xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 38b5d46c)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/ig_hal/e1000_dragonfly.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #define DEBUG_HW 0
115 
116 #ifdef EMX_RSS_DEBUG
117 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
118 do { \
119 	if (sc->rss_debug >= lvl) \
120 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
121 } while (0)
122 #else	/* !EMX_RSS_DEBUG */
123 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
124 #endif	/* EMX_RSS_DEBUG */
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	EMX_DEVICE(PCH_LPT_I217_LM),
166 	EMX_DEVICE(PCH_LPT_I217_V),
167 	EMX_DEVICE(PCH_LPTLP_I218_LM),
168 	EMX_DEVICE(PCH_LPTLP_I218_V),
169 	EMX_DEVICE(PCH_I218_LM2),
170 	EMX_DEVICE(PCH_I218_V2),
171 	EMX_DEVICE(PCH_I218_LM3),
172 	EMX_DEVICE(PCH_I218_V3),
173 	EMX_DEVICE(PCH_SPT_I219_LM),
174 	EMX_DEVICE(PCH_SPT_I219_V),
175 	EMX_DEVICE(PCH_SPT_I219_LM2),
176 	EMX_DEVICE(PCH_SPT_I219_V2),
177 
178 	/* required last entry */
179 	EMX_DEVICE_NULL
180 };
181 
182 static int	emx_probe(device_t);
183 static int	emx_attach(device_t);
184 static int	emx_detach(device_t);
185 static int	emx_shutdown(device_t);
186 static int	emx_suspend(device_t);
187 static int	emx_resume(device_t);
188 
189 static void	emx_init(void *);
190 static void	emx_stop(struct emx_softc *);
191 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
192 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
193 #ifdef IFPOLL_ENABLE
194 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
195 static void	emx_npoll_status(struct ifnet *);
196 static void	emx_npoll_tx(struct ifnet *, void *, int);
197 static void	emx_npoll_rx(struct ifnet *, void *, int);
198 #endif
199 static void	emx_watchdog(struct ifaltq_subque *);
200 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
201 static int	emx_media_change(struct ifnet *);
202 static void	emx_timer(void *);
203 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
204 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
205 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
206 #ifdef INVARIANTS
207 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
208 		    boolean_t);
209 #endif
210 
211 static void	emx_intr(void *);
212 static void	emx_intr_mask(void *);
213 static void	emx_intr_body(struct emx_softc *, boolean_t);
214 static void	emx_rxeof(struct emx_rxdata *, int);
215 static void	emx_txeof(struct emx_txdata *);
216 static void	emx_tx_collect(struct emx_txdata *);
217 static void	emx_tx_purge(struct emx_softc *);
218 static void	emx_enable_intr(struct emx_softc *);
219 static void	emx_disable_intr(struct emx_softc *);
220 
221 static int	emx_dma_alloc(struct emx_softc *);
222 static void	emx_dma_free(struct emx_softc *);
223 static void	emx_init_tx_ring(struct emx_txdata *);
224 static int	emx_init_rx_ring(struct emx_rxdata *);
225 static void	emx_free_tx_ring(struct emx_txdata *);
226 static void	emx_free_rx_ring(struct emx_rxdata *);
227 static int	emx_create_tx_ring(struct emx_txdata *);
228 static int	emx_create_rx_ring(struct emx_rxdata *);
229 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
230 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
231 static int	emx_newbuf(struct emx_rxdata *, int, int);
232 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
233 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
234 		    uint32_t *, uint32_t *);
235 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
236 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
237 		    uint32_t *, uint32_t *);
238 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
239 
240 static int 	emx_is_valid_eaddr(const uint8_t *);
241 static int	emx_reset(struct emx_softc *);
242 static void	emx_setup_ifp(struct emx_softc *);
243 static void	emx_init_tx_unit(struct emx_softc *);
244 static void	emx_init_rx_unit(struct emx_softc *);
245 static void	emx_update_stats(struct emx_softc *);
246 static void	emx_set_promisc(struct emx_softc *);
247 static void	emx_disable_promisc(struct emx_softc *);
248 static void	emx_set_multi(struct emx_softc *);
249 static void	emx_update_link_status(struct emx_softc *);
250 static void	emx_smartspeed(struct emx_softc *);
251 static void	emx_set_itr(struct emx_softc *, uint32_t);
252 static void	emx_disable_aspm(struct emx_softc *);
253 
254 static void	emx_print_debug_info(struct emx_softc *);
255 static void	emx_print_nvm_info(struct emx_softc *);
256 static void	emx_print_hw_stats(struct emx_softc *);
257 
258 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
259 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
260 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
261 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
262 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
263 #ifdef IFPOLL_ENABLE
264 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
265 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
266 #endif
267 static void	emx_add_sysctl(struct emx_softc *);
268 
269 static void	emx_serialize_skipmain(struct emx_softc *);
270 static void	emx_deserialize_skipmain(struct emx_softc *);
271 
272 /* Management and WOL Support */
273 static void	emx_get_mgmt(struct emx_softc *);
274 static void	emx_rel_mgmt(struct emx_softc *);
275 static void	emx_get_hw_control(struct emx_softc *);
276 static void	emx_rel_hw_control(struct emx_softc *);
277 static void	emx_enable_wol(device_t);
278 
279 static device_method_t emx_methods[] = {
280 	/* Device interface */
281 	DEVMETHOD(device_probe,		emx_probe),
282 	DEVMETHOD(device_attach,	emx_attach),
283 	DEVMETHOD(device_detach,	emx_detach),
284 	DEVMETHOD(device_shutdown,	emx_shutdown),
285 	DEVMETHOD(device_suspend,	emx_suspend),
286 	DEVMETHOD(device_resume,	emx_resume),
287 	DEVMETHOD_END
288 };
289 
290 static driver_t emx_driver = {
291 	"emx",
292 	emx_methods,
293 	sizeof(struct emx_softc),
294 };
295 
296 static devclass_t emx_devclass;
297 
298 DECLARE_DUMMY_MODULE(if_emx);
299 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
300 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
301 
302 /*
303  * Tunables
304  */
305 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
306 static int	emx_rxd = EMX_DEFAULT_RXD;
307 static int	emx_txd = EMX_DEFAULT_TXD;
308 static int	emx_smart_pwr_down = 0;
309 static int	emx_rxr = 0;
310 static int	emx_txr = 1;
311 
312 /* Controls whether promiscuous also shows bad packets */
313 static int	emx_debug_sbp = 0;
314 
315 static int	emx_82573_workaround = 1;
316 static int	emx_msi_enable = 1;
317 
318 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
319 
320 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
321 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
322 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
323 TUNABLE_INT("hw.emx.txd", &emx_txd);
324 TUNABLE_INT("hw.emx.txr", &emx_txr);
325 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
326 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
327 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
328 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
329 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
330 
331 /* Global used in WOL setup with multiport cards */
332 static int	emx_global_quad_port_a = 0;
333 
334 /* Set this to one to display debug statistics */
335 static int	emx_display_debug_stats = 0;
336 
337 #if !defined(KTR_IF_EMX)
338 #define KTR_IF_EMX	KTR_ALL
339 #endif
340 KTR_INFO_MASTER(if_emx);
341 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
342 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
343 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
344 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
345 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
346 #define logif(name)	KTR_LOG(if_emx_ ## name)
347 
348 static __inline void
349 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
350 {
351 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
352 	/* DD bit must be cleared */
353 	rxd->rxd_staterr = 0;
354 }
355 
356 static __inline void
357 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
358 {
359 	/* Ignore Checksum bit is set */
360 	if (staterr & E1000_RXD_STAT_IXSM)
361 		return;
362 
363 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
364 	    E1000_RXD_STAT_IPCS)
365 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
366 
367 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
368 	    E1000_RXD_STAT_TCPCS) {
369 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
370 					   CSUM_PSEUDO_HDR |
371 					   CSUM_FRAG_NOT_CHECKED;
372 		mp->m_pkthdr.csum_data = htons(0xffff);
373 	}
374 }
375 
376 static __inline struct pktinfo *
377 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
378 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
379 {
380 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
381 	case EMX_RXDMRQ_IPV4_TCP:
382 		pi->pi_netisr = NETISR_IP;
383 		pi->pi_flags = 0;
384 		pi->pi_l3proto = IPPROTO_TCP;
385 		break;
386 
387 	case EMX_RXDMRQ_IPV6_TCP:
388 		pi->pi_netisr = NETISR_IPV6;
389 		pi->pi_flags = 0;
390 		pi->pi_l3proto = IPPROTO_TCP;
391 		break;
392 
393 	case EMX_RXDMRQ_IPV4:
394 		if (staterr & E1000_RXD_STAT_IXSM)
395 			return NULL;
396 
397 		if ((staterr &
398 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
399 		    E1000_RXD_STAT_TCPCS) {
400 			pi->pi_netisr = NETISR_IP;
401 			pi->pi_flags = 0;
402 			pi->pi_l3proto = IPPROTO_UDP;
403 			break;
404 		}
405 		/* FALL THROUGH */
406 	default:
407 		return NULL;
408 	}
409 
410 	m_sethash(m, toeplitz_hash(hash));
411 	return pi;
412 }
413 
414 static int
415 emx_probe(device_t dev)
416 {
417 	const struct emx_device *d;
418 	uint16_t vid, did;
419 
420 	vid = pci_get_vendor(dev);
421 	did = pci_get_device(dev);
422 
423 	for (d = emx_devices; d->desc != NULL; ++d) {
424 		if (vid == d->vid && did == d->did) {
425 			device_set_desc(dev, d->desc);
426 			device_set_async_attach(dev, TRUE);
427 			return 0;
428 		}
429 	}
430 	return ENXIO;
431 }
432 
433 static int
434 emx_attach(device_t dev)
435 {
436 	struct emx_softc *sc = device_get_softc(dev);
437 	int error = 0, i, throttle, msi_enable, tx_ring_max;
438 	u_int intr_flags;
439 	uint16_t eeprom_data, device_id, apme_mask;
440 	driver_intr_t *intr_func;
441 	char flowctrl[IFM_ETH_FC_STRLEN];
442 #ifdef IFPOLL_ENABLE
443 	int offset, offset_def;
444 #endif
445 
446 	/*
447 	 * Setup RX rings
448 	 */
449 	for (i = 0; i < EMX_NRX_RING; ++i) {
450 		sc->rx_data[i].sc = sc;
451 		sc->rx_data[i].idx = i;
452 	}
453 
454 	/*
455 	 * Setup TX ring
456 	 */
457 	for (i = 0; i < EMX_NTX_RING; ++i) {
458 		sc->tx_data[i].sc = sc;
459 		sc->tx_data[i].idx = i;
460 	}
461 
462 	/*
463 	 * Initialize serializers
464 	 */
465 	lwkt_serialize_init(&sc->main_serialize);
466 	for (i = 0; i < EMX_NTX_RING; ++i)
467 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
468 	for (i = 0; i < EMX_NRX_RING; ++i)
469 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
470 
471 	/*
472 	 * Initialize serializer array
473 	 */
474 	i = 0;
475 
476 	KKASSERT(i < EMX_NSERIALIZE);
477 	sc->serializes[i++] = &sc->main_serialize;
478 
479 	KKASSERT(i < EMX_NSERIALIZE);
480 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
481 	KKASSERT(i < EMX_NSERIALIZE);
482 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
483 
484 	KKASSERT(i < EMX_NSERIALIZE);
485 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
486 	KKASSERT(i < EMX_NSERIALIZE);
487 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
488 
489 	KKASSERT(i == EMX_NSERIALIZE);
490 
491 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
492 	    emx_media_change, emx_media_status);
493 	callout_init_mp(&sc->timer);
494 
495 	sc->dev = sc->osdep.dev = dev;
496 
497 	/*
498 	 * Determine hardware and mac type
499 	 */
500 	sc->hw.vendor_id = pci_get_vendor(dev);
501 	sc->hw.device_id = pci_get_device(dev);
502 	sc->hw.revision_id = pci_get_revid(dev);
503 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
504 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
505 
506 	if (e1000_set_mac_type(&sc->hw))
507 		return ENXIO;
508 
509 	/* Enable bus mastering */
510 	pci_enable_busmaster(dev);
511 
512 	/*
513 	 * Allocate IO memory
514 	 */
515 	sc->memory_rid = EMX_BAR_MEM;
516 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
517 					    &sc->memory_rid, RF_ACTIVE);
518 	if (sc->memory == NULL) {
519 		device_printf(dev, "Unable to allocate bus resource: memory\n");
520 		error = ENXIO;
521 		goto fail;
522 	}
523 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
524 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
525 
526 	/* XXX This is quite goofy, it is not actually used */
527 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
528 
529 	/*
530 	 * Don't enable MSI-X on 82574, see:
531 	 * 82574 specification update errata #15
532 	 *
533 	 * Don't enable MSI on 82571/82572, see:
534 	 * 82571/82572 specification update errata #63
535 	 */
536 	msi_enable = emx_msi_enable;
537 	if (msi_enable &&
538 	    (sc->hw.mac.type == e1000_82571 ||
539 	     sc->hw.mac.type == e1000_82572))
540 		msi_enable = 0;
541 
542 	/*
543 	 * Allocate interrupt
544 	 */
545 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
546 	    &sc->intr_rid, &intr_flags);
547 
548 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
549 		int unshared;
550 
551 		unshared = device_getenv_int(dev, "irq.unshared", 0);
552 		if (!unshared) {
553 			sc->flags |= EMX_FLAG_SHARED_INTR;
554 			if (bootverbose)
555 				device_printf(dev, "IRQ shared\n");
556 		} else {
557 			intr_flags &= ~RF_SHAREABLE;
558 			if (bootverbose)
559 				device_printf(dev, "IRQ unshared\n");
560 		}
561 	}
562 
563 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
564 	    intr_flags);
565 	if (sc->intr_res == NULL) {
566 		device_printf(dev, "Unable to allocate bus resource: "
567 		    "interrupt\n");
568 		error = ENXIO;
569 		goto fail;
570 	}
571 
572 	/* Save PCI command register for Shared Code */
573 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
574 	sc->hw.back = &sc->osdep;
575 
576 	/*
577 	 * For I217/I218, we need to map the flash memory and this
578 	 * must happen after the MAC is identified.
579 	 */
580 	if (sc->hw.mac.type == e1000_pch_lpt) {
581 		sc->flash_rid = EMX_BAR_FLASH;
582 
583 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
584 		    &sc->flash_rid, RF_ACTIVE);
585 		if (sc->flash == NULL) {
586 			device_printf(dev, "Mapping of Flash failed\n");
587 			error = ENXIO;
588 			goto fail;
589 		}
590 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
591 		sc->osdep.flash_bus_space_handle =
592 		    rman_get_bushandle(sc->flash);
593 
594 		/*
595 		 * This is used in the shared code
596 		 * XXX this goof is actually not used.
597 		 */
598 		sc->hw.flash_address = (uint8_t *)sc->flash;
599 	}
600 
601 	/* Do Shared Code initialization */
602 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
603 		device_printf(dev, "Setup of Shared code failed\n");
604 		error = ENXIO;
605 		goto fail;
606 	}
607 	e1000_get_bus_info(&sc->hw);
608 
609 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
610 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
611 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
612 
613 	/*
614 	 * Interrupt throttle rate
615 	 */
616 	throttle = device_getenv_int(dev, "int_throttle_ceil",
617 	    emx_int_throttle_ceil);
618 	if (throttle == 0) {
619 		sc->int_throttle_ceil = 0;
620 	} else {
621 		if (throttle < 0)
622 			throttle = EMX_DEFAULT_ITR;
623 
624 		/* Recalculate the tunable value to get the exact frequency. */
625 		throttle = 1000000000 / 256 / throttle;
626 
627 		/* Upper 16bits of ITR is reserved and should be zero */
628 		if (throttle & 0xffff0000)
629 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
630 
631 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
632 	}
633 
634 	e1000_init_script_state_82541(&sc->hw, TRUE);
635 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
636 
637 	/* Copper options */
638 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
639 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
640 		sc->hw.phy.disable_polarity_correction = FALSE;
641 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
642 	}
643 
644 	/* Set the frame limits assuming standard ethernet sized frames. */
645 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
646 
647 	/* This controls when hardware reports transmit completion status. */
648 	sc->hw.mac.report_tx_early = 1;
649 
650 	/* Calculate # of RX rings */
651 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
652 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
653 
654 	/*
655 	 * Calculate # of TX rings
656 	 *
657 	 * XXX
658 	 * I217/I218 claims to have 2 TX queues
659 	 *
660 	 * NOTE:
661 	 * Don't enable multiple TX queues on 82574; it always gives
662 	 * watchdog timeout on TX queue0, when multiple TCP streams are
663 	 * received.  It was originally suspected that the hardware TX
664 	 * checksum offloading caused this watchdog timeout, since only
665 	 * TCP ACKs are sent during TCP receiving tests.  However, even
666 	 * if the hardware TX checksum offloading is disable, TX queue0
667 	 * still will give watchdog.
668 	 */
669 	tx_ring_max = 1;
670 	if (sc->hw.mac.type == e1000_82571 ||
671 	    sc->hw.mac.type == e1000_82572 ||
672 	    sc->hw.mac.type == e1000_80003es2lan ||
673 	    sc->hw.mac.type == e1000_pch_lpt ||
674 	    sc->hw.mac.type == e1000_pch_spt ||
675 	    sc->hw.mac.type == e1000_82574)
676 		tx_ring_max = EMX_NTX_RING;
677 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
678 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
679 
680 	/* Allocate RX/TX rings' busdma(9) stuffs */
681 	error = emx_dma_alloc(sc);
682 	if (error)
683 		goto fail;
684 
685 	/* Allocate multicast array memory. */
686 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
687 	    M_DEVBUF, M_WAITOK);
688 
689 	/* Indicate SOL/IDER usage */
690 	if (e1000_check_reset_block(&sc->hw)) {
691 		device_printf(dev,
692 		    "PHY reset is blocked due to SOL/IDER session.\n");
693 	}
694 
695 	/* Disable EEE on I217/I218 */
696 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
697 
698 	/*
699 	 * Start from a known state, this is important in reading the
700 	 * nvm and mac from that.
701 	 */
702 	e1000_reset_hw(&sc->hw);
703 
704 	/* Make sure we have a good EEPROM before we read from it */
705 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
706 		/*
707 		 * Some PCI-E parts fail the first check due to
708 		 * the link being in sleep state, call it again,
709 		 * if it fails a second time its a real issue.
710 		 */
711 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
712 			device_printf(dev,
713 			    "The EEPROM Checksum Is Not Valid\n");
714 			error = EIO;
715 			goto fail;
716 		}
717 	}
718 
719 	/* Copy the permanent MAC address out of the EEPROM */
720 	if (e1000_read_mac_addr(&sc->hw) < 0) {
721 		device_printf(dev, "EEPROM read error while reading MAC"
722 		    " address\n");
723 		error = EIO;
724 		goto fail;
725 	}
726 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
727 		device_printf(dev, "Invalid MAC address\n");
728 		error = EIO;
729 		goto fail;
730 	}
731 
732 	/* Disable ULP support */
733 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
734 
735 	/* Determine if we have to control management hardware */
736 	if (e1000_enable_mng_pass_thru(&sc->hw))
737 		sc->flags |= EMX_FLAG_HAS_MGMT;
738 
739 	/*
740 	 * Setup Wake-on-Lan
741 	 */
742 	apme_mask = EMX_EEPROM_APME;
743 	eeprom_data = 0;
744 	switch (sc->hw.mac.type) {
745 	case e1000_82573:
746 		sc->flags |= EMX_FLAG_HAS_AMT;
747 		/* FALL THROUGH */
748 
749 	case e1000_82571:
750 	case e1000_82572:
751 	case e1000_80003es2lan:
752 		if (sc->hw.bus.func == 1) {
753 			e1000_read_nvm(&sc->hw,
754 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
755 		} else {
756 			e1000_read_nvm(&sc->hw,
757 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
758 		}
759 		break;
760 
761 	default:
762 		e1000_read_nvm(&sc->hw,
763 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
764 		break;
765 	}
766 	if (eeprom_data & apme_mask)
767 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
768 
769 	/*
770          * We have the eeprom settings, now apply the special cases
771          * where the eeprom may be wrong or the board won't support
772          * wake on lan on a particular port
773 	 */
774 	device_id = pci_get_device(dev);
775         switch (device_id) {
776 	case E1000_DEV_ID_82571EB_FIBER:
777 		/*
778 		 * Wake events only supported on port A for dual fiber
779 		 * regardless of eeprom setting
780 		 */
781 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
782 		    E1000_STATUS_FUNC_1)
783 			sc->wol = 0;
784 		break;
785 
786 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
787 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
788 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
789                 /* if quad port sc, disable WoL on all but port A */
790 		if (emx_global_quad_port_a != 0)
791 			sc->wol = 0;
792 		/* Reset for multiple quad port adapters */
793 		if (++emx_global_quad_port_a == 4)
794 			emx_global_quad_port_a = 0;
795                 break;
796 	}
797 
798 	/* XXX disable wol */
799 	sc->wol = 0;
800 
801 #ifdef IFPOLL_ENABLE
802 	/*
803 	 * NPOLLING RX CPU offset
804 	 */
805 	if (sc->rx_ring_cnt == ncpus2) {
806 		offset = 0;
807 	} else {
808 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
809 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
810 		if (offset >= ncpus2 ||
811 		    offset % sc->rx_ring_cnt != 0) {
812 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
813 			    offset, offset_def);
814 			offset = offset_def;
815 		}
816 	}
817 	sc->rx_npoll_off = offset;
818 
819 	/*
820 	 * NPOLLING TX CPU offset
821 	 */
822 	if (sc->tx_ring_cnt == ncpus2) {
823 		offset = 0;
824 	} else {
825 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
826 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
827 		if (offset >= ncpus2 ||
828 		    offset % sc->tx_ring_cnt != 0) {
829 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
830 			    offset, offset_def);
831 			offset = offset_def;
832 		}
833 	}
834 	sc->tx_npoll_off = offset;
835 #endif
836 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
837 
838 	/* Setup flow control. */
839 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
840 	    emx_flowctrl);
841 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
842 
843 	/* Setup OS specific network interface */
844 	emx_setup_ifp(sc);
845 
846 	/* Add sysctl tree, must after em_setup_ifp() */
847 	emx_add_sysctl(sc);
848 
849 	/* Reset the hardware */
850 	error = emx_reset(sc);
851 	if (error) {
852 		/*
853 		 * Some 82573 parts fail the first reset, call it again,
854 		 * if it fails a second time its a real issue.
855 		 */
856 		error = emx_reset(sc);
857 		if (error) {
858 			device_printf(dev, "Unable to reset the hardware\n");
859 			ether_ifdetach(&sc->arpcom.ac_if);
860 			goto fail;
861 		}
862 	}
863 
864 	/* Initialize statistics */
865 	emx_update_stats(sc);
866 
867 	sc->hw.mac.get_link_status = 1;
868 	emx_update_link_status(sc);
869 
870 	/* Non-AMT based hardware can now take control from firmware */
871 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
872 	    EMX_FLAG_HAS_MGMT)
873 		emx_get_hw_control(sc);
874 
875 	/*
876 	 * Missing Interrupt Following ICR read:
877 	 *
878 	 * 82571/82572 specification update errata #76
879 	 * 82573 specification update errata #31
880 	 * 82574 specification update errata #12
881 	 */
882 	intr_func = emx_intr;
883 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
884 	    (sc->hw.mac.type == e1000_82571 ||
885 	     sc->hw.mac.type == e1000_82572 ||
886 	     sc->hw.mac.type == e1000_82573 ||
887 	     sc->hw.mac.type == e1000_82574))
888 		intr_func = emx_intr_mask;
889 
890 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
891 			       &sc->intr_tag, &sc->main_serialize);
892 	if (error) {
893 		device_printf(dev, "Failed to register interrupt handler");
894 		ether_ifdetach(&sc->arpcom.ac_if);
895 		goto fail;
896 	}
897 	return (0);
898 fail:
899 	emx_detach(dev);
900 	return (error);
901 }
902 
903 static int
904 emx_detach(device_t dev)
905 {
906 	struct emx_softc *sc = device_get_softc(dev);
907 
908 	if (device_is_attached(dev)) {
909 		struct ifnet *ifp = &sc->arpcom.ac_if;
910 
911 		ifnet_serialize_all(ifp);
912 
913 		emx_stop(sc);
914 
915 		e1000_phy_hw_reset(&sc->hw);
916 
917 		emx_rel_mgmt(sc);
918 		emx_rel_hw_control(sc);
919 
920 		if (sc->wol) {
921 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
922 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
923 			emx_enable_wol(dev);
924 		}
925 
926 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
927 
928 		ifnet_deserialize_all(ifp);
929 
930 		ether_ifdetach(ifp);
931 	} else if (sc->memory != NULL) {
932 		emx_rel_hw_control(sc);
933 	}
934 
935 	ifmedia_removeall(&sc->media);
936 	bus_generic_detach(dev);
937 
938 	if (sc->intr_res != NULL) {
939 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
940 				     sc->intr_res);
941 	}
942 
943 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
944 		pci_release_msi(dev);
945 
946 	if (sc->memory != NULL) {
947 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
948 				     sc->memory);
949 	}
950 
951 	if (sc->flash != NULL) {
952 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
953 		    sc->flash);
954 	}
955 
956 	emx_dma_free(sc);
957 
958 	if (sc->mta != NULL)
959 		kfree(sc->mta, M_DEVBUF);
960 
961 	return (0);
962 }
963 
964 static int
965 emx_shutdown(device_t dev)
966 {
967 	return emx_suspend(dev);
968 }
969 
970 static int
971 emx_suspend(device_t dev)
972 {
973 	struct emx_softc *sc = device_get_softc(dev);
974 	struct ifnet *ifp = &sc->arpcom.ac_if;
975 
976 	ifnet_serialize_all(ifp);
977 
978 	emx_stop(sc);
979 
980 	emx_rel_mgmt(sc);
981 	emx_rel_hw_control(sc);
982 
983 	if (sc->wol) {
984 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
985 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
986 		emx_enable_wol(dev);
987 	}
988 
989 	ifnet_deserialize_all(ifp);
990 
991 	return bus_generic_suspend(dev);
992 }
993 
994 static int
995 emx_resume(device_t dev)
996 {
997 	struct emx_softc *sc = device_get_softc(dev);
998 	struct ifnet *ifp = &sc->arpcom.ac_if;
999 	int i;
1000 
1001 	ifnet_serialize_all(ifp);
1002 
1003 	emx_init(sc);
1004 	emx_get_mgmt(sc);
1005 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1006 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1007 
1008 	ifnet_deserialize_all(ifp);
1009 
1010 	return bus_generic_resume(dev);
1011 }
1012 
1013 static void
1014 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1015 {
1016 	struct emx_softc *sc = ifp->if_softc;
1017 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1018 	struct mbuf *m_head;
1019 	int idx = -1, nsegs = 0;
1020 
1021 	KKASSERT(tdata->ifsq == ifsq);
1022 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1023 
1024 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1025 		return;
1026 
1027 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1028 		ifsq_purge(ifsq);
1029 		return;
1030 	}
1031 
1032 	while (!ifsq_is_empty(ifsq)) {
1033 		/* Now do we at least have a minimal? */
1034 		if (EMX_IS_OACTIVE(tdata)) {
1035 			emx_tx_collect(tdata);
1036 			if (EMX_IS_OACTIVE(tdata)) {
1037 				ifsq_set_oactive(ifsq);
1038 				break;
1039 			}
1040 		}
1041 
1042 		logif(pkt_txqueue);
1043 		m_head = ifsq_dequeue(ifsq);
1044 		if (m_head == NULL)
1045 			break;
1046 
1047 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1048 			IFNET_STAT_INC(ifp, oerrors, 1);
1049 			emx_tx_collect(tdata);
1050 			continue;
1051 		}
1052 
1053 		/*
1054 		 * TX interrupt are aggressively aggregated, so increasing
1055 		 * opackets at TX interrupt time will make the opackets
1056 		 * statistics vastly inaccurate; we do the opackets increment
1057 		 * now.
1058 		 */
1059 		IFNET_STAT_INC(ifp, opackets, 1);
1060 
1061 		if (nsegs >= tdata->tx_wreg_nsegs) {
1062 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1063 			nsegs = 0;
1064 			idx = -1;
1065 		}
1066 
1067 		/* Send a copy of the frame to the BPF listener */
1068 		ETHER_BPF_MTAP(ifp, m_head);
1069 
1070 		/* Set timeout in case hardware has problems transmitting. */
1071 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1072 	}
1073 	if (idx >= 0)
1074 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1075 }
1076 
1077 static int
1078 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1079 {
1080 	struct emx_softc *sc = ifp->if_softc;
1081 	struct ifreq *ifr = (struct ifreq *)data;
1082 	uint16_t eeprom_data = 0;
1083 	int max_frame_size, mask, reinit;
1084 	int error = 0;
1085 
1086 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1087 
1088 	switch (command) {
1089 	case SIOCSIFMTU:
1090 		switch (sc->hw.mac.type) {
1091 		case e1000_82573:
1092 			/*
1093 			 * 82573 only supports jumbo frames
1094 			 * if ASPM is disabled.
1095 			 */
1096 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1097 				       &eeprom_data);
1098 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1099 				max_frame_size = ETHER_MAX_LEN;
1100 				break;
1101 			}
1102 			/* FALL THROUGH */
1103 
1104 		/* Limit Jumbo Frame size */
1105 		case e1000_82571:
1106 		case e1000_82572:
1107 		case e1000_82574:
1108 		case e1000_pch_lpt:
1109 		case e1000_pch_spt:
1110 		case e1000_80003es2lan:
1111 			max_frame_size = 9234;
1112 			break;
1113 
1114 		default:
1115 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1116 			break;
1117 		}
1118 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1119 		    ETHER_CRC_LEN) {
1120 			error = EINVAL;
1121 			break;
1122 		}
1123 
1124 		ifp->if_mtu = ifr->ifr_mtu;
1125 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1126 		    ETHER_CRC_LEN;
1127 
1128 		if (ifp->if_flags & IFF_RUNNING)
1129 			emx_init(sc);
1130 		break;
1131 
1132 	case SIOCSIFFLAGS:
1133 		if (ifp->if_flags & IFF_UP) {
1134 			if ((ifp->if_flags & IFF_RUNNING)) {
1135 				if ((ifp->if_flags ^ sc->if_flags) &
1136 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1137 					emx_disable_promisc(sc);
1138 					emx_set_promisc(sc);
1139 				}
1140 			} else {
1141 				emx_init(sc);
1142 			}
1143 		} else if (ifp->if_flags & IFF_RUNNING) {
1144 			emx_stop(sc);
1145 		}
1146 		sc->if_flags = ifp->if_flags;
1147 		break;
1148 
1149 	case SIOCADDMULTI:
1150 	case SIOCDELMULTI:
1151 		if (ifp->if_flags & IFF_RUNNING) {
1152 			emx_disable_intr(sc);
1153 			emx_set_multi(sc);
1154 #ifdef IFPOLL_ENABLE
1155 			if (!(ifp->if_flags & IFF_NPOLLING))
1156 #endif
1157 				emx_enable_intr(sc);
1158 		}
1159 		break;
1160 
1161 	case SIOCSIFMEDIA:
1162 		/* Check SOL/IDER usage */
1163 		if (e1000_check_reset_block(&sc->hw)) {
1164 			device_printf(sc->dev, "Media change is"
1165 			    " blocked due to SOL/IDER session.\n");
1166 			break;
1167 		}
1168 		/* FALL THROUGH */
1169 
1170 	case SIOCGIFMEDIA:
1171 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1172 		break;
1173 
1174 	case SIOCSIFCAP:
1175 		reinit = 0;
1176 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1177 		if (mask & IFCAP_RXCSUM) {
1178 			ifp->if_capenable ^= IFCAP_RXCSUM;
1179 			reinit = 1;
1180 		}
1181 		if (mask & IFCAP_VLAN_HWTAGGING) {
1182 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1183 			reinit = 1;
1184 		}
1185 		if (mask & IFCAP_TXCSUM) {
1186 			ifp->if_capenable ^= IFCAP_TXCSUM;
1187 			if (ifp->if_capenable & IFCAP_TXCSUM)
1188 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1189 			else
1190 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1191 		}
1192 		if (mask & IFCAP_TSO) {
1193 			ifp->if_capenable ^= IFCAP_TSO;
1194 			if (ifp->if_capenable & IFCAP_TSO)
1195 				ifp->if_hwassist |= CSUM_TSO;
1196 			else
1197 				ifp->if_hwassist &= ~CSUM_TSO;
1198 		}
1199 		if (mask & IFCAP_RSS)
1200 			ifp->if_capenable ^= IFCAP_RSS;
1201 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1202 			emx_init(sc);
1203 		break;
1204 
1205 	default:
1206 		error = ether_ioctl(ifp, command, data);
1207 		break;
1208 	}
1209 	return (error);
1210 }
1211 
1212 static void
1213 emx_watchdog(struct ifaltq_subque *ifsq)
1214 {
1215 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1216 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1217 	struct emx_softc *sc = ifp->if_softc;
1218 	int i;
1219 
1220 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1221 
1222 	/*
1223 	 * The timer is set to 5 every time start queues a packet.
1224 	 * Then txeof keeps resetting it as long as it cleans at
1225 	 * least one descriptor.
1226 	 * Finally, anytime all descriptors are clean the timer is
1227 	 * set to 0.
1228 	 */
1229 
1230 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1231 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1232 		/*
1233 		 * If we reach here, all TX jobs are completed and
1234 		 * the TX engine should have been idled for some time.
1235 		 * We don't need to call ifsq_devstart_sched() here.
1236 		 */
1237 		ifsq_clr_oactive(ifsq);
1238 		tdata->tx_watchdog.wd_timer = 0;
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * If we are in this routine because of pause frames, then
1244 	 * don't reset the hardware.
1245 	 */
1246 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1247 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1248 		return;
1249 	}
1250 
1251 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1252 
1253 	IFNET_STAT_INC(ifp, oerrors, 1);
1254 
1255 	emx_init(sc);
1256 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1257 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1258 }
1259 
1260 static void
1261 emx_init(void *xsc)
1262 {
1263 	struct emx_softc *sc = xsc;
1264 	struct ifnet *ifp = &sc->arpcom.ac_if;
1265 	device_t dev = sc->dev;
1266 	boolean_t polling;
1267 	int i;
1268 
1269 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1270 
1271 	emx_stop(sc);
1272 
1273 	/* Get the latest mac address, User can use a LAA */
1274         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1275 
1276 	/* Put the address into the Receive Address Array */
1277 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1278 
1279 	/*
1280 	 * With the 82571 sc, RAR[0] may be overwritten
1281 	 * when the other port is reset, we make a duplicate
1282 	 * in RAR[14] for that eventuality, this assures
1283 	 * the interface continues to function.
1284 	 */
1285 	if (sc->hw.mac.type == e1000_82571) {
1286 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1287 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1288 		    E1000_RAR_ENTRIES - 1);
1289 	}
1290 
1291 	/* Initialize the hardware */
1292 	if (emx_reset(sc)) {
1293 		device_printf(dev, "Unable to reset the hardware\n");
1294 		/* XXX emx_stop()? */
1295 		return;
1296 	}
1297 	emx_update_link_status(sc);
1298 
1299 	/* Setup VLAN support, basic and offload if available */
1300 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1301 
1302 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1303 		uint32_t ctrl;
1304 
1305 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1306 		ctrl |= E1000_CTRL_VME;
1307 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1308 	}
1309 
1310 	/* Configure for OS presence */
1311 	emx_get_mgmt(sc);
1312 
1313 	polling = FALSE;
1314 #ifdef IFPOLL_ENABLE
1315 	if (ifp->if_flags & IFF_NPOLLING)
1316 		polling = TRUE;
1317 #endif
1318 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1319 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1320 
1321 	/* Prepare transmit descriptors and buffers */
1322 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1323 		emx_init_tx_ring(&sc->tx_data[i]);
1324 	emx_init_tx_unit(sc);
1325 
1326 	/* Setup Multicast table */
1327 	emx_set_multi(sc);
1328 
1329 	/* Prepare receive descriptors and buffers */
1330 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1331 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1332 			device_printf(dev,
1333 			    "Could not setup receive structures\n");
1334 			emx_stop(sc);
1335 			return;
1336 		}
1337 	}
1338 	emx_init_rx_unit(sc);
1339 
1340 	/* Don't lose promiscuous settings */
1341 	emx_set_promisc(sc);
1342 
1343 	ifp->if_flags |= IFF_RUNNING;
1344 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1345 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1346 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1347 	}
1348 
1349 	callout_reset(&sc->timer, hz, emx_timer, sc);
1350 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1351 
1352 	/* MSI/X configuration for 82574 */
1353 	if (sc->hw.mac.type == e1000_82574) {
1354 		int tmp;
1355 
1356 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1357 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1358 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1359 		/*
1360 		 * XXX MSIX
1361 		 * Set the IVAR - interrupt vector routing.
1362 		 * Each nibble represents a vector, high bit
1363 		 * is enable, other 3 bits are the MSIX table
1364 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1365 		 * Link (other) to 2, hence the magic number.
1366 		 */
1367 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1368 	}
1369 
1370 	/*
1371 	 * Only enable interrupts if we are not polling, make sure
1372 	 * they are off otherwise.
1373 	 */
1374 	if (polling)
1375 		emx_disable_intr(sc);
1376 	else
1377 		emx_enable_intr(sc);
1378 
1379 	/* AMT based hardware can now take control from firmware */
1380 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1381 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1382 		emx_get_hw_control(sc);
1383 }
1384 
1385 static void
1386 emx_intr(void *xsc)
1387 {
1388 	emx_intr_body(xsc, TRUE);
1389 }
1390 
1391 static void
1392 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1393 {
1394 	struct ifnet *ifp = &sc->arpcom.ac_if;
1395 	uint32_t reg_icr;
1396 
1397 	logif(intr_beg);
1398 	ASSERT_SERIALIZED(&sc->main_serialize);
1399 
1400 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1401 
1402 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1403 		logif(intr_end);
1404 		return;
1405 	}
1406 
1407 	/*
1408 	 * XXX: some laptops trigger several spurious interrupts
1409 	 * on emx(4) when in the resume cycle. The ICR register
1410 	 * reports all-ones value in this case. Processing such
1411 	 * interrupts would lead to a freeze. I don't know why.
1412 	 */
1413 	if (reg_icr == 0xffffffff) {
1414 		logif(intr_end);
1415 		return;
1416 	}
1417 
1418 	if (ifp->if_flags & IFF_RUNNING) {
1419 		if (reg_icr &
1420 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1421 			int i;
1422 
1423 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1424 				lwkt_serialize_enter(
1425 				&sc->rx_data[i].rx_serialize);
1426 				emx_rxeof(&sc->rx_data[i], -1);
1427 				lwkt_serialize_exit(
1428 				&sc->rx_data[i].rx_serialize);
1429 			}
1430 		}
1431 		if (reg_icr & E1000_ICR_TXDW) {
1432 			struct emx_txdata *tdata = &sc->tx_data[0];
1433 
1434 			lwkt_serialize_enter(&tdata->tx_serialize);
1435 			emx_txeof(tdata);
1436 			if (!ifsq_is_empty(tdata->ifsq))
1437 				ifsq_devstart(tdata->ifsq);
1438 			lwkt_serialize_exit(&tdata->tx_serialize);
1439 		}
1440 	}
1441 
1442 	/* Link status change */
1443 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1444 		emx_serialize_skipmain(sc);
1445 
1446 		callout_stop(&sc->timer);
1447 		sc->hw.mac.get_link_status = 1;
1448 		emx_update_link_status(sc);
1449 
1450 		/* Deal with TX cruft when link lost */
1451 		emx_tx_purge(sc);
1452 
1453 		callout_reset(&sc->timer, hz, emx_timer, sc);
1454 
1455 		emx_deserialize_skipmain(sc);
1456 	}
1457 
1458 	if (reg_icr & E1000_ICR_RXO)
1459 		sc->rx_overruns++;
1460 
1461 	logif(intr_end);
1462 }
1463 
1464 static void
1465 emx_intr_mask(void *xsc)
1466 {
1467 	struct emx_softc *sc = xsc;
1468 
1469 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1470 	/*
1471 	 * NOTE:
1472 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1473 	 * so don't check it.
1474 	 */
1475 	emx_intr_body(sc, FALSE);
1476 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1477 }
1478 
1479 static void
1480 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1481 {
1482 	struct emx_softc *sc = ifp->if_softc;
1483 
1484 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1485 
1486 	emx_update_link_status(sc);
1487 
1488 	ifmr->ifm_status = IFM_AVALID;
1489 	ifmr->ifm_active = IFM_ETHER;
1490 
1491 	if (!sc->link_active) {
1492 		if (sc->hw.mac.autoneg)
1493 			ifmr->ifm_active |= IFM_NONE;
1494 		else
1495 			ifmr->ifm_active |= sc->media.ifm_media;
1496 		return;
1497 	}
1498 
1499 	ifmr->ifm_status |= IFM_ACTIVE;
1500 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1501 		ifmr->ifm_active |= sc->ifm_flowctrl;
1502 
1503 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1504 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1505 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1506 	} else {
1507 		switch (sc->link_speed) {
1508 		case 10:
1509 			ifmr->ifm_active |= IFM_10_T;
1510 			break;
1511 		case 100:
1512 			ifmr->ifm_active |= IFM_100_TX;
1513 			break;
1514 
1515 		case 1000:
1516 			ifmr->ifm_active |= IFM_1000_T;
1517 			break;
1518 		}
1519 		if (sc->link_duplex == FULL_DUPLEX)
1520 			ifmr->ifm_active |= IFM_FDX;
1521 		else
1522 			ifmr->ifm_active |= IFM_HDX;
1523 	}
1524 	if (ifmr->ifm_active & IFM_FDX)
1525 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1526 }
1527 
1528 static int
1529 emx_media_change(struct ifnet *ifp)
1530 {
1531 	struct emx_softc *sc = ifp->if_softc;
1532 	struct ifmedia *ifm = &sc->media;
1533 
1534 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1535 
1536 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1537 		return (EINVAL);
1538 
1539 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1540 	case IFM_AUTO:
1541 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1542 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1543 		break;
1544 
1545 	case IFM_1000_SX:
1546 	case IFM_1000_T:
1547 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1548 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1549 		break;
1550 
1551 	case IFM_100_TX:
1552 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1553 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1554 		} else {
1555 			if (IFM_OPTIONS(ifm->ifm_media) &
1556 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1557 				if (bootverbose) {
1558 					if_printf(ifp, "Flow control is not "
1559 					    "allowed for half-duplex\n");
1560 				}
1561 				return EINVAL;
1562 			}
1563 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1564 		}
1565 		sc->hw.mac.autoneg = FALSE;
1566 		sc->hw.phy.autoneg_advertised = 0;
1567 		break;
1568 
1569 	case IFM_10_T:
1570 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1571 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1572 		} else {
1573 			if (IFM_OPTIONS(ifm->ifm_media) &
1574 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1575 				if (bootverbose) {
1576 					if_printf(ifp, "Flow control is not "
1577 					    "allowed for half-duplex\n");
1578 				}
1579 				return EINVAL;
1580 			}
1581 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1582 		}
1583 		sc->hw.mac.autoneg = FALSE;
1584 		sc->hw.phy.autoneg_advertised = 0;
1585 		break;
1586 
1587 	default:
1588 		if (bootverbose) {
1589 			if_printf(ifp, "Unsupported media type %d\n",
1590 			    IFM_SUBTYPE(ifm->ifm_media));
1591 		}
1592 		return EINVAL;
1593 	}
1594 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1595 
1596 	if (ifp->if_flags & IFF_RUNNING)
1597 		emx_init(sc);
1598 
1599 	return (0);
1600 }
1601 
1602 static int
1603 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1604     int *segs_used, int *idx)
1605 {
1606 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1607 	bus_dmamap_t map;
1608 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1609 	struct e1000_tx_desc *ctxd = NULL;
1610 	struct mbuf *m_head = *m_headp;
1611 	uint32_t txd_upper, txd_lower, cmd = 0;
1612 	int maxsegs, nsegs, i, j, first, last = 0, error;
1613 
1614 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1615 		error = emx_tso_pullup(tdata, m_headp);
1616 		if (error)
1617 			return error;
1618 		m_head = *m_headp;
1619 	}
1620 
1621 	txd_upper = txd_lower = 0;
1622 
1623 	/*
1624 	 * Capture the first descriptor index, this descriptor
1625 	 * will have the index of the EOP which is the only one
1626 	 * that now gets a DONE bit writeback.
1627 	 */
1628 	first = tdata->next_avail_tx_desc;
1629 	tx_buffer = &tdata->tx_buf[first];
1630 	tx_buffer_mapped = tx_buffer;
1631 	map = tx_buffer->map;
1632 
1633 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1634 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1635 	if (maxsegs > EMX_MAX_SCATTER)
1636 		maxsegs = EMX_MAX_SCATTER;
1637 
1638 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1639 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1640 	if (error) {
1641 		m_freem(*m_headp);
1642 		*m_headp = NULL;
1643 		return error;
1644 	}
1645         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1646 
1647 	m_head = *m_headp;
1648 	tdata->tx_nsegs += nsegs;
1649 	*segs_used += nsegs;
1650 
1651 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1652 		/* TSO will consume one TX desc */
1653 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1654 		tdata->tx_nsegs += i;
1655 		*segs_used += i;
1656 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1657 		/* TX csum offloading will consume one TX desc */
1658 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1659 		tdata->tx_nsegs += i;
1660 		*segs_used += i;
1661 	}
1662 
1663         /* Handle VLAN tag */
1664 	if (m_head->m_flags & M_VLANTAG) {
1665 		/* Set the vlan id. */
1666 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1667 		/* Tell hardware to add tag */
1668 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1669 	}
1670 
1671 	i = tdata->next_avail_tx_desc;
1672 
1673 	/* Set up our transmit descriptors */
1674 	for (j = 0; j < nsegs; j++) {
1675 		tx_buffer = &tdata->tx_buf[i];
1676 		ctxd = &tdata->tx_desc_base[i];
1677 
1678 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1679 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1680 					   txd_lower | segs[j].ds_len);
1681 		ctxd->upper.data = htole32(txd_upper);
1682 
1683 		last = i;
1684 		if (++i == tdata->num_tx_desc)
1685 			i = 0;
1686 	}
1687 
1688 	tdata->next_avail_tx_desc = i;
1689 
1690 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1691 	tdata->num_tx_desc_avail -= nsegs;
1692 
1693 	tx_buffer->m_head = m_head;
1694 	tx_buffer_mapped->map = tx_buffer->map;
1695 	tx_buffer->map = map;
1696 
1697 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1698 		tdata->tx_nsegs = 0;
1699 
1700 		/*
1701 		 * Report Status (RS) is turned on
1702 		 * every tx_intr_nsegs descriptors.
1703 		 */
1704 		cmd = E1000_TXD_CMD_RS;
1705 
1706 		/*
1707 		 * Keep track of the descriptor, which will
1708 		 * be written back by hardware.
1709 		 */
1710 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1711 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1712 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1713 	}
1714 
1715 	/*
1716 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1717 	 */
1718 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1719 
1720 	/*
1721 	 * Defer TDT updating, until enough descriptors are setup
1722 	 */
1723 	*idx = i;
1724 
1725 #ifdef EMX_TSS_DEBUG
1726 	tdata->tx_pkts++;
1727 #endif
1728 
1729 	return (0);
1730 }
1731 
1732 static void
1733 emx_set_promisc(struct emx_softc *sc)
1734 {
1735 	struct ifnet *ifp = &sc->arpcom.ac_if;
1736 	uint32_t reg_rctl;
1737 
1738 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1739 
1740 	if (ifp->if_flags & IFF_PROMISC) {
1741 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1742 		/* Turn this on if you want to see bad packets */
1743 		if (emx_debug_sbp)
1744 			reg_rctl |= E1000_RCTL_SBP;
1745 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1746 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1747 		reg_rctl |= E1000_RCTL_MPE;
1748 		reg_rctl &= ~E1000_RCTL_UPE;
1749 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1750 	}
1751 }
1752 
1753 static void
1754 emx_disable_promisc(struct emx_softc *sc)
1755 {
1756 	uint32_t reg_rctl;
1757 
1758 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1759 
1760 	reg_rctl &= ~E1000_RCTL_UPE;
1761 	reg_rctl &= ~E1000_RCTL_MPE;
1762 	reg_rctl &= ~E1000_RCTL_SBP;
1763 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1764 }
1765 
1766 static void
1767 emx_set_multi(struct emx_softc *sc)
1768 {
1769 	struct ifnet *ifp = &sc->arpcom.ac_if;
1770 	struct ifmultiaddr *ifma;
1771 	uint32_t reg_rctl = 0;
1772 	uint8_t *mta;
1773 	int mcnt = 0;
1774 
1775 	mta = sc->mta;
1776 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1777 
1778 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1779 		if (ifma->ifma_addr->sa_family != AF_LINK)
1780 			continue;
1781 
1782 		if (mcnt == EMX_MCAST_ADDR_MAX)
1783 			break;
1784 
1785 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1786 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1787 		mcnt++;
1788 	}
1789 
1790 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1791 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1792 		reg_rctl |= E1000_RCTL_MPE;
1793 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1794 	} else {
1795 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1796 	}
1797 }
1798 
1799 /*
1800  * This routine checks for link status and updates statistics.
1801  */
1802 static void
1803 emx_timer(void *xsc)
1804 {
1805 	struct emx_softc *sc = xsc;
1806 	struct ifnet *ifp = &sc->arpcom.ac_if;
1807 
1808 	lwkt_serialize_enter(&sc->main_serialize);
1809 
1810 	emx_update_link_status(sc);
1811 	emx_update_stats(sc);
1812 
1813 	/* Reset LAA into RAR[0] on 82571 */
1814 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1815 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1816 
1817 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1818 		emx_print_hw_stats(sc);
1819 
1820 	emx_smartspeed(sc);
1821 
1822 	callout_reset(&sc->timer, hz, emx_timer, sc);
1823 
1824 	lwkt_serialize_exit(&sc->main_serialize);
1825 }
1826 
1827 static void
1828 emx_update_link_status(struct emx_softc *sc)
1829 {
1830 	struct e1000_hw *hw = &sc->hw;
1831 	struct ifnet *ifp = &sc->arpcom.ac_if;
1832 	device_t dev = sc->dev;
1833 	uint32_t link_check = 0;
1834 
1835 	/* Get the cached link value or read phy for real */
1836 	switch (hw->phy.media_type) {
1837 	case e1000_media_type_copper:
1838 		if (hw->mac.get_link_status) {
1839 			/* Do the work to read phy */
1840 			e1000_check_for_link(hw);
1841 			link_check = !hw->mac.get_link_status;
1842 			if (link_check) /* ESB2 fix */
1843 				e1000_cfg_on_link_up(hw);
1844 		} else {
1845 			link_check = TRUE;
1846 		}
1847 		break;
1848 
1849 	case e1000_media_type_fiber:
1850 		e1000_check_for_link(hw);
1851 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1852 		break;
1853 
1854 	case e1000_media_type_internal_serdes:
1855 		e1000_check_for_link(hw);
1856 		link_check = sc->hw.mac.serdes_has_link;
1857 		break;
1858 
1859 	case e1000_media_type_unknown:
1860 	default:
1861 		break;
1862 	}
1863 
1864 	/* Now check for a transition */
1865 	if (link_check && sc->link_active == 0) {
1866 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1867 		    &sc->link_duplex);
1868 
1869 		/*
1870 		 * Check if we should enable/disable SPEED_MODE bit on
1871 		 * 82571EB/82572EI
1872 		 */
1873 		if (sc->link_speed != SPEED_1000 &&
1874 		    (hw->mac.type == e1000_82571 ||
1875 		     hw->mac.type == e1000_82572)) {
1876 			int tarc0;
1877 
1878 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1879 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1880 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1881 		}
1882 		if (bootverbose) {
1883 			char flowctrl[IFM_ETH_FC_STRLEN];
1884 
1885 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1886 			    sizeof(flowctrl));
1887 			device_printf(dev, "Link is up %d Mbps %s, "
1888 			    "Flow control: %s\n",
1889 			    sc->link_speed,
1890 			    (sc->link_duplex == FULL_DUPLEX) ?
1891 			    "Full Duplex" : "Half Duplex",
1892 			    flowctrl);
1893 		}
1894 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1895 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1896 		sc->link_active = 1;
1897 		sc->smartspeed = 0;
1898 		ifp->if_baudrate = sc->link_speed * 1000000;
1899 		ifp->if_link_state = LINK_STATE_UP;
1900 		if_link_state_change(ifp);
1901 	} else if (!link_check && sc->link_active == 1) {
1902 		ifp->if_baudrate = sc->link_speed = 0;
1903 		sc->link_duplex = 0;
1904 		if (bootverbose)
1905 			device_printf(dev, "Link is Down\n");
1906 		sc->link_active = 0;
1907 		ifp->if_link_state = LINK_STATE_DOWN;
1908 		if_link_state_change(ifp);
1909 	}
1910 }
1911 
1912 static void
1913 emx_stop(struct emx_softc *sc)
1914 {
1915 	struct ifnet *ifp = &sc->arpcom.ac_if;
1916 	int i;
1917 
1918 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1919 
1920 	emx_disable_intr(sc);
1921 
1922 	callout_stop(&sc->timer);
1923 
1924 	ifp->if_flags &= ~IFF_RUNNING;
1925 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1926 		struct emx_txdata *tdata = &sc->tx_data[i];
1927 
1928 		ifsq_clr_oactive(tdata->ifsq);
1929 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1930 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1931 	}
1932 
1933 	/*
1934 	 * Disable multiple receive queues.
1935 	 *
1936 	 * NOTE:
1937 	 * We should disable multiple receive queues before
1938 	 * resetting the hardware.
1939 	 */
1940 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1941 
1942 	e1000_reset_hw(&sc->hw);
1943 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1944 
1945 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1946 		emx_free_tx_ring(&sc->tx_data[i]);
1947 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1948 		emx_free_rx_ring(&sc->rx_data[i]);
1949 }
1950 
1951 static int
1952 emx_reset(struct emx_softc *sc)
1953 {
1954 	device_t dev = sc->dev;
1955 	uint16_t rx_buffer_size;
1956 	uint32_t pba;
1957 
1958 	/* Set up smart power down as default off on newer adapters. */
1959 	if (!emx_smart_pwr_down &&
1960 	    (sc->hw.mac.type == e1000_82571 ||
1961 	     sc->hw.mac.type == e1000_82572)) {
1962 		uint16_t phy_tmp = 0;
1963 
1964 		/* Speed up time to link by disabling smart power down. */
1965 		e1000_read_phy_reg(&sc->hw,
1966 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1967 		phy_tmp &= ~IGP02E1000_PM_SPD;
1968 		e1000_write_phy_reg(&sc->hw,
1969 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1970 	}
1971 
1972 	/*
1973 	 * Packet Buffer Allocation (PBA)
1974 	 * Writing PBA sets the receive portion of the buffer
1975 	 * the remainder is used for the transmit buffer.
1976 	 */
1977 	switch (sc->hw.mac.type) {
1978 	/* Total Packet Buffer on these is 48K */
1979 	case e1000_82571:
1980 	case e1000_82572:
1981 	case e1000_80003es2lan:
1982 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1983 		break;
1984 
1985 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1986 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1987 		break;
1988 
1989 	case e1000_82574:
1990 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1991 		break;
1992 
1993 	case e1000_pch_lpt:
1994 	case e1000_pch_spt:
1995  		pba = E1000_PBA_26K;
1996  		break;
1997 
1998 	default:
1999 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2000 		if (sc->hw.mac.max_frame_size > 8192)
2001 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2002 		else
2003 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2004 	}
2005 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2006 
2007 	/*
2008 	 * These parameters control the automatic generation (Tx) and
2009 	 * response (Rx) to Ethernet PAUSE frames.
2010 	 * - High water mark should allow for at least two frames to be
2011 	 *   received after sending an XOFF.
2012 	 * - Low water mark works best when it is very near the high water mark.
2013 	 *   This allows the receiver to restart by sending XON when it has
2014 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2015 	 *   restart after one full frame is pulled from the buffer. There
2016 	 *   could be several smaller frames in the buffer and if so they will
2017 	 *   not trigger the XON until their total number reduces the buffer
2018 	 *   by 1500.
2019 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2020 	 */
2021 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2022 
2023 	sc->hw.fc.high_water = rx_buffer_size -
2024 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2025 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2026 
2027 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2028 	sc->hw.fc.send_xon = TRUE;
2029 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2030 
2031 	/*
2032 	 * Device specific overrides/settings
2033 	 */
2034 	if (sc->hw.mac.type == e1000_pch_lpt ||
2035 	    sc->hw.mac.type == e1000_pch_spt) {
2036 		sc->hw.fc.high_water = 0x5C20;
2037 		sc->hw.fc.low_water = 0x5048;
2038 		sc->hw.fc.pause_time = 0x0650;
2039 		sc->hw.fc.refresh_time = 0x0400;
2040 		/* Jumbos need adjusted PBA */
2041 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2042 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2043 		else
2044 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2045 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2046 		sc->hw.fc.pause_time = 0xFFFF;
2047 	}
2048 
2049 	/* Issue a global reset */
2050 	e1000_reset_hw(&sc->hw);
2051 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2052 	emx_disable_aspm(sc);
2053 
2054 	if (e1000_init_hw(&sc->hw) < 0) {
2055 		device_printf(dev, "Hardware Initialization Failed\n");
2056 		return (EIO);
2057 	}
2058 
2059 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2060 	e1000_get_phy_info(&sc->hw);
2061 	e1000_check_for_link(&sc->hw);
2062 
2063 	return (0);
2064 }
2065 
2066 static void
2067 emx_setup_ifp(struct emx_softc *sc)
2068 {
2069 	struct ifnet *ifp = &sc->arpcom.ac_if;
2070 	int i;
2071 
2072 	if_initname(ifp, device_get_name(sc->dev),
2073 		    device_get_unit(sc->dev));
2074 	ifp->if_softc = sc;
2075 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2076 	ifp->if_init =  emx_init;
2077 	ifp->if_ioctl = emx_ioctl;
2078 	ifp->if_start = emx_start;
2079 #ifdef IFPOLL_ENABLE
2080 	ifp->if_npoll = emx_npoll;
2081 #endif
2082 	ifp->if_serialize = emx_serialize;
2083 	ifp->if_deserialize = emx_deserialize;
2084 	ifp->if_tryserialize = emx_tryserialize;
2085 #ifdef INVARIANTS
2086 	ifp->if_serialize_assert = emx_serialize_assert;
2087 #endif
2088 
2089 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2090 
2091 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2092 	ifq_set_ready(&ifp->if_snd);
2093 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2094 
2095 	ifp->if_mapsubq = ifq_mapsubq_mask;
2096 	ifq_set_subq_mask(&ifp->if_snd, 0);
2097 
2098 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2099 
2100 	ifp->if_capabilities = IFCAP_HWCSUM |
2101 			       IFCAP_VLAN_HWTAGGING |
2102 			       IFCAP_VLAN_MTU |
2103 			       IFCAP_TSO;
2104 	if (sc->rx_ring_cnt > 1)
2105 		ifp->if_capabilities |= IFCAP_RSS;
2106 	ifp->if_capenable = ifp->if_capabilities;
2107 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2108 
2109 	/*
2110 	 * Tell the upper layer(s) we support long frames.
2111 	 */
2112 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2113 
2114 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2115 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2116 		struct emx_txdata *tdata = &sc->tx_data[i];
2117 
2118 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2119 		ifsq_set_priv(ifsq, tdata);
2120 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2121 		tdata->ifsq = ifsq;
2122 
2123 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2124 	}
2125 
2126 	/*
2127 	 * Specify the media types supported by this sc and register
2128 	 * callbacks to update media and link information
2129 	 */
2130 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2131 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2132 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2133 			    0, NULL);
2134 	} else {
2135 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2136 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2137 			    0, NULL);
2138 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2139 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2140 			    0, NULL);
2141 		if (sc->hw.phy.type != e1000_phy_ife) {
2142 			ifmedia_add(&sc->media,
2143 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2144 		}
2145 	}
2146 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2147 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2148 }
2149 
2150 /*
2151  * Workaround for SmartSpeed on 82541 and 82547 controllers
2152  */
2153 static void
2154 emx_smartspeed(struct emx_softc *sc)
2155 {
2156 	uint16_t phy_tmp;
2157 
2158 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2159 	    sc->hw.mac.autoneg == 0 ||
2160 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2161 		return;
2162 
2163 	if (sc->smartspeed == 0) {
2164 		/*
2165 		 * If Master/Slave config fault is asserted twice,
2166 		 * we assume back-to-back
2167 		 */
2168 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2169 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2170 			return;
2171 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2172 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2173 			e1000_read_phy_reg(&sc->hw,
2174 			    PHY_1000T_CTRL, &phy_tmp);
2175 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2176 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2177 				e1000_write_phy_reg(&sc->hw,
2178 				    PHY_1000T_CTRL, phy_tmp);
2179 				sc->smartspeed++;
2180 				if (sc->hw.mac.autoneg &&
2181 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2182 				    !e1000_read_phy_reg(&sc->hw,
2183 				     PHY_CONTROL, &phy_tmp)) {
2184 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2185 						   MII_CR_RESTART_AUTO_NEG;
2186 					e1000_write_phy_reg(&sc->hw,
2187 					    PHY_CONTROL, phy_tmp);
2188 				}
2189 			}
2190 		}
2191 		return;
2192 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2193 		/* If still no link, perhaps using 2/3 pair cable */
2194 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2195 		phy_tmp |= CR_1000T_MS_ENABLE;
2196 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2197 		if (sc->hw.mac.autoneg &&
2198 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2199 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2200 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2201 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2202 		}
2203 	}
2204 
2205 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2206 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2207 		sc->smartspeed = 0;
2208 }
2209 
2210 static int
2211 emx_create_tx_ring(struct emx_txdata *tdata)
2212 {
2213 	device_t dev = tdata->sc->dev;
2214 	struct emx_txbuf *tx_buffer;
2215 	int error, i, tsize, ntxd;
2216 
2217 	/*
2218 	 * Validate number of transmit descriptors.  It must not exceed
2219 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2220 	 */
2221 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2222 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2223 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2224 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2225 		    EMX_DEFAULT_TXD, ntxd);
2226 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2227 	} else {
2228 		tdata->num_tx_desc = ntxd;
2229 	}
2230 
2231 	/*
2232 	 * Allocate Transmit Descriptor ring
2233 	 */
2234 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2235 			 EMX_DBA_ALIGN);
2236 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2237 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2238 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2239 				&tdata->tx_desc_paddr);
2240 	if (tdata->tx_desc_base == NULL) {
2241 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2242 		return ENOMEM;
2243 	}
2244 
2245 	tsize = __VM_CACHELINE_ALIGN(
2246 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2247 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2248 
2249 	/*
2250 	 * Create DMA tags for tx buffers
2251 	 */
2252 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2253 			1, 0,			/* alignment, bounds */
2254 			BUS_SPACE_MAXADDR,	/* lowaddr */
2255 			BUS_SPACE_MAXADDR,	/* highaddr */
2256 			NULL, NULL,		/* filter, filterarg */
2257 			EMX_TSO_SIZE,		/* maxsize */
2258 			EMX_MAX_SCATTER,	/* nsegments */
2259 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2260 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2261 			BUS_DMA_ONEBPAGE,	/* flags */
2262 			&tdata->txtag);
2263 	if (error) {
2264 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2265 		kfree(tdata->tx_buf, M_DEVBUF);
2266 		tdata->tx_buf = NULL;
2267 		return error;
2268 	}
2269 
2270 	/*
2271 	 * Create DMA maps for tx buffers
2272 	 */
2273 	for (i = 0; i < tdata->num_tx_desc; i++) {
2274 		tx_buffer = &tdata->tx_buf[i];
2275 
2276 		error = bus_dmamap_create(tdata->txtag,
2277 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2278 					  &tx_buffer->map);
2279 		if (error) {
2280 			device_printf(dev, "Unable to create TX DMA map\n");
2281 			emx_destroy_tx_ring(tdata, i);
2282 			return error;
2283 		}
2284 	}
2285 
2286 	/*
2287 	 * Setup TX parameters
2288 	 */
2289 	tdata->spare_tx_desc = EMX_TX_SPARE;
2290 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2291 
2292 	/*
2293 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2294 	 * and tx_intr_nsegs:
2295 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2296 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2297 	 */
2298 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2299 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2300 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2301 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2302 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2303 
2304 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2305 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2306 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2307 
2308 	/*
2309 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2310 	 * 82571/82572 specification update errata #7
2311 	 *
2312 	 * Same applies to I217 (and maybe I218 and I219).
2313 	 *
2314 	 * NOTE:
2315 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2316 	 * are pulled; mainly to keep rest of the data properly aligned.
2317 	 */
2318 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2319 	    tdata->sc->hw.mac.type == e1000_82572 ||
2320 	    tdata->sc->hw.mac.type == e1000_pch_lpt ||
2321 	    tdata->sc->hw.mac.type == e1000_pch_spt)
2322 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2323 
2324 	return (0);
2325 }
2326 
2327 static void
2328 emx_init_tx_ring(struct emx_txdata *tdata)
2329 {
2330 	/* Clear the old ring contents */
2331 	bzero(tdata->tx_desc_base,
2332 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2333 
2334 	/* Reset state */
2335 	tdata->next_avail_tx_desc = 0;
2336 	tdata->next_tx_to_clean = 0;
2337 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2338 
2339 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2340 	if (tdata->sc->tx_ring_inuse > 1) {
2341 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2342 		if (bootverbose) {
2343 			if_printf(&tdata->sc->arpcom.ac_if,
2344 			    "TX %d force ctx setup\n", tdata->idx);
2345 		}
2346 	}
2347 }
2348 
2349 static void
2350 emx_init_tx_unit(struct emx_softc *sc)
2351 {
2352 	uint32_t tctl, tarc, tipg = 0, txdctl;
2353 	int i;
2354 
2355 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2356 		struct emx_txdata *tdata = &sc->tx_data[i];
2357 		uint64_t bus_addr;
2358 
2359 		/* Setup the Base and Length of the Tx Descriptor Ring */
2360 		bus_addr = tdata->tx_desc_paddr;
2361 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2362 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2363 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2364 		    (uint32_t)(bus_addr >> 32));
2365 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2366 		    (uint32_t)bus_addr);
2367 		/* Setup the HW Tx Head and Tail descriptor pointers */
2368 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2369 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2370 	}
2371 
2372 	/* Set the default values for the Tx Inter Packet Gap timer */
2373 	switch (sc->hw.mac.type) {
2374 	case e1000_80003es2lan:
2375 		tipg = DEFAULT_82543_TIPG_IPGR1;
2376 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2377 		    E1000_TIPG_IPGR2_SHIFT;
2378 		break;
2379 
2380 	default:
2381 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2382 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2383 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2384 		else
2385 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2386 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2387 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2388 		break;
2389 	}
2390 
2391 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2392 
2393 	/* NOTE: 0 is not allowed for TIDV */
2394 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2395 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2396 
2397 	/*
2398 	 * Errata workaround (obtained from Linux).  This is necessary
2399 	 * to make multiple TX queues work on 82574.
2400 	 * XXX can't find it in any published errata though.
2401 	 */
2402 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2403 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2404 
2405 	if (sc->hw.mac.type == e1000_82571 ||
2406 	    sc->hw.mac.type == e1000_82572) {
2407 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2408 		tarc |= EMX_TARC_SPEED_MODE;
2409 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2410 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2411 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2412 		tarc |= 1;
2413 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2414 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2415 		tarc |= 1;
2416 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2417 	}
2418 
2419 	/* Program the Transmit Control Register */
2420 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2421 	tctl &= ~E1000_TCTL_CT;
2422 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2423 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2424 	tctl |= E1000_TCTL_MULR;
2425 
2426 	/* This write will effectively turn on the transmit unit. */
2427 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2428 
2429 	if (sc->hw.mac.type == e1000_82571 ||
2430 	    sc->hw.mac.type == e1000_82572 ||
2431 	    sc->hw.mac.type == e1000_80003es2lan) {
2432 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2433 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2434 		tarc &= ~(1 << 28);
2435 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2436 	}
2437 
2438 	if (sc->tx_ring_inuse > 1) {
2439 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2440 		tarc &= ~EMX_TARC_COUNT_MASK;
2441 		tarc |= 1;
2442 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2443 
2444 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2445 		tarc &= ~EMX_TARC_COUNT_MASK;
2446 		tarc |= 1;
2447 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2448 	}
2449 }
2450 
2451 static void
2452 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2453 {
2454 	struct emx_txbuf *tx_buffer;
2455 	int i;
2456 
2457 	/* Free Transmit Descriptor ring */
2458 	if (tdata->tx_desc_base) {
2459 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2460 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2461 				tdata->tx_desc_dmap);
2462 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2463 
2464 		tdata->tx_desc_base = NULL;
2465 	}
2466 
2467 	if (tdata->tx_buf == NULL)
2468 		return;
2469 
2470 	for (i = 0; i < ndesc; i++) {
2471 		tx_buffer = &tdata->tx_buf[i];
2472 
2473 		KKASSERT(tx_buffer->m_head == NULL);
2474 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2475 	}
2476 	bus_dma_tag_destroy(tdata->txtag);
2477 
2478 	kfree(tdata->tx_buf, M_DEVBUF);
2479 	tdata->tx_buf = NULL;
2480 }
2481 
2482 /*
2483  * The offload context needs to be set when we transfer the first
2484  * packet of a particular protocol (TCP/UDP).  This routine has been
2485  * enhanced to deal with inserted VLAN headers.
2486  *
2487  * If the new packet's ether header length, ip header length and
2488  * csum offloading type are same as the previous packet, we should
2489  * avoid allocating a new csum context descriptor; mainly to take
2490  * advantage of the pipeline effect of the TX data read request.
2491  *
2492  * This function returns number of TX descrptors allocated for
2493  * csum context.
2494  */
2495 static int
2496 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2497 	   uint32_t *txd_upper, uint32_t *txd_lower)
2498 {
2499 	struct e1000_context_desc *TXD;
2500 	int curr_txd, ehdrlen, csum_flags;
2501 	uint32_t cmd, hdr_len, ip_hlen;
2502 
2503 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2504 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2505 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2506 
2507 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2508 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2509 	    tdata->csum_flags == csum_flags) {
2510 		/*
2511 		 * Same csum offload context as the previous packets;
2512 		 * just return.
2513 		 */
2514 		*txd_upper = tdata->csum_txd_upper;
2515 		*txd_lower = tdata->csum_txd_lower;
2516 		return 0;
2517 	}
2518 
2519 	/*
2520 	 * Setup a new csum offload context.
2521 	 */
2522 
2523 	curr_txd = tdata->next_avail_tx_desc;
2524 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2525 
2526 	cmd = 0;
2527 
2528 	/* Setup of IP header checksum. */
2529 	if (csum_flags & CSUM_IP) {
2530 		/*
2531 		 * Start offset for header checksum calculation.
2532 		 * End offset for header checksum calculation.
2533 		 * Offset of place to put the checksum.
2534 		 */
2535 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2536 		TXD->lower_setup.ip_fields.ipcse =
2537 		    htole16(ehdrlen + ip_hlen - 1);
2538 		TXD->lower_setup.ip_fields.ipcso =
2539 		    ehdrlen + offsetof(struct ip, ip_sum);
2540 		cmd |= E1000_TXD_CMD_IP;
2541 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2542 	}
2543 	hdr_len = ehdrlen + ip_hlen;
2544 
2545 	if (csum_flags & CSUM_TCP) {
2546 		/*
2547 		 * Start offset for payload checksum calculation.
2548 		 * End offset for payload checksum calculation.
2549 		 * Offset of place to put the checksum.
2550 		 */
2551 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2552 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2553 		TXD->upper_setup.tcp_fields.tucso =
2554 		    hdr_len + offsetof(struct tcphdr, th_sum);
2555 		cmd |= E1000_TXD_CMD_TCP;
2556 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2557 	} else if (csum_flags & CSUM_UDP) {
2558 		/*
2559 		 * Start offset for header checksum calculation.
2560 		 * End offset for header checksum calculation.
2561 		 * Offset of place to put the checksum.
2562 		 */
2563 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2564 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2565 		TXD->upper_setup.tcp_fields.tucso =
2566 		    hdr_len + offsetof(struct udphdr, uh_sum);
2567 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2568 	}
2569 
2570 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2571 		     E1000_TXD_DTYP_D;		/* Data descr */
2572 
2573 	/* Save the information for this csum offloading context */
2574 	tdata->csum_lhlen = ehdrlen;
2575 	tdata->csum_iphlen = ip_hlen;
2576 	tdata->csum_flags = csum_flags;
2577 	tdata->csum_txd_upper = *txd_upper;
2578 	tdata->csum_txd_lower = *txd_lower;
2579 
2580 	TXD->tcp_seg_setup.data = htole32(0);
2581 	TXD->cmd_and_length =
2582 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2583 
2584 	if (++curr_txd == tdata->num_tx_desc)
2585 		curr_txd = 0;
2586 
2587 	KKASSERT(tdata->num_tx_desc_avail > 0);
2588 	tdata->num_tx_desc_avail--;
2589 
2590 	tdata->next_avail_tx_desc = curr_txd;
2591 	return 1;
2592 }
2593 
2594 static void
2595 emx_txeof(struct emx_txdata *tdata)
2596 {
2597 	struct emx_txbuf *tx_buffer;
2598 	int first, num_avail;
2599 
2600 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2601 		return;
2602 
2603 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2604 		return;
2605 
2606 	num_avail = tdata->num_tx_desc_avail;
2607 	first = tdata->next_tx_to_clean;
2608 
2609 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2610 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2611 		struct e1000_tx_desc *tx_desc;
2612 
2613 		tx_desc = &tdata->tx_desc_base[dd_idx];
2614 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2615 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2616 
2617 			if (++dd_idx == tdata->num_tx_desc)
2618 				dd_idx = 0;
2619 
2620 			while (first != dd_idx) {
2621 				logif(pkt_txclean);
2622 
2623 				num_avail++;
2624 
2625 				tx_buffer = &tdata->tx_buf[first];
2626 				if (tx_buffer->m_head) {
2627 					bus_dmamap_unload(tdata->txtag,
2628 							  tx_buffer->map);
2629 					m_freem(tx_buffer->m_head);
2630 					tx_buffer->m_head = NULL;
2631 				}
2632 
2633 				if (++first == tdata->num_tx_desc)
2634 					first = 0;
2635 			}
2636 		} else {
2637 			break;
2638 		}
2639 	}
2640 	tdata->next_tx_to_clean = first;
2641 	tdata->num_tx_desc_avail = num_avail;
2642 
2643 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2644 		tdata->tx_dd_head = 0;
2645 		tdata->tx_dd_tail = 0;
2646 	}
2647 
2648 	if (!EMX_IS_OACTIVE(tdata)) {
2649 		ifsq_clr_oactive(tdata->ifsq);
2650 
2651 		/* All clean, turn off the timer */
2652 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2653 			tdata->tx_watchdog.wd_timer = 0;
2654 	}
2655 }
2656 
2657 static void
2658 emx_tx_collect(struct emx_txdata *tdata)
2659 {
2660 	struct emx_txbuf *tx_buffer;
2661 	int tdh, first, num_avail, dd_idx = -1;
2662 
2663 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2664 		return;
2665 
2666 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2667 	if (tdh == tdata->next_tx_to_clean)
2668 		return;
2669 
2670 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2671 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2672 
2673 	num_avail = tdata->num_tx_desc_avail;
2674 	first = tdata->next_tx_to_clean;
2675 
2676 	while (first != tdh) {
2677 		logif(pkt_txclean);
2678 
2679 		num_avail++;
2680 
2681 		tx_buffer = &tdata->tx_buf[first];
2682 		if (tx_buffer->m_head) {
2683 			bus_dmamap_unload(tdata->txtag,
2684 					  tx_buffer->map);
2685 			m_freem(tx_buffer->m_head);
2686 			tx_buffer->m_head = NULL;
2687 		}
2688 
2689 		if (first == dd_idx) {
2690 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2691 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2692 				tdata->tx_dd_head = 0;
2693 				tdata->tx_dd_tail = 0;
2694 				dd_idx = -1;
2695 			} else {
2696 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2697 			}
2698 		}
2699 
2700 		if (++first == tdata->num_tx_desc)
2701 			first = 0;
2702 	}
2703 	tdata->next_tx_to_clean = first;
2704 	tdata->num_tx_desc_avail = num_avail;
2705 
2706 	if (!EMX_IS_OACTIVE(tdata)) {
2707 		ifsq_clr_oactive(tdata->ifsq);
2708 
2709 		/* All clean, turn off the timer */
2710 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2711 			tdata->tx_watchdog.wd_timer = 0;
2712 	}
2713 }
2714 
2715 /*
2716  * When Link is lost sometimes there is work still in the TX ring
2717  * which will result in a watchdog, rather than allow that do an
2718  * attempted cleanup and then reinit here.  Note that this has been
2719  * seens mostly with fiber adapters.
2720  */
2721 static void
2722 emx_tx_purge(struct emx_softc *sc)
2723 {
2724 	int i;
2725 
2726 	if (sc->link_active)
2727 		return;
2728 
2729 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2730 		struct emx_txdata *tdata = &sc->tx_data[i];
2731 
2732 		if (tdata->tx_watchdog.wd_timer) {
2733 			emx_tx_collect(tdata);
2734 			if (tdata->tx_watchdog.wd_timer) {
2735 				if_printf(&sc->arpcom.ac_if,
2736 				    "Link lost, TX pending, reinit\n");
2737 				emx_init(sc);
2738 				return;
2739 			}
2740 		}
2741 	}
2742 }
2743 
2744 static int
2745 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2746 {
2747 	struct mbuf *m;
2748 	bus_dma_segment_t seg;
2749 	bus_dmamap_t map;
2750 	struct emx_rxbuf *rx_buffer;
2751 	int error, nseg;
2752 
2753 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2754 	if (m == NULL) {
2755 		if (init) {
2756 			if_printf(&rdata->sc->arpcom.ac_if,
2757 				  "Unable to allocate RX mbuf\n");
2758 		}
2759 		return (ENOBUFS);
2760 	}
2761 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2762 
2763 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2764 		m_adj(m, ETHER_ALIGN);
2765 
2766 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2767 			rdata->rx_sparemap, m,
2768 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2769 	if (error) {
2770 		m_freem(m);
2771 		if (init) {
2772 			if_printf(&rdata->sc->arpcom.ac_if,
2773 				  "Unable to load RX mbuf\n");
2774 		}
2775 		return (error);
2776 	}
2777 
2778 	rx_buffer = &rdata->rx_buf[i];
2779 	if (rx_buffer->m_head != NULL)
2780 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2781 
2782 	map = rx_buffer->map;
2783 	rx_buffer->map = rdata->rx_sparemap;
2784 	rdata->rx_sparemap = map;
2785 
2786 	rx_buffer->m_head = m;
2787 	rx_buffer->paddr = seg.ds_addr;
2788 
2789 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2790 	return (0);
2791 }
2792 
2793 static int
2794 emx_create_rx_ring(struct emx_rxdata *rdata)
2795 {
2796 	device_t dev = rdata->sc->dev;
2797 	struct emx_rxbuf *rx_buffer;
2798 	int i, error, rsize, nrxd;
2799 
2800 	/*
2801 	 * Validate number of receive descriptors.  It must not exceed
2802 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2803 	 */
2804 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2805 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2806 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2807 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2808 		    EMX_DEFAULT_RXD, nrxd);
2809 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2810 	} else {
2811 		rdata->num_rx_desc = nrxd;
2812 	}
2813 
2814 	/*
2815 	 * Allocate Receive Descriptor ring
2816 	 */
2817 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2818 			 EMX_DBA_ALIGN);
2819 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2820 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2821 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2822 				&rdata->rx_desc_paddr);
2823 	if (rdata->rx_desc == NULL) {
2824 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2825 		return ENOMEM;
2826 	}
2827 
2828 	rsize = __VM_CACHELINE_ALIGN(
2829 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2830 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2831 
2832 	/*
2833 	 * Create DMA tag for rx buffers
2834 	 */
2835 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2836 			1, 0,			/* alignment, bounds */
2837 			BUS_SPACE_MAXADDR,	/* lowaddr */
2838 			BUS_SPACE_MAXADDR,	/* highaddr */
2839 			NULL, NULL,		/* filter, filterarg */
2840 			MCLBYTES,		/* maxsize */
2841 			1,			/* nsegments */
2842 			MCLBYTES,		/* maxsegsize */
2843 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2844 			&rdata->rxtag);
2845 	if (error) {
2846 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2847 		kfree(rdata->rx_buf, M_DEVBUF);
2848 		rdata->rx_buf = NULL;
2849 		return error;
2850 	}
2851 
2852 	/*
2853 	 * Create spare DMA map for rx buffers
2854 	 */
2855 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2856 				  &rdata->rx_sparemap);
2857 	if (error) {
2858 		device_printf(dev, "Unable to create spare RX DMA map\n");
2859 		bus_dma_tag_destroy(rdata->rxtag);
2860 		kfree(rdata->rx_buf, M_DEVBUF);
2861 		rdata->rx_buf = NULL;
2862 		return error;
2863 	}
2864 
2865 	/*
2866 	 * Create DMA maps for rx buffers
2867 	 */
2868 	for (i = 0; i < rdata->num_rx_desc; i++) {
2869 		rx_buffer = &rdata->rx_buf[i];
2870 
2871 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2872 					  &rx_buffer->map);
2873 		if (error) {
2874 			device_printf(dev, "Unable to create RX DMA map\n");
2875 			emx_destroy_rx_ring(rdata, i);
2876 			return error;
2877 		}
2878 	}
2879 	return (0);
2880 }
2881 
2882 static void
2883 emx_free_rx_ring(struct emx_rxdata *rdata)
2884 {
2885 	int i;
2886 
2887 	for (i = 0; i < rdata->num_rx_desc; i++) {
2888 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2889 
2890 		if (rx_buffer->m_head != NULL) {
2891 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2892 			m_freem(rx_buffer->m_head);
2893 			rx_buffer->m_head = NULL;
2894 		}
2895 	}
2896 
2897 	if (rdata->fmp != NULL)
2898 		m_freem(rdata->fmp);
2899 	rdata->fmp = NULL;
2900 	rdata->lmp = NULL;
2901 }
2902 
2903 static void
2904 emx_free_tx_ring(struct emx_txdata *tdata)
2905 {
2906 	int i;
2907 
2908 	for (i = 0; i < tdata->num_tx_desc; i++) {
2909 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2910 
2911 		if (tx_buffer->m_head != NULL) {
2912 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2913 			m_freem(tx_buffer->m_head);
2914 			tx_buffer->m_head = NULL;
2915 		}
2916 	}
2917 
2918 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2919 
2920 	tdata->csum_flags = 0;
2921 	tdata->csum_lhlen = 0;
2922 	tdata->csum_iphlen = 0;
2923 	tdata->csum_thlen = 0;
2924 	tdata->csum_mss = 0;
2925 	tdata->csum_pktlen = 0;
2926 
2927 	tdata->tx_dd_head = 0;
2928 	tdata->tx_dd_tail = 0;
2929 	tdata->tx_nsegs = 0;
2930 }
2931 
2932 static int
2933 emx_init_rx_ring(struct emx_rxdata *rdata)
2934 {
2935 	int i, error;
2936 
2937 	/* Reset descriptor ring */
2938 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2939 
2940 	/* Allocate new ones. */
2941 	for (i = 0; i < rdata->num_rx_desc; i++) {
2942 		error = emx_newbuf(rdata, i, 1);
2943 		if (error)
2944 			return (error);
2945 	}
2946 
2947 	/* Setup our descriptor pointers */
2948 	rdata->next_rx_desc_to_check = 0;
2949 
2950 	return (0);
2951 }
2952 
2953 static void
2954 emx_init_rx_unit(struct emx_softc *sc)
2955 {
2956 	struct ifnet *ifp = &sc->arpcom.ac_if;
2957 	uint64_t bus_addr;
2958 	uint32_t rctl, itr, rfctl;
2959 	int i;
2960 
2961 	/*
2962 	 * Make sure receives are disabled while setting
2963 	 * up the descriptor ring
2964 	 */
2965 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2966 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2967 
2968 	/*
2969 	 * Set the interrupt throttling rate. Value is calculated
2970 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2971 	 */
2972 	if (sc->int_throttle_ceil)
2973 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2974 	else
2975 		itr = 0;
2976 	emx_set_itr(sc, itr);
2977 
2978 	/* Use extended RX descriptor */
2979 	rfctl = E1000_RFCTL_EXTEN;
2980 
2981 	/* Disable accelerated ackknowledge */
2982 	if (sc->hw.mac.type == e1000_82574)
2983 		rfctl |= E1000_RFCTL_ACK_DIS;
2984 
2985 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2986 
2987 	/*
2988 	 * Receive Checksum Offload for TCP and UDP
2989 	 *
2990 	 * Checksum offloading is also enabled if multiple receive
2991 	 * queue is to be supported, since we need it to figure out
2992 	 * packet type.
2993 	 */
2994 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2995 	    sc->rx_ring_cnt > 1) {
2996 		uint32_t rxcsum;
2997 
2998 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2999 
3000 		/*
3001 		 * NOTE:
3002 		 * PCSD must be enabled to enable multiple
3003 		 * receive queues.
3004 		 */
3005 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3006 			  E1000_RXCSUM_PCSD;
3007 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3008 	}
3009 
3010 	/*
3011 	 * Configure multiple receive queue (RSS)
3012 	 */
3013 	if (sc->rx_ring_cnt > 1) {
3014 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3015 		uint32_t reta;
3016 
3017 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3018 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3019 
3020 		/*
3021 		 * NOTE:
3022 		 * When we reach here, RSS has already been disabled
3023 		 * in emx_stop(), so we could safely configure RSS key
3024 		 * and redirect table.
3025 		 */
3026 
3027 		/*
3028 		 * Configure RSS key
3029 		 */
3030 		toeplitz_get_key(key, sizeof(key));
3031 		for (i = 0; i < EMX_NRSSRK; ++i) {
3032 			uint32_t rssrk;
3033 
3034 			rssrk = EMX_RSSRK_VAL(key, i);
3035 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3036 
3037 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3038 		}
3039 
3040 		/*
3041 		 * Configure RSS redirect table in following fashion:
3042 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3043 		 */
3044 		reta = 0;
3045 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
3046 			uint32_t q;
3047 
3048 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
3049 			reta |= q << (8 * i);
3050 		}
3051 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3052 
3053 		for (i = 0; i < EMX_NRETA; ++i)
3054 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
3055 
3056 		/*
3057 		 * Enable multiple receive queues.
3058 		 * Enable IPv4 RSS standard hash functions.
3059 		 * Disable RSS interrupt.
3060 		 */
3061 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3062 				E1000_MRQC_ENABLE_RSS_2Q |
3063 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3064 				E1000_MRQC_RSS_FIELD_IPV4);
3065 	}
3066 
3067 	/*
3068 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3069 	 * long latencies are observed, like Lenovo X60. This
3070 	 * change eliminates the problem, but since having positive
3071 	 * values in RDTR is a known source of problems on other
3072 	 * platforms another solution is being sought.
3073 	 */
3074 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3075 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3076 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3077 	}
3078 
3079 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3080 		struct emx_rxdata *rdata = &sc->rx_data[i];
3081 
3082 		/*
3083 		 * Setup the Base and Length of the Rx Descriptor Ring
3084 		 */
3085 		bus_addr = rdata->rx_desc_paddr;
3086 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3087 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3088 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3089 		    (uint32_t)(bus_addr >> 32));
3090 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3091 		    (uint32_t)bus_addr);
3092 
3093 		/*
3094 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3095 		 */
3096 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3097 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3098 		    sc->rx_data[i].num_rx_desc - 1);
3099 	}
3100 
3101 	if (sc->hw.mac.type >= e1000_pch2lan) {
3102 		if (ifp->if_mtu > ETHERMTU)
3103 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3104 		else
3105 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3106 	}
3107 
3108 	/* Setup the Receive Control Register */
3109 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3110 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3111 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3112 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3113 
3114 	/* Make sure VLAN Filters are off */
3115 	rctl &= ~E1000_RCTL_VFE;
3116 
3117 	/* Don't store bad paket */
3118 	rctl &= ~E1000_RCTL_SBP;
3119 
3120 	/* MCLBYTES */
3121 	rctl |= E1000_RCTL_SZ_2048;
3122 
3123 	if (ifp->if_mtu > ETHERMTU)
3124 		rctl |= E1000_RCTL_LPE;
3125 	else
3126 		rctl &= ~E1000_RCTL_LPE;
3127 
3128 	/* Enable Receives */
3129 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3130 }
3131 
3132 static void
3133 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3134 {
3135 	struct emx_rxbuf *rx_buffer;
3136 	int i;
3137 
3138 	/* Free Receive Descriptor ring */
3139 	if (rdata->rx_desc) {
3140 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3141 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3142 				rdata->rx_desc_dmap);
3143 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3144 
3145 		rdata->rx_desc = NULL;
3146 	}
3147 
3148 	if (rdata->rx_buf == NULL)
3149 		return;
3150 
3151 	for (i = 0; i < ndesc; i++) {
3152 		rx_buffer = &rdata->rx_buf[i];
3153 
3154 		KKASSERT(rx_buffer->m_head == NULL);
3155 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3156 	}
3157 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3158 	bus_dma_tag_destroy(rdata->rxtag);
3159 
3160 	kfree(rdata->rx_buf, M_DEVBUF);
3161 	rdata->rx_buf = NULL;
3162 }
3163 
3164 static void
3165 emx_rxeof(struct emx_rxdata *rdata, int count)
3166 {
3167 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3168 	uint32_t staterr;
3169 	emx_rxdesc_t *current_desc;
3170 	struct mbuf *mp;
3171 	int i, cpuid = mycpuid;
3172 
3173 	i = rdata->next_rx_desc_to_check;
3174 	current_desc = &rdata->rx_desc[i];
3175 	staterr = le32toh(current_desc->rxd_staterr);
3176 
3177 	if (!(staterr & E1000_RXD_STAT_DD))
3178 		return;
3179 
3180 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3181 		struct pktinfo *pi = NULL, pi0;
3182 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3183 		struct mbuf *m = NULL;
3184 		int eop, len;
3185 
3186 		logif(pkt_receive);
3187 
3188 		mp = rx_buf->m_head;
3189 
3190 		/*
3191 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3192 		 * needs to access the last received byte in the mbuf.
3193 		 */
3194 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3195 				BUS_DMASYNC_POSTREAD);
3196 
3197 		len = le16toh(current_desc->rxd_length);
3198 		if (staterr & E1000_RXD_STAT_EOP) {
3199 			count--;
3200 			eop = 1;
3201 		} else {
3202 			eop = 0;
3203 		}
3204 
3205 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3206 			uint16_t vlan = 0;
3207 			uint32_t mrq, rss_hash;
3208 
3209 			/*
3210 			 * Save several necessary information,
3211 			 * before emx_newbuf() destroy it.
3212 			 */
3213 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3214 				vlan = le16toh(current_desc->rxd_vlan);
3215 
3216 			mrq = le32toh(current_desc->rxd_mrq);
3217 			rss_hash = le32toh(current_desc->rxd_rss);
3218 
3219 			EMX_RSS_DPRINTF(rdata->sc, 10,
3220 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3221 			    rdata->idx, mrq, rss_hash);
3222 
3223 			if (emx_newbuf(rdata, i, 0) != 0) {
3224 				IFNET_STAT_INC(ifp, iqdrops, 1);
3225 				goto discard;
3226 			}
3227 
3228 			/* Assign correct length to the current fragment */
3229 			mp->m_len = len;
3230 
3231 			if (rdata->fmp == NULL) {
3232 				mp->m_pkthdr.len = len;
3233 				rdata->fmp = mp; /* Store the first mbuf */
3234 				rdata->lmp = mp;
3235 			} else {
3236 				/*
3237 				 * Chain mbuf's together
3238 				 */
3239 				rdata->lmp->m_next = mp;
3240 				rdata->lmp = rdata->lmp->m_next;
3241 				rdata->fmp->m_pkthdr.len += len;
3242 			}
3243 
3244 			if (eop) {
3245 				rdata->fmp->m_pkthdr.rcvif = ifp;
3246 				IFNET_STAT_INC(ifp, ipackets, 1);
3247 
3248 				if (ifp->if_capenable & IFCAP_RXCSUM)
3249 					emx_rxcsum(staterr, rdata->fmp);
3250 
3251 				if (staterr & E1000_RXD_STAT_VP) {
3252 					rdata->fmp->m_pkthdr.ether_vlantag =
3253 					    vlan;
3254 					rdata->fmp->m_flags |= M_VLANTAG;
3255 				}
3256 				m = rdata->fmp;
3257 				rdata->fmp = NULL;
3258 				rdata->lmp = NULL;
3259 
3260 				if (ifp->if_capenable & IFCAP_RSS) {
3261 					pi = emx_rssinfo(m, &pi0, mrq,
3262 							 rss_hash, staterr);
3263 				}
3264 #ifdef EMX_RSS_DEBUG
3265 				rdata->rx_pkts++;
3266 #endif
3267 			}
3268 		} else {
3269 			IFNET_STAT_INC(ifp, ierrors, 1);
3270 discard:
3271 			emx_setup_rxdesc(current_desc, rx_buf);
3272 			if (rdata->fmp != NULL) {
3273 				m_freem(rdata->fmp);
3274 				rdata->fmp = NULL;
3275 				rdata->lmp = NULL;
3276 			}
3277 			m = NULL;
3278 		}
3279 
3280 		if (m != NULL)
3281 			ifp->if_input(ifp, m, pi, cpuid);
3282 
3283 		/* Advance our pointers to the next descriptor. */
3284 		if (++i == rdata->num_rx_desc)
3285 			i = 0;
3286 
3287 		current_desc = &rdata->rx_desc[i];
3288 		staterr = le32toh(current_desc->rxd_staterr);
3289 	}
3290 	rdata->next_rx_desc_to_check = i;
3291 
3292 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3293 	if (--i < 0)
3294 		i = rdata->num_rx_desc - 1;
3295 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3296 }
3297 
3298 static void
3299 emx_enable_intr(struct emx_softc *sc)
3300 {
3301 	uint32_t ims_mask = IMS_ENABLE_MASK;
3302 
3303 	lwkt_serialize_handler_enable(&sc->main_serialize);
3304 
3305 #if 0
3306 	if (sc->hw.mac.type == e1000_82574) {
3307 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3308 		ims_mask |= EM_MSIX_MASK;
3309 	}
3310 #endif
3311 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3312 }
3313 
3314 static void
3315 emx_disable_intr(struct emx_softc *sc)
3316 {
3317 	if (sc->hw.mac.type == e1000_82574)
3318 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3319 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3320 
3321 	lwkt_serialize_handler_disable(&sc->main_serialize);
3322 }
3323 
3324 /*
3325  * Bit of a misnomer, what this really means is
3326  * to enable OS management of the system... aka
3327  * to disable special hardware management features
3328  */
3329 static void
3330 emx_get_mgmt(struct emx_softc *sc)
3331 {
3332 	/* A shared code workaround */
3333 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3334 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3335 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3336 
3337 		/* disable hardware interception of ARP */
3338 		manc &= ~(E1000_MANC_ARP_EN);
3339 
3340                 /* enable receiving management packets to the host */
3341 		manc |= E1000_MANC_EN_MNG2HOST;
3342 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3343 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3344 		manc2h |= E1000_MNG2HOST_PORT_623;
3345 		manc2h |= E1000_MNG2HOST_PORT_664;
3346 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3347 
3348 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3349 	}
3350 }
3351 
3352 /*
3353  * Give control back to hardware management
3354  * controller if there is one.
3355  */
3356 static void
3357 emx_rel_mgmt(struct emx_softc *sc)
3358 {
3359 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3360 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3361 
3362 		/* re-enable hardware interception of ARP */
3363 		manc |= E1000_MANC_ARP_EN;
3364 		manc &= ~E1000_MANC_EN_MNG2HOST;
3365 
3366 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3367 	}
3368 }
3369 
3370 /*
3371  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3372  * For ASF and Pass Through versions of f/w this means that
3373  * the driver is loaded.  For AMT version (only with 82573)
3374  * of the f/w this means that the network i/f is open.
3375  */
3376 static void
3377 emx_get_hw_control(struct emx_softc *sc)
3378 {
3379 	/* Let firmware know the driver has taken over */
3380 	if (sc->hw.mac.type == e1000_82573) {
3381 		uint32_t swsm;
3382 
3383 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3384 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3385 		    swsm | E1000_SWSM_DRV_LOAD);
3386 	} else {
3387 		uint32_t ctrl_ext;
3388 
3389 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3390 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3391 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3392 	}
3393 	sc->flags |= EMX_FLAG_HW_CTRL;
3394 }
3395 
3396 /*
3397  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3398  * For ASF and Pass Through versions of f/w this means that the
3399  * driver is no longer loaded.  For AMT version (only with 82573)
3400  * of the f/w this means that the network i/f is closed.
3401  */
3402 static void
3403 emx_rel_hw_control(struct emx_softc *sc)
3404 {
3405 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3406 		return;
3407 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3408 
3409 	/* Let firmware taken over control of h/w */
3410 	if (sc->hw.mac.type == e1000_82573) {
3411 		uint32_t swsm;
3412 
3413 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3414 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3415 		    swsm & ~E1000_SWSM_DRV_LOAD);
3416 	} else {
3417 		uint32_t ctrl_ext;
3418 
3419 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3420 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3421 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3422 	}
3423 }
3424 
3425 static int
3426 emx_is_valid_eaddr(const uint8_t *addr)
3427 {
3428 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3429 
3430 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3431 		return (FALSE);
3432 
3433 	return (TRUE);
3434 }
3435 
3436 /*
3437  * Enable PCI Wake On Lan capability
3438  */
3439 void
3440 emx_enable_wol(device_t dev)
3441 {
3442 	uint16_t cap, status;
3443 	uint8_t id;
3444 
3445 	/* First find the capabilities pointer*/
3446 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3447 
3448 	/* Read the PM Capabilities */
3449 	id = pci_read_config(dev, cap, 1);
3450 	if (id != PCIY_PMG)     /* Something wrong */
3451 		return;
3452 
3453 	/*
3454 	 * OK, we have the power capabilities,
3455 	 * so now get the status register
3456 	 */
3457 	cap += PCIR_POWER_STATUS;
3458 	status = pci_read_config(dev, cap, 2);
3459 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3460 	pci_write_config(dev, cap, status, 2);
3461 }
3462 
3463 static void
3464 emx_update_stats(struct emx_softc *sc)
3465 {
3466 	struct ifnet *ifp = &sc->arpcom.ac_if;
3467 
3468 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3469 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3470 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3471 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3472 	}
3473 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3474 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3475 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3476 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3477 
3478 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3479 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3480 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3481 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3482 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3483 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3484 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3485 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3486 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3487 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3488 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3489 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3490 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3491 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3492 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3493 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3494 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3495 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3496 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3497 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3498 
3499 	/* For the 64-bit byte counters the low dword must be read first. */
3500 	/* Both registers clear on the read of the high dword */
3501 
3502 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3503 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3504 
3505 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3506 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3507 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3508 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3509 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3510 
3511 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3512 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3513 
3514 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3515 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3516 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3517 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3518 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3519 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3520 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3521 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3522 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3523 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3524 
3525 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3526 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3527 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3528 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3529 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3530 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3531 
3532 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3533 
3534 	/* Rx Errors */
3535 	IFNET_STAT_SET(ifp, ierrors,
3536 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3537 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3538 
3539 	/* Tx Errors */
3540 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3541 }
3542 
3543 static void
3544 emx_print_debug_info(struct emx_softc *sc)
3545 {
3546 	device_t dev = sc->dev;
3547 	uint8_t *hw_addr = sc->hw.hw_addr;
3548 	int i;
3549 
3550 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3551 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3552 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3553 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3554 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3555 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3556 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3557 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3558 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3559 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3560 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3561 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3562 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3563 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3564 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3565 
3566 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3567 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3568 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3569 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3570 	}
3571 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3572 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3573 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3574 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3575 	}
3576 
3577 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3578 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3579 		    sc->tx_data[i].num_tx_desc_avail);
3580 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3581 		    sc->tx_data[i].tso_segments);
3582 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3583 		    sc->tx_data[i].tso_ctx_reused);
3584 	}
3585 }
3586 
3587 static void
3588 emx_print_hw_stats(struct emx_softc *sc)
3589 {
3590 	device_t dev = sc->dev;
3591 
3592 	device_printf(dev, "Excessive collisions = %lld\n",
3593 	    (long long)sc->stats.ecol);
3594 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3595 	device_printf(dev, "Symbol errors = %lld\n",
3596 	    (long long)sc->stats.symerrs);
3597 #endif
3598 	device_printf(dev, "Sequence errors = %lld\n",
3599 	    (long long)sc->stats.sec);
3600 	device_printf(dev, "Defer count = %lld\n",
3601 	    (long long)sc->stats.dc);
3602 	device_printf(dev, "Missed Packets = %lld\n",
3603 	    (long long)sc->stats.mpc);
3604 	device_printf(dev, "Receive No Buffers = %lld\n",
3605 	    (long long)sc->stats.rnbc);
3606 	/* RLEC is inaccurate on some hardware, calculate our own. */
3607 	device_printf(dev, "Receive Length Errors = %lld\n",
3608 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3609 	device_printf(dev, "Receive errors = %lld\n",
3610 	    (long long)sc->stats.rxerrc);
3611 	device_printf(dev, "Crc errors = %lld\n",
3612 	    (long long)sc->stats.crcerrs);
3613 	device_printf(dev, "Alignment errors = %lld\n",
3614 	    (long long)sc->stats.algnerrc);
3615 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3616 	    (long long)sc->stats.cexterr);
3617 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3618 	device_printf(dev, "XON Rcvd = %lld\n",
3619 	    (long long)sc->stats.xonrxc);
3620 	device_printf(dev, "XON Xmtd = %lld\n",
3621 	    (long long)sc->stats.xontxc);
3622 	device_printf(dev, "XOFF Rcvd = %lld\n",
3623 	    (long long)sc->stats.xoffrxc);
3624 	device_printf(dev, "XOFF Xmtd = %lld\n",
3625 	    (long long)sc->stats.xofftxc);
3626 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3627 	    (long long)sc->stats.gprc);
3628 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3629 	    (long long)sc->stats.gptc);
3630 }
3631 
3632 static void
3633 emx_print_nvm_info(struct emx_softc *sc)
3634 {
3635 	uint16_t eeprom_data;
3636 	int i, j, row = 0;
3637 
3638 	/* Its a bit crude, but it gets the job done */
3639 	kprintf("\nInterface EEPROM Dump:\n");
3640 	kprintf("Offset\n0x0000  ");
3641 	for (i = 0, j = 0; i < 32; i++, j++) {
3642 		if (j == 8) { /* Make the offset block */
3643 			j = 0; ++row;
3644 			kprintf("\n0x00%x0  ",row);
3645 		}
3646 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3647 		kprintf("%04x ", eeprom_data);
3648 	}
3649 	kprintf("\n");
3650 }
3651 
3652 static int
3653 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3654 {
3655 	struct emx_softc *sc;
3656 	struct ifnet *ifp;
3657 	int error, result;
3658 
3659 	result = -1;
3660 	error = sysctl_handle_int(oidp, &result, 0, req);
3661 	if (error || !req->newptr)
3662 		return (error);
3663 
3664 	sc = (struct emx_softc *)arg1;
3665 	ifp = &sc->arpcom.ac_if;
3666 
3667 	ifnet_serialize_all(ifp);
3668 
3669 	if (result == 1)
3670 		emx_print_debug_info(sc);
3671 
3672 	/*
3673 	 * This value will cause a hex dump of the
3674 	 * first 32 16-bit words of the EEPROM to
3675 	 * the screen.
3676 	 */
3677 	if (result == 2)
3678 		emx_print_nvm_info(sc);
3679 
3680 	ifnet_deserialize_all(ifp);
3681 
3682 	return (error);
3683 }
3684 
3685 static int
3686 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3687 {
3688 	int error, result;
3689 
3690 	result = -1;
3691 	error = sysctl_handle_int(oidp, &result, 0, req);
3692 	if (error || !req->newptr)
3693 		return (error);
3694 
3695 	if (result == 1) {
3696 		struct emx_softc *sc = (struct emx_softc *)arg1;
3697 		struct ifnet *ifp = &sc->arpcom.ac_if;
3698 
3699 		ifnet_serialize_all(ifp);
3700 		emx_print_hw_stats(sc);
3701 		ifnet_deserialize_all(ifp);
3702 	}
3703 	return (error);
3704 }
3705 
3706 static void
3707 emx_add_sysctl(struct emx_softc *sc)
3708 {
3709 	struct sysctl_ctx_list *ctx;
3710 	struct sysctl_oid *tree;
3711 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3712 	char pkt_desc[32];
3713 	int i;
3714 #endif
3715 
3716 	ctx = device_get_sysctl_ctx(sc->dev);
3717 	tree = device_get_sysctl_tree(sc->dev);
3718 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3719 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3720 			emx_sysctl_debug_info, "I", "Debug Information");
3721 
3722 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3723 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3724 			emx_sysctl_stats, "I", "Statistics");
3725 
3726 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3727 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3728 	    "# of RX descs");
3729 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3730 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3731 	    "# of TX descs");
3732 
3733 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3734 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3735 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3736 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3737 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3738 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3739 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3740 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3741 	    emx_sysctl_tx_wreg_nsegs, "I",
3742 	    "# segments sent before write to hardware register");
3743 
3744 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3745 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3746 	    "# of RX rings");
3747 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3748 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3749 	    "# of TX rings");
3750 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3751 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3752 	    "# of TX rings used");
3753 
3754 #ifdef IFPOLL_ENABLE
3755 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3756 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3757 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3758 			"NPOLLING RX cpu offset");
3759 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3760 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3761 			sc, 0, emx_sysctl_npoll_txoff, "I",
3762 			"NPOLLING TX cpu offset");
3763 #endif
3764 
3765 #ifdef EMX_RSS_DEBUG
3766 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3767 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3768 		       0, "RSS debug level");
3769 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3770 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3771 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3772 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3773 		    "RXed packets");
3774 	}
3775 #endif
3776 #ifdef EMX_TSS_DEBUG
3777 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3778 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3779 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3780 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3781 		    "TXed packets");
3782 	}
3783 #endif
3784 }
3785 
3786 static int
3787 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3788 {
3789 	struct emx_softc *sc = (void *)arg1;
3790 	struct ifnet *ifp = &sc->arpcom.ac_if;
3791 	int error, throttle;
3792 
3793 	throttle = sc->int_throttle_ceil;
3794 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3795 	if (error || req->newptr == NULL)
3796 		return error;
3797 	if (throttle < 0 || throttle > 1000000000 / 256)
3798 		return EINVAL;
3799 
3800 	if (throttle) {
3801 		/*
3802 		 * Set the interrupt throttling rate in 256ns increments,
3803 		 * recalculate sysctl value assignment to get exact frequency.
3804 		 */
3805 		throttle = 1000000000 / 256 / throttle;
3806 
3807 		/* Upper 16bits of ITR is reserved and should be zero */
3808 		if (throttle & 0xffff0000)
3809 			return EINVAL;
3810 	}
3811 
3812 	ifnet_serialize_all(ifp);
3813 
3814 	if (throttle)
3815 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3816 	else
3817 		sc->int_throttle_ceil = 0;
3818 
3819 	if (ifp->if_flags & IFF_RUNNING)
3820 		emx_set_itr(sc, throttle);
3821 
3822 	ifnet_deserialize_all(ifp);
3823 
3824 	if (bootverbose) {
3825 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3826 			  sc->int_throttle_ceil);
3827 	}
3828 	return 0;
3829 }
3830 
3831 static int
3832 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3833 {
3834 	struct emx_softc *sc = (void *)arg1;
3835 	struct ifnet *ifp = &sc->arpcom.ac_if;
3836 	struct emx_txdata *tdata = &sc->tx_data[0];
3837 	int error, segs;
3838 
3839 	segs = tdata->tx_intr_nsegs;
3840 	error = sysctl_handle_int(oidp, &segs, 0, req);
3841 	if (error || req->newptr == NULL)
3842 		return error;
3843 	if (segs <= 0)
3844 		return EINVAL;
3845 
3846 	ifnet_serialize_all(ifp);
3847 
3848 	/*
3849 	 * Don't allow tx_intr_nsegs to become:
3850 	 * o  Less the oact_tx_desc
3851 	 * o  Too large that no TX desc will cause TX interrupt to
3852 	 *    be generated (OACTIVE will never recover)
3853 	 * o  Too small that will cause tx_dd[] overflow
3854 	 */
3855 	if (segs < tdata->oact_tx_desc ||
3856 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3857 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3858 		error = EINVAL;
3859 	} else {
3860 		int i;
3861 
3862 		error = 0;
3863 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3864 			sc->tx_data[i].tx_intr_nsegs = segs;
3865 	}
3866 
3867 	ifnet_deserialize_all(ifp);
3868 
3869 	return error;
3870 }
3871 
3872 static int
3873 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3874 {
3875 	struct emx_softc *sc = (void *)arg1;
3876 	struct ifnet *ifp = &sc->arpcom.ac_if;
3877 	int error, nsegs, i;
3878 
3879 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3880 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3881 	if (error || req->newptr == NULL)
3882 		return error;
3883 
3884 	ifnet_serialize_all(ifp);
3885 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3886 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3887 	ifnet_deserialize_all(ifp);
3888 
3889 	return 0;
3890 }
3891 
3892 #ifdef IFPOLL_ENABLE
3893 
3894 static int
3895 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3896 {
3897 	struct emx_softc *sc = (void *)arg1;
3898 	struct ifnet *ifp = &sc->arpcom.ac_if;
3899 	int error, off;
3900 
3901 	off = sc->rx_npoll_off;
3902 	error = sysctl_handle_int(oidp, &off, 0, req);
3903 	if (error || req->newptr == NULL)
3904 		return error;
3905 	if (off < 0)
3906 		return EINVAL;
3907 
3908 	ifnet_serialize_all(ifp);
3909 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3910 		error = EINVAL;
3911 	} else {
3912 		error = 0;
3913 		sc->rx_npoll_off = off;
3914 	}
3915 	ifnet_deserialize_all(ifp);
3916 
3917 	return error;
3918 }
3919 
3920 static int
3921 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3922 {
3923 	struct emx_softc *sc = (void *)arg1;
3924 	struct ifnet *ifp = &sc->arpcom.ac_if;
3925 	int error, off;
3926 
3927 	off = sc->tx_npoll_off;
3928 	error = sysctl_handle_int(oidp, &off, 0, req);
3929 	if (error || req->newptr == NULL)
3930 		return error;
3931 	if (off < 0)
3932 		return EINVAL;
3933 
3934 	ifnet_serialize_all(ifp);
3935 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3936 		error = EINVAL;
3937 	} else {
3938 		error = 0;
3939 		sc->tx_npoll_off = off;
3940 	}
3941 	ifnet_deserialize_all(ifp);
3942 
3943 	return error;
3944 }
3945 
3946 #endif	/* IFPOLL_ENABLE */
3947 
3948 static int
3949 emx_dma_alloc(struct emx_softc *sc)
3950 {
3951 	int error, i;
3952 
3953 	/*
3954 	 * Create top level busdma tag
3955 	 */
3956 	error = bus_dma_tag_create(NULL, 1, 0,
3957 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3958 			NULL, NULL,
3959 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3960 			0, &sc->parent_dtag);
3961 	if (error) {
3962 		device_printf(sc->dev, "could not create top level DMA tag\n");
3963 		return error;
3964 	}
3965 
3966 	/*
3967 	 * Allocate transmit descriptors ring and buffers
3968 	 */
3969 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3970 		error = emx_create_tx_ring(&sc->tx_data[i]);
3971 		if (error) {
3972 			device_printf(sc->dev,
3973 			    "Could not setup transmit structures\n");
3974 			return error;
3975 		}
3976 	}
3977 
3978 	/*
3979 	 * Allocate receive descriptors ring and buffers
3980 	 */
3981 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3982 		error = emx_create_rx_ring(&sc->rx_data[i]);
3983 		if (error) {
3984 			device_printf(sc->dev,
3985 			    "Could not setup receive structures\n");
3986 			return error;
3987 		}
3988 	}
3989 	return 0;
3990 }
3991 
3992 static void
3993 emx_dma_free(struct emx_softc *sc)
3994 {
3995 	int i;
3996 
3997 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3998 		emx_destroy_tx_ring(&sc->tx_data[i],
3999 		    sc->tx_data[i].num_tx_desc);
4000 	}
4001 
4002 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4003 		emx_destroy_rx_ring(&sc->rx_data[i],
4004 		    sc->rx_data[i].num_rx_desc);
4005 	}
4006 
4007 	/* Free top level busdma tag */
4008 	if (sc->parent_dtag != NULL)
4009 		bus_dma_tag_destroy(sc->parent_dtag);
4010 }
4011 
4012 static void
4013 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4014 {
4015 	struct emx_softc *sc = ifp->if_softc;
4016 
4017 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4018 }
4019 
4020 static void
4021 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4022 {
4023 	struct emx_softc *sc = ifp->if_softc;
4024 
4025 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4026 }
4027 
4028 static int
4029 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4030 {
4031 	struct emx_softc *sc = ifp->if_softc;
4032 
4033 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4034 }
4035 
4036 static void
4037 emx_serialize_skipmain(struct emx_softc *sc)
4038 {
4039 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4040 }
4041 
4042 static void
4043 emx_deserialize_skipmain(struct emx_softc *sc)
4044 {
4045 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4046 }
4047 
4048 #ifdef INVARIANTS
4049 
4050 static void
4051 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4052     boolean_t serialized)
4053 {
4054 	struct emx_softc *sc = ifp->if_softc;
4055 
4056 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4057 	    slz, serialized);
4058 }
4059 
4060 #endif	/* INVARIANTS */
4061 
4062 #ifdef IFPOLL_ENABLE
4063 
4064 static void
4065 emx_npoll_status(struct ifnet *ifp)
4066 {
4067 	struct emx_softc *sc = ifp->if_softc;
4068 	uint32_t reg_icr;
4069 
4070 	ASSERT_SERIALIZED(&sc->main_serialize);
4071 
4072 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4073 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4074 		callout_stop(&sc->timer);
4075 		sc->hw.mac.get_link_status = 1;
4076 		emx_update_link_status(sc);
4077 		callout_reset(&sc->timer, hz, emx_timer, sc);
4078 	}
4079 }
4080 
4081 static void
4082 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4083 {
4084 	struct emx_txdata *tdata = arg;
4085 
4086 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4087 
4088 	emx_txeof(tdata);
4089 	if (!ifsq_is_empty(tdata->ifsq))
4090 		ifsq_devstart(tdata->ifsq);
4091 }
4092 
4093 static void
4094 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4095 {
4096 	struct emx_rxdata *rdata = arg;
4097 
4098 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4099 
4100 	emx_rxeof(rdata, cycle);
4101 }
4102 
4103 static void
4104 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4105 {
4106 	struct emx_softc *sc = ifp->if_softc;
4107 	int i, txr_cnt;
4108 
4109 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4110 
4111 	if (info) {
4112 		int off;
4113 
4114 		info->ifpi_status.status_func = emx_npoll_status;
4115 		info->ifpi_status.serializer = &sc->main_serialize;
4116 
4117 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4118 		off = sc->tx_npoll_off;
4119 		for (i = 0; i < txr_cnt; ++i) {
4120 			struct emx_txdata *tdata = &sc->tx_data[i];
4121 			int idx = i + off;
4122 
4123 			KKASSERT(idx < ncpus2);
4124 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4125 			info->ifpi_tx[idx].arg = tdata;
4126 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4127 			ifsq_set_cpuid(tdata->ifsq, idx);
4128 		}
4129 
4130 		off = sc->rx_npoll_off;
4131 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4132 			struct emx_rxdata *rdata = &sc->rx_data[i];
4133 			int idx = i + off;
4134 
4135 			KKASSERT(idx < ncpus2);
4136 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4137 			info->ifpi_rx[idx].arg = rdata;
4138 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4139 		}
4140 
4141 		if (ifp->if_flags & IFF_RUNNING) {
4142 			if (txr_cnt == sc->tx_ring_inuse)
4143 				emx_disable_intr(sc);
4144 			else
4145 				emx_init(sc);
4146 		}
4147 	} else {
4148 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4149 			struct emx_txdata *tdata = &sc->tx_data[i];
4150 
4151 			ifsq_set_cpuid(tdata->ifsq,
4152 			    rman_get_cpuid(sc->intr_res));
4153 		}
4154 
4155 		if (ifp->if_flags & IFF_RUNNING) {
4156 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4157 			if (txr_cnt == sc->tx_ring_inuse)
4158 				emx_enable_intr(sc);
4159 			else
4160 				emx_init(sc);
4161 		}
4162 	}
4163 }
4164 
4165 #endif	/* IFPOLL_ENABLE */
4166 
4167 static void
4168 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4169 {
4170 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4171 	if (sc->hw.mac.type == e1000_82574) {
4172 		int i;
4173 
4174 		/*
4175 		 * When using MSIX interrupts we need to
4176 		 * throttle using the EITR register
4177 		 */
4178 		for (i = 0; i < 4; ++i)
4179 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4180 	}
4181 }
4182 
4183 /*
4184  * Disable the L0s, 82574L Errata #20
4185  */
4186 static void
4187 emx_disable_aspm(struct emx_softc *sc)
4188 {
4189 	uint16_t link_cap, link_ctrl, disable;
4190 	uint8_t pcie_ptr, reg;
4191 	device_t dev = sc->dev;
4192 
4193 	switch (sc->hw.mac.type) {
4194 	case e1000_82571:
4195 	case e1000_82572:
4196 	case e1000_82573:
4197 		/*
4198 		 * 82573 specification update
4199 		 * errata #8 disable L0s
4200 		 * errata #41 disable L1
4201 		 *
4202 		 * 82571/82572 specification update
4203 		 # errata #13 disable L1
4204 		 * errata #68 disable L0s
4205 		 */
4206 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4207 		break;
4208 
4209 	case e1000_82574:
4210 		/*
4211 		 * 82574 specification update errata #20
4212 		 *
4213 		 * There is no need to disable L1
4214 		 */
4215 		disable = PCIEM_LNKCTL_ASPM_L0S;
4216 		break;
4217 
4218 	default:
4219 		return;
4220 	}
4221 
4222 	pcie_ptr = pci_get_pciecap_ptr(dev);
4223 	if (pcie_ptr == 0)
4224 		return;
4225 
4226 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4227 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4228 		return;
4229 
4230 	if (bootverbose)
4231 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4232 
4233 	reg = pcie_ptr + PCIER_LINKCTRL;
4234 	link_ctrl = pci_read_config(dev, reg, 2);
4235 	link_ctrl &= ~disable;
4236 	pci_write_config(dev, reg, link_ctrl, 2);
4237 }
4238 
4239 static int
4240 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4241 {
4242 	int iphlen, hoff, thoff, ex = 0;
4243 	struct mbuf *m;
4244 	struct ip *ip;
4245 
4246 	m = *mp;
4247 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4248 
4249 	iphlen = m->m_pkthdr.csum_iphlen;
4250 	thoff = m->m_pkthdr.csum_thlen;
4251 	hoff = m->m_pkthdr.csum_lhlen;
4252 
4253 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4254 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4255 	KASSERT(hoff > 0, ("invalid ether hlen"));
4256 
4257 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4258 		ex = 4;
4259 
4260 	if (m->m_len < hoff + iphlen + thoff + ex) {
4261 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4262 		if (m == NULL) {
4263 			*mp = NULL;
4264 			return ENOBUFS;
4265 		}
4266 		*mp = m;
4267 	}
4268 	ip = mtodoff(m, struct ip *, hoff);
4269 	ip->ip_len = 0;
4270 
4271 	return 0;
4272 }
4273 
4274 static int
4275 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4276     uint32_t *txd_upper, uint32_t *txd_lower)
4277 {
4278 	struct e1000_context_desc *TXD;
4279 	int hoff, iphlen, thoff, hlen;
4280 	int mss, pktlen, curr_txd;
4281 
4282 #ifdef EMX_TSO_DEBUG
4283 	tdata->tso_segments++;
4284 #endif
4285 
4286 	iphlen = mp->m_pkthdr.csum_iphlen;
4287 	thoff = mp->m_pkthdr.csum_thlen;
4288 	hoff = mp->m_pkthdr.csum_lhlen;
4289 	mss = mp->m_pkthdr.tso_segsz;
4290 	pktlen = mp->m_pkthdr.len;
4291 
4292 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4293 	    tdata->csum_flags == CSUM_TSO &&
4294 	    tdata->csum_iphlen == iphlen &&
4295 	    tdata->csum_lhlen == hoff &&
4296 	    tdata->csum_thlen == thoff &&
4297 	    tdata->csum_mss == mss &&
4298 	    tdata->csum_pktlen == pktlen) {
4299 		*txd_upper = tdata->csum_txd_upper;
4300 		*txd_lower = tdata->csum_txd_lower;
4301 #ifdef EMX_TSO_DEBUG
4302 		tdata->tso_ctx_reused++;
4303 #endif
4304 		return 0;
4305 	}
4306 	hlen = hoff + iphlen + thoff;
4307 
4308 	/*
4309 	 * Setup a new TSO context.
4310 	 */
4311 
4312 	curr_txd = tdata->next_avail_tx_desc;
4313 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4314 
4315 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4316 		     E1000_TXD_DTYP_D |		/* Data descr type */
4317 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4318 
4319 	/* IP and/or TCP header checksum calculation and insertion. */
4320 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4321 
4322 	/*
4323 	 * Start offset for header checksum calculation.
4324 	 * End offset for header checksum calculation.
4325 	 * Offset of place put the checksum.
4326 	 */
4327 	TXD->lower_setup.ip_fields.ipcss = hoff;
4328 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4329 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4330 
4331 	/*
4332 	 * Start offset for payload checksum calculation.
4333 	 * End offset for payload checksum calculation.
4334 	 * Offset of place to put the checksum.
4335 	 */
4336 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4337 	TXD->upper_setup.tcp_fields.tucse = 0;
4338 	TXD->upper_setup.tcp_fields.tucso =
4339 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4340 
4341 	/*
4342 	 * Payload size per packet w/o any headers.
4343 	 * Length of all headers up to payload.
4344 	 */
4345 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4346 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4347 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4348 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4349 				E1000_TXD_CMD_TSE |	/* TSE context */
4350 				E1000_TXD_CMD_IP |	/* Do IP csum */
4351 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4352 				(pktlen - hlen));	/* Total len */
4353 
4354 	/* Save the information for this TSO context */
4355 	tdata->csum_flags = CSUM_TSO;
4356 	tdata->csum_lhlen = hoff;
4357 	tdata->csum_iphlen = iphlen;
4358 	tdata->csum_thlen = thoff;
4359 	tdata->csum_mss = mss;
4360 	tdata->csum_pktlen = pktlen;
4361 	tdata->csum_txd_upper = *txd_upper;
4362 	tdata->csum_txd_lower = *txd_lower;
4363 
4364 	if (++curr_txd == tdata->num_tx_desc)
4365 		curr_txd = 0;
4366 
4367 	KKASSERT(tdata->num_tx_desc_avail > 0);
4368 	tdata->num_tx_desc_avail--;
4369 
4370 	tdata->next_avail_tx_desc = curr_txd;
4371 	return 1;
4372 }
4373 
4374 static int
4375 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4376 {
4377 	if (polling)
4378 		return sc->tx_ring_cnt;
4379 	else
4380 		return 1;
4381 }
4382