xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 65cc0652)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/if_ringmap.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/ig_hal/e1000_dragonfly.h>
113 #include <dev/netif/emx/if_emx.h>
114 
115 #define DEBUG_HW 0
116 
117 #ifdef EMX_RSS_DEBUG
118 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
119 do { \
120 	if (sc->rss_debug >= lvl) \
121 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
122 } while (0)
123 #else	/* !EMX_RSS_DEBUG */
124 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
125 #endif	/* EMX_RSS_DEBUG */
126 
127 #define EMX_NAME	"Intel(R) PRO/1000 "
128 
129 #define EMX_DEVICE(id)	\
130 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
131 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
132 
133 static const struct emx_device {
134 	uint16_t	vid;
135 	uint16_t	did;
136 	const char	*desc;
137 } emx_devices[] = {
138 	EMX_DEVICE(82571EB_COPPER),
139 	EMX_DEVICE(82571EB_FIBER),
140 	EMX_DEVICE(82571EB_SERDES),
141 	EMX_DEVICE(82571EB_SERDES_DUAL),
142 	EMX_DEVICE(82571EB_SERDES_QUAD),
143 	EMX_DEVICE(82571EB_QUAD_COPPER),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
145 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
146 	EMX_DEVICE(82571EB_QUAD_FIBER),
147 	EMX_DEVICE(82571PT_QUAD_COPPER),
148 
149 	EMX_DEVICE(82572EI_COPPER),
150 	EMX_DEVICE(82572EI_FIBER),
151 	EMX_DEVICE(82572EI_SERDES),
152 	EMX_DEVICE(82572EI),
153 
154 	EMX_DEVICE(82573E),
155 	EMX_DEVICE(82573E_IAMT),
156 	EMX_DEVICE(82573L),
157 
158 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
160 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
161 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
162 
163 	EMX_DEVICE(82574L),
164 	EMX_DEVICE(82574LA),
165 
166 	EMX_DEVICE(PCH_LPT_I217_LM),
167 	EMX_DEVICE(PCH_LPT_I217_V),
168 	EMX_DEVICE(PCH_LPTLP_I218_LM),
169 	EMX_DEVICE(PCH_LPTLP_I218_V),
170 	EMX_DEVICE(PCH_I218_LM2),
171 	EMX_DEVICE(PCH_I218_V2),
172 	EMX_DEVICE(PCH_I218_LM3),
173 	EMX_DEVICE(PCH_I218_V3),
174 	EMX_DEVICE(PCH_SPT_I219_LM),
175 	EMX_DEVICE(PCH_SPT_I219_V),
176 	EMX_DEVICE(PCH_SPT_I219_LM2),
177 	EMX_DEVICE(PCH_SPT_I219_V2),
178 	EMX_DEVICE(PCH_LBG_I219_LM3),
179 	EMX_DEVICE(PCH_SPT_I219_LM4),
180 	EMX_DEVICE(PCH_SPT_I219_V4),
181 	EMX_DEVICE(PCH_SPT_I219_LM5),
182 	EMX_DEVICE(PCH_SPT_I219_V5),
183 
184 	/* required last entry */
185 	EMX_DEVICE_NULL
186 };
187 
188 static int	emx_probe(device_t);
189 static int	emx_attach(device_t);
190 static int	emx_detach(device_t);
191 static int	emx_shutdown(device_t);
192 static int	emx_suspend(device_t);
193 static int	emx_resume(device_t);
194 
195 static void	emx_init(void *);
196 static void	emx_stop(struct emx_softc *);
197 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
198 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
199 #ifdef IFPOLL_ENABLE
200 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
201 static void	emx_npoll_status(struct ifnet *);
202 static void	emx_npoll_tx(struct ifnet *, void *, int);
203 static void	emx_npoll_rx(struct ifnet *, void *, int);
204 #endif
205 static void	emx_watchdog(struct ifaltq_subque *);
206 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
207 static int	emx_media_change(struct ifnet *);
208 static void	emx_timer(void *);
209 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
210 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
211 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
212 #ifdef INVARIANTS
213 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
214 		    boolean_t);
215 #endif
216 
217 static void	emx_intr(void *);
218 static void	emx_intr_mask(void *);
219 static void	emx_intr_body(struct emx_softc *, boolean_t);
220 static void	emx_rxeof(struct emx_rxdata *, int);
221 static void	emx_txeof(struct emx_txdata *);
222 static void	emx_tx_collect(struct emx_txdata *, boolean_t);
223 static void	emx_txgc_timer(void *);
224 static void	emx_tx_purge(struct emx_softc *);
225 static void	emx_enable_intr(struct emx_softc *);
226 static void	emx_disable_intr(struct emx_softc *);
227 
228 static int	emx_dma_alloc(struct emx_softc *);
229 static void	emx_dma_free(struct emx_softc *);
230 static void	emx_init_tx_ring(struct emx_txdata *);
231 static int	emx_init_rx_ring(struct emx_rxdata *);
232 static void	emx_free_tx_ring(struct emx_txdata *);
233 static void	emx_free_rx_ring(struct emx_rxdata *);
234 static int	emx_create_tx_ring(struct emx_txdata *);
235 static int	emx_create_rx_ring(struct emx_rxdata *);
236 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
237 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
238 static int	emx_newbuf(struct emx_rxdata *, int, int);
239 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
240 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
241 		    uint32_t *, uint32_t *);
242 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
243 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
244 		    uint32_t *, uint32_t *);
245 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
246 
247 static int 	emx_is_valid_eaddr(const uint8_t *);
248 static int	emx_reset(struct emx_softc *);
249 static void	emx_setup_ifp(struct emx_softc *);
250 static void	emx_init_tx_unit(struct emx_softc *);
251 static void	emx_init_rx_unit(struct emx_softc *);
252 static void	emx_update_stats(struct emx_softc *);
253 static void	emx_set_promisc(struct emx_softc *);
254 static void	emx_disable_promisc(struct emx_softc *);
255 static void	emx_set_multi(struct emx_softc *);
256 static void	emx_update_link_status(struct emx_softc *);
257 static void	emx_smartspeed(struct emx_softc *);
258 static void	emx_set_itr(struct emx_softc *, uint32_t);
259 static void	emx_disable_aspm(struct emx_softc *);
260 static void	emx_flush_tx_ring(struct emx_softc *);
261 static void	emx_flush_rx_ring(struct emx_softc *);
262 static void	emx_flush_txrx_ring(struct emx_softc *);
263 
264 static void	emx_print_debug_info(struct emx_softc *);
265 static void	emx_print_nvm_info(struct emx_softc *);
266 static void	emx_print_hw_stats(struct emx_softc *);
267 
268 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
269 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
270 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
271 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
272 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
273 static void	emx_add_sysctl(struct emx_softc *);
274 
275 static void	emx_serialize_skipmain(struct emx_softc *);
276 static void	emx_deserialize_skipmain(struct emx_softc *);
277 
278 /* Management and WOL Support */
279 static void	emx_get_mgmt(struct emx_softc *);
280 static void	emx_rel_mgmt(struct emx_softc *);
281 static void	emx_get_hw_control(struct emx_softc *);
282 static void	emx_rel_hw_control(struct emx_softc *);
283 static void	emx_enable_wol(device_t);
284 
285 static device_method_t emx_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		emx_probe),
288 	DEVMETHOD(device_attach,	emx_attach),
289 	DEVMETHOD(device_detach,	emx_detach),
290 	DEVMETHOD(device_shutdown,	emx_shutdown),
291 	DEVMETHOD(device_suspend,	emx_suspend),
292 	DEVMETHOD(device_resume,	emx_resume),
293 	DEVMETHOD_END
294 };
295 
296 static driver_t emx_driver = {
297 	"emx",
298 	emx_methods,
299 	sizeof(struct emx_softc),
300 };
301 
302 static devclass_t emx_devclass;
303 
304 DECLARE_DUMMY_MODULE(if_emx);
305 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
306 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
307 
308 /*
309  * Tunables
310  */
311 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
312 static int	emx_rxd = EMX_DEFAULT_RXD;
313 static int	emx_txd = EMX_DEFAULT_TXD;
314 static int	emx_smart_pwr_down = 0;
315 static int	emx_rxr = 0;
316 static int	emx_txr = 1;
317 
318 /* Controls whether promiscuous also shows bad packets */
319 static int	emx_debug_sbp = 0;
320 
321 static int	emx_82573_workaround = 1;
322 static int	emx_msi_enable = 1;
323 
324 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
325 
326 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
327 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
328 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
329 TUNABLE_INT("hw.emx.txd", &emx_txd);
330 TUNABLE_INT("hw.emx.txr", &emx_txr);
331 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
332 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
333 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
334 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
335 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
336 
337 /* Global used in WOL setup with multiport cards */
338 static int	emx_global_quad_port_a = 0;
339 
340 /* Set this to one to display debug statistics */
341 static int	emx_display_debug_stats = 0;
342 
343 #if !defined(KTR_IF_EMX)
344 #define KTR_IF_EMX	KTR_ALL
345 #endif
346 KTR_INFO_MASTER(if_emx);
347 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
348 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
349 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
350 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
351 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
352 #define logif(name)	KTR_LOG(if_emx_ ## name)
353 
354 static __inline void
355 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
356 {
357 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
358 	/* DD bit must be cleared */
359 	rxd->rxd_staterr = 0;
360 }
361 
362 static __inline void
363 emx_free_txbuf(struct emx_txdata *tdata, struct emx_txbuf *tx_buffer)
364 {
365 
366 	KKASSERT(tx_buffer->m_head != NULL);
367 	KKASSERT(tdata->tx_nmbuf > 0);
368 	tdata->tx_nmbuf--;
369 
370 	bus_dmamap_unload(tdata->txtag, tx_buffer->map);
371 	m_freem(tx_buffer->m_head);
372 	tx_buffer->m_head = NULL;
373 }
374 
375 static __inline void
376 emx_tx_intr(struct emx_txdata *tdata)
377 {
378 
379 	emx_txeof(tdata);
380 	if (!ifsq_is_empty(tdata->ifsq))
381 		ifsq_devstart(tdata->ifsq);
382 }
383 
384 static __inline void
385 emx_try_txgc(struct emx_txdata *tdata, int16_t dec)
386 {
387 
388 	if (tdata->tx_running > 0) {
389 		tdata->tx_running -= dec;
390 		if (tdata->tx_running <= 0 && tdata->tx_nmbuf &&
391 		    tdata->num_tx_desc_avail < tdata->num_tx_desc &&
392 		    tdata->num_tx_desc_avail + tdata->tx_intr_nsegs >
393 		    tdata->num_tx_desc)
394 			emx_tx_collect(tdata, TRUE);
395 	}
396 }
397 
398 static void
399 emx_txgc_timer(void *xtdata)
400 {
401 	struct emx_txdata *tdata = xtdata;
402 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
403 
404 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
405 	    (IFF_RUNNING | IFF_UP))
406 		return;
407 
408 	if (!lwkt_serialize_try(&tdata->tx_serialize))
409 		goto done;
410 
411 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
412 	    (IFF_RUNNING | IFF_UP)) {
413 		lwkt_serialize_exit(&tdata->tx_serialize);
414 		return;
415 	}
416 	emx_try_txgc(tdata, EMX_TX_RUNNING_DEC);
417 
418 	lwkt_serialize_exit(&tdata->tx_serialize);
419 done:
420 	callout_reset(&tdata->tx_gc_timer, 1, emx_txgc_timer, tdata);
421 }
422 
423 static __inline void
424 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
425 {
426 	/* Ignore Checksum bit is set */
427 	if (staterr & E1000_RXD_STAT_IXSM)
428 		return;
429 
430 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
431 	    E1000_RXD_STAT_IPCS)
432 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
433 
434 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
435 	    E1000_RXD_STAT_TCPCS) {
436 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
437 					   CSUM_PSEUDO_HDR |
438 					   CSUM_FRAG_NOT_CHECKED;
439 		mp->m_pkthdr.csum_data = htons(0xffff);
440 	}
441 }
442 
443 static __inline struct pktinfo *
444 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
445 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
446 {
447 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
448 	case EMX_RXDMRQ_IPV4_TCP:
449 		pi->pi_netisr = NETISR_IP;
450 		pi->pi_flags = 0;
451 		pi->pi_l3proto = IPPROTO_TCP;
452 		break;
453 
454 	case EMX_RXDMRQ_IPV6_TCP:
455 		pi->pi_netisr = NETISR_IPV6;
456 		pi->pi_flags = 0;
457 		pi->pi_l3proto = IPPROTO_TCP;
458 		break;
459 
460 	case EMX_RXDMRQ_IPV4:
461 		if (staterr & E1000_RXD_STAT_IXSM)
462 			return NULL;
463 
464 		if ((staterr &
465 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
466 		    E1000_RXD_STAT_TCPCS) {
467 			pi->pi_netisr = NETISR_IP;
468 			pi->pi_flags = 0;
469 			pi->pi_l3proto = IPPROTO_UDP;
470 			break;
471 		}
472 		/* FALL THROUGH */
473 	default:
474 		return NULL;
475 	}
476 
477 	m_sethash(m, toeplitz_hash(hash));
478 	return pi;
479 }
480 
481 static int
482 emx_probe(device_t dev)
483 {
484 	const struct emx_device *d;
485 	uint16_t vid, did;
486 
487 	vid = pci_get_vendor(dev);
488 	did = pci_get_device(dev);
489 
490 	for (d = emx_devices; d->desc != NULL; ++d) {
491 		if (vid == d->vid && did == d->did) {
492 			device_set_desc(dev, d->desc);
493 			device_set_async_attach(dev, TRUE);
494 			return 0;
495 		}
496 	}
497 	return ENXIO;
498 }
499 
500 static int
501 emx_attach(device_t dev)
502 {
503 	struct emx_softc *sc = device_get_softc(dev);
504 	int error = 0, i, throttle, msi_enable;
505 	int tx_ring_max, ring_cnt;
506 	u_int intr_flags;
507 	uint16_t eeprom_data, device_id, apme_mask;
508 	driver_intr_t *intr_func;
509 	char flowctrl[IFM_ETH_FC_STRLEN];
510 
511 	/*
512 	 * Setup RX rings
513 	 */
514 	for (i = 0; i < EMX_NRX_RING; ++i) {
515 		sc->rx_data[i].sc = sc;
516 		sc->rx_data[i].idx = i;
517 	}
518 
519 	/*
520 	 * Setup TX ring
521 	 */
522 	for (i = 0; i < EMX_NTX_RING; ++i) {
523 		sc->tx_data[i].sc = sc;
524 		sc->tx_data[i].idx = i;
525 		callout_init_mp(&sc->tx_data[i].tx_gc_timer);
526 	}
527 
528 	/*
529 	 * Initialize serializers
530 	 */
531 	lwkt_serialize_init(&sc->main_serialize);
532 	for (i = 0; i < EMX_NTX_RING; ++i)
533 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
534 	for (i = 0; i < EMX_NRX_RING; ++i)
535 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
536 
537 	/*
538 	 * Initialize serializer array
539 	 */
540 	i = 0;
541 
542 	KKASSERT(i < EMX_NSERIALIZE);
543 	sc->serializes[i++] = &sc->main_serialize;
544 
545 	KKASSERT(i < EMX_NSERIALIZE);
546 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
547 	KKASSERT(i < EMX_NSERIALIZE);
548 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
549 
550 	KKASSERT(i < EMX_NSERIALIZE);
551 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
552 	KKASSERT(i < EMX_NSERIALIZE);
553 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
554 
555 	KKASSERT(i == EMX_NSERIALIZE);
556 
557 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
558 	    emx_media_change, emx_media_status);
559 	callout_init_mp(&sc->timer);
560 
561 	sc->dev = sc->osdep.dev = dev;
562 
563 	/*
564 	 * Determine hardware and mac type
565 	 */
566 	sc->hw.vendor_id = pci_get_vendor(dev);
567 	sc->hw.device_id = pci_get_device(dev);
568 	sc->hw.revision_id = pci_get_revid(dev);
569 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
570 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
571 
572 	if (e1000_set_mac_type(&sc->hw))
573 		return ENXIO;
574 
575 	/* Enable bus mastering */
576 	pci_enable_busmaster(dev);
577 
578 	/*
579 	 * Allocate IO memory
580 	 */
581 	sc->memory_rid = EMX_BAR_MEM;
582 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
583 					    &sc->memory_rid, RF_ACTIVE);
584 	if (sc->memory == NULL) {
585 		device_printf(dev, "Unable to allocate bus resource: memory\n");
586 		error = ENXIO;
587 		goto fail;
588 	}
589 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
590 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
591 
592 	/* XXX This is quite goofy, it is not actually used */
593 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
594 
595 	/*
596 	 * Don't enable MSI-X on 82574, see:
597 	 * 82574 specification update errata #15
598 	 *
599 	 * Don't enable MSI on 82571/82572, see:
600 	 * 82571/82572 specification update errata #63
601 	 */
602 	msi_enable = emx_msi_enable;
603 	if (msi_enable &&
604 	    (sc->hw.mac.type == e1000_82571 ||
605 	     sc->hw.mac.type == e1000_82572))
606 		msi_enable = 0;
607 again:
608 	/*
609 	 * Allocate interrupt
610 	 */
611 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
612 	    &sc->intr_rid, &intr_flags);
613 
614 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
615 		int unshared;
616 
617 		unshared = device_getenv_int(dev, "irq.unshared", 0);
618 		if (!unshared) {
619 			sc->flags |= EMX_FLAG_SHARED_INTR;
620 			if (bootverbose)
621 				device_printf(dev, "IRQ shared\n");
622 		} else {
623 			intr_flags &= ~RF_SHAREABLE;
624 			if (bootverbose)
625 				device_printf(dev, "IRQ unshared\n");
626 		}
627 	}
628 
629 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
630 	    intr_flags);
631 	if (sc->intr_res == NULL) {
632 		device_printf(dev, "Unable to allocate bus resource: %s\n",
633 		    sc->intr_type == PCI_INTR_TYPE_MSI ? "MSI" : "legacy intr");
634 		if (!msi_enable) {
635 			/* Retry with MSI. */
636 			msi_enable = 1;
637 			sc->flags &= ~EMX_FLAG_SHARED_INTR;
638 			goto again;
639 		}
640 		error = ENXIO;
641 		goto fail;
642 	}
643 
644 	/* Save PCI command register for Shared Code */
645 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
646 	sc->hw.back = &sc->osdep;
647 
648 	/*
649 	 * For I217/I218, we need to map the flash memory and this
650 	 * must happen after the MAC is identified.
651 	 */
652 	if (sc->hw.mac.type == e1000_pch_lpt) {
653 		sc->flash_rid = EMX_BAR_FLASH;
654 
655 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
656 		    &sc->flash_rid, RF_ACTIVE);
657 		if (sc->flash == NULL) {
658 			device_printf(dev, "Mapping of Flash failed\n");
659 			error = ENXIO;
660 			goto fail;
661 		}
662 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
663 		sc->osdep.flash_bus_space_handle =
664 		    rman_get_bushandle(sc->flash);
665 
666 		/*
667 		 * This is used in the shared code
668 		 * XXX this goof is actually not used.
669 		 */
670 		sc->hw.flash_address = (uint8_t *)sc->flash;
671 	} else if (sc->hw.mac.type == e1000_pch_spt) {
672 		/*
673 		 * In the new SPT device flash is not a seperate BAR,
674 		 * rather it is also in BAR0, so use the same tag and
675 		 * an offset handle for the FLASH read/write macros
676 		 * in the shared code.
677 		 */
678 		sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
679 		sc->osdep.flash_bus_space_handle =
680 		    sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
681 	}
682 
683 	/* Do Shared Code initialization */
684 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
685 		device_printf(dev, "Setup of Shared code failed\n");
686 		error = ENXIO;
687 		goto fail;
688 	}
689 	e1000_get_bus_info(&sc->hw);
690 
691 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
692 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
693 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
694 
695 	/*
696 	 * Interrupt throttle rate
697 	 */
698 	throttle = device_getenv_int(dev, "int_throttle_ceil",
699 	    emx_int_throttle_ceil);
700 	if (throttle == 0) {
701 		sc->int_throttle_ceil = 0;
702 	} else {
703 		if (throttle < 0)
704 			throttle = EMX_DEFAULT_ITR;
705 
706 		/* Recalculate the tunable value to get the exact frequency. */
707 		throttle = 1000000000 / 256 / throttle;
708 
709 		/* Upper 16bits of ITR is reserved and should be zero */
710 		if (throttle & 0xffff0000)
711 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
712 
713 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
714 	}
715 
716 	e1000_init_script_state_82541(&sc->hw, TRUE);
717 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
718 
719 	/* Copper options */
720 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
721 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
722 		sc->hw.phy.disable_polarity_correction = FALSE;
723 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
724 	}
725 
726 	/* Set the frame limits assuming standard ethernet sized frames. */
727 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
728 
729 	/* This controls when hardware reports transmit completion status. */
730 	sc->hw.mac.report_tx_early = 1;
731 
732 	/*
733 	 * Calculate # of RX/TX rings
734 	 */
735 	ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
736 	sc->rx_rmap = if_ringmap_alloc(dev, ring_cnt, EMX_NRX_RING);
737 
738 	tx_ring_max = 1;
739 	if (sc->hw.mac.type == e1000_82571 ||
740 	    sc->hw.mac.type == e1000_82572 ||
741 	    sc->hw.mac.type == e1000_80003es2lan ||
742 	    sc->hw.mac.type == e1000_pch_lpt ||
743 	    sc->hw.mac.type == e1000_pch_spt ||
744 	    sc->hw.mac.type == e1000_82574)
745 		tx_ring_max = EMX_NTX_RING;
746 	ring_cnt = device_getenv_int(dev, "txr", emx_txr);
747 	sc->tx_rmap = if_ringmap_alloc(dev, ring_cnt, tx_ring_max);
748 
749 	if_ringmap_match(dev, sc->rx_rmap, sc->tx_rmap);
750 	sc->rx_ring_cnt = if_ringmap_count(sc->rx_rmap);
751 	sc->tx_ring_cnt = if_ringmap_count(sc->tx_rmap);
752 
753 	/* Allocate RX/TX rings' busdma(9) stuffs */
754 	error = emx_dma_alloc(sc);
755 	if (error)
756 		goto fail;
757 
758 	/* Allocate multicast array memory. */
759 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
760 	    M_DEVBUF, M_WAITOK);
761 
762 	/* Indicate SOL/IDER usage */
763 	if (e1000_check_reset_block(&sc->hw)) {
764 		device_printf(dev,
765 		    "PHY reset is blocked due to SOL/IDER session.\n");
766 	}
767 
768 	/* Disable EEE on I217/I218 */
769 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
770 
771 	/*
772 	 * Start from a known state, this is important in reading the
773 	 * nvm and mac from that.
774 	 */
775 	e1000_reset_hw(&sc->hw);
776 
777 	/* Make sure we have a good EEPROM before we read from it */
778 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
779 		/*
780 		 * Some PCI-E parts fail the first check due to
781 		 * the link being in sleep state, call it again,
782 		 * if it fails a second time its a real issue.
783 		 */
784 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
785 			device_printf(dev,
786 			    "The EEPROM Checksum Is Not Valid\n");
787 			error = EIO;
788 			goto fail;
789 		}
790 	}
791 
792 	/* Copy the permanent MAC address out of the EEPROM */
793 	if (e1000_read_mac_addr(&sc->hw) < 0) {
794 		device_printf(dev, "EEPROM read error while reading MAC"
795 		    " address\n");
796 		error = EIO;
797 		goto fail;
798 	}
799 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
800 		device_printf(dev, "Invalid MAC address\n");
801 		error = EIO;
802 		goto fail;
803 	}
804 
805 	/* Disable ULP support */
806 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
807 
808 	/* Determine if we have to control management hardware */
809 	if (e1000_enable_mng_pass_thru(&sc->hw))
810 		sc->flags |= EMX_FLAG_HAS_MGMT;
811 
812 	/*
813 	 * Setup Wake-on-Lan
814 	 */
815 	apme_mask = EMX_EEPROM_APME;
816 	eeprom_data = 0;
817 	switch (sc->hw.mac.type) {
818 	case e1000_82573:
819 		sc->flags |= EMX_FLAG_HAS_AMT;
820 		/* FALL THROUGH */
821 
822 	case e1000_82571:
823 	case e1000_82572:
824 	case e1000_80003es2lan:
825 		if (sc->hw.bus.func == 1) {
826 			e1000_read_nvm(&sc->hw,
827 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
828 		} else {
829 			e1000_read_nvm(&sc->hw,
830 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
831 		}
832 		break;
833 
834 	default:
835 		e1000_read_nvm(&sc->hw,
836 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
837 		break;
838 	}
839 	if (eeprom_data & apme_mask)
840 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
841 
842 	/*
843          * We have the eeprom settings, now apply the special cases
844          * where the eeprom may be wrong or the board won't support
845          * wake on lan on a particular port
846 	 */
847 	device_id = pci_get_device(dev);
848         switch (device_id) {
849 	case E1000_DEV_ID_82571EB_FIBER:
850 		/*
851 		 * Wake events only supported on port A for dual fiber
852 		 * regardless of eeprom setting
853 		 */
854 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
855 		    E1000_STATUS_FUNC_1)
856 			sc->wol = 0;
857 		break;
858 
859 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
860 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
861 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
862                 /* if quad port sc, disable WoL on all but port A */
863 		if (emx_global_quad_port_a != 0)
864 			sc->wol = 0;
865 		/* Reset for multiple quad port adapters */
866 		if (++emx_global_quad_port_a == 4)
867 			emx_global_quad_port_a = 0;
868                 break;
869 	}
870 
871 	/* XXX disable wol */
872 	sc->wol = 0;
873 
874 	/* Initialized #of TX rings to use. */
875 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
876 
877 	/* Setup flow control. */
878 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
879 	    emx_flowctrl);
880 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
881 
882 	/* Setup OS specific network interface */
883 	emx_setup_ifp(sc);
884 
885 	/* Add sysctl tree, must after em_setup_ifp() */
886 	emx_add_sysctl(sc);
887 
888 	/* Reset the hardware */
889 	error = emx_reset(sc);
890 	if (error) {
891 		/*
892 		 * Some 82573 parts fail the first reset, call it again,
893 		 * if it fails a second time its a real issue.
894 		 */
895 		error = emx_reset(sc);
896 		if (error) {
897 			device_printf(dev, "Unable to reset the hardware\n");
898 			ether_ifdetach(&sc->arpcom.ac_if);
899 			goto fail;
900 		}
901 	}
902 
903 	/* Initialize statistics */
904 	emx_update_stats(sc);
905 
906 	sc->hw.mac.get_link_status = 1;
907 	emx_update_link_status(sc);
908 
909 	/* Non-AMT based hardware can now take control from firmware */
910 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
911 	    EMX_FLAG_HAS_MGMT)
912 		emx_get_hw_control(sc);
913 
914 	/*
915 	 * Missing Interrupt Following ICR read:
916 	 *
917 	 * 82571/82572 specification update errata #76
918 	 * 82573 specification update errata #31
919 	 * 82574 specification update errata #12
920 	 */
921 	intr_func = emx_intr;
922 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
923 	    (sc->hw.mac.type == e1000_82571 ||
924 	     sc->hw.mac.type == e1000_82572 ||
925 	     sc->hw.mac.type == e1000_82573 ||
926 	     sc->hw.mac.type == e1000_82574))
927 		intr_func = emx_intr_mask;
928 
929 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
930 			       &sc->intr_tag, &sc->main_serialize);
931 	if (error) {
932 		device_printf(dev, "Failed to register interrupt handler");
933 		ether_ifdetach(&sc->arpcom.ac_if);
934 		goto fail;
935 	}
936 	return (0);
937 fail:
938 	emx_detach(dev);
939 	return (error);
940 }
941 
942 static int
943 emx_detach(device_t dev)
944 {
945 	struct emx_softc *sc = device_get_softc(dev);
946 
947 	if (device_is_attached(dev)) {
948 		struct ifnet *ifp = &sc->arpcom.ac_if;
949 
950 		ifnet_serialize_all(ifp);
951 
952 		emx_stop(sc);
953 
954 		e1000_phy_hw_reset(&sc->hw);
955 
956 		emx_rel_mgmt(sc);
957 		emx_rel_hw_control(sc);
958 
959 		if (sc->wol) {
960 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
961 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
962 			emx_enable_wol(dev);
963 		}
964 
965 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
966 
967 		ifnet_deserialize_all(ifp);
968 
969 		ether_ifdetach(ifp);
970 	} else if (sc->memory != NULL) {
971 		emx_rel_hw_control(sc);
972 	}
973 
974 	ifmedia_removeall(&sc->media);
975 	bus_generic_detach(dev);
976 
977 	if (sc->intr_res != NULL) {
978 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
979 				     sc->intr_res);
980 	}
981 
982 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
983 		pci_release_msi(dev);
984 
985 	if (sc->memory != NULL) {
986 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
987 				     sc->memory);
988 	}
989 
990 	if (sc->flash != NULL) {
991 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
992 		    sc->flash);
993 	}
994 
995 	emx_dma_free(sc);
996 
997 	if (sc->mta != NULL)
998 		kfree(sc->mta, M_DEVBUF);
999 
1000 	if (sc->rx_rmap != NULL)
1001 		if_ringmap_free(sc->rx_rmap);
1002 	if (sc->tx_rmap != NULL)
1003 		if_ringmap_free(sc->tx_rmap);
1004 
1005 	return (0);
1006 }
1007 
1008 static int
1009 emx_shutdown(device_t dev)
1010 {
1011 	return emx_suspend(dev);
1012 }
1013 
1014 static int
1015 emx_suspend(device_t dev)
1016 {
1017 	struct emx_softc *sc = device_get_softc(dev);
1018 	struct ifnet *ifp = &sc->arpcom.ac_if;
1019 
1020 	ifnet_serialize_all(ifp);
1021 
1022 	emx_stop(sc);
1023 
1024 	emx_rel_mgmt(sc);
1025 	emx_rel_hw_control(sc);
1026 
1027 	if (sc->wol) {
1028 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
1029 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
1030 		emx_enable_wol(dev);
1031 	}
1032 
1033 	ifnet_deserialize_all(ifp);
1034 
1035 	return bus_generic_suspend(dev);
1036 }
1037 
1038 static int
1039 emx_resume(device_t dev)
1040 {
1041 	struct emx_softc *sc = device_get_softc(dev);
1042 	struct ifnet *ifp = &sc->arpcom.ac_if;
1043 	int i;
1044 
1045 	ifnet_serialize_all(ifp);
1046 
1047 	emx_init(sc);
1048 	emx_get_mgmt(sc);
1049 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1050 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1051 
1052 	ifnet_deserialize_all(ifp);
1053 
1054 	return bus_generic_resume(dev);
1055 }
1056 
1057 static void
1058 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1059 {
1060 	struct emx_softc *sc = ifp->if_softc;
1061 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1062 	struct mbuf *m_head;
1063 	int idx = -1, nsegs = 0;
1064 
1065 	KKASSERT(tdata->ifsq == ifsq);
1066 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1067 
1068 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1069 		return;
1070 
1071 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1072 		ifsq_purge(ifsq);
1073 		return;
1074 	}
1075 
1076 	while (!ifsq_is_empty(ifsq)) {
1077 		/* Now do we at least have a minimal? */
1078 		if (EMX_IS_OACTIVE(tdata)) {
1079 			emx_tx_collect(tdata, FALSE);
1080 			if (EMX_IS_OACTIVE(tdata)) {
1081 				ifsq_set_oactive(ifsq);
1082 				break;
1083 			}
1084 		}
1085 
1086 		logif(pkt_txqueue);
1087 		m_head = ifsq_dequeue(ifsq);
1088 		if (m_head == NULL)
1089 			break;
1090 
1091 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1092 			IFNET_STAT_INC(ifp, oerrors, 1);
1093 			emx_tx_collect(tdata, FALSE);
1094 			continue;
1095 		}
1096 
1097 		/*
1098 		 * TX interrupt are aggressively aggregated, so increasing
1099 		 * opackets at TX interrupt time will make the opackets
1100 		 * statistics vastly inaccurate; we do the opackets increment
1101 		 * now.
1102 		 */
1103 		IFNET_STAT_INC(ifp, opackets, 1);
1104 
1105 		if (nsegs >= tdata->tx_wreg_nsegs) {
1106 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1107 			nsegs = 0;
1108 			idx = -1;
1109 		}
1110 
1111 		/* Send a copy of the frame to the BPF listener */
1112 		ETHER_BPF_MTAP(ifp, m_head);
1113 
1114 		/* Set timeout in case hardware has problems transmitting. */
1115 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1116 	}
1117 	if (idx >= 0)
1118 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1119 	tdata->tx_running = EMX_TX_RUNNING;
1120 }
1121 
1122 static int
1123 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1124 {
1125 	struct emx_softc *sc = ifp->if_softc;
1126 	struct ifreq *ifr = (struct ifreq *)data;
1127 	uint16_t eeprom_data = 0;
1128 	int max_frame_size, mask, reinit;
1129 	int error = 0;
1130 
1131 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1132 
1133 	switch (command) {
1134 	case SIOCSIFMTU:
1135 		switch (sc->hw.mac.type) {
1136 		case e1000_82573:
1137 			/*
1138 			 * 82573 only supports jumbo frames
1139 			 * if ASPM is disabled.
1140 			 */
1141 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1142 				       &eeprom_data);
1143 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1144 				max_frame_size = ETHER_MAX_LEN;
1145 				break;
1146 			}
1147 			/* FALL THROUGH */
1148 
1149 		/* Limit Jumbo Frame size */
1150 		case e1000_82571:
1151 		case e1000_82572:
1152 		case e1000_82574:
1153 		case e1000_pch_lpt:
1154 		case e1000_pch_spt:
1155 		case e1000_80003es2lan:
1156 			max_frame_size = 9234;
1157 			break;
1158 
1159 		default:
1160 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1161 			break;
1162 		}
1163 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1164 		    ETHER_CRC_LEN) {
1165 			error = EINVAL;
1166 			break;
1167 		}
1168 
1169 		ifp->if_mtu = ifr->ifr_mtu;
1170 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1171 		    ETHER_CRC_LEN;
1172 
1173 		if (ifp->if_flags & IFF_RUNNING)
1174 			emx_init(sc);
1175 		break;
1176 
1177 	case SIOCSIFFLAGS:
1178 		if (ifp->if_flags & IFF_UP) {
1179 			if ((ifp->if_flags & IFF_RUNNING)) {
1180 				if ((ifp->if_flags ^ sc->if_flags) &
1181 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1182 					emx_disable_promisc(sc);
1183 					emx_set_promisc(sc);
1184 				}
1185 			} else {
1186 				emx_init(sc);
1187 			}
1188 		} else if (ifp->if_flags & IFF_RUNNING) {
1189 			emx_stop(sc);
1190 		}
1191 		sc->if_flags = ifp->if_flags;
1192 		break;
1193 
1194 	case SIOCADDMULTI:
1195 	case SIOCDELMULTI:
1196 		if (ifp->if_flags & IFF_RUNNING) {
1197 			emx_disable_intr(sc);
1198 			emx_set_multi(sc);
1199 #ifdef IFPOLL_ENABLE
1200 			if (!(ifp->if_flags & IFF_NPOLLING))
1201 #endif
1202 				emx_enable_intr(sc);
1203 		}
1204 		break;
1205 
1206 	case SIOCSIFMEDIA:
1207 		/* Check SOL/IDER usage */
1208 		if (e1000_check_reset_block(&sc->hw)) {
1209 			device_printf(sc->dev, "Media change is"
1210 			    " blocked due to SOL/IDER session.\n");
1211 			break;
1212 		}
1213 		/* FALL THROUGH */
1214 
1215 	case SIOCGIFMEDIA:
1216 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1217 		break;
1218 
1219 	case SIOCSIFCAP:
1220 		reinit = 0;
1221 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1222 		if (mask & IFCAP_RXCSUM) {
1223 			ifp->if_capenable ^= IFCAP_RXCSUM;
1224 			reinit = 1;
1225 		}
1226 		if (mask & IFCAP_VLAN_HWTAGGING) {
1227 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1228 			reinit = 1;
1229 		}
1230 		if (mask & IFCAP_TXCSUM) {
1231 			ifp->if_capenable ^= IFCAP_TXCSUM;
1232 			if (ifp->if_capenable & IFCAP_TXCSUM)
1233 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1234 			else
1235 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1236 		}
1237 		if (mask & IFCAP_TSO) {
1238 			ifp->if_capenable ^= IFCAP_TSO;
1239 			if (ifp->if_capenable & IFCAP_TSO)
1240 				ifp->if_hwassist |= CSUM_TSO;
1241 			else
1242 				ifp->if_hwassist &= ~CSUM_TSO;
1243 		}
1244 		if (mask & IFCAP_RSS)
1245 			ifp->if_capenable ^= IFCAP_RSS;
1246 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1247 			emx_init(sc);
1248 		break;
1249 
1250 	default:
1251 		error = ether_ioctl(ifp, command, data);
1252 		break;
1253 	}
1254 	return (error);
1255 }
1256 
1257 static void
1258 emx_watchdog(struct ifaltq_subque *ifsq)
1259 {
1260 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1261 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1262 	struct emx_softc *sc = ifp->if_softc;
1263 	int i;
1264 
1265 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1266 
1267 	/*
1268 	 * The timer is set to 5 every time start queues a packet.
1269 	 * Then txeof keeps resetting it as long as it cleans at
1270 	 * least one descriptor.
1271 	 * Finally, anytime all descriptors are clean the timer is
1272 	 * set to 0.
1273 	 */
1274 
1275 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1276 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1277 		/*
1278 		 * If we reach here, all TX jobs are completed and
1279 		 * the TX engine should have been idled for some time.
1280 		 * We don't need to call ifsq_devstart_sched() here.
1281 		 */
1282 		ifsq_clr_oactive(ifsq);
1283 		tdata->tx_watchdog.wd_timer = 0;
1284 		return;
1285 	}
1286 
1287 	/*
1288 	 * If we are in this routine because of pause frames, then
1289 	 * don't reset the hardware.
1290 	 */
1291 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1292 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1293 		return;
1294 	}
1295 
1296 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1297 
1298 	IFNET_STAT_INC(ifp, oerrors, 1);
1299 
1300 	emx_init(sc);
1301 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1302 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1303 }
1304 
1305 static void
1306 emx_init(void *xsc)
1307 {
1308 	struct emx_softc *sc = xsc;
1309 	struct ifnet *ifp = &sc->arpcom.ac_if;
1310 	device_t dev = sc->dev;
1311 	boolean_t polling;
1312 	int i;
1313 
1314 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1315 
1316 	emx_stop(sc);
1317 
1318 	/* Get the latest mac address, User can use a LAA */
1319         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1320 
1321 	/* Put the address into the Receive Address Array */
1322 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1323 
1324 	/*
1325 	 * With the 82571 sc, RAR[0] may be overwritten
1326 	 * when the other port is reset, we make a duplicate
1327 	 * in RAR[14] for that eventuality, this assures
1328 	 * the interface continues to function.
1329 	 */
1330 	if (sc->hw.mac.type == e1000_82571) {
1331 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1332 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1333 		    E1000_RAR_ENTRIES - 1);
1334 	}
1335 
1336 	/* Initialize the hardware */
1337 	if (emx_reset(sc)) {
1338 		device_printf(dev, "Unable to reset the hardware\n");
1339 		/* XXX emx_stop()? */
1340 		return;
1341 	}
1342 	emx_update_link_status(sc);
1343 
1344 	/* Setup VLAN support, basic and offload if available */
1345 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1346 
1347 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1348 		uint32_t ctrl;
1349 
1350 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1351 		ctrl |= E1000_CTRL_VME;
1352 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1353 	}
1354 
1355 	/* Configure for OS presence */
1356 	emx_get_mgmt(sc);
1357 
1358 	polling = FALSE;
1359 #ifdef IFPOLL_ENABLE
1360 	if (ifp->if_flags & IFF_NPOLLING)
1361 		polling = TRUE;
1362 #endif
1363 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1364 	ifq_set_subq_divisor(&ifp->if_snd, sc->tx_ring_inuse);
1365 
1366 	/* Prepare transmit descriptors and buffers */
1367 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1368 		emx_init_tx_ring(&sc->tx_data[i]);
1369 	emx_init_tx_unit(sc);
1370 
1371 	/* Setup Multicast table */
1372 	emx_set_multi(sc);
1373 
1374 	/* Prepare receive descriptors and buffers */
1375 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1376 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1377 			device_printf(dev,
1378 			    "Could not setup receive structures\n");
1379 			emx_stop(sc);
1380 			return;
1381 		}
1382 	}
1383 	emx_init_rx_unit(sc);
1384 
1385 	/* Don't lose promiscuous settings */
1386 	emx_set_promisc(sc);
1387 
1388 	/* Reset hardware counters */
1389 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1390 
1391 	/* MSI/X configuration for 82574 */
1392 	if (sc->hw.mac.type == e1000_82574) {
1393 		int tmp;
1394 
1395 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1396 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1397 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1398 		/*
1399 		 * XXX MSIX
1400 		 * Set the IVAR - interrupt vector routing.
1401 		 * Each nibble represents a vector, high bit
1402 		 * is enable, other 3 bits are the MSIX table
1403 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1404 		 * Link (other) to 2, hence the magic number.
1405 		 */
1406 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1407 	}
1408 
1409 	/*
1410 	 * Only enable interrupts if we are not polling, make sure
1411 	 * they are off otherwise.
1412 	 */
1413 	if (polling)
1414 		emx_disable_intr(sc);
1415 	else
1416 		emx_enable_intr(sc);
1417 
1418 	/* AMT based hardware can now take control from firmware */
1419 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1420 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1421 		emx_get_hw_control(sc);
1422 
1423 	ifp->if_flags |= IFF_RUNNING;
1424 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1425 		struct emx_txdata *tdata = &sc->tx_data[i];
1426 
1427 		ifsq_clr_oactive(tdata->ifsq);
1428 		ifsq_watchdog_start(&tdata->tx_watchdog);
1429 		if (!polling) {
1430 			callout_reset_bycpu(&tdata->tx_gc_timer, 1,
1431 			    emx_txgc_timer, tdata, ifsq_get_cpuid(tdata->ifsq));
1432 		}
1433 	}
1434 	callout_reset(&sc->timer, hz, emx_timer, sc);
1435 }
1436 
1437 static void
1438 emx_intr(void *xsc)
1439 {
1440 	emx_intr_body(xsc, TRUE);
1441 }
1442 
1443 static void
1444 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1445 {
1446 	struct ifnet *ifp = &sc->arpcom.ac_if;
1447 	uint32_t reg_icr;
1448 
1449 	logif(intr_beg);
1450 	ASSERT_SERIALIZED(&sc->main_serialize);
1451 
1452 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1453 
1454 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1455 		logif(intr_end);
1456 		return;
1457 	}
1458 
1459 	/*
1460 	 * XXX: some laptops trigger several spurious interrupts
1461 	 * on emx(4) when in the resume cycle. The ICR register
1462 	 * reports all-ones value in this case. Processing such
1463 	 * interrupts would lead to a freeze. I don't know why.
1464 	 */
1465 	if (reg_icr == 0xffffffff) {
1466 		logif(intr_end);
1467 		return;
1468 	}
1469 
1470 	if (ifp->if_flags & IFF_RUNNING) {
1471 		if (reg_icr &
1472 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1473 			int i;
1474 
1475 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1476 				lwkt_serialize_enter(
1477 				&sc->rx_data[i].rx_serialize);
1478 				emx_rxeof(&sc->rx_data[i], -1);
1479 				lwkt_serialize_exit(
1480 				&sc->rx_data[i].rx_serialize);
1481 			}
1482 		}
1483 		if (reg_icr & E1000_ICR_TXDW) {
1484 			struct emx_txdata *tdata = &sc->tx_data[0];
1485 
1486 			lwkt_serialize_enter(&tdata->tx_serialize);
1487 			emx_tx_intr(tdata);
1488 			lwkt_serialize_exit(&tdata->tx_serialize);
1489 		}
1490 	}
1491 
1492 	/* Link status change */
1493 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1494 		emx_serialize_skipmain(sc);
1495 
1496 		callout_stop(&sc->timer);
1497 		sc->hw.mac.get_link_status = 1;
1498 		emx_update_link_status(sc);
1499 
1500 		/* Deal with TX cruft when link lost */
1501 		emx_tx_purge(sc);
1502 
1503 		callout_reset(&sc->timer, hz, emx_timer, sc);
1504 
1505 		emx_deserialize_skipmain(sc);
1506 	}
1507 
1508 	if (reg_icr & E1000_ICR_RXO)
1509 		sc->rx_overruns++;
1510 
1511 	logif(intr_end);
1512 }
1513 
1514 static void
1515 emx_intr_mask(void *xsc)
1516 {
1517 	struct emx_softc *sc = xsc;
1518 
1519 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1520 	/*
1521 	 * NOTE:
1522 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1523 	 * so don't check it.
1524 	 */
1525 	emx_intr_body(sc, FALSE);
1526 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1527 }
1528 
1529 static void
1530 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1531 {
1532 	struct emx_softc *sc = ifp->if_softc;
1533 
1534 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1535 
1536 	emx_update_link_status(sc);
1537 
1538 	ifmr->ifm_status = IFM_AVALID;
1539 	ifmr->ifm_active = IFM_ETHER;
1540 
1541 	if (!sc->link_active) {
1542 		if (sc->hw.mac.autoneg)
1543 			ifmr->ifm_active |= IFM_NONE;
1544 		else
1545 			ifmr->ifm_active |= sc->media.ifm_media;
1546 		return;
1547 	}
1548 
1549 	ifmr->ifm_status |= IFM_ACTIVE;
1550 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1551 		ifmr->ifm_active |= sc->ifm_flowctrl;
1552 
1553 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1554 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1555 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1556 	} else {
1557 		switch (sc->link_speed) {
1558 		case 10:
1559 			ifmr->ifm_active |= IFM_10_T;
1560 			break;
1561 		case 100:
1562 			ifmr->ifm_active |= IFM_100_TX;
1563 			break;
1564 
1565 		case 1000:
1566 			ifmr->ifm_active |= IFM_1000_T;
1567 			break;
1568 		}
1569 		if (sc->link_duplex == FULL_DUPLEX)
1570 			ifmr->ifm_active |= IFM_FDX;
1571 		else
1572 			ifmr->ifm_active |= IFM_HDX;
1573 	}
1574 	if (ifmr->ifm_active & IFM_FDX)
1575 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1576 }
1577 
1578 static int
1579 emx_media_change(struct ifnet *ifp)
1580 {
1581 	struct emx_softc *sc = ifp->if_softc;
1582 	struct ifmedia *ifm = &sc->media;
1583 
1584 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1585 
1586 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1587 		return (EINVAL);
1588 
1589 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1590 	case IFM_AUTO:
1591 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1592 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1593 		break;
1594 
1595 	case IFM_1000_SX:
1596 	case IFM_1000_T:
1597 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1598 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1599 		break;
1600 
1601 	case IFM_100_TX:
1602 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1603 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1604 		} else {
1605 			if (IFM_OPTIONS(ifm->ifm_media) &
1606 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1607 				if (bootverbose) {
1608 					if_printf(ifp, "Flow control is not "
1609 					    "allowed for half-duplex\n");
1610 				}
1611 				return EINVAL;
1612 			}
1613 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1614 		}
1615 		sc->hw.mac.autoneg = FALSE;
1616 		sc->hw.phy.autoneg_advertised = 0;
1617 		break;
1618 
1619 	case IFM_10_T:
1620 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1621 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1622 		} else {
1623 			if (IFM_OPTIONS(ifm->ifm_media) &
1624 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1625 				if (bootverbose) {
1626 					if_printf(ifp, "Flow control is not "
1627 					    "allowed for half-duplex\n");
1628 				}
1629 				return EINVAL;
1630 			}
1631 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1632 		}
1633 		sc->hw.mac.autoneg = FALSE;
1634 		sc->hw.phy.autoneg_advertised = 0;
1635 		break;
1636 
1637 	default:
1638 		if (bootverbose) {
1639 			if_printf(ifp, "Unsupported media type %d\n",
1640 			    IFM_SUBTYPE(ifm->ifm_media));
1641 		}
1642 		return EINVAL;
1643 	}
1644 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1645 
1646 	if (ifp->if_flags & IFF_RUNNING)
1647 		emx_init(sc);
1648 
1649 	return (0);
1650 }
1651 
1652 static int
1653 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1654     int *segs_used, int *idx)
1655 {
1656 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1657 	bus_dmamap_t map;
1658 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1659 	struct e1000_tx_desc *ctxd = NULL;
1660 	struct mbuf *m_head = *m_headp;
1661 	uint32_t txd_upper, txd_lower, cmd = 0;
1662 	int maxsegs, nsegs, i, j, first, last = 0, error;
1663 
1664 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1665 		error = emx_tso_pullup(tdata, m_headp);
1666 		if (error)
1667 			return error;
1668 		m_head = *m_headp;
1669 	}
1670 
1671 	txd_upper = txd_lower = 0;
1672 
1673 	/*
1674 	 * Capture the first descriptor index, this descriptor
1675 	 * will have the index of the EOP which is the only one
1676 	 * that now gets a DONE bit writeback.
1677 	 */
1678 	first = tdata->next_avail_tx_desc;
1679 	tx_buffer = &tdata->tx_buf[first];
1680 	tx_buffer_mapped = tx_buffer;
1681 	map = tx_buffer->map;
1682 
1683 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1684 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1685 	if (maxsegs > EMX_MAX_SCATTER)
1686 		maxsegs = EMX_MAX_SCATTER;
1687 
1688 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1689 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1690 	if (error) {
1691 		m_freem(*m_headp);
1692 		*m_headp = NULL;
1693 		return error;
1694 	}
1695         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1696 
1697 	m_head = *m_headp;
1698 	tdata->tx_nsegs += nsegs;
1699 	*segs_used += nsegs;
1700 
1701 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1702 		/* TSO will consume one TX desc */
1703 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1704 		tdata->tx_nsegs += i;
1705 		*segs_used += i;
1706 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1707 		/* TX csum offloading will consume one TX desc */
1708 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1709 		tdata->tx_nsegs += i;
1710 		*segs_used += i;
1711 	}
1712 
1713         /* Handle VLAN tag */
1714 	if (m_head->m_flags & M_VLANTAG) {
1715 		/* Set the vlan id. */
1716 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1717 		/* Tell hardware to add tag */
1718 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1719 	}
1720 
1721 	i = tdata->next_avail_tx_desc;
1722 
1723 	/* Set up our transmit descriptors */
1724 	for (j = 0; j < nsegs; j++) {
1725 		tx_buffer = &tdata->tx_buf[i];
1726 		ctxd = &tdata->tx_desc_base[i];
1727 
1728 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1729 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1730 					   txd_lower | segs[j].ds_len);
1731 		ctxd->upper.data = htole32(txd_upper);
1732 
1733 		last = i;
1734 		if (++i == tdata->num_tx_desc)
1735 			i = 0;
1736 	}
1737 
1738 	tdata->next_avail_tx_desc = i;
1739 
1740 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1741 	tdata->num_tx_desc_avail -= nsegs;
1742 	tdata->tx_nmbuf++;
1743 
1744 	tx_buffer->m_head = m_head;
1745 	tx_buffer_mapped->map = tx_buffer->map;
1746 	tx_buffer->map = map;
1747 
1748 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1749 		tdata->tx_nsegs = 0;
1750 
1751 		/*
1752 		 * Report Status (RS) is turned on
1753 		 * every tx_intr_nsegs descriptors.
1754 		 */
1755 		cmd = E1000_TXD_CMD_RS;
1756 
1757 		/*
1758 		 * Keep track of the descriptor, which will
1759 		 * be written back by hardware.
1760 		 */
1761 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1762 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1763 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1764 	}
1765 
1766 	/*
1767 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1768 	 */
1769 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1770 
1771 	/*
1772 	 * Defer TDT updating, until enough descriptors are setup
1773 	 */
1774 	*idx = i;
1775 
1776 #ifdef EMX_TSS_DEBUG
1777 	tdata->tx_pkts++;
1778 #endif
1779 
1780 	return (0);
1781 }
1782 
1783 static void
1784 emx_set_promisc(struct emx_softc *sc)
1785 {
1786 	struct ifnet *ifp = &sc->arpcom.ac_if;
1787 	uint32_t reg_rctl;
1788 
1789 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1790 
1791 	if (ifp->if_flags & IFF_PROMISC) {
1792 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1793 		/* Turn this on if you want to see bad packets */
1794 		if (emx_debug_sbp)
1795 			reg_rctl |= E1000_RCTL_SBP;
1796 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1797 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1798 		reg_rctl |= E1000_RCTL_MPE;
1799 		reg_rctl &= ~E1000_RCTL_UPE;
1800 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1801 	}
1802 }
1803 
1804 static void
1805 emx_disable_promisc(struct emx_softc *sc)
1806 {
1807 	struct ifnet *ifp = &sc->arpcom.ac_if;
1808 	uint32_t reg_rctl;
1809 	int mcnt = 0;
1810 
1811 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1812 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1813 
1814 	if (ifp->if_flags & IFF_ALLMULTI) {
1815 		mcnt = EMX_MCAST_ADDR_MAX;
1816 	} else {
1817 		const struct ifmultiaddr *ifma;
1818 
1819 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1820 			if (ifma->ifma_addr->sa_family != AF_LINK)
1821 				continue;
1822 			if (mcnt == EMX_MCAST_ADDR_MAX)
1823 				break;
1824 			mcnt++;
1825 		}
1826 	}
1827 	/* Don't disable if in MAX groups */
1828 	if (mcnt < EMX_MCAST_ADDR_MAX)
1829 		reg_rctl &= ~E1000_RCTL_MPE;
1830 
1831 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1832 }
1833 
1834 static void
1835 emx_set_multi(struct emx_softc *sc)
1836 {
1837 	struct ifnet *ifp = &sc->arpcom.ac_if;
1838 	struct ifmultiaddr *ifma;
1839 	uint32_t reg_rctl = 0;
1840 	uint8_t *mta;
1841 	int mcnt = 0;
1842 
1843 	mta = sc->mta;
1844 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1845 
1846 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1847 		if (ifma->ifma_addr->sa_family != AF_LINK)
1848 			continue;
1849 
1850 		if (mcnt == EMX_MCAST_ADDR_MAX)
1851 			break;
1852 
1853 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1854 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1855 		mcnt++;
1856 	}
1857 
1858 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1859 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1860 		reg_rctl |= E1000_RCTL_MPE;
1861 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1862 	} else {
1863 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1864 	}
1865 }
1866 
1867 /*
1868  * This routine checks for link status and updates statistics.
1869  */
1870 static void
1871 emx_timer(void *xsc)
1872 {
1873 	struct emx_softc *sc = xsc;
1874 	struct ifnet *ifp = &sc->arpcom.ac_if;
1875 
1876 	lwkt_serialize_enter(&sc->main_serialize);
1877 
1878 	emx_update_link_status(sc);
1879 	emx_update_stats(sc);
1880 
1881 	/* Reset LAA into RAR[0] on 82571 */
1882 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1883 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1884 
1885 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1886 		emx_print_hw_stats(sc);
1887 
1888 	emx_smartspeed(sc);
1889 
1890 	callout_reset(&sc->timer, hz, emx_timer, sc);
1891 
1892 	lwkt_serialize_exit(&sc->main_serialize);
1893 }
1894 
1895 static void
1896 emx_update_link_status(struct emx_softc *sc)
1897 {
1898 	struct e1000_hw *hw = &sc->hw;
1899 	struct ifnet *ifp = &sc->arpcom.ac_if;
1900 	device_t dev = sc->dev;
1901 	uint32_t link_check = 0;
1902 
1903 	/* Get the cached link value or read phy for real */
1904 	switch (hw->phy.media_type) {
1905 	case e1000_media_type_copper:
1906 		if (hw->mac.get_link_status) {
1907 			if (hw->mac.type == e1000_pch_spt)
1908 				msec_delay(50);
1909 			/* Do the work to read phy */
1910 			e1000_check_for_link(hw);
1911 			link_check = !hw->mac.get_link_status;
1912 			if (link_check) /* ESB2 fix */
1913 				e1000_cfg_on_link_up(hw);
1914 		} else {
1915 			link_check = TRUE;
1916 		}
1917 		break;
1918 
1919 	case e1000_media_type_fiber:
1920 		e1000_check_for_link(hw);
1921 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1922 		break;
1923 
1924 	case e1000_media_type_internal_serdes:
1925 		e1000_check_for_link(hw);
1926 		link_check = sc->hw.mac.serdes_has_link;
1927 		break;
1928 
1929 	case e1000_media_type_unknown:
1930 	default:
1931 		break;
1932 	}
1933 
1934 	/* Now check for a transition */
1935 	if (link_check && sc->link_active == 0) {
1936 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1937 		    &sc->link_duplex);
1938 
1939 		/*
1940 		 * Check if we should enable/disable SPEED_MODE bit on
1941 		 * 82571EB/82572EI
1942 		 */
1943 		if (sc->link_speed != SPEED_1000 &&
1944 		    (hw->mac.type == e1000_82571 ||
1945 		     hw->mac.type == e1000_82572)) {
1946 			int tarc0;
1947 
1948 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1949 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1950 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1951 		}
1952 		if (bootverbose) {
1953 			char flowctrl[IFM_ETH_FC_STRLEN];
1954 
1955 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1956 			    sizeof(flowctrl));
1957 			device_printf(dev, "Link is up %d Mbps %s, "
1958 			    "Flow control: %s\n",
1959 			    sc->link_speed,
1960 			    (sc->link_duplex == FULL_DUPLEX) ?
1961 			    "Full Duplex" : "Half Duplex",
1962 			    flowctrl);
1963 		}
1964 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1965 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1966 		sc->link_active = 1;
1967 		sc->smartspeed = 0;
1968 		ifp->if_baudrate = sc->link_speed * 1000000;
1969 		ifp->if_link_state = LINK_STATE_UP;
1970 		if_link_state_change(ifp);
1971 	} else if (!link_check && sc->link_active == 1) {
1972 		ifp->if_baudrate = sc->link_speed = 0;
1973 		sc->link_duplex = 0;
1974 		if (bootverbose)
1975 			device_printf(dev, "Link is Down\n");
1976 		sc->link_active = 0;
1977 		ifp->if_link_state = LINK_STATE_DOWN;
1978 		if_link_state_change(ifp);
1979 	}
1980 }
1981 
1982 static void
1983 emx_stop(struct emx_softc *sc)
1984 {
1985 	struct ifnet *ifp = &sc->arpcom.ac_if;
1986 	int i;
1987 
1988 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1989 
1990 	emx_disable_intr(sc);
1991 
1992 	callout_stop(&sc->timer);
1993 
1994 	ifp->if_flags &= ~IFF_RUNNING;
1995 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1996 		struct emx_txdata *tdata = &sc->tx_data[i];
1997 
1998 		ifsq_clr_oactive(tdata->ifsq);
1999 		ifsq_watchdog_stop(&tdata->tx_watchdog);
2000 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
2001 
2002 		tdata->tx_running = 0;
2003 		callout_stop(&tdata->tx_gc_timer);
2004 	}
2005 
2006 	/* I219 needs some special flushing to avoid hangs */
2007 	if (sc->hw.mac.type == e1000_pch_spt)
2008 		emx_flush_txrx_ring(sc);
2009 
2010 	/*
2011 	 * Disable multiple receive queues.
2012 	 *
2013 	 * NOTE:
2014 	 * We should disable multiple receive queues before
2015 	 * resetting the hardware.
2016 	 */
2017 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
2018 
2019 	e1000_reset_hw(&sc->hw);
2020 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2021 
2022 	for (i = 0; i < sc->tx_ring_cnt; ++i)
2023 		emx_free_tx_ring(&sc->tx_data[i]);
2024 	for (i = 0; i < sc->rx_ring_cnt; ++i)
2025 		emx_free_rx_ring(&sc->rx_data[i]);
2026 }
2027 
2028 static int
2029 emx_reset(struct emx_softc *sc)
2030 {
2031 	device_t dev = sc->dev;
2032 	uint16_t rx_buffer_size;
2033 	uint32_t pba;
2034 
2035 	/* Set up smart power down as default off on newer adapters. */
2036 	if (!emx_smart_pwr_down &&
2037 	    (sc->hw.mac.type == e1000_82571 ||
2038 	     sc->hw.mac.type == e1000_82572)) {
2039 		uint16_t phy_tmp = 0;
2040 
2041 		/* Speed up time to link by disabling smart power down. */
2042 		e1000_read_phy_reg(&sc->hw,
2043 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2044 		phy_tmp &= ~IGP02E1000_PM_SPD;
2045 		e1000_write_phy_reg(&sc->hw,
2046 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2047 	}
2048 
2049 	/*
2050 	 * Packet Buffer Allocation (PBA)
2051 	 * Writing PBA sets the receive portion of the buffer
2052 	 * the remainder is used for the transmit buffer.
2053 	 */
2054 	switch (sc->hw.mac.type) {
2055 	/* Total Packet Buffer on these is 48K */
2056 	case e1000_82571:
2057 	case e1000_82572:
2058 	case e1000_80003es2lan:
2059 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2060 		break;
2061 
2062 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2063 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2064 		break;
2065 
2066 	case e1000_82574:
2067 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2068 		break;
2069 
2070 	case e1000_pch_lpt:
2071 	case e1000_pch_spt:
2072  		pba = E1000_PBA_26K;
2073  		break;
2074 
2075 	default:
2076 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2077 		if (sc->hw.mac.max_frame_size > 8192)
2078 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2079 		else
2080 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2081 	}
2082 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2083 
2084 	/*
2085 	 * These parameters control the automatic generation (Tx) and
2086 	 * response (Rx) to Ethernet PAUSE frames.
2087 	 * - High water mark should allow for at least two frames to be
2088 	 *   received after sending an XOFF.
2089 	 * - Low water mark works best when it is very near the high water mark.
2090 	 *   This allows the receiver to restart by sending XON when it has
2091 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2092 	 *   restart after one full frame is pulled from the buffer. There
2093 	 *   could be several smaller frames in the buffer and if so they will
2094 	 *   not trigger the XON until their total number reduces the buffer
2095 	 *   by 1500.
2096 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2097 	 */
2098 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2099 
2100 	sc->hw.fc.high_water = rx_buffer_size -
2101 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2102 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2103 
2104 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2105 	sc->hw.fc.send_xon = TRUE;
2106 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2107 
2108 	/*
2109 	 * Device specific overrides/settings
2110 	 */
2111 	if (sc->hw.mac.type == e1000_pch_lpt ||
2112 	    sc->hw.mac.type == e1000_pch_spt) {
2113 		sc->hw.fc.high_water = 0x5C20;
2114 		sc->hw.fc.low_water = 0x5048;
2115 		sc->hw.fc.pause_time = 0x0650;
2116 		sc->hw.fc.refresh_time = 0x0400;
2117 		/* Jumbos need adjusted PBA */
2118 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2119 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2120 		else
2121 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2122 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2123 		sc->hw.fc.pause_time = 0xFFFF;
2124 	}
2125 
2126 	/* I219 needs some special flushing to avoid hangs */
2127 	if (sc->hw.mac.type == e1000_pch_spt)
2128 		emx_flush_txrx_ring(sc);
2129 
2130 	/* Issue a global reset */
2131 	e1000_reset_hw(&sc->hw);
2132 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2133 	emx_disable_aspm(sc);
2134 
2135 	if (e1000_init_hw(&sc->hw) < 0) {
2136 		device_printf(dev, "Hardware Initialization Failed\n");
2137 		return (EIO);
2138 	}
2139 
2140 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2141 	e1000_get_phy_info(&sc->hw);
2142 	e1000_check_for_link(&sc->hw);
2143 
2144 	return (0);
2145 }
2146 
2147 static void
2148 emx_setup_ifp(struct emx_softc *sc)
2149 {
2150 	struct ifnet *ifp = &sc->arpcom.ac_if;
2151 	int i;
2152 
2153 	if_initname(ifp, device_get_name(sc->dev),
2154 		    device_get_unit(sc->dev));
2155 	ifp->if_softc = sc;
2156 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2157 	ifp->if_init =  emx_init;
2158 	ifp->if_ioctl = emx_ioctl;
2159 	ifp->if_start = emx_start;
2160 #ifdef IFPOLL_ENABLE
2161 	ifp->if_npoll = emx_npoll;
2162 #endif
2163 	ifp->if_serialize = emx_serialize;
2164 	ifp->if_deserialize = emx_deserialize;
2165 	ifp->if_tryserialize = emx_tryserialize;
2166 #ifdef INVARIANTS
2167 	ifp->if_serialize_assert = emx_serialize_assert;
2168 #endif
2169 
2170 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2171 
2172 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2173 	ifq_set_ready(&ifp->if_snd);
2174 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2175 
2176 	ifp->if_mapsubq = ifq_mapsubq_modulo;
2177 	ifq_set_subq_divisor(&ifp->if_snd, 1);
2178 
2179 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2180 
2181 	ifp->if_capabilities = IFCAP_HWCSUM |
2182 			       IFCAP_VLAN_HWTAGGING |
2183 			       IFCAP_VLAN_MTU |
2184 			       IFCAP_TSO;
2185 	if (sc->rx_ring_cnt > 1)
2186 		ifp->if_capabilities |= IFCAP_RSS;
2187 	ifp->if_capenable = ifp->if_capabilities;
2188 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2189 
2190 	/*
2191 	 * Tell the upper layer(s) we support long frames.
2192 	 */
2193 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2194 
2195 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2196 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2197 		struct emx_txdata *tdata = &sc->tx_data[i];
2198 
2199 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2200 		ifsq_set_priv(ifsq, tdata);
2201 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2202 		tdata->ifsq = ifsq;
2203 
2204 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2205 	}
2206 
2207 	/*
2208 	 * Specify the media types supported by this sc and register
2209 	 * callbacks to update media and link information
2210 	 */
2211 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2212 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2213 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2214 			    0, NULL);
2215 	} else {
2216 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2217 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2218 			    0, NULL);
2219 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2220 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2221 			    0, NULL);
2222 		if (sc->hw.phy.type != e1000_phy_ife) {
2223 			ifmedia_add(&sc->media,
2224 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2225 		}
2226 	}
2227 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2228 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2229 }
2230 
2231 /*
2232  * Workaround for SmartSpeed on 82541 and 82547 controllers
2233  */
2234 static void
2235 emx_smartspeed(struct emx_softc *sc)
2236 {
2237 	uint16_t phy_tmp;
2238 
2239 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2240 	    sc->hw.mac.autoneg == 0 ||
2241 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2242 		return;
2243 
2244 	if (sc->smartspeed == 0) {
2245 		/*
2246 		 * If Master/Slave config fault is asserted twice,
2247 		 * we assume back-to-back
2248 		 */
2249 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2250 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2251 			return;
2252 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2253 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2254 			e1000_read_phy_reg(&sc->hw,
2255 			    PHY_1000T_CTRL, &phy_tmp);
2256 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2257 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2258 				e1000_write_phy_reg(&sc->hw,
2259 				    PHY_1000T_CTRL, phy_tmp);
2260 				sc->smartspeed++;
2261 				if (sc->hw.mac.autoneg &&
2262 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2263 				    !e1000_read_phy_reg(&sc->hw,
2264 				     PHY_CONTROL, &phy_tmp)) {
2265 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2266 						   MII_CR_RESTART_AUTO_NEG;
2267 					e1000_write_phy_reg(&sc->hw,
2268 					    PHY_CONTROL, phy_tmp);
2269 				}
2270 			}
2271 		}
2272 		return;
2273 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2274 		/* If still no link, perhaps using 2/3 pair cable */
2275 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2276 		phy_tmp |= CR_1000T_MS_ENABLE;
2277 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2278 		if (sc->hw.mac.autoneg &&
2279 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2280 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2281 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2282 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2283 		}
2284 	}
2285 
2286 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2287 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2288 		sc->smartspeed = 0;
2289 }
2290 
2291 static int
2292 emx_create_tx_ring(struct emx_txdata *tdata)
2293 {
2294 	device_t dev = tdata->sc->dev;
2295 	struct emx_txbuf *tx_buffer;
2296 	int error, i, tsize, ntxd;
2297 
2298 	/*
2299 	 * Validate number of transmit descriptors.  It must not exceed
2300 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2301 	 */
2302 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2303 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2304 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2305 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2306 		    EMX_DEFAULT_TXD, ntxd);
2307 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2308 	} else {
2309 		tdata->num_tx_desc = ntxd;
2310 	}
2311 
2312 	/*
2313 	 * Allocate Transmit Descriptor ring
2314 	 */
2315 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2316 			 EMX_DBA_ALIGN);
2317 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2318 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2319 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2320 				&tdata->tx_desc_paddr);
2321 	if (tdata->tx_desc_base == NULL) {
2322 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2323 		return ENOMEM;
2324 	}
2325 
2326 	tsize = __VM_CACHELINE_ALIGN(
2327 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2328 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2329 
2330 	/*
2331 	 * Create DMA tags for tx buffers
2332 	 */
2333 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2334 			1, 0,			/* alignment, bounds */
2335 			BUS_SPACE_MAXADDR,	/* lowaddr */
2336 			BUS_SPACE_MAXADDR,	/* highaddr */
2337 			NULL, NULL,		/* filter, filterarg */
2338 			EMX_TSO_SIZE,		/* maxsize */
2339 			EMX_MAX_SCATTER,	/* nsegments */
2340 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2341 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2342 			BUS_DMA_ONEBPAGE,	/* flags */
2343 			&tdata->txtag);
2344 	if (error) {
2345 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2346 		kfree(tdata->tx_buf, M_DEVBUF);
2347 		tdata->tx_buf = NULL;
2348 		return error;
2349 	}
2350 
2351 	/*
2352 	 * Create DMA maps for tx buffers
2353 	 */
2354 	for (i = 0; i < tdata->num_tx_desc; i++) {
2355 		tx_buffer = &tdata->tx_buf[i];
2356 
2357 		error = bus_dmamap_create(tdata->txtag,
2358 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2359 					  &tx_buffer->map);
2360 		if (error) {
2361 			device_printf(dev, "Unable to create TX DMA map\n");
2362 			emx_destroy_tx_ring(tdata, i);
2363 			return error;
2364 		}
2365 	}
2366 
2367 	/*
2368 	 * Setup TX parameters
2369 	 */
2370 	tdata->spare_tx_desc = EMX_TX_SPARE;
2371 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2372 
2373 	/*
2374 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2375 	 * and tx_intr_nsegs:
2376 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2377 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2378 	 */
2379 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2380 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2381 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2382 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2383 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2384 
2385 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2386 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2387 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2388 
2389 	/*
2390 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2391 	 * 82571/82572 specification update errata #7
2392 	 *
2393 	 * Same applies to I217 (and maybe I218 and I219).
2394 	 *
2395 	 * NOTE:
2396 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2397 	 * are pulled; mainly to keep rest of the data properly aligned.
2398 	 */
2399 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2400 	    tdata->sc->hw.mac.type == e1000_82572 ||
2401 	    tdata->sc->hw.mac.type == e1000_pch_lpt ||
2402 	    tdata->sc->hw.mac.type == e1000_pch_spt)
2403 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2404 
2405 	return (0);
2406 }
2407 
2408 static void
2409 emx_init_tx_ring(struct emx_txdata *tdata)
2410 {
2411 	/* Clear the old ring contents */
2412 	bzero(tdata->tx_desc_base,
2413 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2414 
2415 	/* Reset state */
2416 	tdata->next_avail_tx_desc = 0;
2417 	tdata->next_tx_to_clean = 0;
2418 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2419 	tdata->tx_nmbuf = 0;
2420 	tdata->tx_running = 0;
2421 
2422 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2423 	if (tdata->sc->tx_ring_inuse > 1) {
2424 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2425 		if (bootverbose) {
2426 			if_printf(&tdata->sc->arpcom.ac_if,
2427 			    "TX %d force ctx setup\n", tdata->idx);
2428 		}
2429 	}
2430 }
2431 
2432 static void
2433 emx_init_tx_unit(struct emx_softc *sc)
2434 {
2435 	uint32_t tctl, tarc, tipg = 0, txdctl;
2436 	int i;
2437 
2438 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2439 		struct emx_txdata *tdata = &sc->tx_data[i];
2440 		uint64_t bus_addr;
2441 
2442 		/* Setup the Base and Length of the Tx Descriptor Ring */
2443 		bus_addr = tdata->tx_desc_paddr;
2444 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2445 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2446 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2447 		    (uint32_t)(bus_addr >> 32));
2448 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2449 		    (uint32_t)bus_addr);
2450 		/* Setup the HW Tx Head and Tail descriptor pointers */
2451 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2452 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2453 
2454 		txdctl = 0x1f;		/* PTHRESH */
2455 		txdctl |= 1 << 8;	/* HTHRESH */
2456 		txdctl |= 1 << 16;	/* WTHRESH */
2457 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2458 		txdctl |= E1000_TXDCTL_GRAN;
2459 		txdctl |= 1 << 25;	/* LWTHRESH */
2460 
2461 		E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(i), txdctl);
2462 	}
2463 
2464 	/* Set the default values for the Tx Inter Packet Gap timer */
2465 	switch (sc->hw.mac.type) {
2466 	case e1000_80003es2lan:
2467 		tipg = DEFAULT_82543_TIPG_IPGR1;
2468 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2469 		    E1000_TIPG_IPGR2_SHIFT;
2470 		break;
2471 
2472 	default:
2473 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2474 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2475 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2476 		else
2477 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2478 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2479 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2480 		break;
2481 	}
2482 
2483 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2484 
2485 	/* NOTE: 0 is not allowed for TIDV */
2486 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2487 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2488 
2489 	/*
2490 	 * Errata workaround (obtained from Linux).  This is necessary
2491 	 * to make multiple TX queues work on 82574.
2492 	 * XXX can't find it in any published errata though.
2493 	 */
2494 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2495 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2496 
2497 	if (sc->hw.mac.type == e1000_82571 ||
2498 	    sc->hw.mac.type == e1000_82572) {
2499 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2500 		tarc |= EMX_TARC_SPEED_MODE;
2501 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2502 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2503 		/* errata: program both queues to unweighted RR */
2504 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2505 		tarc |= 1;
2506 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2507 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2508 		tarc |= 1;
2509 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2510 	} else if (sc->hw.mac.type == e1000_82574) {
2511 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2512 		tarc |= EMX_TARC_ERRATA;
2513 		if (sc->tx_ring_inuse > 1) {
2514 			tarc |= (EMX_TARC_COMPENSATION_MODE | EMX_TARC_MQ_FIX);
2515 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2516 			E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2517 		} else {
2518 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2519 		}
2520 	}
2521 
2522 	/* Program the Transmit Control Register */
2523 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2524 	tctl &= ~E1000_TCTL_CT;
2525 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2526 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2527 	tctl |= E1000_TCTL_MULR;
2528 
2529 	/* This write will effectively turn on the transmit unit. */
2530 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2531 
2532 	if (sc->hw.mac.type == e1000_82571 ||
2533 	    sc->hw.mac.type == e1000_82572 ||
2534 	    sc->hw.mac.type == e1000_80003es2lan) {
2535 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2536 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2537 		tarc &= ~(1 << 28);
2538 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2539 	} else if (sc->hw.mac.type == e1000_pch_spt) {
2540 		uint32_t reg;
2541 
2542 		reg = E1000_READ_REG(&sc->hw, E1000_IOSFPC);
2543 		reg |= E1000_RCTL_RDMTS_HEX;
2544 		E1000_WRITE_REG(&sc->hw, E1000_IOSFPC, reg);
2545 		reg = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2546 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2547 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), reg);
2548 	}
2549 
2550 	if (sc->tx_ring_inuse > 1) {
2551 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2552 		tarc &= ~EMX_TARC_COUNT_MASK;
2553 		tarc |= 1;
2554 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2555 
2556 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2557 		tarc &= ~EMX_TARC_COUNT_MASK;
2558 		tarc |= 1;
2559 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2560 	}
2561 }
2562 
2563 static void
2564 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2565 {
2566 	struct emx_txbuf *tx_buffer;
2567 	int i;
2568 
2569 	/* Free Transmit Descriptor ring */
2570 	if (tdata->tx_desc_base) {
2571 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2572 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2573 				tdata->tx_desc_dmap);
2574 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2575 
2576 		tdata->tx_desc_base = NULL;
2577 	}
2578 
2579 	if (tdata->tx_buf == NULL)
2580 		return;
2581 
2582 	for (i = 0; i < ndesc; i++) {
2583 		tx_buffer = &tdata->tx_buf[i];
2584 
2585 		KKASSERT(tx_buffer->m_head == NULL);
2586 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2587 	}
2588 	bus_dma_tag_destroy(tdata->txtag);
2589 
2590 	kfree(tdata->tx_buf, M_DEVBUF);
2591 	tdata->tx_buf = NULL;
2592 }
2593 
2594 /*
2595  * The offload context needs to be set when we transfer the first
2596  * packet of a particular protocol (TCP/UDP).  This routine has been
2597  * enhanced to deal with inserted VLAN headers.
2598  *
2599  * If the new packet's ether header length, ip header length and
2600  * csum offloading type are same as the previous packet, we should
2601  * avoid allocating a new csum context descriptor; mainly to take
2602  * advantage of the pipeline effect of the TX data read request.
2603  *
2604  * This function returns number of TX descrptors allocated for
2605  * csum context.
2606  */
2607 static int
2608 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2609 	   uint32_t *txd_upper, uint32_t *txd_lower)
2610 {
2611 	struct e1000_context_desc *TXD;
2612 	int curr_txd, ehdrlen, csum_flags;
2613 	uint32_t cmd, hdr_len, ip_hlen;
2614 
2615 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2616 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2617 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2618 
2619 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2620 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2621 	    tdata->csum_flags == csum_flags) {
2622 		/*
2623 		 * Same csum offload context as the previous packets;
2624 		 * just return.
2625 		 */
2626 		*txd_upper = tdata->csum_txd_upper;
2627 		*txd_lower = tdata->csum_txd_lower;
2628 		return 0;
2629 	}
2630 
2631 	/*
2632 	 * Setup a new csum offload context.
2633 	 */
2634 
2635 	curr_txd = tdata->next_avail_tx_desc;
2636 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2637 
2638 	cmd = 0;
2639 
2640 	/* Setup of IP header checksum. */
2641 	if (csum_flags & CSUM_IP) {
2642 		/*
2643 		 * Start offset for header checksum calculation.
2644 		 * End offset for header checksum calculation.
2645 		 * Offset of place to put the checksum.
2646 		 */
2647 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2648 		TXD->lower_setup.ip_fields.ipcse =
2649 		    htole16(ehdrlen + ip_hlen - 1);
2650 		TXD->lower_setup.ip_fields.ipcso =
2651 		    ehdrlen + offsetof(struct ip, ip_sum);
2652 		cmd |= E1000_TXD_CMD_IP;
2653 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2654 	}
2655 	hdr_len = ehdrlen + ip_hlen;
2656 
2657 	if (csum_flags & CSUM_TCP) {
2658 		/*
2659 		 * Start offset for payload checksum calculation.
2660 		 * End offset for payload checksum calculation.
2661 		 * Offset of place to put the checksum.
2662 		 */
2663 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2664 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2665 		TXD->upper_setup.tcp_fields.tucso =
2666 		    hdr_len + offsetof(struct tcphdr, th_sum);
2667 		cmd |= E1000_TXD_CMD_TCP;
2668 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2669 	} else if (csum_flags & CSUM_UDP) {
2670 		/*
2671 		 * Start offset for header checksum calculation.
2672 		 * End offset for header checksum calculation.
2673 		 * Offset of place to put the checksum.
2674 		 */
2675 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2676 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2677 		TXD->upper_setup.tcp_fields.tucso =
2678 		    hdr_len + offsetof(struct udphdr, uh_sum);
2679 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2680 	}
2681 
2682 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2683 		     E1000_TXD_DTYP_D;		/* Data descr */
2684 
2685 	/* Save the information for this csum offloading context */
2686 	tdata->csum_lhlen = ehdrlen;
2687 	tdata->csum_iphlen = ip_hlen;
2688 	tdata->csum_flags = csum_flags;
2689 	tdata->csum_txd_upper = *txd_upper;
2690 	tdata->csum_txd_lower = *txd_lower;
2691 
2692 	TXD->tcp_seg_setup.data = htole32(0);
2693 	TXD->cmd_and_length =
2694 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2695 
2696 	if (++curr_txd == tdata->num_tx_desc)
2697 		curr_txd = 0;
2698 
2699 	KKASSERT(tdata->num_tx_desc_avail > 0);
2700 	tdata->num_tx_desc_avail--;
2701 
2702 	tdata->next_avail_tx_desc = curr_txd;
2703 	return 1;
2704 }
2705 
2706 static void
2707 emx_txeof(struct emx_txdata *tdata)
2708 {
2709 	struct emx_txbuf *tx_buffer;
2710 	int first, num_avail;
2711 
2712 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2713 		return;
2714 
2715 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2716 		return;
2717 
2718 	num_avail = tdata->num_tx_desc_avail;
2719 	first = tdata->next_tx_to_clean;
2720 
2721 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2722 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2723 		struct e1000_tx_desc *tx_desc;
2724 
2725 		tx_desc = &tdata->tx_desc_base[dd_idx];
2726 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2727 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2728 
2729 			if (++dd_idx == tdata->num_tx_desc)
2730 				dd_idx = 0;
2731 
2732 			while (first != dd_idx) {
2733 				logif(pkt_txclean);
2734 
2735 				KKASSERT(num_avail < tdata->num_tx_desc);
2736 				num_avail++;
2737 
2738 				tx_buffer = &tdata->tx_buf[first];
2739 				if (tx_buffer->m_head)
2740 					emx_free_txbuf(tdata, tx_buffer);
2741 
2742 				if (++first == tdata->num_tx_desc)
2743 					first = 0;
2744 			}
2745 		} else {
2746 			break;
2747 		}
2748 	}
2749 	tdata->next_tx_to_clean = first;
2750 	tdata->num_tx_desc_avail = num_avail;
2751 
2752 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2753 		tdata->tx_dd_head = 0;
2754 		tdata->tx_dd_tail = 0;
2755 	}
2756 
2757 	if (!EMX_IS_OACTIVE(tdata)) {
2758 		ifsq_clr_oactive(tdata->ifsq);
2759 
2760 		/* All clean, turn off the timer */
2761 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2762 			tdata->tx_watchdog.wd_timer = 0;
2763 	}
2764 	tdata->tx_running = EMX_TX_RUNNING;
2765 }
2766 
2767 static void
2768 emx_tx_collect(struct emx_txdata *tdata, boolean_t gc)
2769 {
2770 	struct emx_txbuf *tx_buffer;
2771 	int tdh, first, num_avail, dd_idx = -1;
2772 
2773 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2774 		return;
2775 
2776 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2777 	if (tdh == tdata->next_tx_to_clean) {
2778 		if (gc && tdata->tx_nmbuf > 0)
2779 			tdata->tx_running = EMX_TX_RUNNING;
2780 		return;
2781 	}
2782 	if (gc)
2783 		tdata->tx_gc++;
2784 
2785 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2786 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2787 
2788 	num_avail = tdata->num_tx_desc_avail;
2789 	first = tdata->next_tx_to_clean;
2790 
2791 	while (first != tdh) {
2792 		logif(pkt_txclean);
2793 
2794 		KKASSERT(num_avail < tdata->num_tx_desc);
2795 		num_avail++;
2796 
2797 		tx_buffer = &tdata->tx_buf[first];
2798 		if (tx_buffer->m_head)
2799 			emx_free_txbuf(tdata, tx_buffer);
2800 
2801 		if (first == dd_idx) {
2802 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2803 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2804 				tdata->tx_dd_head = 0;
2805 				tdata->tx_dd_tail = 0;
2806 				dd_idx = -1;
2807 			} else {
2808 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2809 			}
2810 		}
2811 
2812 		if (++first == tdata->num_tx_desc)
2813 			first = 0;
2814 	}
2815 	tdata->next_tx_to_clean = first;
2816 	tdata->num_tx_desc_avail = num_avail;
2817 
2818 	if (!EMX_IS_OACTIVE(tdata)) {
2819 		ifsq_clr_oactive(tdata->ifsq);
2820 
2821 		/* All clean, turn off the timer */
2822 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2823 			tdata->tx_watchdog.wd_timer = 0;
2824 	}
2825 	if (!gc || tdata->tx_nmbuf > 0)
2826 		tdata->tx_running = EMX_TX_RUNNING;
2827 }
2828 
2829 /*
2830  * When Link is lost sometimes there is work still in the TX ring
2831  * which will result in a watchdog, rather than allow that do an
2832  * attempted cleanup and then reinit here.  Note that this has been
2833  * seens mostly with fiber adapters.
2834  */
2835 static void
2836 emx_tx_purge(struct emx_softc *sc)
2837 {
2838 	int i;
2839 
2840 	if (sc->link_active)
2841 		return;
2842 
2843 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2844 		struct emx_txdata *tdata = &sc->tx_data[i];
2845 
2846 		if (tdata->tx_watchdog.wd_timer) {
2847 			emx_tx_collect(tdata, FALSE);
2848 			if (tdata->tx_watchdog.wd_timer) {
2849 				if_printf(&sc->arpcom.ac_if,
2850 				    "Link lost, TX pending, reinit\n");
2851 				emx_init(sc);
2852 				return;
2853 			}
2854 		}
2855 	}
2856 }
2857 
2858 static int
2859 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2860 {
2861 	struct mbuf *m;
2862 	bus_dma_segment_t seg;
2863 	bus_dmamap_t map;
2864 	struct emx_rxbuf *rx_buffer;
2865 	int error, nseg;
2866 
2867 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2868 	if (m == NULL) {
2869 		if (init) {
2870 			if_printf(&rdata->sc->arpcom.ac_if,
2871 				  "Unable to allocate RX mbuf\n");
2872 		}
2873 		return (ENOBUFS);
2874 	}
2875 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2876 
2877 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2878 		m_adj(m, ETHER_ALIGN);
2879 
2880 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2881 			rdata->rx_sparemap, m,
2882 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2883 	if (error) {
2884 		m_freem(m);
2885 		if (init) {
2886 			if_printf(&rdata->sc->arpcom.ac_if,
2887 				  "Unable to load RX mbuf\n");
2888 		}
2889 		return (error);
2890 	}
2891 
2892 	rx_buffer = &rdata->rx_buf[i];
2893 	if (rx_buffer->m_head != NULL)
2894 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2895 
2896 	map = rx_buffer->map;
2897 	rx_buffer->map = rdata->rx_sparemap;
2898 	rdata->rx_sparemap = map;
2899 
2900 	rx_buffer->m_head = m;
2901 	rx_buffer->paddr = seg.ds_addr;
2902 
2903 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2904 	return (0);
2905 }
2906 
2907 static int
2908 emx_create_rx_ring(struct emx_rxdata *rdata)
2909 {
2910 	device_t dev = rdata->sc->dev;
2911 	struct emx_rxbuf *rx_buffer;
2912 	int i, error, rsize, nrxd;
2913 
2914 	/*
2915 	 * Validate number of receive descriptors.  It must not exceed
2916 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2917 	 */
2918 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2919 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2920 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2921 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2922 		    EMX_DEFAULT_RXD, nrxd);
2923 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2924 	} else {
2925 		rdata->num_rx_desc = nrxd;
2926 	}
2927 
2928 	/*
2929 	 * Allocate Receive Descriptor ring
2930 	 */
2931 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2932 			 EMX_DBA_ALIGN);
2933 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2934 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2935 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2936 				&rdata->rx_desc_paddr);
2937 	if (rdata->rx_desc == NULL) {
2938 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2939 		return ENOMEM;
2940 	}
2941 
2942 	rsize = __VM_CACHELINE_ALIGN(
2943 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2944 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2945 
2946 	/*
2947 	 * Create DMA tag for rx buffers
2948 	 */
2949 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2950 			1, 0,			/* alignment, bounds */
2951 			BUS_SPACE_MAXADDR,	/* lowaddr */
2952 			BUS_SPACE_MAXADDR,	/* highaddr */
2953 			NULL, NULL,		/* filter, filterarg */
2954 			MCLBYTES,		/* maxsize */
2955 			1,			/* nsegments */
2956 			MCLBYTES,		/* maxsegsize */
2957 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2958 			&rdata->rxtag);
2959 	if (error) {
2960 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2961 		kfree(rdata->rx_buf, M_DEVBUF);
2962 		rdata->rx_buf = NULL;
2963 		return error;
2964 	}
2965 
2966 	/*
2967 	 * Create spare DMA map for rx buffers
2968 	 */
2969 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2970 				  &rdata->rx_sparemap);
2971 	if (error) {
2972 		device_printf(dev, "Unable to create spare RX DMA map\n");
2973 		bus_dma_tag_destroy(rdata->rxtag);
2974 		kfree(rdata->rx_buf, M_DEVBUF);
2975 		rdata->rx_buf = NULL;
2976 		return error;
2977 	}
2978 
2979 	/*
2980 	 * Create DMA maps for rx buffers
2981 	 */
2982 	for (i = 0; i < rdata->num_rx_desc; i++) {
2983 		rx_buffer = &rdata->rx_buf[i];
2984 
2985 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2986 					  &rx_buffer->map);
2987 		if (error) {
2988 			device_printf(dev, "Unable to create RX DMA map\n");
2989 			emx_destroy_rx_ring(rdata, i);
2990 			return error;
2991 		}
2992 	}
2993 	return (0);
2994 }
2995 
2996 static void
2997 emx_free_rx_ring(struct emx_rxdata *rdata)
2998 {
2999 	int i;
3000 
3001 	for (i = 0; i < rdata->num_rx_desc; i++) {
3002 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
3003 
3004 		if (rx_buffer->m_head != NULL) {
3005 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
3006 			m_freem(rx_buffer->m_head);
3007 			rx_buffer->m_head = NULL;
3008 		}
3009 	}
3010 
3011 	if (rdata->fmp != NULL)
3012 		m_freem(rdata->fmp);
3013 	rdata->fmp = NULL;
3014 	rdata->lmp = NULL;
3015 }
3016 
3017 static void
3018 emx_free_tx_ring(struct emx_txdata *tdata)
3019 {
3020 	int i;
3021 
3022 	for (i = 0; i < tdata->num_tx_desc; i++) {
3023 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
3024 
3025 		if (tx_buffer->m_head != NULL)
3026 			emx_free_txbuf(tdata, tx_buffer);
3027 	}
3028 
3029 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
3030 
3031 	tdata->csum_flags = 0;
3032 	tdata->csum_lhlen = 0;
3033 	tdata->csum_iphlen = 0;
3034 	tdata->csum_thlen = 0;
3035 	tdata->csum_mss = 0;
3036 	tdata->csum_pktlen = 0;
3037 
3038 	tdata->tx_dd_head = 0;
3039 	tdata->tx_dd_tail = 0;
3040 	tdata->tx_nsegs = 0;
3041 }
3042 
3043 static int
3044 emx_init_rx_ring(struct emx_rxdata *rdata)
3045 {
3046 	int i, error;
3047 
3048 	/* Reset descriptor ring */
3049 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
3050 
3051 	/* Allocate new ones. */
3052 	for (i = 0; i < rdata->num_rx_desc; i++) {
3053 		error = emx_newbuf(rdata, i, 1);
3054 		if (error)
3055 			return (error);
3056 	}
3057 
3058 	/* Setup our descriptor pointers */
3059 	rdata->next_rx_desc_to_check = 0;
3060 
3061 	return (0);
3062 }
3063 
3064 static void
3065 emx_init_rx_unit(struct emx_softc *sc)
3066 {
3067 	struct ifnet *ifp = &sc->arpcom.ac_if;
3068 	uint64_t bus_addr;
3069 	uint32_t rctl, itr, rfctl, rxcsum;
3070 	int i;
3071 
3072 	/*
3073 	 * Make sure receives are disabled while setting
3074 	 * up the descriptor ring
3075 	 */
3076 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3077 	/* Do not disable if ever enabled on this hardware */
3078 	if (sc->hw.mac.type != e1000_82574)
3079 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3080 
3081 	/*
3082 	 * Set the interrupt throttling rate. Value is calculated
3083 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3084 	 */
3085 	if (sc->int_throttle_ceil)
3086 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
3087 	else
3088 		itr = 0;
3089 	emx_set_itr(sc, itr);
3090 
3091 	/* Use extended RX descriptor */
3092 	rfctl = E1000_READ_REG(&sc->hw, E1000_RFCTL);
3093 	rfctl |= E1000_RFCTL_EXTEN;
3094 	/* Disable accelerated ackknowledge */
3095 	if (sc->hw.mac.type == e1000_82574)
3096 		rfctl |= E1000_RFCTL_ACK_DIS;
3097 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
3098 
3099 	/*
3100 	 * Receive Checksum Offload for TCP and UDP
3101 	 *
3102 	 * Checksum offloading is also enabled if multiple receive
3103 	 * queue is to be supported, since we need it to figure out
3104 	 * packet type.
3105 	 */
3106 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
3107 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
3108 	    sc->rx_ring_cnt > 1) {
3109 		/*
3110 		 * NOTE:
3111 		 * PCSD must be enabled to enable multiple
3112 		 * receive queues.
3113 		 */
3114 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3115 			  E1000_RXCSUM_PCSD;
3116 	} else {
3117 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3118 			    E1000_RXCSUM_PCSD);
3119 	}
3120 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3121 
3122 	/*
3123 	 * Configure multiple receive queue (RSS)
3124 	 */
3125 	if (sc->rx_ring_cnt > 1) {
3126 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3127 		int r, j;
3128 
3129 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3130 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3131 
3132 		/*
3133 		 * NOTE:
3134 		 * When we reach here, RSS has already been disabled
3135 		 * in emx_stop(), so we could safely configure RSS key
3136 		 * and redirect table.
3137 		 */
3138 
3139 		/*
3140 		 * Configure RSS key
3141 		 */
3142 		toeplitz_get_key(key, sizeof(key));
3143 		for (i = 0; i < EMX_NRSSRK; ++i) {
3144 			uint32_t rssrk;
3145 
3146 			rssrk = EMX_RSSRK_VAL(key, i);
3147 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3148 
3149 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3150 		}
3151 
3152 		/*
3153 		 * Configure RSS redirect table.
3154 		 */
3155 		if_ringmap_rdrtable(sc->rx_rmap, sc->rdr_table,
3156 		    EMX_RDRTABLE_SIZE);
3157 
3158 		r = 0;
3159 		for (j = 0; j < EMX_NRETA; ++j) {
3160 			uint32_t reta = 0;
3161 
3162 			for (i = 0; i < EMX_RETA_SIZE; ++i) {
3163 				uint32_t q;
3164 
3165 				q = sc->rdr_table[r] << EMX_RETA_RINGIDX_SHIFT;
3166 				reta |= q << (8 * i);
3167 				++r;
3168 			}
3169 			EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3170 			E1000_WRITE_REG(&sc->hw, E1000_RETA(j), reta);
3171 		}
3172 
3173 		/*
3174 		 * Enable multiple receive queues.
3175 		 * Enable IPv4 RSS standard hash functions.
3176 		 * Disable RSS interrupt.
3177 		 */
3178 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3179 				E1000_MRQC_ENABLE_RSS_2Q |
3180 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3181 				E1000_MRQC_RSS_FIELD_IPV4);
3182 	}
3183 
3184 	/*
3185 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3186 	 * long latencies are observed, like Lenovo X60. This
3187 	 * change eliminates the problem, but since having positive
3188 	 * values in RDTR is a known source of problems on other
3189 	 * platforms another solution is being sought.
3190 	 */
3191 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3192 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3193 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3194 	}
3195 
3196 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3197 		struct emx_rxdata *rdata = &sc->rx_data[i];
3198 
3199 		/*
3200 		 * Setup the Base and Length of the Rx Descriptor Ring
3201 		 */
3202 		bus_addr = rdata->rx_desc_paddr;
3203 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3204 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3205 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3206 		    (uint32_t)(bus_addr >> 32));
3207 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3208 		    (uint32_t)bus_addr);
3209 
3210 		/*
3211 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3212 		 */
3213 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3214 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3215 		    sc->rx_data[i].num_rx_desc - 1);
3216 	}
3217 
3218 	/* Set PTHRESH for improved jumbo performance */
3219 	if (ifp->if_mtu > ETHERMTU && sc->hw.mac.type == e1000_82574) {
3220 		uint32_t rxdctl;
3221 
3222 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3223 			rxdctl = E1000_READ_REG(&sc->hw, E1000_RXDCTL(i));
3224                 	rxdctl |= 0x20;		/* PTHRESH */
3225                 	rxdctl |= 4 << 8;	/* HTHRESH */
3226                 	rxdctl |= 4 << 16;	/* WTHRESH */
3227 			rxdctl |= 1 << 24;	/* Switch to granularity */
3228 			E1000_WRITE_REG(&sc->hw, E1000_RXDCTL(i), rxdctl);
3229 		}
3230 	}
3231 
3232 	if (sc->hw.mac.type >= e1000_pch2lan) {
3233 		if (ifp->if_mtu > ETHERMTU)
3234 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3235 		else
3236 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3237 	}
3238 
3239 	/* Setup the Receive Control Register */
3240 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3241 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3242 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3243 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3244 
3245 	/* Make sure VLAN Filters are off */
3246 	rctl &= ~E1000_RCTL_VFE;
3247 
3248 	/* Don't store bad paket */
3249 	rctl &= ~E1000_RCTL_SBP;
3250 
3251 	/* MCLBYTES */
3252 	rctl |= E1000_RCTL_SZ_2048;
3253 
3254 	if (ifp->if_mtu > ETHERMTU)
3255 		rctl |= E1000_RCTL_LPE;
3256 	else
3257 		rctl &= ~E1000_RCTL_LPE;
3258 
3259 	/* Enable Receives */
3260 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3261 }
3262 
3263 static void
3264 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3265 {
3266 	struct emx_rxbuf *rx_buffer;
3267 	int i;
3268 
3269 	/* Free Receive Descriptor ring */
3270 	if (rdata->rx_desc) {
3271 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3272 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3273 				rdata->rx_desc_dmap);
3274 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3275 
3276 		rdata->rx_desc = NULL;
3277 	}
3278 
3279 	if (rdata->rx_buf == NULL)
3280 		return;
3281 
3282 	for (i = 0; i < ndesc; i++) {
3283 		rx_buffer = &rdata->rx_buf[i];
3284 
3285 		KKASSERT(rx_buffer->m_head == NULL);
3286 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3287 	}
3288 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3289 	bus_dma_tag_destroy(rdata->rxtag);
3290 
3291 	kfree(rdata->rx_buf, M_DEVBUF);
3292 	rdata->rx_buf = NULL;
3293 }
3294 
3295 static void
3296 emx_rxeof(struct emx_rxdata *rdata, int count)
3297 {
3298 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3299 	uint32_t staterr;
3300 	emx_rxdesc_t *current_desc;
3301 	struct mbuf *mp;
3302 	int i, cpuid = mycpuid;
3303 
3304 	i = rdata->next_rx_desc_to_check;
3305 	current_desc = &rdata->rx_desc[i];
3306 	staterr = le32toh(current_desc->rxd_staterr);
3307 
3308 	if (!(staterr & E1000_RXD_STAT_DD))
3309 		return;
3310 
3311 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3312 		struct pktinfo *pi = NULL, pi0;
3313 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3314 		struct mbuf *m = NULL;
3315 		int eop, len;
3316 
3317 		logif(pkt_receive);
3318 
3319 		mp = rx_buf->m_head;
3320 
3321 		/*
3322 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3323 		 * needs to access the last received byte in the mbuf.
3324 		 */
3325 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3326 				BUS_DMASYNC_POSTREAD);
3327 
3328 		len = le16toh(current_desc->rxd_length);
3329 		if (staterr & E1000_RXD_STAT_EOP) {
3330 			count--;
3331 			eop = 1;
3332 		} else {
3333 			eop = 0;
3334 		}
3335 
3336 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3337 			uint16_t vlan = 0;
3338 			uint32_t mrq, rss_hash;
3339 
3340 			/*
3341 			 * Save several necessary information,
3342 			 * before emx_newbuf() destroy it.
3343 			 */
3344 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3345 				vlan = le16toh(current_desc->rxd_vlan);
3346 
3347 			mrq = le32toh(current_desc->rxd_mrq);
3348 			rss_hash = le32toh(current_desc->rxd_rss);
3349 
3350 			EMX_RSS_DPRINTF(rdata->sc, 10,
3351 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3352 			    rdata->idx, mrq, rss_hash);
3353 
3354 			if (emx_newbuf(rdata, i, 0) != 0) {
3355 				IFNET_STAT_INC(ifp, iqdrops, 1);
3356 				goto discard;
3357 			}
3358 
3359 			/* Assign correct length to the current fragment */
3360 			mp->m_len = len;
3361 
3362 			if (rdata->fmp == NULL) {
3363 				mp->m_pkthdr.len = len;
3364 				rdata->fmp = mp; /* Store the first mbuf */
3365 				rdata->lmp = mp;
3366 			} else {
3367 				/*
3368 				 * Chain mbuf's together
3369 				 */
3370 				rdata->lmp->m_next = mp;
3371 				rdata->lmp = rdata->lmp->m_next;
3372 				rdata->fmp->m_pkthdr.len += len;
3373 			}
3374 
3375 			if (eop) {
3376 				rdata->fmp->m_pkthdr.rcvif = ifp;
3377 				IFNET_STAT_INC(ifp, ipackets, 1);
3378 
3379 				if (ifp->if_capenable & IFCAP_RXCSUM)
3380 					emx_rxcsum(staterr, rdata->fmp);
3381 
3382 				if (staterr & E1000_RXD_STAT_VP) {
3383 					rdata->fmp->m_pkthdr.ether_vlantag =
3384 					    vlan;
3385 					rdata->fmp->m_flags |= M_VLANTAG;
3386 				}
3387 				m = rdata->fmp;
3388 				rdata->fmp = NULL;
3389 				rdata->lmp = NULL;
3390 
3391 				if (ifp->if_capenable & IFCAP_RSS) {
3392 					pi = emx_rssinfo(m, &pi0, mrq,
3393 							 rss_hash, staterr);
3394 				}
3395 #ifdef EMX_RSS_DEBUG
3396 				rdata->rx_pkts++;
3397 #endif
3398 			}
3399 		} else {
3400 			IFNET_STAT_INC(ifp, ierrors, 1);
3401 discard:
3402 			emx_setup_rxdesc(current_desc, rx_buf);
3403 			if (rdata->fmp != NULL) {
3404 				m_freem(rdata->fmp);
3405 				rdata->fmp = NULL;
3406 				rdata->lmp = NULL;
3407 			}
3408 			m = NULL;
3409 		}
3410 
3411 		if (m != NULL)
3412 			ifp->if_input(ifp, m, pi, cpuid);
3413 
3414 		/* Advance our pointers to the next descriptor. */
3415 		if (++i == rdata->num_rx_desc)
3416 			i = 0;
3417 
3418 		current_desc = &rdata->rx_desc[i];
3419 		staterr = le32toh(current_desc->rxd_staterr);
3420 	}
3421 	rdata->next_rx_desc_to_check = i;
3422 
3423 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3424 	if (--i < 0)
3425 		i = rdata->num_rx_desc - 1;
3426 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3427 }
3428 
3429 static void
3430 emx_enable_intr(struct emx_softc *sc)
3431 {
3432 	uint32_t ims_mask = IMS_ENABLE_MASK;
3433 
3434 	lwkt_serialize_handler_enable(&sc->main_serialize);
3435 
3436 #if 0
3437 	if (sc->hw.mac.type == e1000_82574) {
3438 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3439 		ims_mask |= EM_MSIX_MASK;
3440 	}
3441 #endif
3442 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3443 }
3444 
3445 static void
3446 emx_disable_intr(struct emx_softc *sc)
3447 {
3448 	if (sc->hw.mac.type == e1000_82574)
3449 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3450 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3451 
3452 	lwkt_serialize_handler_disable(&sc->main_serialize);
3453 }
3454 
3455 /*
3456  * Bit of a misnomer, what this really means is
3457  * to enable OS management of the system... aka
3458  * to disable special hardware management features
3459  */
3460 static void
3461 emx_get_mgmt(struct emx_softc *sc)
3462 {
3463 	/* A shared code workaround */
3464 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3465 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3466 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3467 
3468 		/* disable hardware interception of ARP */
3469 		manc &= ~(E1000_MANC_ARP_EN);
3470 
3471                 /* enable receiving management packets to the host */
3472 		manc |= E1000_MANC_EN_MNG2HOST;
3473 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3474 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3475 		manc2h |= E1000_MNG2HOST_PORT_623;
3476 		manc2h |= E1000_MNG2HOST_PORT_664;
3477 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3478 
3479 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3480 	}
3481 }
3482 
3483 /*
3484  * Give control back to hardware management
3485  * controller if there is one.
3486  */
3487 static void
3488 emx_rel_mgmt(struct emx_softc *sc)
3489 {
3490 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3491 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3492 
3493 		/* re-enable hardware interception of ARP */
3494 		manc |= E1000_MANC_ARP_EN;
3495 		manc &= ~E1000_MANC_EN_MNG2HOST;
3496 
3497 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3498 	}
3499 }
3500 
3501 /*
3502  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3503  * For ASF and Pass Through versions of f/w this means that
3504  * the driver is loaded.  For AMT version (only with 82573)
3505  * of the f/w this means that the network i/f is open.
3506  */
3507 static void
3508 emx_get_hw_control(struct emx_softc *sc)
3509 {
3510 	/* Let firmware know the driver has taken over */
3511 	if (sc->hw.mac.type == e1000_82573) {
3512 		uint32_t swsm;
3513 
3514 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3515 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3516 		    swsm | E1000_SWSM_DRV_LOAD);
3517 	} else {
3518 		uint32_t ctrl_ext;
3519 
3520 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3521 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3522 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3523 	}
3524 	sc->flags |= EMX_FLAG_HW_CTRL;
3525 }
3526 
3527 /*
3528  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3529  * For ASF and Pass Through versions of f/w this means that the
3530  * driver is no longer loaded.  For AMT version (only with 82573)
3531  * of the f/w this means that the network i/f is closed.
3532  */
3533 static void
3534 emx_rel_hw_control(struct emx_softc *sc)
3535 {
3536 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3537 		return;
3538 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3539 
3540 	/* Let firmware taken over control of h/w */
3541 	if (sc->hw.mac.type == e1000_82573) {
3542 		uint32_t swsm;
3543 
3544 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3545 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3546 		    swsm & ~E1000_SWSM_DRV_LOAD);
3547 	} else {
3548 		uint32_t ctrl_ext;
3549 
3550 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3551 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3552 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3553 	}
3554 }
3555 
3556 static int
3557 emx_is_valid_eaddr(const uint8_t *addr)
3558 {
3559 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3560 
3561 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3562 		return (FALSE);
3563 
3564 	return (TRUE);
3565 }
3566 
3567 /*
3568  * Enable PCI Wake On Lan capability
3569  */
3570 static void
3571 emx_enable_wol(device_t dev)
3572 {
3573 	uint16_t cap, status;
3574 	uint8_t id;
3575 
3576 	/* First find the capabilities pointer*/
3577 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3578 
3579 	/* Read the PM Capabilities */
3580 	id = pci_read_config(dev, cap, 1);
3581 	if (id != PCIY_PMG)     /* Something wrong */
3582 		return;
3583 
3584 	/*
3585 	 * OK, we have the power capabilities,
3586 	 * so now get the status register
3587 	 */
3588 	cap += PCIR_POWER_STATUS;
3589 	status = pci_read_config(dev, cap, 2);
3590 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3591 	pci_write_config(dev, cap, status, 2);
3592 }
3593 
3594 static void
3595 emx_update_stats(struct emx_softc *sc)
3596 {
3597 	struct ifnet *ifp = &sc->arpcom.ac_if;
3598 
3599 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3600 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3601 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3602 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3603 	}
3604 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3605 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3606 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3607 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3608 
3609 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3610 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3611 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3612 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3613 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3614 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3615 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3616 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3617 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3618 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3619 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3620 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3621 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3622 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3623 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3624 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3625 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3626 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3627 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3628 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3629 
3630 	/* For the 64-bit byte counters the low dword must be read first. */
3631 	/* Both registers clear on the read of the high dword */
3632 
3633 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3634 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3635 
3636 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3637 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3638 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3639 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3640 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3641 
3642 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3643 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3644 
3645 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3646 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3647 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3648 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3649 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3650 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3651 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3652 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3653 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3654 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3655 
3656 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3657 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3658 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3659 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3660 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3661 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3662 
3663 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3664 
3665 	/* Rx Errors */
3666 	IFNET_STAT_SET(ifp, ierrors,
3667 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3668 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3669 
3670 	/* Tx Errors */
3671 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3672 }
3673 
3674 static void
3675 emx_print_debug_info(struct emx_softc *sc)
3676 {
3677 	device_t dev = sc->dev;
3678 	uint8_t *hw_addr = sc->hw.hw_addr;
3679 	int i;
3680 
3681 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3682 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3683 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3684 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3685 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3686 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3687 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3688 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3689 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3690 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3691 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3692 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3693 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3694 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3695 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3696 
3697 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3698 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3699 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3700 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3701 	}
3702 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3703 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3704 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3705 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3706 	}
3707 
3708 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3709 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3710 		    sc->tx_data[i].num_tx_desc_avail);
3711 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3712 		    sc->tx_data[i].tso_segments);
3713 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3714 		    sc->tx_data[i].tso_ctx_reused);
3715 	}
3716 }
3717 
3718 static void
3719 emx_print_hw_stats(struct emx_softc *sc)
3720 {
3721 	device_t dev = sc->dev;
3722 
3723 	device_printf(dev, "Excessive collisions = %lld\n",
3724 	    (long long)sc->stats.ecol);
3725 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3726 	device_printf(dev, "Symbol errors = %lld\n",
3727 	    (long long)sc->stats.symerrs);
3728 #endif
3729 	device_printf(dev, "Sequence errors = %lld\n",
3730 	    (long long)sc->stats.sec);
3731 	device_printf(dev, "Defer count = %lld\n",
3732 	    (long long)sc->stats.dc);
3733 	device_printf(dev, "Missed Packets = %lld\n",
3734 	    (long long)sc->stats.mpc);
3735 	device_printf(dev, "Receive No Buffers = %lld\n",
3736 	    (long long)sc->stats.rnbc);
3737 	/* RLEC is inaccurate on some hardware, calculate our own. */
3738 	device_printf(dev, "Receive Length Errors = %lld\n",
3739 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3740 	device_printf(dev, "Receive errors = %lld\n",
3741 	    (long long)sc->stats.rxerrc);
3742 	device_printf(dev, "Crc errors = %lld\n",
3743 	    (long long)sc->stats.crcerrs);
3744 	device_printf(dev, "Alignment errors = %lld\n",
3745 	    (long long)sc->stats.algnerrc);
3746 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3747 	    (long long)sc->stats.cexterr);
3748 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3749 	device_printf(dev, "XON Rcvd = %lld\n",
3750 	    (long long)sc->stats.xonrxc);
3751 	device_printf(dev, "XON Xmtd = %lld\n",
3752 	    (long long)sc->stats.xontxc);
3753 	device_printf(dev, "XOFF Rcvd = %lld\n",
3754 	    (long long)sc->stats.xoffrxc);
3755 	device_printf(dev, "XOFF Xmtd = %lld\n",
3756 	    (long long)sc->stats.xofftxc);
3757 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3758 	    (long long)sc->stats.gprc);
3759 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3760 	    (long long)sc->stats.gptc);
3761 }
3762 
3763 static void
3764 emx_print_nvm_info(struct emx_softc *sc)
3765 {
3766 	uint16_t eeprom_data;
3767 	int i, j, row = 0;
3768 
3769 	/* Its a bit crude, but it gets the job done */
3770 	kprintf("\nInterface EEPROM Dump:\n");
3771 	kprintf("Offset\n0x0000  ");
3772 	for (i = 0, j = 0; i < 32; i++, j++) {
3773 		if (j == 8) { /* Make the offset block */
3774 			j = 0; ++row;
3775 			kprintf("\n0x00%x0  ",row);
3776 		}
3777 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3778 		kprintf("%04x ", eeprom_data);
3779 	}
3780 	kprintf("\n");
3781 }
3782 
3783 static int
3784 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3785 {
3786 	struct emx_softc *sc;
3787 	struct ifnet *ifp;
3788 	int error, result;
3789 
3790 	result = -1;
3791 	error = sysctl_handle_int(oidp, &result, 0, req);
3792 	if (error || !req->newptr)
3793 		return (error);
3794 
3795 	sc = (struct emx_softc *)arg1;
3796 	ifp = &sc->arpcom.ac_if;
3797 
3798 	ifnet_serialize_all(ifp);
3799 
3800 	if (result == 1)
3801 		emx_print_debug_info(sc);
3802 
3803 	/*
3804 	 * This value will cause a hex dump of the
3805 	 * first 32 16-bit words of the EEPROM to
3806 	 * the screen.
3807 	 */
3808 	if (result == 2)
3809 		emx_print_nvm_info(sc);
3810 
3811 	ifnet_deserialize_all(ifp);
3812 
3813 	return (error);
3814 }
3815 
3816 static int
3817 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3818 {
3819 	int error, result;
3820 
3821 	result = -1;
3822 	error = sysctl_handle_int(oidp, &result, 0, req);
3823 	if (error || !req->newptr)
3824 		return (error);
3825 
3826 	if (result == 1) {
3827 		struct emx_softc *sc = (struct emx_softc *)arg1;
3828 		struct ifnet *ifp = &sc->arpcom.ac_if;
3829 
3830 		ifnet_serialize_all(ifp);
3831 		emx_print_hw_stats(sc);
3832 		ifnet_deserialize_all(ifp);
3833 	}
3834 	return (error);
3835 }
3836 
3837 static void
3838 emx_add_sysctl(struct emx_softc *sc)
3839 {
3840 	struct sysctl_ctx_list *ctx;
3841 	struct sysctl_oid *tree;
3842 	char pkt_desc[32];
3843 	int i;
3844 
3845 	ctx = device_get_sysctl_ctx(sc->dev);
3846 	tree = device_get_sysctl_tree(sc->dev);
3847 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3848 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3849 			emx_sysctl_debug_info, "I", "Debug Information");
3850 
3851 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3852 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3853 			emx_sysctl_stats, "I", "Statistics");
3854 
3855 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3856 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3857 	    "# of RX descs");
3858 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3859 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3860 	    "# of TX descs");
3861 
3862 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3863 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3864 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3865 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3866 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3867 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3868 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3869 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3870 	    emx_sysctl_tx_wreg_nsegs, "I",
3871 	    "# segments sent before write to hardware register");
3872 
3873 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3874 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3875 	    "# of RX rings");
3876 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3877 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3878 	    "# of TX rings");
3879 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3880 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3881 	    "# of TX rings used");
3882 
3883 #ifdef IFPOLL_ENABLE
3884 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3885 	    OID_AUTO, "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3886 	    sc->tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3887 	    "TX polling CPU map");
3888 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3889 	    OID_AUTO, "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3890 	    sc->rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3891 	    "RX polling CPU map");
3892 #endif
3893 
3894 #ifdef EMX_RSS_DEBUG
3895 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3896 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3897 		       0, "RSS debug level");
3898 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3899 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3900 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3901 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3902 		    "RXed packets");
3903 	}
3904 #endif
3905 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3906 #ifdef EMX_TSS_DEBUG
3907 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3908 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3909 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3910 		    "TXed packets");
3911 #endif
3912 
3913 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_nmbuf", i);
3914 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3915 		    pkt_desc, CTLFLAG_RD, &sc->tx_data[i].tx_nmbuf, 0,
3916 		    "# of pending TX mbufs");
3917 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_gc", i);
3918 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3919 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_gc,
3920 		    "# of TX desc GC");
3921 	}
3922 }
3923 
3924 static int
3925 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3926 {
3927 	struct emx_softc *sc = (void *)arg1;
3928 	struct ifnet *ifp = &sc->arpcom.ac_if;
3929 	int error, throttle;
3930 
3931 	throttle = sc->int_throttle_ceil;
3932 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3933 	if (error || req->newptr == NULL)
3934 		return error;
3935 	if (throttle < 0 || throttle > 1000000000 / 256)
3936 		return EINVAL;
3937 
3938 	if (throttle) {
3939 		/*
3940 		 * Set the interrupt throttling rate in 256ns increments,
3941 		 * recalculate sysctl value assignment to get exact frequency.
3942 		 */
3943 		throttle = 1000000000 / 256 / throttle;
3944 
3945 		/* Upper 16bits of ITR is reserved and should be zero */
3946 		if (throttle & 0xffff0000)
3947 			return EINVAL;
3948 	}
3949 
3950 	ifnet_serialize_all(ifp);
3951 
3952 	if (throttle)
3953 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3954 	else
3955 		sc->int_throttle_ceil = 0;
3956 
3957 	if (ifp->if_flags & IFF_RUNNING)
3958 		emx_set_itr(sc, throttle);
3959 
3960 	ifnet_deserialize_all(ifp);
3961 
3962 	if (bootverbose) {
3963 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3964 			  sc->int_throttle_ceil);
3965 	}
3966 	return 0;
3967 }
3968 
3969 static int
3970 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3971 {
3972 	struct emx_softc *sc = (void *)arg1;
3973 	struct ifnet *ifp = &sc->arpcom.ac_if;
3974 	struct emx_txdata *tdata = &sc->tx_data[0];
3975 	int error, segs;
3976 
3977 	segs = tdata->tx_intr_nsegs;
3978 	error = sysctl_handle_int(oidp, &segs, 0, req);
3979 	if (error || req->newptr == NULL)
3980 		return error;
3981 	if (segs <= 0)
3982 		return EINVAL;
3983 
3984 	ifnet_serialize_all(ifp);
3985 
3986 	/*
3987 	 * Don't allow tx_intr_nsegs to become:
3988 	 * o  Less the oact_tx_desc
3989 	 * o  Too large that no TX desc will cause TX interrupt to
3990 	 *    be generated (OACTIVE will never recover)
3991 	 * o  Too small that will cause tx_dd[] overflow
3992 	 */
3993 	if (segs < tdata->oact_tx_desc ||
3994 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3995 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3996 		error = EINVAL;
3997 	} else {
3998 		int i;
3999 
4000 		error = 0;
4001 		for (i = 0; i < sc->tx_ring_cnt; ++i)
4002 			sc->tx_data[i].tx_intr_nsegs = segs;
4003 	}
4004 
4005 	ifnet_deserialize_all(ifp);
4006 
4007 	return error;
4008 }
4009 
4010 static int
4011 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
4012 {
4013 	struct emx_softc *sc = (void *)arg1;
4014 	struct ifnet *ifp = &sc->arpcom.ac_if;
4015 	int error, nsegs, i;
4016 
4017 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
4018 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
4019 	if (error || req->newptr == NULL)
4020 		return error;
4021 
4022 	ifnet_serialize_all(ifp);
4023 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4024 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
4025 	ifnet_deserialize_all(ifp);
4026 
4027 	return 0;
4028 }
4029 
4030 static int
4031 emx_dma_alloc(struct emx_softc *sc)
4032 {
4033 	int error, i;
4034 
4035 	/*
4036 	 * Create top level busdma tag
4037 	 */
4038 	error = bus_dma_tag_create(NULL, 1, 0,
4039 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4040 			NULL, NULL,
4041 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4042 			0, &sc->parent_dtag);
4043 	if (error) {
4044 		device_printf(sc->dev, "could not create top level DMA tag\n");
4045 		return error;
4046 	}
4047 
4048 	/*
4049 	 * Allocate transmit descriptors ring and buffers
4050 	 */
4051 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4052 		error = emx_create_tx_ring(&sc->tx_data[i]);
4053 		if (error) {
4054 			device_printf(sc->dev,
4055 			    "Could not setup transmit structures\n");
4056 			return error;
4057 		}
4058 	}
4059 
4060 	/*
4061 	 * Allocate receive descriptors ring and buffers
4062 	 */
4063 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4064 		error = emx_create_rx_ring(&sc->rx_data[i]);
4065 		if (error) {
4066 			device_printf(sc->dev,
4067 			    "Could not setup receive structures\n");
4068 			return error;
4069 		}
4070 	}
4071 	return 0;
4072 }
4073 
4074 static void
4075 emx_dma_free(struct emx_softc *sc)
4076 {
4077 	int i;
4078 
4079 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4080 		emx_destroy_tx_ring(&sc->tx_data[i],
4081 		    sc->tx_data[i].num_tx_desc);
4082 	}
4083 
4084 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4085 		emx_destroy_rx_ring(&sc->rx_data[i],
4086 		    sc->rx_data[i].num_rx_desc);
4087 	}
4088 
4089 	/* Free top level busdma tag */
4090 	if (sc->parent_dtag != NULL)
4091 		bus_dma_tag_destroy(sc->parent_dtag);
4092 }
4093 
4094 static void
4095 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4096 {
4097 	struct emx_softc *sc = ifp->if_softc;
4098 
4099 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4100 }
4101 
4102 static void
4103 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4104 {
4105 	struct emx_softc *sc = ifp->if_softc;
4106 
4107 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4108 }
4109 
4110 static int
4111 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4112 {
4113 	struct emx_softc *sc = ifp->if_softc;
4114 
4115 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4116 }
4117 
4118 static void
4119 emx_serialize_skipmain(struct emx_softc *sc)
4120 {
4121 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4122 }
4123 
4124 static void
4125 emx_deserialize_skipmain(struct emx_softc *sc)
4126 {
4127 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4128 }
4129 
4130 #ifdef INVARIANTS
4131 
4132 static void
4133 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4134     boolean_t serialized)
4135 {
4136 	struct emx_softc *sc = ifp->if_softc;
4137 
4138 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4139 	    slz, serialized);
4140 }
4141 
4142 #endif	/* INVARIANTS */
4143 
4144 #ifdef IFPOLL_ENABLE
4145 
4146 static void
4147 emx_npoll_status(struct ifnet *ifp)
4148 {
4149 	struct emx_softc *sc = ifp->if_softc;
4150 	uint32_t reg_icr;
4151 
4152 	ASSERT_SERIALIZED(&sc->main_serialize);
4153 
4154 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4155 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4156 		callout_stop(&sc->timer);
4157 		sc->hw.mac.get_link_status = 1;
4158 		emx_update_link_status(sc);
4159 		callout_reset(&sc->timer, hz, emx_timer, sc);
4160 	}
4161 }
4162 
4163 static void
4164 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4165 {
4166 	struct emx_txdata *tdata = arg;
4167 
4168 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4169 
4170 	emx_tx_intr(tdata);
4171 	emx_try_txgc(tdata, 1);
4172 }
4173 
4174 static void
4175 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4176 {
4177 	struct emx_rxdata *rdata = arg;
4178 
4179 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4180 
4181 	emx_rxeof(rdata, cycle);
4182 }
4183 
4184 static void
4185 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4186 {
4187 	struct emx_softc *sc = ifp->if_softc;
4188 	int i, txr_cnt;
4189 
4190 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4191 
4192 	if (info) {
4193 		int cpu;
4194 
4195 		info->ifpi_status.status_func = emx_npoll_status;
4196 		info->ifpi_status.serializer = &sc->main_serialize;
4197 
4198 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4199 		for (i = 0; i < txr_cnt; ++i) {
4200 			struct emx_txdata *tdata = &sc->tx_data[i];
4201 
4202 			cpu = if_ringmap_cpumap(sc->tx_rmap, i);
4203 			KKASSERT(cpu < netisr_ncpus);
4204 			info->ifpi_tx[cpu].poll_func = emx_npoll_tx;
4205 			info->ifpi_tx[cpu].arg = tdata;
4206 			info->ifpi_tx[cpu].serializer = &tdata->tx_serialize;
4207 			ifsq_set_cpuid(tdata->ifsq, cpu);
4208 		}
4209 
4210 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4211 			struct emx_rxdata *rdata = &sc->rx_data[i];
4212 
4213 			cpu = if_ringmap_cpumap(sc->rx_rmap, i);
4214 			KKASSERT(cpu < netisr_ncpus);
4215 			info->ifpi_rx[cpu].poll_func = emx_npoll_rx;
4216 			info->ifpi_rx[cpu].arg = rdata;
4217 			info->ifpi_rx[cpu].serializer = &rdata->rx_serialize;
4218 		}
4219 	} else {
4220 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4221 			struct emx_txdata *tdata = &sc->tx_data[i];
4222 
4223 			ifsq_set_cpuid(tdata->ifsq,
4224 			    rman_get_cpuid(sc->intr_res));
4225 		}
4226 	}
4227 	if (ifp->if_flags & IFF_RUNNING)
4228 		emx_init(sc);
4229 }
4230 
4231 #endif	/* IFPOLL_ENABLE */
4232 
4233 static void
4234 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4235 {
4236 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4237 	if (sc->hw.mac.type == e1000_82574) {
4238 		int i;
4239 
4240 		/*
4241 		 * When using MSIX interrupts we need to
4242 		 * throttle using the EITR register
4243 		 */
4244 		for (i = 0; i < 4; ++i)
4245 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4246 	}
4247 }
4248 
4249 /*
4250  * Disable the L0s, 82574L Errata #20
4251  */
4252 static void
4253 emx_disable_aspm(struct emx_softc *sc)
4254 {
4255 	uint16_t link_cap, link_ctrl, disable;
4256 	uint8_t pcie_ptr, reg;
4257 	device_t dev = sc->dev;
4258 
4259 	switch (sc->hw.mac.type) {
4260 	case e1000_82571:
4261 	case e1000_82572:
4262 	case e1000_82573:
4263 		/*
4264 		 * 82573 specification update
4265 		 * errata #8 disable L0s
4266 		 * errata #41 disable L1
4267 		 *
4268 		 * 82571/82572 specification update
4269 		 # errata #13 disable L1
4270 		 * errata #68 disable L0s
4271 		 */
4272 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4273 		break;
4274 
4275 	case e1000_82574:
4276 		/*
4277 		 * 82574 specification update errata #20
4278 		 *
4279 		 * There is no need to disable L1
4280 		 */
4281 		disable = PCIEM_LNKCTL_ASPM_L0S;
4282 		break;
4283 
4284 	default:
4285 		return;
4286 	}
4287 
4288 	pcie_ptr = pci_get_pciecap_ptr(dev);
4289 	if (pcie_ptr == 0)
4290 		return;
4291 
4292 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4293 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4294 		return;
4295 
4296 	if (bootverbose)
4297 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4298 
4299 	reg = pcie_ptr + PCIER_LINKCTRL;
4300 	link_ctrl = pci_read_config(dev, reg, 2);
4301 	link_ctrl &= ~disable;
4302 	pci_write_config(dev, reg, link_ctrl, 2);
4303 }
4304 
4305 static int
4306 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4307 {
4308 	int iphlen, hoff, thoff, ex = 0;
4309 	struct mbuf *m;
4310 	struct ip *ip;
4311 
4312 	m = *mp;
4313 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4314 
4315 	iphlen = m->m_pkthdr.csum_iphlen;
4316 	thoff = m->m_pkthdr.csum_thlen;
4317 	hoff = m->m_pkthdr.csum_lhlen;
4318 
4319 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4320 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4321 	KASSERT(hoff > 0, ("invalid ether hlen"));
4322 
4323 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4324 		ex = 4;
4325 
4326 	if (m->m_len < hoff + iphlen + thoff + ex) {
4327 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4328 		if (m == NULL) {
4329 			*mp = NULL;
4330 			return ENOBUFS;
4331 		}
4332 		*mp = m;
4333 	}
4334 	ip = mtodoff(m, struct ip *, hoff);
4335 	ip->ip_len = 0;
4336 
4337 	return 0;
4338 }
4339 
4340 static int
4341 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4342     uint32_t *txd_upper, uint32_t *txd_lower)
4343 {
4344 	struct e1000_context_desc *TXD;
4345 	int hoff, iphlen, thoff, hlen;
4346 	int mss, pktlen, curr_txd;
4347 
4348 #ifdef EMX_TSO_DEBUG
4349 	tdata->tso_segments++;
4350 #endif
4351 
4352 	iphlen = mp->m_pkthdr.csum_iphlen;
4353 	thoff = mp->m_pkthdr.csum_thlen;
4354 	hoff = mp->m_pkthdr.csum_lhlen;
4355 	mss = mp->m_pkthdr.tso_segsz;
4356 	pktlen = mp->m_pkthdr.len;
4357 
4358 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4359 	    tdata->csum_flags == CSUM_TSO &&
4360 	    tdata->csum_iphlen == iphlen &&
4361 	    tdata->csum_lhlen == hoff &&
4362 	    tdata->csum_thlen == thoff &&
4363 	    tdata->csum_mss == mss &&
4364 	    tdata->csum_pktlen == pktlen) {
4365 		*txd_upper = tdata->csum_txd_upper;
4366 		*txd_lower = tdata->csum_txd_lower;
4367 #ifdef EMX_TSO_DEBUG
4368 		tdata->tso_ctx_reused++;
4369 #endif
4370 		return 0;
4371 	}
4372 	hlen = hoff + iphlen + thoff;
4373 
4374 	/*
4375 	 * Setup a new TSO context.
4376 	 */
4377 
4378 	curr_txd = tdata->next_avail_tx_desc;
4379 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4380 
4381 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4382 		     E1000_TXD_DTYP_D |		/* Data descr type */
4383 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4384 
4385 	/* IP and/or TCP header checksum calculation and insertion. */
4386 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4387 
4388 	/*
4389 	 * Start offset for header checksum calculation.
4390 	 * End offset for header checksum calculation.
4391 	 * Offset of place put the checksum.
4392 	 */
4393 	TXD->lower_setup.ip_fields.ipcss = hoff;
4394 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4395 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4396 
4397 	/*
4398 	 * Start offset for payload checksum calculation.
4399 	 * End offset for payload checksum calculation.
4400 	 * Offset of place to put the checksum.
4401 	 */
4402 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4403 	TXD->upper_setup.tcp_fields.tucse = 0;
4404 	TXD->upper_setup.tcp_fields.tucso =
4405 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4406 
4407 	/*
4408 	 * Payload size per packet w/o any headers.
4409 	 * Length of all headers up to payload.
4410 	 */
4411 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4412 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4413 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4414 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4415 				E1000_TXD_CMD_TSE |	/* TSE context */
4416 				E1000_TXD_CMD_IP |	/* Do IP csum */
4417 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4418 				(pktlen - hlen));	/* Total len */
4419 
4420 	/* Save the information for this TSO context */
4421 	tdata->csum_flags = CSUM_TSO;
4422 	tdata->csum_lhlen = hoff;
4423 	tdata->csum_iphlen = iphlen;
4424 	tdata->csum_thlen = thoff;
4425 	tdata->csum_mss = mss;
4426 	tdata->csum_pktlen = pktlen;
4427 	tdata->csum_txd_upper = *txd_upper;
4428 	tdata->csum_txd_lower = *txd_lower;
4429 
4430 	if (++curr_txd == tdata->num_tx_desc)
4431 		curr_txd = 0;
4432 
4433 	KKASSERT(tdata->num_tx_desc_avail > 0);
4434 	tdata->num_tx_desc_avail--;
4435 
4436 	tdata->next_avail_tx_desc = curr_txd;
4437 	return 1;
4438 }
4439 
4440 static int
4441 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4442 {
4443 	if (polling)
4444 		return sc->tx_ring_cnt;
4445 	else
4446 		return 1;
4447 }
4448 
4449 /*
4450  * Remove all descriptors from the TX ring.
4451  *
4452  * We want to clear all pending descriptors from the TX ring.  Zeroing
4453  * happens when the HW reads the regs.  We assign the ring itself as
4454  * the data of the next descriptor.  We don't care about the data we
4455  * are about to reset the HW.
4456  */
4457 static void
4458 emx_flush_tx_ring(struct emx_softc *sc)
4459 {
4460 	struct e1000_hw *hw = &sc->hw;
4461 	uint32_t tctl;
4462 	int i;
4463 
4464 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4465 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4466 
4467 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
4468 		struct emx_txdata *tdata = &sc->tx_data[i];
4469 		struct e1000_tx_desc *txd;
4470 
4471 		if (E1000_READ_REG(hw, E1000_TDLEN(i)) == 0)
4472 			continue;
4473 
4474 		txd = &tdata->tx_desc_base[tdata->next_avail_tx_desc++];
4475 		if (tdata->next_avail_tx_desc == tdata->num_tx_desc)
4476 			tdata->next_avail_tx_desc = 0;
4477 
4478 		/* Just use the ring as a dummy buffer addr */
4479 		txd->buffer_addr = tdata->tx_desc_paddr;
4480 		txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4481 		txd->upper.data = 0;
4482 
4483 		E1000_WRITE_REG(hw, E1000_TDT(i), tdata->next_avail_tx_desc);
4484 		usec_delay(250);
4485 	}
4486 }
4487 
4488 /*
4489  * Remove all descriptors from the RX rings.
4490  *
4491  * Mark all descriptors in the RX rings as consumed and disable the RX rings.
4492  */
4493 static void
4494 emx_flush_rx_ring(struct emx_softc *sc)
4495 {
4496 	struct e1000_hw	*hw = &sc->hw;
4497 	uint32_t rctl;
4498 	int i;
4499 
4500 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4501 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4502 	E1000_WRITE_FLUSH(hw);
4503 	usec_delay(150);
4504 
4505 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4506 		uint32_t rxdctl;
4507 
4508 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
4509 		/* Zero the lower 14 bits (prefetch and host thresholds) */
4510 		rxdctl &= 0xffffc000;
4511 		/*
4512 		 * Update thresholds: prefetch threshold to 31, host threshold
4513 		 * to 1 and make sure the granularity is "descriptors" and not
4514 		 * "cache lines".
4515 		 */
4516 		rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4517 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
4518 	}
4519 
4520 	/* Momentarily enable the RX rings for the changes to take effect */
4521 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4522 	E1000_WRITE_FLUSH(hw);
4523 	usec_delay(150);
4524 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4525 }
4526 
4527 /*
4528  * Remove all descriptors from the descriptor rings.
4529  *
4530  * In i219, the descriptor rings must be emptied before resetting the HW
4531  * or before changing the device state to D3 during runtime (runtime PM).
4532  *
4533  * Failure to do this will cause the HW to enter a unit hang state which
4534  * can only be released by PCI reset on the device.
4535  */
4536 static void
4537 emx_flush_txrx_ring(struct emx_softc *sc)
4538 {
4539 	struct e1000_hw *hw = &sc->hw;
4540 	device_t dev = sc->dev;
4541 	uint16_t hang_state;
4542 	uint32_t fext_nvm11, tdlen;
4543 	int i;
4544 
4545 	/*
4546 	 * First, disable MULR fix in FEXTNVM11.
4547 	 */
4548 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4549 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4550 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4551 
4552 	/*
4553 	 * Do nothing if we're not in faulty state, or if the queue is
4554 	 * empty.
4555 	 */
4556 	tdlen = 0;
4557 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4558 		tdlen += E1000_READ_REG(hw, E1000_TDLEN(i));
4559 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4560 	if ((hang_state & EMX_FLUSH_DESC_REQUIRED) && tdlen)
4561 		emx_flush_tx_ring(sc);
4562 
4563 	/*
4564 	 * Recheck, maybe the fault is caused by the RX ring.
4565 	 */
4566 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4567 	if (hang_state & EMX_FLUSH_DESC_REQUIRED)
4568 		emx_flush_rx_ring(sc);
4569 }
4570