xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 23b3ef78)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/ig_hal/e1000_dragonfly.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #define DEBUG_HW 0
115 
116 #ifdef EMX_RSS_DEBUG
117 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
118 do { \
119 	if (sc->rss_debug >= lvl) \
120 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
121 } while (0)
122 #else	/* !EMX_RSS_DEBUG */
123 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
124 #endif	/* EMX_RSS_DEBUG */
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	EMX_DEVICE(PCH_LPT_I217_LM),
166 	EMX_DEVICE(PCH_LPT_I217_V),
167 	EMX_DEVICE(PCH_LPTLP_I218_LM),
168 	EMX_DEVICE(PCH_LPTLP_I218_V),
169 	EMX_DEVICE(PCH_I218_LM2),
170 	EMX_DEVICE(PCH_I218_V2),
171 	EMX_DEVICE(PCH_I218_LM3),
172 	EMX_DEVICE(PCH_I218_V3),
173 	EMX_DEVICE(PCH_SPT_I219_LM),
174 	EMX_DEVICE(PCH_SPT_I219_V),
175 	EMX_DEVICE(PCH_SPT_I219_LM2),
176 	EMX_DEVICE(PCH_SPT_I219_V2),
177 
178 	/* required last entry */
179 	EMX_DEVICE_NULL
180 };
181 
182 static int	emx_probe(device_t);
183 static int	emx_attach(device_t);
184 static int	emx_detach(device_t);
185 static int	emx_shutdown(device_t);
186 static int	emx_suspend(device_t);
187 static int	emx_resume(device_t);
188 
189 static void	emx_init(void *);
190 static void	emx_stop(struct emx_softc *);
191 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
192 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
193 #ifdef IFPOLL_ENABLE
194 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
195 static void	emx_npoll_status(struct ifnet *);
196 static void	emx_npoll_tx(struct ifnet *, void *, int);
197 static void	emx_npoll_rx(struct ifnet *, void *, int);
198 #endif
199 static void	emx_watchdog(struct ifaltq_subque *);
200 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
201 static int	emx_media_change(struct ifnet *);
202 static void	emx_timer(void *);
203 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
204 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
205 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
206 #ifdef INVARIANTS
207 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
208 		    boolean_t);
209 #endif
210 
211 static void	emx_intr(void *);
212 static void	emx_intr_mask(void *);
213 static void	emx_intr_body(struct emx_softc *, boolean_t);
214 static void	emx_rxeof(struct emx_rxdata *, int);
215 static void	emx_txeof(struct emx_txdata *);
216 static void	emx_tx_collect(struct emx_txdata *);
217 static void	emx_tx_purge(struct emx_softc *);
218 static void	emx_enable_intr(struct emx_softc *);
219 static void	emx_disable_intr(struct emx_softc *);
220 
221 static int	emx_dma_alloc(struct emx_softc *);
222 static void	emx_dma_free(struct emx_softc *);
223 static void	emx_init_tx_ring(struct emx_txdata *);
224 static int	emx_init_rx_ring(struct emx_rxdata *);
225 static void	emx_free_tx_ring(struct emx_txdata *);
226 static void	emx_free_rx_ring(struct emx_rxdata *);
227 static int	emx_create_tx_ring(struct emx_txdata *);
228 static int	emx_create_rx_ring(struct emx_rxdata *);
229 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
230 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
231 static int	emx_newbuf(struct emx_rxdata *, int, int);
232 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
233 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
234 		    uint32_t *, uint32_t *);
235 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
236 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
237 		    uint32_t *, uint32_t *);
238 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
239 
240 static int 	emx_is_valid_eaddr(const uint8_t *);
241 static int	emx_reset(struct emx_softc *);
242 static void	emx_setup_ifp(struct emx_softc *);
243 static void	emx_init_tx_unit(struct emx_softc *);
244 static void	emx_init_rx_unit(struct emx_softc *);
245 static void	emx_update_stats(struct emx_softc *);
246 static void	emx_set_promisc(struct emx_softc *);
247 static void	emx_disable_promisc(struct emx_softc *);
248 static void	emx_set_multi(struct emx_softc *);
249 static void	emx_update_link_status(struct emx_softc *);
250 static void	emx_smartspeed(struct emx_softc *);
251 static void	emx_set_itr(struct emx_softc *, uint32_t);
252 static void	emx_disable_aspm(struct emx_softc *);
253 
254 static void	emx_print_debug_info(struct emx_softc *);
255 static void	emx_print_nvm_info(struct emx_softc *);
256 static void	emx_print_hw_stats(struct emx_softc *);
257 
258 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
259 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
260 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
261 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
262 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
263 #ifdef IFPOLL_ENABLE
264 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
265 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
266 #endif
267 static void	emx_add_sysctl(struct emx_softc *);
268 
269 static void	emx_serialize_skipmain(struct emx_softc *);
270 static void	emx_deserialize_skipmain(struct emx_softc *);
271 
272 /* Management and WOL Support */
273 static void	emx_get_mgmt(struct emx_softc *);
274 static void	emx_rel_mgmt(struct emx_softc *);
275 static void	emx_get_hw_control(struct emx_softc *);
276 static void	emx_rel_hw_control(struct emx_softc *);
277 static void	emx_enable_wol(device_t);
278 
279 static device_method_t emx_methods[] = {
280 	/* Device interface */
281 	DEVMETHOD(device_probe,		emx_probe),
282 	DEVMETHOD(device_attach,	emx_attach),
283 	DEVMETHOD(device_detach,	emx_detach),
284 	DEVMETHOD(device_shutdown,	emx_shutdown),
285 	DEVMETHOD(device_suspend,	emx_suspend),
286 	DEVMETHOD(device_resume,	emx_resume),
287 	DEVMETHOD_END
288 };
289 
290 static driver_t emx_driver = {
291 	"emx",
292 	emx_methods,
293 	sizeof(struct emx_softc),
294 };
295 
296 static devclass_t emx_devclass;
297 
298 DECLARE_DUMMY_MODULE(if_emx);
299 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
300 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
301 
302 /*
303  * Tunables
304  */
305 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
306 static int	emx_rxd = EMX_DEFAULT_RXD;
307 static int	emx_txd = EMX_DEFAULT_TXD;
308 static int	emx_smart_pwr_down = 0;
309 static int	emx_rxr = 0;
310 static int	emx_txr = 1;
311 
312 /* Controls whether promiscuous also shows bad packets */
313 static int	emx_debug_sbp = 0;
314 
315 static int	emx_82573_workaround = 1;
316 static int	emx_msi_enable = 1;
317 
318 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
319 
320 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
321 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
322 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
323 TUNABLE_INT("hw.emx.txd", &emx_txd);
324 TUNABLE_INT("hw.emx.txr", &emx_txr);
325 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
326 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
327 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
328 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
329 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
330 
331 /* Global used in WOL setup with multiport cards */
332 static int	emx_global_quad_port_a = 0;
333 
334 /* Set this to one to display debug statistics */
335 static int	emx_display_debug_stats = 0;
336 
337 #if !defined(KTR_IF_EMX)
338 #define KTR_IF_EMX	KTR_ALL
339 #endif
340 KTR_INFO_MASTER(if_emx);
341 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
342 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
343 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
344 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
345 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
346 #define logif(name)	KTR_LOG(if_emx_ ## name)
347 
348 static __inline void
349 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
350 {
351 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
352 	/* DD bit must be cleared */
353 	rxd->rxd_staterr = 0;
354 }
355 
356 static __inline void
357 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
358 {
359 	/* Ignore Checksum bit is set */
360 	if (staterr & E1000_RXD_STAT_IXSM)
361 		return;
362 
363 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
364 	    E1000_RXD_STAT_IPCS)
365 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
366 
367 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
368 	    E1000_RXD_STAT_TCPCS) {
369 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
370 					   CSUM_PSEUDO_HDR |
371 					   CSUM_FRAG_NOT_CHECKED;
372 		mp->m_pkthdr.csum_data = htons(0xffff);
373 	}
374 }
375 
376 static __inline struct pktinfo *
377 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
378 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
379 {
380 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
381 	case EMX_RXDMRQ_IPV4_TCP:
382 		pi->pi_netisr = NETISR_IP;
383 		pi->pi_flags = 0;
384 		pi->pi_l3proto = IPPROTO_TCP;
385 		break;
386 
387 	case EMX_RXDMRQ_IPV6_TCP:
388 		pi->pi_netisr = NETISR_IPV6;
389 		pi->pi_flags = 0;
390 		pi->pi_l3proto = IPPROTO_TCP;
391 		break;
392 
393 	case EMX_RXDMRQ_IPV4:
394 		if (staterr & E1000_RXD_STAT_IXSM)
395 			return NULL;
396 
397 		if ((staterr &
398 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
399 		    E1000_RXD_STAT_TCPCS) {
400 			pi->pi_netisr = NETISR_IP;
401 			pi->pi_flags = 0;
402 			pi->pi_l3proto = IPPROTO_UDP;
403 			break;
404 		}
405 		/* FALL THROUGH */
406 	default:
407 		return NULL;
408 	}
409 
410 	m->m_flags |= M_HASH;
411 	m->m_pkthdr.hash = toeplitz_hash(hash);
412 	return pi;
413 }
414 
415 static int
416 emx_probe(device_t dev)
417 {
418 	const struct emx_device *d;
419 	uint16_t vid, did;
420 
421 	vid = pci_get_vendor(dev);
422 	did = pci_get_device(dev);
423 
424 	for (d = emx_devices; d->desc != NULL; ++d) {
425 		if (vid == d->vid && did == d->did) {
426 			device_set_desc(dev, d->desc);
427 			device_set_async_attach(dev, TRUE);
428 			return 0;
429 		}
430 	}
431 	return ENXIO;
432 }
433 
434 static int
435 emx_attach(device_t dev)
436 {
437 	struct emx_softc *sc = device_get_softc(dev);
438 	int error = 0, i, throttle, msi_enable, tx_ring_max;
439 	u_int intr_flags;
440 	uint16_t eeprom_data, device_id, apme_mask;
441 	driver_intr_t *intr_func;
442 	char flowctrl[IFM_ETH_FC_STRLEN];
443 #ifdef IFPOLL_ENABLE
444 	int offset, offset_def;
445 #endif
446 
447 	/*
448 	 * Setup RX rings
449 	 */
450 	for (i = 0; i < EMX_NRX_RING; ++i) {
451 		sc->rx_data[i].sc = sc;
452 		sc->rx_data[i].idx = i;
453 	}
454 
455 	/*
456 	 * Setup TX ring
457 	 */
458 	for (i = 0; i < EMX_NTX_RING; ++i) {
459 		sc->tx_data[i].sc = sc;
460 		sc->tx_data[i].idx = i;
461 	}
462 
463 	/*
464 	 * Initialize serializers
465 	 */
466 	lwkt_serialize_init(&sc->main_serialize);
467 	for (i = 0; i < EMX_NTX_RING; ++i)
468 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
469 	for (i = 0; i < EMX_NRX_RING; ++i)
470 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
471 
472 	/*
473 	 * Initialize serializer array
474 	 */
475 	i = 0;
476 
477 	KKASSERT(i < EMX_NSERIALIZE);
478 	sc->serializes[i++] = &sc->main_serialize;
479 
480 	KKASSERT(i < EMX_NSERIALIZE);
481 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
482 	KKASSERT(i < EMX_NSERIALIZE);
483 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
484 
485 	KKASSERT(i < EMX_NSERIALIZE);
486 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
487 	KKASSERT(i < EMX_NSERIALIZE);
488 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
489 
490 	KKASSERT(i == EMX_NSERIALIZE);
491 
492 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
493 	    emx_media_change, emx_media_status);
494 	callout_init_mp(&sc->timer);
495 
496 	sc->dev = sc->osdep.dev = dev;
497 
498 	/*
499 	 * Determine hardware and mac type
500 	 */
501 	sc->hw.vendor_id = pci_get_vendor(dev);
502 	sc->hw.device_id = pci_get_device(dev);
503 	sc->hw.revision_id = pci_get_revid(dev);
504 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
505 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
506 
507 	if (e1000_set_mac_type(&sc->hw))
508 		return ENXIO;
509 
510 	/* Enable bus mastering */
511 	pci_enable_busmaster(dev);
512 
513 	/*
514 	 * Allocate IO memory
515 	 */
516 	sc->memory_rid = EMX_BAR_MEM;
517 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
518 					    &sc->memory_rid, RF_ACTIVE);
519 	if (sc->memory == NULL) {
520 		device_printf(dev, "Unable to allocate bus resource: memory\n");
521 		error = ENXIO;
522 		goto fail;
523 	}
524 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
525 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
526 
527 	/* XXX This is quite goofy, it is not actually used */
528 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
529 
530 	/*
531 	 * Don't enable MSI-X on 82574, see:
532 	 * 82574 specification update errata #15
533 	 *
534 	 * Don't enable MSI on 82571/82572, see:
535 	 * 82571/82572 specification update errata #63
536 	 */
537 	msi_enable = emx_msi_enable;
538 	if (msi_enable &&
539 	    (sc->hw.mac.type == e1000_82571 ||
540 	     sc->hw.mac.type == e1000_82572))
541 		msi_enable = 0;
542 
543 	/*
544 	 * Allocate interrupt
545 	 */
546 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
547 	    &sc->intr_rid, &intr_flags);
548 
549 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
550 		int unshared;
551 
552 		unshared = device_getenv_int(dev, "irq.unshared", 0);
553 		if (!unshared) {
554 			sc->flags |= EMX_FLAG_SHARED_INTR;
555 			if (bootverbose)
556 				device_printf(dev, "IRQ shared\n");
557 		} else {
558 			intr_flags &= ~RF_SHAREABLE;
559 			if (bootverbose)
560 				device_printf(dev, "IRQ unshared\n");
561 		}
562 	}
563 
564 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
565 	    intr_flags);
566 	if (sc->intr_res == NULL) {
567 		device_printf(dev, "Unable to allocate bus resource: "
568 		    "interrupt\n");
569 		error = ENXIO;
570 		goto fail;
571 	}
572 
573 	/* Save PCI command register for Shared Code */
574 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
575 	sc->hw.back = &sc->osdep;
576 
577 	/*
578 	 * For I217/I218, we need to map the flash memory and this
579 	 * must happen after the MAC is identified.
580 	 */
581 	if (sc->hw.mac.type == e1000_pch_lpt) {
582 		sc->flash_rid = EMX_BAR_FLASH;
583 
584 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
585 		    &sc->flash_rid, RF_ACTIVE);
586 		if (sc->flash == NULL) {
587 			device_printf(dev, "Mapping of Flash failed\n");
588 			error = ENXIO;
589 			goto fail;
590 		}
591 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
592 		sc->osdep.flash_bus_space_handle =
593 		    rman_get_bushandle(sc->flash);
594 
595 		/*
596 		 * This is used in the shared code
597 		 * XXX this goof is actually not used.
598 		 */
599 		sc->hw.flash_address = (uint8_t *)sc->flash;
600 	}
601 
602 	/* Do Shared Code initialization */
603 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
604 		device_printf(dev, "Setup of Shared code failed\n");
605 		error = ENXIO;
606 		goto fail;
607 	}
608 	e1000_get_bus_info(&sc->hw);
609 
610 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
611 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
612 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
613 
614 	/*
615 	 * Interrupt throttle rate
616 	 */
617 	throttle = device_getenv_int(dev, "int_throttle_ceil",
618 	    emx_int_throttle_ceil);
619 	if (throttle == 0) {
620 		sc->int_throttle_ceil = 0;
621 	} else {
622 		if (throttle < 0)
623 			throttle = EMX_DEFAULT_ITR;
624 
625 		/* Recalculate the tunable value to get the exact frequency. */
626 		throttle = 1000000000 / 256 / throttle;
627 
628 		/* Upper 16bits of ITR is reserved and should be zero */
629 		if (throttle & 0xffff0000)
630 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
631 
632 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
633 	}
634 
635 	e1000_init_script_state_82541(&sc->hw, TRUE);
636 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
637 
638 	/* Copper options */
639 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
640 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
641 		sc->hw.phy.disable_polarity_correction = FALSE;
642 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
643 	}
644 
645 	/* Set the frame limits assuming standard ethernet sized frames. */
646 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
647 
648 	/* This controls when hardware reports transmit completion status. */
649 	sc->hw.mac.report_tx_early = 1;
650 
651 	/* Calculate # of RX rings */
652 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
653 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
654 
655 	/*
656 	 * Calculate # of TX rings
657 	 *
658 	 * XXX
659 	 * I217/I218 claims to have 2 TX queues
660 	 *
661 	 * NOTE:
662 	 * Don't enable multiple TX queues on 82574; it always gives
663 	 * watchdog timeout on TX queue0, when multiple TCP streams are
664 	 * received.  It was originally suspected that the hardware TX
665 	 * checksum offloading caused this watchdog timeout, since only
666 	 * TCP ACKs are sent during TCP receiving tests.  However, even
667 	 * if the hardware TX checksum offloading is disable, TX queue0
668 	 * still will give watchdog.
669 	 */
670 	tx_ring_max = 1;
671 	if (sc->hw.mac.type == e1000_82571 ||
672 	    sc->hw.mac.type == e1000_82572 ||
673 	    sc->hw.mac.type == e1000_80003es2lan ||
674 	    sc->hw.mac.type == e1000_pch_lpt ||
675 	    sc->hw.mac.type == e1000_pch_spt ||
676 	    sc->hw.mac.type == e1000_82574)
677 		tx_ring_max = EMX_NTX_RING;
678 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
679 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
680 
681 	/* Allocate RX/TX rings' busdma(9) stuffs */
682 	error = emx_dma_alloc(sc);
683 	if (error)
684 		goto fail;
685 
686 	/* Allocate multicast array memory. */
687 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
688 	    M_DEVBUF, M_WAITOK);
689 
690 	/* Indicate SOL/IDER usage */
691 	if (e1000_check_reset_block(&sc->hw)) {
692 		device_printf(dev,
693 		    "PHY reset is blocked due to SOL/IDER session.\n");
694 	}
695 
696 	/* Disable EEE on I217/I218 */
697 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
698 
699 	/*
700 	 * Start from a known state, this is important in reading the
701 	 * nvm and mac from that.
702 	 */
703 	e1000_reset_hw(&sc->hw);
704 
705 	/* Make sure we have a good EEPROM before we read from it */
706 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
707 		/*
708 		 * Some PCI-E parts fail the first check due to
709 		 * the link being in sleep state, call it again,
710 		 * if it fails a second time its a real issue.
711 		 */
712 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
713 			device_printf(dev,
714 			    "The EEPROM Checksum Is Not Valid\n");
715 			error = EIO;
716 			goto fail;
717 		}
718 	}
719 
720 	/* Copy the permanent MAC address out of the EEPROM */
721 	if (e1000_read_mac_addr(&sc->hw) < 0) {
722 		device_printf(dev, "EEPROM read error while reading MAC"
723 		    " address\n");
724 		error = EIO;
725 		goto fail;
726 	}
727 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
728 		device_printf(dev, "Invalid MAC address\n");
729 		error = EIO;
730 		goto fail;
731 	}
732 
733 	/* Disable ULP support */
734 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
735 
736 	/* Determine if we have to control management hardware */
737 	if (e1000_enable_mng_pass_thru(&sc->hw))
738 		sc->flags |= EMX_FLAG_HAS_MGMT;
739 
740 	/*
741 	 * Setup Wake-on-Lan
742 	 */
743 	apme_mask = EMX_EEPROM_APME;
744 	eeprom_data = 0;
745 	switch (sc->hw.mac.type) {
746 	case e1000_82573:
747 		sc->flags |= EMX_FLAG_HAS_AMT;
748 		/* FALL THROUGH */
749 
750 	case e1000_82571:
751 	case e1000_82572:
752 	case e1000_80003es2lan:
753 		if (sc->hw.bus.func == 1) {
754 			e1000_read_nvm(&sc->hw,
755 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
756 		} else {
757 			e1000_read_nvm(&sc->hw,
758 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
759 		}
760 		break;
761 
762 	default:
763 		e1000_read_nvm(&sc->hw,
764 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
765 		break;
766 	}
767 	if (eeprom_data & apme_mask)
768 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
769 
770 	/*
771          * We have the eeprom settings, now apply the special cases
772          * where the eeprom may be wrong or the board won't support
773          * wake on lan on a particular port
774 	 */
775 	device_id = pci_get_device(dev);
776         switch (device_id) {
777 	case E1000_DEV_ID_82571EB_FIBER:
778 		/*
779 		 * Wake events only supported on port A for dual fiber
780 		 * regardless of eeprom setting
781 		 */
782 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
783 		    E1000_STATUS_FUNC_1)
784 			sc->wol = 0;
785 		break;
786 
787 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
788 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
789 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
790                 /* if quad port sc, disable WoL on all but port A */
791 		if (emx_global_quad_port_a != 0)
792 			sc->wol = 0;
793 		/* Reset for multiple quad port adapters */
794 		if (++emx_global_quad_port_a == 4)
795 			emx_global_quad_port_a = 0;
796                 break;
797 	}
798 
799 	/* XXX disable wol */
800 	sc->wol = 0;
801 
802 #ifdef IFPOLL_ENABLE
803 	/*
804 	 * NPOLLING RX CPU offset
805 	 */
806 	if (sc->rx_ring_cnt == ncpus2) {
807 		offset = 0;
808 	} else {
809 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
810 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
811 		if (offset >= ncpus2 ||
812 		    offset % sc->rx_ring_cnt != 0) {
813 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
814 			    offset, offset_def);
815 			offset = offset_def;
816 		}
817 	}
818 	sc->rx_npoll_off = offset;
819 
820 	/*
821 	 * NPOLLING TX CPU offset
822 	 */
823 	if (sc->tx_ring_cnt == ncpus2) {
824 		offset = 0;
825 	} else {
826 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
827 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
828 		if (offset >= ncpus2 ||
829 		    offset % sc->tx_ring_cnt != 0) {
830 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
831 			    offset, offset_def);
832 			offset = offset_def;
833 		}
834 	}
835 	sc->tx_npoll_off = offset;
836 #endif
837 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
838 
839 	/* Setup flow control. */
840 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
841 	    emx_flowctrl);
842 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
843 
844 	/* Setup OS specific network interface */
845 	emx_setup_ifp(sc);
846 
847 	/* Add sysctl tree, must after em_setup_ifp() */
848 	emx_add_sysctl(sc);
849 
850 	/* Reset the hardware */
851 	error = emx_reset(sc);
852 	if (error) {
853 		/*
854 		 * Some 82573 parts fail the first reset, call it again,
855 		 * if it fails a second time its a real issue.
856 		 */
857 		error = emx_reset(sc);
858 		if (error) {
859 			device_printf(dev, "Unable to reset the hardware\n");
860 			ether_ifdetach(&sc->arpcom.ac_if);
861 			goto fail;
862 		}
863 	}
864 
865 	/* Initialize statistics */
866 	emx_update_stats(sc);
867 
868 	sc->hw.mac.get_link_status = 1;
869 	emx_update_link_status(sc);
870 
871 	/* Non-AMT based hardware can now take control from firmware */
872 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
873 	    EMX_FLAG_HAS_MGMT)
874 		emx_get_hw_control(sc);
875 
876 	/*
877 	 * Missing Interrupt Following ICR read:
878 	 *
879 	 * 82571/82572 specification update errata #76
880 	 * 82573 specification update errata #31
881 	 * 82574 specification update errata #12
882 	 */
883 	intr_func = emx_intr;
884 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
885 	    (sc->hw.mac.type == e1000_82571 ||
886 	     sc->hw.mac.type == e1000_82572 ||
887 	     sc->hw.mac.type == e1000_82573 ||
888 	     sc->hw.mac.type == e1000_82574))
889 		intr_func = emx_intr_mask;
890 
891 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
892 			       &sc->intr_tag, &sc->main_serialize);
893 	if (error) {
894 		device_printf(dev, "Failed to register interrupt handler");
895 		ether_ifdetach(&sc->arpcom.ac_if);
896 		goto fail;
897 	}
898 	return (0);
899 fail:
900 	emx_detach(dev);
901 	return (error);
902 }
903 
904 static int
905 emx_detach(device_t dev)
906 {
907 	struct emx_softc *sc = device_get_softc(dev);
908 
909 	if (device_is_attached(dev)) {
910 		struct ifnet *ifp = &sc->arpcom.ac_if;
911 
912 		ifnet_serialize_all(ifp);
913 
914 		emx_stop(sc);
915 
916 		e1000_phy_hw_reset(&sc->hw);
917 
918 		emx_rel_mgmt(sc);
919 		emx_rel_hw_control(sc);
920 
921 		if (sc->wol) {
922 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
923 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
924 			emx_enable_wol(dev);
925 		}
926 
927 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
928 
929 		ifnet_deserialize_all(ifp);
930 
931 		ether_ifdetach(ifp);
932 	} else if (sc->memory != NULL) {
933 		emx_rel_hw_control(sc);
934 	}
935 
936 	ifmedia_removeall(&sc->media);
937 	bus_generic_detach(dev);
938 
939 	if (sc->intr_res != NULL) {
940 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
941 				     sc->intr_res);
942 	}
943 
944 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
945 		pci_release_msi(dev);
946 
947 	if (sc->memory != NULL) {
948 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
949 				     sc->memory);
950 	}
951 
952 	if (sc->flash != NULL) {
953 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
954 		    sc->flash);
955 	}
956 
957 	emx_dma_free(sc);
958 
959 	if (sc->mta != NULL)
960 		kfree(sc->mta, M_DEVBUF);
961 
962 	return (0);
963 }
964 
965 static int
966 emx_shutdown(device_t dev)
967 {
968 	return emx_suspend(dev);
969 }
970 
971 static int
972 emx_suspend(device_t dev)
973 {
974 	struct emx_softc *sc = device_get_softc(dev);
975 	struct ifnet *ifp = &sc->arpcom.ac_if;
976 
977 	ifnet_serialize_all(ifp);
978 
979 	emx_stop(sc);
980 
981 	emx_rel_mgmt(sc);
982 	emx_rel_hw_control(sc);
983 
984 	if (sc->wol) {
985 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
986 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
987 		emx_enable_wol(dev);
988 	}
989 
990 	ifnet_deserialize_all(ifp);
991 
992 	return bus_generic_suspend(dev);
993 }
994 
995 static int
996 emx_resume(device_t dev)
997 {
998 	struct emx_softc *sc = device_get_softc(dev);
999 	struct ifnet *ifp = &sc->arpcom.ac_if;
1000 	int i;
1001 
1002 	ifnet_serialize_all(ifp);
1003 
1004 	emx_init(sc);
1005 	emx_get_mgmt(sc);
1006 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1007 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1008 
1009 	ifnet_deserialize_all(ifp);
1010 
1011 	return bus_generic_resume(dev);
1012 }
1013 
1014 static void
1015 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1016 {
1017 	struct emx_softc *sc = ifp->if_softc;
1018 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1019 	struct mbuf *m_head;
1020 	int idx = -1, nsegs = 0;
1021 
1022 	KKASSERT(tdata->ifsq == ifsq);
1023 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1024 
1025 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1026 		return;
1027 
1028 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1029 		ifsq_purge(ifsq);
1030 		return;
1031 	}
1032 
1033 	while (!ifsq_is_empty(ifsq)) {
1034 		/* Now do we at least have a minimal? */
1035 		if (EMX_IS_OACTIVE(tdata)) {
1036 			emx_tx_collect(tdata);
1037 			if (EMX_IS_OACTIVE(tdata)) {
1038 				ifsq_set_oactive(ifsq);
1039 				break;
1040 			}
1041 		}
1042 
1043 		logif(pkt_txqueue);
1044 		m_head = ifsq_dequeue(ifsq);
1045 		if (m_head == NULL)
1046 			break;
1047 
1048 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1049 			IFNET_STAT_INC(ifp, oerrors, 1);
1050 			emx_tx_collect(tdata);
1051 			continue;
1052 		}
1053 
1054 		/*
1055 		 * TX interrupt are aggressively aggregated, so increasing
1056 		 * opackets at TX interrupt time will make the opackets
1057 		 * statistics vastly inaccurate; we do the opackets increment
1058 		 * now.
1059 		 */
1060 		IFNET_STAT_INC(ifp, opackets, 1);
1061 
1062 		if (nsegs >= tdata->tx_wreg_nsegs) {
1063 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1064 			nsegs = 0;
1065 			idx = -1;
1066 		}
1067 
1068 		/* Send a copy of the frame to the BPF listener */
1069 		ETHER_BPF_MTAP(ifp, m_head);
1070 
1071 		/* Set timeout in case hardware has problems transmitting. */
1072 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1073 	}
1074 	if (idx >= 0)
1075 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1076 }
1077 
1078 static int
1079 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1080 {
1081 	struct emx_softc *sc = ifp->if_softc;
1082 	struct ifreq *ifr = (struct ifreq *)data;
1083 	uint16_t eeprom_data = 0;
1084 	int max_frame_size, mask, reinit;
1085 	int error = 0;
1086 
1087 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1088 
1089 	switch (command) {
1090 	case SIOCSIFMTU:
1091 		switch (sc->hw.mac.type) {
1092 		case e1000_82573:
1093 			/*
1094 			 * 82573 only supports jumbo frames
1095 			 * if ASPM is disabled.
1096 			 */
1097 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1098 				       &eeprom_data);
1099 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1100 				max_frame_size = ETHER_MAX_LEN;
1101 				break;
1102 			}
1103 			/* FALL THROUGH */
1104 
1105 		/* Limit Jumbo Frame size */
1106 		case e1000_82571:
1107 		case e1000_82572:
1108 		case e1000_82574:
1109 		case e1000_pch_lpt:
1110 		case e1000_pch_spt:
1111 		case e1000_80003es2lan:
1112 			max_frame_size = 9234;
1113 			break;
1114 
1115 		default:
1116 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1117 			break;
1118 		}
1119 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1120 		    ETHER_CRC_LEN) {
1121 			error = EINVAL;
1122 			break;
1123 		}
1124 
1125 		ifp->if_mtu = ifr->ifr_mtu;
1126 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1127 		    ETHER_CRC_LEN;
1128 
1129 		if (ifp->if_flags & IFF_RUNNING)
1130 			emx_init(sc);
1131 		break;
1132 
1133 	case SIOCSIFFLAGS:
1134 		if (ifp->if_flags & IFF_UP) {
1135 			if ((ifp->if_flags & IFF_RUNNING)) {
1136 				if ((ifp->if_flags ^ sc->if_flags) &
1137 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1138 					emx_disable_promisc(sc);
1139 					emx_set_promisc(sc);
1140 				}
1141 			} else {
1142 				emx_init(sc);
1143 			}
1144 		} else if (ifp->if_flags & IFF_RUNNING) {
1145 			emx_stop(sc);
1146 		}
1147 		sc->if_flags = ifp->if_flags;
1148 		break;
1149 
1150 	case SIOCADDMULTI:
1151 	case SIOCDELMULTI:
1152 		if (ifp->if_flags & IFF_RUNNING) {
1153 			emx_disable_intr(sc);
1154 			emx_set_multi(sc);
1155 #ifdef IFPOLL_ENABLE
1156 			if (!(ifp->if_flags & IFF_NPOLLING))
1157 #endif
1158 				emx_enable_intr(sc);
1159 		}
1160 		break;
1161 
1162 	case SIOCSIFMEDIA:
1163 		/* Check SOL/IDER usage */
1164 		if (e1000_check_reset_block(&sc->hw)) {
1165 			device_printf(sc->dev, "Media change is"
1166 			    " blocked due to SOL/IDER session.\n");
1167 			break;
1168 		}
1169 		/* FALL THROUGH */
1170 
1171 	case SIOCGIFMEDIA:
1172 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1173 		break;
1174 
1175 	case SIOCSIFCAP:
1176 		reinit = 0;
1177 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1178 		if (mask & IFCAP_RXCSUM) {
1179 			ifp->if_capenable ^= IFCAP_RXCSUM;
1180 			reinit = 1;
1181 		}
1182 		if (mask & IFCAP_VLAN_HWTAGGING) {
1183 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1184 			reinit = 1;
1185 		}
1186 		if (mask & IFCAP_TXCSUM) {
1187 			ifp->if_capenable ^= IFCAP_TXCSUM;
1188 			if (ifp->if_capenable & IFCAP_TXCSUM)
1189 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1190 			else
1191 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1192 		}
1193 		if (mask & IFCAP_TSO) {
1194 			ifp->if_capenable ^= IFCAP_TSO;
1195 			if (ifp->if_capenable & IFCAP_TSO)
1196 				ifp->if_hwassist |= CSUM_TSO;
1197 			else
1198 				ifp->if_hwassist &= ~CSUM_TSO;
1199 		}
1200 		if (mask & IFCAP_RSS)
1201 			ifp->if_capenable ^= IFCAP_RSS;
1202 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1203 			emx_init(sc);
1204 		break;
1205 
1206 	default:
1207 		error = ether_ioctl(ifp, command, data);
1208 		break;
1209 	}
1210 	return (error);
1211 }
1212 
1213 static void
1214 emx_watchdog(struct ifaltq_subque *ifsq)
1215 {
1216 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1217 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1218 	struct emx_softc *sc = ifp->if_softc;
1219 	int i;
1220 
1221 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1222 
1223 	/*
1224 	 * The timer is set to 5 every time start queues a packet.
1225 	 * Then txeof keeps resetting it as long as it cleans at
1226 	 * least one descriptor.
1227 	 * Finally, anytime all descriptors are clean the timer is
1228 	 * set to 0.
1229 	 */
1230 
1231 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1232 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1233 		/*
1234 		 * If we reach here, all TX jobs are completed and
1235 		 * the TX engine should have been idled for some time.
1236 		 * We don't need to call ifsq_devstart_sched() here.
1237 		 */
1238 		ifsq_clr_oactive(ifsq);
1239 		tdata->tx_watchdog.wd_timer = 0;
1240 		return;
1241 	}
1242 
1243 	/*
1244 	 * If we are in this routine because of pause frames, then
1245 	 * don't reset the hardware.
1246 	 */
1247 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1248 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1249 		return;
1250 	}
1251 
1252 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1253 
1254 	IFNET_STAT_INC(ifp, oerrors, 1);
1255 
1256 	emx_init(sc);
1257 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1258 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1259 }
1260 
1261 static void
1262 emx_init(void *xsc)
1263 {
1264 	struct emx_softc *sc = xsc;
1265 	struct ifnet *ifp = &sc->arpcom.ac_if;
1266 	device_t dev = sc->dev;
1267 	boolean_t polling;
1268 	int i;
1269 
1270 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1271 
1272 	emx_stop(sc);
1273 
1274 	/* Get the latest mac address, User can use a LAA */
1275         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1276 
1277 	/* Put the address into the Receive Address Array */
1278 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1279 
1280 	/*
1281 	 * With the 82571 sc, RAR[0] may be overwritten
1282 	 * when the other port is reset, we make a duplicate
1283 	 * in RAR[14] for that eventuality, this assures
1284 	 * the interface continues to function.
1285 	 */
1286 	if (sc->hw.mac.type == e1000_82571) {
1287 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1288 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1289 		    E1000_RAR_ENTRIES - 1);
1290 	}
1291 
1292 	/* Initialize the hardware */
1293 	if (emx_reset(sc)) {
1294 		device_printf(dev, "Unable to reset the hardware\n");
1295 		/* XXX emx_stop()? */
1296 		return;
1297 	}
1298 	emx_update_link_status(sc);
1299 
1300 	/* Setup VLAN support, basic and offload if available */
1301 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1302 
1303 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1304 		uint32_t ctrl;
1305 
1306 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1307 		ctrl |= E1000_CTRL_VME;
1308 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1309 	}
1310 
1311 	/* Configure for OS presence */
1312 	emx_get_mgmt(sc);
1313 
1314 	polling = FALSE;
1315 #ifdef IFPOLL_ENABLE
1316 	if (ifp->if_flags & IFF_NPOLLING)
1317 		polling = TRUE;
1318 #endif
1319 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1320 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1321 
1322 	/* Prepare transmit descriptors and buffers */
1323 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1324 		emx_init_tx_ring(&sc->tx_data[i]);
1325 	emx_init_tx_unit(sc);
1326 
1327 	/* Setup Multicast table */
1328 	emx_set_multi(sc);
1329 
1330 	/* Prepare receive descriptors and buffers */
1331 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1332 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1333 			device_printf(dev,
1334 			    "Could not setup receive structures\n");
1335 			emx_stop(sc);
1336 			return;
1337 		}
1338 	}
1339 	emx_init_rx_unit(sc);
1340 
1341 	/* Don't lose promiscuous settings */
1342 	emx_set_promisc(sc);
1343 
1344 	ifp->if_flags |= IFF_RUNNING;
1345 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1346 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1347 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1348 	}
1349 
1350 	callout_reset(&sc->timer, hz, emx_timer, sc);
1351 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1352 
1353 	/* MSI/X configuration for 82574 */
1354 	if (sc->hw.mac.type == e1000_82574) {
1355 		int tmp;
1356 
1357 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1358 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1359 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1360 		/*
1361 		 * XXX MSIX
1362 		 * Set the IVAR - interrupt vector routing.
1363 		 * Each nibble represents a vector, high bit
1364 		 * is enable, other 3 bits are the MSIX table
1365 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1366 		 * Link (other) to 2, hence the magic number.
1367 		 */
1368 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1369 	}
1370 
1371 	/*
1372 	 * Only enable interrupts if we are not polling, make sure
1373 	 * they are off otherwise.
1374 	 */
1375 	if (polling)
1376 		emx_disable_intr(sc);
1377 	else
1378 		emx_enable_intr(sc);
1379 
1380 	/* AMT based hardware can now take control from firmware */
1381 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1382 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1383 		emx_get_hw_control(sc);
1384 }
1385 
1386 static void
1387 emx_intr(void *xsc)
1388 {
1389 	emx_intr_body(xsc, TRUE);
1390 }
1391 
1392 static void
1393 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1394 {
1395 	struct ifnet *ifp = &sc->arpcom.ac_if;
1396 	uint32_t reg_icr;
1397 
1398 	logif(intr_beg);
1399 	ASSERT_SERIALIZED(&sc->main_serialize);
1400 
1401 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1402 
1403 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1404 		logif(intr_end);
1405 		return;
1406 	}
1407 
1408 	/*
1409 	 * XXX: some laptops trigger several spurious interrupts
1410 	 * on emx(4) when in the resume cycle. The ICR register
1411 	 * reports all-ones value in this case. Processing such
1412 	 * interrupts would lead to a freeze. I don't know why.
1413 	 */
1414 	if (reg_icr == 0xffffffff) {
1415 		logif(intr_end);
1416 		return;
1417 	}
1418 
1419 	if (ifp->if_flags & IFF_RUNNING) {
1420 		if (reg_icr &
1421 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1422 			int i;
1423 
1424 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1425 				lwkt_serialize_enter(
1426 				&sc->rx_data[i].rx_serialize);
1427 				emx_rxeof(&sc->rx_data[i], -1);
1428 				lwkt_serialize_exit(
1429 				&sc->rx_data[i].rx_serialize);
1430 			}
1431 		}
1432 		if (reg_icr & E1000_ICR_TXDW) {
1433 			struct emx_txdata *tdata = &sc->tx_data[0];
1434 
1435 			lwkt_serialize_enter(&tdata->tx_serialize);
1436 			emx_txeof(tdata);
1437 			if (!ifsq_is_empty(tdata->ifsq))
1438 				ifsq_devstart(tdata->ifsq);
1439 			lwkt_serialize_exit(&tdata->tx_serialize);
1440 		}
1441 	}
1442 
1443 	/* Link status change */
1444 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1445 		emx_serialize_skipmain(sc);
1446 
1447 		callout_stop(&sc->timer);
1448 		sc->hw.mac.get_link_status = 1;
1449 		emx_update_link_status(sc);
1450 
1451 		/* Deal with TX cruft when link lost */
1452 		emx_tx_purge(sc);
1453 
1454 		callout_reset(&sc->timer, hz, emx_timer, sc);
1455 
1456 		emx_deserialize_skipmain(sc);
1457 	}
1458 
1459 	if (reg_icr & E1000_ICR_RXO)
1460 		sc->rx_overruns++;
1461 
1462 	logif(intr_end);
1463 }
1464 
1465 static void
1466 emx_intr_mask(void *xsc)
1467 {
1468 	struct emx_softc *sc = xsc;
1469 
1470 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1471 	/*
1472 	 * NOTE:
1473 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1474 	 * so don't check it.
1475 	 */
1476 	emx_intr_body(sc, FALSE);
1477 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1478 }
1479 
1480 static void
1481 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1482 {
1483 	struct emx_softc *sc = ifp->if_softc;
1484 
1485 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1486 
1487 	emx_update_link_status(sc);
1488 
1489 	ifmr->ifm_status = IFM_AVALID;
1490 	ifmr->ifm_active = IFM_ETHER;
1491 
1492 	if (!sc->link_active) {
1493 		if (sc->hw.mac.autoneg)
1494 			ifmr->ifm_active |= IFM_NONE;
1495 		else
1496 			ifmr->ifm_active |= sc->media.ifm_media;
1497 		return;
1498 	}
1499 
1500 	ifmr->ifm_status |= IFM_ACTIVE;
1501 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1502 		ifmr->ifm_active |= sc->ifm_flowctrl;
1503 
1504 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1505 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1506 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1507 	} else {
1508 		switch (sc->link_speed) {
1509 		case 10:
1510 			ifmr->ifm_active |= IFM_10_T;
1511 			break;
1512 		case 100:
1513 			ifmr->ifm_active |= IFM_100_TX;
1514 			break;
1515 
1516 		case 1000:
1517 			ifmr->ifm_active |= IFM_1000_T;
1518 			break;
1519 		}
1520 		if (sc->link_duplex == FULL_DUPLEX)
1521 			ifmr->ifm_active |= IFM_FDX;
1522 		else
1523 			ifmr->ifm_active |= IFM_HDX;
1524 	}
1525 	if (ifmr->ifm_active & IFM_FDX)
1526 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1527 }
1528 
1529 static int
1530 emx_media_change(struct ifnet *ifp)
1531 {
1532 	struct emx_softc *sc = ifp->if_softc;
1533 	struct ifmedia *ifm = &sc->media;
1534 
1535 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1536 
1537 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1538 		return (EINVAL);
1539 
1540 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1541 	case IFM_AUTO:
1542 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1543 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1544 		break;
1545 
1546 	case IFM_1000_SX:
1547 	case IFM_1000_T:
1548 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1549 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1550 		break;
1551 
1552 	case IFM_100_TX:
1553 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1554 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1555 		} else {
1556 			if (IFM_OPTIONS(ifm->ifm_media) &
1557 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1558 				if (bootverbose) {
1559 					if_printf(ifp, "Flow control is not "
1560 					    "allowed for half-duplex\n");
1561 				}
1562 				return EINVAL;
1563 			}
1564 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1565 		}
1566 		sc->hw.mac.autoneg = FALSE;
1567 		sc->hw.phy.autoneg_advertised = 0;
1568 		break;
1569 
1570 	case IFM_10_T:
1571 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1572 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1573 		} else {
1574 			if (IFM_OPTIONS(ifm->ifm_media) &
1575 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1576 				if (bootverbose) {
1577 					if_printf(ifp, "Flow control is not "
1578 					    "allowed for half-duplex\n");
1579 				}
1580 				return EINVAL;
1581 			}
1582 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1583 		}
1584 		sc->hw.mac.autoneg = FALSE;
1585 		sc->hw.phy.autoneg_advertised = 0;
1586 		break;
1587 
1588 	default:
1589 		if (bootverbose) {
1590 			if_printf(ifp, "Unsupported media type %d\n",
1591 			    IFM_SUBTYPE(ifm->ifm_media));
1592 		}
1593 		return EINVAL;
1594 	}
1595 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1596 
1597 	if (ifp->if_flags & IFF_RUNNING)
1598 		emx_init(sc);
1599 
1600 	return (0);
1601 }
1602 
1603 static int
1604 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1605     int *segs_used, int *idx)
1606 {
1607 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1608 	bus_dmamap_t map;
1609 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1610 	struct e1000_tx_desc *ctxd = NULL;
1611 	struct mbuf *m_head = *m_headp;
1612 	uint32_t txd_upper, txd_lower, cmd = 0;
1613 	int maxsegs, nsegs, i, j, first, last = 0, error;
1614 
1615 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1616 		error = emx_tso_pullup(tdata, m_headp);
1617 		if (error)
1618 			return error;
1619 		m_head = *m_headp;
1620 	}
1621 
1622 	txd_upper = txd_lower = 0;
1623 
1624 	/*
1625 	 * Capture the first descriptor index, this descriptor
1626 	 * will have the index of the EOP which is the only one
1627 	 * that now gets a DONE bit writeback.
1628 	 */
1629 	first = tdata->next_avail_tx_desc;
1630 	tx_buffer = &tdata->tx_buf[first];
1631 	tx_buffer_mapped = tx_buffer;
1632 	map = tx_buffer->map;
1633 
1634 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1635 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1636 	if (maxsegs > EMX_MAX_SCATTER)
1637 		maxsegs = EMX_MAX_SCATTER;
1638 
1639 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1640 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1641 	if (error) {
1642 		m_freem(*m_headp);
1643 		*m_headp = NULL;
1644 		return error;
1645 	}
1646         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1647 
1648 	m_head = *m_headp;
1649 	tdata->tx_nsegs += nsegs;
1650 	*segs_used += nsegs;
1651 
1652 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1653 		/* TSO will consume one TX desc */
1654 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1655 		tdata->tx_nsegs += i;
1656 		*segs_used += i;
1657 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1658 		/* TX csum offloading will consume one TX desc */
1659 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1660 		tdata->tx_nsegs += i;
1661 		*segs_used += i;
1662 	}
1663 
1664         /* Handle VLAN tag */
1665 	if (m_head->m_flags & M_VLANTAG) {
1666 		/* Set the vlan id. */
1667 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1668 		/* Tell hardware to add tag */
1669 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1670 	}
1671 
1672 	i = tdata->next_avail_tx_desc;
1673 
1674 	/* Set up our transmit descriptors */
1675 	for (j = 0; j < nsegs; j++) {
1676 		tx_buffer = &tdata->tx_buf[i];
1677 		ctxd = &tdata->tx_desc_base[i];
1678 
1679 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1680 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1681 					   txd_lower | segs[j].ds_len);
1682 		ctxd->upper.data = htole32(txd_upper);
1683 
1684 		last = i;
1685 		if (++i == tdata->num_tx_desc)
1686 			i = 0;
1687 	}
1688 
1689 	tdata->next_avail_tx_desc = i;
1690 
1691 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1692 	tdata->num_tx_desc_avail -= nsegs;
1693 
1694 	tx_buffer->m_head = m_head;
1695 	tx_buffer_mapped->map = tx_buffer->map;
1696 	tx_buffer->map = map;
1697 
1698 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1699 		tdata->tx_nsegs = 0;
1700 
1701 		/*
1702 		 * Report Status (RS) is turned on
1703 		 * every tx_intr_nsegs descriptors.
1704 		 */
1705 		cmd = E1000_TXD_CMD_RS;
1706 
1707 		/*
1708 		 * Keep track of the descriptor, which will
1709 		 * be written back by hardware.
1710 		 */
1711 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1712 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1713 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1714 	}
1715 
1716 	/*
1717 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1718 	 */
1719 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1720 
1721 	/*
1722 	 * Defer TDT updating, until enough descriptors are setup
1723 	 */
1724 	*idx = i;
1725 
1726 #ifdef EMX_TSS_DEBUG
1727 	tdata->tx_pkts++;
1728 #endif
1729 
1730 	return (0);
1731 }
1732 
1733 static void
1734 emx_set_promisc(struct emx_softc *sc)
1735 {
1736 	struct ifnet *ifp = &sc->arpcom.ac_if;
1737 	uint32_t reg_rctl;
1738 
1739 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1740 
1741 	if (ifp->if_flags & IFF_PROMISC) {
1742 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1743 		/* Turn this on if you want to see bad packets */
1744 		if (emx_debug_sbp)
1745 			reg_rctl |= E1000_RCTL_SBP;
1746 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1747 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1748 		reg_rctl |= E1000_RCTL_MPE;
1749 		reg_rctl &= ~E1000_RCTL_UPE;
1750 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1751 	}
1752 }
1753 
1754 static void
1755 emx_disable_promisc(struct emx_softc *sc)
1756 {
1757 	uint32_t reg_rctl;
1758 
1759 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1760 
1761 	reg_rctl &= ~E1000_RCTL_UPE;
1762 	reg_rctl &= ~E1000_RCTL_MPE;
1763 	reg_rctl &= ~E1000_RCTL_SBP;
1764 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1765 }
1766 
1767 static void
1768 emx_set_multi(struct emx_softc *sc)
1769 {
1770 	struct ifnet *ifp = &sc->arpcom.ac_if;
1771 	struct ifmultiaddr *ifma;
1772 	uint32_t reg_rctl = 0;
1773 	uint8_t *mta;
1774 	int mcnt = 0;
1775 
1776 	mta = sc->mta;
1777 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1778 
1779 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1780 		if (ifma->ifma_addr->sa_family != AF_LINK)
1781 			continue;
1782 
1783 		if (mcnt == EMX_MCAST_ADDR_MAX)
1784 			break;
1785 
1786 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1787 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1788 		mcnt++;
1789 	}
1790 
1791 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1792 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1793 		reg_rctl |= E1000_RCTL_MPE;
1794 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1795 	} else {
1796 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1797 	}
1798 }
1799 
1800 /*
1801  * This routine checks for link status and updates statistics.
1802  */
1803 static void
1804 emx_timer(void *xsc)
1805 {
1806 	struct emx_softc *sc = xsc;
1807 	struct ifnet *ifp = &sc->arpcom.ac_if;
1808 
1809 	lwkt_serialize_enter(&sc->main_serialize);
1810 
1811 	emx_update_link_status(sc);
1812 	emx_update_stats(sc);
1813 
1814 	/* Reset LAA into RAR[0] on 82571 */
1815 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1816 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1817 
1818 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1819 		emx_print_hw_stats(sc);
1820 
1821 	emx_smartspeed(sc);
1822 
1823 	callout_reset(&sc->timer, hz, emx_timer, sc);
1824 
1825 	lwkt_serialize_exit(&sc->main_serialize);
1826 }
1827 
1828 static void
1829 emx_update_link_status(struct emx_softc *sc)
1830 {
1831 	struct e1000_hw *hw = &sc->hw;
1832 	struct ifnet *ifp = &sc->arpcom.ac_if;
1833 	device_t dev = sc->dev;
1834 	uint32_t link_check = 0;
1835 
1836 	/* Get the cached link value or read phy for real */
1837 	switch (hw->phy.media_type) {
1838 	case e1000_media_type_copper:
1839 		if (hw->mac.get_link_status) {
1840 			/* Do the work to read phy */
1841 			e1000_check_for_link(hw);
1842 			link_check = !hw->mac.get_link_status;
1843 			if (link_check) /* ESB2 fix */
1844 				e1000_cfg_on_link_up(hw);
1845 		} else {
1846 			link_check = TRUE;
1847 		}
1848 		break;
1849 
1850 	case e1000_media_type_fiber:
1851 		e1000_check_for_link(hw);
1852 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1853 		break;
1854 
1855 	case e1000_media_type_internal_serdes:
1856 		e1000_check_for_link(hw);
1857 		link_check = sc->hw.mac.serdes_has_link;
1858 		break;
1859 
1860 	case e1000_media_type_unknown:
1861 	default:
1862 		break;
1863 	}
1864 
1865 	/* Now check for a transition */
1866 	if (link_check && sc->link_active == 0) {
1867 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1868 		    &sc->link_duplex);
1869 
1870 		/*
1871 		 * Check if we should enable/disable SPEED_MODE bit on
1872 		 * 82571EB/82572EI
1873 		 */
1874 		if (sc->link_speed != SPEED_1000 &&
1875 		    (hw->mac.type == e1000_82571 ||
1876 		     hw->mac.type == e1000_82572)) {
1877 			int tarc0;
1878 
1879 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1880 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1881 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1882 		}
1883 		if (bootverbose) {
1884 			char flowctrl[IFM_ETH_FC_STRLEN];
1885 
1886 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1887 			    sizeof(flowctrl));
1888 			device_printf(dev, "Link is up %d Mbps %s, "
1889 			    "Flow control: %s\n",
1890 			    sc->link_speed,
1891 			    (sc->link_duplex == FULL_DUPLEX) ?
1892 			    "Full Duplex" : "Half Duplex",
1893 			    flowctrl);
1894 		}
1895 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1896 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1897 		sc->link_active = 1;
1898 		sc->smartspeed = 0;
1899 		ifp->if_baudrate = sc->link_speed * 1000000;
1900 		ifp->if_link_state = LINK_STATE_UP;
1901 		if_link_state_change(ifp);
1902 	} else if (!link_check && sc->link_active == 1) {
1903 		ifp->if_baudrate = sc->link_speed = 0;
1904 		sc->link_duplex = 0;
1905 		if (bootverbose)
1906 			device_printf(dev, "Link is Down\n");
1907 		sc->link_active = 0;
1908 		ifp->if_link_state = LINK_STATE_DOWN;
1909 		if_link_state_change(ifp);
1910 	}
1911 }
1912 
1913 static void
1914 emx_stop(struct emx_softc *sc)
1915 {
1916 	struct ifnet *ifp = &sc->arpcom.ac_if;
1917 	int i;
1918 
1919 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1920 
1921 	emx_disable_intr(sc);
1922 
1923 	callout_stop(&sc->timer);
1924 
1925 	ifp->if_flags &= ~IFF_RUNNING;
1926 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1927 		struct emx_txdata *tdata = &sc->tx_data[i];
1928 
1929 		ifsq_clr_oactive(tdata->ifsq);
1930 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1931 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1932 	}
1933 
1934 	/*
1935 	 * Disable multiple receive queues.
1936 	 *
1937 	 * NOTE:
1938 	 * We should disable multiple receive queues before
1939 	 * resetting the hardware.
1940 	 */
1941 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1942 
1943 	e1000_reset_hw(&sc->hw);
1944 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1945 
1946 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1947 		emx_free_tx_ring(&sc->tx_data[i]);
1948 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1949 		emx_free_rx_ring(&sc->rx_data[i]);
1950 }
1951 
1952 static int
1953 emx_reset(struct emx_softc *sc)
1954 {
1955 	device_t dev = sc->dev;
1956 	uint16_t rx_buffer_size;
1957 	uint32_t pba;
1958 
1959 	/* Set up smart power down as default off on newer adapters. */
1960 	if (!emx_smart_pwr_down &&
1961 	    (sc->hw.mac.type == e1000_82571 ||
1962 	     sc->hw.mac.type == e1000_82572)) {
1963 		uint16_t phy_tmp = 0;
1964 
1965 		/* Speed up time to link by disabling smart power down. */
1966 		e1000_read_phy_reg(&sc->hw,
1967 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1968 		phy_tmp &= ~IGP02E1000_PM_SPD;
1969 		e1000_write_phy_reg(&sc->hw,
1970 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1971 	}
1972 
1973 	/*
1974 	 * Packet Buffer Allocation (PBA)
1975 	 * Writing PBA sets the receive portion of the buffer
1976 	 * the remainder is used for the transmit buffer.
1977 	 */
1978 	switch (sc->hw.mac.type) {
1979 	/* Total Packet Buffer on these is 48K */
1980 	case e1000_82571:
1981 	case e1000_82572:
1982 	case e1000_80003es2lan:
1983 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1984 		break;
1985 
1986 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1987 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1988 		break;
1989 
1990 	case e1000_82574:
1991 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1992 		break;
1993 
1994 	case e1000_pch_lpt:
1995 	case e1000_pch_spt:
1996  		pba = E1000_PBA_26K;
1997  		break;
1998 
1999 	default:
2000 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2001 		if (sc->hw.mac.max_frame_size > 8192)
2002 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2003 		else
2004 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2005 	}
2006 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2007 
2008 	/*
2009 	 * These parameters control the automatic generation (Tx) and
2010 	 * response (Rx) to Ethernet PAUSE frames.
2011 	 * - High water mark should allow for at least two frames to be
2012 	 *   received after sending an XOFF.
2013 	 * - Low water mark works best when it is very near the high water mark.
2014 	 *   This allows the receiver to restart by sending XON when it has
2015 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2016 	 *   restart after one full frame is pulled from the buffer. There
2017 	 *   could be several smaller frames in the buffer and if so they will
2018 	 *   not trigger the XON until their total number reduces the buffer
2019 	 *   by 1500.
2020 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2021 	 */
2022 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2023 
2024 	sc->hw.fc.high_water = rx_buffer_size -
2025 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2026 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2027 
2028 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2029 	sc->hw.fc.send_xon = TRUE;
2030 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2031 
2032 	/*
2033 	 * Device specific overrides/settings
2034 	 */
2035 	if (sc->hw.mac.type == e1000_pch_lpt ||
2036 	    sc->hw.mac.type == e1000_pch_spt) {
2037 		sc->hw.fc.high_water = 0x5C20;
2038 		sc->hw.fc.low_water = 0x5048;
2039 		sc->hw.fc.pause_time = 0x0650;
2040 		sc->hw.fc.refresh_time = 0x0400;
2041 		/* Jumbos need adjusted PBA */
2042 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2043 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2044 		else
2045 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2046 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2047 		sc->hw.fc.pause_time = 0xFFFF;
2048 	}
2049 
2050 	/* Issue a global reset */
2051 	e1000_reset_hw(&sc->hw);
2052 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2053 	emx_disable_aspm(sc);
2054 
2055 	if (e1000_init_hw(&sc->hw) < 0) {
2056 		device_printf(dev, "Hardware Initialization Failed\n");
2057 		return (EIO);
2058 	}
2059 
2060 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2061 	e1000_get_phy_info(&sc->hw);
2062 	e1000_check_for_link(&sc->hw);
2063 
2064 	return (0);
2065 }
2066 
2067 static void
2068 emx_setup_ifp(struct emx_softc *sc)
2069 {
2070 	struct ifnet *ifp = &sc->arpcom.ac_if;
2071 	int i;
2072 
2073 	if_initname(ifp, device_get_name(sc->dev),
2074 		    device_get_unit(sc->dev));
2075 	ifp->if_softc = sc;
2076 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2077 	ifp->if_init =  emx_init;
2078 	ifp->if_ioctl = emx_ioctl;
2079 	ifp->if_start = emx_start;
2080 #ifdef IFPOLL_ENABLE
2081 	ifp->if_npoll = emx_npoll;
2082 #endif
2083 	ifp->if_serialize = emx_serialize;
2084 	ifp->if_deserialize = emx_deserialize;
2085 	ifp->if_tryserialize = emx_tryserialize;
2086 #ifdef INVARIANTS
2087 	ifp->if_serialize_assert = emx_serialize_assert;
2088 #endif
2089 
2090 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2091 
2092 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2093 	ifq_set_ready(&ifp->if_snd);
2094 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2095 
2096 	ifp->if_mapsubq = ifq_mapsubq_mask;
2097 	ifq_set_subq_mask(&ifp->if_snd, 0);
2098 
2099 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2100 
2101 	ifp->if_capabilities = IFCAP_HWCSUM |
2102 			       IFCAP_VLAN_HWTAGGING |
2103 			       IFCAP_VLAN_MTU |
2104 			       IFCAP_TSO;
2105 	if (sc->rx_ring_cnt > 1)
2106 		ifp->if_capabilities |= IFCAP_RSS;
2107 	ifp->if_capenable = ifp->if_capabilities;
2108 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2109 
2110 	/*
2111 	 * Tell the upper layer(s) we support long frames.
2112 	 */
2113 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2114 
2115 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2116 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2117 		struct emx_txdata *tdata = &sc->tx_data[i];
2118 
2119 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2120 		ifsq_set_priv(ifsq, tdata);
2121 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2122 		tdata->ifsq = ifsq;
2123 
2124 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2125 	}
2126 
2127 	/*
2128 	 * Specify the media types supported by this sc and register
2129 	 * callbacks to update media and link information
2130 	 */
2131 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2132 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2133 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2134 			    0, NULL);
2135 	} else {
2136 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2137 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2138 			    0, NULL);
2139 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2140 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2141 			    0, NULL);
2142 		if (sc->hw.phy.type != e1000_phy_ife) {
2143 			ifmedia_add(&sc->media,
2144 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2145 		}
2146 	}
2147 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2148 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2149 }
2150 
2151 /*
2152  * Workaround for SmartSpeed on 82541 and 82547 controllers
2153  */
2154 static void
2155 emx_smartspeed(struct emx_softc *sc)
2156 {
2157 	uint16_t phy_tmp;
2158 
2159 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2160 	    sc->hw.mac.autoneg == 0 ||
2161 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2162 		return;
2163 
2164 	if (sc->smartspeed == 0) {
2165 		/*
2166 		 * If Master/Slave config fault is asserted twice,
2167 		 * we assume back-to-back
2168 		 */
2169 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2170 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2171 			return;
2172 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2173 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2174 			e1000_read_phy_reg(&sc->hw,
2175 			    PHY_1000T_CTRL, &phy_tmp);
2176 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2177 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2178 				e1000_write_phy_reg(&sc->hw,
2179 				    PHY_1000T_CTRL, phy_tmp);
2180 				sc->smartspeed++;
2181 				if (sc->hw.mac.autoneg &&
2182 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2183 				    !e1000_read_phy_reg(&sc->hw,
2184 				     PHY_CONTROL, &phy_tmp)) {
2185 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2186 						   MII_CR_RESTART_AUTO_NEG;
2187 					e1000_write_phy_reg(&sc->hw,
2188 					    PHY_CONTROL, phy_tmp);
2189 				}
2190 			}
2191 		}
2192 		return;
2193 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2194 		/* If still no link, perhaps using 2/3 pair cable */
2195 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2196 		phy_tmp |= CR_1000T_MS_ENABLE;
2197 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2198 		if (sc->hw.mac.autoneg &&
2199 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2200 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2201 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2202 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2203 		}
2204 	}
2205 
2206 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2207 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2208 		sc->smartspeed = 0;
2209 }
2210 
2211 static int
2212 emx_create_tx_ring(struct emx_txdata *tdata)
2213 {
2214 	device_t dev = tdata->sc->dev;
2215 	struct emx_txbuf *tx_buffer;
2216 	int error, i, tsize, ntxd;
2217 
2218 	/*
2219 	 * Validate number of transmit descriptors.  It must not exceed
2220 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2221 	 */
2222 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2223 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2224 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2225 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2226 		    EMX_DEFAULT_TXD, ntxd);
2227 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2228 	} else {
2229 		tdata->num_tx_desc = ntxd;
2230 	}
2231 
2232 	/*
2233 	 * Allocate Transmit Descriptor ring
2234 	 */
2235 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2236 			 EMX_DBA_ALIGN);
2237 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2238 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2239 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2240 				&tdata->tx_desc_paddr);
2241 	if (tdata->tx_desc_base == NULL) {
2242 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2243 		return ENOMEM;
2244 	}
2245 
2246 	tsize = __VM_CACHELINE_ALIGN(
2247 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2248 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2249 
2250 	/*
2251 	 * Create DMA tags for tx buffers
2252 	 */
2253 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2254 			1, 0,			/* alignment, bounds */
2255 			BUS_SPACE_MAXADDR,	/* lowaddr */
2256 			BUS_SPACE_MAXADDR,	/* highaddr */
2257 			NULL, NULL,		/* filter, filterarg */
2258 			EMX_TSO_SIZE,		/* maxsize */
2259 			EMX_MAX_SCATTER,	/* nsegments */
2260 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2261 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2262 			BUS_DMA_ONEBPAGE,	/* flags */
2263 			&tdata->txtag);
2264 	if (error) {
2265 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2266 		kfree(tdata->tx_buf, M_DEVBUF);
2267 		tdata->tx_buf = NULL;
2268 		return error;
2269 	}
2270 
2271 	/*
2272 	 * Create DMA maps for tx buffers
2273 	 */
2274 	for (i = 0; i < tdata->num_tx_desc; i++) {
2275 		tx_buffer = &tdata->tx_buf[i];
2276 
2277 		error = bus_dmamap_create(tdata->txtag,
2278 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2279 					  &tx_buffer->map);
2280 		if (error) {
2281 			device_printf(dev, "Unable to create TX DMA map\n");
2282 			emx_destroy_tx_ring(tdata, i);
2283 			return error;
2284 		}
2285 	}
2286 
2287 	/*
2288 	 * Setup TX parameters
2289 	 */
2290 	tdata->spare_tx_desc = EMX_TX_SPARE;
2291 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2292 
2293 	/*
2294 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2295 	 * and tx_intr_nsegs:
2296 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2297 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2298 	 */
2299 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2300 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2301 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2302 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2303 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2304 
2305 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2306 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2307 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2308 
2309 	/*
2310 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2311 	 * 82571/82572 specification update errata #7
2312 	 *
2313 	 * Same applies to I217 (and maybe I218 and I219).
2314 	 *
2315 	 * NOTE:
2316 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2317 	 * are pulled; mainly to keep rest of the data properly aligned.
2318 	 */
2319 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2320 	    tdata->sc->hw.mac.type == e1000_82572 ||
2321 	    tdata->sc->hw.mac.type == e1000_pch_lpt ||
2322 	    tdata->sc->hw.mac.type == e1000_pch_spt)
2323 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2324 
2325 	return (0);
2326 }
2327 
2328 static void
2329 emx_init_tx_ring(struct emx_txdata *tdata)
2330 {
2331 	/* Clear the old ring contents */
2332 	bzero(tdata->tx_desc_base,
2333 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2334 
2335 	/* Reset state */
2336 	tdata->next_avail_tx_desc = 0;
2337 	tdata->next_tx_to_clean = 0;
2338 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2339 
2340 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2341 	if (tdata->sc->tx_ring_inuse > 1) {
2342 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2343 		if (bootverbose) {
2344 			if_printf(&tdata->sc->arpcom.ac_if,
2345 			    "TX %d force ctx setup\n", tdata->idx);
2346 		}
2347 	}
2348 }
2349 
2350 static void
2351 emx_init_tx_unit(struct emx_softc *sc)
2352 {
2353 	uint32_t tctl, tarc, tipg = 0, txdctl;
2354 	int i;
2355 
2356 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2357 		struct emx_txdata *tdata = &sc->tx_data[i];
2358 		uint64_t bus_addr;
2359 
2360 		/* Setup the Base and Length of the Tx Descriptor Ring */
2361 		bus_addr = tdata->tx_desc_paddr;
2362 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2363 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2364 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2365 		    (uint32_t)(bus_addr >> 32));
2366 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2367 		    (uint32_t)bus_addr);
2368 		/* Setup the HW Tx Head and Tail descriptor pointers */
2369 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2370 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2371 	}
2372 
2373 	/* Set the default values for the Tx Inter Packet Gap timer */
2374 	switch (sc->hw.mac.type) {
2375 	case e1000_80003es2lan:
2376 		tipg = DEFAULT_82543_TIPG_IPGR1;
2377 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2378 		    E1000_TIPG_IPGR2_SHIFT;
2379 		break;
2380 
2381 	default:
2382 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2383 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2384 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2385 		else
2386 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2387 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2388 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2389 		break;
2390 	}
2391 
2392 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2393 
2394 	/* NOTE: 0 is not allowed for TIDV */
2395 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2396 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2397 
2398 	/*
2399 	 * Errata workaround (obtained from Linux).  This is necessary
2400 	 * to make multiple TX queues work on 82574.
2401 	 * XXX can't find it in any published errata though.
2402 	 */
2403 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2404 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2405 
2406 	if (sc->hw.mac.type == e1000_82571 ||
2407 	    sc->hw.mac.type == e1000_82572) {
2408 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2409 		tarc |= EMX_TARC_SPEED_MODE;
2410 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2411 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2412 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2413 		tarc |= 1;
2414 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2415 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2416 		tarc |= 1;
2417 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2418 	}
2419 
2420 	/* Program the Transmit Control Register */
2421 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2422 	tctl &= ~E1000_TCTL_CT;
2423 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2424 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2425 	tctl |= E1000_TCTL_MULR;
2426 
2427 	/* This write will effectively turn on the transmit unit. */
2428 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2429 
2430 	if (sc->hw.mac.type == e1000_82571 ||
2431 	    sc->hw.mac.type == e1000_82572 ||
2432 	    sc->hw.mac.type == e1000_80003es2lan) {
2433 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2434 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2435 		tarc &= ~(1 << 28);
2436 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2437 	}
2438 
2439 	if (sc->tx_ring_inuse > 1) {
2440 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2441 		tarc &= ~EMX_TARC_COUNT_MASK;
2442 		tarc |= 1;
2443 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2444 
2445 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2446 		tarc &= ~EMX_TARC_COUNT_MASK;
2447 		tarc |= 1;
2448 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2449 	}
2450 }
2451 
2452 static void
2453 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2454 {
2455 	struct emx_txbuf *tx_buffer;
2456 	int i;
2457 
2458 	/* Free Transmit Descriptor ring */
2459 	if (tdata->tx_desc_base) {
2460 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2461 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2462 				tdata->tx_desc_dmap);
2463 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2464 
2465 		tdata->tx_desc_base = NULL;
2466 	}
2467 
2468 	if (tdata->tx_buf == NULL)
2469 		return;
2470 
2471 	for (i = 0; i < ndesc; i++) {
2472 		tx_buffer = &tdata->tx_buf[i];
2473 
2474 		KKASSERT(tx_buffer->m_head == NULL);
2475 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2476 	}
2477 	bus_dma_tag_destroy(tdata->txtag);
2478 
2479 	kfree(tdata->tx_buf, M_DEVBUF);
2480 	tdata->tx_buf = NULL;
2481 }
2482 
2483 /*
2484  * The offload context needs to be set when we transfer the first
2485  * packet of a particular protocol (TCP/UDP).  This routine has been
2486  * enhanced to deal with inserted VLAN headers.
2487  *
2488  * If the new packet's ether header length, ip header length and
2489  * csum offloading type are same as the previous packet, we should
2490  * avoid allocating a new csum context descriptor; mainly to take
2491  * advantage of the pipeline effect of the TX data read request.
2492  *
2493  * This function returns number of TX descrptors allocated for
2494  * csum context.
2495  */
2496 static int
2497 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2498 	   uint32_t *txd_upper, uint32_t *txd_lower)
2499 {
2500 	struct e1000_context_desc *TXD;
2501 	int curr_txd, ehdrlen, csum_flags;
2502 	uint32_t cmd, hdr_len, ip_hlen;
2503 
2504 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2505 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2506 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2507 
2508 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2509 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2510 	    tdata->csum_flags == csum_flags) {
2511 		/*
2512 		 * Same csum offload context as the previous packets;
2513 		 * just return.
2514 		 */
2515 		*txd_upper = tdata->csum_txd_upper;
2516 		*txd_lower = tdata->csum_txd_lower;
2517 		return 0;
2518 	}
2519 
2520 	/*
2521 	 * Setup a new csum offload context.
2522 	 */
2523 
2524 	curr_txd = tdata->next_avail_tx_desc;
2525 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2526 
2527 	cmd = 0;
2528 
2529 	/* Setup of IP header checksum. */
2530 	if (csum_flags & CSUM_IP) {
2531 		/*
2532 		 * Start offset for header checksum calculation.
2533 		 * End offset for header checksum calculation.
2534 		 * Offset of place to put the checksum.
2535 		 */
2536 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2537 		TXD->lower_setup.ip_fields.ipcse =
2538 		    htole16(ehdrlen + ip_hlen - 1);
2539 		TXD->lower_setup.ip_fields.ipcso =
2540 		    ehdrlen + offsetof(struct ip, ip_sum);
2541 		cmd |= E1000_TXD_CMD_IP;
2542 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2543 	}
2544 	hdr_len = ehdrlen + ip_hlen;
2545 
2546 	if (csum_flags & CSUM_TCP) {
2547 		/*
2548 		 * Start offset for payload checksum calculation.
2549 		 * End offset for payload checksum calculation.
2550 		 * Offset of place to put the checksum.
2551 		 */
2552 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2553 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2554 		TXD->upper_setup.tcp_fields.tucso =
2555 		    hdr_len + offsetof(struct tcphdr, th_sum);
2556 		cmd |= E1000_TXD_CMD_TCP;
2557 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2558 	} else if (csum_flags & CSUM_UDP) {
2559 		/*
2560 		 * Start offset for header checksum calculation.
2561 		 * End offset for header checksum calculation.
2562 		 * Offset of place to put the checksum.
2563 		 */
2564 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2565 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2566 		TXD->upper_setup.tcp_fields.tucso =
2567 		    hdr_len + offsetof(struct udphdr, uh_sum);
2568 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2569 	}
2570 
2571 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2572 		     E1000_TXD_DTYP_D;		/* Data descr */
2573 
2574 	/* Save the information for this csum offloading context */
2575 	tdata->csum_lhlen = ehdrlen;
2576 	tdata->csum_iphlen = ip_hlen;
2577 	tdata->csum_flags = csum_flags;
2578 	tdata->csum_txd_upper = *txd_upper;
2579 	tdata->csum_txd_lower = *txd_lower;
2580 
2581 	TXD->tcp_seg_setup.data = htole32(0);
2582 	TXD->cmd_and_length =
2583 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2584 
2585 	if (++curr_txd == tdata->num_tx_desc)
2586 		curr_txd = 0;
2587 
2588 	KKASSERT(tdata->num_tx_desc_avail > 0);
2589 	tdata->num_tx_desc_avail--;
2590 
2591 	tdata->next_avail_tx_desc = curr_txd;
2592 	return 1;
2593 }
2594 
2595 static void
2596 emx_txeof(struct emx_txdata *tdata)
2597 {
2598 	struct emx_txbuf *tx_buffer;
2599 	int first, num_avail;
2600 
2601 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2602 		return;
2603 
2604 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2605 		return;
2606 
2607 	num_avail = tdata->num_tx_desc_avail;
2608 	first = tdata->next_tx_to_clean;
2609 
2610 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2611 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2612 		struct e1000_tx_desc *tx_desc;
2613 
2614 		tx_desc = &tdata->tx_desc_base[dd_idx];
2615 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2616 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2617 
2618 			if (++dd_idx == tdata->num_tx_desc)
2619 				dd_idx = 0;
2620 
2621 			while (first != dd_idx) {
2622 				logif(pkt_txclean);
2623 
2624 				num_avail++;
2625 
2626 				tx_buffer = &tdata->tx_buf[first];
2627 				if (tx_buffer->m_head) {
2628 					bus_dmamap_unload(tdata->txtag,
2629 							  tx_buffer->map);
2630 					m_freem(tx_buffer->m_head);
2631 					tx_buffer->m_head = NULL;
2632 				}
2633 
2634 				if (++first == tdata->num_tx_desc)
2635 					first = 0;
2636 			}
2637 		} else {
2638 			break;
2639 		}
2640 	}
2641 	tdata->next_tx_to_clean = first;
2642 	tdata->num_tx_desc_avail = num_avail;
2643 
2644 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2645 		tdata->tx_dd_head = 0;
2646 		tdata->tx_dd_tail = 0;
2647 	}
2648 
2649 	if (!EMX_IS_OACTIVE(tdata)) {
2650 		ifsq_clr_oactive(tdata->ifsq);
2651 
2652 		/* All clean, turn off the timer */
2653 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2654 			tdata->tx_watchdog.wd_timer = 0;
2655 	}
2656 }
2657 
2658 static void
2659 emx_tx_collect(struct emx_txdata *tdata)
2660 {
2661 	struct emx_txbuf *tx_buffer;
2662 	int tdh, first, num_avail, dd_idx = -1;
2663 
2664 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2665 		return;
2666 
2667 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2668 	if (tdh == tdata->next_tx_to_clean)
2669 		return;
2670 
2671 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2672 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2673 
2674 	num_avail = tdata->num_tx_desc_avail;
2675 	first = tdata->next_tx_to_clean;
2676 
2677 	while (first != tdh) {
2678 		logif(pkt_txclean);
2679 
2680 		num_avail++;
2681 
2682 		tx_buffer = &tdata->tx_buf[first];
2683 		if (tx_buffer->m_head) {
2684 			bus_dmamap_unload(tdata->txtag,
2685 					  tx_buffer->map);
2686 			m_freem(tx_buffer->m_head);
2687 			tx_buffer->m_head = NULL;
2688 		}
2689 
2690 		if (first == dd_idx) {
2691 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2692 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2693 				tdata->tx_dd_head = 0;
2694 				tdata->tx_dd_tail = 0;
2695 				dd_idx = -1;
2696 			} else {
2697 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2698 			}
2699 		}
2700 
2701 		if (++first == tdata->num_tx_desc)
2702 			first = 0;
2703 	}
2704 	tdata->next_tx_to_clean = first;
2705 	tdata->num_tx_desc_avail = num_avail;
2706 
2707 	if (!EMX_IS_OACTIVE(tdata)) {
2708 		ifsq_clr_oactive(tdata->ifsq);
2709 
2710 		/* All clean, turn off the timer */
2711 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2712 			tdata->tx_watchdog.wd_timer = 0;
2713 	}
2714 }
2715 
2716 /*
2717  * When Link is lost sometimes there is work still in the TX ring
2718  * which will result in a watchdog, rather than allow that do an
2719  * attempted cleanup and then reinit here.  Note that this has been
2720  * seens mostly with fiber adapters.
2721  */
2722 static void
2723 emx_tx_purge(struct emx_softc *sc)
2724 {
2725 	int i;
2726 
2727 	if (sc->link_active)
2728 		return;
2729 
2730 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2731 		struct emx_txdata *tdata = &sc->tx_data[i];
2732 
2733 		if (tdata->tx_watchdog.wd_timer) {
2734 			emx_tx_collect(tdata);
2735 			if (tdata->tx_watchdog.wd_timer) {
2736 				if_printf(&sc->arpcom.ac_if,
2737 				    "Link lost, TX pending, reinit\n");
2738 				emx_init(sc);
2739 				return;
2740 			}
2741 		}
2742 	}
2743 }
2744 
2745 static int
2746 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2747 {
2748 	struct mbuf *m;
2749 	bus_dma_segment_t seg;
2750 	bus_dmamap_t map;
2751 	struct emx_rxbuf *rx_buffer;
2752 	int error, nseg;
2753 
2754 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2755 	if (m == NULL) {
2756 		if (init) {
2757 			if_printf(&rdata->sc->arpcom.ac_if,
2758 				  "Unable to allocate RX mbuf\n");
2759 		}
2760 		return (ENOBUFS);
2761 	}
2762 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2763 
2764 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2765 		m_adj(m, ETHER_ALIGN);
2766 
2767 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2768 			rdata->rx_sparemap, m,
2769 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2770 	if (error) {
2771 		m_freem(m);
2772 		if (init) {
2773 			if_printf(&rdata->sc->arpcom.ac_if,
2774 				  "Unable to load RX mbuf\n");
2775 		}
2776 		return (error);
2777 	}
2778 
2779 	rx_buffer = &rdata->rx_buf[i];
2780 	if (rx_buffer->m_head != NULL)
2781 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2782 
2783 	map = rx_buffer->map;
2784 	rx_buffer->map = rdata->rx_sparemap;
2785 	rdata->rx_sparemap = map;
2786 
2787 	rx_buffer->m_head = m;
2788 	rx_buffer->paddr = seg.ds_addr;
2789 
2790 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2791 	return (0);
2792 }
2793 
2794 static int
2795 emx_create_rx_ring(struct emx_rxdata *rdata)
2796 {
2797 	device_t dev = rdata->sc->dev;
2798 	struct emx_rxbuf *rx_buffer;
2799 	int i, error, rsize, nrxd;
2800 
2801 	/*
2802 	 * Validate number of receive descriptors.  It must not exceed
2803 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2804 	 */
2805 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2806 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2807 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2808 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2809 		    EMX_DEFAULT_RXD, nrxd);
2810 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2811 	} else {
2812 		rdata->num_rx_desc = nrxd;
2813 	}
2814 
2815 	/*
2816 	 * Allocate Receive Descriptor ring
2817 	 */
2818 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2819 			 EMX_DBA_ALIGN);
2820 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2821 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2822 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2823 				&rdata->rx_desc_paddr);
2824 	if (rdata->rx_desc == NULL) {
2825 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2826 		return ENOMEM;
2827 	}
2828 
2829 	rsize = __VM_CACHELINE_ALIGN(
2830 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2831 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2832 
2833 	/*
2834 	 * Create DMA tag for rx buffers
2835 	 */
2836 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2837 			1, 0,			/* alignment, bounds */
2838 			BUS_SPACE_MAXADDR,	/* lowaddr */
2839 			BUS_SPACE_MAXADDR,	/* highaddr */
2840 			NULL, NULL,		/* filter, filterarg */
2841 			MCLBYTES,		/* maxsize */
2842 			1,			/* nsegments */
2843 			MCLBYTES,		/* maxsegsize */
2844 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2845 			&rdata->rxtag);
2846 	if (error) {
2847 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2848 		kfree(rdata->rx_buf, M_DEVBUF);
2849 		rdata->rx_buf = NULL;
2850 		return error;
2851 	}
2852 
2853 	/*
2854 	 * Create spare DMA map for rx buffers
2855 	 */
2856 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2857 				  &rdata->rx_sparemap);
2858 	if (error) {
2859 		device_printf(dev, "Unable to create spare RX DMA map\n");
2860 		bus_dma_tag_destroy(rdata->rxtag);
2861 		kfree(rdata->rx_buf, M_DEVBUF);
2862 		rdata->rx_buf = NULL;
2863 		return error;
2864 	}
2865 
2866 	/*
2867 	 * Create DMA maps for rx buffers
2868 	 */
2869 	for (i = 0; i < rdata->num_rx_desc; i++) {
2870 		rx_buffer = &rdata->rx_buf[i];
2871 
2872 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2873 					  &rx_buffer->map);
2874 		if (error) {
2875 			device_printf(dev, "Unable to create RX DMA map\n");
2876 			emx_destroy_rx_ring(rdata, i);
2877 			return error;
2878 		}
2879 	}
2880 	return (0);
2881 }
2882 
2883 static void
2884 emx_free_rx_ring(struct emx_rxdata *rdata)
2885 {
2886 	int i;
2887 
2888 	for (i = 0; i < rdata->num_rx_desc; i++) {
2889 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2890 
2891 		if (rx_buffer->m_head != NULL) {
2892 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2893 			m_freem(rx_buffer->m_head);
2894 			rx_buffer->m_head = NULL;
2895 		}
2896 	}
2897 
2898 	if (rdata->fmp != NULL)
2899 		m_freem(rdata->fmp);
2900 	rdata->fmp = NULL;
2901 	rdata->lmp = NULL;
2902 }
2903 
2904 static void
2905 emx_free_tx_ring(struct emx_txdata *tdata)
2906 {
2907 	int i;
2908 
2909 	for (i = 0; i < tdata->num_tx_desc; i++) {
2910 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2911 
2912 		if (tx_buffer->m_head != NULL) {
2913 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2914 			m_freem(tx_buffer->m_head);
2915 			tx_buffer->m_head = NULL;
2916 		}
2917 	}
2918 
2919 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2920 
2921 	tdata->csum_flags = 0;
2922 	tdata->csum_lhlen = 0;
2923 	tdata->csum_iphlen = 0;
2924 	tdata->csum_thlen = 0;
2925 	tdata->csum_mss = 0;
2926 	tdata->csum_pktlen = 0;
2927 
2928 	tdata->tx_dd_head = 0;
2929 	tdata->tx_dd_tail = 0;
2930 	tdata->tx_nsegs = 0;
2931 }
2932 
2933 static int
2934 emx_init_rx_ring(struct emx_rxdata *rdata)
2935 {
2936 	int i, error;
2937 
2938 	/* Reset descriptor ring */
2939 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2940 
2941 	/* Allocate new ones. */
2942 	for (i = 0; i < rdata->num_rx_desc; i++) {
2943 		error = emx_newbuf(rdata, i, 1);
2944 		if (error)
2945 			return (error);
2946 	}
2947 
2948 	/* Setup our descriptor pointers */
2949 	rdata->next_rx_desc_to_check = 0;
2950 
2951 	return (0);
2952 }
2953 
2954 static void
2955 emx_init_rx_unit(struct emx_softc *sc)
2956 {
2957 	struct ifnet *ifp = &sc->arpcom.ac_if;
2958 	uint64_t bus_addr;
2959 	uint32_t rctl, itr, rfctl;
2960 	int i;
2961 
2962 	/*
2963 	 * Make sure receives are disabled while setting
2964 	 * up the descriptor ring
2965 	 */
2966 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2967 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2968 
2969 	/*
2970 	 * Set the interrupt throttling rate. Value is calculated
2971 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2972 	 */
2973 	if (sc->int_throttle_ceil)
2974 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2975 	else
2976 		itr = 0;
2977 	emx_set_itr(sc, itr);
2978 
2979 	/* Use extended RX descriptor */
2980 	rfctl = E1000_RFCTL_EXTEN;
2981 
2982 	/* Disable accelerated ackknowledge */
2983 	if (sc->hw.mac.type == e1000_82574)
2984 		rfctl |= E1000_RFCTL_ACK_DIS;
2985 
2986 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2987 
2988 	/*
2989 	 * Receive Checksum Offload for TCP and UDP
2990 	 *
2991 	 * Checksum offloading is also enabled if multiple receive
2992 	 * queue is to be supported, since we need it to figure out
2993 	 * packet type.
2994 	 */
2995 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2996 	    sc->rx_ring_cnt > 1) {
2997 		uint32_t rxcsum;
2998 
2999 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
3000 
3001 		/*
3002 		 * NOTE:
3003 		 * PCSD must be enabled to enable multiple
3004 		 * receive queues.
3005 		 */
3006 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3007 			  E1000_RXCSUM_PCSD;
3008 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3009 	}
3010 
3011 	/*
3012 	 * Configure multiple receive queue (RSS)
3013 	 */
3014 	if (sc->rx_ring_cnt > 1) {
3015 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3016 		uint32_t reta;
3017 
3018 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3019 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3020 
3021 		/*
3022 		 * NOTE:
3023 		 * When we reach here, RSS has already been disabled
3024 		 * in emx_stop(), so we could safely configure RSS key
3025 		 * and redirect table.
3026 		 */
3027 
3028 		/*
3029 		 * Configure RSS key
3030 		 */
3031 		toeplitz_get_key(key, sizeof(key));
3032 		for (i = 0; i < EMX_NRSSRK; ++i) {
3033 			uint32_t rssrk;
3034 
3035 			rssrk = EMX_RSSRK_VAL(key, i);
3036 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3037 
3038 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3039 		}
3040 
3041 		/*
3042 		 * Configure RSS redirect table in following fashion:
3043 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3044 		 */
3045 		reta = 0;
3046 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
3047 			uint32_t q;
3048 
3049 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
3050 			reta |= q << (8 * i);
3051 		}
3052 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3053 
3054 		for (i = 0; i < EMX_NRETA; ++i)
3055 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
3056 
3057 		/*
3058 		 * Enable multiple receive queues.
3059 		 * Enable IPv4 RSS standard hash functions.
3060 		 * Disable RSS interrupt.
3061 		 */
3062 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3063 				E1000_MRQC_ENABLE_RSS_2Q |
3064 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3065 				E1000_MRQC_RSS_FIELD_IPV4);
3066 	}
3067 
3068 	/*
3069 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3070 	 * long latencies are observed, like Lenovo X60. This
3071 	 * change eliminates the problem, but since having positive
3072 	 * values in RDTR is a known source of problems on other
3073 	 * platforms another solution is being sought.
3074 	 */
3075 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3076 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3077 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3078 	}
3079 
3080 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3081 		struct emx_rxdata *rdata = &sc->rx_data[i];
3082 
3083 		/*
3084 		 * Setup the Base and Length of the Rx Descriptor Ring
3085 		 */
3086 		bus_addr = rdata->rx_desc_paddr;
3087 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3088 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3089 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3090 		    (uint32_t)(bus_addr >> 32));
3091 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3092 		    (uint32_t)bus_addr);
3093 
3094 		/*
3095 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3096 		 */
3097 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3098 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3099 		    sc->rx_data[i].num_rx_desc - 1);
3100 	}
3101 
3102 	if (sc->hw.mac.type >= e1000_pch2lan) {
3103 		if (ifp->if_mtu > ETHERMTU)
3104 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3105 		else
3106 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3107 	}
3108 
3109 	/* Setup the Receive Control Register */
3110 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3111 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3112 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3113 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3114 
3115 	/* Make sure VLAN Filters are off */
3116 	rctl &= ~E1000_RCTL_VFE;
3117 
3118 	/* Don't store bad paket */
3119 	rctl &= ~E1000_RCTL_SBP;
3120 
3121 	/* MCLBYTES */
3122 	rctl |= E1000_RCTL_SZ_2048;
3123 
3124 	if (ifp->if_mtu > ETHERMTU)
3125 		rctl |= E1000_RCTL_LPE;
3126 	else
3127 		rctl &= ~E1000_RCTL_LPE;
3128 
3129 	/* Enable Receives */
3130 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3131 }
3132 
3133 static void
3134 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3135 {
3136 	struct emx_rxbuf *rx_buffer;
3137 	int i;
3138 
3139 	/* Free Receive Descriptor ring */
3140 	if (rdata->rx_desc) {
3141 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3142 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3143 				rdata->rx_desc_dmap);
3144 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3145 
3146 		rdata->rx_desc = NULL;
3147 	}
3148 
3149 	if (rdata->rx_buf == NULL)
3150 		return;
3151 
3152 	for (i = 0; i < ndesc; i++) {
3153 		rx_buffer = &rdata->rx_buf[i];
3154 
3155 		KKASSERT(rx_buffer->m_head == NULL);
3156 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3157 	}
3158 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3159 	bus_dma_tag_destroy(rdata->rxtag);
3160 
3161 	kfree(rdata->rx_buf, M_DEVBUF);
3162 	rdata->rx_buf = NULL;
3163 }
3164 
3165 static void
3166 emx_rxeof(struct emx_rxdata *rdata, int count)
3167 {
3168 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3169 	uint32_t staterr;
3170 	emx_rxdesc_t *current_desc;
3171 	struct mbuf *mp;
3172 	int i, cpuid = mycpuid;
3173 
3174 	i = rdata->next_rx_desc_to_check;
3175 	current_desc = &rdata->rx_desc[i];
3176 	staterr = le32toh(current_desc->rxd_staterr);
3177 
3178 	if (!(staterr & E1000_RXD_STAT_DD))
3179 		return;
3180 
3181 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3182 		struct pktinfo *pi = NULL, pi0;
3183 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3184 		struct mbuf *m = NULL;
3185 		int eop, len;
3186 
3187 		logif(pkt_receive);
3188 
3189 		mp = rx_buf->m_head;
3190 
3191 		/*
3192 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3193 		 * needs to access the last received byte in the mbuf.
3194 		 */
3195 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3196 				BUS_DMASYNC_POSTREAD);
3197 
3198 		len = le16toh(current_desc->rxd_length);
3199 		if (staterr & E1000_RXD_STAT_EOP) {
3200 			count--;
3201 			eop = 1;
3202 		} else {
3203 			eop = 0;
3204 		}
3205 
3206 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3207 			uint16_t vlan = 0;
3208 			uint32_t mrq, rss_hash;
3209 
3210 			/*
3211 			 * Save several necessary information,
3212 			 * before emx_newbuf() destroy it.
3213 			 */
3214 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3215 				vlan = le16toh(current_desc->rxd_vlan);
3216 
3217 			mrq = le32toh(current_desc->rxd_mrq);
3218 			rss_hash = le32toh(current_desc->rxd_rss);
3219 
3220 			EMX_RSS_DPRINTF(rdata->sc, 10,
3221 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3222 			    rdata->idx, mrq, rss_hash);
3223 
3224 			if (emx_newbuf(rdata, i, 0) != 0) {
3225 				IFNET_STAT_INC(ifp, iqdrops, 1);
3226 				goto discard;
3227 			}
3228 
3229 			/* Assign correct length to the current fragment */
3230 			mp->m_len = len;
3231 
3232 			if (rdata->fmp == NULL) {
3233 				mp->m_pkthdr.len = len;
3234 				rdata->fmp = mp; /* Store the first mbuf */
3235 				rdata->lmp = mp;
3236 			} else {
3237 				/*
3238 				 * Chain mbuf's together
3239 				 */
3240 				rdata->lmp->m_next = mp;
3241 				rdata->lmp = rdata->lmp->m_next;
3242 				rdata->fmp->m_pkthdr.len += len;
3243 			}
3244 
3245 			if (eop) {
3246 				rdata->fmp->m_pkthdr.rcvif = ifp;
3247 				IFNET_STAT_INC(ifp, ipackets, 1);
3248 
3249 				if (ifp->if_capenable & IFCAP_RXCSUM)
3250 					emx_rxcsum(staterr, rdata->fmp);
3251 
3252 				if (staterr & E1000_RXD_STAT_VP) {
3253 					rdata->fmp->m_pkthdr.ether_vlantag =
3254 					    vlan;
3255 					rdata->fmp->m_flags |= M_VLANTAG;
3256 				}
3257 				m = rdata->fmp;
3258 				rdata->fmp = NULL;
3259 				rdata->lmp = NULL;
3260 
3261 				if (ifp->if_capenable & IFCAP_RSS) {
3262 					pi = emx_rssinfo(m, &pi0, mrq,
3263 							 rss_hash, staterr);
3264 				}
3265 #ifdef EMX_RSS_DEBUG
3266 				rdata->rx_pkts++;
3267 #endif
3268 			}
3269 		} else {
3270 			IFNET_STAT_INC(ifp, ierrors, 1);
3271 discard:
3272 			emx_setup_rxdesc(current_desc, rx_buf);
3273 			if (rdata->fmp != NULL) {
3274 				m_freem(rdata->fmp);
3275 				rdata->fmp = NULL;
3276 				rdata->lmp = NULL;
3277 			}
3278 			m = NULL;
3279 		}
3280 
3281 		if (m != NULL)
3282 			ifp->if_input(ifp, m, pi, cpuid);
3283 
3284 		/* Advance our pointers to the next descriptor. */
3285 		if (++i == rdata->num_rx_desc)
3286 			i = 0;
3287 
3288 		current_desc = &rdata->rx_desc[i];
3289 		staterr = le32toh(current_desc->rxd_staterr);
3290 	}
3291 	rdata->next_rx_desc_to_check = i;
3292 
3293 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3294 	if (--i < 0)
3295 		i = rdata->num_rx_desc - 1;
3296 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3297 }
3298 
3299 static void
3300 emx_enable_intr(struct emx_softc *sc)
3301 {
3302 	uint32_t ims_mask = IMS_ENABLE_MASK;
3303 
3304 	lwkt_serialize_handler_enable(&sc->main_serialize);
3305 
3306 #if 0
3307 	if (sc->hw.mac.type == e1000_82574) {
3308 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3309 		ims_mask |= EM_MSIX_MASK;
3310 	}
3311 #endif
3312 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3313 }
3314 
3315 static void
3316 emx_disable_intr(struct emx_softc *sc)
3317 {
3318 	if (sc->hw.mac.type == e1000_82574)
3319 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3320 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3321 
3322 	lwkt_serialize_handler_disable(&sc->main_serialize);
3323 }
3324 
3325 /*
3326  * Bit of a misnomer, what this really means is
3327  * to enable OS management of the system... aka
3328  * to disable special hardware management features
3329  */
3330 static void
3331 emx_get_mgmt(struct emx_softc *sc)
3332 {
3333 	/* A shared code workaround */
3334 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3335 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3336 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3337 
3338 		/* disable hardware interception of ARP */
3339 		manc &= ~(E1000_MANC_ARP_EN);
3340 
3341                 /* enable receiving management packets to the host */
3342 		manc |= E1000_MANC_EN_MNG2HOST;
3343 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3344 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3345 		manc2h |= E1000_MNG2HOST_PORT_623;
3346 		manc2h |= E1000_MNG2HOST_PORT_664;
3347 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3348 
3349 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3350 	}
3351 }
3352 
3353 /*
3354  * Give control back to hardware management
3355  * controller if there is one.
3356  */
3357 static void
3358 emx_rel_mgmt(struct emx_softc *sc)
3359 {
3360 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3361 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3362 
3363 		/* re-enable hardware interception of ARP */
3364 		manc |= E1000_MANC_ARP_EN;
3365 		manc &= ~E1000_MANC_EN_MNG2HOST;
3366 
3367 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3368 	}
3369 }
3370 
3371 /*
3372  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3373  * For ASF and Pass Through versions of f/w this means that
3374  * the driver is loaded.  For AMT version (only with 82573)
3375  * of the f/w this means that the network i/f is open.
3376  */
3377 static void
3378 emx_get_hw_control(struct emx_softc *sc)
3379 {
3380 	/* Let firmware know the driver has taken over */
3381 	if (sc->hw.mac.type == e1000_82573) {
3382 		uint32_t swsm;
3383 
3384 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3385 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3386 		    swsm | E1000_SWSM_DRV_LOAD);
3387 	} else {
3388 		uint32_t ctrl_ext;
3389 
3390 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3391 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3392 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3393 	}
3394 	sc->flags |= EMX_FLAG_HW_CTRL;
3395 }
3396 
3397 /*
3398  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3399  * For ASF and Pass Through versions of f/w this means that the
3400  * driver is no longer loaded.  For AMT version (only with 82573)
3401  * of the f/w this means that the network i/f is closed.
3402  */
3403 static void
3404 emx_rel_hw_control(struct emx_softc *sc)
3405 {
3406 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3407 		return;
3408 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3409 
3410 	/* Let firmware taken over control of h/w */
3411 	if (sc->hw.mac.type == e1000_82573) {
3412 		uint32_t swsm;
3413 
3414 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3415 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3416 		    swsm & ~E1000_SWSM_DRV_LOAD);
3417 	} else {
3418 		uint32_t ctrl_ext;
3419 
3420 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3421 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3422 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3423 	}
3424 }
3425 
3426 static int
3427 emx_is_valid_eaddr(const uint8_t *addr)
3428 {
3429 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3430 
3431 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3432 		return (FALSE);
3433 
3434 	return (TRUE);
3435 }
3436 
3437 /*
3438  * Enable PCI Wake On Lan capability
3439  */
3440 void
3441 emx_enable_wol(device_t dev)
3442 {
3443 	uint16_t cap, status;
3444 	uint8_t id;
3445 
3446 	/* First find the capabilities pointer*/
3447 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3448 
3449 	/* Read the PM Capabilities */
3450 	id = pci_read_config(dev, cap, 1);
3451 	if (id != PCIY_PMG)     /* Something wrong */
3452 		return;
3453 
3454 	/*
3455 	 * OK, we have the power capabilities,
3456 	 * so now get the status register
3457 	 */
3458 	cap += PCIR_POWER_STATUS;
3459 	status = pci_read_config(dev, cap, 2);
3460 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3461 	pci_write_config(dev, cap, status, 2);
3462 }
3463 
3464 static void
3465 emx_update_stats(struct emx_softc *sc)
3466 {
3467 	struct ifnet *ifp = &sc->arpcom.ac_if;
3468 
3469 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3470 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3471 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3472 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3473 	}
3474 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3475 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3476 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3477 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3478 
3479 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3480 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3481 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3482 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3483 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3484 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3485 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3486 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3487 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3488 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3489 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3490 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3491 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3492 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3493 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3494 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3495 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3496 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3497 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3498 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3499 
3500 	/* For the 64-bit byte counters the low dword must be read first. */
3501 	/* Both registers clear on the read of the high dword */
3502 
3503 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3504 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3505 
3506 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3507 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3508 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3509 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3510 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3511 
3512 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3513 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3514 
3515 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3516 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3517 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3518 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3519 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3520 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3521 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3522 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3523 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3524 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3525 
3526 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3527 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3528 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3529 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3530 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3531 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3532 
3533 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3534 
3535 	/* Rx Errors */
3536 	IFNET_STAT_SET(ifp, ierrors,
3537 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3538 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3539 
3540 	/* Tx Errors */
3541 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3542 }
3543 
3544 static void
3545 emx_print_debug_info(struct emx_softc *sc)
3546 {
3547 	device_t dev = sc->dev;
3548 	uint8_t *hw_addr = sc->hw.hw_addr;
3549 	int i;
3550 
3551 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3552 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3553 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3554 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3555 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3556 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3557 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3558 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3559 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3560 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3561 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3562 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3563 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3564 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3565 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3566 
3567 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3568 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3569 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3570 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3571 	}
3572 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3573 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3574 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3575 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3576 	}
3577 
3578 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3579 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3580 		    sc->tx_data[i].num_tx_desc_avail);
3581 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3582 		    sc->tx_data[i].tso_segments);
3583 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3584 		    sc->tx_data[i].tso_ctx_reused);
3585 	}
3586 }
3587 
3588 static void
3589 emx_print_hw_stats(struct emx_softc *sc)
3590 {
3591 	device_t dev = sc->dev;
3592 
3593 	device_printf(dev, "Excessive collisions = %lld\n",
3594 	    (long long)sc->stats.ecol);
3595 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3596 	device_printf(dev, "Symbol errors = %lld\n",
3597 	    (long long)sc->stats.symerrs);
3598 #endif
3599 	device_printf(dev, "Sequence errors = %lld\n",
3600 	    (long long)sc->stats.sec);
3601 	device_printf(dev, "Defer count = %lld\n",
3602 	    (long long)sc->stats.dc);
3603 	device_printf(dev, "Missed Packets = %lld\n",
3604 	    (long long)sc->stats.mpc);
3605 	device_printf(dev, "Receive No Buffers = %lld\n",
3606 	    (long long)sc->stats.rnbc);
3607 	/* RLEC is inaccurate on some hardware, calculate our own. */
3608 	device_printf(dev, "Receive Length Errors = %lld\n",
3609 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3610 	device_printf(dev, "Receive errors = %lld\n",
3611 	    (long long)sc->stats.rxerrc);
3612 	device_printf(dev, "Crc errors = %lld\n",
3613 	    (long long)sc->stats.crcerrs);
3614 	device_printf(dev, "Alignment errors = %lld\n",
3615 	    (long long)sc->stats.algnerrc);
3616 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3617 	    (long long)sc->stats.cexterr);
3618 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3619 	device_printf(dev, "XON Rcvd = %lld\n",
3620 	    (long long)sc->stats.xonrxc);
3621 	device_printf(dev, "XON Xmtd = %lld\n",
3622 	    (long long)sc->stats.xontxc);
3623 	device_printf(dev, "XOFF Rcvd = %lld\n",
3624 	    (long long)sc->stats.xoffrxc);
3625 	device_printf(dev, "XOFF Xmtd = %lld\n",
3626 	    (long long)sc->stats.xofftxc);
3627 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3628 	    (long long)sc->stats.gprc);
3629 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3630 	    (long long)sc->stats.gptc);
3631 }
3632 
3633 static void
3634 emx_print_nvm_info(struct emx_softc *sc)
3635 {
3636 	uint16_t eeprom_data;
3637 	int i, j, row = 0;
3638 
3639 	/* Its a bit crude, but it gets the job done */
3640 	kprintf("\nInterface EEPROM Dump:\n");
3641 	kprintf("Offset\n0x0000  ");
3642 	for (i = 0, j = 0; i < 32; i++, j++) {
3643 		if (j == 8) { /* Make the offset block */
3644 			j = 0; ++row;
3645 			kprintf("\n0x00%x0  ",row);
3646 		}
3647 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3648 		kprintf("%04x ", eeprom_data);
3649 	}
3650 	kprintf("\n");
3651 }
3652 
3653 static int
3654 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3655 {
3656 	struct emx_softc *sc;
3657 	struct ifnet *ifp;
3658 	int error, result;
3659 
3660 	result = -1;
3661 	error = sysctl_handle_int(oidp, &result, 0, req);
3662 	if (error || !req->newptr)
3663 		return (error);
3664 
3665 	sc = (struct emx_softc *)arg1;
3666 	ifp = &sc->arpcom.ac_if;
3667 
3668 	ifnet_serialize_all(ifp);
3669 
3670 	if (result == 1)
3671 		emx_print_debug_info(sc);
3672 
3673 	/*
3674 	 * This value will cause a hex dump of the
3675 	 * first 32 16-bit words of the EEPROM to
3676 	 * the screen.
3677 	 */
3678 	if (result == 2)
3679 		emx_print_nvm_info(sc);
3680 
3681 	ifnet_deserialize_all(ifp);
3682 
3683 	return (error);
3684 }
3685 
3686 static int
3687 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3688 {
3689 	int error, result;
3690 
3691 	result = -1;
3692 	error = sysctl_handle_int(oidp, &result, 0, req);
3693 	if (error || !req->newptr)
3694 		return (error);
3695 
3696 	if (result == 1) {
3697 		struct emx_softc *sc = (struct emx_softc *)arg1;
3698 		struct ifnet *ifp = &sc->arpcom.ac_if;
3699 
3700 		ifnet_serialize_all(ifp);
3701 		emx_print_hw_stats(sc);
3702 		ifnet_deserialize_all(ifp);
3703 	}
3704 	return (error);
3705 }
3706 
3707 static void
3708 emx_add_sysctl(struct emx_softc *sc)
3709 {
3710 	struct sysctl_ctx_list *ctx;
3711 	struct sysctl_oid *tree;
3712 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3713 	char pkt_desc[32];
3714 	int i;
3715 #endif
3716 
3717 	ctx = device_get_sysctl_ctx(sc->dev);
3718 	tree = device_get_sysctl_tree(sc->dev);
3719 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3720 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3721 			emx_sysctl_debug_info, "I", "Debug Information");
3722 
3723 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3724 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3725 			emx_sysctl_stats, "I", "Statistics");
3726 
3727 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3728 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3729 	    "# of RX descs");
3730 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3731 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3732 	    "# of TX descs");
3733 
3734 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3735 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3736 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3737 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3738 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3739 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3740 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3741 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3742 	    emx_sysctl_tx_wreg_nsegs, "I",
3743 	    "# segments sent before write to hardware register");
3744 
3745 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3746 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3747 	    "# of RX rings");
3748 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3749 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3750 	    "# of TX rings");
3751 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3752 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3753 	    "# of TX rings used");
3754 
3755 #ifdef IFPOLL_ENABLE
3756 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3757 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3758 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3759 			"NPOLLING RX cpu offset");
3760 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3761 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3762 			sc, 0, emx_sysctl_npoll_txoff, "I",
3763 			"NPOLLING TX cpu offset");
3764 #endif
3765 
3766 #ifdef EMX_RSS_DEBUG
3767 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3768 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3769 		       0, "RSS debug level");
3770 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3771 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3772 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3773 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3774 		    "RXed packets");
3775 	}
3776 #endif
3777 #ifdef EMX_TSS_DEBUG
3778 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3779 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3780 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3781 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3782 		    "TXed packets");
3783 	}
3784 #endif
3785 }
3786 
3787 static int
3788 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3789 {
3790 	struct emx_softc *sc = (void *)arg1;
3791 	struct ifnet *ifp = &sc->arpcom.ac_if;
3792 	int error, throttle;
3793 
3794 	throttle = sc->int_throttle_ceil;
3795 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3796 	if (error || req->newptr == NULL)
3797 		return error;
3798 	if (throttle < 0 || throttle > 1000000000 / 256)
3799 		return EINVAL;
3800 
3801 	if (throttle) {
3802 		/*
3803 		 * Set the interrupt throttling rate in 256ns increments,
3804 		 * recalculate sysctl value assignment to get exact frequency.
3805 		 */
3806 		throttle = 1000000000 / 256 / throttle;
3807 
3808 		/* Upper 16bits of ITR is reserved and should be zero */
3809 		if (throttle & 0xffff0000)
3810 			return EINVAL;
3811 	}
3812 
3813 	ifnet_serialize_all(ifp);
3814 
3815 	if (throttle)
3816 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3817 	else
3818 		sc->int_throttle_ceil = 0;
3819 
3820 	if (ifp->if_flags & IFF_RUNNING)
3821 		emx_set_itr(sc, throttle);
3822 
3823 	ifnet_deserialize_all(ifp);
3824 
3825 	if (bootverbose) {
3826 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3827 			  sc->int_throttle_ceil);
3828 	}
3829 	return 0;
3830 }
3831 
3832 static int
3833 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3834 {
3835 	struct emx_softc *sc = (void *)arg1;
3836 	struct ifnet *ifp = &sc->arpcom.ac_if;
3837 	struct emx_txdata *tdata = &sc->tx_data[0];
3838 	int error, segs;
3839 
3840 	segs = tdata->tx_intr_nsegs;
3841 	error = sysctl_handle_int(oidp, &segs, 0, req);
3842 	if (error || req->newptr == NULL)
3843 		return error;
3844 	if (segs <= 0)
3845 		return EINVAL;
3846 
3847 	ifnet_serialize_all(ifp);
3848 
3849 	/*
3850 	 * Don't allow tx_intr_nsegs to become:
3851 	 * o  Less the oact_tx_desc
3852 	 * o  Too large that no TX desc will cause TX interrupt to
3853 	 *    be generated (OACTIVE will never recover)
3854 	 * o  Too small that will cause tx_dd[] overflow
3855 	 */
3856 	if (segs < tdata->oact_tx_desc ||
3857 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3858 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3859 		error = EINVAL;
3860 	} else {
3861 		int i;
3862 
3863 		error = 0;
3864 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3865 			sc->tx_data[i].tx_intr_nsegs = segs;
3866 	}
3867 
3868 	ifnet_deserialize_all(ifp);
3869 
3870 	return error;
3871 }
3872 
3873 static int
3874 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3875 {
3876 	struct emx_softc *sc = (void *)arg1;
3877 	struct ifnet *ifp = &sc->arpcom.ac_if;
3878 	int error, nsegs, i;
3879 
3880 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3881 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3882 	if (error || req->newptr == NULL)
3883 		return error;
3884 
3885 	ifnet_serialize_all(ifp);
3886 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3887 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3888 	ifnet_deserialize_all(ifp);
3889 
3890 	return 0;
3891 }
3892 
3893 #ifdef IFPOLL_ENABLE
3894 
3895 static int
3896 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3897 {
3898 	struct emx_softc *sc = (void *)arg1;
3899 	struct ifnet *ifp = &sc->arpcom.ac_if;
3900 	int error, off;
3901 
3902 	off = sc->rx_npoll_off;
3903 	error = sysctl_handle_int(oidp, &off, 0, req);
3904 	if (error || req->newptr == NULL)
3905 		return error;
3906 	if (off < 0)
3907 		return EINVAL;
3908 
3909 	ifnet_serialize_all(ifp);
3910 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3911 		error = EINVAL;
3912 	} else {
3913 		error = 0;
3914 		sc->rx_npoll_off = off;
3915 	}
3916 	ifnet_deserialize_all(ifp);
3917 
3918 	return error;
3919 }
3920 
3921 static int
3922 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3923 {
3924 	struct emx_softc *sc = (void *)arg1;
3925 	struct ifnet *ifp = &sc->arpcom.ac_if;
3926 	int error, off;
3927 
3928 	off = sc->tx_npoll_off;
3929 	error = sysctl_handle_int(oidp, &off, 0, req);
3930 	if (error || req->newptr == NULL)
3931 		return error;
3932 	if (off < 0)
3933 		return EINVAL;
3934 
3935 	ifnet_serialize_all(ifp);
3936 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3937 		error = EINVAL;
3938 	} else {
3939 		error = 0;
3940 		sc->tx_npoll_off = off;
3941 	}
3942 	ifnet_deserialize_all(ifp);
3943 
3944 	return error;
3945 }
3946 
3947 #endif	/* IFPOLL_ENABLE */
3948 
3949 static int
3950 emx_dma_alloc(struct emx_softc *sc)
3951 {
3952 	int error, i;
3953 
3954 	/*
3955 	 * Create top level busdma tag
3956 	 */
3957 	error = bus_dma_tag_create(NULL, 1, 0,
3958 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3959 			NULL, NULL,
3960 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3961 			0, &sc->parent_dtag);
3962 	if (error) {
3963 		device_printf(sc->dev, "could not create top level DMA tag\n");
3964 		return error;
3965 	}
3966 
3967 	/*
3968 	 * Allocate transmit descriptors ring and buffers
3969 	 */
3970 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3971 		error = emx_create_tx_ring(&sc->tx_data[i]);
3972 		if (error) {
3973 			device_printf(sc->dev,
3974 			    "Could not setup transmit structures\n");
3975 			return error;
3976 		}
3977 	}
3978 
3979 	/*
3980 	 * Allocate receive descriptors ring and buffers
3981 	 */
3982 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3983 		error = emx_create_rx_ring(&sc->rx_data[i]);
3984 		if (error) {
3985 			device_printf(sc->dev,
3986 			    "Could not setup receive structures\n");
3987 			return error;
3988 		}
3989 	}
3990 	return 0;
3991 }
3992 
3993 static void
3994 emx_dma_free(struct emx_softc *sc)
3995 {
3996 	int i;
3997 
3998 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3999 		emx_destroy_tx_ring(&sc->tx_data[i],
4000 		    sc->tx_data[i].num_tx_desc);
4001 	}
4002 
4003 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4004 		emx_destroy_rx_ring(&sc->rx_data[i],
4005 		    sc->rx_data[i].num_rx_desc);
4006 	}
4007 
4008 	/* Free top level busdma tag */
4009 	if (sc->parent_dtag != NULL)
4010 		bus_dma_tag_destroy(sc->parent_dtag);
4011 }
4012 
4013 static void
4014 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4015 {
4016 	struct emx_softc *sc = ifp->if_softc;
4017 
4018 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4019 }
4020 
4021 static void
4022 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4023 {
4024 	struct emx_softc *sc = ifp->if_softc;
4025 
4026 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4027 }
4028 
4029 static int
4030 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4031 {
4032 	struct emx_softc *sc = ifp->if_softc;
4033 
4034 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4035 }
4036 
4037 static void
4038 emx_serialize_skipmain(struct emx_softc *sc)
4039 {
4040 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4041 }
4042 
4043 static void
4044 emx_deserialize_skipmain(struct emx_softc *sc)
4045 {
4046 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4047 }
4048 
4049 #ifdef INVARIANTS
4050 
4051 static void
4052 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4053     boolean_t serialized)
4054 {
4055 	struct emx_softc *sc = ifp->if_softc;
4056 
4057 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4058 	    slz, serialized);
4059 }
4060 
4061 #endif	/* INVARIANTS */
4062 
4063 #ifdef IFPOLL_ENABLE
4064 
4065 static void
4066 emx_npoll_status(struct ifnet *ifp)
4067 {
4068 	struct emx_softc *sc = ifp->if_softc;
4069 	uint32_t reg_icr;
4070 
4071 	ASSERT_SERIALIZED(&sc->main_serialize);
4072 
4073 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4074 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4075 		callout_stop(&sc->timer);
4076 		sc->hw.mac.get_link_status = 1;
4077 		emx_update_link_status(sc);
4078 		callout_reset(&sc->timer, hz, emx_timer, sc);
4079 	}
4080 }
4081 
4082 static void
4083 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4084 {
4085 	struct emx_txdata *tdata = arg;
4086 
4087 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4088 
4089 	emx_txeof(tdata);
4090 	if (!ifsq_is_empty(tdata->ifsq))
4091 		ifsq_devstart(tdata->ifsq);
4092 }
4093 
4094 static void
4095 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4096 {
4097 	struct emx_rxdata *rdata = arg;
4098 
4099 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4100 
4101 	emx_rxeof(rdata, cycle);
4102 }
4103 
4104 static void
4105 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4106 {
4107 	struct emx_softc *sc = ifp->if_softc;
4108 	int i, txr_cnt;
4109 
4110 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4111 
4112 	if (info) {
4113 		int off;
4114 
4115 		info->ifpi_status.status_func = emx_npoll_status;
4116 		info->ifpi_status.serializer = &sc->main_serialize;
4117 
4118 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4119 		off = sc->tx_npoll_off;
4120 		for (i = 0; i < txr_cnt; ++i) {
4121 			struct emx_txdata *tdata = &sc->tx_data[i];
4122 			int idx = i + off;
4123 
4124 			KKASSERT(idx < ncpus2);
4125 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4126 			info->ifpi_tx[idx].arg = tdata;
4127 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4128 			ifsq_set_cpuid(tdata->ifsq, idx);
4129 		}
4130 
4131 		off = sc->rx_npoll_off;
4132 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4133 			struct emx_rxdata *rdata = &sc->rx_data[i];
4134 			int idx = i + off;
4135 
4136 			KKASSERT(idx < ncpus2);
4137 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4138 			info->ifpi_rx[idx].arg = rdata;
4139 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4140 		}
4141 
4142 		if (ifp->if_flags & IFF_RUNNING) {
4143 			if (txr_cnt == sc->tx_ring_inuse)
4144 				emx_disable_intr(sc);
4145 			else
4146 				emx_init(sc);
4147 		}
4148 	} else {
4149 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4150 			struct emx_txdata *tdata = &sc->tx_data[i];
4151 
4152 			ifsq_set_cpuid(tdata->ifsq,
4153 			    rman_get_cpuid(sc->intr_res));
4154 		}
4155 
4156 		if (ifp->if_flags & IFF_RUNNING) {
4157 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4158 			if (txr_cnt == sc->tx_ring_inuse)
4159 				emx_enable_intr(sc);
4160 			else
4161 				emx_init(sc);
4162 		}
4163 	}
4164 }
4165 
4166 #endif	/* IFPOLL_ENABLE */
4167 
4168 static void
4169 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4170 {
4171 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4172 	if (sc->hw.mac.type == e1000_82574) {
4173 		int i;
4174 
4175 		/*
4176 		 * When using MSIX interrupts we need to
4177 		 * throttle using the EITR register
4178 		 */
4179 		for (i = 0; i < 4; ++i)
4180 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4181 	}
4182 }
4183 
4184 /*
4185  * Disable the L0s, 82574L Errata #20
4186  */
4187 static void
4188 emx_disable_aspm(struct emx_softc *sc)
4189 {
4190 	uint16_t link_cap, link_ctrl, disable;
4191 	uint8_t pcie_ptr, reg;
4192 	device_t dev = sc->dev;
4193 
4194 	switch (sc->hw.mac.type) {
4195 	case e1000_82571:
4196 	case e1000_82572:
4197 	case e1000_82573:
4198 		/*
4199 		 * 82573 specification update
4200 		 * errata #8 disable L0s
4201 		 * errata #41 disable L1
4202 		 *
4203 		 * 82571/82572 specification update
4204 		 # errata #13 disable L1
4205 		 * errata #68 disable L0s
4206 		 */
4207 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4208 		break;
4209 
4210 	case e1000_82574:
4211 		/*
4212 		 * 82574 specification update errata #20
4213 		 *
4214 		 * There is no need to disable L1
4215 		 */
4216 		disable = PCIEM_LNKCTL_ASPM_L0S;
4217 		break;
4218 
4219 	default:
4220 		return;
4221 	}
4222 
4223 	pcie_ptr = pci_get_pciecap_ptr(dev);
4224 	if (pcie_ptr == 0)
4225 		return;
4226 
4227 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4228 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4229 		return;
4230 
4231 	if (bootverbose)
4232 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4233 
4234 	reg = pcie_ptr + PCIER_LINKCTRL;
4235 	link_ctrl = pci_read_config(dev, reg, 2);
4236 	link_ctrl &= ~disable;
4237 	pci_write_config(dev, reg, link_ctrl, 2);
4238 }
4239 
4240 static int
4241 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4242 {
4243 	int iphlen, hoff, thoff, ex = 0;
4244 	struct mbuf *m;
4245 	struct ip *ip;
4246 
4247 	m = *mp;
4248 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4249 
4250 	iphlen = m->m_pkthdr.csum_iphlen;
4251 	thoff = m->m_pkthdr.csum_thlen;
4252 	hoff = m->m_pkthdr.csum_lhlen;
4253 
4254 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4255 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4256 	KASSERT(hoff > 0, ("invalid ether hlen"));
4257 
4258 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4259 		ex = 4;
4260 
4261 	if (m->m_len < hoff + iphlen + thoff + ex) {
4262 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4263 		if (m == NULL) {
4264 			*mp = NULL;
4265 			return ENOBUFS;
4266 		}
4267 		*mp = m;
4268 	}
4269 	ip = mtodoff(m, struct ip *, hoff);
4270 	ip->ip_len = 0;
4271 
4272 	return 0;
4273 }
4274 
4275 static int
4276 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4277     uint32_t *txd_upper, uint32_t *txd_lower)
4278 {
4279 	struct e1000_context_desc *TXD;
4280 	int hoff, iphlen, thoff, hlen;
4281 	int mss, pktlen, curr_txd;
4282 
4283 #ifdef EMX_TSO_DEBUG
4284 	tdata->tso_segments++;
4285 #endif
4286 
4287 	iphlen = mp->m_pkthdr.csum_iphlen;
4288 	thoff = mp->m_pkthdr.csum_thlen;
4289 	hoff = mp->m_pkthdr.csum_lhlen;
4290 	mss = mp->m_pkthdr.tso_segsz;
4291 	pktlen = mp->m_pkthdr.len;
4292 
4293 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4294 	    tdata->csum_flags == CSUM_TSO &&
4295 	    tdata->csum_iphlen == iphlen &&
4296 	    tdata->csum_lhlen == hoff &&
4297 	    tdata->csum_thlen == thoff &&
4298 	    tdata->csum_mss == mss &&
4299 	    tdata->csum_pktlen == pktlen) {
4300 		*txd_upper = tdata->csum_txd_upper;
4301 		*txd_lower = tdata->csum_txd_lower;
4302 #ifdef EMX_TSO_DEBUG
4303 		tdata->tso_ctx_reused++;
4304 #endif
4305 		return 0;
4306 	}
4307 	hlen = hoff + iphlen + thoff;
4308 
4309 	/*
4310 	 * Setup a new TSO context.
4311 	 */
4312 
4313 	curr_txd = tdata->next_avail_tx_desc;
4314 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4315 
4316 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4317 		     E1000_TXD_DTYP_D |		/* Data descr type */
4318 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4319 
4320 	/* IP and/or TCP header checksum calculation and insertion. */
4321 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4322 
4323 	/*
4324 	 * Start offset for header checksum calculation.
4325 	 * End offset for header checksum calculation.
4326 	 * Offset of place put the checksum.
4327 	 */
4328 	TXD->lower_setup.ip_fields.ipcss = hoff;
4329 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4330 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4331 
4332 	/*
4333 	 * Start offset for payload checksum calculation.
4334 	 * End offset for payload checksum calculation.
4335 	 * Offset of place to put the checksum.
4336 	 */
4337 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4338 	TXD->upper_setup.tcp_fields.tucse = 0;
4339 	TXD->upper_setup.tcp_fields.tucso =
4340 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4341 
4342 	/*
4343 	 * Payload size per packet w/o any headers.
4344 	 * Length of all headers up to payload.
4345 	 */
4346 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4347 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4348 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4349 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4350 				E1000_TXD_CMD_TSE |	/* TSE context */
4351 				E1000_TXD_CMD_IP |	/* Do IP csum */
4352 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4353 				(pktlen - hlen));	/* Total len */
4354 
4355 	/* Save the information for this TSO context */
4356 	tdata->csum_flags = CSUM_TSO;
4357 	tdata->csum_lhlen = hoff;
4358 	tdata->csum_iphlen = iphlen;
4359 	tdata->csum_thlen = thoff;
4360 	tdata->csum_mss = mss;
4361 	tdata->csum_pktlen = pktlen;
4362 	tdata->csum_txd_upper = *txd_upper;
4363 	tdata->csum_txd_lower = *txd_lower;
4364 
4365 	if (++curr_txd == tdata->num_tx_desc)
4366 		curr_txd = 0;
4367 
4368 	KKASSERT(tdata->num_tx_desc_avail > 0);
4369 	tdata->num_tx_desc_avail--;
4370 
4371 	tdata->next_avail_tx_desc = curr_txd;
4372 	return 1;
4373 }
4374 
4375 static int
4376 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4377 {
4378 	if (polling)
4379 		return sc->tx_ring_cnt;
4380 	else
4381 		return 1;
4382 }
4383