xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 5868d2b9)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * NOTE:
69  *
70  * MSI-X MUST NOT be enabled on 82574:
71  *   <<82574 specification update>> errata #15
72  */
73 
74 #include "opt_ifpoll.h"
75 #include "opt_rss.h"
76 #include "opt_emx.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/serialize2.h>
90 #include <sys/socket.h>
91 #include <sys/sockio.h>
92 #include <sys/sysctl.h>
93 #include <sys/systm.h>
94 
95 #include <net/bpf.h>
96 #include <net/ethernet.h>
97 #include <net/if.h>
98 #include <net/if_arp.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/ifq_var.h>
102 #include <net/toeplitz.h>
103 #include <net/toeplitz2.h>
104 #include <net/vlan/if_vlan_var.h>
105 #include <net/vlan/if_vlan_ether.h>
106 #include <net/if_poll.h>
107 
108 #include <netinet/in_systm.h>
109 #include <netinet/in.h>
110 #include <netinet/ip.h>
111 #include <netinet/tcp.h>
112 #include <netinet/udp.h>
113 
114 #include <bus/pci/pcivar.h>
115 #include <bus/pci/pcireg.h>
116 
117 #include <dev/netif/ig_hal/e1000_api.h>
118 #include <dev/netif/ig_hal/e1000_82571.h>
119 #include <dev/netif/emx/if_emx.h>
120 
121 #ifdef EMX_RSS_DEBUG
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
123 do { \
124 	if (sc->rss_debug >= lvl) \
125 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
126 } while (0)
127 #else	/* !EMX_RSS_DEBUG */
128 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
129 #endif	/* EMX_RSS_DEBUG */
130 
131 #define EMX_TX_SERIALIZE	1
132 #define EMX_RX_SERIALIZE	2
133 
134 #define EMX_NAME	"Intel(R) PRO/1000 "
135 
136 #define EMX_DEVICE(id)	\
137 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
138 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
139 
140 static const struct emx_device {
141 	uint16_t	vid;
142 	uint16_t	did;
143 	const char	*desc;
144 } emx_devices[] = {
145 	EMX_DEVICE(82571EB_COPPER),
146 	EMX_DEVICE(82571EB_FIBER),
147 	EMX_DEVICE(82571EB_SERDES),
148 	EMX_DEVICE(82571EB_SERDES_DUAL),
149 	EMX_DEVICE(82571EB_SERDES_QUAD),
150 	EMX_DEVICE(82571EB_QUAD_COPPER),
151 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
152 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
153 	EMX_DEVICE(82571EB_QUAD_FIBER),
154 	EMX_DEVICE(82571PT_QUAD_COPPER),
155 
156 	EMX_DEVICE(82572EI_COPPER),
157 	EMX_DEVICE(82572EI_FIBER),
158 	EMX_DEVICE(82572EI_SERDES),
159 	EMX_DEVICE(82572EI),
160 
161 	EMX_DEVICE(82573E),
162 	EMX_DEVICE(82573E_IAMT),
163 	EMX_DEVICE(82573L),
164 
165 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
166 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
167 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
168 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
169 
170 	EMX_DEVICE(82574L),
171 	EMX_DEVICE(82574LA),
172 
173 	/* required last entry */
174 	EMX_DEVICE_NULL
175 };
176 
177 static int	emx_probe(device_t);
178 static int	emx_attach(device_t);
179 static int	emx_detach(device_t);
180 static int	emx_shutdown(device_t);
181 static int	emx_suspend(device_t);
182 static int	emx_resume(device_t);
183 
184 static void	emx_init(void *);
185 static void	emx_stop(struct emx_softc *);
186 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
187 static void	emx_start(struct ifnet *);
188 #ifdef IFPOLL_ENABLE
189 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
190 #endif
191 static void	emx_watchdog(struct ifnet *);
192 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
193 static int	emx_media_change(struct ifnet *);
194 static void	emx_timer(void *);
195 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
196 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
197 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
198 #ifdef INVARIANTS
199 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
200 		    boolean_t);
201 #endif
202 
203 static void	emx_intr(void *);
204 static void	emx_rxeof(struct emx_softc *, int, int);
205 static void	emx_txeof(struct emx_softc *);
206 static void	emx_tx_collect(struct emx_softc *);
207 static void	emx_tx_purge(struct emx_softc *);
208 static void	emx_enable_intr(struct emx_softc *);
209 static void	emx_disable_intr(struct emx_softc *);
210 
211 static int	emx_dma_alloc(struct emx_softc *);
212 static void	emx_dma_free(struct emx_softc *);
213 static void	emx_init_tx_ring(struct emx_softc *);
214 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
215 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
216 static int	emx_create_tx_ring(struct emx_softc *);
217 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
218 static void	emx_destroy_tx_ring(struct emx_softc *, int);
219 static void	emx_destroy_rx_ring(struct emx_softc *,
220 		    struct emx_rxdata *, int);
221 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
222 static int	emx_encap(struct emx_softc *, struct mbuf **);
223 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
224 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
225 		    uint32_t *, uint32_t *);
226 
227 static int 	emx_is_valid_eaddr(const uint8_t *);
228 static int	emx_reset(struct emx_softc *);
229 static void	emx_setup_ifp(struct emx_softc *);
230 static void	emx_init_tx_unit(struct emx_softc *);
231 static void	emx_init_rx_unit(struct emx_softc *);
232 static void	emx_update_stats(struct emx_softc *);
233 static void	emx_set_promisc(struct emx_softc *);
234 static void	emx_disable_promisc(struct emx_softc *);
235 static void	emx_set_multi(struct emx_softc *);
236 static void	emx_update_link_status(struct emx_softc *);
237 static void	emx_smartspeed(struct emx_softc *);
238 static void	emx_set_itr(struct emx_softc *, uint32_t);
239 static void	emx_disable_aspm(struct emx_softc *);
240 
241 static void	emx_print_debug_info(struct emx_softc *);
242 static void	emx_print_nvm_info(struct emx_softc *);
243 static void	emx_print_hw_stats(struct emx_softc *);
244 
245 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
246 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
247 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
248 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
249 static void	emx_add_sysctl(struct emx_softc *);
250 
251 static void	emx_serialize_skipmain(struct emx_softc *);
252 static void	emx_deserialize_skipmain(struct emx_softc *);
253 
254 /* Management and WOL Support */
255 static void	emx_get_mgmt(struct emx_softc *);
256 static void	emx_rel_mgmt(struct emx_softc *);
257 static void	emx_get_hw_control(struct emx_softc *);
258 static void	emx_rel_hw_control(struct emx_softc *);
259 static void	emx_enable_wol(device_t);
260 
261 static device_method_t emx_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		emx_probe),
264 	DEVMETHOD(device_attach,	emx_attach),
265 	DEVMETHOD(device_detach,	emx_detach),
266 	DEVMETHOD(device_shutdown,	emx_shutdown),
267 	DEVMETHOD(device_suspend,	emx_suspend),
268 	DEVMETHOD(device_resume,	emx_resume),
269 	{ 0, 0 }
270 };
271 
272 static driver_t emx_driver = {
273 	"emx",
274 	emx_methods,
275 	sizeof(struct emx_softc),
276 };
277 
278 static devclass_t emx_devclass;
279 
280 DECLARE_DUMMY_MODULE(if_emx);
281 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
282 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
283 
284 /*
285  * Tunables
286  */
287 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
288 static int	emx_rxd = EMX_DEFAULT_RXD;
289 static int	emx_txd = EMX_DEFAULT_TXD;
290 static int	emx_smart_pwr_down = 0;
291 static int	emx_rxr = 0;
292 
293 /* Controls whether promiscuous also shows bad packets */
294 static int	emx_debug_sbp = 0;
295 
296 static int	emx_82573_workaround = 1;
297 static int	emx_msi_enable = 1;
298 
299 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
300 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
301 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
302 TUNABLE_INT("hw.emx.txd", &emx_txd);
303 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
304 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
305 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
306 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
307 
308 /* Global used in WOL setup with multiport cards */
309 static int	emx_global_quad_port_a = 0;
310 
311 /* Set this to one to display debug statistics */
312 static int	emx_display_debug_stats = 0;
313 
314 #if !defined(KTR_IF_EMX)
315 #define KTR_IF_EMX	KTR_ALL
316 #endif
317 KTR_INFO_MASTER(if_emx);
318 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
319 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
320 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
321 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
322 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
323 #define logif(name)	KTR_LOG(if_emx_ ## name)
324 
325 static __inline void
326 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
327 {
328 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
329 	/* DD bit must be cleared */
330 	rxd->rxd_staterr = 0;
331 }
332 
333 static __inline void
334 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
335 {
336 	/* Ignore Checksum bit is set */
337 	if (staterr & E1000_RXD_STAT_IXSM)
338 		return;
339 
340 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
341 	    E1000_RXD_STAT_IPCS)
342 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
343 
344 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
345 	    E1000_RXD_STAT_TCPCS) {
346 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
347 					   CSUM_PSEUDO_HDR |
348 					   CSUM_FRAG_NOT_CHECKED;
349 		mp->m_pkthdr.csum_data = htons(0xffff);
350 	}
351 }
352 
353 static __inline struct pktinfo *
354 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
355 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
356 {
357 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
358 	case EMX_RXDMRQ_IPV4_TCP:
359 		pi->pi_netisr = NETISR_IP;
360 		pi->pi_flags = 0;
361 		pi->pi_l3proto = IPPROTO_TCP;
362 		break;
363 
364 	case EMX_RXDMRQ_IPV6_TCP:
365 		pi->pi_netisr = NETISR_IPV6;
366 		pi->pi_flags = 0;
367 		pi->pi_l3proto = IPPROTO_TCP;
368 		break;
369 
370 	case EMX_RXDMRQ_IPV4:
371 		if (staterr & E1000_RXD_STAT_IXSM)
372 			return NULL;
373 
374 		if ((staterr &
375 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
376 		    E1000_RXD_STAT_TCPCS) {
377 			pi->pi_netisr = NETISR_IP;
378 			pi->pi_flags = 0;
379 			pi->pi_l3proto = IPPROTO_UDP;
380 			break;
381 		}
382 		/* FALL THROUGH */
383 	default:
384 		return NULL;
385 	}
386 
387 	m->m_flags |= M_HASH;
388 	m->m_pkthdr.hash = toeplitz_hash(hash);
389 	return pi;
390 }
391 
392 static int
393 emx_probe(device_t dev)
394 {
395 	const struct emx_device *d;
396 	uint16_t vid, did;
397 
398 	vid = pci_get_vendor(dev);
399 	did = pci_get_device(dev);
400 
401 	for (d = emx_devices; d->desc != NULL; ++d) {
402 		if (vid == d->vid && did == d->did) {
403 			device_set_desc(dev, d->desc);
404 			device_set_async_attach(dev, TRUE);
405 			return 0;
406 		}
407 	}
408 	return ENXIO;
409 }
410 
411 static int
412 emx_attach(device_t dev)
413 {
414 	struct emx_softc *sc = device_get_softc(dev);
415 	struct ifnet *ifp = &sc->arpcom.ac_if;
416 	int error = 0, i, throttle;
417 	u_int intr_flags;
418 	uint16_t eeprom_data, device_id, apme_mask;
419 
420 	lwkt_serialize_init(&sc->main_serialize);
421 	lwkt_serialize_init(&sc->tx_serialize);
422 	for (i = 0; i < EMX_NRX_RING; ++i)
423 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
424 
425 	i = 0;
426 	sc->serializes[i++] = &sc->main_serialize;
427 	sc->serializes[i++] = &sc->tx_serialize;
428 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
429 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
430 	KKASSERT(i == EMX_NSERIALIZE);
431 
432 	callout_init_mp(&sc->timer);
433 
434 	sc->dev = sc->osdep.dev = dev;
435 
436 	/*
437 	 * Determine hardware and mac type
438 	 */
439 	sc->hw.vendor_id = pci_get_vendor(dev);
440 	sc->hw.device_id = pci_get_device(dev);
441 	sc->hw.revision_id = pci_get_revid(dev);
442 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
443 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
444 
445 	if (e1000_set_mac_type(&sc->hw))
446 		return ENXIO;
447 
448 	/* Enable bus mastering */
449 	pci_enable_busmaster(dev);
450 
451 	/*
452 	 * Allocate IO memory
453 	 */
454 	sc->memory_rid = EMX_BAR_MEM;
455 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
456 					    &sc->memory_rid, RF_ACTIVE);
457 	if (sc->memory == NULL) {
458 		device_printf(dev, "Unable to allocate bus resource: memory\n");
459 		error = ENXIO;
460 		goto fail;
461 	}
462 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
463 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
464 
465 	/* XXX This is quite goofy, it is not actually used */
466 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
467 
468 	/*
469 	 * Allocate interrupt
470 	 */
471 	sc->intr_type = pci_alloc_1intr(dev, emx_msi_enable,
472 	    &sc->intr_rid, &intr_flags);
473 
474 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
475 	    intr_flags);
476 	if (sc->intr_res == NULL) {
477 		device_printf(dev, "Unable to allocate bus resource: "
478 		    "interrupt\n");
479 		error = ENXIO;
480 		goto fail;
481 	}
482 
483 	/* Save PCI command register for Shared Code */
484 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
485 	sc->hw.back = &sc->osdep;
486 
487 	/* Do Shared Code initialization */
488 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
489 		device_printf(dev, "Setup of Shared code failed\n");
490 		error = ENXIO;
491 		goto fail;
492 	}
493 	e1000_get_bus_info(&sc->hw);
494 
495 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
496 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
497 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
498 
499 	/*
500 	 * Interrupt throttle rate
501 	 */
502 	throttle = device_getenv_int(dev, "int_throttle_ceil",
503 	    emx_int_throttle_ceil);
504 	if (throttle == 0) {
505 		sc->int_throttle_ceil = 0;
506 	} else {
507 		if (throttle < 0)
508 			throttle = EMX_DEFAULT_ITR;
509 
510 		/* Recalculate the tunable value to get the exact frequency. */
511 		throttle = 1000000000 / 256 / throttle;
512 
513 		/* Upper 16bits of ITR is reserved and should be zero */
514 		if (throttle & 0xffff0000)
515 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
516 
517 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
518 	}
519 
520 	e1000_init_script_state_82541(&sc->hw, TRUE);
521 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
522 
523 	/* Copper options */
524 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
525 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
526 		sc->hw.phy.disable_polarity_correction = FALSE;
527 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
528 	}
529 
530 	/* Set the frame limits assuming standard ethernet sized frames. */
531 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
532 	sc->min_frame_size = ETHER_MIN_LEN;
533 
534 	/* This controls when hardware reports transmit completion status. */
535 	sc->hw.mac.report_tx_early = 1;
536 
537 	/* Calculate # of RX rings */
538 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
539 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
540 
541 	/* Allocate RX/TX rings' busdma(9) stuffs */
542 	error = emx_dma_alloc(sc);
543 	if (error)
544 		goto fail;
545 
546 	/* Allocate multicast array memory. */
547 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
548 	    M_DEVBUF, M_WAITOK);
549 
550 	/* Indicate SOL/IDER usage */
551 	if (e1000_check_reset_block(&sc->hw)) {
552 		device_printf(dev,
553 		    "PHY reset is blocked due to SOL/IDER session.\n");
554 	}
555 
556 	/*
557 	 * Start from a known state, this is important in reading the
558 	 * nvm and mac from that.
559 	 */
560 	e1000_reset_hw(&sc->hw);
561 
562 	/* Make sure we have a good EEPROM before we read from it */
563 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
564 		/*
565 		 * Some PCI-E parts fail the first check due to
566 		 * the link being in sleep state, call it again,
567 		 * if it fails a second time its a real issue.
568 		 */
569 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
570 			device_printf(dev,
571 			    "The EEPROM Checksum Is Not Valid\n");
572 			error = EIO;
573 			goto fail;
574 		}
575 	}
576 
577 	/* Copy the permanent MAC address out of the EEPROM */
578 	if (e1000_read_mac_addr(&sc->hw) < 0) {
579 		device_printf(dev, "EEPROM read error while reading MAC"
580 		    " address\n");
581 		error = EIO;
582 		goto fail;
583 	}
584 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
585 		device_printf(dev, "Invalid MAC address\n");
586 		error = EIO;
587 		goto fail;
588 	}
589 
590 	/* Determine if we have to control management hardware */
591 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
592 
593 	/*
594 	 * Setup Wake-on-Lan
595 	 */
596 	apme_mask = EMX_EEPROM_APME;
597 	eeprom_data = 0;
598 	switch (sc->hw.mac.type) {
599 	case e1000_82573:
600 		sc->has_amt = 1;
601 		/* FALL THROUGH */
602 
603 	case e1000_82571:
604 	case e1000_82572:
605 	case e1000_80003es2lan:
606 		if (sc->hw.bus.func == 1) {
607 			e1000_read_nvm(&sc->hw,
608 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
609 		} else {
610 			e1000_read_nvm(&sc->hw,
611 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
612 		}
613 		break;
614 
615 	default:
616 		e1000_read_nvm(&sc->hw,
617 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
618 		break;
619 	}
620 	if (eeprom_data & apme_mask)
621 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
622 
623 	/*
624          * We have the eeprom settings, now apply the special cases
625          * where the eeprom may be wrong or the board won't support
626          * wake on lan on a particular port
627 	 */
628 	device_id = pci_get_device(dev);
629         switch (device_id) {
630 	case E1000_DEV_ID_82571EB_FIBER:
631 		/*
632 		 * Wake events only supported on port A for dual fiber
633 		 * regardless of eeprom setting
634 		 */
635 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
636 		    E1000_STATUS_FUNC_1)
637 			sc->wol = 0;
638 		break;
639 
640 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
641 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
642 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
643                 /* if quad port sc, disable WoL on all but port A */
644 		if (emx_global_quad_port_a != 0)
645 			sc->wol = 0;
646 		/* Reset for multiple quad port adapters */
647 		if (++emx_global_quad_port_a == 4)
648 			emx_global_quad_port_a = 0;
649                 break;
650 	}
651 
652 	/* XXX disable wol */
653 	sc->wol = 0;
654 
655 	/* Setup OS specific network interface */
656 	emx_setup_ifp(sc);
657 
658 	/* Add sysctl tree, must after em_setup_ifp() */
659 	emx_add_sysctl(sc);
660 
661 	/* Reset the hardware */
662 	error = emx_reset(sc);
663 	if (error) {
664 		device_printf(dev, "Unable to reset the hardware\n");
665 		goto fail;
666 	}
667 
668 	/* Initialize statistics */
669 	emx_update_stats(sc);
670 
671 	sc->hw.mac.get_link_status = 1;
672 	emx_update_link_status(sc);
673 
674 	sc->spare_tx_desc = EMX_TX_SPARE;
675 
676 	/*
677 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
678 	 * and tx_int_nsegs:
679 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
680 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
681 	 */
682 	sc->oact_tx_desc = sc->num_tx_desc / 8;
683 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
684 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
685 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
686 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
687 
688 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
689 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
690 		sc->tx_int_nsegs = sc->oact_tx_desc;
691 
692 	/* Non-AMT based hardware can now take control from firmware */
693 	if (sc->has_manage && !sc->has_amt)
694 		emx_get_hw_control(sc);
695 
696 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
697 			       &sc->intr_tag, &sc->main_serialize);
698 	if (error) {
699 		device_printf(dev, "Failed to register interrupt handler");
700 		ether_ifdetach(&sc->arpcom.ac_if);
701 		goto fail;
702 	}
703 
704 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
705 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
706 	return (0);
707 fail:
708 	emx_detach(dev);
709 	return (error);
710 }
711 
712 static int
713 emx_detach(device_t dev)
714 {
715 	struct emx_softc *sc = device_get_softc(dev);
716 
717 	if (device_is_attached(dev)) {
718 		struct ifnet *ifp = &sc->arpcom.ac_if;
719 
720 		ifnet_serialize_all(ifp);
721 
722 		emx_stop(sc);
723 
724 		e1000_phy_hw_reset(&sc->hw);
725 
726 		emx_rel_mgmt(sc);
727 		emx_rel_hw_control(sc);
728 
729 		if (sc->wol) {
730 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
731 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
732 			emx_enable_wol(dev);
733 		}
734 
735 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
736 
737 		ifnet_deserialize_all(ifp);
738 
739 		ether_ifdetach(ifp);
740 	} else {
741 		emx_rel_hw_control(sc);
742 	}
743 	bus_generic_detach(dev);
744 
745 	if (sc->intr_res != NULL) {
746 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
747 				     sc->intr_res);
748 	}
749 
750 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
751 		pci_release_msi(dev);
752 
753 	if (sc->memory != NULL) {
754 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
755 				     sc->memory);
756 	}
757 
758 	emx_dma_free(sc);
759 
760 	/* Free sysctl tree */
761 	if (sc->sysctl_tree != NULL)
762 		sysctl_ctx_free(&sc->sysctl_ctx);
763 
764 	return (0);
765 }
766 
767 static int
768 emx_shutdown(device_t dev)
769 {
770 	return emx_suspend(dev);
771 }
772 
773 static int
774 emx_suspend(device_t dev)
775 {
776 	struct emx_softc *sc = device_get_softc(dev);
777 	struct ifnet *ifp = &sc->arpcom.ac_if;
778 
779 	ifnet_serialize_all(ifp);
780 
781 	emx_stop(sc);
782 
783 	emx_rel_mgmt(sc);
784 	emx_rel_hw_control(sc);
785 
786 	if (sc->wol) {
787 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
788 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
789 		emx_enable_wol(dev);
790 	}
791 
792 	ifnet_deserialize_all(ifp);
793 
794 	return bus_generic_suspend(dev);
795 }
796 
797 static int
798 emx_resume(device_t dev)
799 {
800 	struct emx_softc *sc = device_get_softc(dev);
801 	struct ifnet *ifp = &sc->arpcom.ac_if;
802 
803 	ifnet_serialize_all(ifp);
804 
805 	emx_init(sc);
806 	emx_get_mgmt(sc);
807 	if_devstart(ifp);
808 
809 	ifnet_deserialize_all(ifp);
810 
811 	return bus_generic_resume(dev);
812 }
813 
814 static void
815 emx_start(struct ifnet *ifp)
816 {
817 	struct emx_softc *sc = ifp->if_softc;
818 	struct mbuf *m_head;
819 
820 	ASSERT_SERIALIZED(&sc->tx_serialize);
821 
822 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
823 		return;
824 
825 	if (!sc->link_active) {
826 		ifq_purge(&ifp->if_snd);
827 		return;
828 	}
829 
830 	while (!ifq_is_empty(&ifp->if_snd)) {
831 		/* Now do we at least have a minimal? */
832 		if (EMX_IS_OACTIVE(sc)) {
833 			emx_tx_collect(sc);
834 			if (EMX_IS_OACTIVE(sc)) {
835 				ifp->if_flags |= IFF_OACTIVE;
836 				sc->no_tx_desc_avail1++;
837 				break;
838 			}
839 		}
840 
841 		logif(pkt_txqueue);
842 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
843 		if (m_head == NULL)
844 			break;
845 
846 		if (emx_encap(sc, &m_head)) {
847 			ifp->if_oerrors++;
848 			emx_tx_collect(sc);
849 			continue;
850 		}
851 
852 		/* Send a copy of the frame to the BPF listener */
853 		ETHER_BPF_MTAP(ifp, m_head);
854 
855 		/* Set timeout in case hardware has problems transmitting. */
856 		ifp->if_timer = EMX_TX_TIMEOUT;
857 	}
858 }
859 
860 static int
861 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
862 {
863 	struct emx_softc *sc = ifp->if_softc;
864 	struct ifreq *ifr = (struct ifreq *)data;
865 	uint16_t eeprom_data = 0;
866 	int max_frame_size, mask, reinit;
867 	int error = 0;
868 
869 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
870 
871 	switch (command) {
872 	case SIOCSIFMTU:
873 		switch (sc->hw.mac.type) {
874 		case e1000_82573:
875 			/*
876 			 * 82573 only supports jumbo frames
877 			 * if ASPM is disabled.
878 			 */
879 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
880 				       &eeprom_data);
881 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
882 				max_frame_size = ETHER_MAX_LEN;
883 				break;
884 			}
885 			/* FALL THROUGH */
886 
887 		/* Limit Jumbo Frame size */
888 		case e1000_82571:
889 		case e1000_82572:
890 		case e1000_82574:
891 		case e1000_80003es2lan:
892 			max_frame_size = 9234;
893 			break;
894 
895 		default:
896 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
897 			break;
898 		}
899 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
900 		    ETHER_CRC_LEN) {
901 			error = EINVAL;
902 			break;
903 		}
904 
905 		ifp->if_mtu = ifr->ifr_mtu;
906 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
907 				     ETHER_CRC_LEN;
908 
909 		if (ifp->if_flags & IFF_RUNNING)
910 			emx_init(sc);
911 		break;
912 
913 	case SIOCSIFFLAGS:
914 		if (ifp->if_flags & IFF_UP) {
915 			if ((ifp->if_flags & IFF_RUNNING)) {
916 				if ((ifp->if_flags ^ sc->if_flags) &
917 				    (IFF_PROMISC | IFF_ALLMULTI)) {
918 					emx_disable_promisc(sc);
919 					emx_set_promisc(sc);
920 				}
921 			} else {
922 				emx_init(sc);
923 			}
924 		} else if (ifp->if_flags & IFF_RUNNING) {
925 			emx_stop(sc);
926 		}
927 		sc->if_flags = ifp->if_flags;
928 		break;
929 
930 	case SIOCADDMULTI:
931 	case SIOCDELMULTI:
932 		if (ifp->if_flags & IFF_RUNNING) {
933 			emx_disable_intr(sc);
934 			emx_set_multi(sc);
935 #ifdef IFPOLL_ENABLE
936 			if (!(ifp->if_flags & IFF_NPOLLING))
937 #endif
938 				emx_enable_intr(sc);
939 		}
940 		break;
941 
942 	case SIOCSIFMEDIA:
943 		/* Check SOL/IDER usage */
944 		if (e1000_check_reset_block(&sc->hw)) {
945 			device_printf(sc->dev, "Media change is"
946 			    " blocked due to SOL/IDER session.\n");
947 			break;
948 		}
949 		/* FALL THROUGH */
950 
951 	case SIOCGIFMEDIA:
952 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
953 		break;
954 
955 	case SIOCSIFCAP:
956 		reinit = 0;
957 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
958 		if (mask & IFCAP_HWCSUM) {
959 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
960 			reinit = 1;
961 		}
962 		if (mask & IFCAP_VLAN_HWTAGGING) {
963 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
964 			reinit = 1;
965 		}
966 		if (mask & IFCAP_RSS)
967 			ifp->if_capenable ^= IFCAP_RSS;
968 		if (reinit && (ifp->if_flags & IFF_RUNNING))
969 			emx_init(sc);
970 		break;
971 
972 	default:
973 		error = ether_ioctl(ifp, command, data);
974 		break;
975 	}
976 	return (error);
977 }
978 
979 static void
980 emx_watchdog(struct ifnet *ifp)
981 {
982 	struct emx_softc *sc = ifp->if_softc;
983 
984 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
985 
986 	/*
987 	 * The timer is set to 5 every time start queues a packet.
988 	 * Then txeof keeps resetting it as long as it cleans at
989 	 * least one descriptor.
990 	 * Finally, anytime all descriptors are clean the timer is
991 	 * set to 0.
992 	 */
993 
994 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
995 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
996 		/*
997 		 * If we reach here, all TX jobs are completed and
998 		 * the TX engine should have been idled for some time.
999 		 * We don't need to call if_devstart() here.
1000 		 */
1001 		ifp->if_flags &= ~IFF_OACTIVE;
1002 		ifp->if_timer = 0;
1003 		return;
1004 	}
1005 
1006 	/*
1007 	 * If we are in this routine because of pause frames, then
1008 	 * don't reset the hardware.
1009 	 */
1010 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1011 		ifp->if_timer = EMX_TX_TIMEOUT;
1012 		return;
1013 	}
1014 
1015 	if (e1000_check_for_link(&sc->hw) == 0)
1016 		if_printf(ifp, "watchdog timeout -- resetting\n");
1017 
1018 	ifp->if_oerrors++;
1019 	sc->watchdog_events++;
1020 
1021 	emx_init(sc);
1022 
1023 	if (!ifq_is_empty(&ifp->if_snd))
1024 		if_devstart(ifp);
1025 }
1026 
1027 static void
1028 emx_init(void *xsc)
1029 {
1030 	struct emx_softc *sc = xsc;
1031 	struct ifnet *ifp = &sc->arpcom.ac_if;
1032 	device_t dev = sc->dev;
1033 	uint32_t pba;
1034 	int i;
1035 
1036 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1037 
1038 	emx_stop(sc);
1039 
1040 	/*
1041 	 * Packet Buffer Allocation (PBA)
1042 	 * Writing PBA sets the receive portion of the buffer
1043 	 * the remainder is used for the transmit buffer.
1044 	 */
1045 	switch (sc->hw.mac.type) {
1046 	/* Total Packet Buffer on these is 48K */
1047 	case e1000_82571:
1048 	case e1000_82572:
1049 	case e1000_80003es2lan:
1050 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1051 		break;
1052 
1053 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1054 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1055 		break;
1056 
1057 	case e1000_82574:
1058 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1059 		break;
1060 
1061 	default:
1062 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1063 		if (sc->max_frame_size > 8192)
1064 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1065 		else
1066 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1067 	}
1068 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1069 
1070 	/* Get the latest mac address, User can use a LAA */
1071         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1072 
1073 	/* Put the address into the Receive Address Array */
1074 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1075 
1076 	/*
1077 	 * With the 82571 sc, RAR[0] may be overwritten
1078 	 * when the other port is reset, we make a duplicate
1079 	 * in RAR[14] for that eventuality, this assures
1080 	 * the interface continues to function.
1081 	 */
1082 	if (sc->hw.mac.type == e1000_82571) {
1083 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1084 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1085 		    E1000_RAR_ENTRIES - 1);
1086 	}
1087 
1088 	/* Initialize the hardware */
1089 	if (emx_reset(sc)) {
1090 		device_printf(dev, "Unable to reset the hardware\n");
1091 		/* XXX emx_stop()? */
1092 		return;
1093 	}
1094 	emx_update_link_status(sc);
1095 
1096 	/* Setup VLAN support, basic and offload if available */
1097 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1098 
1099 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1100 		uint32_t ctrl;
1101 
1102 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1103 		ctrl |= E1000_CTRL_VME;
1104 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1105 	}
1106 
1107 	/* Set hardware offload abilities */
1108 	if (ifp->if_capenable & IFCAP_TXCSUM)
1109 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1110 	else
1111 		ifp->if_hwassist = 0;
1112 
1113 	/* Configure for OS presence */
1114 	emx_get_mgmt(sc);
1115 
1116 	/* Prepare transmit descriptors and buffers */
1117 	emx_init_tx_ring(sc);
1118 	emx_init_tx_unit(sc);
1119 
1120 	/* Setup Multicast table */
1121 	emx_set_multi(sc);
1122 
1123 	/* Prepare receive descriptors and buffers */
1124 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1125 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1126 			device_printf(dev,
1127 			    "Could not setup receive structures\n");
1128 			emx_stop(sc);
1129 			return;
1130 		}
1131 	}
1132 	emx_init_rx_unit(sc);
1133 
1134 	/* Don't lose promiscuous settings */
1135 	emx_set_promisc(sc);
1136 
1137 	ifp->if_flags |= IFF_RUNNING;
1138 	ifp->if_flags &= ~IFF_OACTIVE;
1139 
1140 	callout_reset(&sc->timer, hz, emx_timer, sc);
1141 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1142 
1143 	/* MSI/X configuration for 82574 */
1144 	if (sc->hw.mac.type == e1000_82574) {
1145 		int tmp;
1146 
1147 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1148 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1149 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1150 		/*
1151 		 * XXX MSIX
1152 		 * Set the IVAR - interrupt vector routing.
1153 		 * Each nibble represents a vector, high bit
1154 		 * is enable, other 3 bits are the MSIX table
1155 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1156 		 * Link (other) to 2, hence the magic number.
1157 		 */
1158 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1159 	}
1160 
1161 #ifdef IFPOLL_ENABLE
1162 	/*
1163 	 * Only enable interrupts if we are not polling, make sure
1164 	 * they are off otherwise.
1165 	 */
1166 	if (ifp->if_flags & IFF_NPOLLING)
1167 		emx_disable_intr(sc);
1168 	else
1169 #endif /* IFPOLL_ENABLE */
1170 		emx_enable_intr(sc);
1171 
1172 	/* AMT based hardware can now take control from firmware */
1173 	if (sc->has_manage && sc->has_amt)
1174 		emx_get_hw_control(sc);
1175 
1176 	/* Don't reset the phy next time init gets called */
1177 	sc->hw.phy.reset_disable = TRUE;
1178 }
1179 
1180 static void
1181 emx_intr(void *xsc)
1182 {
1183 	struct emx_softc *sc = xsc;
1184 	struct ifnet *ifp = &sc->arpcom.ac_if;
1185 	uint32_t reg_icr;
1186 
1187 	logif(intr_beg);
1188 	ASSERT_SERIALIZED(&sc->main_serialize);
1189 
1190 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1191 
1192 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1193 		logif(intr_end);
1194 		return;
1195 	}
1196 
1197 	/*
1198 	 * XXX: some laptops trigger several spurious interrupts
1199 	 * on emx(4) when in the resume cycle. The ICR register
1200 	 * reports all-ones value in this case. Processing such
1201 	 * interrupts would lead to a freeze. I don't know why.
1202 	 */
1203 	if (reg_icr == 0xffffffff) {
1204 		logif(intr_end);
1205 		return;
1206 	}
1207 
1208 	if (ifp->if_flags & IFF_RUNNING) {
1209 		if (reg_icr &
1210 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1211 			int i;
1212 
1213 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1214 				lwkt_serialize_enter(
1215 				&sc->rx_data[i].rx_serialize);
1216 				emx_rxeof(sc, i, -1);
1217 				lwkt_serialize_exit(
1218 				&sc->rx_data[i].rx_serialize);
1219 			}
1220 		}
1221 		if (reg_icr & E1000_ICR_TXDW) {
1222 			lwkt_serialize_enter(&sc->tx_serialize);
1223 			emx_txeof(sc);
1224 			if (!ifq_is_empty(&ifp->if_snd))
1225 				if_devstart(ifp);
1226 			lwkt_serialize_exit(&sc->tx_serialize);
1227 		}
1228 	}
1229 
1230 	/* Link status change */
1231 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1232 		emx_serialize_skipmain(sc);
1233 
1234 		callout_stop(&sc->timer);
1235 		sc->hw.mac.get_link_status = 1;
1236 		emx_update_link_status(sc);
1237 
1238 		/* Deal with TX cruft when link lost */
1239 		emx_tx_purge(sc);
1240 
1241 		callout_reset(&sc->timer, hz, emx_timer, sc);
1242 
1243 		emx_deserialize_skipmain(sc);
1244 	}
1245 
1246 	if (reg_icr & E1000_ICR_RXO)
1247 		sc->rx_overruns++;
1248 
1249 	logif(intr_end);
1250 }
1251 
1252 static void
1253 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1254 {
1255 	struct emx_softc *sc = ifp->if_softc;
1256 
1257 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1258 
1259 	emx_update_link_status(sc);
1260 
1261 	ifmr->ifm_status = IFM_AVALID;
1262 	ifmr->ifm_active = IFM_ETHER;
1263 
1264 	if (!sc->link_active)
1265 		return;
1266 
1267 	ifmr->ifm_status |= IFM_ACTIVE;
1268 
1269 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1270 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1271 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1272 	} else {
1273 		switch (sc->link_speed) {
1274 		case 10:
1275 			ifmr->ifm_active |= IFM_10_T;
1276 			break;
1277 		case 100:
1278 			ifmr->ifm_active |= IFM_100_TX;
1279 			break;
1280 
1281 		case 1000:
1282 			ifmr->ifm_active |= IFM_1000_T;
1283 			break;
1284 		}
1285 		if (sc->link_duplex == FULL_DUPLEX)
1286 			ifmr->ifm_active |= IFM_FDX;
1287 		else
1288 			ifmr->ifm_active |= IFM_HDX;
1289 	}
1290 }
1291 
1292 static int
1293 emx_media_change(struct ifnet *ifp)
1294 {
1295 	struct emx_softc *sc = ifp->if_softc;
1296 	struct ifmedia *ifm = &sc->media;
1297 
1298 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1299 
1300 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1301 		return (EINVAL);
1302 
1303 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1304 	case IFM_AUTO:
1305 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1306 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1307 		break;
1308 
1309 	case IFM_1000_LX:
1310 	case IFM_1000_SX:
1311 	case IFM_1000_T:
1312 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1313 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1314 		break;
1315 
1316 	case IFM_100_TX:
1317 		sc->hw.mac.autoneg = FALSE;
1318 		sc->hw.phy.autoneg_advertised = 0;
1319 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1320 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1321 		else
1322 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1323 		break;
1324 
1325 	case IFM_10_T:
1326 		sc->hw.mac.autoneg = FALSE;
1327 		sc->hw.phy.autoneg_advertised = 0;
1328 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1329 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1330 		else
1331 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1332 		break;
1333 
1334 	default:
1335 		if_printf(ifp, "Unsupported media type\n");
1336 		break;
1337 	}
1338 
1339 	/*
1340 	 * As the speed/duplex settings my have changed we need to
1341 	 * reset the PHY.
1342 	 */
1343 	sc->hw.phy.reset_disable = FALSE;
1344 
1345 	emx_init(sc);
1346 
1347 	return (0);
1348 }
1349 
1350 static int
1351 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1352 {
1353 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1354 	bus_dmamap_t map;
1355 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1356 	struct e1000_tx_desc *ctxd = NULL;
1357 	struct mbuf *m_head = *m_headp;
1358 	uint32_t txd_upper, txd_lower, cmd = 0;
1359 	int maxsegs, nsegs, i, j, first, last = 0, error;
1360 
1361 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1362 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1363 		/*
1364 		 * Make sure that ethernet header and ip.ip_hl are in
1365 		 * contiguous memory, since if TXCSUM is enabled, later
1366 		 * TX context descriptor's setup need to access ip.ip_hl.
1367 		 */
1368 		error = emx_txcsum_pullup(sc, m_headp);
1369 		if (error) {
1370 			KKASSERT(*m_headp == NULL);
1371 			return error;
1372 		}
1373 		m_head = *m_headp;
1374 	}
1375 
1376 	txd_upper = txd_lower = 0;
1377 
1378 	/*
1379 	 * Capture the first descriptor index, this descriptor
1380 	 * will have the index of the EOP which is the only one
1381 	 * that now gets a DONE bit writeback.
1382 	 */
1383 	first = sc->next_avail_tx_desc;
1384 	tx_buffer = &sc->tx_buf[first];
1385 	tx_buffer_mapped = tx_buffer;
1386 	map = tx_buffer->map;
1387 
1388 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1389 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1390 	if (maxsegs > EMX_MAX_SCATTER)
1391 		maxsegs = EMX_MAX_SCATTER;
1392 
1393 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1394 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1395 	if (error) {
1396 		if (error == ENOBUFS)
1397 			sc->mbuf_alloc_failed++;
1398 		else
1399 			sc->no_tx_dma_setup++;
1400 
1401 		m_freem(*m_headp);
1402 		*m_headp = NULL;
1403 		return error;
1404 	}
1405         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1406 
1407 	m_head = *m_headp;
1408 	sc->tx_nsegs += nsegs;
1409 
1410 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1411 		/* TX csum offloading will consume one TX desc */
1412 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1413 	}
1414 	i = sc->next_avail_tx_desc;
1415 
1416 	/* Set up our transmit descriptors */
1417 	for (j = 0; j < nsegs; j++) {
1418 		tx_buffer = &sc->tx_buf[i];
1419 		ctxd = &sc->tx_desc_base[i];
1420 
1421 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1422 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1423 					   txd_lower | segs[j].ds_len);
1424 		ctxd->upper.data = htole32(txd_upper);
1425 
1426 		last = i;
1427 		if (++i == sc->num_tx_desc)
1428 			i = 0;
1429 	}
1430 
1431 	sc->next_avail_tx_desc = i;
1432 
1433 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1434 	sc->num_tx_desc_avail -= nsegs;
1435 
1436         /* Handle VLAN tag */
1437 	if (m_head->m_flags & M_VLANTAG) {
1438 		/* Set the vlan id. */
1439 		ctxd->upper.fields.special =
1440 		    htole16(m_head->m_pkthdr.ether_vlantag);
1441 
1442 		/* Tell hardware to add tag */
1443 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1444 	}
1445 
1446 	tx_buffer->m_head = m_head;
1447 	tx_buffer_mapped->map = tx_buffer->map;
1448 	tx_buffer->map = map;
1449 
1450 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1451 		sc->tx_nsegs = 0;
1452 
1453 		/*
1454 		 * Report Status (RS) is turned on
1455 		 * every tx_int_nsegs descriptors.
1456 		 */
1457 		cmd = E1000_TXD_CMD_RS;
1458 
1459 		/*
1460 		 * Keep track of the descriptor, which will
1461 		 * be written back by hardware.
1462 		 */
1463 		sc->tx_dd[sc->tx_dd_tail] = last;
1464 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1465 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1466 	}
1467 
1468 	/*
1469 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1470 	 */
1471 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1472 
1473 	/*
1474 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1475 	 * the E1000 that this frame is available to transmit.
1476 	 */
1477 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1478 
1479 	return (0);
1480 }
1481 
1482 static void
1483 emx_set_promisc(struct emx_softc *sc)
1484 {
1485 	struct ifnet *ifp = &sc->arpcom.ac_if;
1486 	uint32_t reg_rctl;
1487 
1488 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1489 
1490 	if (ifp->if_flags & IFF_PROMISC) {
1491 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1492 		/* Turn this on if you want to see bad packets */
1493 		if (emx_debug_sbp)
1494 			reg_rctl |= E1000_RCTL_SBP;
1495 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1496 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1497 		reg_rctl |= E1000_RCTL_MPE;
1498 		reg_rctl &= ~E1000_RCTL_UPE;
1499 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1500 	}
1501 }
1502 
1503 static void
1504 emx_disable_promisc(struct emx_softc *sc)
1505 {
1506 	uint32_t reg_rctl;
1507 
1508 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1509 
1510 	reg_rctl &= ~E1000_RCTL_UPE;
1511 	reg_rctl &= ~E1000_RCTL_MPE;
1512 	reg_rctl &= ~E1000_RCTL_SBP;
1513 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1514 }
1515 
1516 static void
1517 emx_set_multi(struct emx_softc *sc)
1518 {
1519 	struct ifnet *ifp = &sc->arpcom.ac_if;
1520 	struct ifmultiaddr *ifma;
1521 	uint32_t reg_rctl = 0;
1522 	uint8_t *mta;
1523 	int mcnt = 0;
1524 
1525 	mta = sc->mta;
1526 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1527 
1528 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1529 		if (ifma->ifma_addr->sa_family != AF_LINK)
1530 			continue;
1531 
1532 		if (mcnt == EMX_MCAST_ADDR_MAX)
1533 			break;
1534 
1535 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1536 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1537 		mcnt++;
1538 	}
1539 
1540 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1541 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1542 		reg_rctl |= E1000_RCTL_MPE;
1543 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1544 	} else {
1545 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1546 	}
1547 }
1548 
1549 /*
1550  * This routine checks for link status and updates statistics.
1551  */
1552 static void
1553 emx_timer(void *xsc)
1554 {
1555 	struct emx_softc *sc = xsc;
1556 	struct ifnet *ifp = &sc->arpcom.ac_if;
1557 
1558 	ifnet_serialize_all(ifp);
1559 
1560 	emx_update_link_status(sc);
1561 	emx_update_stats(sc);
1562 
1563 	/* Reset LAA into RAR[0] on 82571 */
1564 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1565 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1566 
1567 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1568 		emx_print_hw_stats(sc);
1569 
1570 	emx_smartspeed(sc);
1571 
1572 	callout_reset(&sc->timer, hz, emx_timer, sc);
1573 
1574 	ifnet_deserialize_all(ifp);
1575 }
1576 
1577 static void
1578 emx_update_link_status(struct emx_softc *sc)
1579 {
1580 	struct e1000_hw *hw = &sc->hw;
1581 	struct ifnet *ifp = &sc->arpcom.ac_if;
1582 	device_t dev = sc->dev;
1583 	uint32_t link_check = 0;
1584 
1585 	/* Get the cached link value or read phy for real */
1586 	switch (hw->phy.media_type) {
1587 	case e1000_media_type_copper:
1588 		if (hw->mac.get_link_status) {
1589 			/* Do the work to read phy */
1590 			e1000_check_for_link(hw);
1591 			link_check = !hw->mac.get_link_status;
1592 			if (link_check) /* ESB2 fix */
1593 				e1000_cfg_on_link_up(hw);
1594 		} else {
1595 			link_check = TRUE;
1596 		}
1597 		break;
1598 
1599 	case e1000_media_type_fiber:
1600 		e1000_check_for_link(hw);
1601 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1602 		break;
1603 
1604 	case e1000_media_type_internal_serdes:
1605 		e1000_check_for_link(hw);
1606 		link_check = sc->hw.mac.serdes_has_link;
1607 		break;
1608 
1609 	case e1000_media_type_unknown:
1610 	default:
1611 		break;
1612 	}
1613 
1614 	/* Now check for a transition */
1615 	if (link_check && sc->link_active == 0) {
1616 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1617 		    &sc->link_duplex);
1618 
1619 		/*
1620 		 * Check if we should enable/disable SPEED_MODE bit on
1621 		 * 82571EB/82572EI
1622 		 */
1623 		if (sc->link_speed != SPEED_1000 &&
1624 		    (hw->mac.type == e1000_82571 ||
1625 		     hw->mac.type == e1000_82572)) {
1626 			int tarc0;
1627 
1628 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1629 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1630 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1631 		}
1632 		if (bootverbose) {
1633 			device_printf(dev, "Link is up %d Mbps %s\n",
1634 			    sc->link_speed,
1635 			    ((sc->link_duplex == FULL_DUPLEX) ?
1636 			    "Full Duplex" : "Half Duplex"));
1637 		}
1638 		sc->link_active = 1;
1639 		sc->smartspeed = 0;
1640 		ifp->if_baudrate = sc->link_speed * 1000000;
1641 		ifp->if_link_state = LINK_STATE_UP;
1642 		if_link_state_change(ifp);
1643 	} else if (!link_check && sc->link_active == 1) {
1644 		ifp->if_baudrate = sc->link_speed = 0;
1645 		sc->link_duplex = 0;
1646 		if (bootverbose)
1647 			device_printf(dev, "Link is Down\n");
1648 		sc->link_active = 0;
1649 #if 0
1650 		/* Link down, disable watchdog */
1651 		if->if_timer = 0;
1652 #endif
1653 		ifp->if_link_state = LINK_STATE_DOWN;
1654 		if_link_state_change(ifp);
1655 	}
1656 }
1657 
1658 static void
1659 emx_stop(struct emx_softc *sc)
1660 {
1661 	struct ifnet *ifp = &sc->arpcom.ac_if;
1662 	int i;
1663 
1664 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1665 
1666 	emx_disable_intr(sc);
1667 
1668 	callout_stop(&sc->timer);
1669 
1670 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1671 	ifp->if_timer = 0;
1672 
1673 	/*
1674 	 * Disable multiple receive queues.
1675 	 *
1676 	 * NOTE:
1677 	 * We should disable multiple receive queues before
1678 	 * resetting the hardware.
1679 	 */
1680 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1681 
1682 	e1000_reset_hw(&sc->hw);
1683 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1684 
1685 	for (i = 0; i < sc->num_tx_desc; i++) {
1686 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1687 
1688 		if (tx_buffer->m_head != NULL) {
1689 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1690 			m_freem(tx_buffer->m_head);
1691 			tx_buffer->m_head = NULL;
1692 		}
1693 	}
1694 
1695 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1696 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1697 
1698 	sc->csum_flags = 0;
1699 	sc->csum_ehlen = 0;
1700 	sc->csum_iphlen = 0;
1701 
1702 	sc->tx_dd_head = 0;
1703 	sc->tx_dd_tail = 0;
1704 	sc->tx_nsegs = 0;
1705 }
1706 
1707 static int
1708 emx_reset(struct emx_softc *sc)
1709 {
1710 	device_t dev = sc->dev;
1711 	uint16_t rx_buffer_size;
1712 
1713 	/* Set up smart power down as default off on newer adapters. */
1714 	if (!emx_smart_pwr_down &&
1715 	    (sc->hw.mac.type == e1000_82571 ||
1716 	     sc->hw.mac.type == e1000_82572)) {
1717 		uint16_t phy_tmp = 0;
1718 
1719 		/* Speed up time to link by disabling smart power down. */
1720 		e1000_read_phy_reg(&sc->hw,
1721 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1722 		phy_tmp &= ~IGP02E1000_PM_SPD;
1723 		e1000_write_phy_reg(&sc->hw,
1724 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1725 	}
1726 
1727 	/*
1728 	 * These parameters control the automatic generation (Tx) and
1729 	 * response (Rx) to Ethernet PAUSE frames.
1730 	 * - High water mark should allow for at least two frames to be
1731 	 *   received after sending an XOFF.
1732 	 * - Low water mark works best when it is very near the high water mark.
1733 	 *   This allows the receiver to restart by sending XON when it has
1734 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1735 	 *   restart after one full frame is pulled from the buffer. There
1736 	 *   could be several smaller frames in the buffer and if so they will
1737 	 *   not trigger the XON until their total number reduces the buffer
1738 	 *   by 1500.
1739 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1740 	 */
1741 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1742 
1743 	sc->hw.fc.high_water = rx_buffer_size -
1744 			       roundup2(sc->max_frame_size, 1024);
1745 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1746 
1747 	if (sc->hw.mac.type == e1000_80003es2lan)
1748 		sc->hw.fc.pause_time = 0xFFFF;
1749 	else
1750 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1751 	sc->hw.fc.send_xon = TRUE;
1752 	sc->hw.fc.requested_mode = e1000_fc_full;
1753 
1754 	/* Issue a global reset */
1755 	e1000_reset_hw(&sc->hw);
1756 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1757 	emx_disable_aspm(sc);
1758 
1759 	if (e1000_init_hw(&sc->hw) < 0) {
1760 		device_printf(dev, "Hardware Initialization Failed\n");
1761 		return (EIO);
1762 	}
1763 
1764 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1765 	e1000_get_phy_info(&sc->hw);
1766 	e1000_check_for_link(&sc->hw);
1767 
1768 	return (0);
1769 }
1770 
1771 static void
1772 emx_setup_ifp(struct emx_softc *sc)
1773 {
1774 	struct ifnet *ifp = &sc->arpcom.ac_if;
1775 
1776 	if_initname(ifp, device_get_name(sc->dev),
1777 		    device_get_unit(sc->dev));
1778 	ifp->if_softc = sc;
1779 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1780 	ifp->if_init =  emx_init;
1781 	ifp->if_ioctl = emx_ioctl;
1782 	ifp->if_start = emx_start;
1783 #ifdef IFPOLL_ENABLE
1784 	ifp->if_qpoll = emx_qpoll;
1785 #endif
1786 	ifp->if_watchdog = emx_watchdog;
1787 	ifp->if_serialize = emx_serialize;
1788 	ifp->if_deserialize = emx_deserialize;
1789 	ifp->if_tryserialize = emx_tryserialize;
1790 #ifdef INVARIANTS
1791 	ifp->if_serialize_assert = emx_serialize_assert;
1792 #endif
1793 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1794 	ifq_set_ready(&ifp->if_snd);
1795 
1796 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1797 
1798 	ifp->if_capabilities = IFCAP_HWCSUM |
1799 			       IFCAP_VLAN_HWTAGGING |
1800 			       IFCAP_VLAN_MTU;
1801 	if (sc->rx_ring_cnt > 1)
1802 		ifp->if_capabilities |= IFCAP_RSS;
1803 	ifp->if_capenable = ifp->if_capabilities;
1804 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1805 
1806 	/*
1807 	 * Tell the upper layer(s) we support long frames.
1808 	 */
1809 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1810 
1811 	/*
1812 	 * Specify the media types supported by this sc and register
1813 	 * callbacks to update media and link information
1814 	 */
1815 	ifmedia_init(&sc->media, IFM_IMASK,
1816 		     emx_media_change, emx_media_status);
1817 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1818 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1819 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1820 			    0, NULL);
1821 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1822 	} else {
1823 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1824 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1825 			    0, NULL);
1826 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1827 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1828 			    0, NULL);
1829 		if (sc->hw.phy.type != e1000_phy_ife) {
1830 			ifmedia_add(&sc->media,
1831 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1832 			ifmedia_add(&sc->media,
1833 				IFM_ETHER | IFM_1000_T, 0, NULL);
1834 		}
1835 	}
1836 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1837 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1838 }
1839 
1840 /*
1841  * Workaround for SmartSpeed on 82541 and 82547 controllers
1842  */
1843 static void
1844 emx_smartspeed(struct emx_softc *sc)
1845 {
1846 	uint16_t phy_tmp;
1847 
1848 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1849 	    sc->hw.mac.autoneg == 0 ||
1850 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1851 		return;
1852 
1853 	if (sc->smartspeed == 0) {
1854 		/*
1855 		 * If Master/Slave config fault is asserted twice,
1856 		 * we assume back-to-back
1857 		 */
1858 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1859 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1860 			return;
1861 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1862 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1863 			e1000_read_phy_reg(&sc->hw,
1864 			    PHY_1000T_CTRL, &phy_tmp);
1865 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1866 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1867 				e1000_write_phy_reg(&sc->hw,
1868 				    PHY_1000T_CTRL, phy_tmp);
1869 				sc->smartspeed++;
1870 				if (sc->hw.mac.autoneg &&
1871 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1872 				    !e1000_read_phy_reg(&sc->hw,
1873 				     PHY_CONTROL, &phy_tmp)) {
1874 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1875 						   MII_CR_RESTART_AUTO_NEG;
1876 					e1000_write_phy_reg(&sc->hw,
1877 					    PHY_CONTROL, phy_tmp);
1878 				}
1879 			}
1880 		}
1881 		return;
1882 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1883 		/* If still no link, perhaps using 2/3 pair cable */
1884 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1885 		phy_tmp |= CR_1000T_MS_ENABLE;
1886 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1887 		if (sc->hw.mac.autoneg &&
1888 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1889 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1890 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1891 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1892 		}
1893 	}
1894 
1895 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1896 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1897 		sc->smartspeed = 0;
1898 }
1899 
1900 static int
1901 emx_create_tx_ring(struct emx_softc *sc)
1902 {
1903 	device_t dev = sc->dev;
1904 	struct emx_txbuf *tx_buffer;
1905 	int error, i, tsize, ntxd;
1906 
1907 	/*
1908 	 * Validate number of transmit descriptors.  It must not exceed
1909 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1910 	 */
1911 	ntxd = device_getenv_int(dev, "txd", emx_txd);
1912 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1913 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
1914 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1915 		    EMX_DEFAULT_TXD, ntxd);
1916 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1917 	} else {
1918 		sc->num_tx_desc = ntxd;
1919 	}
1920 
1921 	/*
1922 	 * Allocate Transmit Descriptor ring
1923 	 */
1924 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1925 			 EMX_DBA_ALIGN);
1926 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1927 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1928 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1929 				&sc->tx_desc_paddr);
1930 	if (sc->tx_desc_base == NULL) {
1931 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1932 		return ENOMEM;
1933 	}
1934 
1935 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1936 			     M_DEVBUF, M_WAITOK | M_ZERO);
1937 
1938 	/*
1939 	 * Create DMA tags for tx buffers
1940 	 */
1941 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1942 			1, 0,			/* alignment, bounds */
1943 			BUS_SPACE_MAXADDR,	/* lowaddr */
1944 			BUS_SPACE_MAXADDR,	/* highaddr */
1945 			NULL, NULL,		/* filter, filterarg */
1946 			EMX_TSO_SIZE,		/* maxsize */
1947 			EMX_MAX_SCATTER,	/* nsegments */
1948 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1949 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1950 			BUS_DMA_ONEBPAGE,	/* flags */
1951 			&sc->txtag);
1952 	if (error) {
1953 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1954 		kfree(sc->tx_buf, M_DEVBUF);
1955 		sc->tx_buf = NULL;
1956 		return error;
1957 	}
1958 
1959 	/*
1960 	 * Create DMA maps for tx buffers
1961 	 */
1962 	for (i = 0; i < sc->num_tx_desc; i++) {
1963 		tx_buffer = &sc->tx_buf[i];
1964 
1965 		error = bus_dmamap_create(sc->txtag,
1966 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1967 					  &tx_buffer->map);
1968 		if (error) {
1969 			device_printf(dev, "Unable to create TX DMA map\n");
1970 			emx_destroy_tx_ring(sc, i);
1971 			return error;
1972 		}
1973 	}
1974 	return (0);
1975 }
1976 
1977 static void
1978 emx_init_tx_ring(struct emx_softc *sc)
1979 {
1980 	/* Clear the old ring contents */
1981 	bzero(sc->tx_desc_base,
1982 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1983 
1984 	/* Reset state */
1985 	sc->next_avail_tx_desc = 0;
1986 	sc->next_tx_to_clean = 0;
1987 	sc->num_tx_desc_avail = sc->num_tx_desc;
1988 }
1989 
1990 static void
1991 emx_init_tx_unit(struct emx_softc *sc)
1992 {
1993 	uint32_t tctl, tarc, tipg = 0;
1994 	uint64_t bus_addr;
1995 
1996 	/* Setup the Base and Length of the Tx Descriptor Ring */
1997 	bus_addr = sc->tx_desc_paddr;
1998 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1999 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2000 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2001 	    (uint32_t)(bus_addr >> 32));
2002 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2003 	    (uint32_t)bus_addr);
2004 	/* Setup the HW Tx Head and Tail descriptor pointers */
2005 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2006 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2007 
2008 	/* Set the default values for the Tx Inter Packet Gap timer */
2009 	switch (sc->hw.mac.type) {
2010 	case e1000_80003es2lan:
2011 		tipg = DEFAULT_82543_TIPG_IPGR1;
2012 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2013 		    E1000_TIPG_IPGR2_SHIFT;
2014 		break;
2015 
2016 	default:
2017 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2018 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2019 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2020 		else
2021 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2022 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2023 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2024 		break;
2025 	}
2026 
2027 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2028 
2029 	/* NOTE: 0 is not allowed for TIDV */
2030 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2031 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2032 
2033 	if (sc->hw.mac.type == e1000_82571 ||
2034 	    sc->hw.mac.type == e1000_82572) {
2035 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2036 		tarc |= EMX_TARC_SPEED_MODE;
2037 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2038 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2039 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2040 		tarc |= 1;
2041 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2042 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2043 		tarc |= 1;
2044 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2045 	}
2046 
2047 	/* Program the Transmit Control Register */
2048 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2049 	tctl &= ~E1000_TCTL_CT;
2050 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2051 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2052 	tctl |= E1000_TCTL_MULR;
2053 
2054 	/* This write will effectively turn on the transmit unit. */
2055 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2056 }
2057 
2058 static void
2059 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2060 {
2061 	struct emx_txbuf *tx_buffer;
2062 	int i;
2063 
2064 	/* Free Transmit Descriptor ring */
2065 	if (sc->tx_desc_base) {
2066 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2067 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2068 				sc->tx_desc_dmap);
2069 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2070 
2071 		sc->tx_desc_base = NULL;
2072 	}
2073 
2074 	if (sc->tx_buf == NULL)
2075 		return;
2076 
2077 	for (i = 0; i < ndesc; i++) {
2078 		tx_buffer = &sc->tx_buf[i];
2079 
2080 		KKASSERT(tx_buffer->m_head == NULL);
2081 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2082 	}
2083 	bus_dma_tag_destroy(sc->txtag);
2084 
2085 	kfree(sc->tx_buf, M_DEVBUF);
2086 	sc->tx_buf = NULL;
2087 }
2088 
2089 /*
2090  * The offload context needs to be set when we transfer the first
2091  * packet of a particular protocol (TCP/UDP).  This routine has been
2092  * enhanced to deal with inserted VLAN headers.
2093  *
2094  * If the new packet's ether header length, ip header length and
2095  * csum offloading type are same as the previous packet, we should
2096  * avoid allocating a new csum context descriptor; mainly to take
2097  * advantage of the pipeline effect of the TX data read request.
2098  *
2099  * This function returns number of TX descrptors allocated for
2100  * csum context.
2101  */
2102 static int
2103 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2104 	   uint32_t *txd_upper, uint32_t *txd_lower)
2105 {
2106 	struct e1000_context_desc *TXD;
2107 	struct emx_txbuf *tx_buffer;
2108 	struct ether_vlan_header *eh;
2109 	struct ip *ip;
2110 	int curr_txd, ehdrlen, csum_flags;
2111 	uint32_t cmd, hdr_len, ip_hlen;
2112 	uint16_t etype;
2113 
2114 	/*
2115 	 * Determine where frame payload starts.
2116 	 * Jump over vlan headers if already present,
2117 	 * helpful for QinQ too.
2118 	 */
2119 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2120 		("emx_txcsum_pullup is not called (eh)?"));
2121 	eh = mtod(mp, struct ether_vlan_header *);
2122 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2123 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2124 			("emx_txcsum_pullup is not called (evh)?"));
2125 		etype = ntohs(eh->evl_proto);
2126 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2127 	} else {
2128 		etype = ntohs(eh->evl_encap_proto);
2129 		ehdrlen = ETHER_HDR_LEN;
2130 	}
2131 
2132 	/*
2133 	 * We only support TCP/UDP for IPv4 for the moment.
2134 	 * TODO: Support SCTP too when it hits the tree.
2135 	 */
2136 	if (etype != ETHERTYPE_IP)
2137 		return 0;
2138 
2139 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2140 		("emx_txcsum_pullup is not called (eh+ip_vhl)?"));
2141 
2142 	/* NOTE: We could only safely access ip.ip_vhl part */
2143 	ip = (struct ip *)(mp->m_data + ehdrlen);
2144 	ip_hlen = ip->ip_hl << 2;
2145 
2146 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2147 
2148 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2149 	    sc->csum_flags == csum_flags) {
2150 		/*
2151 		 * Same csum offload context as the previous packets;
2152 		 * just return.
2153 		 */
2154 		*txd_upper = sc->csum_txd_upper;
2155 		*txd_lower = sc->csum_txd_lower;
2156 		return 0;
2157 	}
2158 
2159 	/*
2160 	 * Setup a new csum offload context.
2161 	 */
2162 
2163 	curr_txd = sc->next_avail_tx_desc;
2164 	tx_buffer = &sc->tx_buf[curr_txd];
2165 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2166 
2167 	cmd = 0;
2168 
2169 	/* Setup of IP header checksum. */
2170 	if (csum_flags & CSUM_IP) {
2171 		/*
2172 		 * Start offset for header checksum calculation.
2173 		 * End offset for header checksum calculation.
2174 		 * Offset of place to put the checksum.
2175 		 */
2176 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2177 		TXD->lower_setup.ip_fields.ipcse =
2178 		    htole16(ehdrlen + ip_hlen - 1);
2179 		TXD->lower_setup.ip_fields.ipcso =
2180 		    ehdrlen + offsetof(struct ip, ip_sum);
2181 		cmd |= E1000_TXD_CMD_IP;
2182 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2183 	}
2184 	hdr_len = ehdrlen + ip_hlen;
2185 
2186 	if (csum_flags & CSUM_TCP) {
2187 		/*
2188 		 * Start offset for payload checksum calculation.
2189 		 * End offset for payload checksum calculation.
2190 		 * Offset of place to put the checksum.
2191 		 */
2192 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2193 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2194 		TXD->upper_setup.tcp_fields.tucso =
2195 		    hdr_len + offsetof(struct tcphdr, th_sum);
2196 		cmd |= E1000_TXD_CMD_TCP;
2197 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2198 	} else if (csum_flags & CSUM_UDP) {
2199 		/*
2200 		 * Start offset for header checksum calculation.
2201 		 * End offset for header checksum calculation.
2202 		 * Offset of place to put the checksum.
2203 		 */
2204 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2205 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2206 		TXD->upper_setup.tcp_fields.tucso =
2207 		    hdr_len + offsetof(struct udphdr, uh_sum);
2208 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2209 	}
2210 
2211 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2212 		     E1000_TXD_DTYP_D;		/* Data descr */
2213 
2214 	/* Save the information for this csum offloading context */
2215 	sc->csum_ehlen = ehdrlen;
2216 	sc->csum_iphlen = ip_hlen;
2217 	sc->csum_flags = csum_flags;
2218 	sc->csum_txd_upper = *txd_upper;
2219 	sc->csum_txd_lower = *txd_lower;
2220 
2221 	TXD->tcp_seg_setup.data = htole32(0);
2222 	TXD->cmd_and_length =
2223 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2224 
2225 	if (++curr_txd == sc->num_tx_desc)
2226 		curr_txd = 0;
2227 
2228 	KKASSERT(sc->num_tx_desc_avail > 0);
2229 	sc->num_tx_desc_avail--;
2230 
2231 	sc->next_avail_tx_desc = curr_txd;
2232 	return 1;
2233 }
2234 
2235 static int
2236 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2237 {
2238 	struct mbuf *m = *m0;
2239 	struct ether_header *eh;
2240 	int len;
2241 
2242 	sc->tx_csum_try_pullup++;
2243 
2244 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2245 
2246 	if (__predict_false(!M_WRITABLE(m))) {
2247 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2248 			sc->tx_csum_drop1++;
2249 			m_freem(m);
2250 			*m0 = NULL;
2251 			return ENOBUFS;
2252 		}
2253 		eh = mtod(m, struct ether_header *);
2254 
2255 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2256 			len += EVL_ENCAPLEN;
2257 
2258 		if (m->m_len < len) {
2259 			sc->tx_csum_drop2++;
2260 			m_freem(m);
2261 			*m0 = NULL;
2262 			return ENOBUFS;
2263 		}
2264 		return 0;
2265 	}
2266 
2267 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2268 		sc->tx_csum_pullup1++;
2269 		m = m_pullup(m, ETHER_HDR_LEN);
2270 		if (m == NULL) {
2271 			sc->tx_csum_pullup1_failed++;
2272 			*m0 = NULL;
2273 			return ENOBUFS;
2274 		}
2275 		*m0 = m;
2276 	}
2277 	eh = mtod(m, struct ether_header *);
2278 
2279 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2280 		len += EVL_ENCAPLEN;
2281 
2282 	if (m->m_len < len) {
2283 		sc->tx_csum_pullup2++;
2284 		m = m_pullup(m, len);
2285 		if (m == NULL) {
2286 			sc->tx_csum_pullup2_failed++;
2287 			*m0 = NULL;
2288 			return ENOBUFS;
2289 		}
2290 		*m0 = m;
2291 	}
2292 	return 0;
2293 }
2294 
2295 static void
2296 emx_txeof(struct emx_softc *sc)
2297 {
2298 	struct ifnet *ifp = &sc->arpcom.ac_if;
2299 	struct emx_txbuf *tx_buffer;
2300 	int first, num_avail;
2301 
2302 	if (sc->tx_dd_head == sc->tx_dd_tail)
2303 		return;
2304 
2305 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2306 		return;
2307 
2308 	num_avail = sc->num_tx_desc_avail;
2309 	first = sc->next_tx_to_clean;
2310 
2311 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2312 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2313 		struct e1000_tx_desc *tx_desc;
2314 
2315 		tx_desc = &sc->tx_desc_base[dd_idx];
2316 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2317 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2318 
2319 			if (++dd_idx == sc->num_tx_desc)
2320 				dd_idx = 0;
2321 
2322 			while (first != dd_idx) {
2323 				logif(pkt_txclean);
2324 
2325 				num_avail++;
2326 
2327 				tx_buffer = &sc->tx_buf[first];
2328 				if (tx_buffer->m_head) {
2329 					ifp->if_opackets++;
2330 					bus_dmamap_unload(sc->txtag,
2331 							  tx_buffer->map);
2332 					m_freem(tx_buffer->m_head);
2333 					tx_buffer->m_head = NULL;
2334 				}
2335 
2336 				if (++first == sc->num_tx_desc)
2337 					first = 0;
2338 			}
2339 		} else {
2340 			break;
2341 		}
2342 	}
2343 	sc->next_tx_to_clean = first;
2344 	sc->num_tx_desc_avail = num_avail;
2345 
2346 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2347 		sc->tx_dd_head = 0;
2348 		sc->tx_dd_tail = 0;
2349 	}
2350 
2351 	if (!EMX_IS_OACTIVE(sc)) {
2352 		ifp->if_flags &= ~IFF_OACTIVE;
2353 
2354 		/* All clean, turn off the timer */
2355 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2356 			ifp->if_timer = 0;
2357 	}
2358 }
2359 
2360 static void
2361 emx_tx_collect(struct emx_softc *sc)
2362 {
2363 	struct ifnet *ifp = &sc->arpcom.ac_if;
2364 	struct emx_txbuf *tx_buffer;
2365 	int tdh, first, num_avail, dd_idx = -1;
2366 
2367 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2368 		return;
2369 
2370 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2371 	if (tdh == sc->next_tx_to_clean)
2372 		return;
2373 
2374 	if (sc->tx_dd_head != sc->tx_dd_tail)
2375 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2376 
2377 	num_avail = sc->num_tx_desc_avail;
2378 	first = sc->next_tx_to_clean;
2379 
2380 	while (first != tdh) {
2381 		logif(pkt_txclean);
2382 
2383 		num_avail++;
2384 
2385 		tx_buffer = &sc->tx_buf[first];
2386 		if (tx_buffer->m_head) {
2387 			ifp->if_opackets++;
2388 			bus_dmamap_unload(sc->txtag,
2389 					  tx_buffer->map);
2390 			m_freem(tx_buffer->m_head);
2391 			tx_buffer->m_head = NULL;
2392 		}
2393 
2394 		if (first == dd_idx) {
2395 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2396 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2397 				sc->tx_dd_head = 0;
2398 				sc->tx_dd_tail = 0;
2399 				dd_idx = -1;
2400 			} else {
2401 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2402 			}
2403 		}
2404 
2405 		if (++first == sc->num_tx_desc)
2406 			first = 0;
2407 	}
2408 	sc->next_tx_to_clean = first;
2409 	sc->num_tx_desc_avail = num_avail;
2410 
2411 	if (!EMX_IS_OACTIVE(sc)) {
2412 		ifp->if_flags &= ~IFF_OACTIVE;
2413 
2414 		/* All clean, turn off the timer */
2415 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2416 			ifp->if_timer = 0;
2417 	}
2418 }
2419 
2420 /*
2421  * When Link is lost sometimes there is work still in the TX ring
2422  * which will result in a watchdog, rather than allow that do an
2423  * attempted cleanup and then reinit here.  Note that this has been
2424  * seens mostly with fiber adapters.
2425  */
2426 static void
2427 emx_tx_purge(struct emx_softc *sc)
2428 {
2429 	struct ifnet *ifp = &sc->arpcom.ac_if;
2430 
2431 	if (!sc->link_active && ifp->if_timer) {
2432 		emx_tx_collect(sc);
2433 		if (ifp->if_timer) {
2434 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2435 			ifp->if_timer = 0;
2436 			emx_init(sc);
2437 		}
2438 	}
2439 }
2440 
2441 static int
2442 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2443 {
2444 	struct mbuf *m;
2445 	bus_dma_segment_t seg;
2446 	bus_dmamap_t map;
2447 	struct emx_rxbuf *rx_buffer;
2448 	int error, nseg;
2449 
2450 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2451 	if (m == NULL) {
2452 		rdata->mbuf_cluster_failed++;
2453 		if (init) {
2454 			if_printf(&sc->arpcom.ac_if,
2455 				  "Unable to allocate RX mbuf\n");
2456 		}
2457 		return (ENOBUFS);
2458 	}
2459 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2460 
2461 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2462 		m_adj(m, ETHER_ALIGN);
2463 
2464 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2465 			rdata->rx_sparemap, m,
2466 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2467 	if (error) {
2468 		m_freem(m);
2469 		if (init) {
2470 			if_printf(&sc->arpcom.ac_if,
2471 				  "Unable to load RX mbuf\n");
2472 		}
2473 		return (error);
2474 	}
2475 
2476 	rx_buffer = &rdata->rx_buf[i];
2477 	if (rx_buffer->m_head != NULL)
2478 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2479 
2480 	map = rx_buffer->map;
2481 	rx_buffer->map = rdata->rx_sparemap;
2482 	rdata->rx_sparemap = map;
2483 
2484 	rx_buffer->m_head = m;
2485 	rx_buffer->paddr = seg.ds_addr;
2486 
2487 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2488 	return (0);
2489 }
2490 
2491 static int
2492 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2493 {
2494 	device_t dev = sc->dev;
2495 	struct emx_rxbuf *rx_buffer;
2496 	int i, error, rsize, nrxd;
2497 
2498 	/*
2499 	 * Validate number of receive descriptors.  It must not exceed
2500 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2501 	 */
2502 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2503 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2504 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2505 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2506 		    EMX_DEFAULT_RXD, nrxd);
2507 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2508 	} else {
2509 		rdata->num_rx_desc = nrxd;
2510 	}
2511 
2512 	/*
2513 	 * Allocate Receive Descriptor ring
2514 	 */
2515 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2516 			 EMX_DBA_ALIGN);
2517 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2518 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2519 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2520 				&rdata->rx_desc_paddr);
2521 	if (rdata->rx_desc == NULL) {
2522 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2523 		return ENOMEM;
2524 	}
2525 
2526 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2527 				M_DEVBUF, M_WAITOK | M_ZERO);
2528 
2529 	/*
2530 	 * Create DMA tag for rx buffers
2531 	 */
2532 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2533 			1, 0,			/* alignment, bounds */
2534 			BUS_SPACE_MAXADDR,	/* lowaddr */
2535 			BUS_SPACE_MAXADDR,	/* highaddr */
2536 			NULL, NULL,		/* filter, filterarg */
2537 			MCLBYTES,		/* maxsize */
2538 			1,			/* nsegments */
2539 			MCLBYTES,		/* maxsegsize */
2540 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2541 			&rdata->rxtag);
2542 	if (error) {
2543 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2544 		kfree(rdata->rx_buf, M_DEVBUF);
2545 		rdata->rx_buf = NULL;
2546 		return error;
2547 	}
2548 
2549 	/*
2550 	 * Create spare DMA map for rx buffers
2551 	 */
2552 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2553 				  &rdata->rx_sparemap);
2554 	if (error) {
2555 		device_printf(dev, "Unable to create spare RX DMA map\n");
2556 		bus_dma_tag_destroy(rdata->rxtag);
2557 		kfree(rdata->rx_buf, M_DEVBUF);
2558 		rdata->rx_buf = NULL;
2559 		return error;
2560 	}
2561 
2562 	/*
2563 	 * Create DMA maps for rx buffers
2564 	 */
2565 	for (i = 0; i < rdata->num_rx_desc; i++) {
2566 		rx_buffer = &rdata->rx_buf[i];
2567 
2568 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2569 					  &rx_buffer->map);
2570 		if (error) {
2571 			device_printf(dev, "Unable to create RX DMA map\n");
2572 			emx_destroy_rx_ring(sc, rdata, i);
2573 			return error;
2574 		}
2575 	}
2576 	return (0);
2577 }
2578 
2579 static void
2580 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2581 {
2582 	int i;
2583 
2584 	for (i = 0; i < rdata->num_rx_desc; i++) {
2585 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2586 
2587 		if (rx_buffer->m_head != NULL) {
2588 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2589 			m_freem(rx_buffer->m_head);
2590 			rx_buffer->m_head = NULL;
2591 		}
2592 	}
2593 
2594 	if (rdata->fmp != NULL)
2595 		m_freem(rdata->fmp);
2596 	rdata->fmp = NULL;
2597 	rdata->lmp = NULL;
2598 }
2599 
2600 static int
2601 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2602 {
2603 	int i, error;
2604 
2605 	/* Reset descriptor ring */
2606 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2607 
2608 	/* Allocate new ones. */
2609 	for (i = 0; i < rdata->num_rx_desc; i++) {
2610 		error = emx_newbuf(sc, rdata, i, 1);
2611 		if (error)
2612 			return (error);
2613 	}
2614 
2615 	/* Setup our descriptor pointers */
2616 	rdata->next_rx_desc_to_check = 0;
2617 
2618 	return (0);
2619 }
2620 
2621 static void
2622 emx_init_rx_unit(struct emx_softc *sc)
2623 {
2624 	struct ifnet *ifp = &sc->arpcom.ac_if;
2625 	uint64_t bus_addr;
2626 	uint32_t rctl, itr, rfctl;
2627 	int i;
2628 
2629 	/*
2630 	 * Make sure receives are disabled while setting
2631 	 * up the descriptor ring
2632 	 */
2633 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2634 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2635 
2636 	/*
2637 	 * Set the interrupt throttling rate. Value is calculated
2638 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2639 	 */
2640 	if (sc->int_throttle_ceil)
2641 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2642 	else
2643 		itr = 0;
2644 	emx_set_itr(sc, itr);
2645 
2646 	/* Use extended RX descriptor */
2647 	rfctl = E1000_RFCTL_EXTEN;
2648 
2649 	/* Disable accelerated ackknowledge */
2650 	if (sc->hw.mac.type == e1000_82574)
2651 		rfctl |= E1000_RFCTL_ACK_DIS;
2652 
2653 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2654 
2655 	/*
2656 	 * Receive Checksum Offload for TCP and UDP
2657 	 *
2658 	 * Checksum offloading is also enabled if multiple receive
2659 	 * queue is to be supported, since we need it to figure out
2660 	 * packet type.
2661 	 */
2662 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2663 	    sc->rx_ring_cnt > 1) {
2664 		uint32_t rxcsum;
2665 
2666 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2667 
2668 		/*
2669 		 * NOTE:
2670 		 * PCSD must be enabled to enable multiple
2671 		 * receive queues.
2672 		 */
2673 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2674 			  E1000_RXCSUM_PCSD;
2675 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2676 	}
2677 
2678 	/*
2679 	 * Configure multiple receive queue (RSS)
2680 	 */
2681 	if (sc->rx_ring_cnt > 1) {
2682 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2683 		uint32_t reta;
2684 
2685 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2686 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2687 
2688 		/*
2689 		 * NOTE:
2690 		 * When we reach here, RSS has already been disabled
2691 		 * in emx_stop(), so we could safely configure RSS key
2692 		 * and redirect table.
2693 		 */
2694 
2695 		/*
2696 		 * Configure RSS key
2697 		 */
2698 		toeplitz_get_key(key, sizeof(key));
2699 		for (i = 0; i < EMX_NRSSRK; ++i) {
2700 			uint32_t rssrk;
2701 
2702 			rssrk = EMX_RSSRK_VAL(key, i);
2703 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2704 
2705 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2706 		}
2707 
2708 		/*
2709 		 * Configure RSS redirect table in following fashion:
2710 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2711 		 */
2712 		reta = 0;
2713 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2714 			uint32_t q;
2715 
2716 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2717 			reta |= q << (8 * i);
2718 		}
2719 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2720 
2721 		for (i = 0; i < EMX_NRETA; ++i)
2722 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2723 
2724 		/*
2725 		 * Enable multiple receive queues.
2726 		 * Enable IPv4 RSS standard hash functions.
2727 		 * Disable RSS interrupt.
2728 		 */
2729 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2730 				E1000_MRQC_ENABLE_RSS_2Q |
2731 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2732 				E1000_MRQC_RSS_FIELD_IPV4);
2733 	}
2734 
2735 	/*
2736 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2737 	 * long latencies are observed, like Lenovo X60. This
2738 	 * change eliminates the problem, but since having positive
2739 	 * values in RDTR is a known source of problems on other
2740 	 * platforms another solution is being sought.
2741 	 */
2742 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2743 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2744 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2745 	}
2746 
2747 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2748 		struct emx_rxdata *rdata = &sc->rx_data[i];
2749 
2750 		/*
2751 		 * Setup the Base and Length of the Rx Descriptor Ring
2752 		 */
2753 		bus_addr = rdata->rx_desc_paddr;
2754 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2755 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2756 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2757 		    (uint32_t)(bus_addr >> 32));
2758 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2759 		    (uint32_t)bus_addr);
2760 
2761 		/*
2762 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2763 		 */
2764 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2765 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2766 		    sc->rx_data[i].num_rx_desc - 1);
2767 	}
2768 
2769 	/* Setup the Receive Control Register */
2770 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2771 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2772 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2773 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2774 
2775 	/* Make sure VLAN Filters are off */
2776 	rctl &= ~E1000_RCTL_VFE;
2777 
2778 	/* Don't store bad paket */
2779 	rctl &= ~E1000_RCTL_SBP;
2780 
2781 	/* MCLBYTES */
2782 	rctl |= E1000_RCTL_SZ_2048;
2783 
2784 	if (ifp->if_mtu > ETHERMTU)
2785 		rctl |= E1000_RCTL_LPE;
2786 	else
2787 		rctl &= ~E1000_RCTL_LPE;
2788 
2789 	/* Enable Receives */
2790 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2791 }
2792 
2793 static void
2794 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2795 {
2796 	struct emx_rxbuf *rx_buffer;
2797 	int i;
2798 
2799 	/* Free Receive Descriptor ring */
2800 	if (rdata->rx_desc) {
2801 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2802 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2803 				rdata->rx_desc_dmap);
2804 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2805 
2806 		rdata->rx_desc = NULL;
2807 	}
2808 
2809 	if (rdata->rx_buf == NULL)
2810 		return;
2811 
2812 	for (i = 0; i < ndesc; i++) {
2813 		rx_buffer = &rdata->rx_buf[i];
2814 
2815 		KKASSERT(rx_buffer->m_head == NULL);
2816 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2817 	}
2818 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2819 	bus_dma_tag_destroy(rdata->rxtag);
2820 
2821 	kfree(rdata->rx_buf, M_DEVBUF);
2822 	rdata->rx_buf = NULL;
2823 }
2824 
2825 static void
2826 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2827 {
2828 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2829 	struct ifnet *ifp = &sc->arpcom.ac_if;
2830 	uint32_t staterr;
2831 	emx_rxdesc_t *current_desc;
2832 	struct mbuf *mp;
2833 	int i;
2834 
2835 	i = rdata->next_rx_desc_to_check;
2836 	current_desc = &rdata->rx_desc[i];
2837 	staterr = le32toh(current_desc->rxd_staterr);
2838 
2839 	if (!(staterr & E1000_RXD_STAT_DD))
2840 		return;
2841 
2842 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2843 		struct pktinfo *pi = NULL, pi0;
2844 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2845 		struct mbuf *m = NULL;
2846 		int eop, len;
2847 
2848 		logif(pkt_receive);
2849 
2850 		mp = rx_buf->m_head;
2851 
2852 		/*
2853 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2854 		 * needs to access the last received byte in the mbuf.
2855 		 */
2856 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2857 				BUS_DMASYNC_POSTREAD);
2858 
2859 		len = le16toh(current_desc->rxd_length);
2860 		if (staterr & E1000_RXD_STAT_EOP) {
2861 			count--;
2862 			eop = 1;
2863 		} else {
2864 			eop = 0;
2865 		}
2866 
2867 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2868 			uint16_t vlan = 0;
2869 			uint32_t mrq, rss_hash;
2870 
2871 			/*
2872 			 * Save several necessary information,
2873 			 * before emx_newbuf() destroy it.
2874 			 */
2875 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2876 				vlan = le16toh(current_desc->rxd_vlan);
2877 
2878 			mrq = le32toh(current_desc->rxd_mrq);
2879 			rss_hash = le32toh(current_desc->rxd_rss);
2880 
2881 			EMX_RSS_DPRINTF(sc, 10,
2882 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2883 			    ring_idx, mrq, rss_hash);
2884 
2885 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2886 				ifp->if_iqdrops++;
2887 				goto discard;
2888 			}
2889 
2890 			/* Assign correct length to the current fragment */
2891 			mp->m_len = len;
2892 
2893 			if (rdata->fmp == NULL) {
2894 				mp->m_pkthdr.len = len;
2895 				rdata->fmp = mp; /* Store the first mbuf */
2896 				rdata->lmp = mp;
2897 			} else {
2898 				/*
2899 				 * Chain mbuf's together
2900 				 */
2901 				rdata->lmp->m_next = mp;
2902 				rdata->lmp = rdata->lmp->m_next;
2903 				rdata->fmp->m_pkthdr.len += len;
2904 			}
2905 
2906 			if (eop) {
2907 				rdata->fmp->m_pkthdr.rcvif = ifp;
2908 				ifp->if_ipackets++;
2909 
2910 				if (ifp->if_capenable & IFCAP_RXCSUM)
2911 					emx_rxcsum(staterr, rdata->fmp);
2912 
2913 				if (staterr & E1000_RXD_STAT_VP) {
2914 					rdata->fmp->m_pkthdr.ether_vlantag =
2915 					    vlan;
2916 					rdata->fmp->m_flags |= M_VLANTAG;
2917 				}
2918 				m = rdata->fmp;
2919 				rdata->fmp = NULL;
2920 				rdata->lmp = NULL;
2921 
2922 				if (ifp->if_capenable & IFCAP_RSS) {
2923 					pi = emx_rssinfo(m, &pi0, mrq,
2924 							 rss_hash, staterr);
2925 				}
2926 #ifdef EMX_RSS_DEBUG
2927 				rdata->rx_pkts++;
2928 #endif
2929 			}
2930 		} else {
2931 			ifp->if_ierrors++;
2932 discard:
2933 			emx_setup_rxdesc(current_desc, rx_buf);
2934 			if (rdata->fmp != NULL) {
2935 				m_freem(rdata->fmp);
2936 				rdata->fmp = NULL;
2937 				rdata->lmp = NULL;
2938 			}
2939 			m = NULL;
2940 		}
2941 
2942 		if (m != NULL)
2943 			ether_input_pkt(ifp, m, pi);
2944 
2945 		/* Advance our pointers to the next descriptor. */
2946 		if (++i == rdata->num_rx_desc)
2947 			i = 0;
2948 
2949 		current_desc = &rdata->rx_desc[i];
2950 		staterr = le32toh(current_desc->rxd_staterr);
2951 	}
2952 	rdata->next_rx_desc_to_check = i;
2953 
2954 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2955 	if (--i < 0)
2956 		i = rdata->num_rx_desc - 1;
2957 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2958 }
2959 
2960 static void
2961 emx_enable_intr(struct emx_softc *sc)
2962 {
2963 	uint32_t ims_mask = IMS_ENABLE_MASK;
2964 
2965 	lwkt_serialize_handler_enable(&sc->main_serialize);
2966 
2967 #if 0
2968 	if (sc->hw.mac.type == e1000_82574) {
2969 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2970 		ims_mask |= EM_MSIX_MASK;
2971 	}
2972 #endif
2973 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2974 }
2975 
2976 static void
2977 emx_disable_intr(struct emx_softc *sc)
2978 {
2979 	if (sc->hw.mac.type == e1000_82574)
2980 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2981 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2982 
2983 	lwkt_serialize_handler_disable(&sc->main_serialize);
2984 }
2985 
2986 /*
2987  * Bit of a misnomer, what this really means is
2988  * to enable OS management of the system... aka
2989  * to disable special hardware management features
2990  */
2991 static void
2992 emx_get_mgmt(struct emx_softc *sc)
2993 {
2994 	/* A shared code workaround */
2995 	if (sc->has_manage) {
2996 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2997 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2998 
2999 		/* disable hardware interception of ARP */
3000 		manc &= ~(E1000_MANC_ARP_EN);
3001 
3002                 /* enable receiving management packets to the host */
3003 		manc |= E1000_MANC_EN_MNG2HOST;
3004 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3005 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3006 		manc2h |= E1000_MNG2HOST_PORT_623;
3007 		manc2h |= E1000_MNG2HOST_PORT_664;
3008 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3009 
3010 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3011 	}
3012 }
3013 
3014 /*
3015  * Give control back to hardware management
3016  * controller if there is one.
3017  */
3018 static void
3019 emx_rel_mgmt(struct emx_softc *sc)
3020 {
3021 	if (sc->has_manage) {
3022 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3023 
3024 		/* re-enable hardware interception of ARP */
3025 		manc |= E1000_MANC_ARP_EN;
3026 		manc &= ~E1000_MANC_EN_MNG2HOST;
3027 
3028 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3029 	}
3030 }
3031 
3032 /*
3033  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3034  * For ASF and Pass Through versions of f/w this means that
3035  * the driver is loaded.  For AMT version (only with 82573)
3036  * of the f/w this means that the network i/f is open.
3037  */
3038 static void
3039 emx_get_hw_control(struct emx_softc *sc)
3040 {
3041 	/* Let firmware know the driver has taken over */
3042 	if (sc->hw.mac.type == e1000_82573) {
3043 		uint32_t swsm;
3044 
3045 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3046 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3047 		    swsm | E1000_SWSM_DRV_LOAD);
3048 	} else {
3049 		uint32_t ctrl_ext;
3050 
3051 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3052 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3053 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3054 	}
3055 	sc->control_hw = 1;
3056 }
3057 
3058 /*
3059  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3060  * For ASF and Pass Through versions of f/w this means that the
3061  * driver is no longer loaded.  For AMT version (only with 82573)
3062  * of the f/w this means that the network i/f is closed.
3063  */
3064 static void
3065 emx_rel_hw_control(struct emx_softc *sc)
3066 {
3067 	if (!sc->control_hw)
3068 		return;
3069 	sc->control_hw = 0;
3070 
3071 	/* Let firmware taken over control of h/w */
3072 	if (sc->hw.mac.type == e1000_82573) {
3073 		uint32_t swsm;
3074 
3075 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3076 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3077 		    swsm & ~E1000_SWSM_DRV_LOAD);
3078 	} else {
3079 		uint32_t ctrl_ext;
3080 
3081 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3082 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3083 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3084 	}
3085 }
3086 
3087 static int
3088 emx_is_valid_eaddr(const uint8_t *addr)
3089 {
3090 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3091 
3092 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3093 		return (FALSE);
3094 
3095 	return (TRUE);
3096 }
3097 
3098 /*
3099  * Enable PCI Wake On Lan capability
3100  */
3101 void
3102 emx_enable_wol(device_t dev)
3103 {
3104 	uint16_t cap, status;
3105 	uint8_t id;
3106 
3107 	/* First find the capabilities pointer*/
3108 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3109 
3110 	/* Read the PM Capabilities */
3111 	id = pci_read_config(dev, cap, 1);
3112 	if (id != PCIY_PMG)     /* Something wrong */
3113 		return;
3114 
3115 	/*
3116 	 * OK, we have the power capabilities,
3117 	 * so now get the status register
3118 	 */
3119 	cap += PCIR_POWER_STATUS;
3120 	status = pci_read_config(dev, cap, 2);
3121 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3122 	pci_write_config(dev, cap, status, 2);
3123 }
3124 
3125 static void
3126 emx_update_stats(struct emx_softc *sc)
3127 {
3128 	struct ifnet *ifp = &sc->arpcom.ac_if;
3129 
3130 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3131 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3132 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3133 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3134 	}
3135 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3136 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3137 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3138 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3139 
3140 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3141 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3142 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3143 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3144 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3145 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3146 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3147 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3148 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3149 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3150 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3151 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3152 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3153 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3154 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3155 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3156 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3157 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3158 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3159 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3160 
3161 	/* For the 64-bit byte counters the low dword must be read first. */
3162 	/* Both registers clear on the read of the high dword */
3163 
3164 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3165 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3166 
3167 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3168 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3169 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3170 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3171 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3172 
3173 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3174 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3175 
3176 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3177 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3178 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3179 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3180 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3181 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3182 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3183 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3184 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3185 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3186 
3187 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3188 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3189 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3190 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3191 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3192 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3193 
3194 	ifp->if_collisions = sc->stats.colc;
3195 
3196 	/* Rx Errors */
3197 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3198 			  sc->stats.crcerrs + sc->stats.algnerrc +
3199 			  sc->stats.ruc + sc->stats.roc +
3200 			  sc->stats.mpc + sc->stats.cexterr;
3201 
3202 	/* Tx Errors */
3203 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3204 			  sc->watchdog_events;
3205 }
3206 
3207 static void
3208 emx_print_debug_info(struct emx_softc *sc)
3209 {
3210 	device_t dev = sc->dev;
3211 	uint8_t *hw_addr = sc->hw.hw_addr;
3212 
3213 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3214 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3215 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3216 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3217 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3218 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3219 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3220 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3221 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3222 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3223 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3224 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3225 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3226 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3227 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3228 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3229 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3230 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3231 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3232 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3233 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3234 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3235 	    sc->num_tx_desc_avail);
3236 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3237 	    sc->no_tx_desc_avail1);
3238 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3239 	    sc->no_tx_desc_avail2);
3240 	device_printf(dev, "Std mbuf failed = %ld\n",
3241 	    sc->mbuf_alloc_failed);
3242 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3243 	    sc->rx_data[0].mbuf_cluster_failed);
3244 	device_printf(dev, "Driver dropped packets = %ld\n",
3245 	    sc->dropped_pkts);
3246 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3247 	    sc->no_tx_dma_setup);
3248 
3249 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3250 	    sc->tx_csum_try_pullup);
3251 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3252 	    sc->tx_csum_pullup1);
3253 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3254 	    sc->tx_csum_pullup1_failed);
3255 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3256 	    sc->tx_csum_pullup2);
3257 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3258 	    sc->tx_csum_pullup2_failed);
3259 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3260 	    sc->tx_csum_drop1);
3261 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3262 	    sc->tx_csum_drop2);
3263 }
3264 
3265 static void
3266 emx_print_hw_stats(struct emx_softc *sc)
3267 {
3268 	device_t dev = sc->dev;
3269 
3270 	device_printf(dev, "Excessive collisions = %lld\n",
3271 	    (long long)sc->stats.ecol);
3272 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3273 	device_printf(dev, "Symbol errors = %lld\n",
3274 	    (long long)sc->stats.symerrs);
3275 #endif
3276 	device_printf(dev, "Sequence errors = %lld\n",
3277 	    (long long)sc->stats.sec);
3278 	device_printf(dev, "Defer count = %lld\n",
3279 	    (long long)sc->stats.dc);
3280 	device_printf(dev, "Missed Packets = %lld\n",
3281 	    (long long)sc->stats.mpc);
3282 	device_printf(dev, "Receive No Buffers = %lld\n",
3283 	    (long long)sc->stats.rnbc);
3284 	/* RLEC is inaccurate on some hardware, calculate our own. */
3285 	device_printf(dev, "Receive Length Errors = %lld\n",
3286 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3287 	device_printf(dev, "Receive errors = %lld\n",
3288 	    (long long)sc->stats.rxerrc);
3289 	device_printf(dev, "Crc errors = %lld\n",
3290 	    (long long)sc->stats.crcerrs);
3291 	device_printf(dev, "Alignment errors = %lld\n",
3292 	    (long long)sc->stats.algnerrc);
3293 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3294 	    (long long)sc->stats.cexterr);
3295 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3296 	device_printf(dev, "watchdog timeouts = %ld\n",
3297 	    sc->watchdog_events);
3298 	device_printf(dev, "XON Rcvd = %lld\n",
3299 	    (long long)sc->stats.xonrxc);
3300 	device_printf(dev, "XON Xmtd = %lld\n",
3301 	    (long long)sc->stats.xontxc);
3302 	device_printf(dev, "XOFF Rcvd = %lld\n",
3303 	    (long long)sc->stats.xoffrxc);
3304 	device_printf(dev, "XOFF Xmtd = %lld\n",
3305 	    (long long)sc->stats.xofftxc);
3306 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3307 	    (long long)sc->stats.gprc);
3308 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3309 	    (long long)sc->stats.gptc);
3310 }
3311 
3312 static void
3313 emx_print_nvm_info(struct emx_softc *sc)
3314 {
3315 	uint16_t eeprom_data;
3316 	int i, j, row = 0;
3317 
3318 	/* Its a bit crude, but it gets the job done */
3319 	kprintf("\nInterface EEPROM Dump:\n");
3320 	kprintf("Offset\n0x0000  ");
3321 	for (i = 0, j = 0; i < 32; i++, j++) {
3322 		if (j == 8) { /* Make the offset block */
3323 			j = 0; ++row;
3324 			kprintf("\n0x00%x0  ",row);
3325 		}
3326 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3327 		kprintf("%04x ", eeprom_data);
3328 	}
3329 	kprintf("\n");
3330 }
3331 
3332 static int
3333 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3334 {
3335 	struct emx_softc *sc;
3336 	struct ifnet *ifp;
3337 	int error, result;
3338 
3339 	result = -1;
3340 	error = sysctl_handle_int(oidp, &result, 0, req);
3341 	if (error || !req->newptr)
3342 		return (error);
3343 
3344 	sc = (struct emx_softc *)arg1;
3345 	ifp = &sc->arpcom.ac_if;
3346 
3347 	ifnet_serialize_all(ifp);
3348 
3349 	if (result == 1)
3350 		emx_print_debug_info(sc);
3351 
3352 	/*
3353 	 * This value will cause a hex dump of the
3354 	 * first 32 16-bit words of the EEPROM to
3355 	 * the screen.
3356 	 */
3357 	if (result == 2)
3358 		emx_print_nvm_info(sc);
3359 
3360 	ifnet_deserialize_all(ifp);
3361 
3362 	return (error);
3363 }
3364 
3365 static int
3366 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3367 {
3368 	int error, result;
3369 
3370 	result = -1;
3371 	error = sysctl_handle_int(oidp, &result, 0, req);
3372 	if (error || !req->newptr)
3373 		return (error);
3374 
3375 	if (result == 1) {
3376 		struct emx_softc *sc = (struct emx_softc *)arg1;
3377 		struct ifnet *ifp = &sc->arpcom.ac_if;
3378 
3379 		ifnet_serialize_all(ifp);
3380 		emx_print_hw_stats(sc);
3381 		ifnet_deserialize_all(ifp);
3382 	}
3383 	return (error);
3384 }
3385 
3386 static void
3387 emx_add_sysctl(struct emx_softc *sc)
3388 {
3389 #ifdef EMX_RSS_DEBUG
3390 	char rx_pkt[32];
3391 	int i;
3392 #endif
3393 
3394 	sysctl_ctx_init(&sc->sysctl_ctx);
3395 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3396 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3397 				device_get_nameunit(sc->dev),
3398 				CTLFLAG_RD, 0, "");
3399 	if (sc->sysctl_tree == NULL) {
3400 		device_printf(sc->dev, "can't add sysctl node\n");
3401 		return;
3402 	}
3403 
3404 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3405 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3406 			emx_sysctl_debug_info, "I", "Debug Information");
3407 
3408 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3409 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3410 			emx_sysctl_stats, "I", "Statistics");
3411 
3412 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3413 		       OID_AUTO, "rxd", CTLFLAG_RD,
3414 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3415 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3416 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3417 
3418 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3419 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3420 			sc, 0, emx_sysctl_int_throttle, "I",
3421 			"interrupt throttling rate");
3422 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3423 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3424 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3425 			"# segments per TX interrupt");
3426 
3427 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3428 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3429 		       &sc->rx_ring_cnt, 0, "RX ring count");
3430 
3431 #ifdef EMX_RSS_DEBUG
3432 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3433 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3434 		       0, "RSS debug level");
3435 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3436 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3437 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3438 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3439 				rx_pkt, CTLFLAG_RW,
3440 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3441 	}
3442 #endif
3443 }
3444 
3445 static int
3446 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3447 {
3448 	struct emx_softc *sc = (void *)arg1;
3449 	struct ifnet *ifp = &sc->arpcom.ac_if;
3450 	int error, throttle;
3451 
3452 	throttle = sc->int_throttle_ceil;
3453 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3454 	if (error || req->newptr == NULL)
3455 		return error;
3456 	if (throttle < 0 || throttle > 1000000000 / 256)
3457 		return EINVAL;
3458 
3459 	if (throttle) {
3460 		/*
3461 		 * Set the interrupt throttling rate in 256ns increments,
3462 		 * recalculate sysctl value assignment to get exact frequency.
3463 		 */
3464 		throttle = 1000000000 / 256 / throttle;
3465 
3466 		/* Upper 16bits of ITR is reserved and should be zero */
3467 		if (throttle & 0xffff0000)
3468 			return EINVAL;
3469 	}
3470 
3471 	ifnet_serialize_all(ifp);
3472 
3473 	if (throttle)
3474 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3475 	else
3476 		sc->int_throttle_ceil = 0;
3477 
3478 	if (ifp->if_flags & IFF_RUNNING)
3479 		emx_set_itr(sc, throttle);
3480 
3481 	ifnet_deserialize_all(ifp);
3482 
3483 	if (bootverbose) {
3484 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3485 			  sc->int_throttle_ceil);
3486 	}
3487 	return 0;
3488 }
3489 
3490 static int
3491 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3492 {
3493 	struct emx_softc *sc = (void *)arg1;
3494 	struct ifnet *ifp = &sc->arpcom.ac_if;
3495 	int error, segs;
3496 
3497 	segs = sc->tx_int_nsegs;
3498 	error = sysctl_handle_int(oidp, &segs, 0, req);
3499 	if (error || req->newptr == NULL)
3500 		return error;
3501 	if (segs <= 0)
3502 		return EINVAL;
3503 
3504 	ifnet_serialize_all(ifp);
3505 
3506 	/*
3507 	 * Don't allow int_tx_nsegs to become:
3508 	 * o  Less the oact_tx_desc
3509 	 * o  Too large that no TX desc will cause TX interrupt to
3510 	 *    be generated (OACTIVE will never recover)
3511 	 * o  Too small that will cause tx_dd[] overflow
3512 	 */
3513 	if (segs < sc->oact_tx_desc ||
3514 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3515 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3516 		error = EINVAL;
3517 	} else {
3518 		error = 0;
3519 		sc->tx_int_nsegs = segs;
3520 	}
3521 
3522 	ifnet_deserialize_all(ifp);
3523 
3524 	return error;
3525 }
3526 
3527 static int
3528 emx_dma_alloc(struct emx_softc *sc)
3529 {
3530 	int error, i;
3531 
3532 	/*
3533 	 * Create top level busdma tag
3534 	 */
3535 	error = bus_dma_tag_create(NULL, 1, 0,
3536 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3537 			NULL, NULL,
3538 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3539 			0, &sc->parent_dtag);
3540 	if (error) {
3541 		device_printf(sc->dev, "could not create top level DMA tag\n");
3542 		return error;
3543 	}
3544 
3545 	/*
3546 	 * Allocate transmit descriptors ring and buffers
3547 	 */
3548 	error = emx_create_tx_ring(sc);
3549 	if (error) {
3550 		device_printf(sc->dev, "Could not setup transmit structures\n");
3551 		return error;
3552 	}
3553 
3554 	/*
3555 	 * Allocate receive descriptors ring and buffers
3556 	 */
3557 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3558 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3559 		if (error) {
3560 			device_printf(sc->dev,
3561 			    "Could not setup receive structures\n");
3562 			return error;
3563 		}
3564 	}
3565 	return 0;
3566 }
3567 
3568 static void
3569 emx_dma_free(struct emx_softc *sc)
3570 {
3571 	int i;
3572 
3573 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3574 
3575 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3576 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3577 				    sc->rx_data[i].num_rx_desc);
3578 	}
3579 
3580 	/* Free top level busdma tag */
3581 	if (sc->parent_dtag != NULL)
3582 		bus_dma_tag_destroy(sc->parent_dtag);
3583 }
3584 
3585 static void
3586 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3587 {
3588 	struct emx_softc *sc = ifp->if_softc;
3589 
3590 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3591 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3592 }
3593 
3594 static void
3595 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3596 {
3597 	struct emx_softc *sc = ifp->if_softc;
3598 
3599 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3600 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3601 }
3602 
3603 static int
3604 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3605 {
3606 	struct emx_softc *sc = ifp->if_softc;
3607 
3608 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3609 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3610 }
3611 
3612 static void
3613 emx_serialize_skipmain(struct emx_softc *sc)
3614 {
3615 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3616 }
3617 
3618 static void
3619 emx_deserialize_skipmain(struct emx_softc *sc)
3620 {
3621 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3622 }
3623 
3624 #ifdef INVARIANTS
3625 
3626 static void
3627 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3628     boolean_t serialized)
3629 {
3630 	struct emx_softc *sc = ifp->if_softc;
3631 
3632 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3633 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3634 }
3635 
3636 #endif	/* INVARIANTS */
3637 
3638 #ifdef IFPOLL_ENABLE
3639 
3640 static void
3641 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3642 {
3643 	struct emx_softc *sc = ifp->if_softc;
3644 	uint32_t reg_icr;
3645 
3646 	ASSERT_SERIALIZED(&sc->main_serialize);
3647 
3648 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3649 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3650 		emx_serialize_skipmain(sc);
3651 
3652 		callout_stop(&sc->timer);
3653 		sc->hw.mac.get_link_status = 1;
3654 		emx_update_link_status(sc);
3655 		callout_reset(&sc->timer, hz, emx_timer, sc);
3656 
3657 		emx_deserialize_skipmain(sc);
3658 	}
3659 }
3660 
3661 static void
3662 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3663 {
3664 	struct emx_softc *sc = ifp->if_softc;
3665 
3666 	ASSERT_SERIALIZED(&sc->tx_serialize);
3667 
3668 	emx_txeof(sc);
3669 	if (!ifq_is_empty(&ifp->if_snd))
3670 		if_devstart(ifp);
3671 }
3672 
3673 static void
3674 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3675 {
3676 	struct emx_softc *sc = ifp->if_softc;
3677 	struct emx_rxdata *rdata = arg;
3678 
3679 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3680 
3681 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3682 }
3683 
3684 static void
3685 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3686 {
3687 	struct emx_softc *sc = ifp->if_softc;
3688 
3689 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3690 
3691 	if (info) {
3692 		int i;
3693 
3694 		info->ifpi_status.status_func = emx_qpoll_status;
3695 		info->ifpi_status.serializer = &sc->main_serialize;
3696 
3697 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3698 		info->ifpi_tx[0].arg = NULL;
3699 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3700 
3701 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3702 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3703 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3704 			info->ifpi_rx[i].serializer =
3705 				&sc->rx_data[i].rx_serialize;
3706 		}
3707 
3708 		if (ifp->if_flags & IFF_RUNNING)
3709 			emx_disable_intr(sc);
3710 	} else if (ifp->if_flags & IFF_RUNNING) {
3711 		emx_enable_intr(sc);
3712 	}
3713 }
3714 
3715 #endif	/* IFPOLL_ENABLE */
3716 
3717 static void
3718 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3719 {
3720 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3721 	if (sc->hw.mac.type == e1000_82574) {
3722 		int i;
3723 
3724 		/*
3725 		 * When using MSIX interrupts we need to
3726 		 * throttle using the EITR register
3727 		 */
3728 		for (i = 0; i < 4; ++i)
3729 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3730 	}
3731 }
3732 
3733 /*
3734  * Disable the L0s, 82574L Errata #20
3735  */
3736 static void
3737 emx_disable_aspm(struct emx_softc *sc)
3738 {
3739 	uint16_t link_cap, link_ctrl;
3740 	uint8_t pcie_ptr, reg;
3741 	device_t dev = sc->dev;
3742 
3743 	switch (sc->hw.mac.type) {
3744 	case e1000_82573:
3745 	case e1000_82574:
3746 		break;
3747 
3748 	default:
3749 		return;
3750 	}
3751 
3752 	pcie_ptr = pci_get_pciecap_ptr(dev);
3753 	if (pcie_ptr == 0)
3754 		return;
3755 
3756 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3757 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3758 		return;
3759 
3760 	if (bootverbose)
3761 		if_printf(&sc->arpcom.ac_if, "disable L0s\n");
3762 
3763 	reg = pcie_ptr + PCIER_LINKCTRL;
3764 	link_ctrl = pci_read_config(dev, reg, 2);
3765 	link_ctrl &= ~PCIEM_LNKCTL_ASPM_L0S;
3766 	pci_write_config(dev, reg, link_ctrl, 2);
3767 }
3768