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3272 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3273 		manc2h |= E1000_MNG2HOST_PORT_623;
3274 		manc2h |= E1000_MNG2HOST_PORT_664;
3275 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3276 
3277 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3278 	}
3279 }
3280 
3281 /*
3282  * Give control back to hardware management
3283  * controller if there is one.
3284  */
3285 static void
3286 emx_rel_mgmt(struct emx_softc *sc)
3287 {
3288 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3289 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3290 
3291 		/* re-enable hardware interception of ARP */
3292 		manc |= E1000_MANC_ARP_EN;
3293 		manc &= ~E1000_MANC_EN_MNG2HOST;
3294 
3295 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3296 	}
3297 }
3298 
3299 /*
3300  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3301  * For ASF and Pass Through versions of f/w this means that
3302  * the driver is loaded.  For AMT version (only with 82573)
3303  * of the f/w this means that the network i/f is open.
3304  */
3305 static void
3306 emx_get_hw_control(struct emx_softc *sc)
3307 {
3308 	/* Let firmware know the driver has taken over */
3309 	if (sc->hw.mac.type == e1000_82573) {
3310 		uint32_t swsm;
3311 
3312 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3313 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3314 		    swsm | E1000_SWSM_DRV_LOAD);
3315 	} else {
3316 		uint32_t ctrl_ext;
3317 
3318 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3319 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3320 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3321 	}
3322 	sc->flags |= EMX_FLAG_HW_CTRL;
3323 }
3324 
3325 /*
3326  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3327  * For ASF and Pass Through versions of f/w this means that the
3328  * driver is no longer loaded.  For AMT version (only with 82573)
3329  * of the f/w this means that the network i/f is closed.
3330  */
3331 static void
3332 emx_rel_hw_control(struct emx_softc *sc)
3333 {
3334 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3335 		return;
3336 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3337 
3338 	/* Let firmware taken over control of h/w */
3339 	if (sc->hw.mac.type == e1000_82573) {
3340 		uint32_t swsm;
3341 
3342 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3343 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3344 		    swsm & ~E1000_SWSM_DRV_LOAD);
3345 	} else {
3346 		uint32_t ctrl_ext;
3347 
3348 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3349 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3350 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3351 	}
3352 }
3353 
3354 static int
3355 emx_is_valid_eaddr(const uint8_t *addr)
3356 {
3357 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3358 
3359 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3360 		return (FALSE);
3361 
3362 	return (TRUE);
3363 }
3364 
3365 /*
3366  * Enable PCI Wake On Lan capability
3367  */
3368 void
3369 emx_enable_wol(device_t dev)
3370 {
3371 	uint16_t cap, status;
3372 	uint8_t id;
3373 
3374 	/* First find the capabilities pointer*/
3375 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3376 
3377 	/* Read the PM Capabilities */
3378 	id = pci_read_config(dev, cap, 1);
3379 	if (id != PCIY_PMG)     /* Something wrong */
3380 		return;
3381 
3382 	/*
3383 	 * OK, we have the power capabilities,
3384 	 * so now get the status register
3385 	 */
3386 	cap += PCIR_POWER_STATUS;
3387 	status = pci_read_config(dev, cap, 2);
3388 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3389 	pci_write_config(dev, cap, status, 2);
3390 }
3391 
3392 static void
3393 emx_update_stats(struct emx_softc *sc)
3394 {
3395 	struct ifnet *ifp = &sc->arpcom.ac_if;
3396 
3397 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3398 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3399 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3400 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3401 	}
3402 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3403 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3404 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3405 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3406 
3407 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3408 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3409 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3410 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3411 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3412 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3413 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3414 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3415 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3416 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3417 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3418 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3419 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3420 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3421 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3422 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3423 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3424 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3425 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3426 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3427 
3428 	/* For the 64-bit byte counters the low dword must be read first. */
3429 	/* Both registers clear on the read of the high dword */
3430 
3431 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3432 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3433 
3434 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3435 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3436 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3437 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3438 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3439 
3440 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3441 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3442 
3443 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3444 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3445 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3446 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3447 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3448 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3449 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3450 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3451 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3452 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3453 
3454 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3455 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3456 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3457 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3458 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3459 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3460 
3461 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3462 
3463 	/* Rx Errors */
3464 	IFNET_STAT_SET(ifp, ierrors,
3465 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3466 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3467 
3468 	/* Tx Errors */
3469 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3470 }
3471 
3472 static void
3473 emx_print_debug_info(struct emx_softc *sc)
3474 {
3475 	device_t dev = sc->dev;
3476 	uint8_t *hw_addr = sc->hw.hw_addr;
3477 	int i;
3478 
3479 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3480 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3481 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3482 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3483 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3484 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3485 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3486 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3487 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3488 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3489 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3490 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3491 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3492 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3493 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3494 
3495 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3496 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3497 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3498 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3499 	}
3500 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3501 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3502 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3503 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3504 	}
3505 
3506 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3507 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3508 		    sc->tx_data[i].num_tx_desc_avail);
3509 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3510 		    sc->tx_data[i].tso_segments);
3511 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3512 		    sc->tx_data[i].tso_ctx_reused);
3513 	}
3514 }
3515 
3516 static void
3517 emx_print_hw_stats(struct emx_softc *sc)
3518 {
3519 	device_t dev = sc->dev;
3520 
3521 	device_printf(dev, "Excessive collisions = %lld\n",
3522 	    (long long)sc->stats.ecol);
3523 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3524 	device_printf(dev, "Symbol errors = %lld\n",
3525 	    (long long)sc->stats.symerrs);
3526 #endif
3527 	device_printf(dev, "Sequence errors = %lld\n",
3528 	    (long long)sc->stats.sec);
3529 	device_printf(dev, "Defer count = %lld\n",
3530 	    (long long)sc->stats.dc);
3531 	device_printf(dev, "Missed Packets = %lld\n",
3532 	    (long long)sc->stats.mpc);
3533 	device_printf(dev, "Receive No Buffers = %lld\n",
3534 	    (long long)sc->stats.rnbc);
3535 	/* RLEC is inaccurate on some hardware, calculate our own. */
3536 	device_printf(dev, "Receive Length Errors = %lld\n",
3537 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3538 	device_printf(dev, "Receive errors = %lld\n",
3539 	    (long long)sc->stats.rxerrc);
3540 	device_printf(dev, "Crc errors = %lld\n",
3541 	    (long long)sc->stats.crcerrs);
3542 	device_printf(dev, "Alignment errors = %lld\n",
3543 	    (long long)sc->stats.algnerrc);
3544 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3545 	    (long long)sc->stats.cexterr);
3546 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3547 	device_printf(dev, "XON Rcvd = %lld\n",
3548 	    (long long)sc->stats.xonrxc);
3549 	device_printf(dev, "XON Xmtd = %lld\n",
3550 	    (long long)sc->stats.xontxc);
3551 	device_printf(dev, "XOFF Rcvd = %lld\n",
3552 	    (long long)sc->stats.xoffrxc);
3553 	device_printf(dev, "XOFF Xmtd = %lld\n",
3554 	    (long long)sc->stats.xofftxc);
3555 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3556 	    (long long)sc->stats.gprc);
3557 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3558 	    (long long)sc->stats.gptc);
3559 }
3560 
3561 static void
3562 emx_print_nvm_info(struct emx_softc *sc)
3563 {
3564 	uint16_t eeprom_data;
3565 	int i, j, row = 0;
3566 
3567 	/* Its a bit crude, but it gets the job done */
3568 	kprintf("\nInterface EEPROM Dump:\n");
3569 	kprintf("Offset\n0x0000  ");
3570 	for (i = 0, j = 0; i < 32; i++, j++) {
3571 		if (j == 8) { /* Make the offset block */
3572 			j = 0; ++row;
3573 			kprintf("\n0x00%x0  ",row);
3574 		}
3575 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3576 		kprintf("%04x ", eeprom_data);
3577 	}
3578 	kprintf("\n");
3579 }
3580 
3581 static int
3582 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3583 {
3584 	struct emx_softc *sc;
3585 	struct ifnet *ifp;
3586 	int error, result;
3587 
3588 	result = -1;
3589 	error = sysctl_handle_int(oidp, &result, 0, req);
3590 	if (error || !req->newptr)
3591 		return (error);
3592 
3593 	sc = (struct emx_softc *)arg1;
3594 	ifp = &sc->arpcom.ac_if;
3595 
3596 	ifnet_serialize_all(ifp);
3597 
3598 	if (result == 1)
3599 		emx_print_debug_info(sc);
3600 
3601 	/*
3602 	 * This value will cause a hex dump of the
3603 	 * first 32 16-bit words of the EEPROM to
3604 	 * the screen.
3605 	 */
3606 	if (result == 2)
3607 		emx_print_nvm_info(sc);
3608 
3609 	ifnet_deserialize_all(ifp);
3610 
3611 	return (error);
3612 }
3613 
3614 static int
3615 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3616 {
3617 	int error, result;
3618 
3619 	result = -1;
3620 	error = sysctl_handle_int(oidp, &result, 0, req);
3621 	if (error || !req->newptr)
3622 		return (error);
3623 
3624 	if (result == 1) {
3625 		struct emx_softc *sc = (struct emx_softc *)arg1;
3626 		struct ifnet *ifp = &sc->arpcom.ac_if;
3627 
3628 		ifnet_serialize_all(ifp);
3629 		emx_print_hw_stats(sc);
3630 		ifnet_deserialize_all(ifp);
3631 	}
3632 	return (error);
3633 }
3634 
3635 static void
3636 emx_add_sysctl(struct emx_softc *sc)
3637 {
3638 	struct sysctl_ctx_list *ctx;
3639 	struct sysctl_oid *tree;
3640 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3641 	char pkt_desc[32];
3642 	int i;
3643 #endif
3644 
3645 	ctx = device_get_sysctl_ctx(sc->dev);
3646 	tree = device_get_sysctl_tree(sc->dev);
3647 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3648 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3649 			emx_sysctl_debug_info, "I", "Debug Information");
3650 
3651 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3652 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3653 			emx_sysctl_stats, "I", "Statistics");
3654 
3655 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3656 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3657 	    "# of RX descs");
3658 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3659 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3660 	    "# of TX descs");
3661 
3662 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3663 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3664 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3665 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3666 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3667 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3668 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3669 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3670 	    emx_sysctl_tx_wreg_nsegs, "I",
3671 	    "# segments sent before write to hardware register");
3672 
3673 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3674 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3675 	    "# of RX rings");
3676 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3677 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3678 	    "# of TX rings");
3679 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3680 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3681 	    "# of TX rings used");
3682 
3683 #ifdef IFPOLL_ENABLE
3684 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3685 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3686 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3687 			"NPOLLING RX cpu offset");
3688 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3689 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3690 			sc, 0, emx_sysctl_npoll_txoff, "I",
3691 			"NPOLLING TX cpu offset");
3692 #endif
3693 
3694 #ifdef EMX_RSS_DEBUG
3695 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3696 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3697 		       0, "RSS debug level");
3698 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3699 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3700 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3701 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3702 		    "RXed packets");
3703 	}
3704 #endif
3705 #ifdef EMX_TSS_DEBUG
3706 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3707 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3708 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3709 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3710 		    "TXed packets");
3711 	}
3712 #endif
3713 }
3714 
3715 static int
3716 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3717 {
3718 	struct emx_softc *sc = (void *)arg1;
3719 	struct ifnet *ifp = &sc->arpcom.ac_if;
3720 	int error, throttle;
3721 
3722 	throttle = sc->int_throttle_ceil;
3723 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3724 	if (error || req->newptr == NULL)
3725 		return error;
3726 	if (throttle < 0 || throttle > 1000000000 / 256)
3727 		return EINVAL;
3728 
3729 	if (throttle) {
3730 		/*
3731 		 * Set the interrupt throttling rate in 256ns increments,
3732 		 * recalculate sysctl value assignment to get exact frequency.
3733 		 */
3734 		throttle = 1000000000 / 256 / throttle;
3735 
3736 		/* Upper 16bits of ITR is reserved and should be zero */
3737 		if (throttle & 0xffff0000)
3738 			return EINVAL;
3739 	}
3740 
3741 	ifnet_serialize_all(ifp);
3742 
3743 	if (throttle)
3744 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3745 	else
3746 		sc->int_throttle_ceil = 0;
3747 
3748 	if (ifp->if_flags & IFF_RUNNING)
3749 		emx_set_itr(sc, throttle);
3750 
3751 	ifnet_deserialize_all(ifp);
3752 
3753 	if (bootverbose) {
3754 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3755 			  sc->int_throttle_ceil);
3756 	}
3757 	return 0;
3758 }
3759 
3760 static int
3761 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3762 {
3763 	struct emx_softc *sc = (void *)arg1;
3764 	struct ifnet *ifp = &sc->arpcom.ac_if;
3765 	struct emx_txdata *tdata = &sc->tx_data[0];
3766 	int error, segs;
3767 
3768 	segs = tdata->tx_intr_nsegs;
3769 	error = sysctl_handle_int(oidp, &segs, 0, req);
3770 	if (error || req->newptr == NULL)
3771 		return error;
3772 	if (segs <= 0)
3773 		return EINVAL;
3774 
3775 	ifnet_serialize_all(ifp);
3776 
3777 	/*
3778 	 * Don't allow tx_intr_nsegs to become:
3779 	 * o  Less the oact_tx_desc
3780 	 * o  Too large that no TX desc will cause TX interrupt to
3781 	 *    be generated (OACTIVE will never recover)
3782 	 * o  Too small that will cause tx_dd[] overflow
3783 	 */
3784 	if (segs < tdata->oact_tx_desc ||
3785 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3786 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3787 		error = EINVAL;
3788 	} else {
3789 		int i;
3790 
3791 		error = 0;
3792 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3793 			sc->tx_data[i].tx_intr_nsegs = segs;
3794 	}
3795 
3796 	ifnet_deserialize_all(ifp);
3797 
3798 	return error;
3799 }
3800 
3801 static int
3802 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3803 {
3804 	struct emx_softc *sc = (void *)arg1;
3805 	struct ifnet *ifp = &sc->arpcom.ac_if;
3806 	int error, nsegs, i;
3807 
3808 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3809 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3810 	if (error || req->newptr == NULL)
3811 		return error;
3812 
3813 	ifnet_serialize_all(ifp);
3814 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3815 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3816 	ifnet_deserialize_all(ifp);
3817 
3818 	return 0;
3819 }
3820 
3821 #ifdef IFPOLL_ENABLE
3822 
3823 static int
3824 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3825 {
3826 	struct emx_softc *sc = (void *)arg1;
3827 	struct ifnet *ifp = &sc->arpcom.ac_if;
3828 	int error, off;
3829 
3830 	off = sc->rx_npoll_off;
3831 	error = sysctl_handle_int(oidp, &off, 0, req);
3832 	if (error || req->newptr == NULL)
3833 		return error;
3834 	if (off < 0)
3835 		return EINVAL;
3836 
3837 	ifnet_serialize_all(ifp);
3838 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3839 		error = EINVAL;
3840 	} else {
3841 		error = 0;
3842 		sc->rx_npoll_off = off;
3843 	}
3844 	ifnet_deserialize_all(ifp);
3845 
3846 	return error;
3847 }
3848 
3849 static int
3850 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3851 {
3852 	struct emx_softc *sc = (void *)arg1;
3853 	struct ifnet *ifp = &sc->arpcom.ac_if;
3854 	int error, off;
3855 
3856 	off = sc->tx_npoll_off;
3857 	error = sysctl_handle_int(oidp, &off, 0, req);
3858 	if (error || req->newptr == NULL)
3859 		return error;
3860 	if (off < 0)
3861 		return EINVAL;
3862 
3863 	ifnet_serialize_all(ifp);
3864 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3865 		error = EINVAL;
3866 	} else {
3867 		error = 0;
3868 		sc->tx_npoll_off = off;
3869 	}
3870 	ifnet_deserialize_all(ifp);
3871 
3872 	return error;
3873 }
3874 
3875 #endif	/* IFPOLL_ENABLE */
3876 
3877 static int
3878 emx_dma_alloc(struct emx_softc *sc)
3879 {
3880 	int error, i;
3881 
3882 	/*
3883 	 * Create top level busdma tag
3884 	 */
3885 	error = bus_dma_tag_create(NULL, 1, 0,
3886 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3887 			NULL, NULL,
3888 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3889 			0, &sc->parent_dtag);
3890 	if (error) {
3891 		device_printf(sc->dev, "could not create top level DMA tag\n");
3892 		return error;
3893 	}
3894 
3895 	/*
3896 	 * Allocate transmit descriptors ring and buffers
3897 	 */
3898 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3899 		error = emx_create_tx_ring(&sc->tx_data[i]);
3900 		if (error) {
3901 			device_printf(sc->dev,
3902 			    "Could not setup transmit structures\n");
3903 			return error;
3904 		}
3905 	}
3906 
3907 	/*
3908 	 * Allocate receive descriptors ring and buffers
3909 	 */
3910 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3911 		error = emx_create_rx_ring(&sc->rx_data[i]);
3912 		if (error) {
3913 			device_printf(sc->dev,
3914 			    "Could not setup receive structures\n");
3915 			return error;
3916 		}
3917 	}
3918 	return 0;
3919 }
3920 
3921 static void
3922 emx_dma_free(struct emx_softc *sc)
3923 {
3924 	int i;
3925 
3926 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3927 		emx_destroy_tx_ring(&sc->tx_data[i],
3928 		    sc->tx_data[i].num_tx_desc);
3929 	}
3930 
3931 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3932 		emx_destroy_rx_ring(&sc->rx_data[i],
3933 		    sc->rx_data[i].num_rx_desc);
3934 	}
3935 
3936 	/* Free top level busdma tag */
3937 	if (sc->parent_dtag != NULL)
3938 		bus_dma_tag_destroy(sc->parent_dtag);
3939 }
3940 
3941 static void
3942 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3943 {
3944 	struct emx_softc *sc = ifp->if_softc;
3945 
3946 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3947 }
3948 
3949 static void
3950 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3951 {
3952 	struct emx_softc *sc = ifp->if_softc;
3953 
3954 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3955 }
3956 
3957 static int
3958 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3959 {
3960 	struct emx_softc *sc = ifp->if_softc;
3961 
3962 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3963 }
3964 
3965 static void
3966 emx_serialize_skipmain(struct emx_softc *sc)
3967 {
3968 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3969 }
3970 
3971 static void
3972 emx_deserialize_skipmain(struct emx_softc *sc)
3973 {
3974 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3975 }
3976 
3977 #ifdef INVARIANTS
3978 
3979 static void
3980 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3981     boolean_t serialized)
3982 {
3983 	struct emx_softc *sc = ifp->if_softc;
3984 
3985 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3986 	    slz, serialized);
3987 }
3988 
3989 #endif	/* INVARIANTS */
3990 
3991 #ifdef IFPOLL_ENABLE
3992 
3993 static void
3994 emx_npoll_status(struct ifnet *ifp)
3995 {
3996 	struct emx_softc *sc = ifp->if_softc;
3997 	uint32_t reg_icr;
3998 
3999 	ASSERT_SERIALIZED(&sc->main_serialize);
4000 
4001 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4002 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4003 		callout_stop(&sc->timer);
4004 		sc->hw.mac.get_link_status = 1;
4005 		emx_update_link_status(sc);
4006 		callout_reset(&sc->timer, hz, emx_timer, sc);
4007 	}
4008 }
4009 
4010 static void
4011 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4012 {
4013 	struct emx_txdata *tdata = arg;
4014 
4015 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4016 
4017 	emx_txeof(tdata);
4018 	if (!ifsq_is_empty(tdata->ifsq))
4019 		ifsq_devstart(tdata->ifsq);
4020 }
4021 
4022 static void
4023 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4024 {
4025 	struct emx_rxdata *rdata = arg;
4026 
4027 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4028 
4029 	emx_rxeof(rdata, cycle);
4030 }
4031 
4032 static void
4033 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4034 {
4035 	struct emx_softc *sc = ifp->if_softc;
4036 	int i, txr_cnt;
4037 
4038 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4039 
4040 	if (info) {
4041 		int off;
4042 
4043 		info->ifpi_status.status_func = emx_npoll_status;
4044 		info->ifpi_status.serializer = &sc->main_serialize;
4045 
4046 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4047 		off = sc->tx_npoll_off;
4048 		for (i = 0; i < txr_cnt; ++i) {
4049 			struct emx_txdata *tdata = &sc->tx_data[i];
4050 			int idx = i + off;
4051 
4052 			KKASSERT(idx < ncpus2);
4053 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4054 			info->ifpi_tx[idx].arg = tdata;
4055 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4056 			ifsq_set_cpuid(tdata->ifsq, idx);
4057 		}
4058 
4059 		off = sc->rx_npoll_off;
4060 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4061 			struct emx_rxdata *rdata = &sc->rx_data[i];
4062 			int idx = i + off;
4063 
4064 			KKASSERT(idx < ncpus2);
4065 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4066 			info->ifpi_rx[idx].arg = rdata;
4067 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4068 		}
4069 
4070 		if (ifp->if_flags & IFF_RUNNING) {
4071 			if (txr_cnt == sc->tx_ring_inuse)
4072 				emx_disable_intr(sc);
4073 			else
4074 				emx_init(sc);
4075 		}
4076 	} else {
4077 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4078 			struct emx_txdata *tdata = &sc->tx_data[i];
4079 
4080 			ifsq_set_cpuid(tdata->ifsq,
4081 			    rman_get_cpuid(sc->intr_res));
4082 		}
4083 
4084 		if (ifp->if_flags & IFF_RUNNING) {
4085 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4086 			if (txr_cnt == sc->tx_ring_inuse)
4087 				emx_enable_intr(sc);
4088 			else
4089 				emx_init(sc);
4090 		}
4091 	}
4092 }
4093 
4094 #endif	/* IFPOLL_ENABLE */
4095 
4096 static void
4097 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4098 {
4099 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4100 	if (sc->hw.mac.type == e1000_82574) {
4101 		int i;
4102 
4103 		/*
4104 		 * When using MSIX interrupts we need to
4105 		 * throttle using the EITR register
4106 		 */
4107 		for (i = 0; i < 4; ++i)
4108 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4109 	}
4110 }
4111 
4112 /*
4113  * Disable the L0s, 82574L Errata #20
4114  */
4115 static void
4116 emx_disable_aspm(struct emx_softc *sc)
4117 {
4118 	uint16_t link_cap, link_ctrl, disable;
4119 	uint8_t pcie_ptr, reg;
4120 	device_t dev = sc->dev;
4121 
4122 	switch (sc->hw.mac.type) {
4123 	case e1000_82571:
4124 	case e1000_82572:
4125 	case e1000_82573:
4126 		/*
4127 		 * 82573 specification update
4128 		 * errata #8 disable L0s
4129 		 * errata #41 disable L1
4130 		 *
4131 		 * 82571/82572 specification update
4132 		 # errata #13 disable L1
4133 		 * errata #68 disable L0s
4134 		 */
4135 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4136 		break;
4137 
4138 	case e1000_82574:
4139 		/*
4140 		 * 82574 specification update errata #20
4141 		 *
4142 		 * There is no need to disable L1
4143 		 */
4144 		disable = PCIEM_LNKCTL_ASPM_L0S;
4145 		break;
4146 
4147 	default:
4148 		return;
4149 	}
4150 
4151 	pcie_ptr = pci_get_pciecap_ptr(dev);
4152 	if (pcie_ptr == 0)
4153 		return;
4154 
4155 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4156 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4157 		return;
4158 
4159 	if (bootverbose)
4160 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4161 
4162 	reg = pcie_ptr + PCIER_LINKCTRL;
4163 	link_ctrl = pci_read_config(dev, reg, 2);
4164 	link_ctrl &= ~disable;
4165 	pci_write_config(dev, reg, link_ctrl, 2);
4166 }
4167 
4168 static int
4169 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4170 {
4171 	int iphlen, hoff, thoff, ex = 0;
4172 	struct mbuf *m;
4173 	struct ip *ip;
4174 
4175 	m = *mp;
4176 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4177 
4178 	iphlen = m->m_pkthdr.csum_iphlen;
4179 	thoff = m->m_pkthdr.csum_thlen;
4180 	hoff = m->m_pkthdr.csum_lhlen;
4181 
4182 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4183 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4184 	KASSERT(hoff > 0, ("invalid ether hlen"));
4185 
4186 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4187 		ex = 4;
4188 
4189 	if (m->m_len < hoff + iphlen + thoff + ex) {
4190 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4191 		if (m == NULL) {
4192 			*mp = NULL;
4193 			return ENOBUFS;
4194 		}
4195 		*mp = m;
4196 	}
4197 	ip = mtodoff(m, struct ip *, hoff);
4198 	ip->ip_len = 0;
4199 
4200 	return 0;
4201 }
4202 
4203 static int
4204 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4205     uint32_t *txd_upper, uint32_t *txd_lower)
4206 {
4207 	struct e1000_context_desc *TXD;
4208 	int hoff, iphlen, thoff, hlen;
4209 	int mss, pktlen, curr_txd;
4210 
4211 #ifdef EMX_TSO_DEBUG
4212 	tdata->tso_segments++;
4213 #endif
4214 
4215 	iphlen = mp->m_pkthdr.csum_iphlen;
4216 	thoff = mp->m_pkthdr.csum_thlen;
4217 	hoff = mp->m_pkthdr.csum_lhlen;
4218 	mss = mp->m_pkthdr.tso_segsz;
4219 	pktlen = mp->m_pkthdr.len;
4220 
4221 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4222 	    tdata->csum_flags == CSUM_TSO &&
4223 	    tdata->csum_iphlen == iphlen &&
4224 	    tdata->csum_lhlen == hoff &&
4225 	    tdata->csum_thlen == thoff &&
4226 	    tdata->csum_mss == mss &&
4227 	    tdata->csum_pktlen == pktlen) {
4228 		*txd_upper = tdata->csum_txd_upper;
4229 		*txd_lower = tdata->csum_txd_lower;
4230 #ifdef EMX_TSO_DEBUG
4231 		tdata->tso_ctx_reused++;
4232 #endif
4233 		return 0;
4234 	}
4235 	hlen = hoff + iphlen + thoff;
4236 
4237 	/*
4238 	 * Setup a new TSO context.
4239 	 */
4240 
4241 	curr_txd = tdata->next_avail_tx_desc;
4242 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4243 
4244 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4245 		     E1000_TXD_DTYP_D |		/* Data descr type */
4246 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4247 
4248 	/* IP and/or TCP header checksum calculation and insertion. */
4249 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4250 
4251 	/*
4252 	 * Start offset for header checksum calculation.
4253 	 * End offset for header checksum calculation.
4254 	 * Offset of place put the checksum.
4255 	 */
4256 	TXD->lower_setup.ip_fields.ipcss = hoff;
4257 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4258 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4259 
4260 	/*
4261 	 * Start offset for payload checksum calculation.
4262 	 * End offset for payload checksum calculation.
4263 	 * Offset of place to put the checksum.
4264 	 */
4265 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4266 	TXD->upper_setup.tcp_fields.tucse = 0;
4267 	TXD->upper_setup.tcp_fields.tucso =
4268 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4269 
4270 	/*
4271 	 * Payload size per packet w/o any headers.
4272 	 * Length of all headers up to payload.
4273 	 */
4274 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4275 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4276 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4277 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4278 				E1000_TXD_CMD_TSE |	/* TSE context */
4279 				E1000_TXD_CMD_IP |	/* Do IP csum */
4280 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4281 				(pktlen - hlen));	/* Total len */
4282 
4283 	/* Save the information for this TSO context */
4284 	tdata->csum_flags = CSUM_TSO;
4285 	tdata->csum_lhlen = hoff;
4286 	tdata->csum_iphlen = iphlen;
4287 	tdata->csum_thlen = thoff;
4288 	tdata->csum_mss = mss;
4289 	tdata->csum_pktlen = pktlen;
4290 	tdata->csum_txd_upper = *txd_upper;
4291 	tdata->csum_txd_lower = *txd_lower;
4292 
4293 	if (++curr_txd == tdata->num_tx_desc)
4294 		curr_txd = 0;
4295 
4296 	KKASSERT(tdata->num_tx_desc_avail > 0);
4297 	tdata->num_tx_desc_avail--;
4298 
4299 	tdata->next_avail_tx_desc = curr_txd;
4300 	return 1;
4301 }
4302 
4303 static int
4304 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4305 {
4306 	if (polling)
4307 		return sc->tx_ring_cnt;
4308 	else
4309 		return 1;
4310 }
4311