xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 631c21f2)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/if_ringmap.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/ig_hal/e1000_dragonfly.h>
113 #include <dev/netif/emx/if_emx.h>
114 
115 #define DEBUG_HW 0
116 
117 #ifdef EMX_RSS_DEBUG
118 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
119 do { \
120 	if (sc->rss_debug >= lvl) \
121 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
122 } while (0)
123 #else	/* !EMX_RSS_DEBUG */
124 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
125 #endif	/* EMX_RSS_DEBUG */
126 
127 #define EMX_NAME	"Intel(R) PRO/1000 "
128 
129 #define EMX_DEVICE(id)	\
130 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
131 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
132 
133 static const struct emx_device {
134 	uint16_t	vid;
135 	uint16_t	did;
136 	const char	*desc;
137 } emx_devices[] = {
138 	EMX_DEVICE(82571EB_COPPER),
139 	EMX_DEVICE(82571EB_FIBER),
140 	EMX_DEVICE(82571EB_SERDES),
141 	EMX_DEVICE(82571EB_SERDES_DUAL),
142 	EMX_DEVICE(82571EB_SERDES_QUAD),
143 	EMX_DEVICE(82571EB_QUAD_COPPER),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
145 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
146 	EMX_DEVICE(82571EB_QUAD_FIBER),
147 	EMX_DEVICE(82571PT_QUAD_COPPER),
148 
149 	EMX_DEVICE(82572EI_COPPER),
150 	EMX_DEVICE(82572EI_FIBER),
151 	EMX_DEVICE(82572EI_SERDES),
152 	EMX_DEVICE(82572EI),
153 
154 	EMX_DEVICE(82573E),
155 	EMX_DEVICE(82573E_IAMT),
156 	EMX_DEVICE(82573L),
157 
158 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
160 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
161 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
162 
163 	EMX_DEVICE(82574L),
164 	EMX_DEVICE(82574LA),
165 
166 	EMX_DEVICE(PCH_LPT_I217_LM),
167 	EMX_DEVICE(PCH_LPT_I217_V),
168 	EMX_DEVICE(PCH_LPTLP_I218_LM),
169 	EMX_DEVICE(PCH_LPTLP_I218_V),
170 	EMX_DEVICE(PCH_I218_LM2),
171 	EMX_DEVICE(PCH_I218_V2),
172 	EMX_DEVICE(PCH_I218_LM3),
173 	EMX_DEVICE(PCH_I218_V3),
174 	EMX_DEVICE(PCH_SPT_I219_LM),
175 	EMX_DEVICE(PCH_SPT_I219_V),
176 	EMX_DEVICE(PCH_SPT_I219_LM2),
177 	EMX_DEVICE(PCH_SPT_I219_V2),
178 	EMX_DEVICE(PCH_LBG_I219_LM3),
179 	EMX_DEVICE(PCH_SPT_I219_LM4),
180 	EMX_DEVICE(PCH_SPT_I219_V4),
181 	EMX_DEVICE(PCH_SPT_I219_LM5),
182 	EMX_DEVICE(PCH_SPT_I219_V5),
183 	EMX_DEVICE(PCH_CNP_I219_LM6),
184 	EMX_DEVICE(PCH_CNP_I219_V6),
185 	EMX_DEVICE(PCH_CNP_I219_LM7),
186 	EMX_DEVICE(PCH_CNP_I219_V7),
187 	EMX_DEVICE(PCH_ICP_I219_LM8),
188 	EMX_DEVICE(PCH_ICP_I219_V8),
189 	EMX_DEVICE(PCH_ICP_I219_LM9),
190 	EMX_DEVICE(PCH_ICP_I219_V9),
191 	EMX_DEVICE(PCH_CMP_I219_LM10),
192 	EMX_DEVICE(PCH_CMP_I219_V10),
193 	EMX_DEVICE(PCH_CMP_I219_LM11),
194 	EMX_DEVICE(PCH_CMP_I219_V11),
195 	EMX_DEVICE(PCH_CMP_I219_LM12),
196 	EMX_DEVICE(PCH_CMP_I219_V12),
197 	EMX_DEVICE(PCH_TGP_I219_LM13),
198 	EMX_DEVICE(PCH_TGP_I219_V13),
199 	EMX_DEVICE(PCH_TGP_I219_LM14),
200 	EMX_DEVICE(PCH_TGP_I219_V14),
201 	EMX_DEVICE(PCH_TGP_I219_LM15),
202 	EMX_DEVICE(PCH_TGP_I219_V15),
203 	EMX_DEVICE(PCH_ADP_I219_LM16),
204 	EMX_DEVICE(PCH_ADP_I219_V16),
205 	EMX_DEVICE(PCH_ADP_I219_LM17),
206 	EMX_DEVICE(PCH_ADP_I219_V17),
207 	EMX_DEVICE(PCH_MTP_I219_LM18),
208 	EMX_DEVICE(PCH_MTP_I219_V18),
209 	EMX_DEVICE(PCH_MTP_I219_LM19),
210 	EMX_DEVICE(PCH_MTP_I219_V19),
211 
212 	/* required last entry */
213 	EMX_DEVICE_NULL
214 };
215 
216 static int	emx_probe(device_t);
217 static int	emx_attach(device_t);
218 static int	emx_detach(device_t);
219 static int	emx_shutdown(device_t);
220 static int	emx_suspend(device_t);
221 static int	emx_resume(device_t);
222 
223 static void	emx_init(void *);
224 static void	emx_stop(struct emx_softc *);
225 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
226 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
227 #ifdef IFPOLL_ENABLE
228 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
229 static void	emx_npoll_status(struct ifnet *);
230 static void	emx_npoll_tx(struct ifnet *, void *, int);
231 static void	emx_npoll_rx(struct ifnet *, void *, int);
232 #endif
233 static void	emx_watchdog(struct ifaltq_subque *);
234 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
235 static int	emx_media_change(struct ifnet *);
236 static void	emx_timer(void *);
237 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
238 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
239 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
240 #ifdef INVARIANTS
241 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
242 		    boolean_t);
243 #endif
244 
245 static void	emx_intr(void *);
246 static void	emx_intr_mask(void *);
247 static void	emx_intr_body(struct emx_softc *, boolean_t);
248 static void	emx_rxeof(struct emx_rxdata *, int);
249 static void	emx_txeof(struct emx_txdata *);
250 static void	emx_tx_collect(struct emx_txdata *, boolean_t);
251 static void	emx_txgc_timer(void *);
252 static void	emx_tx_purge(struct emx_softc *);
253 static void	emx_enable_intr(struct emx_softc *);
254 static void	emx_disable_intr(struct emx_softc *);
255 
256 static int	emx_dma_alloc(struct emx_softc *);
257 static void	emx_dma_free(struct emx_softc *);
258 static void	emx_init_tx_ring(struct emx_txdata *);
259 static int	emx_init_rx_ring(struct emx_rxdata *);
260 static void	emx_free_tx_ring(struct emx_txdata *);
261 static void	emx_free_rx_ring(struct emx_rxdata *);
262 static int	emx_create_tx_ring(struct emx_txdata *);
263 static int	emx_create_rx_ring(struct emx_rxdata *);
264 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
265 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
266 static int	emx_newbuf(struct emx_rxdata *, int, int);
267 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
268 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
269 		    uint32_t *, uint32_t *);
270 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
271 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
272 		    uint32_t *, uint32_t *);
273 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
274 
275 static int 	emx_is_valid_eaddr(const uint8_t *);
276 static int	emx_reset(struct emx_softc *);
277 static void	emx_setup_ifp(struct emx_softc *);
278 static void	emx_init_tx_unit(struct emx_softc *);
279 static void	emx_init_rx_unit(struct emx_softc *);
280 static void	emx_update_stats(struct emx_softc *);
281 static void	emx_set_promisc(struct emx_softc *);
282 static void	emx_disable_promisc(struct emx_softc *);
283 static void	emx_set_multi(struct emx_softc *);
284 static void	emx_update_link_status(struct emx_softc *);
285 static void	emx_smartspeed(struct emx_softc *);
286 static void	emx_set_itr(struct emx_softc *, uint32_t);
287 static void	emx_disable_aspm(struct emx_softc *);
288 static void	emx_flush_tx_ring(struct emx_softc *);
289 static void	emx_flush_rx_ring(struct emx_softc *);
290 static void	emx_flush_txrx_ring(struct emx_softc *);
291 
292 static void	emx_print_debug_info(struct emx_softc *);
293 static void	emx_print_nvm_info(struct emx_softc *);
294 static void	emx_print_hw_stats(struct emx_softc *);
295 
296 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
297 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
298 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
299 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
300 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
301 static void	emx_add_sysctl(struct emx_softc *);
302 
303 static void	emx_serialize_skipmain(struct emx_softc *);
304 static void	emx_deserialize_skipmain(struct emx_softc *);
305 
306 /* Management and WOL Support */
307 static void	emx_get_mgmt(struct emx_softc *);
308 static void	emx_rel_mgmt(struct emx_softc *);
309 static void	emx_get_hw_control(struct emx_softc *);
310 static void	emx_rel_hw_control(struct emx_softc *);
311 static void	emx_enable_wol(device_t);
312 
313 static device_method_t emx_methods[] = {
314 	/* Device interface */
315 	DEVMETHOD(device_probe,		emx_probe),
316 	DEVMETHOD(device_attach,	emx_attach),
317 	DEVMETHOD(device_detach,	emx_detach),
318 	DEVMETHOD(device_shutdown,	emx_shutdown),
319 	DEVMETHOD(device_suspend,	emx_suspend),
320 	DEVMETHOD(device_resume,	emx_resume),
321 	DEVMETHOD_END
322 };
323 
324 static driver_t emx_driver = {
325 	"emx",
326 	emx_methods,
327 	sizeof(struct emx_softc),
328 };
329 
330 static devclass_t emx_devclass;
331 
332 DECLARE_DUMMY_MODULE(if_emx);
333 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
334 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
335 
336 /*
337  * Tunables
338  */
339 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
340 static int	emx_rxd = EMX_DEFAULT_RXD;
341 static int	emx_txd = EMX_DEFAULT_TXD;
342 static int	emx_smart_pwr_down = 0;
343 static int	emx_rxr = 0;
344 static int	emx_txr = 1;
345 
346 /* Controls whether promiscuous also shows bad packets */
347 static int	emx_debug_sbp = 0;
348 
349 static int	emx_82573_workaround = 1;
350 static int	emx_msi_enable = 1;
351 
352 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
353 
354 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
355 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
356 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
357 TUNABLE_INT("hw.emx.txd", &emx_txd);
358 TUNABLE_INT("hw.emx.txr", &emx_txr);
359 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
360 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
361 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
362 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
363 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
364 
365 /* Global used in WOL setup with multiport cards */
366 static int	emx_global_quad_port_a = 0;
367 
368 /* Set this to one to display debug statistics */
369 static int	emx_display_debug_stats = 0;
370 
371 #if !defined(KTR_IF_EMX)
372 #define KTR_IF_EMX	KTR_ALL
373 #endif
374 KTR_INFO_MASTER(if_emx);
375 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
376 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
377 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
378 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
379 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
380 #define logif(name)	KTR_LOG(if_emx_ ## name)
381 
382 static __inline void
383 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
384 {
385 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
386 	/* DD bit must be cleared */
387 	rxd->rxd_staterr = 0;
388 }
389 
390 static __inline void
391 emx_free_txbuf(struct emx_txdata *tdata, struct emx_txbuf *tx_buffer)
392 {
393 
394 	KKASSERT(tx_buffer->m_head != NULL);
395 	KKASSERT(tdata->tx_nmbuf > 0);
396 	tdata->tx_nmbuf--;
397 
398 	bus_dmamap_unload(tdata->txtag, tx_buffer->map);
399 	m_freem(tx_buffer->m_head);
400 	tx_buffer->m_head = NULL;
401 }
402 
403 static __inline void
404 emx_tx_intr(struct emx_txdata *tdata)
405 {
406 
407 	emx_txeof(tdata);
408 	if (!ifsq_is_empty(tdata->ifsq))
409 		ifsq_devstart(tdata->ifsq);
410 }
411 
412 static __inline void
413 emx_try_txgc(struct emx_txdata *tdata, int16_t dec)
414 {
415 
416 	if (tdata->tx_running > 0) {
417 		tdata->tx_running -= dec;
418 		if (tdata->tx_running <= 0 && tdata->tx_nmbuf &&
419 		    tdata->num_tx_desc_avail < tdata->num_tx_desc &&
420 		    tdata->num_tx_desc_avail + tdata->tx_intr_nsegs >
421 		    tdata->num_tx_desc)
422 			emx_tx_collect(tdata, TRUE);
423 	}
424 }
425 
426 static void
427 emx_txgc_timer(void *xtdata)
428 {
429 	struct emx_txdata *tdata = xtdata;
430 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
431 
432 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
433 	    (IFF_RUNNING | IFF_UP))
434 		return;
435 
436 	if (!lwkt_serialize_try(&tdata->tx_serialize))
437 		goto done;
438 
439 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
440 	    (IFF_RUNNING | IFF_UP)) {
441 		lwkt_serialize_exit(&tdata->tx_serialize);
442 		return;
443 	}
444 	emx_try_txgc(tdata, EMX_TX_RUNNING_DEC);
445 
446 	lwkt_serialize_exit(&tdata->tx_serialize);
447 done:
448 	callout_reset(&tdata->tx_gc_timer, 1, emx_txgc_timer, tdata);
449 }
450 
451 static __inline void
452 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
453 {
454 	/* Ignore Checksum bit is set */
455 	if (staterr & E1000_RXD_STAT_IXSM)
456 		return;
457 
458 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
459 	    E1000_RXD_STAT_IPCS)
460 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
461 
462 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
463 	    E1000_RXD_STAT_TCPCS) {
464 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
465 					   CSUM_PSEUDO_HDR |
466 					   CSUM_FRAG_NOT_CHECKED;
467 		mp->m_pkthdr.csum_data = htons(0xffff);
468 	}
469 }
470 
471 static __inline struct pktinfo *
472 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
473 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
474 {
475 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
476 	case EMX_RXDMRQ_IPV4_TCP:
477 		pi->pi_netisr = NETISR_IP;
478 		pi->pi_flags = 0;
479 		pi->pi_l3proto = IPPROTO_TCP;
480 		break;
481 
482 	case EMX_RXDMRQ_IPV6_TCP:
483 		pi->pi_netisr = NETISR_IPV6;
484 		pi->pi_flags = 0;
485 		pi->pi_l3proto = IPPROTO_TCP;
486 		break;
487 
488 	case EMX_RXDMRQ_IPV4:
489 		if (staterr & E1000_RXD_STAT_IXSM)
490 			return NULL;
491 
492 		if ((staterr &
493 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
494 		    E1000_RXD_STAT_TCPCS) {
495 			pi->pi_netisr = NETISR_IP;
496 			pi->pi_flags = 0;
497 			pi->pi_l3proto = IPPROTO_UDP;
498 			break;
499 		}
500 		/* FALL THROUGH */
501 	default:
502 		return NULL;
503 	}
504 
505 	m_sethash(m, toeplitz_hash(hash));
506 	return pi;
507 }
508 
509 static int
510 emx_probe(device_t dev)
511 {
512 	const struct emx_device *d;
513 	uint16_t vid, did;
514 
515 	vid = pci_get_vendor(dev);
516 	did = pci_get_device(dev);
517 
518 	for (d = emx_devices; d->desc != NULL; ++d) {
519 		if (vid == d->vid && did == d->did) {
520 			device_set_desc(dev, d->desc);
521 			device_set_async_attach(dev, TRUE);
522 			return 0;
523 		}
524 	}
525 	return ENXIO;
526 }
527 
528 static int
529 emx_attach(device_t dev)
530 {
531 	struct emx_softc *sc = device_get_softc(dev);
532 	int error = 0, i, throttle, msi_enable;
533 	int tx_ring_max, ring_cnt;
534 	u_int intr_flags;
535 	uint16_t eeprom_data, device_id, apme_mask;
536 	driver_intr_t *intr_func;
537 	char flowctrl[IFM_ETH_FC_STRLEN];
538 
539 	/*
540 	 * Setup RX rings
541 	 */
542 	for (i = 0; i < EMX_NRX_RING; ++i) {
543 		sc->rx_data[i].sc = sc;
544 		sc->rx_data[i].idx = i;
545 	}
546 
547 	/*
548 	 * Setup TX ring
549 	 */
550 	for (i = 0; i < EMX_NTX_RING; ++i) {
551 		sc->tx_data[i].sc = sc;
552 		sc->tx_data[i].idx = i;
553 		callout_init_mp(&sc->tx_data[i].tx_gc_timer);
554 	}
555 
556 	/*
557 	 * Initialize serializers
558 	 */
559 	lwkt_serialize_init(&sc->main_serialize);
560 	for (i = 0; i < EMX_NTX_RING; ++i)
561 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
562 	for (i = 0; i < EMX_NRX_RING; ++i)
563 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
564 
565 	/*
566 	 * Initialize serializer array
567 	 */
568 	i = 0;
569 
570 	KKASSERT(i < EMX_NSERIALIZE);
571 	sc->serializes[i++] = &sc->main_serialize;
572 
573 	KKASSERT(i < EMX_NSERIALIZE);
574 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
575 	KKASSERT(i < EMX_NSERIALIZE);
576 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
577 
578 	KKASSERT(i < EMX_NSERIALIZE);
579 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
580 	KKASSERT(i < EMX_NSERIALIZE);
581 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
582 
583 	KKASSERT(i == EMX_NSERIALIZE);
584 
585 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
586 	    emx_media_change, emx_media_status);
587 	callout_init_mp(&sc->timer);
588 
589 	sc->dev = sc->osdep.dev = dev;
590 
591 	/*
592 	 * Determine hardware and mac type
593 	 */
594 	sc->hw.vendor_id = pci_get_vendor(dev);
595 	sc->hw.device_id = pci_get_device(dev);
596 	sc->hw.revision_id = pci_get_revid(dev);
597 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
598 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
599 
600 	if (e1000_set_mac_type(&sc->hw))
601 		return ENXIO;
602 
603 	/* Enable bus mastering */
604 	pci_enable_busmaster(dev);
605 
606 	/*
607 	 * Allocate IO memory
608 	 */
609 	sc->memory_rid = EMX_BAR_MEM;
610 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
611 					    &sc->memory_rid, RF_ACTIVE);
612 	if (sc->memory == NULL) {
613 		device_printf(dev, "Unable to allocate bus resource: memory\n");
614 		error = ENXIO;
615 		goto fail;
616 	}
617 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
618 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
619 
620 	/* XXX This is quite goofy, it is not actually used */
621 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
622 
623 	/*
624 	 * Don't enable MSI-X on 82574, see:
625 	 * 82574 specification update errata #15
626 	 *
627 	 * Don't enable MSI on 82571/82572, see:
628 	 * 82571/82572 specification update errata #63
629 	 */
630 	msi_enable = emx_msi_enable;
631 	if (msi_enable &&
632 	    (sc->hw.mac.type == e1000_82571 ||
633 	     sc->hw.mac.type == e1000_82572))
634 		msi_enable = 0;
635 again:
636 	/*
637 	 * Allocate interrupt
638 	 */
639 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
640 	    &sc->intr_rid, &intr_flags);
641 
642 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
643 		int unshared;
644 
645 		unshared = device_getenv_int(dev, "irq.unshared", 0);
646 		if (!unshared) {
647 			sc->flags |= EMX_FLAG_SHARED_INTR;
648 			if (bootverbose)
649 				device_printf(dev, "IRQ shared\n");
650 		} else {
651 			intr_flags &= ~RF_SHAREABLE;
652 			if (bootverbose)
653 				device_printf(dev, "IRQ unshared\n");
654 		}
655 	}
656 
657 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
658 	    intr_flags);
659 	if (sc->intr_res == NULL) {
660 		device_printf(dev, "Unable to allocate bus resource: %s\n",
661 		    sc->intr_type == PCI_INTR_TYPE_MSI ? "MSI" : "legacy intr");
662 		if (!msi_enable) {
663 			/* Retry with MSI. */
664 			msi_enable = 1;
665 			sc->flags &= ~EMX_FLAG_SHARED_INTR;
666 			goto again;
667 		}
668 		error = ENXIO;
669 		goto fail;
670 	}
671 
672 	/* Save PCI command register for Shared Code */
673 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
674 	sc->hw.back = &sc->osdep;
675 
676 	/*
677 	 * For I217/I218, we need to map the flash memory and this
678 	 * must happen after the MAC is identified.
679 	 */
680 	if (sc->hw.mac.type == e1000_pch_lpt) {
681 		sc->flash_rid = EMX_BAR_FLASH;
682 
683 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
684 		    &sc->flash_rid, RF_ACTIVE);
685 		if (sc->flash == NULL) {
686 			device_printf(dev, "Mapping of Flash failed\n");
687 			error = ENXIO;
688 			goto fail;
689 		}
690 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
691 		sc->osdep.flash_bus_space_handle =
692 		    rman_get_bushandle(sc->flash);
693 
694 		/*
695 		 * This is used in the shared code
696 		 * XXX this goof is actually not used.
697 		 */
698 		sc->hw.flash_address = (uint8_t *)sc->flash;
699 	} else if (sc->hw.mac.type >= e1000_pch_spt) {
700 		/*
701 		 * In the new SPT device flash is not a seperate BAR,
702 		 * rather it is also in BAR0, so use the same tag and
703 		 * an offset handle for the FLASH read/write macros
704 		 * in the shared code.
705 		 */
706 		sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
707 		sc->osdep.flash_bus_space_handle =
708 		    sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
709 	}
710 
711 	/* Do Shared Code initialization */
712 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
713 		device_printf(dev, "Setup of Shared code failed\n");
714 		error = ENXIO;
715 		goto fail;
716 	}
717 	e1000_get_bus_info(&sc->hw);
718 
719 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
720 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
721 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
722 
723 	/*
724 	 * Interrupt throttle rate
725 	 */
726 	throttle = device_getenv_int(dev, "int_throttle_ceil",
727 	    emx_int_throttle_ceil);
728 	if (throttle == 0) {
729 		sc->int_throttle_ceil = 0;
730 	} else {
731 		if (throttle < 0)
732 			throttle = EMX_DEFAULT_ITR;
733 
734 		/* Recalculate the tunable value to get the exact frequency. */
735 		throttle = 1000000000 / 256 / throttle;
736 
737 		/* Upper 16bits of ITR is reserved and should be zero */
738 		if (throttle & 0xffff0000)
739 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
740 
741 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
742 	}
743 
744 	e1000_init_script_state_82541(&sc->hw, TRUE);
745 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
746 
747 	/* Copper options */
748 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
749 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
750 		sc->hw.phy.disable_polarity_correction = FALSE;
751 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
752 	}
753 
754 	/* Set the frame limits assuming standard ethernet sized frames. */
755 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
756 
757 	/* This controls when hardware reports transmit completion status. */
758 	sc->hw.mac.report_tx_early = 1;
759 
760 	/*
761 	 * Calculate # of RX/TX rings
762 	 */
763 	ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
764 	sc->rx_rmap = if_ringmap_alloc(dev, ring_cnt, EMX_NRX_RING);
765 
766 	tx_ring_max = 1;
767 	if (sc->hw.mac.type == e1000_82571 ||
768 	    sc->hw.mac.type == e1000_82572 ||
769 	    sc->hw.mac.type == e1000_80003es2lan ||
770 	    sc->hw.mac.type == e1000_pch_lpt ||
771 	    sc->hw.mac.type == e1000_pch_spt ||
772 	    sc->hw.mac.type == e1000_pch_cnp ||
773 	    sc->hw.mac.type == e1000_82574)
774 		tx_ring_max = EMX_NTX_RING;
775 	ring_cnt = device_getenv_int(dev, "txr", emx_txr);
776 	sc->tx_rmap = if_ringmap_alloc(dev, ring_cnt, tx_ring_max);
777 
778 	if_ringmap_match(dev, sc->rx_rmap, sc->tx_rmap);
779 	sc->rx_ring_cnt = if_ringmap_count(sc->rx_rmap);
780 	sc->tx_ring_cnt = if_ringmap_count(sc->tx_rmap);
781 
782 	/* Allocate RX/TX rings' busdma(9) stuffs */
783 	error = emx_dma_alloc(sc);
784 	if (error)
785 		goto fail;
786 
787 	/* Allocate multicast array memory. */
788 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
789 	    M_DEVBUF, M_WAITOK);
790 
791 	/* Indicate SOL/IDER usage */
792 	if (e1000_check_reset_block(&sc->hw)) {
793 		device_printf(dev,
794 		    "PHY reset is blocked due to SOL/IDER session.\n");
795 	}
796 
797 	/* Disable EEE on I217/I218 */
798 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
799 
800 	/*
801 	 * Start from a known state, this is important in reading the
802 	 * nvm and mac from that.
803 	 */
804 	e1000_reset_hw(&sc->hw);
805 
806 	/* Make sure we have a good EEPROM before we read from it */
807 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
808 		/*
809 		 * Some PCI-E parts fail the first check due to
810 		 * the link being in sleep state, call it again,
811 		 * if it fails a second time its a real issue.
812 		 */
813 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
814 			device_printf(dev,
815 			    "The EEPROM Checksum Is Not Valid\n");
816 			error = EIO;
817 			goto fail;
818 		}
819 	}
820 
821 	/* Copy the permanent MAC address out of the EEPROM */
822 	if (e1000_read_mac_addr(&sc->hw) < 0) {
823 		device_printf(dev, "EEPROM read error while reading MAC"
824 		    " address\n");
825 		error = EIO;
826 		goto fail;
827 	}
828 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
829 		device_printf(dev, "Invalid MAC address\n");
830 		error = EIO;
831 		goto fail;
832 	}
833 
834 	/* Disable ULP support */
835 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
836 
837 	/* Determine if we have to control management hardware */
838 	if (e1000_enable_mng_pass_thru(&sc->hw))
839 		sc->flags |= EMX_FLAG_HAS_MGMT;
840 
841 	/*
842 	 * Setup Wake-on-Lan
843 	 */
844 	apme_mask = EMX_EEPROM_APME;
845 	eeprom_data = 0;
846 	switch (sc->hw.mac.type) {
847 	case e1000_82573:
848 		sc->flags |= EMX_FLAG_HAS_AMT;
849 		/* FALL THROUGH */
850 
851 	case e1000_82571:
852 	case e1000_82572:
853 	case e1000_80003es2lan:
854 		if (sc->hw.bus.func == 1) {
855 			e1000_read_nvm(&sc->hw,
856 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
857 		} else {
858 			e1000_read_nvm(&sc->hw,
859 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
860 		}
861 		break;
862 
863 	case e1000_pch_lpt:
864 	case e1000_pch_spt:
865 	case e1000_pch_cnp:
866 		apme_mask = E1000_WUC_APME;
867 		sc->flags |= EMX_FLAG_HAS_AMT;
868 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
869 		break;
870 
871 	default:
872 		e1000_read_nvm(&sc->hw,
873 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
874 		break;
875 	}
876 	if (eeprom_data & apme_mask)
877 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
878 
879 	/*
880          * We have the eeprom settings, now apply the special cases
881          * where the eeprom may be wrong or the board won't support
882          * wake on lan on a particular port
883 	 */
884 	device_id = pci_get_device(dev);
885         switch (device_id) {
886 	case E1000_DEV_ID_82571EB_FIBER:
887 		/*
888 		 * Wake events only supported on port A for dual fiber
889 		 * regardless of eeprom setting
890 		 */
891 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
892 		    E1000_STATUS_FUNC_1)
893 			sc->wol = 0;
894 		break;
895 
896 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
897 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
898 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
899                 /* if quad port sc, disable WoL on all but port A */
900 		if (emx_global_quad_port_a != 0)
901 			sc->wol = 0;
902 		/* Reset for multiple quad port adapters */
903 		if (++emx_global_quad_port_a == 4)
904 			emx_global_quad_port_a = 0;
905                 break;
906 	}
907 
908 	/* XXX disable wol */
909 	sc->wol = 0;
910 
911 	/* Initialized #of TX rings to use. */
912 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
913 
914 	/* Setup flow control. */
915 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
916 	    emx_flowctrl);
917 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
918 
919 	/* Setup OS specific network interface */
920 	emx_setup_ifp(sc);
921 
922 	/* Add sysctl tree, must after em_setup_ifp() */
923 	emx_add_sysctl(sc);
924 
925 	/* Reset the hardware */
926 	error = emx_reset(sc);
927 	if (error) {
928 		/*
929 		 * Some 82573 parts fail the first reset, call it again,
930 		 * if it fails a second time its a real issue.
931 		 */
932 		error = emx_reset(sc);
933 		if (error) {
934 			device_printf(dev, "Unable to reset the hardware\n");
935 			ether_ifdetach(&sc->arpcom.ac_if);
936 			goto fail;
937 		}
938 	}
939 
940 	/* Initialize statistics */
941 	emx_update_stats(sc);
942 
943 	sc->hw.mac.get_link_status = 1;
944 	emx_update_link_status(sc);
945 
946 	/* Non-AMT based hardware can now take control from firmware */
947 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
948 	    EMX_FLAG_HAS_MGMT)
949 		emx_get_hw_control(sc);
950 
951 	/*
952 	 * Missing Interrupt Following ICR read:
953 	 *
954 	 * 82571/82572 specification update errata #76
955 	 * 82573 specification update errata #31
956 	 * 82574 specification update errata #12
957 	 */
958 	intr_func = emx_intr;
959 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
960 	    (sc->hw.mac.type == e1000_82571 ||
961 	     sc->hw.mac.type == e1000_82572 ||
962 	     sc->hw.mac.type == e1000_82573 ||
963 	     sc->hw.mac.type == e1000_82574))
964 		intr_func = emx_intr_mask;
965 
966 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
967 			       &sc->intr_tag, &sc->main_serialize);
968 	if (error) {
969 		device_printf(dev, "Failed to register interrupt handler");
970 		ether_ifdetach(&sc->arpcom.ac_if);
971 		goto fail;
972 	}
973 	return (0);
974 fail:
975 	emx_detach(dev);
976 	return (error);
977 }
978 
979 static int
980 emx_detach(device_t dev)
981 {
982 	struct emx_softc *sc = device_get_softc(dev);
983 
984 	if (device_is_attached(dev)) {
985 		struct ifnet *ifp = &sc->arpcom.ac_if;
986 
987 		ifnet_serialize_all(ifp);
988 
989 		emx_stop(sc);
990 
991 		e1000_phy_hw_reset(&sc->hw);
992 
993 		emx_rel_mgmt(sc);
994 		emx_rel_hw_control(sc);
995 
996 		if (sc->wol) {
997 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
998 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
999 			emx_enable_wol(dev);
1000 		}
1001 
1002 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
1003 
1004 		ifnet_deserialize_all(ifp);
1005 
1006 		ether_ifdetach(ifp);
1007 	} else if (sc->memory != NULL) {
1008 		emx_rel_hw_control(sc);
1009 	}
1010 
1011 	ifmedia_removeall(&sc->media);
1012 	bus_generic_detach(dev);
1013 
1014 	if (sc->intr_res != NULL) {
1015 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
1016 				     sc->intr_res);
1017 	}
1018 
1019 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
1020 		pci_release_msi(dev);
1021 
1022 	if (sc->memory != NULL) {
1023 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
1024 				     sc->memory);
1025 	}
1026 
1027 	if (sc->flash != NULL) {
1028 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
1029 		    sc->flash);
1030 	}
1031 
1032 	emx_dma_free(sc);
1033 
1034 	if (sc->mta != NULL)
1035 		kfree(sc->mta, M_DEVBUF);
1036 
1037 	if (sc->rx_rmap != NULL)
1038 		if_ringmap_free(sc->rx_rmap);
1039 	if (sc->tx_rmap != NULL)
1040 		if_ringmap_free(sc->tx_rmap);
1041 
1042 	return (0);
1043 }
1044 
1045 static int
1046 emx_shutdown(device_t dev)
1047 {
1048 	return emx_suspend(dev);
1049 }
1050 
1051 static int
1052 emx_suspend(device_t dev)
1053 {
1054 	struct emx_softc *sc = device_get_softc(dev);
1055 	struct ifnet *ifp = &sc->arpcom.ac_if;
1056 
1057 	ifnet_serialize_all(ifp);
1058 
1059 	emx_stop(sc);
1060 
1061 	emx_rel_mgmt(sc);
1062 	emx_rel_hw_control(sc);
1063 
1064 	if (sc->wol) {
1065 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
1066 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
1067 		emx_enable_wol(dev);
1068 	}
1069 
1070 	ifnet_deserialize_all(ifp);
1071 
1072 	return bus_generic_suspend(dev);
1073 }
1074 
1075 static int
1076 emx_resume(device_t dev)
1077 {
1078 	struct emx_softc *sc = device_get_softc(dev);
1079 	struct ifnet *ifp = &sc->arpcom.ac_if;
1080 	int i;
1081 
1082 	ifnet_serialize_all(ifp);
1083 
1084 	emx_init(sc);
1085 	emx_get_mgmt(sc);
1086 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1087 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1088 
1089 	ifnet_deserialize_all(ifp);
1090 
1091 	return bus_generic_resume(dev);
1092 }
1093 
1094 static void
1095 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1096 {
1097 	struct emx_softc *sc = ifp->if_softc;
1098 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1099 	struct mbuf *m_head;
1100 	int idx = -1, nsegs = 0;
1101 
1102 	KKASSERT(tdata->ifsq == ifsq);
1103 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1104 
1105 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1106 		return;
1107 
1108 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1109 		ifsq_purge(ifsq);
1110 		return;
1111 	}
1112 
1113 	while (!ifsq_is_empty(ifsq)) {
1114 		/* Now do we at least have a minimal? */
1115 		if (EMX_IS_OACTIVE(tdata)) {
1116 			emx_tx_collect(tdata, FALSE);
1117 			if (EMX_IS_OACTIVE(tdata)) {
1118 				ifsq_set_oactive(ifsq);
1119 				break;
1120 			}
1121 		}
1122 
1123 		logif(pkt_txqueue);
1124 		m_head = ifsq_dequeue(ifsq);
1125 		if (m_head == NULL)
1126 			break;
1127 
1128 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1129 			IFNET_STAT_INC(ifp, oerrors, 1);
1130 			emx_tx_collect(tdata, FALSE);
1131 			continue;
1132 		}
1133 
1134 		/*
1135 		 * TX interrupt are aggressively aggregated, so increasing
1136 		 * opackets at TX interrupt time will make the opackets
1137 		 * statistics vastly inaccurate; we do the opackets increment
1138 		 * now.
1139 		 */
1140 		IFNET_STAT_INC(ifp, opackets, 1);
1141 
1142 		if (nsegs >= tdata->tx_wreg_nsegs) {
1143 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1144 			nsegs = 0;
1145 			idx = -1;
1146 		}
1147 
1148 		/* Send a copy of the frame to the BPF listener */
1149 		ETHER_BPF_MTAP(ifp, m_head);
1150 
1151 		/* Set timeout in case hardware has problems transmitting. */
1152 		ifsq_watchdog_set_count(&tdata->tx_watchdog, EMX_TX_TIMEOUT);
1153 	}
1154 	if (idx >= 0)
1155 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1156 	tdata->tx_running = EMX_TX_RUNNING;
1157 }
1158 
1159 static int
1160 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1161 {
1162 	struct emx_softc *sc = ifp->if_softc;
1163 	struct ifreq *ifr = (struct ifreq *)data;
1164 	uint16_t eeprom_data = 0;
1165 	int max_frame_size, mask, reinit;
1166 	int error = 0;
1167 
1168 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1169 
1170 	switch (command) {
1171 	case SIOCSIFMTU:
1172 		switch (sc->hw.mac.type) {
1173 		case e1000_82573:
1174 			/*
1175 			 * 82573 only supports jumbo frames
1176 			 * if ASPM is disabled.
1177 			 */
1178 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1179 				       &eeprom_data);
1180 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1181 				max_frame_size = ETHER_MAX_LEN;
1182 				break;
1183 			}
1184 			/* FALL THROUGH */
1185 
1186 		/* Limit Jumbo Frame size */
1187 		case e1000_82571:
1188 		case e1000_82572:
1189 		case e1000_82574:
1190 		case e1000_pch_lpt:
1191 		case e1000_pch_spt:
1192 		case e1000_pch_cnp:
1193 		case e1000_80003es2lan:
1194 			max_frame_size = 9234;
1195 			break;
1196 
1197 		default:
1198 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1199 			break;
1200 		}
1201 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1202 		    ETHER_CRC_LEN) {
1203 			error = EINVAL;
1204 			break;
1205 		}
1206 
1207 		ifp->if_mtu = ifr->ifr_mtu;
1208 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1209 		    ETHER_CRC_LEN;
1210 
1211 		if (ifp->if_flags & IFF_RUNNING)
1212 			emx_init(sc);
1213 		break;
1214 
1215 	case SIOCSIFFLAGS:
1216 		if (ifp->if_flags & IFF_UP) {
1217 			if ((ifp->if_flags & IFF_RUNNING)) {
1218 				if ((ifp->if_flags ^ sc->if_flags) &
1219 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1220 					emx_disable_promisc(sc);
1221 					emx_set_promisc(sc);
1222 				}
1223 			} else {
1224 				emx_init(sc);
1225 			}
1226 		} else if (ifp->if_flags & IFF_RUNNING) {
1227 			emx_stop(sc);
1228 		}
1229 		sc->if_flags = ifp->if_flags;
1230 		break;
1231 
1232 	case SIOCADDMULTI:
1233 	case SIOCDELMULTI:
1234 		if (ifp->if_flags & IFF_RUNNING) {
1235 			emx_disable_intr(sc);
1236 			emx_set_multi(sc);
1237 #ifdef IFPOLL_ENABLE
1238 			if (!(ifp->if_flags & IFF_NPOLLING))
1239 #endif
1240 				emx_enable_intr(sc);
1241 		}
1242 		break;
1243 
1244 	case SIOCSIFMEDIA:
1245 		/* Check SOL/IDER usage */
1246 		if (e1000_check_reset_block(&sc->hw)) {
1247 			device_printf(sc->dev, "Media change is"
1248 			    " blocked due to SOL/IDER session.\n");
1249 			break;
1250 		}
1251 		/* FALL THROUGH */
1252 
1253 	case SIOCGIFMEDIA:
1254 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1255 		break;
1256 
1257 	case SIOCSIFCAP:
1258 		reinit = 0;
1259 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1260 		if (mask & IFCAP_RXCSUM) {
1261 			ifp->if_capenable ^= IFCAP_RXCSUM;
1262 			reinit = 1;
1263 		}
1264 		if (mask & IFCAP_VLAN_HWTAGGING) {
1265 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1266 			reinit = 1;
1267 		}
1268 		if (mask & IFCAP_TXCSUM) {
1269 			ifp->if_capenable ^= IFCAP_TXCSUM;
1270 			if (ifp->if_capenable & IFCAP_TXCSUM)
1271 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1272 			else
1273 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1274 		}
1275 		if (mask & IFCAP_TSO) {
1276 			ifp->if_capenable ^= IFCAP_TSO;
1277 			if (ifp->if_capenable & IFCAP_TSO)
1278 				ifp->if_hwassist |= CSUM_TSO;
1279 			else
1280 				ifp->if_hwassist &= ~CSUM_TSO;
1281 		}
1282 		if (mask & IFCAP_RSS)
1283 			ifp->if_capenable ^= IFCAP_RSS;
1284 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1285 			emx_init(sc);
1286 		break;
1287 
1288 	default:
1289 		error = ether_ioctl(ifp, command, data);
1290 		break;
1291 	}
1292 	return (error);
1293 }
1294 
1295 static void
1296 emx_watchdog(struct ifaltq_subque *ifsq)
1297 {
1298 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1299 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1300 	struct emx_softc *sc = ifp->if_softc;
1301 	int i;
1302 
1303 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1304 
1305 	/*
1306 	 * The timer is set to 5 every time start queues a packet.
1307 	 * Then txeof keeps resetting it as long as it cleans at
1308 	 * least one descriptor.
1309 	 * Finally, anytime all descriptors are clean the timer is
1310 	 * set to 0.
1311 	 */
1312 
1313 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1314 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1315 		/*
1316 		 * If we reach here, all TX jobs are completed and
1317 		 * the TX engine should have been idled for some time.
1318 		 * We don't need to call ifsq_devstart_sched() here.
1319 		 */
1320 		ifsq_clr_oactive(ifsq);
1321 		ifsq_watchdog_set_count(&tdata->tx_watchdog, 0);
1322 		return;
1323 	}
1324 
1325 	/*
1326 	 * If we are in this routine because of pause frames, then
1327 	 * don't reset the hardware.
1328 	 */
1329 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1330 		ifsq_watchdog_set_count(&tdata->tx_watchdog, EMX_TX_TIMEOUT);
1331 		return;
1332 	}
1333 
1334 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1335 
1336 	IFNET_STAT_INC(ifp, oerrors, 1);
1337 
1338 	emx_init(sc);
1339 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1340 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1341 }
1342 
1343 static void
1344 emx_init(void *xsc)
1345 {
1346 	struct emx_softc *sc = xsc;
1347 	struct ifnet *ifp = &sc->arpcom.ac_if;
1348 	device_t dev = sc->dev;
1349 	boolean_t polling;
1350 	int i;
1351 
1352 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1353 
1354 	emx_stop(sc);
1355 
1356 	/* Get the latest mac address, User can use a LAA */
1357         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1358 
1359 	/* Put the address into the Receive Address Array */
1360 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1361 
1362 	/*
1363 	 * With the 82571 sc, RAR[0] may be overwritten
1364 	 * when the other port is reset, we make a duplicate
1365 	 * in RAR[14] for that eventuality, this assures
1366 	 * the interface continues to function.
1367 	 */
1368 	if (sc->hw.mac.type == e1000_82571) {
1369 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1370 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1371 		    E1000_RAR_ENTRIES - 1);
1372 	}
1373 
1374 	/* Initialize the hardware */
1375 	if (emx_reset(sc)) {
1376 		device_printf(dev, "Unable to reset the hardware\n");
1377 		/* XXX emx_stop()? */
1378 		return;
1379 	}
1380 	emx_update_link_status(sc);
1381 
1382 	/* Setup VLAN support, basic and offload if available */
1383 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1384 
1385 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1386 		uint32_t ctrl;
1387 
1388 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1389 		ctrl |= E1000_CTRL_VME;
1390 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1391 	}
1392 
1393 	/* Configure for OS presence */
1394 	emx_get_mgmt(sc);
1395 
1396 	polling = FALSE;
1397 #ifdef IFPOLL_ENABLE
1398 	if (ifp->if_flags & IFF_NPOLLING)
1399 		polling = TRUE;
1400 #endif
1401 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1402 	ifq_set_subq_divisor(&ifp->if_snd, sc->tx_ring_inuse);
1403 
1404 	/* Prepare transmit descriptors and buffers */
1405 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1406 		emx_init_tx_ring(&sc->tx_data[i]);
1407 	emx_init_tx_unit(sc);
1408 
1409 	/* Setup Multicast table */
1410 	emx_set_multi(sc);
1411 
1412 	/* Prepare receive descriptors and buffers */
1413 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1414 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1415 			device_printf(dev,
1416 			    "Could not setup receive structures\n");
1417 			emx_stop(sc);
1418 			return;
1419 		}
1420 	}
1421 	emx_init_rx_unit(sc);
1422 
1423 	/* Don't lose promiscuous settings */
1424 	emx_set_promisc(sc);
1425 
1426 	/* Reset hardware counters */
1427 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1428 
1429 	/* MSI/X configuration for 82574 */
1430 	if (sc->hw.mac.type == e1000_82574) {
1431 		int tmp;
1432 
1433 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1434 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1435 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1436 		/*
1437 		 * XXX MSIX
1438 		 * Set the IVAR - interrupt vector routing.
1439 		 * Each nibble represents a vector, high bit
1440 		 * is enable, other 3 bits are the MSIX table
1441 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1442 		 * Link (other) to 2, hence the magic number.
1443 		 */
1444 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1445 	}
1446 
1447 	/*
1448 	 * Only enable interrupts if we are not polling, make sure
1449 	 * they are off otherwise.
1450 	 */
1451 	if (polling)
1452 		emx_disable_intr(sc);
1453 	else
1454 		emx_enable_intr(sc);
1455 
1456 	/* AMT based hardware can now take control from firmware */
1457 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1458 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1459 		emx_get_hw_control(sc);
1460 
1461 	ifp->if_flags |= IFF_RUNNING;
1462 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1463 		struct emx_txdata *tdata = &sc->tx_data[i];
1464 
1465 		ifsq_clr_oactive(tdata->ifsq);
1466 		ifsq_watchdog_start(&tdata->tx_watchdog);
1467 		if (!polling) {
1468 			callout_reset_bycpu(&tdata->tx_gc_timer, 1,
1469 			    emx_txgc_timer, tdata, ifsq_get_cpuid(tdata->ifsq));
1470 		}
1471 	}
1472 	callout_reset(&sc->timer, hz, emx_timer, sc);
1473 }
1474 
1475 static void
1476 emx_intr(void *xsc)
1477 {
1478 	emx_intr_body(xsc, TRUE);
1479 }
1480 
1481 static void
1482 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1483 {
1484 	struct ifnet *ifp = &sc->arpcom.ac_if;
1485 	uint32_t reg_icr;
1486 
1487 	logif(intr_beg);
1488 	ASSERT_SERIALIZED(&sc->main_serialize);
1489 
1490 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1491 
1492 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1493 		logif(intr_end);
1494 		return;
1495 	}
1496 
1497 	/*
1498 	 * XXX: some laptops trigger several spurious interrupts
1499 	 * on emx(4) when in the resume cycle. The ICR register
1500 	 * reports all-ones value in this case. Processing such
1501 	 * interrupts would lead to a freeze. I don't know why.
1502 	 */
1503 	if (reg_icr == 0xffffffff) {
1504 		logif(intr_end);
1505 		return;
1506 	}
1507 
1508 	if (ifp->if_flags & IFF_RUNNING) {
1509 		if (reg_icr &
1510 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1511 			int i;
1512 
1513 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1514 				lwkt_serialize_enter(
1515 				&sc->rx_data[i].rx_serialize);
1516 				emx_rxeof(&sc->rx_data[i], -1);
1517 				lwkt_serialize_exit(
1518 				&sc->rx_data[i].rx_serialize);
1519 			}
1520 		}
1521 		if (reg_icr & E1000_ICR_TXDW) {
1522 			struct emx_txdata *tdata = &sc->tx_data[0];
1523 
1524 			lwkt_serialize_enter(&tdata->tx_serialize);
1525 			emx_tx_intr(tdata);
1526 			lwkt_serialize_exit(&tdata->tx_serialize);
1527 		}
1528 	}
1529 
1530 	/* Link status change */
1531 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1532 		emx_serialize_skipmain(sc);
1533 
1534 		callout_stop(&sc->timer);
1535 		sc->hw.mac.get_link_status = 1;
1536 		emx_update_link_status(sc);
1537 
1538 		/* Deal with TX cruft when link lost */
1539 		emx_tx_purge(sc);
1540 
1541 		callout_reset(&sc->timer, hz, emx_timer, sc);
1542 
1543 		emx_deserialize_skipmain(sc);
1544 	}
1545 
1546 	if (reg_icr & E1000_ICR_RXO)
1547 		sc->rx_overruns++;
1548 
1549 	logif(intr_end);
1550 }
1551 
1552 static void
1553 emx_intr_mask(void *xsc)
1554 {
1555 	struct emx_softc *sc = xsc;
1556 
1557 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1558 	/*
1559 	 * NOTE:
1560 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1561 	 * so don't check it.
1562 	 */
1563 	emx_intr_body(sc, FALSE);
1564 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1565 }
1566 
1567 static void
1568 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1569 {
1570 	struct emx_softc *sc = ifp->if_softc;
1571 
1572 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1573 
1574 	emx_update_link_status(sc);
1575 
1576 	ifmr->ifm_status = IFM_AVALID;
1577 	ifmr->ifm_active = IFM_ETHER;
1578 
1579 	if (!sc->link_active) {
1580 		if (sc->hw.mac.autoneg)
1581 			ifmr->ifm_active |= IFM_NONE;
1582 		else
1583 			ifmr->ifm_active |= sc->media.ifm_media;
1584 		return;
1585 	}
1586 
1587 	ifmr->ifm_status |= IFM_ACTIVE;
1588 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1589 		ifmr->ifm_active |= sc->ifm_flowctrl;
1590 
1591 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1592 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1593 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1594 	} else {
1595 		switch (sc->link_speed) {
1596 		case 10:
1597 			ifmr->ifm_active |= IFM_10_T;
1598 			break;
1599 		case 100:
1600 			ifmr->ifm_active |= IFM_100_TX;
1601 			break;
1602 
1603 		case 1000:
1604 			ifmr->ifm_active |= IFM_1000_T;
1605 			break;
1606 		}
1607 		if (sc->link_duplex == FULL_DUPLEX)
1608 			ifmr->ifm_active |= IFM_FDX;
1609 		else
1610 			ifmr->ifm_active |= IFM_HDX;
1611 	}
1612 	if (ifmr->ifm_active & IFM_FDX)
1613 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1614 }
1615 
1616 static int
1617 emx_media_change(struct ifnet *ifp)
1618 {
1619 	struct emx_softc *sc = ifp->if_softc;
1620 	struct ifmedia *ifm = &sc->media;
1621 
1622 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1623 
1624 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1625 		return (EINVAL);
1626 
1627 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1628 	case IFM_AUTO:
1629 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1630 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1631 		break;
1632 
1633 	case IFM_1000_SX:
1634 	case IFM_1000_T:
1635 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1636 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1637 		break;
1638 
1639 	case IFM_100_TX:
1640 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1641 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1642 		} else {
1643 			if (IFM_OPTIONS(ifm->ifm_media) &
1644 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1645 				if (bootverbose) {
1646 					if_printf(ifp, "Flow control is not "
1647 					    "allowed for half-duplex\n");
1648 				}
1649 				return EINVAL;
1650 			}
1651 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1652 		}
1653 		sc->hw.mac.autoneg = FALSE;
1654 		sc->hw.phy.autoneg_advertised = 0;
1655 		break;
1656 
1657 	case IFM_10_T:
1658 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1659 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1660 		} else {
1661 			if (IFM_OPTIONS(ifm->ifm_media) &
1662 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1663 				if (bootverbose) {
1664 					if_printf(ifp, "Flow control is not "
1665 					    "allowed for half-duplex\n");
1666 				}
1667 				return EINVAL;
1668 			}
1669 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1670 		}
1671 		sc->hw.mac.autoneg = FALSE;
1672 		sc->hw.phy.autoneg_advertised = 0;
1673 		break;
1674 
1675 	default:
1676 		if (bootverbose) {
1677 			if_printf(ifp, "Unsupported media type %d\n",
1678 			    IFM_SUBTYPE(ifm->ifm_media));
1679 		}
1680 		return EINVAL;
1681 	}
1682 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1683 
1684 	if (ifp->if_flags & IFF_RUNNING)
1685 		emx_init(sc);
1686 
1687 	return (0);
1688 }
1689 
1690 static int
1691 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1692     int *segs_used, int *idx)
1693 {
1694 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1695 	bus_dmamap_t map;
1696 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1697 	struct e1000_tx_desc *ctxd = NULL;
1698 	struct mbuf *m_head = *m_headp;
1699 	uint32_t txd_upper, txd_lower, cmd = 0;
1700 	int maxsegs, nsegs, i, j, first, last = 0, error;
1701 
1702 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1703 		error = emx_tso_pullup(tdata, m_headp);
1704 		if (error)
1705 			return error;
1706 		m_head = *m_headp;
1707 	}
1708 
1709 	txd_upper = txd_lower = 0;
1710 
1711 	/*
1712 	 * Capture the first descriptor index, this descriptor
1713 	 * will have the index of the EOP which is the only one
1714 	 * that now gets a DONE bit writeback.
1715 	 */
1716 	first = tdata->next_avail_tx_desc;
1717 	tx_buffer = &tdata->tx_buf[first];
1718 	tx_buffer_mapped = tx_buffer;
1719 	map = tx_buffer->map;
1720 
1721 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1722 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1723 	if (maxsegs > EMX_MAX_SCATTER)
1724 		maxsegs = EMX_MAX_SCATTER;
1725 
1726 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1727 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1728 	if (error) {
1729 		m_freem(*m_headp);
1730 		*m_headp = NULL;
1731 		return error;
1732 	}
1733         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1734 
1735 	m_head = *m_headp;
1736 	tdata->tx_nsegs += nsegs;
1737 	*segs_used += nsegs;
1738 
1739 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1740 		/* TSO will consume one TX desc */
1741 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1742 		tdata->tx_nsegs += i;
1743 		*segs_used += i;
1744 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1745 		/* TX csum offloading will consume one TX desc */
1746 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1747 		tdata->tx_nsegs += i;
1748 		*segs_used += i;
1749 	}
1750 
1751         /* Handle VLAN tag */
1752 	if (m_head->m_flags & M_VLANTAG) {
1753 		/* Set the vlan id. */
1754 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1755 		/* Tell hardware to add tag */
1756 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1757 	}
1758 
1759 	i = tdata->next_avail_tx_desc;
1760 
1761 	/* Set up our transmit descriptors */
1762 	for (j = 0; j < nsegs; j++) {
1763 		tx_buffer = &tdata->tx_buf[i];
1764 		ctxd = &tdata->tx_desc_base[i];
1765 
1766 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1767 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1768 					   txd_lower | segs[j].ds_len);
1769 		ctxd->upper.data = htole32(txd_upper);
1770 
1771 		last = i;
1772 		if (++i == tdata->num_tx_desc)
1773 			i = 0;
1774 	}
1775 
1776 	tdata->next_avail_tx_desc = i;
1777 
1778 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1779 	tdata->num_tx_desc_avail -= nsegs;
1780 	tdata->tx_nmbuf++;
1781 
1782 	tx_buffer->m_head = m_head;
1783 	tx_buffer_mapped->map = tx_buffer->map;
1784 	tx_buffer->map = map;
1785 
1786 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1787 		tdata->tx_nsegs = 0;
1788 
1789 		/*
1790 		 * Report Status (RS) is turned on
1791 		 * every tx_intr_nsegs descriptors.
1792 		 */
1793 		cmd = E1000_TXD_CMD_RS;
1794 
1795 		/*
1796 		 * Keep track of the descriptor, which will
1797 		 * be written back by hardware.
1798 		 */
1799 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1800 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1801 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1802 	}
1803 
1804 	/*
1805 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1806 	 */
1807 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1808 
1809 	/*
1810 	 * Defer TDT updating, until enough descriptors are setup
1811 	 */
1812 	*idx = i;
1813 
1814 #ifdef EMX_TSS_DEBUG
1815 	tdata->tx_pkts++;
1816 #endif
1817 
1818 	return (0);
1819 }
1820 
1821 static void
1822 emx_set_promisc(struct emx_softc *sc)
1823 {
1824 	struct ifnet *ifp = &sc->arpcom.ac_if;
1825 	uint32_t reg_rctl;
1826 
1827 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1828 
1829 	if (ifp->if_flags & IFF_PROMISC) {
1830 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1831 		/* Turn this on if you want to see bad packets */
1832 		if (emx_debug_sbp)
1833 			reg_rctl |= E1000_RCTL_SBP;
1834 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1835 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1836 		reg_rctl |= E1000_RCTL_MPE;
1837 		reg_rctl &= ~E1000_RCTL_UPE;
1838 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1839 	}
1840 }
1841 
1842 static void
1843 emx_disable_promisc(struct emx_softc *sc)
1844 {
1845 	struct ifnet *ifp = &sc->arpcom.ac_if;
1846 	uint32_t reg_rctl;
1847 	int mcnt = 0;
1848 
1849 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1850 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1851 
1852 	if (ifp->if_flags & IFF_ALLMULTI) {
1853 		mcnt = EMX_MCAST_ADDR_MAX;
1854 	} else {
1855 		const struct ifmultiaddr *ifma;
1856 
1857 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1858 			if (ifma->ifma_addr->sa_family != AF_LINK)
1859 				continue;
1860 			if (mcnt == EMX_MCAST_ADDR_MAX)
1861 				break;
1862 			mcnt++;
1863 		}
1864 	}
1865 	/* Don't disable if in MAX groups */
1866 	if (mcnt < EMX_MCAST_ADDR_MAX)
1867 		reg_rctl &= ~E1000_RCTL_MPE;
1868 
1869 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1870 }
1871 
1872 static void
1873 emx_set_multi(struct emx_softc *sc)
1874 {
1875 	struct ifnet *ifp = &sc->arpcom.ac_if;
1876 	struct ifmultiaddr *ifma;
1877 	uint32_t reg_rctl = 0;
1878 	uint8_t *mta;
1879 	int mcnt = 0;
1880 
1881 	mta = sc->mta;
1882 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1883 
1884 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1885 		if (ifma->ifma_addr->sa_family != AF_LINK)
1886 			continue;
1887 
1888 		if (mcnt == EMX_MCAST_ADDR_MAX)
1889 			break;
1890 
1891 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1892 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1893 		mcnt++;
1894 	}
1895 
1896 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1897 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1898 		reg_rctl |= E1000_RCTL_MPE;
1899 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1900 	} else {
1901 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1902 	}
1903 }
1904 
1905 /*
1906  * This routine checks for link status and updates statistics.
1907  */
1908 static void
1909 emx_timer(void *xsc)
1910 {
1911 	struct emx_softc *sc = xsc;
1912 	struct ifnet *ifp = &sc->arpcom.ac_if;
1913 
1914 	lwkt_serialize_enter(&sc->main_serialize);
1915 
1916 	emx_update_link_status(sc);
1917 	emx_update_stats(sc);
1918 
1919 	/* Reset LAA into RAR[0] on 82571 */
1920 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1921 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1922 
1923 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1924 		emx_print_hw_stats(sc);
1925 
1926 	emx_smartspeed(sc);
1927 
1928 	callout_reset(&sc->timer, hz, emx_timer, sc);
1929 
1930 	lwkt_serialize_exit(&sc->main_serialize);
1931 }
1932 
1933 static void
1934 emx_update_link_status(struct emx_softc *sc)
1935 {
1936 	struct e1000_hw *hw = &sc->hw;
1937 	struct ifnet *ifp = &sc->arpcom.ac_if;
1938 	device_t dev = sc->dev;
1939 	uint32_t link_check = 0;
1940 
1941 	/* Get the cached link value or read phy for real */
1942 	switch (hw->phy.media_type) {
1943 	case e1000_media_type_copper:
1944 		if (hw->mac.get_link_status) {
1945 			if (hw->mac.type >= e1000_pch_spt)
1946 				msec_delay(50);
1947 			/* Do the work to read phy */
1948 			e1000_check_for_link(hw);
1949 			link_check = !hw->mac.get_link_status;
1950 			if (link_check) /* ESB2 fix */
1951 				e1000_cfg_on_link_up(hw);
1952 		} else {
1953 			link_check = TRUE;
1954 		}
1955 		break;
1956 
1957 	case e1000_media_type_fiber:
1958 		e1000_check_for_link(hw);
1959 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1960 		break;
1961 
1962 	case e1000_media_type_internal_serdes:
1963 		e1000_check_for_link(hw);
1964 		link_check = sc->hw.mac.serdes_has_link;
1965 		break;
1966 
1967 	case e1000_media_type_unknown:
1968 	default:
1969 		break;
1970 	}
1971 
1972 	/* Now check for a transition */
1973 	if (link_check && sc->link_active == 0) {
1974 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1975 		    &sc->link_duplex);
1976 
1977 		/*
1978 		 * Check if we should enable/disable SPEED_MODE bit on
1979 		 * 82571EB/82572EI
1980 		 */
1981 		if (sc->link_speed != SPEED_1000 &&
1982 		    (hw->mac.type == e1000_82571 ||
1983 		     hw->mac.type == e1000_82572)) {
1984 			int tarc0;
1985 
1986 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1987 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1988 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1989 		}
1990 		if (bootverbose) {
1991 			char flowctrl[IFM_ETH_FC_STRLEN];
1992 
1993 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1994 			    sizeof(flowctrl));
1995 			device_printf(dev, "Link is up %d Mbps %s, "
1996 			    "Flow control: %s\n",
1997 			    sc->link_speed,
1998 			    (sc->link_duplex == FULL_DUPLEX) ?
1999 			    "Full Duplex" : "Half Duplex",
2000 			    flowctrl);
2001 		}
2002 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2003 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
2004 		sc->link_active = 1;
2005 		sc->smartspeed = 0;
2006 		ifp->if_baudrate = sc->link_speed * 1000000;
2007 		ifp->if_link_state = LINK_STATE_UP;
2008 		if_link_state_change(ifp);
2009 	} else if (!link_check && sc->link_active == 1) {
2010 		ifp->if_baudrate = sc->link_speed = 0;
2011 		sc->link_duplex = 0;
2012 		if (bootverbose)
2013 			device_printf(dev, "Link is Down\n");
2014 		sc->link_active = 0;
2015 		ifp->if_link_state = LINK_STATE_DOWN;
2016 		if_link_state_change(ifp);
2017 	}
2018 }
2019 
2020 static void
2021 emx_stop(struct emx_softc *sc)
2022 {
2023 	struct ifnet *ifp = &sc->arpcom.ac_if;
2024 	int i;
2025 
2026 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2027 
2028 	emx_disable_intr(sc);
2029 
2030 	callout_stop(&sc->timer);
2031 
2032 	ifp->if_flags &= ~IFF_RUNNING;
2033 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2034 		struct emx_txdata *tdata = &sc->tx_data[i];
2035 
2036 		ifsq_clr_oactive(tdata->ifsq);
2037 		ifsq_watchdog_stop(&tdata->tx_watchdog);
2038 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
2039 
2040 		tdata->tx_running = 0;
2041 		callout_stop(&tdata->tx_gc_timer);
2042 	}
2043 
2044 	/* I219 needs some special flushing to avoid hangs */
2045 	if (sc->hw.mac.type >= e1000_pch_spt)
2046 		emx_flush_txrx_ring(sc);
2047 
2048 	/*
2049 	 * Disable multiple receive queues.
2050 	 *
2051 	 * NOTE:
2052 	 * We should disable multiple receive queues before
2053 	 * resetting the hardware.
2054 	 */
2055 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
2056 
2057 	e1000_reset_hw(&sc->hw);
2058 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2059 
2060 	for (i = 0; i < sc->tx_ring_cnt; ++i)
2061 		emx_free_tx_ring(&sc->tx_data[i]);
2062 	for (i = 0; i < sc->rx_ring_cnt; ++i)
2063 		emx_free_rx_ring(&sc->rx_data[i]);
2064 }
2065 
2066 static int
2067 emx_reset(struct emx_softc *sc)
2068 {
2069 	device_t dev = sc->dev;
2070 	uint16_t rx_buffer_size;
2071 	uint32_t pba;
2072 
2073 	/* Set up smart power down as default off on newer adapters. */
2074 	if (!emx_smart_pwr_down &&
2075 	    (sc->hw.mac.type == e1000_82571 ||
2076 	     sc->hw.mac.type == e1000_82572)) {
2077 		uint16_t phy_tmp = 0;
2078 
2079 		/* Speed up time to link by disabling smart power down. */
2080 		e1000_read_phy_reg(&sc->hw,
2081 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2082 		phy_tmp &= ~IGP02E1000_PM_SPD;
2083 		e1000_write_phy_reg(&sc->hw,
2084 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2085 	}
2086 
2087 	/*
2088 	 * Packet Buffer Allocation (PBA)
2089 	 * Writing PBA sets the receive portion of the buffer
2090 	 * the remainder is used for the transmit buffer.
2091 	 */
2092 	switch (sc->hw.mac.type) {
2093 	/* Total Packet Buffer on these is 48K */
2094 	case e1000_82571:
2095 	case e1000_82572:
2096 	case e1000_80003es2lan:
2097 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2098 		break;
2099 
2100 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2101 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2102 		break;
2103 
2104 	case e1000_82574:
2105 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2106 		break;
2107 
2108 	case e1000_pch_lpt:
2109 	case e1000_pch_spt:
2110 	case e1000_pch_cnp:
2111  		pba = E1000_PBA_26K;
2112  		break;
2113 
2114 	default:
2115 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2116 		if (sc->hw.mac.max_frame_size > 8192)
2117 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2118 		else
2119 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2120 	}
2121 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2122 
2123 	/*
2124 	 * These parameters control the automatic generation (Tx) and
2125 	 * response (Rx) to Ethernet PAUSE frames.
2126 	 * - High water mark should allow for at least two frames to be
2127 	 *   received after sending an XOFF.
2128 	 * - Low water mark works best when it is very near the high water mark.
2129 	 *   This allows the receiver to restart by sending XON when it has
2130 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2131 	 *   restart after one full frame is pulled from the buffer. There
2132 	 *   could be several smaller frames in the buffer and if so they will
2133 	 *   not trigger the XON until their total number reduces the buffer
2134 	 *   by 1500.
2135 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2136 	 */
2137 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2138 
2139 	sc->hw.fc.high_water = rx_buffer_size -
2140 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2141 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2142 
2143 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2144 	sc->hw.fc.send_xon = TRUE;
2145 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2146 
2147 	/*
2148 	 * Device specific overrides/settings
2149 	 */
2150 	if (sc->hw.mac.type == e1000_pch_lpt ||
2151 	    sc->hw.mac.type == e1000_pch_spt ||
2152 	    sc->hw.mac.type == e1000_pch_cnp) {
2153 		sc->hw.fc.high_water = 0x5C20;
2154 		sc->hw.fc.low_water = 0x5048;
2155 		sc->hw.fc.pause_time = 0x0650;
2156 		sc->hw.fc.refresh_time = 0x0400;
2157 		/* Jumbos need adjusted PBA */
2158 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2159 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2160 		else
2161 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2162 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2163 		sc->hw.fc.pause_time = 0xFFFF;
2164 	}
2165 
2166 	/* I219 needs some special flushing to avoid hangs */
2167 	if (sc->hw.mac.type >= e1000_pch_spt)
2168 		emx_flush_txrx_ring(sc);
2169 
2170 	/* Issue a global reset */
2171 	e1000_reset_hw(&sc->hw);
2172 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2173 	emx_disable_aspm(sc);
2174 
2175 	if (e1000_init_hw(&sc->hw) < 0) {
2176 		device_printf(dev, "Hardware Initialization Failed\n");
2177 		return (EIO);
2178 	}
2179 
2180 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2181 	e1000_get_phy_info(&sc->hw);
2182 	e1000_check_for_link(&sc->hw);
2183 
2184 	return (0);
2185 }
2186 
2187 static void
2188 emx_setup_ifp(struct emx_softc *sc)
2189 {
2190 	struct ifnet *ifp = &sc->arpcom.ac_if;
2191 	int i;
2192 
2193 	if_initname(ifp, device_get_name(sc->dev),
2194 		    device_get_unit(sc->dev));
2195 	ifp->if_softc = sc;
2196 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2197 	ifp->if_init =  emx_init;
2198 	ifp->if_ioctl = emx_ioctl;
2199 	ifp->if_start = emx_start;
2200 #ifdef IFPOLL_ENABLE
2201 	ifp->if_npoll = emx_npoll;
2202 #endif
2203 	ifp->if_serialize = emx_serialize;
2204 	ifp->if_deserialize = emx_deserialize;
2205 	ifp->if_tryserialize = emx_tryserialize;
2206 #ifdef INVARIANTS
2207 	ifp->if_serialize_assert = emx_serialize_assert;
2208 #endif
2209 
2210 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2211 
2212 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2213 	ifq_set_ready(&ifp->if_snd);
2214 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2215 
2216 	ifp->if_mapsubq = ifq_mapsubq_modulo;
2217 	ifq_set_subq_divisor(&ifp->if_snd, 1);
2218 
2219 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2220 
2221 	ifp->if_capabilities = IFCAP_HWCSUM |
2222 			       IFCAP_VLAN_HWTAGGING |
2223 			       IFCAP_VLAN_MTU |
2224 			       IFCAP_TSO;
2225 	if (sc->rx_ring_cnt > 1)
2226 		ifp->if_capabilities |= IFCAP_RSS;
2227 	ifp->if_capenable = ifp->if_capabilities;
2228 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2229 
2230 	/*
2231 	 * Tell the upper layer(s) we support long frames.
2232 	 */
2233 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2234 
2235 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2236 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2237 		struct emx_txdata *tdata = &sc->tx_data[i];
2238 
2239 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2240 		ifsq_set_priv(ifsq, tdata);
2241 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2242 		tdata->ifsq = ifsq;
2243 
2244 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog, 0);
2245 	}
2246 
2247 	/*
2248 	 * Specify the media types supported by this sc and register
2249 	 * callbacks to update media and link information
2250 	 */
2251 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2252 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2253 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2254 			    0, NULL);
2255 	} else {
2256 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2257 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2258 			    0, NULL);
2259 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2260 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2261 			    0, NULL);
2262 		if (sc->hw.phy.type != e1000_phy_ife) {
2263 			ifmedia_add(&sc->media,
2264 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2265 		}
2266 	}
2267 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2268 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2269 }
2270 
2271 /*
2272  * Workaround for SmartSpeed on 82541 and 82547 controllers
2273  */
2274 static void
2275 emx_smartspeed(struct emx_softc *sc)
2276 {
2277 	uint16_t phy_tmp;
2278 
2279 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2280 	    sc->hw.mac.autoneg == 0 ||
2281 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2282 		return;
2283 
2284 	if (sc->smartspeed == 0) {
2285 		/*
2286 		 * If Master/Slave config fault is asserted twice,
2287 		 * we assume back-to-back
2288 		 */
2289 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2290 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2291 			return;
2292 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2293 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2294 			e1000_read_phy_reg(&sc->hw,
2295 			    PHY_1000T_CTRL, &phy_tmp);
2296 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2297 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2298 				e1000_write_phy_reg(&sc->hw,
2299 				    PHY_1000T_CTRL, phy_tmp);
2300 				sc->smartspeed++;
2301 				if (sc->hw.mac.autoneg &&
2302 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2303 				    !e1000_read_phy_reg(&sc->hw,
2304 				     PHY_CONTROL, &phy_tmp)) {
2305 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2306 						   MII_CR_RESTART_AUTO_NEG;
2307 					e1000_write_phy_reg(&sc->hw,
2308 					    PHY_CONTROL, phy_tmp);
2309 				}
2310 			}
2311 		}
2312 		return;
2313 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2314 		/* If still no link, perhaps using 2/3 pair cable */
2315 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2316 		phy_tmp |= CR_1000T_MS_ENABLE;
2317 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2318 		if (sc->hw.mac.autoneg &&
2319 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2320 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2321 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2322 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2323 		}
2324 	}
2325 
2326 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2327 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2328 		sc->smartspeed = 0;
2329 }
2330 
2331 static int
2332 emx_create_tx_ring(struct emx_txdata *tdata)
2333 {
2334 	device_t dev = tdata->sc->dev;
2335 	struct emx_txbuf *tx_buffer;
2336 	int error, i, tsize, ntxd;
2337 
2338 	/*
2339 	 * Validate number of transmit descriptors.  It must not exceed
2340 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2341 	 */
2342 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2343 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2344 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2345 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2346 		    EMX_DEFAULT_TXD, ntxd);
2347 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2348 	} else {
2349 		tdata->num_tx_desc = ntxd;
2350 	}
2351 
2352 	/*
2353 	 * Allocate Transmit Descriptor ring
2354 	 */
2355 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2356 			 EMX_DBA_ALIGN);
2357 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2358 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2359 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2360 				&tdata->tx_desc_paddr);
2361 	if (tdata->tx_desc_base == NULL) {
2362 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2363 		return ENOMEM;
2364 	}
2365 
2366 	tsize = __VM_CACHELINE_ALIGN(
2367 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2368 	tdata->tx_buf = kmalloc(tsize, M_DEVBUF,
2369 				M_WAITOK | M_ZERO | M_CACHEALIGN);
2370 
2371 	/*
2372 	 * Create DMA tags for tx buffers
2373 	 */
2374 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2375 			1, 0,			/* alignment, bounds */
2376 			BUS_SPACE_MAXADDR,	/* lowaddr */
2377 			BUS_SPACE_MAXADDR,	/* highaddr */
2378 			NULL, NULL,		/* filter, filterarg */
2379 			EMX_TSO_SIZE,		/* maxsize */
2380 			EMX_MAX_SCATTER,	/* nsegments */
2381 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2382 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2383 			BUS_DMA_ONEBPAGE,	/* flags */
2384 			&tdata->txtag);
2385 	if (error) {
2386 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2387 		kfree(tdata->tx_buf, M_DEVBUF);
2388 		tdata->tx_buf = NULL;
2389 		return error;
2390 	}
2391 
2392 	/*
2393 	 * Create DMA maps for tx buffers
2394 	 */
2395 	for (i = 0; i < tdata->num_tx_desc; i++) {
2396 		tx_buffer = &tdata->tx_buf[i];
2397 
2398 		error = bus_dmamap_create(tdata->txtag,
2399 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2400 					  &tx_buffer->map);
2401 		if (error) {
2402 			device_printf(dev, "Unable to create TX DMA map\n");
2403 			emx_destroy_tx_ring(tdata, i);
2404 			return error;
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * Setup TX parameters
2410 	 */
2411 	tdata->spare_tx_desc = EMX_TX_SPARE;
2412 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2413 
2414 	/*
2415 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2416 	 * and tx_intr_nsegs:
2417 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2418 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2419 	 */
2420 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2421 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2422 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2423 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2424 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2425 
2426 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2427 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2428 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2429 
2430 	/*
2431 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2432 	 * 82571/82572 specification update errata #7
2433 	 *
2434 	 * Same applies to I217 (and maybe I218 and I219).
2435 	 *
2436 	 * NOTE:
2437 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2438 	 * are pulled; mainly to keep rest of the data properly aligned.
2439 	 */
2440 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2441 	    tdata->sc->hw.mac.type == e1000_82572 ||
2442 	    tdata->sc->hw.mac.type == e1000_pch_lpt ||
2443 	    tdata->sc->hw.mac.type == e1000_pch_spt ||
2444 	    tdata->sc->hw.mac.type == e1000_pch_cnp)
2445 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2446 
2447 	return (0);
2448 }
2449 
2450 static void
2451 emx_init_tx_ring(struct emx_txdata *tdata)
2452 {
2453 	/* Clear the old ring contents */
2454 	bzero(tdata->tx_desc_base,
2455 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2456 
2457 	/* Reset state */
2458 	tdata->next_avail_tx_desc = 0;
2459 	tdata->next_tx_to_clean = 0;
2460 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2461 	tdata->tx_nmbuf = 0;
2462 	tdata->tx_running = 0;
2463 
2464 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2465 	if (tdata->sc->tx_ring_inuse > 1) {
2466 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2467 		if (bootverbose) {
2468 			if_printf(&tdata->sc->arpcom.ac_if,
2469 			    "TX %d force ctx setup\n", tdata->idx);
2470 		}
2471 	}
2472 }
2473 
2474 static void
2475 emx_init_tx_unit(struct emx_softc *sc)
2476 {
2477 	uint32_t tctl, tarc, tipg = 0, txdctl;
2478 	int i;
2479 
2480 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2481 		struct emx_txdata *tdata = &sc->tx_data[i];
2482 		uint64_t bus_addr;
2483 
2484 		/* Setup the Base and Length of the Tx Descriptor Ring */
2485 		bus_addr = tdata->tx_desc_paddr;
2486 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2487 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2488 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2489 		    (uint32_t)(bus_addr >> 32));
2490 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2491 		    (uint32_t)bus_addr);
2492 		/* Setup the HW Tx Head and Tail descriptor pointers */
2493 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2494 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2495 
2496 		txdctl = 0x1f;		/* PTHRESH */
2497 		txdctl |= 1 << 8;	/* HTHRESH */
2498 		txdctl |= 1 << 16;	/* WTHRESH */
2499 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2500 		txdctl |= E1000_TXDCTL_GRAN;
2501 		txdctl |= 1 << 25;	/* LWTHRESH */
2502 
2503 		E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(i), txdctl);
2504 	}
2505 
2506 	/* Set the default values for the Tx Inter Packet Gap timer */
2507 	switch (sc->hw.mac.type) {
2508 	case e1000_80003es2lan:
2509 		tipg = DEFAULT_82543_TIPG_IPGR1;
2510 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2511 		    E1000_TIPG_IPGR2_SHIFT;
2512 		break;
2513 
2514 	default:
2515 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2516 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2517 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2518 		else
2519 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2520 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2521 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2522 		break;
2523 	}
2524 
2525 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2526 
2527 	/* NOTE: 0 is not allowed for TIDV */
2528 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2529 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2530 
2531 	/*
2532 	 * Errata workaround (obtained from Linux).  This is necessary
2533 	 * to make multiple TX queues work on 82574.
2534 	 * XXX can't find it in any published errata though.
2535 	 */
2536 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2537 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2538 
2539 	if (sc->hw.mac.type == e1000_82571 ||
2540 	    sc->hw.mac.type == e1000_82572) {
2541 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2542 		tarc |= EMX_TARC_SPEED_MODE;
2543 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2544 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2545 		/* errata: program both queues to unweighted RR */
2546 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2547 		tarc |= 1;
2548 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2549 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2550 		tarc |= 1;
2551 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2552 	} else if (sc->hw.mac.type == e1000_82574) {
2553 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2554 		tarc |= EMX_TARC_ERRATA;
2555 		if (sc->tx_ring_inuse > 1) {
2556 			tarc |= (EMX_TARC_COMPENSATION_MODE | EMX_TARC_MQ_FIX);
2557 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2558 			E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2559 		} else {
2560 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2561 		}
2562 	}
2563 
2564 	/* Program the Transmit Control Register */
2565 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2566 	tctl &= ~E1000_TCTL_CT;
2567 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2568 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2569 	tctl |= E1000_TCTL_MULR;
2570 
2571 	/* This write will effectively turn on the transmit unit. */
2572 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2573 
2574 	if (sc->hw.mac.type == e1000_82571 ||
2575 	    sc->hw.mac.type == e1000_82572 ||
2576 	    sc->hw.mac.type == e1000_80003es2lan) {
2577 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2578 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2579 		tarc &= ~(1 << 28);
2580 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2581 	} else if (sc->hw.mac.type >= e1000_pch_spt) {
2582 		uint32_t reg;
2583 
2584 		reg = E1000_READ_REG(&sc->hw, E1000_IOSFPC);
2585 		reg |= E1000_RCTL_RDMTS_HEX;
2586 		E1000_WRITE_REG(&sc->hw, E1000_IOSFPC, reg);
2587 		reg = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2588 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2589 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), reg);
2590 	}
2591 
2592 	if (sc->tx_ring_inuse > 1) {
2593 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2594 		tarc &= ~EMX_TARC_COUNT_MASK;
2595 		tarc |= 1;
2596 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2597 
2598 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2599 		tarc &= ~EMX_TARC_COUNT_MASK;
2600 		tarc |= 1;
2601 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2602 	}
2603 }
2604 
2605 static void
2606 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2607 {
2608 	struct emx_txbuf *tx_buffer;
2609 	int i;
2610 
2611 	/* Free Transmit Descriptor ring */
2612 	if (tdata->tx_desc_base) {
2613 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2614 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2615 				tdata->tx_desc_dmap);
2616 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2617 
2618 		tdata->tx_desc_base = NULL;
2619 	}
2620 
2621 	if (tdata->tx_buf == NULL)
2622 		return;
2623 
2624 	for (i = 0; i < ndesc; i++) {
2625 		tx_buffer = &tdata->tx_buf[i];
2626 
2627 		KKASSERT(tx_buffer->m_head == NULL);
2628 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2629 	}
2630 	bus_dma_tag_destroy(tdata->txtag);
2631 
2632 	kfree(tdata->tx_buf, M_DEVBUF);
2633 	tdata->tx_buf = NULL;
2634 }
2635 
2636 /*
2637  * The offload context needs to be set when we transfer the first
2638  * packet of a particular protocol (TCP/UDP).  This routine has been
2639  * enhanced to deal with inserted VLAN headers.
2640  *
2641  * If the new packet's ether header length, ip header length and
2642  * csum offloading type are same as the previous packet, we should
2643  * avoid allocating a new csum context descriptor; mainly to take
2644  * advantage of the pipeline effect of the TX data read request.
2645  *
2646  * This function returns number of TX descrptors allocated for
2647  * csum context.
2648  */
2649 static int
2650 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2651 	   uint32_t *txd_upper, uint32_t *txd_lower)
2652 {
2653 	struct e1000_context_desc *TXD;
2654 	int curr_txd, ehdrlen, csum_flags;
2655 	uint32_t cmd, hdr_len, ip_hlen;
2656 
2657 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2658 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2659 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2660 
2661 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2662 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2663 	    tdata->csum_flags == csum_flags) {
2664 		/*
2665 		 * Same csum offload context as the previous packets;
2666 		 * just return.
2667 		 */
2668 		*txd_upper = tdata->csum_txd_upper;
2669 		*txd_lower = tdata->csum_txd_lower;
2670 		return 0;
2671 	}
2672 
2673 	/*
2674 	 * Setup a new csum offload context.
2675 	 */
2676 
2677 	curr_txd = tdata->next_avail_tx_desc;
2678 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2679 
2680 	cmd = 0;
2681 
2682 	/* Setup of IP header checksum. */
2683 	if (csum_flags & CSUM_IP) {
2684 		/*
2685 		 * Start offset for header checksum calculation.
2686 		 * End offset for header checksum calculation.
2687 		 * Offset of place to put the checksum.
2688 		 */
2689 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2690 		TXD->lower_setup.ip_fields.ipcse =
2691 		    htole16(ehdrlen + ip_hlen - 1);
2692 		TXD->lower_setup.ip_fields.ipcso =
2693 		    ehdrlen + offsetof(struct ip, ip_sum);
2694 		cmd |= E1000_TXD_CMD_IP;
2695 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2696 	}
2697 	hdr_len = ehdrlen + ip_hlen;
2698 
2699 	if (csum_flags & CSUM_TCP) {
2700 		/*
2701 		 * Start offset for payload checksum calculation.
2702 		 * End offset for payload checksum calculation.
2703 		 * Offset of place to put the checksum.
2704 		 */
2705 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2706 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2707 		TXD->upper_setup.tcp_fields.tucso =
2708 		    hdr_len + offsetof(struct tcphdr, th_sum);
2709 		cmd |= E1000_TXD_CMD_TCP;
2710 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2711 	} else if (csum_flags & CSUM_UDP) {
2712 		/*
2713 		 * Start offset for header checksum calculation.
2714 		 * End offset for header checksum calculation.
2715 		 * Offset of place to put the checksum.
2716 		 */
2717 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2718 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2719 		TXD->upper_setup.tcp_fields.tucso =
2720 		    hdr_len + offsetof(struct udphdr, uh_sum);
2721 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2722 	}
2723 
2724 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2725 		     E1000_TXD_DTYP_D;		/* Data descr */
2726 
2727 	/* Save the information for this csum offloading context */
2728 	tdata->csum_lhlen = ehdrlen;
2729 	tdata->csum_iphlen = ip_hlen;
2730 	tdata->csum_flags = csum_flags;
2731 	tdata->csum_txd_upper = *txd_upper;
2732 	tdata->csum_txd_lower = *txd_lower;
2733 
2734 	TXD->tcp_seg_setup.data = htole32(0);
2735 	TXD->cmd_and_length =
2736 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2737 
2738 	if (++curr_txd == tdata->num_tx_desc)
2739 		curr_txd = 0;
2740 
2741 	KKASSERT(tdata->num_tx_desc_avail > 0);
2742 	tdata->num_tx_desc_avail--;
2743 
2744 	tdata->next_avail_tx_desc = curr_txd;
2745 	return 1;
2746 }
2747 
2748 static void
2749 emx_txeof(struct emx_txdata *tdata)
2750 {
2751 	struct emx_txbuf *tx_buffer;
2752 	int first, num_avail;
2753 
2754 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2755 		return;
2756 
2757 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2758 		return;
2759 
2760 	num_avail = tdata->num_tx_desc_avail;
2761 	first = tdata->next_tx_to_clean;
2762 
2763 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2764 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2765 		struct e1000_tx_desc *tx_desc;
2766 
2767 		tx_desc = &tdata->tx_desc_base[dd_idx];
2768 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2769 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2770 
2771 			if (++dd_idx == tdata->num_tx_desc)
2772 				dd_idx = 0;
2773 
2774 			while (first != dd_idx) {
2775 				logif(pkt_txclean);
2776 
2777 				KKASSERT(num_avail < tdata->num_tx_desc);
2778 				num_avail++;
2779 
2780 				tx_buffer = &tdata->tx_buf[first];
2781 				if (tx_buffer->m_head)
2782 					emx_free_txbuf(tdata, tx_buffer);
2783 
2784 				if (++first == tdata->num_tx_desc)
2785 					first = 0;
2786 			}
2787 		} else {
2788 			break;
2789 		}
2790 	}
2791 	tdata->next_tx_to_clean = first;
2792 	tdata->num_tx_desc_avail = num_avail;
2793 
2794 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2795 		tdata->tx_dd_head = 0;
2796 		tdata->tx_dd_tail = 0;
2797 	}
2798 
2799 	if (!EMX_IS_OACTIVE(tdata)) {
2800 		ifsq_clr_oactive(tdata->ifsq);
2801 
2802 		/* All clean, turn off the timer */
2803 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2804 			ifsq_watchdog_set_count(&tdata->tx_watchdog, 0);
2805 	}
2806 	tdata->tx_running = EMX_TX_RUNNING;
2807 }
2808 
2809 static void
2810 emx_tx_collect(struct emx_txdata *tdata, boolean_t gc)
2811 {
2812 	struct emx_txbuf *tx_buffer;
2813 	int tdh, first, num_avail, dd_idx = -1;
2814 
2815 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2816 		return;
2817 
2818 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2819 	if (tdh == tdata->next_tx_to_clean) {
2820 		if (gc && tdata->tx_nmbuf > 0)
2821 			tdata->tx_running = EMX_TX_RUNNING;
2822 		return;
2823 	}
2824 	if (gc)
2825 		tdata->tx_gc++;
2826 
2827 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2828 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2829 
2830 	num_avail = tdata->num_tx_desc_avail;
2831 	first = tdata->next_tx_to_clean;
2832 
2833 	while (first != tdh) {
2834 		logif(pkt_txclean);
2835 
2836 		KKASSERT(num_avail < tdata->num_tx_desc);
2837 		num_avail++;
2838 
2839 		tx_buffer = &tdata->tx_buf[first];
2840 		if (tx_buffer->m_head)
2841 			emx_free_txbuf(tdata, tx_buffer);
2842 
2843 		if (first == dd_idx) {
2844 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2845 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2846 				tdata->tx_dd_head = 0;
2847 				tdata->tx_dd_tail = 0;
2848 				dd_idx = -1;
2849 			} else {
2850 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2851 			}
2852 		}
2853 
2854 		if (++first == tdata->num_tx_desc)
2855 			first = 0;
2856 	}
2857 	tdata->next_tx_to_clean = first;
2858 	tdata->num_tx_desc_avail = num_avail;
2859 
2860 	if (!EMX_IS_OACTIVE(tdata)) {
2861 		ifsq_clr_oactive(tdata->ifsq);
2862 
2863 		/* All clean, turn off the timer */
2864 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2865 			ifsq_watchdog_set_count(&tdata->tx_watchdog, 0);
2866 	}
2867 	if (!gc || tdata->tx_nmbuf > 0)
2868 		tdata->tx_running = EMX_TX_RUNNING;
2869 }
2870 
2871 /*
2872  * When Link is lost sometimes there is work still in the TX ring
2873  * which will result in a watchdog, rather than allow that do an
2874  * attempted cleanup and then reinit here.  Note that this has been
2875  * seens mostly with fiber adapters.
2876  */
2877 static void
2878 emx_tx_purge(struct emx_softc *sc)
2879 {
2880 	int i;
2881 
2882 	if (sc->link_active)
2883 		return;
2884 
2885 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2886 		struct emx_txdata *tdata = &sc->tx_data[i];
2887 
2888 		if (tdata->tx_watchdog.wd_timer) {
2889 			emx_tx_collect(tdata, FALSE);
2890 			if (tdata->tx_watchdog.wd_timer) {
2891 				if_printf(&sc->arpcom.ac_if,
2892 				    "Link lost, TX pending, reinit\n");
2893 				emx_init(sc);
2894 				return;
2895 			}
2896 		}
2897 	}
2898 }
2899 
2900 static int
2901 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2902 {
2903 	struct mbuf *m;
2904 	bus_dma_segment_t seg;
2905 	bus_dmamap_t map;
2906 	struct emx_rxbuf *rx_buffer;
2907 	int error, nseg;
2908 
2909 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2910 	if (m == NULL) {
2911 		if (init) {
2912 			if_printf(&rdata->sc->arpcom.ac_if,
2913 				  "Unable to allocate RX mbuf\n");
2914 		}
2915 		return (ENOBUFS);
2916 	}
2917 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2918 
2919 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2920 		m_adj(m, ETHER_ALIGN);
2921 
2922 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2923 			rdata->rx_sparemap, m,
2924 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2925 	if (error) {
2926 		m_freem(m);
2927 		if (init) {
2928 			if_printf(&rdata->sc->arpcom.ac_if,
2929 				  "Unable to load RX mbuf\n");
2930 		}
2931 		return (error);
2932 	}
2933 
2934 	rx_buffer = &rdata->rx_buf[i];
2935 	if (rx_buffer->m_head != NULL)
2936 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2937 
2938 	map = rx_buffer->map;
2939 	rx_buffer->map = rdata->rx_sparemap;
2940 	rdata->rx_sparemap = map;
2941 
2942 	rx_buffer->m_head = m;
2943 	rx_buffer->paddr = seg.ds_addr;
2944 
2945 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2946 	return (0);
2947 }
2948 
2949 static int
2950 emx_create_rx_ring(struct emx_rxdata *rdata)
2951 {
2952 	device_t dev = rdata->sc->dev;
2953 	struct emx_rxbuf *rx_buffer;
2954 	int i, error, rsize, nrxd;
2955 
2956 	/*
2957 	 * Validate number of receive descriptors.  It must not exceed
2958 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2959 	 */
2960 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2961 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2962 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2963 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2964 		    EMX_DEFAULT_RXD, nrxd);
2965 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2966 	} else {
2967 		rdata->num_rx_desc = nrxd;
2968 	}
2969 
2970 	/*
2971 	 * Allocate Receive Descriptor ring
2972 	 */
2973 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2974 			 EMX_DBA_ALIGN);
2975 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2976 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2977 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2978 				&rdata->rx_desc_paddr);
2979 	if (rdata->rx_desc == NULL) {
2980 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2981 		return ENOMEM;
2982 	}
2983 
2984 	rsize = __VM_CACHELINE_ALIGN(
2985 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2986 	rdata->rx_buf = kmalloc(rsize, M_DEVBUF,
2987 				M_WAITOK | M_ZERO | M_CACHEALIGN);
2988 
2989 	/*
2990 	 * Create DMA tag for rx buffers
2991 	 */
2992 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2993 			1, 0,			/* alignment, bounds */
2994 			BUS_SPACE_MAXADDR,	/* lowaddr */
2995 			BUS_SPACE_MAXADDR,	/* highaddr */
2996 			NULL, NULL,		/* filter, filterarg */
2997 			MCLBYTES,		/* maxsize */
2998 			1,			/* nsegments */
2999 			MCLBYTES,		/* maxsegsize */
3000 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3001 			&rdata->rxtag);
3002 	if (error) {
3003 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3004 		kfree(rdata->rx_buf, M_DEVBUF);
3005 		rdata->rx_buf = NULL;
3006 		return error;
3007 	}
3008 
3009 	/*
3010 	 * Create spare DMA map for rx buffers
3011 	 */
3012 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
3013 				  &rdata->rx_sparemap);
3014 	if (error) {
3015 		device_printf(dev, "Unable to create spare RX DMA map\n");
3016 		bus_dma_tag_destroy(rdata->rxtag);
3017 		kfree(rdata->rx_buf, M_DEVBUF);
3018 		rdata->rx_buf = NULL;
3019 		return error;
3020 	}
3021 
3022 	/*
3023 	 * Create DMA maps for rx buffers
3024 	 */
3025 	for (i = 0; i < rdata->num_rx_desc; i++) {
3026 		rx_buffer = &rdata->rx_buf[i];
3027 
3028 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
3029 					  &rx_buffer->map);
3030 		if (error) {
3031 			device_printf(dev, "Unable to create RX DMA map\n");
3032 			emx_destroy_rx_ring(rdata, i);
3033 			return error;
3034 		}
3035 	}
3036 	return (0);
3037 }
3038 
3039 static void
3040 emx_free_rx_ring(struct emx_rxdata *rdata)
3041 {
3042 	int i;
3043 
3044 	for (i = 0; i < rdata->num_rx_desc; i++) {
3045 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
3046 
3047 		if (rx_buffer->m_head != NULL) {
3048 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
3049 			m_freem(rx_buffer->m_head);
3050 			rx_buffer->m_head = NULL;
3051 		}
3052 	}
3053 
3054 	if (rdata->fmp != NULL)
3055 		m_freem(rdata->fmp);
3056 	rdata->fmp = NULL;
3057 	rdata->lmp = NULL;
3058 }
3059 
3060 static void
3061 emx_free_tx_ring(struct emx_txdata *tdata)
3062 {
3063 	int i;
3064 
3065 	for (i = 0; i < tdata->num_tx_desc; i++) {
3066 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
3067 
3068 		if (tx_buffer->m_head != NULL)
3069 			emx_free_txbuf(tdata, tx_buffer);
3070 	}
3071 
3072 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
3073 
3074 	tdata->csum_flags = 0;
3075 	tdata->csum_lhlen = 0;
3076 	tdata->csum_iphlen = 0;
3077 	tdata->csum_thlen = 0;
3078 	tdata->csum_mss = 0;
3079 	tdata->csum_pktlen = 0;
3080 
3081 	tdata->tx_dd_head = 0;
3082 	tdata->tx_dd_tail = 0;
3083 	tdata->tx_nsegs = 0;
3084 }
3085 
3086 static int
3087 emx_init_rx_ring(struct emx_rxdata *rdata)
3088 {
3089 	int i, error;
3090 
3091 	/* Reset descriptor ring */
3092 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
3093 
3094 	/* Allocate new ones. */
3095 	for (i = 0; i < rdata->num_rx_desc; i++) {
3096 		error = emx_newbuf(rdata, i, 1);
3097 		if (error)
3098 			return (error);
3099 	}
3100 
3101 	/* Setup our descriptor pointers */
3102 	rdata->next_rx_desc_to_check = 0;
3103 
3104 	return (0);
3105 }
3106 
3107 static void
3108 emx_init_rx_unit(struct emx_softc *sc)
3109 {
3110 	struct ifnet *ifp = &sc->arpcom.ac_if;
3111 	uint64_t bus_addr;
3112 	uint32_t rctl, itr, rfctl, rxcsum;
3113 	int i;
3114 
3115 	/*
3116 	 * Make sure receives are disabled while setting
3117 	 * up the descriptor ring
3118 	 */
3119 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3120 	/* Do not disable if ever enabled on this hardware */
3121 	if (sc->hw.mac.type != e1000_82574)
3122 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3123 
3124 	/*
3125 	 * Set the interrupt throttling rate. Value is calculated
3126 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3127 	 */
3128 	if (sc->int_throttle_ceil)
3129 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
3130 	else
3131 		itr = 0;
3132 	emx_set_itr(sc, itr);
3133 
3134 	/* Use extended RX descriptor */
3135 	rfctl = E1000_READ_REG(&sc->hw, E1000_RFCTL);
3136 	rfctl |= E1000_RFCTL_EXTEN;
3137 	/* Disable accelerated ackknowledge */
3138 	if (sc->hw.mac.type == e1000_82574)
3139 		rfctl |= E1000_RFCTL_ACK_DIS;
3140 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
3141 
3142 	/*
3143 	 * Receive Checksum Offload for TCP and UDP
3144 	 *
3145 	 * Checksum offloading is also enabled if multiple receive
3146 	 * queue is to be supported, since we need it to figure out
3147 	 * packet type.
3148 	 */
3149 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
3150 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
3151 	    sc->rx_ring_cnt > 1) {
3152 		/*
3153 		 * NOTE:
3154 		 * PCSD must be enabled to enable multiple
3155 		 * receive queues.
3156 		 */
3157 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3158 			  E1000_RXCSUM_PCSD;
3159 	} else {
3160 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3161 			    E1000_RXCSUM_PCSD);
3162 	}
3163 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3164 
3165 	/*
3166 	 * Configure multiple receive queue (RSS)
3167 	 */
3168 	if (sc->rx_ring_cnt > 1) {
3169 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3170 		int r, j;
3171 
3172 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3173 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3174 
3175 		/*
3176 		 * NOTE:
3177 		 * When we reach here, RSS has already been disabled
3178 		 * in emx_stop(), so we could safely configure RSS key
3179 		 * and redirect table.
3180 		 */
3181 
3182 		/*
3183 		 * Configure RSS key
3184 		 */
3185 		toeplitz_get_key(key, sizeof(key));
3186 		for (i = 0; i < EMX_NRSSRK; ++i) {
3187 			uint32_t rssrk;
3188 
3189 			rssrk = EMX_RSSRK_VAL(key, i);
3190 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3191 
3192 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3193 		}
3194 
3195 		/*
3196 		 * Configure RSS redirect table.
3197 		 */
3198 		if_ringmap_rdrtable(sc->rx_rmap, sc->rdr_table,
3199 		    EMX_RDRTABLE_SIZE);
3200 
3201 		r = 0;
3202 		for (j = 0; j < EMX_NRETA; ++j) {
3203 			uint32_t reta = 0;
3204 
3205 			for (i = 0; i < EMX_RETA_SIZE; ++i) {
3206 				uint32_t q;
3207 
3208 				q = sc->rdr_table[r] << EMX_RETA_RINGIDX_SHIFT;
3209 				reta |= q << (8 * i);
3210 				++r;
3211 			}
3212 			EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3213 			E1000_WRITE_REG(&sc->hw, E1000_RETA(j), reta);
3214 		}
3215 
3216 		/*
3217 		 * Enable multiple receive queues.
3218 		 * Enable IPv4 RSS standard hash functions.
3219 		 * Disable RSS interrupt.
3220 		 */
3221 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3222 				E1000_MRQC_ENABLE_RSS_2Q |
3223 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3224 				E1000_MRQC_RSS_FIELD_IPV4);
3225 	}
3226 
3227 	/*
3228 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3229 	 * long latencies are observed, like Lenovo X60. This
3230 	 * change eliminates the problem, but since having positive
3231 	 * values in RDTR is a known source of problems on other
3232 	 * platforms another solution is being sought.
3233 	 */
3234 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3235 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3236 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3237 	}
3238 
3239 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3240 		struct emx_rxdata *rdata = &sc->rx_data[i];
3241 
3242 		/*
3243 		 * Setup the Base and Length of the Rx Descriptor Ring
3244 		 */
3245 		bus_addr = rdata->rx_desc_paddr;
3246 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3247 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3248 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3249 		    (uint32_t)(bus_addr >> 32));
3250 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3251 		    (uint32_t)bus_addr);
3252 
3253 		/*
3254 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3255 		 */
3256 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3257 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3258 		    sc->rx_data[i].num_rx_desc - 1);
3259 	}
3260 
3261 	/* Set PTHRESH for improved jumbo performance */
3262 	if (ifp->if_mtu > ETHERMTU && sc->hw.mac.type == e1000_82574) {
3263 		uint32_t rxdctl;
3264 
3265 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3266 			rxdctl = E1000_READ_REG(&sc->hw, E1000_RXDCTL(i));
3267                 	rxdctl |= 0x20;		/* PTHRESH */
3268                 	rxdctl |= 4 << 8;	/* HTHRESH */
3269                 	rxdctl |= 4 << 16;	/* WTHRESH */
3270 			rxdctl |= 1 << 24;	/* Switch to granularity */
3271 			E1000_WRITE_REG(&sc->hw, E1000_RXDCTL(i), rxdctl);
3272 		}
3273 	}
3274 
3275 	if (sc->hw.mac.type >= e1000_pch2lan) {
3276 		if (ifp->if_mtu > ETHERMTU)
3277 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3278 		else
3279 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3280 	}
3281 
3282 	/* Setup the Receive Control Register */
3283 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3284 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3285 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3286 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3287 
3288 	/* Make sure VLAN Filters are off */
3289 	rctl &= ~E1000_RCTL_VFE;
3290 
3291 	/* Don't store bad paket */
3292 	rctl &= ~E1000_RCTL_SBP;
3293 
3294 	/* MCLBYTES */
3295 	rctl |= E1000_RCTL_SZ_2048;
3296 
3297 	if (ifp->if_mtu > ETHERMTU)
3298 		rctl |= E1000_RCTL_LPE;
3299 	else
3300 		rctl &= ~E1000_RCTL_LPE;
3301 
3302 	/* Enable Receives */
3303 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3304 }
3305 
3306 static void
3307 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3308 {
3309 	struct emx_rxbuf *rx_buffer;
3310 	int i;
3311 
3312 	/* Free Receive Descriptor ring */
3313 	if (rdata->rx_desc) {
3314 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3315 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3316 				rdata->rx_desc_dmap);
3317 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3318 
3319 		rdata->rx_desc = NULL;
3320 	}
3321 
3322 	if (rdata->rx_buf == NULL)
3323 		return;
3324 
3325 	for (i = 0; i < ndesc; i++) {
3326 		rx_buffer = &rdata->rx_buf[i];
3327 
3328 		KKASSERT(rx_buffer->m_head == NULL);
3329 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3330 	}
3331 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3332 	bus_dma_tag_destroy(rdata->rxtag);
3333 
3334 	kfree(rdata->rx_buf, M_DEVBUF);
3335 	rdata->rx_buf = NULL;
3336 }
3337 
3338 static void
3339 emx_rxeof(struct emx_rxdata *rdata, int count)
3340 {
3341 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3342 	uint32_t staterr;
3343 	emx_rxdesc_t *current_desc;
3344 	struct mbuf *mp;
3345 	int i, cpuid = mycpuid;
3346 
3347 	i = rdata->next_rx_desc_to_check;
3348 	current_desc = &rdata->rx_desc[i];
3349 	staterr = le32toh(current_desc->rxd_staterr);
3350 
3351 	if (!(staterr & E1000_RXD_STAT_DD))
3352 		return;
3353 
3354 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3355 		struct pktinfo *pi = NULL, pi0;
3356 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3357 		struct mbuf *m = NULL;
3358 		int eop, len;
3359 
3360 		logif(pkt_receive);
3361 
3362 		mp = rx_buf->m_head;
3363 
3364 		/*
3365 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3366 		 * needs to access the last received byte in the mbuf.
3367 		 */
3368 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3369 				BUS_DMASYNC_POSTREAD);
3370 
3371 		len = le16toh(current_desc->rxd_length);
3372 		if (staterr & E1000_RXD_STAT_EOP) {
3373 			count--;
3374 			eop = 1;
3375 		} else {
3376 			eop = 0;
3377 		}
3378 
3379 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3380 			uint16_t vlan = 0;
3381 			uint32_t mrq, rss_hash;
3382 
3383 			/*
3384 			 * Save several necessary information,
3385 			 * before emx_newbuf() destroy it.
3386 			 */
3387 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3388 				vlan = le16toh(current_desc->rxd_vlan);
3389 
3390 			mrq = le32toh(current_desc->rxd_mrq);
3391 			rss_hash = le32toh(current_desc->rxd_rss);
3392 
3393 			EMX_RSS_DPRINTF(rdata->sc, 10,
3394 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3395 			    rdata->idx, mrq, rss_hash);
3396 
3397 			if (emx_newbuf(rdata, i, 0) != 0) {
3398 				IFNET_STAT_INC(ifp, iqdrops, 1);
3399 				goto discard;
3400 			}
3401 
3402 			/* Assign correct length to the current fragment */
3403 			mp->m_len = len;
3404 
3405 			if (rdata->fmp == NULL) {
3406 				mp->m_pkthdr.len = len;
3407 				rdata->fmp = mp; /* Store the first mbuf */
3408 				rdata->lmp = mp;
3409 			} else {
3410 				/*
3411 				 * Chain mbuf's together
3412 				 */
3413 				rdata->lmp->m_next = mp;
3414 				rdata->lmp = rdata->lmp->m_next;
3415 				rdata->fmp->m_pkthdr.len += len;
3416 			}
3417 
3418 			if (eop) {
3419 				rdata->fmp->m_pkthdr.rcvif = ifp;
3420 				IFNET_STAT_INC(ifp, ipackets, 1);
3421 
3422 				if (ifp->if_capenable & IFCAP_RXCSUM)
3423 					emx_rxcsum(staterr, rdata->fmp);
3424 
3425 				if (staterr & E1000_RXD_STAT_VP) {
3426 					rdata->fmp->m_pkthdr.ether_vlantag =
3427 					    vlan;
3428 					rdata->fmp->m_flags |= M_VLANTAG;
3429 				}
3430 				m = rdata->fmp;
3431 				rdata->fmp = NULL;
3432 				rdata->lmp = NULL;
3433 
3434 				if (ifp->if_capenable & IFCAP_RSS) {
3435 					pi = emx_rssinfo(m, &pi0, mrq,
3436 							 rss_hash, staterr);
3437 				}
3438 #ifdef EMX_RSS_DEBUG
3439 				rdata->rx_pkts++;
3440 #endif
3441 			}
3442 		} else {
3443 			IFNET_STAT_INC(ifp, ierrors, 1);
3444 discard:
3445 			emx_setup_rxdesc(current_desc, rx_buf);
3446 			if (rdata->fmp != NULL) {
3447 				m_freem(rdata->fmp);
3448 				rdata->fmp = NULL;
3449 				rdata->lmp = NULL;
3450 			}
3451 			m = NULL;
3452 		}
3453 
3454 		if (m != NULL)
3455 			ifp->if_input(ifp, m, pi, cpuid);
3456 
3457 		/* Advance our pointers to the next descriptor. */
3458 		if (++i == rdata->num_rx_desc)
3459 			i = 0;
3460 
3461 		current_desc = &rdata->rx_desc[i];
3462 		staterr = le32toh(current_desc->rxd_staterr);
3463 	}
3464 	rdata->next_rx_desc_to_check = i;
3465 
3466 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3467 	if (--i < 0)
3468 		i = rdata->num_rx_desc - 1;
3469 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3470 }
3471 
3472 static void
3473 emx_enable_intr(struct emx_softc *sc)
3474 {
3475 	uint32_t ims_mask = IMS_ENABLE_MASK;
3476 
3477 	lwkt_serialize_handler_enable(&sc->main_serialize);
3478 
3479 #if 0
3480 	if (sc->hw.mac.type == e1000_82574) {
3481 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3482 		ims_mask |= EM_MSIX_MASK;
3483 	}
3484 #endif
3485 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3486 }
3487 
3488 static void
3489 emx_disable_intr(struct emx_softc *sc)
3490 {
3491 	if (sc->hw.mac.type == e1000_82574)
3492 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3493 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3494 
3495 	lwkt_serialize_handler_disable(&sc->main_serialize);
3496 }
3497 
3498 /*
3499  * Bit of a misnomer, what this really means is
3500  * to enable OS management of the system... aka
3501  * to disable special hardware management features
3502  */
3503 static void
3504 emx_get_mgmt(struct emx_softc *sc)
3505 {
3506 	/* A shared code workaround */
3507 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3508 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3509 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3510 
3511 		/* disable hardware interception of ARP */
3512 		manc &= ~(E1000_MANC_ARP_EN);
3513 
3514                 /* enable receiving management packets to the host */
3515 		manc |= E1000_MANC_EN_MNG2HOST;
3516 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3517 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3518 		manc2h |= E1000_MNG2HOST_PORT_623;
3519 		manc2h |= E1000_MNG2HOST_PORT_664;
3520 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3521 
3522 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3523 	}
3524 }
3525 
3526 /*
3527  * Give control back to hardware management
3528  * controller if there is one.
3529  */
3530 static void
3531 emx_rel_mgmt(struct emx_softc *sc)
3532 {
3533 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3534 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3535 
3536 		/* re-enable hardware interception of ARP */
3537 		manc |= E1000_MANC_ARP_EN;
3538 		manc &= ~E1000_MANC_EN_MNG2HOST;
3539 
3540 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3541 	}
3542 }
3543 
3544 /*
3545  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3546  * For ASF and Pass Through versions of f/w this means that
3547  * the driver is loaded.  For AMT version (only with 82573)
3548  * of the f/w this means that the network i/f is open.
3549  */
3550 static void
3551 emx_get_hw_control(struct emx_softc *sc)
3552 {
3553 	/* Let firmware know the driver has taken over */
3554 	if (sc->hw.mac.type == e1000_82573) {
3555 		uint32_t swsm;
3556 
3557 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3558 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3559 		    swsm | E1000_SWSM_DRV_LOAD);
3560 	} else {
3561 		uint32_t ctrl_ext;
3562 
3563 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3564 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3565 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3566 	}
3567 	sc->flags |= EMX_FLAG_HW_CTRL;
3568 }
3569 
3570 /*
3571  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3572  * For ASF and Pass Through versions of f/w this means that the
3573  * driver is no longer loaded.  For AMT version (only with 82573)
3574  * of the f/w this means that the network i/f is closed.
3575  */
3576 static void
3577 emx_rel_hw_control(struct emx_softc *sc)
3578 {
3579 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3580 		return;
3581 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3582 
3583 	/* Let firmware taken over control of h/w */
3584 	if (sc->hw.mac.type == e1000_82573) {
3585 		uint32_t swsm;
3586 
3587 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3588 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3589 		    swsm & ~E1000_SWSM_DRV_LOAD);
3590 	} else {
3591 		uint32_t ctrl_ext;
3592 
3593 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3594 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3595 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3596 	}
3597 }
3598 
3599 static int
3600 emx_is_valid_eaddr(const uint8_t *addr)
3601 {
3602 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3603 
3604 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3605 		return (FALSE);
3606 
3607 	return (TRUE);
3608 }
3609 
3610 /*
3611  * Enable PCI Wake On Lan capability
3612  */
3613 static void
3614 emx_enable_wol(device_t dev)
3615 {
3616 	uint16_t cap, status;
3617 	uint8_t id;
3618 
3619 	/* First find the capabilities pointer*/
3620 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3621 
3622 	/* Read the PM Capabilities */
3623 	id = pci_read_config(dev, cap, 1);
3624 	if (id != PCIY_PMG)     /* Something wrong */
3625 		return;
3626 
3627 	/*
3628 	 * OK, we have the power capabilities,
3629 	 * so now get the status register
3630 	 */
3631 	cap += PCIR_POWER_STATUS;
3632 	status = pci_read_config(dev, cap, 2);
3633 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3634 	pci_write_config(dev, cap, status, 2);
3635 }
3636 
3637 static void
3638 emx_update_stats(struct emx_softc *sc)
3639 {
3640 	struct ifnet *ifp = &sc->arpcom.ac_if;
3641 
3642 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3643 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3644 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3645 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3646 	}
3647 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3648 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3649 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3650 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3651 
3652 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3653 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3654 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3655 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3656 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3657 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3658 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3659 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3660 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3661 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3662 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3663 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3664 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3665 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3666 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3667 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3668 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3669 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3670 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3671 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3672 
3673 	/* For the 64-bit byte counters the low dword must be read first. */
3674 	/* Both registers clear on the read of the high dword */
3675 
3676 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3677 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3678 
3679 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3680 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3681 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3682 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3683 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3684 
3685 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3686 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3687 
3688 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3689 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3690 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3691 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3692 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3693 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3694 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3695 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3696 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3697 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3698 
3699 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3700 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3701 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3702 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3703 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3704 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3705 
3706 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3707 
3708 	/* Rx Errors */
3709 	IFNET_STAT_SET(ifp, ierrors,
3710 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3711 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3712 
3713 	/* Tx Errors */
3714 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3715 }
3716 
3717 static void
3718 emx_print_debug_info(struct emx_softc *sc)
3719 {
3720 	device_t dev = sc->dev;
3721 	uint8_t *hw_addr = sc->hw.hw_addr;
3722 	int i;
3723 
3724 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3725 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3726 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3727 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3728 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3729 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3730 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3731 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3732 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3733 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3734 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3735 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3736 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3737 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3738 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3739 
3740 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3741 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3742 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3743 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3744 	}
3745 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3746 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3747 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3748 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3749 	}
3750 
3751 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3752 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3753 		    sc->tx_data[i].num_tx_desc_avail);
3754 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3755 		    sc->tx_data[i].tso_segments);
3756 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3757 		    sc->tx_data[i].tso_ctx_reused);
3758 	}
3759 }
3760 
3761 static void
3762 emx_print_hw_stats(struct emx_softc *sc)
3763 {
3764 	device_t dev = sc->dev;
3765 
3766 	device_printf(dev, "Excessive collisions = %lld\n",
3767 	    (long long)sc->stats.ecol);
3768 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3769 	device_printf(dev, "Symbol errors = %lld\n",
3770 	    (long long)sc->stats.symerrs);
3771 #endif
3772 	device_printf(dev, "Sequence errors = %lld\n",
3773 	    (long long)sc->stats.sec);
3774 	device_printf(dev, "Defer count = %lld\n",
3775 	    (long long)sc->stats.dc);
3776 	device_printf(dev, "Missed Packets = %lld\n",
3777 	    (long long)sc->stats.mpc);
3778 	device_printf(dev, "Receive No Buffers = %lld\n",
3779 	    (long long)sc->stats.rnbc);
3780 	/* RLEC is inaccurate on some hardware, calculate our own. */
3781 	device_printf(dev, "Receive Length Errors = %lld\n",
3782 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3783 	device_printf(dev, "Receive errors = %lld\n",
3784 	    (long long)sc->stats.rxerrc);
3785 	device_printf(dev, "Crc errors = %lld\n",
3786 	    (long long)sc->stats.crcerrs);
3787 	device_printf(dev, "Alignment errors = %lld\n",
3788 	    (long long)sc->stats.algnerrc);
3789 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3790 	    (long long)sc->stats.cexterr);
3791 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3792 	device_printf(dev, "XON Rcvd = %lld\n",
3793 	    (long long)sc->stats.xonrxc);
3794 	device_printf(dev, "XON Xmtd = %lld\n",
3795 	    (long long)sc->stats.xontxc);
3796 	device_printf(dev, "XOFF Rcvd = %lld\n",
3797 	    (long long)sc->stats.xoffrxc);
3798 	device_printf(dev, "XOFF Xmtd = %lld\n",
3799 	    (long long)sc->stats.xofftxc);
3800 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3801 	    (long long)sc->stats.gprc);
3802 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3803 	    (long long)sc->stats.gptc);
3804 }
3805 
3806 static void
3807 emx_print_nvm_info(struct emx_softc *sc)
3808 {
3809 	uint16_t eeprom_data;
3810 	int i, j, row = 0;
3811 
3812 	/* Its a bit crude, but it gets the job done */
3813 	kprintf("\nInterface EEPROM Dump:\n");
3814 	kprintf("Offset\n0x0000  ");
3815 	for (i = 0, j = 0; i < 32; i++, j++) {
3816 		if (j == 8) { /* Make the offset block */
3817 			j = 0; ++row;
3818 			kprintf("\n0x00%x0  ",row);
3819 		}
3820 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3821 		kprintf("%04x ", eeprom_data);
3822 	}
3823 	kprintf("\n");
3824 }
3825 
3826 static int
3827 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3828 {
3829 	struct emx_softc *sc;
3830 	struct ifnet *ifp;
3831 	int error, result;
3832 
3833 	result = -1;
3834 	error = sysctl_handle_int(oidp, &result, 0, req);
3835 	if (error || !req->newptr)
3836 		return (error);
3837 
3838 	sc = (struct emx_softc *)arg1;
3839 	ifp = &sc->arpcom.ac_if;
3840 
3841 	ifnet_serialize_all(ifp);
3842 
3843 	if (result == 1)
3844 		emx_print_debug_info(sc);
3845 
3846 	/*
3847 	 * This value will cause a hex dump of the
3848 	 * first 32 16-bit words of the EEPROM to
3849 	 * the screen.
3850 	 */
3851 	if (result == 2)
3852 		emx_print_nvm_info(sc);
3853 
3854 	ifnet_deserialize_all(ifp);
3855 
3856 	return (error);
3857 }
3858 
3859 static int
3860 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3861 {
3862 	int error, result;
3863 
3864 	result = -1;
3865 	error = sysctl_handle_int(oidp, &result, 0, req);
3866 	if (error || !req->newptr)
3867 		return (error);
3868 
3869 	if (result == 1) {
3870 		struct emx_softc *sc = (struct emx_softc *)arg1;
3871 		struct ifnet *ifp = &sc->arpcom.ac_if;
3872 
3873 		ifnet_serialize_all(ifp);
3874 		emx_print_hw_stats(sc);
3875 		ifnet_deserialize_all(ifp);
3876 	}
3877 	return (error);
3878 }
3879 
3880 static void
3881 emx_add_sysctl(struct emx_softc *sc)
3882 {
3883 	struct sysctl_ctx_list *ctx;
3884 	struct sysctl_oid *tree;
3885 	char pkt_desc[32];
3886 	int i;
3887 
3888 	ctx = device_get_sysctl_ctx(sc->dev);
3889 	tree = device_get_sysctl_tree(sc->dev);
3890 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3891 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3892 			emx_sysctl_debug_info, "I", "Debug Information");
3893 
3894 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3895 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3896 			emx_sysctl_stats, "I", "Statistics");
3897 
3898 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3899 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3900 	    "# of RX descs");
3901 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3902 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3903 	    "# of TX descs");
3904 
3905 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3906 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3907 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3908 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3909 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3910 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3911 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3912 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3913 	    emx_sysctl_tx_wreg_nsegs, "I",
3914 	    "# segments sent before write to hardware register");
3915 
3916 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3917 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3918 	    "# of RX rings");
3919 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3920 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3921 	    "# of TX rings");
3922 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3923 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3924 	    "# of TX rings used");
3925 
3926 #ifdef IFPOLL_ENABLE
3927 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3928 	    OID_AUTO, "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3929 	    sc->tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3930 	    "TX polling CPU map");
3931 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3932 	    OID_AUTO, "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3933 	    sc->rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3934 	    "RX polling CPU map");
3935 #endif
3936 
3937 #ifdef EMX_RSS_DEBUG
3938 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3939 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3940 		       0, "RSS debug level");
3941 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3942 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3943 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3944 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3945 		    "RXed packets");
3946 	}
3947 #endif
3948 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3949 #ifdef EMX_TSS_DEBUG
3950 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3951 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3952 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3953 		    "TXed packets");
3954 #endif
3955 
3956 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_nmbuf", i);
3957 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3958 		    pkt_desc, CTLFLAG_RD, &sc->tx_data[i].tx_nmbuf, 0,
3959 		    "# of pending TX mbufs");
3960 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_gc", i);
3961 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3962 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_gc,
3963 		    "# of TX desc GC");
3964 	}
3965 }
3966 
3967 static int
3968 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3969 {
3970 	struct emx_softc *sc = (void *)arg1;
3971 	struct ifnet *ifp = &sc->arpcom.ac_if;
3972 	int error, throttle;
3973 
3974 	throttle = sc->int_throttle_ceil;
3975 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3976 	if (error || req->newptr == NULL)
3977 		return error;
3978 	if (throttle < 0 || throttle > 1000000000 / 256)
3979 		return EINVAL;
3980 
3981 	if (throttle) {
3982 		/*
3983 		 * Set the interrupt throttling rate in 256ns increments,
3984 		 * recalculate sysctl value assignment to get exact frequency.
3985 		 */
3986 		throttle = 1000000000 / 256 / throttle;
3987 
3988 		/* Upper 16bits of ITR is reserved and should be zero */
3989 		if (throttle & 0xffff0000)
3990 			return EINVAL;
3991 	}
3992 
3993 	ifnet_serialize_all(ifp);
3994 
3995 	if (throttle)
3996 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3997 	else
3998 		sc->int_throttle_ceil = 0;
3999 
4000 	if (ifp->if_flags & IFF_RUNNING)
4001 		emx_set_itr(sc, throttle);
4002 
4003 	ifnet_deserialize_all(ifp);
4004 
4005 	if (bootverbose) {
4006 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4007 			  sc->int_throttle_ceil);
4008 	}
4009 	return 0;
4010 }
4011 
4012 static int
4013 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
4014 {
4015 	struct emx_softc *sc = (void *)arg1;
4016 	struct ifnet *ifp = &sc->arpcom.ac_if;
4017 	struct emx_txdata *tdata = &sc->tx_data[0];
4018 	int error, segs;
4019 
4020 	segs = tdata->tx_intr_nsegs;
4021 	error = sysctl_handle_int(oidp, &segs, 0, req);
4022 	if (error || req->newptr == NULL)
4023 		return error;
4024 	if (segs <= 0)
4025 		return EINVAL;
4026 
4027 	ifnet_serialize_all(ifp);
4028 
4029 	/*
4030 	 * Don't allow tx_intr_nsegs to become:
4031 	 * o  Less the oact_tx_desc
4032 	 * o  Too large that no TX desc will cause TX interrupt to
4033 	 *    be generated (OACTIVE will never recover)
4034 	 * o  Too small that will cause tx_dd[] overflow
4035 	 */
4036 	if (segs < tdata->oact_tx_desc ||
4037 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
4038 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
4039 		error = EINVAL;
4040 	} else {
4041 		int i;
4042 
4043 		error = 0;
4044 		for (i = 0; i < sc->tx_ring_cnt; ++i)
4045 			sc->tx_data[i].tx_intr_nsegs = segs;
4046 	}
4047 
4048 	ifnet_deserialize_all(ifp);
4049 
4050 	return error;
4051 }
4052 
4053 static int
4054 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
4055 {
4056 	struct emx_softc *sc = (void *)arg1;
4057 	struct ifnet *ifp = &sc->arpcom.ac_if;
4058 	int error, nsegs, i;
4059 
4060 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
4061 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
4062 	if (error || req->newptr == NULL)
4063 		return error;
4064 
4065 	ifnet_serialize_all(ifp);
4066 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4067 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
4068 	ifnet_deserialize_all(ifp);
4069 
4070 	return 0;
4071 }
4072 
4073 static int
4074 emx_dma_alloc(struct emx_softc *sc)
4075 {
4076 	int error, i;
4077 
4078 	/*
4079 	 * Create top level busdma tag
4080 	 */
4081 	error = bus_dma_tag_create(NULL, 1, 0,
4082 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4083 			NULL, NULL,
4084 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4085 			0, &sc->parent_dtag);
4086 	if (error) {
4087 		device_printf(sc->dev, "could not create top level DMA tag\n");
4088 		return error;
4089 	}
4090 
4091 	/*
4092 	 * Allocate transmit descriptors ring and buffers
4093 	 */
4094 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4095 		error = emx_create_tx_ring(&sc->tx_data[i]);
4096 		if (error) {
4097 			device_printf(sc->dev,
4098 			    "Could not setup transmit structures\n");
4099 			return error;
4100 		}
4101 	}
4102 
4103 	/*
4104 	 * Allocate receive descriptors ring and buffers
4105 	 */
4106 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4107 		error = emx_create_rx_ring(&sc->rx_data[i]);
4108 		if (error) {
4109 			device_printf(sc->dev,
4110 			    "Could not setup receive structures\n");
4111 			return error;
4112 		}
4113 	}
4114 	return 0;
4115 }
4116 
4117 static void
4118 emx_dma_free(struct emx_softc *sc)
4119 {
4120 	int i;
4121 
4122 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4123 		emx_destroy_tx_ring(&sc->tx_data[i],
4124 		    sc->tx_data[i].num_tx_desc);
4125 	}
4126 
4127 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4128 		emx_destroy_rx_ring(&sc->rx_data[i],
4129 		    sc->rx_data[i].num_rx_desc);
4130 	}
4131 
4132 	/* Free top level busdma tag */
4133 	if (sc->parent_dtag != NULL)
4134 		bus_dma_tag_destroy(sc->parent_dtag);
4135 }
4136 
4137 static void
4138 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4139 {
4140 	struct emx_softc *sc = ifp->if_softc;
4141 
4142 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4143 }
4144 
4145 static void
4146 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4147 {
4148 	struct emx_softc *sc = ifp->if_softc;
4149 
4150 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4151 }
4152 
4153 static int
4154 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4155 {
4156 	struct emx_softc *sc = ifp->if_softc;
4157 
4158 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4159 }
4160 
4161 static void
4162 emx_serialize_skipmain(struct emx_softc *sc)
4163 {
4164 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4165 }
4166 
4167 static void
4168 emx_deserialize_skipmain(struct emx_softc *sc)
4169 {
4170 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4171 }
4172 
4173 #ifdef INVARIANTS
4174 
4175 static void
4176 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4177     boolean_t serialized)
4178 {
4179 	struct emx_softc *sc = ifp->if_softc;
4180 
4181 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4182 	    slz, serialized);
4183 }
4184 
4185 #endif	/* INVARIANTS */
4186 
4187 #ifdef IFPOLL_ENABLE
4188 
4189 static void
4190 emx_npoll_status(struct ifnet *ifp)
4191 {
4192 	struct emx_softc *sc = ifp->if_softc;
4193 	uint32_t reg_icr;
4194 
4195 	ASSERT_SERIALIZED(&sc->main_serialize);
4196 
4197 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4198 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4199 		callout_stop(&sc->timer);
4200 		sc->hw.mac.get_link_status = 1;
4201 		emx_update_link_status(sc);
4202 		callout_reset(&sc->timer, hz, emx_timer, sc);
4203 	}
4204 }
4205 
4206 static void
4207 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4208 {
4209 	struct emx_txdata *tdata = arg;
4210 
4211 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4212 
4213 	emx_tx_intr(tdata);
4214 	emx_try_txgc(tdata, 1);
4215 }
4216 
4217 static void
4218 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4219 {
4220 	struct emx_rxdata *rdata = arg;
4221 
4222 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4223 
4224 	emx_rxeof(rdata, cycle);
4225 }
4226 
4227 static void
4228 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4229 {
4230 	struct emx_softc *sc = ifp->if_softc;
4231 	int i, txr_cnt;
4232 
4233 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4234 
4235 	if (info) {
4236 		int cpu;
4237 
4238 		info->ifpi_status.status_func = emx_npoll_status;
4239 		info->ifpi_status.serializer = &sc->main_serialize;
4240 
4241 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4242 		for (i = 0; i < txr_cnt; ++i) {
4243 			struct emx_txdata *tdata = &sc->tx_data[i];
4244 
4245 			cpu = if_ringmap_cpumap(sc->tx_rmap, i);
4246 			KKASSERT(cpu < netisr_ncpus);
4247 			info->ifpi_tx[cpu].poll_func = emx_npoll_tx;
4248 			info->ifpi_tx[cpu].arg = tdata;
4249 			info->ifpi_tx[cpu].serializer = &tdata->tx_serialize;
4250 			ifsq_set_cpuid(tdata->ifsq, cpu);
4251 		}
4252 
4253 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4254 			struct emx_rxdata *rdata = &sc->rx_data[i];
4255 
4256 			cpu = if_ringmap_cpumap(sc->rx_rmap, i);
4257 			KKASSERT(cpu < netisr_ncpus);
4258 			info->ifpi_rx[cpu].poll_func = emx_npoll_rx;
4259 			info->ifpi_rx[cpu].arg = rdata;
4260 			info->ifpi_rx[cpu].serializer = &rdata->rx_serialize;
4261 		}
4262 	} else {
4263 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4264 			struct emx_txdata *tdata = &sc->tx_data[i];
4265 
4266 			ifsq_set_cpuid(tdata->ifsq,
4267 			    rman_get_cpuid(sc->intr_res));
4268 		}
4269 	}
4270 	if (ifp->if_flags & IFF_RUNNING)
4271 		emx_init(sc);
4272 }
4273 
4274 #endif	/* IFPOLL_ENABLE */
4275 
4276 static void
4277 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4278 {
4279 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4280 	if (sc->hw.mac.type == e1000_82574) {
4281 		int i;
4282 
4283 		/*
4284 		 * When using MSIX interrupts we need to
4285 		 * throttle using the EITR register
4286 		 */
4287 		for (i = 0; i < 4; ++i)
4288 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4289 	}
4290 }
4291 
4292 /*
4293  * Disable the L0s, 82574L Errata #20
4294  */
4295 static void
4296 emx_disable_aspm(struct emx_softc *sc)
4297 {
4298 	uint16_t link_cap, link_ctrl, disable;
4299 	uint8_t pcie_ptr, reg;
4300 	device_t dev = sc->dev;
4301 
4302 	switch (sc->hw.mac.type) {
4303 	case e1000_82571:
4304 	case e1000_82572:
4305 	case e1000_82573:
4306 		/*
4307 		 * 82573 specification update
4308 		 * errata #8 disable L0s
4309 		 * errata #41 disable L1
4310 		 *
4311 		 * 82571/82572 specification update
4312 		 # errata #13 disable L1
4313 		 * errata #68 disable L0s
4314 		 */
4315 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4316 		break;
4317 
4318 	case e1000_82574:
4319 		/*
4320 		 * 82574 specification update errata #20
4321 		 *
4322 		 * There is no need to disable L1
4323 		 */
4324 		disable = PCIEM_LNKCTL_ASPM_L0S;
4325 		break;
4326 
4327 	default:
4328 		return;
4329 	}
4330 
4331 	pcie_ptr = pci_get_pciecap_ptr(dev);
4332 	if (pcie_ptr == 0)
4333 		return;
4334 
4335 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4336 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4337 		return;
4338 
4339 	if (bootverbose)
4340 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4341 
4342 	reg = pcie_ptr + PCIER_LINKCTRL;
4343 	link_ctrl = pci_read_config(dev, reg, 2);
4344 	link_ctrl &= ~disable;
4345 	pci_write_config(dev, reg, link_ctrl, 2);
4346 }
4347 
4348 static int
4349 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4350 {
4351 	int iphlen, hoff, thoff, ex = 0;
4352 	struct mbuf *m;
4353 	struct ip *ip;
4354 
4355 	m = *mp;
4356 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4357 
4358 	iphlen = m->m_pkthdr.csum_iphlen;
4359 	thoff = m->m_pkthdr.csum_thlen;
4360 	hoff = m->m_pkthdr.csum_lhlen;
4361 
4362 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4363 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4364 	KASSERT(hoff > 0, ("invalid ether hlen"));
4365 
4366 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4367 		ex = 4;
4368 
4369 	if (m->m_len < hoff + iphlen + thoff + ex) {
4370 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4371 		if (m == NULL) {
4372 			*mp = NULL;
4373 			return ENOBUFS;
4374 		}
4375 		*mp = m;
4376 	}
4377 	ip = mtodoff(m, struct ip *, hoff);
4378 	ip->ip_len = 0;
4379 
4380 	return 0;
4381 }
4382 
4383 static int
4384 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4385     uint32_t *txd_upper, uint32_t *txd_lower)
4386 {
4387 	struct e1000_context_desc *TXD;
4388 	int hoff, iphlen, thoff, hlen;
4389 	int mss, pktlen, curr_txd;
4390 
4391 #ifdef EMX_TSO_DEBUG
4392 	tdata->tso_segments++;
4393 #endif
4394 
4395 	iphlen = mp->m_pkthdr.csum_iphlen;
4396 	thoff = mp->m_pkthdr.csum_thlen;
4397 	hoff = mp->m_pkthdr.csum_lhlen;
4398 	mss = mp->m_pkthdr.tso_segsz;
4399 	pktlen = mp->m_pkthdr.len;
4400 
4401 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4402 	    tdata->csum_flags == CSUM_TSO &&
4403 	    tdata->csum_iphlen == iphlen &&
4404 	    tdata->csum_lhlen == hoff &&
4405 	    tdata->csum_thlen == thoff &&
4406 	    tdata->csum_mss == mss &&
4407 	    tdata->csum_pktlen == pktlen) {
4408 		*txd_upper = tdata->csum_txd_upper;
4409 		*txd_lower = tdata->csum_txd_lower;
4410 #ifdef EMX_TSO_DEBUG
4411 		tdata->tso_ctx_reused++;
4412 #endif
4413 		return 0;
4414 	}
4415 	hlen = hoff + iphlen + thoff;
4416 
4417 	/*
4418 	 * Setup a new TSO context.
4419 	 */
4420 
4421 	curr_txd = tdata->next_avail_tx_desc;
4422 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4423 
4424 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4425 		     E1000_TXD_DTYP_D |		/* Data descr type */
4426 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4427 
4428 	/* IP and/or TCP header checksum calculation and insertion. */
4429 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4430 
4431 	/*
4432 	 * Start offset for header checksum calculation.
4433 	 * End offset for header checksum calculation.
4434 	 * Offset of place put the checksum.
4435 	 */
4436 	TXD->lower_setup.ip_fields.ipcss = hoff;
4437 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4438 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4439 
4440 	/*
4441 	 * Start offset for payload checksum calculation.
4442 	 * End offset for payload checksum calculation.
4443 	 * Offset of place to put the checksum.
4444 	 */
4445 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4446 	TXD->upper_setup.tcp_fields.tucse = 0;
4447 	TXD->upper_setup.tcp_fields.tucso =
4448 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4449 
4450 	/*
4451 	 * Payload size per packet w/o any headers.
4452 	 * Length of all headers up to payload.
4453 	 */
4454 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4455 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4456 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4457 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4458 				E1000_TXD_CMD_TSE |	/* TSE context */
4459 				E1000_TXD_CMD_IP |	/* Do IP csum */
4460 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4461 				(pktlen - hlen));	/* Total len */
4462 
4463 	/* Save the information for this TSO context */
4464 	tdata->csum_flags = CSUM_TSO;
4465 	tdata->csum_lhlen = hoff;
4466 	tdata->csum_iphlen = iphlen;
4467 	tdata->csum_thlen = thoff;
4468 	tdata->csum_mss = mss;
4469 	tdata->csum_pktlen = pktlen;
4470 	tdata->csum_txd_upper = *txd_upper;
4471 	tdata->csum_txd_lower = *txd_lower;
4472 
4473 	if (++curr_txd == tdata->num_tx_desc)
4474 		curr_txd = 0;
4475 
4476 	KKASSERT(tdata->num_tx_desc_avail > 0);
4477 	tdata->num_tx_desc_avail--;
4478 
4479 	tdata->next_avail_tx_desc = curr_txd;
4480 	return 1;
4481 }
4482 
4483 static int
4484 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4485 {
4486 	if (polling)
4487 		return sc->tx_ring_cnt;
4488 	else
4489 		return 1;
4490 }
4491 
4492 /*
4493  * Remove all descriptors from the TX ring.
4494  *
4495  * We want to clear all pending descriptors from the TX ring.  Zeroing
4496  * happens when the HW reads the regs.  We assign the ring itself as
4497  * the data of the next descriptor.  We don't care about the data we
4498  * are about to reset the HW.
4499  */
4500 static void
4501 emx_flush_tx_ring(struct emx_softc *sc)
4502 {
4503 	struct e1000_hw *hw = &sc->hw;
4504 	uint32_t tctl;
4505 	int i;
4506 
4507 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4508 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4509 
4510 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
4511 		struct emx_txdata *tdata = &sc->tx_data[i];
4512 		struct e1000_tx_desc *txd;
4513 
4514 		if (E1000_READ_REG(hw, E1000_TDLEN(i)) == 0)
4515 			continue;
4516 
4517 		txd = &tdata->tx_desc_base[tdata->next_avail_tx_desc++];
4518 		if (tdata->next_avail_tx_desc == tdata->num_tx_desc)
4519 			tdata->next_avail_tx_desc = 0;
4520 
4521 		/* Just use the ring as a dummy buffer addr */
4522 		txd->buffer_addr = tdata->tx_desc_paddr;
4523 		txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4524 		txd->upper.data = 0;
4525 
4526 		E1000_WRITE_REG(hw, E1000_TDT(i), tdata->next_avail_tx_desc);
4527 		usec_delay(250);
4528 	}
4529 }
4530 
4531 /*
4532  * Remove all descriptors from the RX rings.
4533  *
4534  * Mark all descriptors in the RX rings as consumed and disable the RX rings.
4535  */
4536 static void
4537 emx_flush_rx_ring(struct emx_softc *sc)
4538 {
4539 	struct e1000_hw	*hw = &sc->hw;
4540 	uint32_t rctl;
4541 	int i;
4542 
4543 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4544 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4545 	E1000_WRITE_FLUSH(hw);
4546 	usec_delay(150);
4547 
4548 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4549 		uint32_t rxdctl;
4550 
4551 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
4552 		/* Zero the lower 14 bits (prefetch and host thresholds) */
4553 		rxdctl &= 0xffffc000;
4554 		/*
4555 		 * Update thresholds: prefetch threshold to 31, host threshold
4556 		 * to 1 and make sure the granularity is "descriptors" and not
4557 		 * "cache lines".
4558 		 */
4559 		rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4560 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
4561 	}
4562 
4563 	/* Momentarily enable the RX rings for the changes to take effect */
4564 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4565 	E1000_WRITE_FLUSH(hw);
4566 	usec_delay(150);
4567 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4568 }
4569 
4570 /*
4571  * Remove all descriptors from the descriptor rings.
4572  *
4573  * In i219, the descriptor rings must be emptied before resetting the HW
4574  * or before changing the device state to D3 during runtime (runtime PM).
4575  *
4576  * Failure to do this will cause the HW to enter a unit hang state which
4577  * can only be released by PCI reset on the device.
4578  */
4579 static void
4580 emx_flush_txrx_ring(struct emx_softc *sc)
4581 {
4582 	struct e1000_hw *hw = &sc->hw;
4583 	device_t dev = sc->dev;
4584 	uint16_t hang_state;
4585 	uint32_t fext_nvm11, tdlen;
4586 	int i;
4587 
4588 	/*
4589 	 * First, disable MULR fix in FEXTNVM11.
4590 	 */
4591 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4592 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4593 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4594 
4595 	/*
4596 	 * Do nothing if we're not in faulty state, or if the queue is
4597 	 * empty.
4598 	 */
4599 	tdlen = 0;
4600 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4601 		tdlen += E1000_READ_REG(hw, E1000_TDLEN(i));
4602 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4603 	if ((hang_state & EMX_FLUSH_DESC_REQUIRED) && tdlen)
4604 		emx_flush_tx_ring(sc);
4605 
4606 	/*
4607 	 * Recheck, maybe the fault is caused by the RX ring.
4608 	 */
4609 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4610 	if (hang_state & EMX_FLUSH_DESC_REQUIRED)
4611 		emx_flush_rx_ring(sc);
4612 }
4613