xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 63ab6604)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_polling.h"
68 #include "opt_serializer.h"
69 #include "opt_rss.h"
70 #include "opt_emx.h"
71 
72 #include <sys/param.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/interrupt.h>
76 #include <sys/kernel.h>
77 #include <sys/ktr.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/proc.h>
81 #include <sys/rman.h>
82 #include <sys/serialize.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_NAME	"Intel(R) PRO/1000 "
124 
125 #define EMX_DEVICE(id)	\
126 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
127 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
128 
129 static const struct emx_device {
130 	uint16_t	vid;
131 	uint16_t	did;
132 	const char	*desc;
133 } emx_devices[] = {
134 	EMX_DEVICE(82571EB_COPPER),
135 	EMX_DEVICE(82571EB_FIBER),
136 	EMX_DEVICE(82571EB_SERDES),
137 	EMX_DEVICE(82571EB_SERDES_DUAL),
138 	EMX_DEVICE(82571EB_SERDES_QUAD),
139 	EMX_DEVICE(82571EB_QUAD_COPPER),
140 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
142 	EMX_DEVICE(82571EB_QUAD_FIBER),
143 	EMX_DEVICE(82571PT_QUAD_COPPER),
144 
145 	EMX_DEVICE(82572EI_COPPER),
146 	EMX_DEVICE(82572EI_FIBER),
147 	EMX_DEVICE(82572EI_SERDES),
148 	EMX_DEVICE(82572EI),
149 
150 	EMX_DEVICE(82573E),
151 	EMX_DEVICE(82573E_IAMT),
152 	EMX_DEVICE(82573L),
153 
154 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
155 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
156 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
158 
159 	EMX_DEVICE(82574L),
160 
161 	/* required last entry */
162 	EMX_DEVICE_NULL
163 };
164 
165 static int	emx_probe(device_t);
166 static int	emx_attach(device_t);
167 static int	emx_detach(device_t);
168 static int	emx_shutdown(device_t);
169 static int	emx_suspend(device_t);
170 static int	emx_resume(device_t);
171 
172 static void	emx_init(void *);
173 static void	emx_stop(struct emx_softc *);
174 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
175 static void	emx_start(struct ifnet *);
176 #ifdef DEVICE_POLLING
177 static void	emx_poll(struct ifnet *, enum poll_cmd, int);
178 #endif
179 static void	emx_watchdog(struct ifnet *);
180 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
181 static int	emx_media_change(struct ifnet *);
182 static void	emx_timer(void *);
183 
184 static void	emx_intr(void *);
185 static void	emx_rxeof(struct emx_softc *, int, int);
186 static void	emx_txeof(struct emx_softc *);
187 static void	emx_tx_collect(struct emx_softc *);
188 static void	emx_tx_purge(struct emx_softc *);
189 static void	emx_enable_intr(struct emx_softc *);
190 static void	emx_disable_intr(struct emx_softc *);
191 
192 static int	emx_dma_alloc(struct emx_softc *);
193 static void	emx_dma_free(struct emx_softc *);
194 static void	emx_init_tx_ring(struct emx_softc *);
195 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
196 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
197 static int	emx_create_tx_ring(struct emx_softc *);
198 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
199 static void	emx_destroy_tx_ring(struct emx_softc *, int);
200 static void	emx_destroy_rx_ring(struct emx_softc *,
201 		    struct emx_rxdata *, int);
202 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
203 static int	emx_encap(struct emx_softc *, struct mbuf **);
204 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
205 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
206 		    uint32_t *, uint32_t *);
207 
208 static int 	emx_is_valid_eaddr(const uint8_t *);
209 static int	emx_hw_init(struct emx_softc *);
210 static void	emx_setup_ifp(struct emx_softc *);
211 static void	emx_init_tx_unit(struct emx_softc *);
212 static void	emx_init_rx_unit(struct emx_softc *);
213 static void	emx_update_stats(struct emx_softc *);
214 static void	emx_set_promisc(struct emx_softc *);
215 static void	emx_disable_promisc(struct emx_softc *);
216 static void	emx_set_multi(struct emx_softc *);
217 static void	emx_update_link_status(struct emx_softc *);
218 static void	emx_smartspeed(struct emx_softc *);
219 
220 static void	emx_print_debug_info(struct emx_softc *);
221 static void	emx_print_nvm_info(struct emx_softc *);
222 static void	emx_print_hw_stats(struct emx_softc *);
223 
224 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
225 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
226 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
227 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
228 static void	emx_add_sysctl(struct emx_softc *);
229 
230 /* Management and WOL Support */
231 static void	emx_get_mgmt(struct emx_softc *);
232 static void	emx_rel_mgmt(struct emx_softc *);
233 static void	emx_get_hw_control(struct emx_softc *);
234 static void	emx_rel_hw_control(struct emx_softc *);
235 static void	emx_enable_wol(device_t);
236 
237 static device_method_t emx_methods[] = {
238 	/* Device interface */
239 	DEVMETHOD(device_probe,		emx_probe),
240 	DEVMETHOD(device_attach,	emx_attach),
241 	DEVMETHOD(device_detach,	emx_detach),
242 	DEVMETHOD(device_shutdown,	emx_shutdown),
243 	DEVMETHOD(device_suspend,	emx_suspend),
244 	DEVMETHOD(device_resume,	emx_resume),
245 	{ 0, 0 }
246 };
247 
248 static driver_t emx_driver = {
249 	"emx",
250 	emx_methods,
251 	sizeof(struct emx_softc),
252 };
253 
254 static devclass_t emx_devclass;
255 
256 DECLARE_DUMMY_MODULE(if_emx);
257 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
258 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, 0, 0);
259 
260 /*
261  * Tunables
262  */
263 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
264 static int	emx_rxd = EMX_DEFAULT_RXD;
265 static int	emx_txd = EMX_DEFAULT_TXD;
266 static int	emx_smart_pwr_down = FALSE;
267 
268 /* Controls whether promiscuous also shows bad packets */
269 static int	emx_debug_sbp = FALSE;
270 
271 static int	emx_82573_workaround = TRUE;
272 
273 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
274 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
275 TUNABLE_INT("hw.emx.txd", &emx_txd);
276 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
277 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
278 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
279 
280 /* Global used in WOL setup with multiport cards */
281 static int	emx_global_quad_port_a = 0;
282 
283 /* Set this to one to display debug statistics */
284 static int	emx_display_debug_stats = 0;
285 
286 #if !defined(KTR_IF_EMX)
287 #define KTR_IF_EMX	KTR_ALL
288 #endif
289 KTR_INFO_MASTER(if_emx);
290 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
291 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
292 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
293 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
294 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
295 #define logif(name)	KTR_LOG(if_emx_ ## name)
296 
297 static __inline void
298 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
299 {
300 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
301 	/* DD bit must be cleared */
302 	rxd->rxd_staterr = 0;
303 }
304 
305 static __inline void
306 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
307 {
308 	/* Ignore Checksum bit is set */
309 	if (staterr & E1000_RXD_STAT_IXSM)
310 		return;
311 
312 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
313 	    E1000_RXD_STAT_IPCS)
314 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
315 
316 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
317 	    E1000_RXD_STAT_TCPCS) {
318 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
319 					   CSUM_PSEUDO_HDR |
320 					   CSUM_FRAG_NOT_CHECKED;
321 		mp->m_pkthdr.csum_data = htons(0xffff);
322 	}
323 }
324 
325 static __inline struct pktinfo *
326 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
327 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
328 {
329 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
330 	case EMX_RXDMRQ_IPV4_TCP:
331 		pi->pi_netisr = NETISR_IP;
332 		pi->pi_flags = 0;
333 		pi->pi_l3proto = IPPROTO_TCP;
334 		break;
335 
336 	case EMX_RXDMRQ_IPV6_TCP:
337 		pi->pi_netisr = NETISR_IPV6;
338 		pi->pi_flags = 0;
339 		pi->pi_l3proto = IPPROTO_TCP;
340 		break;
341 
342 	case EMX_RXDMRQ_IPV4:
343 		if (staterr & E1000_RXD_STAT_IXSM)
344 			return NULL;
345 
346 		if ((staterr &
347 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
348 		    E1000_RXD_STAT_TCPCS) {
349 			pi->pi_netisr = NETISR_IP;
350 			pi->pi_flags = 0;
351 			pi->pi_l3proto = IPPROTO_UDP;
352 			break;
353 		}
354 		/* FALL THROUGH */
355 	default:
356 		return NULL;
357 	}
358 
359 	m->m_flags |= M_HASH;
360 	m->m_pkthdr.hash = toeplitz_hash(hash);
361 	return pi;
362 }
363 
364 static int
365 emx_probe(device_t dev)
366 {
367 	const struct emx_device *d;
368 	uint16_t vid, did;
369 
370 	vid = pci_get_vendor(dev);
371 	did = pci_get_device(dev);
372 
373 	for (d = emx_devices; d->desc != NULL; ++d) {
374 		if (vid == d->vid && did == d->did) {
375 			device_set_desc(dev, d->desc);
376 			device_set_async_attach(dev, TRUE);
377 			return 0;
378 		}
379 	}
380 	return ENXIO;
381 }
382 
383 static int
384 emx_attach(device_t dev)
385 {
386 	struct emx_softc *sc = device_get_softc(dev);
387 	struct ifnet *ifp = &sc->arpcom.ac_if;
388 	int error = 0;
389 	uint16_t eeprom_data, device_id;
390 
391 	callout_init(&sc->timer);
392 
393 	sc->dev = sc->osdep.dev = dev;
394 
395 	/*
396 	 * Determine hardware and mac type
397 	 */
398 	sc->hw.vendor_id = pci_get_vendor(dev);
399 	sc->hw.device_id = pci_get_device(dev);
400 	sc->hw.revision_id = pci_get_revid(dev);
401 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
402 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
403 
404 	if (e1000_set_mac_type(&sc->hw))
405 		return ENXIO;
406 
407 	/* Enable bus mastering */
408 	pci_enable_busmaster(dev);
409 
410 	/*
411 	 * Allocate IO memory
412 	 */
413 	sc->memory_rid = EMX_BAR_MEM;
414 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
415 					    &sc->memory_rid, RF_ACTIVE);
416 	if (sc->memory == NULL) {
417 		device_printf(dev, "Unable to allocate bus resource: memory\n");
418 		error = ENXIO;
419 		goto fail;
420 	}
421 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
422 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
423 
424 	/* XXX This is quite goofy, it is not actually used */
425 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
426 
427 	/*
428 	 * Allocate interrupt
429 	 */
430 	sc->intr_rid = 0;
431 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
432 					      RF_SHAREABLE | RF_ACTIVE);
433 	if (sc->intr_res == NULL) {
434 		device_printf(dev, "Unable to allocate bus resource: "
435 		    "interrupt\n");
436 		error = ENXIO;
437 		goto fail;
438 	}
439 
440 	/* Save PCI command register for Shared Code */
441 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
442 	sc->hw.back = &sc->osdep;
443 
444 	/* Do Shared Code initialization */
445 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
446 		device_printf(dev, "Setup of Shared code failed\n");
447 		error = ENXIO;
448 		goto fail;
449 	}
450 	e1000_get_bus_info(&sc->hw);
451 
452 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
453 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
454 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
455 
456 	/*
457 	 * Interrupt throttle rate
458 	 */
459 	if (emx_int_throttle_ceil == 0) {
460 		sc->int_throttle_ceil = 0;
461 	} else {
462 		int throttle = emx_int_throttle_ceil;
463 
464 		if (throttle < 0)
465 			throttle = EMX_DEFAULT_ITR;
466 
467 		/* Recalculate the tunable value to get the exact frequency. */
468 		throttle = 1000000000 / 256 / throttle;
469 
470 		/* Upper 16bits of ITR is reserved and should be zero */
471 		if (throttle & 0xffff0000)
472 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
473 
474 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
475 	}
476 
477 	e1000_init_script_state_82541(&sc->hw, TRUE);
478 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
479 
480 	/* Copper options */
481 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
482 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
483 		sc->hw.phy.disable_polarity_correction = FALSE;
484 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
485 	}
486 
487 	/* Set the frame limits assuming standard ethernet sized frames. */
488 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
489 	sc->min_frame_size = ETHER_MIN_LEN;
490 
491 	/* This controls when hardware reports transmit completion status. */
492 	sc->hw.mac.report_tx_early = 1;
493 
494 #ifdef RSS
495 	/* Calculate # of RX rings */
496 	if (ncpus > 1)
497 		sc->rx_ring_cnt = EMX_NRX_RING;
498 	else
499 #endif
500 		sc->rx_ring_cnt = 1;
501 	sc->rx_ring_inuse = sc->rx_ring_cnt;
502 
503 	/* Allocate RX/TX rings' busdma(9) stuffs */
504 	error = emx_dma_alloc(sc);
505 	if (error)
506 		goto fail;
507 
508 	/* Make sure we have a good EEPROM before we read from it */
509 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
510 		/*
511 		 * Some PCI-E parts fail the first check due to
512 		 * the link being in sleep state, call it again,
513 		 * if it fails a second time its a real issue.
514 		 */
515 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
516 			device_printf(dev,
517 			    "The EEPROM Checksum Is Not Valid\n");
518 			error = EIO;
519 			goto fail;
520 		}
521 	}
522 
523 	/* Initialize the hardware */
524 	error = emx_hw_init(sc);
525 	if (error) {
526 		device_printf(dev, "Unable to initialize the hardware\n");
527 		goto fail;
528 	}
529 
530 	/* Copy the permanent MAC address out of the EEPROM */
531 	if (e1000_read_mac_addr(&sc->hw) < 0) {
532 		device_printf(dev, "EEPROM read error while reading MAC"
533 		    " address\n");
534 		error = EIO;
535 		goto fail;
536 	}
537 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
538 		device_printf(dev, "Invalid MAC address\n");
539 		error = EIO;
540 		goto fail;
541 	}
542 
543 	/* Manually turn off all interrupts */
544 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
545 
546 	/* Setup OS specific network interface */
547 	emx_setup_ifp(sc);
548 
549 	/* Add sysctl tree, must after emx_setup_ifp() */
550 	emx_add_sysctl(sc);
551 
552 	/* Initialize statistics */
553 	emx_update_stats(sc);
554 
555 	sc->hw.mac.get_link_status = 1;
556 	emx_update_link_status(sc);
557 
558 	/* Indicate SOL/IDER usage */
559 	if (e1000_check_reset_block(&sc->hw)) {
560 		device_printf(dev,
561 		    "PHY reset is blocked due to SOL/IDER session.\n");
562 	}
563 
564 	/* Determine if we have to control management hardware */
565 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
566 
567 	/*
568 	 * Setup Wake-on-Lan
569 	 */
570 	switch (sc->hw.mac.type) {
571 	case e1000_82571:
572 	case e1000_80003es2lan:
573 		if (sc->hw.bus.func == 1) {
574 			e1000_read_nvm(&sc->hw,
575 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
576 		} else {
577 			e1000_read_nvm(&sc->hw,
578 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
579 		}
580 		eeprom_data &= EMX_EEPROM_APME;
581 		break;
582 
583 	default:
584 		/* APME bit in EEPROM is mapped to WUC.APME */
585 		eeprom_data =
586 		    E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
587 		break;
588 	}
589 	if (eeprom_data)
590 		sc->wol = E1000_WUFC_MAG;
591 	/*
592          * We have the eeprom settings, now apply the special cases
593          * where the eeprom may be wrong or the board won't support
594          * wake on lan on a particular port
595 	 */
596 	device_id = pci_get_device(dev);
597         switch (device_id) {
598 	case E1000_DEV_ID_82571EB_FIBER:
599 		/*
600 		 * Wake events only supported on port A for dual fiber
601 		 * regardless of eeprom setting
602 		 */
603 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
604 		    E1000_STATUS_FUNC_1)
605 			sc->wol = 0;
606 		break;
607 
608 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
609 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
610 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
611                 /* if quad port sc, disable WoL on all but port A */
612 		if (emx_global_quad_port_a != 0)
613 			sc->wol = 0;
614 		/* Reset for multiple quad port adapters */
615 		if (++emx_global_quad_port_a == 4)
616 			emx_global_quad_port_a = 0;
617                 break;
618 	}
619 
620 	/* XXX disable wol */
621 	sc->wol = 0;
622 
623 	sc->spare_tx_desc = EMX_TX_SPARE;
624 
625 	/*
626 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
627 	 * and tx_int_nsegs:
628 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
629 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
630 	 */
631 	sc->oact_tx_desc = sc->num_tx_desc / 8;
632 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
633 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
634 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
635 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
636 
637 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
638 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
639 		sc->tx_int_nsegs = sc->oact_tx_desc;
640 
641 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
642 			       &sc->intr_tag, ifp->if_serializer);
643 	if (error) {
644 		device_printf(dev, "Failed to register interrupt handler");
645 		ether_ifdetach(&sc->arpcom.ac_if);
646 		goto fail;
647 	}
648 
649 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
650 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
651 	return (0);
652 fail:
653 	emx_detach(dev);
654 	return (error);
655 }
656 
657 static int
658 emx_detach(device_t dev)
659 {
660 	struct emx_softc *sc = device_get_softc(dev);
661 
662 	if (device_is_attached(dev)) {
663 		struct ifnet *ifp = &sc->arpcom.ac_if;
664 
665 		lwkt_serialize_enter(ifp->if_serializer);
666 
667 		emx_stop(sc);
668 
669 		e1000_phy_hw_reset(&sc->hw);
670 
671 		emx_rel_mgmt(sc);
672 
673 		if (sc->hw.mac.type == e1000_82573 &&
674 		    e1000_check_mng_mode(&sc->hw))
675 			emx_rel_hw_control(sc);
676 
677 		if (sc->wol) {
678 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
679 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
680 			emx_enable_wol(dev);
681 		}
682 
683 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
684 
685 		lwkt_serialize_exit(ifp->if_serializer);
686 
687 		ether_ifdetach(ifp);
688 	}
689 	bus_generic_detach(dev);
690 
691 	if (sc->intr_res != NULL) {
692 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
693 				     sc->intr_res);
694 	}
695 
696 	if (sc->memory != NULL) {
697 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
698 				     sc->memory);
699 	}
700 
701 	emx_dma_free(sc);
702 
703 	/* Free sysctl tree */
704 	if (sc->sysctl_tree != NULL)
705 		sysctl_ctx_free(&sc->sysctl_ctx);
706 
707 	return (0);
708 }
709 
710 static int
711 emx_shutdown(device_t dev)
712 {
713 	return emx_suspend(dev);
714 }
715 
716 static int
717 emx_suspend(device_t dev)
718 {
719 	struct emx_softc *sc = device_get_softc(dev);
720 	struct ifnet *ifp = &sc->arpcom.ac_if;
721 
722 	lwkt_serialize_enter(ifp->if_serializer);
723 
724 	emx_stop(sc);
725 
726 	emx_rel_mgmt(sc);
727 
728         if (sc->hw.mac.type == e1000_82573 &&
729             e1000_check_mng_mode(&sc->hw))
730                 emx_rel_hw_control(sc);
731 
732         if (sc->wol) {
733 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
734 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
735 		emx_enable_wol(dev);
736         }
737 
738 	lwkt_serialize_exit(ifp->if_serializer);
739 
740 	return bus_generic_suspend(dev);
741 }
742 
743 static int
744 emx_resume(device_t dev)
745 {
746 	struct emx_softc *sc = device_get_softc(dev);
747 	struct ifnet *ifp = &sc->arpcom.ac_if;
748 
749 	lwkt_serialize_enter(ifp->if_serializer);
750 
751 	emx_init(sc);
752 	emx_get_mgmt(sc);
753 	if_devstart(ifp);
754 
755 	lwkt_serialize_exit(ifp->if_serializer);
756 
757 	return bus_generic_resume(dev);
758 }
759 
760 static void
761 emx_start(struct ifnet *ifp)
762 {
763 	struct emx_softc *sc = ifp->if_softc;
764 	struct mbuf *m_head;
765 
766 	ASSERT_SERIALIZED(ifp->if_serializer);
767 
768 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
769 		return;
770 
771 	if (!sc->link_active) {
772 		ifq_purge(&ifp->if_snd);
773 		return;
774 	}
775 
776 	while (!ifq_is_empty(&ifp->if_snd)) {
777 		/* Now do we at least have a minimal? */
778 		if (EMX_IS_OACTIVE(sc)) {
779 			emx_tx_collect(sc);
780 			if (EMX_IS_OACTIVE(sc)) {
781 				ifp->if_flags |= IFF_OACTIVE;
782 				sc->no_tx_desc_avail1++;
783 				break;
784 			}
785 		}
786 
787 		logif(pkt_txqueue);
788 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
789 		if (m_head == NULL)
790 			break;
791 
792 		if (emx_encap(sc, &m_head)) {
793 			ifp->if_oerrors++;
794 			emx_tx_collect(sc);
795 			continue;
796 		}
797 
798 		/* Send a copy of the frame to the BPF listener */
799 		ETHER_BPF_MTAP(ifp, m_head);
800 
801 		/* Set timeout in case hardware has problems transmitting. */
802 		ifp->if_timer = EMX_TX_TIMEOUT;
803 	}
804 }
805 
806 static int
807 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
808 {
809 	struct emx_softc *sc = ifp->if_softc;
810 	struct ifreq *ifr = (struct ifreq *)data;
811 	uint16_t eeprom_data = 0;
812 	int max_frame_size, mask, reinit;
813 	int error = 0;
814 
815 	ASSERT_SERIALIZED(ifp->if_serializer);
816 
817 	switch (command) {
818 	case SIOCSIFMTU:
819 		switch (sc->hw.mac.type) {
820 		case e1000_82573:
821 			/*
822 			 * 82573 only supports jumbo frames
823 			 * if ASPM is disabled.
824 			 */
825 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
826 				       &eeprom_data);
827 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
828 				max_frame_size = ETHER_MAX_LEN;
829 				break;
830 			}
831 			/* FALL THROUGH */
832 
833 		/* Limit Jumbo Frame size */
834 		case e1000_82571:
835 		case e1000_82572:
836 		case e1000_82574:
837 		case e1000_80003es2lan:
838 			max_frame_size = 9234;
839 			break;
840 
841 		default:
842 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
843 			break;
844 		}
845 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
846 		    ETHER_CRC_LEN) {
847 			error = EINVAL;
848 			break;
849 		}
850 
851 		ifp->if_mtu = ifr->ifr_mtu;
852 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
853 				     ETHER_CRC_LEN;
854 
855 		if (ifp->if_flags & IFF_RUNNING)
856 			emx_init(sc);
857 		break;
858 
859 	case SIOCSIFFLAGS:
860 		if (ifp->if_flags & IFF_UP) {
861 			if ((ifp->if_flags & IFF_RUNNING)) {
862 				if ((ifp->if_flags ^ sc->if_flags) &
863 				    (IFF_PROMISC | IFF_ALLMULTI)) {
864 					emx_disable_promisc(sc);
865 					emx_set_promisc(sc);
866 				}
867 			} else {
868 				emx_init(sc);
869 			}
870 		} else if (ifp->if_flags & IFF_RUNNING) {
871 			emx_stop(sc);
872 		}
873 		sc->if_flags = ifp->if_flags;
874 		break;
875 
876 	case SIOCADDMULTI:
877 	case SIOCDELMULTI:
878 		if (ifp->if_flags & IFF_RUNNING) {
879 			emx_disable_intr(sc);
880 			emx_set_multi(sc);
881 #ifdef DEVICE_POLLING
882 			if (!(ifp->if_flags & IFF_POLLING))
883 #endif
884 				emx_enable_intr(sc);
885 		}
886 		break;
887 
888 	case SIOCSIFMEDIA:
889 		/* Check SOL/IDER usage */
890 		if (e1000_check_reset_block(&sc->hw)) {
891 			device_printf(sc->dev, "Media change is"
892 			    " blocked due to SOL/IDER session.\n");
893 			break;
894 		}
895 		/* FALL THROUGH */
896 
897 	case SIOCGIFMEDIA:
898 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
899 		break;
900 
901 	case SIOCSIFCAP:
902 		reinit = 0;
903 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
904 		if (mask & IFCAP_HWCSUM) {
905 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
906 			reinit = 1;
907 		}
908 		if (mask & IFCAP_VLAN_HWTAGGING) {
909 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
910 			reinit = 1;
911 		}
912 		if (mask & IFCAP_RSS) {
913 			ifp->if_capenable ^= IFCAP_RSS;
914 			reinit = 1;
915 		}
916 		if (reinit && (ifp->if_flags & IFF_RUNNING))
917 			emx_init(sc);
918 		break;
919 
920 	default:
921 		error = ether_ioctl(ifp, command, data);
922 		break;
923 	}
924 	return (error);
925 }
926 
927 static void
928 emx_watchdog(struct ifnet *ifp)
929 {
930 	struct emx_softc *sc = ifp->if_softc;
931 
932 	ASSERT_SERIALIZED(ifp->if_serializer);
933 
934 	/*
935 	 * The timer is set to 5 every time start queues a packet.
936 	 * Then txeof keeps resetting it as long as it cleans at
937 	 * least one descriptor.
938 	 * Finally, anytime all descriptors are clean the timer is
939 	 * set to 0.
940 	 */
941 
942 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
943 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
944 		/*
945 		 * If we reach here, all TX jobs are completed and
946 		 * the TX engine should have been idled for some time.
947 		 * We don't need to call if_devstart() here.
948 		 */
949 		ifp->if_flags &= ~IFF_OACTIVE;
950 		ifp->if_timer = 0;
951 		return;
952 	}
953 
954 	/*
955 	 * If we are in this routine because of pause frames, then
956 	 * don't reset the hardware.
957 	 */
958 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
959 		ifp->if_timer = EMX_TX_TIMEOUT;
960 		return;
961 	}
962 
963 	if (e1000_check_for_link(&sc->hw) == 0)
964 		if_printf(ifp, "watchdog timeout -- resetting\n");
965 
966 	ifp->if_oerrors++;
967 	sc->watchdog_events++;
968 
969 	emx_init(sc);
970 
971 	if (!ifq_is_empty(&ifp->if_snd))
972 		if_devstart(ifp);
973 }
974 
975 static void
976 emx_init(void *xsc)
977 {
978 	struct emx_softc *sc = xsc;
979 	struct ifnet *ifp = &sc->arpcom.ac_if;
980 	device_t dev = sc->dev;
981 	uint32_t pba;
982 	int i;
983 
984 	ASSERT_SERIALIZED(ifp->if_serializer);
985 
986 	emx_stop(sc);
987 
988 	/*
989 	 * Packet Buffer Allocation (PBA)
990 	 * Writing PBA sets the receive portion of the buffer
991 	 * the remainder is used for the transmit buffer.
992 	 */
993 	switch (sc->hw.mac.type) {
994 	/* Total Packet Buffer on these is 48K */
995 	case e1000_82571:
996 	case e1000_82572:
997 	case e1000_80003es2lan:
998 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
999 		break;
1000 
1001 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1002 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1003 		break;
1004 
1005 	case e1000_82574:
1006 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1007 		break;
1008 
1009 	default:
1010 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1011 		if (sc->max_frame_size > 8192)
1012 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1013 		else
1014 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1015 	}
1016 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1017 
1018 	/* Get the latest mac address, User can use a LAA */
1019         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1020 
1021 	/* Put the address into the Receive Address Array */
1022 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1023 
1024 	/*
1025 	 * With the 82571 sc, RAR[0] may be overwritten
1026 	 * when the other port is reset, we make a duplicate
1027 	 * in RAR[14] for that eventuality, this assures
1028 	 * the interface continues to function.
1029 	 */
1030 	if (sc->hw.mac.type == e1000_82571) {
1031 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1032 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1033 		    E1000_RAR_ENTRIES - 1);
1034 	}
1035 
1036 	/* Initialize the hardware */
1037 	if (emx_hw_init(sc)) {
1038 		device_printf(dev, "Unable to initialize the hardware\n");
1039 		/* XXX emx_stop()? */
1040 		return;
1041 	}
1042 	emx_update_link_status(sc);
1043 
1044 	/* Setup VLAN support, basic and offload if available */
1045 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1046 
1047 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1048 		uint32_t ctrl;
1049 
1050 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1051 		ctrl |= E1000_CTRL_VME;
1052 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1053 	}
1054 
1055 	/* Set hardware offload abilities */
1056 	if (ifp->if_capenable & IFCAP_TXCSUM)
1057 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1058 	else
1059 		ifp->if_hwassist = 0;
1060 
1061 	/* Configure for OS presence */
1062 	emx_get_mgmt(sc);
1063 
1064 	/* Prepare transmit descriptors and buffers */
1065 	emx_init_tx_ring(sc);
1066 	emx_init_tx_unit(sc);
1067 
1068 	/* Setup Multicast table */
1069 	emx_set_multi(sc);
1070 
1071 	/*
1072 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1073 	 */
1074 	if (ifp->if_capenable & IFCAP_RSS)
1075 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1076 	else
1077 		sc->rx_ring_inuse = 1;
1078 
1079 	/* Prepare receive descriptors and buffers */
1080 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1081 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1082 			device_printf(dev,
1083 			    "Could not setup receive structures\n");
1084 			emx_stop(sc);
1085 			return;
1086 		}
1087 	}
1088 	emx_init_rx_unit(sc);
1089 
1090 	/* Don't lose promiscuous settings */
1091 	emx_set_promisc(sc);
1092 
1093 	ifp->if_flags |= IFF_RUNNING;
1094 	ifp->if_flags &= ~IFF_OACTIVE;
1095 
1096 	callout_reset(&sc->timer, hz, emx_timer, sc);
1097 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1098 
1099 	/* MSI/X configuration for 82574 */
1100 	if (sc->hw.mac.type == e1000_82574) {
1101 		int tmp;
1102 
1103 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1104 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1105 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1106 		/*
1107 		 * Set the IVAR - interrupt vector routing.
1108 		 * Each nibble represents a vector, high bit
1109 		 * is enable, other 3 bits are the MSIX table
1110 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1111 		 * Link (other) to 2, hence the magic number.
1112 		 */
1113 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1114 	}
1115 
1116 #ifdef DEVICE_POLLING
1117 	/*
1118 	 * Only enable interrupts if we are not polling, make sure
1119 	 * they are off otherwise.
1120 	 */
1121 	if (ifp->if_flags & IFF_POLLING)
1122 		emx_disable_intr(sc);
1123 	else
1124 #endif /* DEVICE_POLLING */
1125 		emx_enable_intr(sc);
1126 
1127 	/* Don't reset the phy next time init gets called */
1128 	sc->hw.phy.reset_disable = TRUE;
1129 }
1130 
1131 #ifdef DEVICE_POLLING
1132 
1133 static void
1134 emx_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1135 {
1136 	struct emx_softc *sc = ifp->if_softc;
1137 	uint32_t reg_icr;
1138 
1139 	ASSERT_SERIALIZED(ifp->if_serializer);
1140 
1141 	switch (cmd) {
1142 	case POLL_REGISTER:
1143 		emx_disable_intr(sc);
1144 		break;
1145 
1146 	case POLL_DEREGISTER:
1147 		emx_enable_intr(sc);
1148 		break;
1149 
1150 	case POLL_AND_CHECK_STATUS:
1151 		reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1152 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1153 			callout_stop(&sc->timer);
1154 			sc->hw.mac.get_link_status = 1;
1155 			emx_update_link_status(sc);
1156 			callout_reset(&sc->timer, hz, emx_timer, sc);
1157 		}
1158 		/* FALL THROUGH */
1159 	case POLL_ONLY:
1160 		if (ifp->if_flags & IFF_RUNNING) {
1161 			int i;
1162 
1163 			for (i = 0; i < sc->rx_ring_inuse; ++i)
1164 				emx_rxeof(sc, i, count);
1165 
1166 			emx_txeof(sc);
1167 			if (!ifq_is_empty(&ifp->if_snd))
1168 				if_devstart(ifp);
1169 		}
1170 		break;
1171 	}
1172 }
1173 
1174 #endif /* DEVICE_POLLING */
1175 
1176 static void
1177 emx_intr(void *xsc)
1178 {
1179 	struct emx_softc *sc = xsc;
1180 	struct ifnet *ifp = &sc->arpcom.ac_if;
1181 	uint32_t reg_icr;
1182 
1183 	logif(intr_beg);
1184 	ASSERT_SERIALIZED(ifp->if_serializer);
1185 
1186 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1187 
1188 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1189 		logif(intr_end);
1190 		return;
1191 	}
1192 
1193 	/*
1194 	 * XXX: some laptops trigger several spurious interrupts
1195 	 * on emx(4) when in the resume cycle. The ICR register
1196 	 * reports all-ones value in this case. Processing such
1197 	 * interrupts would lead to a freeze. I don't know why.
1198 	 */
1199 	if (reg_icr == 0xffffffff) {
1200 		logif(intr_end);
1201 		return;
1202 	}
1203 
1204 	if (ifp->if_flags & IFF_RUNNING) {
1205 		if (reg_icr &
1206 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1207 			int i;
1208 
1209 			for (i = 0; i < sc->rx_ring_inuse; ++i)
1210 				emx_rxeof(sc, i, -1);
1211 		}
1212 		if (reg_icr & E1000_ICR_TXDW) {
1213 			emx_txeof(sc);
1214 			if (!ifq_is_empty(&ifp->if_snd))
1215 				if_devstart(ifp);
1216 		}
1217 	}
1218 
1219 	/* Link status change */
1220 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1221 		callout_stop(&sc->timer);
1222 		sc->hw.mac.get_link_status = 1;
1223 		emx_update_link_status(sc);
1224 
1225 		/* Deal with TX cruft when link lost */
1226 		emx_tx_purge(sc);
1227 
1228 		callout_reset(&sc->timer, hz, emx_timer, sc);
1229 	}
1230 
1231 	if (reg_icr & E1000_ICR_RXO)
1232 		sc->rx_overruns++;
1233 
1234 	logif(intr_end);
1235 }
1236 
1237 static void
1238 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1239 {
1240 	struct emx_softc *sc = ifp->if_softc;
1241 
1242 	ASSERT_SERIALIZED(ifp->if_serializer);
1243 
1244 	emx_update_link_status(sc);
1245 
1246 	ifmr->ifm_status = IFM_AVALID;
1247 	ifmr->ifm_active = IFM_ETHER;
1248 
1249 	if (!sc->link_active)
1250 		return;
1251 
1252 	ifmr->ifm_status |= IFM_ACTIVE;
1253 
1254 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1255 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1256 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1257 	} else {
1258 		switch (sc->link_speed) {
1259 		case 10:
1260 			ifmr->ifm_active |= IFM_10_T;
1261 			break;
1262 		case 100:
1263 			ifmr->ifm_active |= IFM_100_TX;
1264 			break;
1265 
1266 		case 1000:
1267 			ifmr->ifm_active |= IFM_1000_T;
1268 			break;
1269 		}
1270 		if (sc->link_duplex == FULL_DUPLEX)
1271 			ifmr->ifm_active |= IFM_FDX;
1272 		else
1273 			ifmr->ifm_active |= IFM_HDX;
1274 	}
1275 }
1276 
1277 static int
1278 emx_media_change(struct ifnet *ifp)
1279 {
1280 	struct emx_softc *sc = ifp->if_softc;
1281 	struct ifmedia *ifm = &sc->media;
1282 
1283 	ASSERT_SERIALIZED(ifp->if_serializer);
1284 
1285 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1286 		return (EINVAL);
1287 
1288 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1289 	case IFM_AUTO:
1290 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1291 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1292 		break;
1293 
1294 	case IFM_1000_LX:
1295 	case IFM_1000_SX:
1296 	case IFM_1000_T:
1297 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1298 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1299 		break;
1300 
1301 	case IFM_100_TX:
1302 		sc->hw.mac.autoneg = FALSE;
1303 		sc->hw.phy.autoneg_advertised = 0;
1304 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1305 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1306 		else
1307 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1308 		break;
1309 
1310 	case IFM_10_T:
1311 		sc->hw.mac.autoneg = FALSE;
1312 		sc->hw.phy.autoneg_advertised = 0;
1313 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1314 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1315 		else
1316 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1317 		break;
1318 
1319 	default:
1320 		if_printf(ifp, "Unsupported media type\n");
1321 		break;
1322 	}
1323 
1324 	/*
1325 	 * As the speed/duplex settings my have changed we need to
1326 	 * reset the PHY.
1327 	 */
1328 	sc->hw.phy.reset_disable = FALSE;
1329 
1330 	emx_init(sc);
1331 
1332 	return (0);
1333 }
1334 
1335 static int
1336 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1337 {
1338 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1339 	bus_dmamap_t map;
1340 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1341 	struct e1000_tx_desc *ctxd = NULL;
1342 	struct mbuf *m_head = *m_headp;
1343 	uint32_t txd_upper, txd_lower, cmd = 0;
1344 	int maxsegs, nsegs, i, j, first, last = 0, error;
1345 
1346 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1347 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1348 		/*
1349 		 * Make sure that ethernet header and ip.ip_hl are in
1350 		 * contiguous memory, since if TXCSUM is enabled, later
1351 		 * TX context descriptor's setup need to access ip.ip_hl.
1352 		 */
1353 		error = emx_txcsum_pullup(sc, m_headp);
1354 		if (error) {
1355 			KKASSERT(*m_headp == NULL);
1356 			return error;
1357 		}
1358 		m_head = *m_headp;
1359 	}
1360 
1361 	txd_upper = txd_lower = 0;
1362 
1363 	/*
1364 	 * Capture the first descriptor index, this descriptor
1365 	 * will have the index of the EOP which is the only one
1366 	 * that now gets a DONE bit writeback.
1367 	 */
1368 	first = sc->next_avail_tx_desc;
1369 	tx_buffer = &sc->tx_buf[first];
1370 	tx_buffer_mapped = tx_buffer;
1371 	map = tx_buffer->map;
1372 
1373 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1374 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1375 	if (maxsegs > EMX_MAX_SCATTER)
1376 		maxsegs = EMX_MAX_SCATTER;
1377 
1378 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1379 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1380 	if (error) {
1381 		if (error == ENOBUFS)
1382 			sc->mbuf_alloc_failed++;
1383 		else
1384 			sc->no_tx_dma_setup++;
1385 
1386 		m_freem(*m_headp);
1387 		*m_headp = NULL;
1388 		return error;
1389 	}
1390         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1391 
1392 	m_head = *m_headp;
1393 	sc->tx_nsegs += nsegs;
1394 
1395 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1396 		/* TX csum offloading will consume one TX desc */
1397 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1398 	}
1399 	i = sc->next_avail_tx_desc;
1400 
1401 	/* Set up our transmit descriptors */
1402 	for (j = 0; j < nsegs; j++) {
1403 		tx_buffer = &sc->tx_buf[i];
1404 		ctxd = &sc->tx_desc_base[i];
1405 
1406 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1407 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1408 					   txd_lower | segs[j].ds_len);
1409 		ctxd->upper.data = htole32(txd_upper);
1410 
1411 		last = i;
1412 		if (++i == sc->num_tx_desc)
1413 			i = 0;
1414 	}
1415 
1416 	sc->next_avail_tx_desc = i;
1417 
1418 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1419 	sc->num_tx_desc_avail -= nsegs;
1420 
1421         /* Handle VLAN tag */
1422 	if (m_head->m_flags & M_VLANTAG) {
1423 		/* Set the vlan id. */
1424 		ctxd->upper.fields.special =
1425 		    htole16(m_head->m_pkthdr.ether_vlantag);
1426 
1427 		/* Tell hardware to add tag */
1428 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1429 	}
1430 
1431 	tx_buffer->m_head = m_head;
1432 	tx_buffer_mapped->map = tx_buffer->map;
1433 	tx_buffer->map = map;
1434 
1435 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1436 		sc->tx_nsegs = 0;
1437 
1438 		/*
1439 		 * Report Status (RS) is turned on
1440 		 * every tx_int_nsegs descriptors.
1441 		 */
1442 		cmd = E1000_TXD_CMD_RS;
1443 
1444 		/*
1445 		 * Keep track of the descriptor, which will
1446 		 * be written back by hardware.
1447 		 */
1448 		sc->tx_dd[sc->tx_dd_tail] = last;
1449 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1450 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1451 	}
1452 
1453 	/*
1454 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1455 	 */
1456 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1457 
1458 	/*
1459 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1460 	 * the E1000 that this frame is available to transmit.
1461 	 */
1462 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1463 
1464 	return (0);
1465 }
1466 
1467 static void
1468 emx_set_promisc(struct emx_softc *sc)
1469 {
1470 	struct ifnet *ifp = &sc->arpcom.ac_if;
1471 	uint32_t reg_rctl;
1472 
1473 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1474 
1475 	if (ifp->if_flags & IFF_PROMISC) {
1476 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1477 		/* Turn this on if you want to see bad packets */
1478 		if (emx_debug_sbp)
1479 			reg_rctl |= E1000_RCTL_SBP;
1480 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1481 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1482 		reg_rctl |= E1000_RCTL_MPE;
1483 		reg_rctl &= ~E1000_RCTL_UPE;
1484 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1485 	}
1486 }
1487 
1488 static void
1489 emx_disable_promisc(struct emx_softc *sc)
1490 {
1491 	uint32_t reg_rctl;
1492 
1493 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1494 
1495 	reg_rctl &= ~E1000_RCTL_UPE;
1496 	reg_rctl &= ~E1000_RCTL_MPE;
1497 	reg_rctl &= ~E1000_RCTL_SBP;
1498 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1499 }
1500 
1501 static void
1502 emx_set_multi(struct emx_softc *sc)
1503 {
1504 	struct ifnet *ifp = &sc->arpcom.ac_if;
1505 	struct ifmultiaddr *ifma;
1506 	uint32_t reg_rctl = 0;
1507 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1508 	int mcnt = 0;
1509 
1510 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1511 		if (ifma->ifma_addr->sa_family != AF_LINK)
1512 			continue;
1513 
1514 		if (mcnt == EMX_MCAST_ADDR_MAX)
1515 			break;
1516 
1517 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1518 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1519 		mcnt++;
1520 	}
1521 
1522 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1523 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1524 		reg_rctl |= E1000_RCTL_MPE;
1525 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1526 	} else {
1527 		e1000_update_mc_addr_list(&sc->hw, mta,
1528 		    mcnt, 1, sc->hw.mac.rar_entry_count);
1529 	}
1530 }
1531 
1532 /*
1533  * This routine checks for link status and updates statistics.
1534  */
1535 static void
1536 emx_timer(void *xsc)
1537 {
1538 	struct emx_softc *sc = xsc;
1539 	struct ifnet *ifp = &sc->arpcom.ac_if;
1540 
1541 	lwkt_serialize_enter(ifp->if_serializer);
1542 
1543 	emx_update_link_status(sc);
1544 	emx_update_stats(sc);
1545 
1546 	/* Reset LAA into RAR[0] on 82571 */
1547 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1548 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1549 
1550 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1551 		emx_print_hw_stats(sc);
1552 
1553 	emx_smartspeed(sc);
1554 
1555 	callout_reset(&sc->timer, hz, emx_timer, sc);
1556 
1557 	lwkt_serialize_exit(ifp->if_serializer);
1558 }
1559 
1560 static void
1561 emx_update_link_status(struct emx_softc *sc)
1562 {
1563 	struct e1000_hw *hw = &sc->hw;
1564 	struct ifnet *ifp = &sc->arpcom.ac_if;
1565 	device_t dev = sc->dev;
1566 	uint32_t link_check = 0;
1567 
1568 	/* Get the cached link value or read phy for real */
1569 	switch (hw->phy.media_type) {
1570 	case e1000_media_type_copper:
1571 		if (hw->mac.get_link_status) {
1572 			/* Do the work to read phy */
1573 			e1000_check_for_link(hw);
1574 			link_check = !hw->mac.get_link_status;
1575 			if (link_check) /* ESB2 fix */
1576 				e1000_cfg_on_link_up(hw);
1577 		} else {
1578 			link_check = TRUE;
1579 		}
1580 		break;
1581 
1582 	case e1000_media_type_fiber:
1583 		e1000_check_for_link(hw);
1584 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1585 		break;
1586 
1587 	case e1000_media_type_internal_serdes:
1588 		e1000_check_for_link(hw);
1589 		link_check = sc->hw.mac.serdes_has_link;
1590 		break;
1591 
1592 	case e1000_media_type_unknown:
1593 	default:
1594 		break;
1595 	}
1596 
1597 	/* Now check for a transition */
1598 	if (link_check && sc->link_active == 0) {
1599 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1600 		    &sc->link_duplex);
1601 
1602 		/*
1603 		 * Check if we should enable/disable SPEED_MODE bit on
1604 		 * 82571EB/82572EI
1605 		 */
1606 		if (hw->mac.type == e1000_82571 ||
1607 		    hw->mac.type == e1000_82572) {
1608 			int tarc0;
1609 
1610 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1611 			if (sc->link_speed != SPEED_1000)
1612 				tarc0 &= ~EMX_TARC_SPEED_MODE;
1613 			else
1614 				tarc0 |= EMX_TARC_SPEED_MODE;
1615 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1616 		}
1617 		if (bootverbose) {
1618 			device_printf(dev, "Link is up %d Mbps %s\n",
1619 			    sc->link_speed,
1620 			    ((sc->link_duplex == FULL_DUPLEX) ?
1621 			    "Full Duplex" : "Half Duplex"));
1622 		}
1623 		sc->link_active = 1;
1624 		sc->smartspeed = 0;
1625 		ifp->if_baudrate = sc->link_speed * 1000000;
1626 		ifp->if_link_state = LINK_STATE_UP;
1627 		if_link_state_change(ifp);
1628 	} else if (!link_check && sc->link_active == 1) {
1629 		ifp->if_baudrate = sc->link_speed = 0;
1630 		sc->link_duplex = 0;
1631 		if (bootverbose)
1632 			device_printf(dev, "Link is Down\n");
1633 		sc->link_active = 0;
1634 #if 0
1635 		/* Link down, disable watchdog */
1636 		if->if_timer = 0;
1637 #endif
1638 		ifp->if_link_state = LINK_STATE_DOWN;
1639 		if_link_state_change(ifp);
1640 	}
1641 }
1642 
1643 static void
1644 emx_stop(struct emx_softc *sc)
1645 {
1646 	struct ifnet *ifp = &sc->arpcom.ac_if;
1647 	int i;
1648 
1649 	ASSERT_SERIALIZED(ifp->if_serializer);
1650 
1651 	emx_disable_intr(sc);
1652 
1653 	callout_stop(&sc->timer);
1654 
1655 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1656 	ifp->if_timer = 0;
1657 
1658 	/*
1659 	 * Disable multiple receive queues.
1660 	 *
1661 	 * NOTE:
1662 	 * We should disable multiple receive queues before
1663 	 * resetting the hardware.
1664 	 */
1665 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1666 
1667 	e1000_reset_hw(&sc->hw);
1668 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1669 
1670 	for (i = 0; i < sc->num_tx_desc; i++) {
1671 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1672 
1673 		if (tx_buffer->m_head != NULL) {
1674 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1675 			m_freem(tx_buffer->m_head);
1676 			tx_buffer->m_head = NULL;
1677 		}
1678 	}
1679 
1680 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1681 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1682 
1683 	sc->csum_flags = 0;
1684 	sc->csum_ehlen = 0;
1685 	sc->csum_iphlen = 0;
1686 
1687 	sc->tx_dd_head = 0;
1688 	sc->tx_dd_tail = 0;
1689 	sc->tx_nsegs = 0;
1690 }
1691 
1692 static int
1693 emx_hw_init(struct emx_softc *sc)
1694 {
1695 	device_t dev = sc->dev;
1696 	uint16_t rx_buffer_size;
1697 
1698 	/* Issue a global reset */
1699 	e1000_reset_hw(&sc->hw);
1700 
1701 	/* Get control from any management/hw control */
1702 	if (sc->hw.mac.type == e1000_82573 &&
1703 	    e1000_check_mng_mode(&sc->hw))
1704 		emx_get_hw_control(sc);
1705 
1706 	/* Set up smart power down as default off on newer adapters. */
1707 	if (!emx_smart_pwr_down &&
1708 	    (sc->hw.mac.type == e1000_82571 ||
1709 	     sc->hw.mac.type == e1000_82572)) {
1710 		uint16_t phy_tmp = 0;
1711 
1712 		/* Speed up time to link by disabling smart power down. */
1713 		e1000_read_phy_reg(&sc->hw,
1714 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1715 		phy_tmp &= ~IGP02E1000_PM_SPD;
1716 		e1000_write_phy_reg(&sc->hw,
1717 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1718 	}
1719 
1720 	/*
1721 	 * These parameters control the automatic generation (Tx) and
1722 	 * response (Rx) to Ethernet PAUSE frames.
1723 	 * - High water mark should allow for at least two frames to be
1724 	 *   received after sending an XOFF.
1725 	 * - Low water mark works best when it is very near the high water mark.
1726 	 *   This allows the receiver to restart by sending XON when it has
1727 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1728 	 *   restart after one full frame is pulled from the buffer. There
1729 	 *   could be several smaller frames in the buffer and if so they will
1730 	 *   not trigger the XON until their total number reduces the buffer
1731 	 *   by 1500.
1732 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1733 	 */
1734 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1735 
1736 	sc->hw.fc.high_water = rx_buffer_size -
1737 			       roundup2(sc->max_frame_size, 1024);
1738 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1739 
1740 	if (sc->hw.mac.type == e1000_80003es2lan)
1741 		sc->hw.fc.pause_time = 0xFFFF;
1742 	else
1743 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1744 	sc->hw.fc.send_xon = TRUE;
1745 	sc->hw.fc.requested_mode = e1000_fc_full;
1746 
1747 	if (e1000_init_hw(&sc->hw) < 0) {
1748 		device_printf(dev, "Hardware Initialization Failed\n");
1749 		return (EIO);
1750 	}
1751 
1752 	e1000_check_for_link(&sc->hw);
1753 
1754 	return (0);
1755 }
1756 
1757 static void
1758 emx_setup_ifp(struct emx_softc *sc)
1759 {
1760 	struct ifnet *ifp = &sc->arpcom.ac_if;
1761 
1762 	if_initname(ifp, device_get_name(sc->dev),
1763 		    device_get_unit(sc->dev));
1764 	ifp->if_softc = sc;
1765 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1766 	ifp->if_init =  emx_init;
1767 	ifp->if_ioctl = emx_ioctl;
1768 	ifp->if_start = emx_start;
1769 #ifdef DEVICE_POLLING
1770 	ifp->if_poll = emx_poll;
1771 #endif
1772 	ifp->if_watchdog = emx_watchdog;
1773 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1774 	ifq_set_ready(&ifp->if_snd);
1775 
1776 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1777 
1778 	ifp->if_capabilities = IFCAP_HWCSUM |
1779 			       IFCAP_VLAN_HWTAGGING |
1780 			       IFCAP_VLAN_MTU;
1781 	if (sc->rx_ring_cnt > 1)
1782 		ifp->if_capabilities |= IFCAP_RSS;
1783 	ifp->if_capenable = ifp->if_capabilities;
1784 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1785 
1786 	/*
1787 	 * Tell the upper layer(s) we support long frames.
1788 	 */
1789 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1790 
1791 	/*
1792 	 * Specify the media types supported by this sc and register
1793 	 * callbacks to update media and link information
1794 	 */
1795 	ifmedia_init(&sc->media, IFM_IMASK,
1796 		     emx_media_change, emx_media_status);
1797 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1798 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1799 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1800 			    0, NULL);
1801 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1802 	} else {
1803 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1804 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1805 			    0, NULL);
1806 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1807 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1808 			    0, NULL);
1809 		if (sc->hw.phy.type != e1000_phy_ife) {
1810 			ifmedia_add(&sc->media,
1811 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1812 			ifmedia_add(&sc->media,
1813 				IFM_ETHER | IFM_1000_T, 0, NULL);
1814 		}
1815 	}
1816 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1817 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1818 }
1819 
1820 /*
1821  * Workaround for SmartSpeed on 82541 and 82547 controllers
1822  */
1823 static void
1824 emx_smartspeed(struct emx_softc *sc)
1825 {
1826 	uint16_t phy_tmp;
1827 
1828 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1829 	    sc->hw.mac.autoneg == 0 ||
1830 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1831 		return;
1832 
1833 	if (sc->smartspeed == 0) {
1834 		/*
1835 		 * If Master/Slave config fault is asserted twice,
1836 		 * we assume back-to-back
1837 		 */
1838 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1839 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1840 			return;
1841 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1842 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1843 			e1000_read_phy_reg(&sc->hw,
1844 			    PHY_1000T_CTRL, &phy_tmp);
1845 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1846 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1847 				e1000_write_phy_reg(&sc->hw,
1848 				    PHY_1000T_CTRL, phy_tmp);
1849 				sc->smartspeed++;
1850 				if (sc->hw.mac.autoneg &&
1851 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1852 				    !e1000_read_phy_reg(&sc->hw,
1853 				     PHY_CONTROL, &phy_tmp)) {
1854 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1855 						   MII_CR_RESTART_AUTO_NEG;
1856 					e1000_write_phy_reg(&sc->hw,
1857 					    PHY_CONTROL, phy_tmp);
1858 				}
1859 			}
1860 		}
1861 		return;
1862 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1863 		/* If still no link, perhaps using 2/3 pair cable */
1864 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1865 		phy_tmp |= CR_1000T_MS_ENABLE;
1866 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1867 		if (sc->hw.mac.autoneg &&
1868 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1869 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1870 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1871 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1872 		}
1873 	}
1874 
1875 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1876 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1877 		sc->smartspeed = 0;
1878 }
1879 
1880 static int
1881 emx_create_tx_ring(struct emx_softc *sc)
1882 {
1883 	device_t dev = sc->dev;
1884 	struct emx_txbuf *tx_buffer;
1885 	int error, i, tsize;
1886 
1887 	/*
1888 	 * Validate number of transmit descriptors.  It must not exceed
1889 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1890 	 */
1891 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1892 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1893 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1894 		    EMX_DEFAULT_TXD, emx_txd);
1895 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1896 	} else {
1897 		sc->num_tx_desc = emx_txd;
1898 	}
1899 
1900 	/*
1901 	 * Allocate Transmit Descriptor ring
1902 	 */
1903 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1904 			 EMX_DBA_ALIGN);
1905 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1906 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1907 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1908 				&sc->tx_desc_paddr);
1909 	if (sc->tx_desc_base == NULL) {
1910 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1911 		return ENOMEM;
1912 	}
1913 
1914 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1915 			     M_DEVBUF, M_WAITOK | M_ZERO);
1916 
1917 	/*
1918 	 * Create DMA tags for tx buffers
1919 	 */
1920 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1921 			1, 0,			/* alignment, bounds */
1922 			BUS_SPACE_MAXADDR,	/* lowaddr */
1923 			BUS_SPACE_MAXADDR,	/* highaddr */
1924 			NULL, NULL,		/* filter, filterarg */
1925 			EMX_TSO_SIZE,		/* maxsize */
1926 			EMX_MAX_SCATTER,	/* nsegments */
1927 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1928 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1929 			BUS_DMA_ONEBPAGE,	/* flags */
1930 			&sc->txtag);
1931 	if (error) {
1932 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1933 		kfree(sc->tx_buf, M_DEVBUF);
1934 		sc->tx_buf = NULL;
1935 		return error;
1936 	}
1937 
1938 	/*
1939 	 * Create DMA maps for tx buffers
1940 	 */
1941 	for (i = 0; i < sc->num_tx_desc; i++) {
1942 		tx_buffer = &sc->tx_buf[i];
1943 
1944 		error = bus_dmamap_create(sc->txtag,
1945 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1946 					  &tx_buffer->map);
1947 		if (error) {
1948 			device_printf(dev, "Unable to create TX DMA map\n");
1949 			emx_destroy_tx_ring(sc, i);
1950 			return error;
1951 		}
1952 	}
1953 	return (0);
1954 }
1955 
1956 static void
1957 emx_init_tx_ring(struct emx_softc *sc)
1958 {
1959 	/* Clear the old ring contents */
1960 	bzero(sc->tx_desc_base,
1961 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1962 
1963 	/* Reset state */
1964 	sc->next_avail_tx_desc = 0;
1965 	sc->next_tx_to_clean = 0;
1966 	sc->num_tx_desc_avail = sc->num_tx_desc;
1967 }
1968 
1969 static void
1970 emx_init_tx_unit(struct emx_softc *sc)
1971 {
1972 	uint32_t tctl, tarc, tipg = 0;
1973 	uint64_t bus_addr;
1974 
1975 	/* Setup the Base and Length of the Tx Descriptor Ring */
1976 	bus_addr = sc->tx_desc_paddr;
1977 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1978 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1979 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1980 	    (uint32_t)(bus_addr >> 32));
1981 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
1982 	    (uint32_t)bus_addr);
1983 	/* Setup the HW Tx Head and Tail descriptor pointers */
1984 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
1985 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
1986 
1987 	/* Set the default values for the Tx Inter Packet Gap timer */
1988 	switch (sc->hw.mac.type) {
1989 	case e1000_80003es2lan:
1990 		tipg = DEFAULT_82543_TIPG_IPGR1;
1991 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
1992 		    E1000_TIPG_IPGR2_SHIFT;
1993 		break;
1994 
1995 	default:
1996 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1997 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1998 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1999 		else
2000 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2001 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2002 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2003 		break;
2004 	}
2005 
2006 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2007 
2008 	/* NOTE: 0 is not allowed for TIDV */
2009 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2010 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2011 
2012 	if (sc->hw.mac.type == e1000_82571 ||
2013 	    sc->hw.mac.type == e1000_82572) {
2014 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2015 		tarc |= EMX_TARC_SPEED_MODE;
2016 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2017 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2018 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2019 		tarc |= 1;
2020 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2021 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2022 		tarc |= 1;
2023 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2024 	}
2025 
2026 	/* Program the Transmit Control Register */
2027 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2028 	tctl &= ~E1000_TCTL_CT;
2029 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2030 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2031 	tctl |= E1000_TCTL_MULR;
2032 
2033 	/* This write will effectively turn on the transmit unit. */
2034 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2035 }
2036 
2037 static void
2038 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2039 {
2040 	struct emx_txbuf *tx_buffer;
2041 	int i;
2042 
2043 	/* Free Transmit Descriptor ring */
2044 	if (sc->tx_desc_base) {
2045 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2046 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2047 				sc->tx_desc_dmap);
2048 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2049 
2050 		sc->tx_desc_base = NULL;
2051 	}
2052 
2053 	if (sc->tx_buf == NULL)
2054 		return;
2055 
2056 	for (i = 0; i < ndesc; i++) {
2057 		tx_buffer = &sc->tx_buf[i];
2058 
2059 		KKASSERT(tx_buffer->m_head == NULL);
2060 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2061 	}
2062 	bus_dma_tag_destroy(sc->txtag);
2063 
2064 	kfree(sc->tx_buf, M_DEVBUF);
2065 	sc->tx_buf = NULL;
2066 }
2067 
2068 /*
2069  * The offload context needs to be set when we transfer the first
2070  * packet of a particular protocol (TCP/UDP).  This routine has been
2071  * enhanced to deal with inserted VLAN headers.
2072  *
2073  * If the new packet's ether header length, ip header length and
2074  * csum offloading type are same as the previous packet, we should
2075  * avoid allocating a new csum context descriptor; mainly to take
2076  * advantage of the pipeline effect of the TX data read request.
2077  *
2078  * This function returns number of TX descrptors allocated for
2079  * csum context.
2080  */
2081 static int
2082 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2083 	   uint32_t *txd_upper, uint32_t *txd_lower)
2084 {
2085 	struct e1000_context_desc *TXD;
2086 	struct emx_txbuf *tx_buffer;
2087 	struct ether_vlan_header *eh;
2088 	struct ip *ip;
2089 	int curr_txd, ehdrlen, csum_flags;
2090 	uint32_t cmd, hdr_len, ip_hlen;
2091 	uint16_t etype;
2092 
2093 	/*
2094 	 * Determine where frame payload starts.
2095 	 * Jump over vlan headers if already present,
2096 	 * helpful for QinQ too.
2097 	 */
2098 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2099 		("emx_txcsum_pullup is not called (eh)?\n"));
2100 	eh = mtod(mp, struct ether_vlan_header *);
2101 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2102 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2103 			("emx_txcsum_pullup is not called (evh)?\n"));
2104 		etype = ntohs(eh->evl_proto);
2105 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2106 	} else {
2107 		etype = ntohs(eh->evl_encap_proto);
2108 		ehdrlen = ETHER_HDR_LEN;
2109 	}
2110 
2111 	/*
2112 	 * We only support TCP/UDP for IPv4 for the moment.
2113 	 * TODO: Support SCTP too when it hits the tree.
2114 	 */
2115 	if (etype != ETHERTYPE_IP)
2116 		return 0;
2117 
2118 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2119 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2120 
2121 	/* NOTE: We could only safely access ip.ip_vhl part */
2122 	ip = (struct ip *)(mp->m_data + ehdrlen);
2123 	ip_hlen = ip->ip_hl << 2;
2124 
2125 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2126 
2127 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2128 	    sc->csum_flags == csum_flags) {
2129 		/*
2130 		 * Same csum offload context as the previous packets;
2131 		 * just return.
2132 		 */
2133 		*txd_upper = sc->csum_txd_upper;
2134 		*txd_lower = sc->csum_txd_lower;
2135 		return 0;
2136 	}
2137 
2138 	/*
2139 	 * Setup a new csum offload context.
2140 	 */
2141 
2142 	curr_txd = sc->next_avail_tx_desc;
2143 	tx_buffer = &sc->tx_buf[curr_txd];
2144 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2145 
2146 	cmd = 0;
2147 
2148 	/* Setup of IP header checksum. */
2149 	if (csum_flags & CSUM_IP) {
2150 		/*
2151 		 * Start offset for header checksum calculation.
2152 		 * End offset for header checksum calculation.
2153 		 * Offset of place to put the checksum.
2154 		 */
2155 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2156 		TXD->lower_setup.ip_fields.ipcse =
2157 		    htole16(ehdrlen + ip_hlen - 1);
2158 		TXD->lower_setup.ip_fields.ipcso =
2159 		    ehdrlen + offsetof(struct ip, ip_sum);
2160 		cmd |= E1000_TXD_CMD_IP;
2161 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2162 	}
2163 	hdr_len = ehdrlen + ip_hlen;
2164 
2165 	if (csum_flags & CSUM_TCP) {
2166 		/*
2167 		 * Start offset for payload checksum calculation.
2168 		 * End offset for payload checksum calculation.
2169 		 * Offset of place to put the checksum.
2170 		 */
2171 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2172 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2173 		TXD->upper_setup.tcp_fields.tucso =
2174 		    hdr_len + offsetof(struct tcphdr, th_sum);
2175 		cmd |= E1000_TXD_CMD_TCP;
2176 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2177 	} else if (csum_flags & CSUM_UDP) {
2178 		/*
2179 		 * Start offset for header checksum calculation.
2180 		 * End offset for header checksum calculation.
2181 		 * Offset of place to put the checksum.
2182 		 */
2183 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2184 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2185 		TXD->upper_setup.tcp_fields.tucso =
2186 		    hdr_len + offsetof(struct udphdr, uh_sum);
2187 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2188 	}
2189 
2190 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2191 		     E1000_TXD_DTYP_D;		/* Data descr */
2192 
2193 	/* Save the information for this csum offloading context */
2194 	sc->csum_ehlen = ehdrlen;
2195 	sc->csum_iphlen = ip_hlen;
2196 	sc->csum_flags = csum_flags;
2197 	sc->csum_txd_upper = *txd_upper;
2198 	sc->csum_txd_lower = *txd_lower;
2199 
2200 	TXD->tcp_seg_setup.data = htole32(0);
2201 	TXD->cmd_and_length =
2202 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2203 
2204 	if (++curr_txd == sc->num_tx_desc)
2205 		curr_txd = 0;
2206 
2207 	KKASSERT(sc->num_tx_desc_avail > 0);
2208 	sc->num_tx_desc_avail--;
2209 
2210 	sc->next_avail_tx_desc = curr_txd;
2211 	return 1;
2212 }
2213 
2214 static int
2215 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2216 {
2217 	struct mbuf *m = *m0;
2218 	struct ether_header *eh;
2219 	int len;
2220 
2221 	sc->tx_csum_try_pullup++;
2222 
2223 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2224 
2225 	if (__predict_false(!M_WRITABLE(m))) {
2226 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2227 			sc->tx_csum_drop1++;
2228 			m_freem(m);
2229 			*m0 = NULL;
2230 			return ENOBUFS;
2231 		}
2232 		eh = mtod(m, struct ether_header *);
2233 
2234 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2235 			len += EVL_ENCAPLEN;
2236 
2237 		if (m->m_len < len) {
2238 			sc->tx_csum_drop2++;
2239 			m_freem(m);
2240 			*m0 = NULL;
2241 			return ENOBUFS;
2242 		}
2243 		return 0;
2244 	}
2245 
2246 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2247 		sc->tx_csum_pullup1++;
2248 		m = m_pullup(m, ETHER_HDR_LEN);
2249 		if (m == NULL) {
2250 			sc->tx_csum_pullup1_failed++;
2251 			*m0 = NULL;
2252 			return ENOBUFS;
2253 		}
2254 		*m0 = m;
2255 	}
2256 	eh = mtod(m, struct ether_header *);
2257 
2258 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2259 		len += EVL_ENCAPLEN;
2260 
2261 	if (m->m_len < len) {
2262 		sc->tx_csum_pullup2++;
2263 		m = m_pullup(m, len);
2264 		if (m == NULL) {
2265 			sc->tx_csum_pullup2_failed++;
2266 			*m0 = NULL;
2267 			return ENOBUFS;
2268 		}
2269 		*m0 = m;
2270 	}
2271 	return 0;
2272 }
2273 
2274 static void
2275 emx_txeof(struct emx_softc *sc)
2276 {
2277 	struct ifnet *ifp = &sc->arpcom.ac_if;
2278 	struct emx_txbuf *tx_buffer;
2279 	int first, num_avail;
2280 
2281 	if (sc->tx_dd_head == sc->tx_dd_tail)
2282 		return;
2283 
2284 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2285 		return;
2286 
2287 	num_avail = sc->num_tx_desc_avail;
2288 	first = sc->next_tx_to_clean;
2289 
2290 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2291 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2292 		struct e1000_tx_desc *tx_desc;
2293 
2294 		tx_desc = &sc->tx_desc_base[dd_idx];
2295 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2296 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2297 
2298 			if (++dd_idx == sc->num_tx_desc)
2299 				dd_idx = 0;
2300 
2301 			while (first != dd_idx) {
2302 				logif(pkt_txclean);
2303 
2304 				num_avail++;
2305 
2306 				tx_buffer = &sc->tx_buf[first];
2307 				if (tx_buffer->m_head) {
2308 					ifp->if_opackets++;
2309 					bus_dmamap_unload(sc->txtag,
2310 							  tx_buffer->map);
2311 					m_freem(tx_buffer->m_head);
2312 					tx_buffer->m_head = NULL;
2313 				}
2314 
2315 				if (++first == sc->num_tx_desc)
2316 					first = 0;
2317 			}
2318 		} else {
2319 			break;
2320 		}
2321 	}
2322 	sc->next_tx_to_clean = first;
2323 	sc->num_tx_desc_avail = num_avail;
2324 
2325 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2326 		sc->tx_dd_head = 0;
2327 		sc->tx_dd_tail = 0;
2328 	}
2329 
2330 	if (!EMX_IS_OACTIVE(sc)) {
2331 		ifp->if_flags &= ~IFF_OACTIVE;
2332 
2333 		/* All clean, turn off the timer */
2334 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2335 			ifp->if_timer = 0;
2336 	}
2337 }
2338 
2339 static void
2340 emx_tx_collect(struct emx_softc *sc)
2341 {
2342 	struct ifnet *ifp = &sc->arpcom.ac_if;
2343 	struct emx_txbuf *tx_buffer;
2344 	int tdh, first, num_avail, dd_idx = -1;
2345 
2346 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2347 		return;
2348 
2349 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2350 	if (tdh == sc->next_tx_to_clean)
2351 		return;
2352 
2353 	if (sc->tx_dd_head != sc->tx_dd_tail)
2354 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2355 
2356 	num_avail = sc->num_tx_desc_avail;
2357 	first = sc->next_tx_to_clean;
2358 
2359 	while (first != tdh) {
2360 		logif(pkt_txclean);
2361 
2362 		num_avail++;
2363 
2364 		tx_buffer = &sc->tx_buf[first];
2365 		if (tx_buffer->m_head) {
2366 			ifp->if_opackets++;
2367 			bus_dmamap_unload(sc->txtag,
2368 					  tx_buffer->map);
2369 			m_freem(tx_buffer->m_head);
2370 			tx_buffer->m_head = NULL;
2371 		}
2372 
2373 		if (first == dd_idx) {
2374 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2375 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2376 				sc->tx_dd_head = 0;
2377 				sc->tx_dd_tail = 0;
2378 				dd_idx = -1;
2379 			} else {
2380 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2381 			}
2382 		}
2383 
2384 		if (++first == sc->num_tx_desc)
2385 			first = 0;
2386 	}
2387 	sc->next_tx_to_clean = first;
2388 	sc->num_tx_desc_avail = num_avail;
2389 
2390 	if (!EMX_IS_OACTIVE(sc)) {
2391 		ifp->if_flags &= ~IFF_OACTIVE;
2392 
2393 		/* All clean, turn off the timer */
2394 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2395 			ifp->if_timer = 0;
2396 	}
2397 }
2398 
2399 /*
2400  * When Link is lost sometimes there is work still in the TX ring
2401  * which will result in a watchdog, rather than allow that do an
2402  * attempted cleanup and then reinit here.  Note that this has been
2403  * seens mostly with fiber adapters.
2404  */
2405 static void
2406 emx_tx_purge(struct emx_softc *sc)
2407 {
2408 	struct ifnet *ifp = &sc->arpcom.ac_if;
2409 
2410 	if (!sc->link_active && ifp->if_timer) {
2411 		emx_tx_collect(sc);
2412 		if (ifp->if_timer) {
2413 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2414 			ifp->if_timer = 0;
2415 			emx_init(sc);
2416 		}
2417 	}
2418 }
2419 
2420 static int
2421 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2422 {
2423 	struct mbuf *m;
2424 	bus_dma_segment_t seg;
2425 	bus_dmamap_t map;
2426 	struct emx_rxbuf *rx_buffer;
2427 	int error, nseg;
2428 
2429 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2430 	if (m == NULL) {
2431 		rdata->mbuf_cluster_failed++;
2432 		if (init) {
2433 			if_printf(&sc->arpcom.ac_if,
2434 				  "Unable to allocate RX mbuf\n");
2435 		}
2436 		return (ENOBUFS);
2437 	}
2438 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2439 
2440 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2441 		m_adj(m, ETHER_ALIGN);
2442 
2443 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2444 			rdata->rx_sparemap, m,
2445 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2446 	if (error) {
2447 		m_freem(m);
2448 		if (init) {
2449 			if_printf(&sc->arpcom.ac_if,
2450 				  "Unable to load RX mbuf\n");
2451 		}
2452 		return (error);
2453 	}
2454 
2455 	rx_buffer = &rdata->rx_buf[i];
2456 	if (rx_buffer->m_head != NULL)
2457 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2458 
2459 	map = rx_buffer->map;
2460 	rx_buffer->map = rdata->rx_sparemap;
2461 	rdata->rx_sparemap = map;
2462 
2463 	rx_buffer->m_head = m;
2464 	rx_buffer->paddr = seg.ds_addr;
2465 
2466 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2467 	return (0);
2468 }
2469 
2470 static int
2471 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2472 {
2473 	device_t dev = sc->dev;
2474 	struct emx_rxbuf *rx_buffer;
2475 	int i, error, rsize;
2476 
2477 	/*
2478 	 * Validate number of receive descriptors.  It must not exceed
2479 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2480 	 */
2481 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2482 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2483 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2484 		    EMX_DEFAULT_RXD, emx_rxd);
2485 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2486 	} else {
2487 		rdata->num_rx_desc = emx_rxd;
2488 	}
2489 
2490 	/*
2491 	 * Allocate Receive Descriptor ring
2492 	 */
2493 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2494 			 EMX_DBA_ALIGN);
2495 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2496 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2497 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2498 				&rdata->rx_desc_paddr);
2499 	if (rdata->rx_desc == NULL) {
2500 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2501 		return ENOMEM;
2502 	}
2503 
2504 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2505 				M_DEVBUF, M_WAITOK | M_ZERO);
2506 
2507 	/*
2508 	 * Create DMA tag for rx buffers
2509 	 */
2510 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2511 			1, 0,			/* alignment, bounds */
2512 			BUS_SPACE_MAXADDR,	/* lowaddr */
2513 			BUS_SPACE_MAXADDR,	/* highaddr */
2514 			NULL, NULL,		/* filter, filterarg */
2515 			MCLBYTES,		/* maxsize */
2516 			1,			/* nsegments */
2517 			MCLBYTES,		/* maxsegsize */
2518 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2519 			&rdata->rxtag);
2520 	if (error) {
2521 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2522 		kfree(rdata->rx_buf, M_DEVBUF);
2523 		rdata->rx_buf = NULL;
2524 		return error;
2525 	}
2526 
2527 	/*
2528 	 * Create spare DMA map for rx buffers
2529 	 */
2530 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2531 				  &rdata->rx_sparemap);
2532 	if (error) {
2533 		device_printf(dev, "Unable to create spare RX DMA map\n");
2534 		bus_dma_tag_destroy(rdata->rxtag);
2535 		kfree(rdata->rx_buf, M_DEVBUF);
2536 		rdata->rx_buf = NULL;
2537 		return error;
2538 	}
2539 
2540 	/*
2541 	 * Create DMA maps for rx buffers
2542 	 */
2543 	for (i = 0; i < rdata->num_rx_desc; i++) {
2544 		rx_buffer = &rdata->rx_buf[i];
2545 
2546 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2547 					  &rx_buffer->map);
2548 		if (error) {
2549 			device_printf(dev, "Unable to create RX DMA map\n");
2550 			emx_destroy_rx_ring(sc, rdata, i);
2551 			return error;
2552 		}
2553 	}
2554 	return (0);
2555 }
2556 
2557 static void
2558 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2559 {
2560 	int i;
2561 
2562 	for (i = 0; i < rdata->num_rx_desc; i++) {
2563 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2564 
2565 		if (rx_buffer->m_head != NULL) {
2566 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2567 			m_freem(rx_buffer->m_head);
2568 			rx_buffer->m_head = NULL;
2569 		}
2570 	}
2571 
2572 	if (rdata->fmp != NULL)
2573 		m_freem(rdata->fmp);
2574 	rdata->fmp = NULL;
2575 	rdata->lmp = NULL;
2576 }
2577 
2578 static int
2579 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2580 {
2581 	int i, error;
2582 
2583 	/* Reset descriptor ring */
2584 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2585 
2586 	/* Allocate new ones. */
2587 	for (i = 0; i < rdata->num_rx_desc; i++) {
2588 		error = emx_newbuf(sc, rdata, i, 1);
2589 		if (error)
2590 			return (error);
2591 	}
2592 
2593 	/* Setup our descriptor pointers */
2594 	rdata->next_rx_desc_to_check = 0;
2595 
2596 	return (0);
2597 }
2598 
2599 static void
2600 emx_init_rx_unit(struct emx_softc *sc)
2601 {
2602 	struct ifnet *ifp = &sc->arpcom.ac_if;
2603 	uint64_t bus_addr;
2604 	uint32_t rctl, rxcsum, rfctl;
2605 	int i;
2606 
2607 	/*
2608 	 * Make sure receives are disabled while setting
2609 	 * up the descriptor ring
2610 	 */
2611 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2612 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2613 
2614 	/*
2615 	 * Set the interrupt throttling rate. Value is calculated
2616 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2617 	 */
2618 	if (sc->int_throttle_ceil) {
2619 		E1000_WRITE_REG(&sc->hw, E1000_ITR,
2620 			1000000000 / 256 / sc->int_throttle_ceil);
2621 	} else {
2622 		E1000_WRITE_REG(&sc->hw, E1000_ITR, 0);
2623 	}
2624 
2625 	/* Use extended RX descriptor */
2626 	rfctl = E1000_RFCTL_EXTEN;
2627 
2628 	/* Disable accelerated ackknowledge */
2629 	if (sc->hw.mac.type == e1000_82574)
2630 		rfctl |= E1000_RFCTL_ACK_DIS;
2631 
2632 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2633 
2634 	/* Setup the Base and Length of the Rx Descriptor Ring */
2635 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2636 		struct emx_rxdata *rdata = &sc->rx_data[i];
2637 
2638 		bus_addr = rdata->rx_desc_paddr;
2639 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2640 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2641 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2642 		    (uint32_t)(bus_addr >> 32));
2643 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2644 		    (uint32_t)bus_addr);
2645 	}
2646 
2647 	/* Setup the Receive Control Register */
2648 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2649 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2650 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2651 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2652 
2653 	/* Make sure VLAN Filters are off */
2654 	rctl &= ~E1000_RCTL_VFE;
2655 
2656 	/* Don't store bad paket */
2657 	rctl &= ~E1000_RCTL_SBP;
2658 
2659 	/* MCLBYTES */
2660 	rctl |= E1000_RCTL_SZ_2048;
2661 
2662 	if (ifp->if_mtu > ETHERMTU)
2663 		rctl |= E1000_RCTL_LPE;
2664 	else
2665 		rctl &= ~E1000_RCTL_LPE;
2666 
2667 	/*
2668 	 * Receive Checksum Offload for TCP and UDP
2669 	 *
2670 	 * Checksum offloading is also enabled if multiple receive
2671 	 * queue is to be supported, since we need it to figure out
2672 	 * packet type.
2673 	 */
2674 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2675 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2676 
2677 		/*
2678 		 * NOTE:
2679 		 * PCSD must be enabled to enable multiple
2680 		 * receive queues.
2681 		 */
2682 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2683 			  E1000_RXCSUM_PCSD;
2684 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2685 	}
2686 
2687 	/*
2688 	 * Configure multiple receive queue (RSS)
2689 	 */
2690 	if (ifp->if_capenable & IFCAP_RSS) {
2691 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2692 		uint32_t reta;
2693 
2694 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2695 			("invalid number of RX ring (%d)",
2696 			 sc->rx_ring_inuse));
2697 
2698 		/*
2699 		 * NOTE:
2700 		 * When we reach here, RSS has already been disabled
2701 		 * in emx_stop(), so we could safely configure RSS key
2702 		 * and redirect table.
2703 		 */
2704 
2705 		/*
2706 		 * Configure RSS key
2707 		 */
2708 		toeplitz_get_key(key, sizeof(key));
2709 		for (i = 0; i < EMX_NRSSRK; ++i) {
2710 			uint32_t rssrk;
2711 
2712 			rssrk = EMX_RSSRK_VAL(key, i);
2713 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2714 
2715 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2716 		}
2717 
2718 		/*
2719 		 * Configure RSS redirect table in following fashion:
2720 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2721 		 */
2722 		reta = 0;
2723 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2724 			uint32_t q;
2725 
2726 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2727 			reta |= q << (8 * i);
2728 		}
2729 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2730 
2731 		for (i = 0; i < EMX_NRETA; ++i)
2732 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2733 
2734 		/*
2735 		 * Enable multiple receive queues.
2736 		 * Enable IPv4 RSS standard hash functions.
2737 		 * Disable RSS interrupt.
2738 		 */
2739 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2740 				E1000_MRQC_ENABLE_RSS_2Q |
2741 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2742 				E1000_MRQC_RSS_FIELD_IPV4);
2743 	}
2744 
2745 	/*
2746 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2747 	 * long latencies are observed, like Lenovo X60. This
2748 	 * change eliminates the problem, but since having positive
2749 	 * values in RDTR is a known source of problems on other
2750 	 * platforms another solution is being sought.
2751 	 */
2752 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2753 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2754 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2755 	}
2756 
2757 	/*
2758 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2759 	 */
2760 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2761 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2762 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2763 		    sc->rx_data[i].num_rx_desc - 1);
2764 	}
2765 
2766 	/* Enable Receives */
2767 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2768 }
2769 
2770 static void
2771 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2772 {
2773 	struct emx_rxbuf *rx_buffer;
2774 	int i;
2775 
2776 	/* Free Receive Descriptor ring */
2777 	if (rdata->rx_desc) {
2778 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2779 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2780 				rdata->rx_desc_dmap);
2781 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2782 
2783 		rdata->rx_desc = NULL;
2784 	}
2785 
2786 	if (rdata->rx_buf == NULL)
2787 		return;
2788 
2789 	for (i = 0; i < ndesc; i++) {
2790 		rx_buffer = &rdata->rx_buf[i];
2791 
2792 		KKASSERT(rx_buffer->m_head == NULL);
2793 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2794 	}
2795 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2796 	bus_dma_tag_destroy(rdata->rxtag);
2797 
2798 	kfree(rdata->rx_buf, M_DEVBUF);
2799 	rdata->rx_buf = NULL;
2800 }
2801 
2802 static void
2803 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2804 {
2805 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2806 	struct ifnet *ifp = &sc->arpcom.ac_if;
2807 	uint32_t staterr;
2808 	emx_rxdesc_t *current_desc;
2809 	struct mbuf *mp;
2810 	int i;
2811 	struct mbuf_chain chain[MAXCPU];
2812 
2813 	i = rdata->next_rx_desc_to_check;
2814 	current_desc = &rdata->rx_desc[i];
2815 	staterr = le32toh(current_desc->rxd_staterr);
2816 
2817 	if (!(staterr & E1000_RXD_STAT_DD))
2818 		return;
2819 
2820 	ether_input_chain_init(chain);
2821 
2822 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2823 		struct pktinfo *pi = NULL, pi0;
2824 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2825 		struct mbuf *m = NULL;
2826 		int eop, len;
2827 
2828 		logif(pkt_receive);
2829 
2830 		mp = rx_buf->m_head;
2831 
2832 		/*
2833 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2834 		 * needs to access the last received byte in the mbuf.
2835 		 */
2836 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2837 				BUS_DMASYNC_POSTREAD);
2838 
2839 		len = le16toh(current_desc->rxd_length);
2840 		if (staterr & E1000_RXD_STAT_EOP) {
2841 			count--;
2842 			eop = 1;
2843 		} else {
2844 			eop = 0;
2845 		}
2846 
2847 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2848 			uint16_t vlan = 0;
2849 			uint32_t mrq, rss_hash;
2850 
2851 			/*
2852 			 * Save several necessary information,
2853 			 * before emx_newbuf() destroy it.
2854 			 */
2855 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2856 				vlan = le16toh(current_desc->rxd_vlan);
2857 
2858 			mrq = le32toh(current_desc->rxd_mrq);
2859 			rss_hash = le32toh(current_desc->rxd_rss);
2860 
2861 			EMX_RSS_DPRINTF(sc, 10,
2862 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2863 			    ring_idx, mrq, rss_hash);
2864 
2865 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2866 				ifp->if_iqdrops++;
2867 				goto discard;
2868 			}
2869 
2870 			/* Assign correct length to the current fragment */
2871 			mp->m_len = len;
2872 
2873 			if (rdata->fmp == NULL) {
2874 				mp->m_pkthdr.len = len;
2875 				rdata->fmp = mp; /* Store the first mbuf */
2876 				rdata->lmp = mp;
2877 			} else {
2878 				/*
2879 				 * Chain mbuf's together
2880 				 */
2881 				rdata->lmp->m_next = mp;
2882 				rdata->lmp = rdata->lmp->m_next;
2883 				rdata->fmp->m_pkthdr.len += len;
2884 			}
2885 
2886 			if (eop) {
2887 				rdata->fmp->m_pkthdr.rcvif = ifp;
2888 				ifp->if_ipackets++;
2889 
2890 				if (ifp->if_capenable & IFCAP_RXCSUM)
2891 					emx_rxcsum(staterr, rdata->fmp);
2892 
2893 				if (staterr & E1000_RXD_STAT_VP) {
2894 					rdata->fmp->m_pkthdr.ether_vlantag =
2895 					    vlan;
2896 					rdata->fmp->m_flags |= M_VLANTAG;
2897 				}
2898 				m = rdata->fmp;
2899 				rdata->fmp = NULL;
2900 				rdata->lmp = NULL;
2901 
2902 				if (ifp->if_capenable & IFCAP_RSS) {
2903 					pi = emx_rssinfo(m, &pi0, mrq,
2904 							 rss_hash, staterr);
2905 				}
2906 #ifdef EMX_RSS_DEBUG
2907 				rdata->rx_pkts++;
2908 #endif
2909 			}
2910 		} else {
2911 			ifp->if_ierrors++;
2912 discard:
2913 			emx_setup_rxdesc(current_desc, rx_buf);
2914 			if (rdata->fmp != NULL) {
2915 				m_freem(rdata->fmp);
2916 				rdata->fmp = NULL;
2917 				rdata->lmp = NULL;
2918 			}
2919 			m = NULL;
2920 		}
2921 
2922 		if (m != NULL)
2923 			ether_input_chain(ifp, m, pi, chain);
2924 
2925 		/* Advance our pointers to the next descriptor. */
2926 		if (++i == rdata->num_rx_desc)
2927 			i = 0;
2928 
2929 		current_desc = &rdata->rx_desc[i];
2930 		staterr = le32toh(current_desc->rxd_staterr);
2931 	}
2932 	rdata->next_rx_desc_to_check = i;
2933 
2934 	ether_input_dispatch(chain);
2935 
2936 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2937 	if (--i < 0)
2938 		i = rdata->num_rx_desc - 1;
2939 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2940 }
2941 
2942 static void
2943 emx_enable_intr(struct emx_softc *sc)
2944 {
2945 	lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
2946 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2947 }
2948 
2949 static void
2950 emx_disable_intr(struct emx_softc *sc)
2951 {
2952 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2953 	lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
2954 }
2955 
2956 /*
2957  * Bit of a misnomer, what this really means is
2958  * to enable OS management of the system... aka
2959  * to disable special hardware management features
2960  */
2961 static void
2962 emx_get_mgmt(struct emx_softc *sc)
2963 {
2964 	/* A shared code workaround */
2965 	if (sc->has_manage) {
2966 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2967 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2968 
2969 		/* disable hardware interception of ARP */
2970 		manc &= ~(E1000_MANC_ARP_EN);
2971 
2972                 /* enable receiving management packets to the host */
2973 		manc |= E1000_MANC_EN_MNG2HOST;
2974 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2975 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2976 		manc2h |= E1000_MNG2HOST_PORT_623;
2977 		manc2h |= E1000_MNG2HOST_PORT_664;
2978 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2979 
2980 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2981 	}
2982 }
2983 
2984 /*
2985  * Give control back to hardware management
2986  * controller if there is one.
2987  */
2988 static void
2989 emx_rel_mgmt(struct emx_softc *sc)
2990 {
2991 	if (sc->has_manage) {
2992 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2993 
2994 		/* re-enable hardware interception of ARP */
2995 		manc |= E1000_MANC_ARP_EN;
2996 		manc &= ~E1000_MANC_EN_MNG2HOST;
2997 
2998 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2999 	}
3000 }
3001 
3002 /*
3003  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3004  * For ASF and Pass Through versions of f/w this means that
3005  * the driver is loaded.  For AMT version (only with 82573)
3006  * of the f/w this means that the network i/f is open.
3007  */
3008 static void
3009 emx_get_hw_control(struct emx_softc *sc)
3010 {
3011 	uint32_t ctrl_ext, swsm;
3012 
3013 	/* Let firmware know the driver has taken over */
3014 	switch (sc->hw.mac.type) {
3015 	case e1000_82573:
3016 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3017 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3018 		    swsm | E1000_SWSM_DRV_LOAD);
3019 		break;
3020 
3021 	case e1000_82571:
3022 	case e1000_82572:
3023 	case e1000_80003es2lan:
3024 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3025 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3026 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3027 		break;
3028 
3029 	default:
3030 		break;
3031 	}
3032 }
3033 
3034 /*
3035  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3036  * For ASF and Pass Through versions of f/w this means that the
3037  * driver is no longer loaded.  For AMT version (only with 82573)
3038  * of the f/w this means that the network i/f is closed.
3039  */
3040 static void
3041 emx_rel_hw_control(struct emx_softc *sc)
3042 {
3043 	uint32_t ctrl_ext, swsm;
3044 
3045 	/* Let firmware taken over control of h/w */
3046 	switch (sc->hw.mac.type) {
3047 	case e1000_82573:
3048 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3049 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3050 		    swsm & ~E1000_SWSM_DRV_LOAD);
3051 		break;
3052 
3053 	case e1000_82571:
3054 	case e1000_82572:
3055 	case e1000_80003es2lan:
3056 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3057 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3058 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3059 		break;
3060 
3061 	default:
3062 		break;
3063 	}
3064 }
3065 
3066 static int
3067 emx_is_valid_eaddr(const uint8_t *addr)
3068 {
3069 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3070 
3071 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3072 		return (FALSE);
3073 
3074 	return (TRUE);
3075 }
3076 
3077 /*
3078  * Enable PCI Wake On Lan capability
3079  */
3080 void
3081 emx_enable_wol(device_t dev)
3082 {
3083 	uint16_t cap, status;
3084 	uint8_t id;
3085 
3086 	/* First find the capabilities pointer*/
3087 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3088 
3089 	/* Read the PM Capabilities */
3090 	id = pci_read_config(dev, cap, 1);
3091 	if (id != PCIY_PMG)     /* Something wrong */
3092 		return;
3093 
3094 	/*
3095 	 * OK, we have the power capabilities,
3096 	 * so now get the status register
3097 	 */
3098 	cap += PCIR_POWER_STATUS;
3099 	status = pci_read_config(dev, cap, 2);
3100 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3101 	pci_write_config(dev, cap, status, 2);
3102 }
3103 
3104 static void
3105 emx_update_stats(struct emx_softc *sc)
3106 {
3107 	struct ifnet *ifp = &sc->arpcom.ac_if;
3108 
3109 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3110 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3111 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3112 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3113 	}
3114 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3115 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3116 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3117 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3118 
3119 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3120 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3121 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3122 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3123 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3124 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3125 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3126 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3127 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3128 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3129 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3130 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3131 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3132 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3133 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3134 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3135 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3136 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3137 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3138 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3139 
3140 	/* For the 64-bit byte counters the low dword must be read first. */
3141 	/* Both registers clear on the read of the high dword */
3142 
3143 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3144 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3145 
3146 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3147 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3148 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3149 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3150 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3151 
3152 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3153 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3154 
3155 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3156 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3157 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3158 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3159 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3160 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3161 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3162 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3163 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3164 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3165 
3166 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3167 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3168 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3169 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3170 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3171 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3172 
3173 	ifp->if_collisions = sc->stats.colc;
3174 
3175 	/* Rx Errors */
3176 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3177 			  sc->stats.crcerrs + sc->stats.algnerrc +
3178 			  sc->stats.ruc + sc->stats.roc +
3179 			  sc->stats.mpc + sc->stats.cexterr;
3180 
3181 	/* Tx Errors */
3182 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3183 			  sc->watchdog_events;
3184 }
3185 
3186 static void
3187 emx_print_debug_info(struct emx_softc *sc)
3188 {
3189 	device_t dev = sc->dev;
3190 	uint8_t *hw_addr = sc->hw.hw_addr;
3191 
3192 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3193 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3194 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3195 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3196 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3197 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3198 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3199 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3200 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3201 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3202 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3203 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3204 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3205 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3206 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3207 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3208 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3209 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3210 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3211 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3212 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3213 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3214 	    sc->num_tx_desc_avail);
3215 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3216 	    sc->no_tx_desc_avail1);
3217 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3218 	    sc->no_tx_desc_avail2);
3219 	device_printf(dev, "Std mbuf failed = %ld\n",
3220 	    sc->mbuf_alloc_failed);
3221 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3222 	    sc->rx_data[0].mbuf_cluster_failed);
3223 	device_printf(dev, "Driver dropped packets = %ld\n",
3224 	    sc->dropped_pkts);
3225 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3226 	    sc->no_tx_dma_setup);
3227 
3228 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3229 	    sc->tx_csum_try_pullup);
3230 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3231 	    sc->tx_csum_pullup1);
3232 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3233 	    sc->tx_csum_pullup1_failed);
3234 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3235 	    sc->tx_csum_pullup2);
3236 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3237 	    sc->tx_csum_pullup2_failed);
3238 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3239 	    sc->tx_csum_drop1);
3240 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3241 	    sc->tx_csum_drop2);
3242 }
3243 
3244 static void
3245 emx_print_hw_stats(struct emx_softc *sc)
3246 {
3247 	device_t dev = sc->dev;
3248 
3249 	device_printf(dev, "Excessive collisions = %lld\n",
3250 	    (long long)sc->stats.ecol);
3251 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3252 	device_printf(dev, "Symbol errors = %lld\n",
3253 	    (long long)sc->stats.symerrs);
3254 #endif
3255 	device_printf(dev, "Sequence errors = %lld\n",
3256 	    (long long)sc->stats.sec);
3257 	device_printf(dev, "Defer count = %lld\n",
3258 	    (long long)sc->stats.dc);
3259 	device_printf(dev, "Missed Packets = %lld\n",
3260 	    (long long)sc->stats.mpc);
3261 	device_printf(dev, "Receive No Buffers = %lld\n",
3262 	    (long long)sc->stats.rnbc);
3263 	/* RLEC is inaccurate on some hardware, calculate our own. */
3264 	device_printf(dev, "Receive Length Errors = %lld\n",
3265 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3266 	device_printf(dev, "Receive errors = %lld\n",
3267 	    (long long)sc->stats.rxerrc);
3268 	device_printf(dev, "Crc errors = %lld\n",
3269 	    (long long)sc->stats.crcerrs);
3270 	device_printf(dev, "Alignment errors = %lld\n",
3271 	    (long long)sc->stats.algnerrc);
3272 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3273 	    (long long)sc->stats.cexterr);
3274 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3275 	device_printf(dev, "watchdog timeouts = %ld\n",
3276 	    sc->watchdog_events);
3277 	device_printf(dev, "XON Rcvd = %lld\n",
3278 	    (long long)sc->stats.xonrxc);
3279 	device_printf(dev, "XON Xmtd = %lld\n",
3280 	    (long long)sc->stats.xontxc);
3281 	device_printf(dev, "XOFF Rcvd = %lld\n",
3282 	    (long long)sc->stats.xoffrxc);
3283 	device_printf(dev, "XOFF Xmtd = %lld\n",
3284 	    (long long)sc->stats.xofftxc);
3285 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3286 	    (long long)sc->stats.gprc);
3287 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3288 	    (long long)sc->stats.gptc);
3289 }
3290 
3291 static void
3292 emx_print_nvm_info(struct emx_softc *sc)
3293 {
3294 	uint16_t eeprom_data;
3295 	int i, j, row = 0;
3296 
3297 	/* Its a bit crude, but it gets the job done */
3298 	kprintf("\nInterface EEPROM Dump:\n");
3299 	kprintf("Offset\n0x0000  ");
3300 	for (i = 0, j = 0; i < 32; i++, j++) {
3301 		if (j == 8) { /* Make the offset block */
3302 			j = 0; ++row;
3303 			kprintf("\n0x00%x0  ",row);
3304 		}
3305 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3306 		kprintf("%04x ", eeprom_data);
3307 	}
3308 	kprintf("\n");
3309 }
3310 
3311 static int
3312 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3313 {
3314 	struct emx_softc *sc;
3315 	struct ifnet *ifp;
3316 	int error, result;
3317 
3318 	result = -1;
3319 	error = sysctl_handle_int(oidp, &result, 0, req);
3320 	if (error || !req->newptr)
3321 		return (error);
3322 
3323 	sc = (struct emx_softc *)arg1;
3324 	ifp = &sc->arpcom.ac_if;
3325 
3326 	lwkt_serialize_enter(ifp->if_serializer);
3327 
3328 	if (result == 1)
3329 		emx_print_debug_info(sc);
3330 
3331 	/*
3332 	 * This value will cause a hex dump of the
3333 	 * first 32 16-bit words of the EEPROM to
3334 	 * the screen.
3335 	 */
3336 	if (result == 2)
3337 		emx_print_nvm_info(sc);
3338 
3339 	lwkt_serialize_exit(ifp->if_serializer);
3340 
3341 	return (error);
3342 }
3343 
3344 static int
3345 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3346 {
3347 	int error, result;
3348 
3349 	result = -1;
3350 	error = sysctl_handle_int(oidp, &result, 0, req);
3351 	if (error || !req->newptr)
3352 		return (error);
3353 
3354 	if (result == 1) {
3355 		struct emx_softc *sc = (struct emx_softc *)arg1;
3356 		struct ifnet *ifp = &sc->arpcom.ac_if;
3357 
3358 		lwkt_serialize_enter(ifp->if_serializer);
3359 		emx_print_hw_stats(sc);
3360 		lwkt_serialize_exit(ifp->if_serializer);
3361 	}
3362 	return (error);
3363 }
3364 
3365 static void
3366 emx_add_sysctl(struct emx_softc *sc)
3367 {
3368 #ifdef PROFILE_SERIALIZER
3369 	struct ifnet *ifp = &sc->arpcom.ac_if;
3370 #endif
3371 #ifdef EMX_RSS_DEBUG
3372 	char rx_pkt[32];
3373 	int i;
3374 #endif
3375 
3376 	sysctl_ctx_init(&sc->sysctl_ctx);
3377 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3378 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3379 				device_get_nameunit(sc->dev),
3380 				CTLFLAG_RD, 0, "");
3381 	if (sc->sysctl_tree == NULL) {
3382 		device_printf(sc->dev, "can't add sysctl node\n");
3383 		return;
3384 	}
3385 
3386 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3387 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3388 			emx_sysctl_debug_info, "I", "Debug Information");
3389 
3390 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3391 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3392 			emx_sysctl_stats, "I", "Statistics");
3393 
3394 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3395 		       OID_AUTO, "rxd", CTLFLAG_RD,
3396 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3397 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3398 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3399 
3400 #ifdef PROFILE_SERIALIZER
3401 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3402 			OID_AUTO, "serializer_sleep", CTLFLAG_RW,
3403 			&ifp->if_serializer->sleep_cnt, 0, NULL);
3404 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3405 			OID_AUTO, "serializer_tryfail", CTLFLAG_RW,
3406 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
3407 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3408 			OID_AUTO, "serializer_enter", CTLFLAG_RW,
3409 			&ifp->if_serializer->enter_cnt, 0, NULL);
3410 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3411 			OID_AUTO, "serializer_try", CTLFLAG_RW,
3412 			&ifp->if_serializer->try_cnt, 0, NULL);
3413 #endif
3414 
3415 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3416 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3417 			sc, 0, emx_sysctl_int_throttle, "I",
3418 			"interrupt throttling rate");
3419 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3420 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3421 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3422 			"# segments per TX interrupt");
3423 
3424 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3425 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3426 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3427 
3428 #ifdef EMX_RSS_DEBUG
3429 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3430 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3431 		       0, "RSS debug level");
3432 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3433 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3434 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3435 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3436 				rx_pkt, CTLFLAG_RW,
3437 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3438 	}
3439 #endif
3440 }
3441 
3442 static int
3443 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3444 {
3445 	struct emx_softc *sc = (void *)arg1;
3446 	struct ifnet *ifp = &sc->arpcom.ac_if;
3447 	int error, throttle;
3448 
3449 	throttle = sc->int_throttle_ceil;
3450 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3451 	if (error || req->newptr == NULL)
3452 		return error;
3453 	if (throttle < 0 || throttle > 1000000000 / 256)
3454 		return EINVAL;
3455 
3456 	if (throttle) {
3457 		/*
3458 		 * Set the interrupt throttling rate in 256ns increments,
3459 		 * recalculate sysctl value assignment to get exact frequency.
3460 		 */
3461 		throttle = 1000000000 / 256 / throttle;
3462 
3463 		/* Upper 16bits of ITR is reserved and should be zero */
3464 		if (throttle & 0xffff0000)
3465 			return EINVAL;
3466 	}
3467 
3468 	lwkt_serialize_enter(ifp->if_serializer);
3469 
3470 	if (throttle)
3471 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3472 	else
3473 		sc->int_throttle_ceil = 0;
3474 
3475 	if (ifp->if_flags & IFF_RUNNING)
3476 		E1000_WRITE_REG(&sc->hw, E1000_ITR, throttle);
3477 
3478 	lwkt_serialize_exit(ifp->if_serializer);
3479 
3480 	if (bootverbose) {
3481 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3482 			  sc->int_throttle_ceil);
3483 	}
3484 	return 0;
3485 }
3486 
3487 static int
3488 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3489 {
3490 	struct emx_softc *sc = (void *)arg1;
3491 	struct ifnet *ifp = &sc->arpcom.ac_if;
3492 	int error, segs;
3493 
3494 	segs = sc->tx_int_nsegs;
3495 	error = sysctl_handle_int(oidp, &segs, 0, req);
3496 	if (error || req->newptr == NULL)
3497 		return error;
3498 	if (segs <= 0)
3499 		return EINVAL;
3500 
3501 	lwkt_serialize_enter(ifp->if_serializer);
3502 
3503 	/*
3504 	 * Don't allow int_tx_nsegs to become:
3505 	 * o  Less the oact_tx_desc
3506 	 * o  Too large that no TX desc will cause TX interrupt to
3507 	 *    be generated (OACTIVE will never recover)
3508 	 * o  Too small that will cause tx_dd[] overflow
3509 	 */
3510 	if (segs < sc->oact_tx_desc ||
3511 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3512 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3513 		error = EINVAL;
3514 	} else {
3515 		error = 0;
3516 		sc->tx_int_nsegs = segs;
3517 	}
3518 
3519 	lwkt_serialize_exit(ifp->if_serializer);
3520 
3521 	return error;
3522 }
3523 
3524 static int
3525 emx_dma_alloc(struct emx_softc *sc)
3526 {
3527 	int error, i;
3528 
3529 	/*
3530 	 * Create top level busdma tag
3531 	 */
3532 	error = bus_dma_tag_create(NULL, 1, 0,
3533 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3534 			NULL, NULL,
3535 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3536 			0, &sc->parent_dtag);
3537 	if (error) {
3538 		device_printf(sc->dev, "could not create top level DMA tag\n");
3539 		return error;
3540 	}
3541 
3542 	/*
3543 	 * Allocate transmit descriptors ring and buffers
3544 	 */
3545 	error = emx_create_tx_ring(sc);
3546 	if (error) {
3547 		device_printf(sc->dev, "Could not setup transmit structures\n");
3548 		return error;
3549 	}
3550 
3551 	/*
3552 	 * Allocate receive descriptors ring and buffers
3553 	 */
3554 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3555 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3556 		if (error) {
3557 			device_printf(sc->dev,
3558 			    "Could not setup receive structures\n");
3559 			return error;
3560 		}
3561 	}
3562 	return 0;
3563 }
3564 
3565 static void
3566 emx_dma_free(struct emx_softc *sc)
3567 {
3568 	int i;
3569 
3570 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3571 
3572 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3573 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3574 				    sc->rx_data[i].num_rx_desc);
3575 	}
3576 
3577 	/* Free top level busdma tag */
3578 	if (sc->parent_dtag != NULL)
3579 		bus_dma_tag_destroy(sc->parent_dtag);
3580 }
3581