xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 6e278935)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_rss.h"
69 #include "opt_emx.h"
70 
71 #include <sys/param.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/interrupt.h>
75 #include <sys/kernel.h>
76 #include <sys/ktr.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/proc.h>
80 #include <sys/rman.h>
81 #include <sys/serialize.h>
82 #include <sys/serialize2.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #ifdef EMX_RSS_DEBUG
115 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
116 do { \
117 	if (sc->rss_debug >= lvl) \
118 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
119 } while (0)
120 #else	/* !EMX_RSS_DEBUG */
121 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
122 #endif	/* EMX_RSS_DEBUG */
123 
124 #define EMX_NAME	"Intel(R) PRO/1000 "
125 
126 #define EMX_DEVICE(id)	\
127 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
128 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
129 
130 static const struct emx_device {
131 	uint16_t	vid;
132 	uint16_t	did;
133 	const char	*desc;
134 } emx_devices[] = {
135 	EMX_DEVICE(82571EB_COPPER),
136 	EMX_DEVICE(82571EB_FIBER),
137 	EMX_DEVICE(82571EB_SERDES),
138 	EMX_DEVICE(82571EB_SERDES_DUAL),
139 	EMX_DEVICE(82571EB_SERDES_QUAD),
140 	EMX_DEVICE(82571EB_QUAD_COPPER),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
143 	EMX_DEVICE(82571EB_QUAD_FIBER),
144 	EMX_DEVICE(82571PT_QUAD_COPPER),
145 
146 	EMX_DEVICE(82572EI_COPPER),
147 	EMX_DEVICE(82572EI_FIBER),
148 	EMX_DEVICE(82572EI_SERDES),
149 	EMX_DEVICE(82572EI),
150 
151 	EMX_DEVICE(82573E),
152 	EMX_DEVICE(82573E_IAMT),
153 	EMX_DEVICE(82573L),
154 
155 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
156 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
157 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
159 
160 	EMX_DEVICE(82574L),
161 	EMX_DEVICE(82574LA),
162 
163 	/* required last entry */
164 	EMX_DEVICE_NULL
165 };
166 
167 static int	emx_probe(device_t);
168 static int	emx_attach(device_t);
169 static int	emx_detach(device_t);
170 static int	emx_shutdown(device_t);
171 static int	emx_suspend(device_t);
172 static int	emx_resume(device_t);
173 
174 static void	emx_init(void *);
175 static void	emx_stop(struct emx_softc *);
176 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
177 static void	emx_start(struct ifnet *);
178 #ifdef IFPOLL_ENABLE
179 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
180 #endif
181 static void	emx_watchdog(struct ifnet *);
182 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
183 static int	emx_media_change(struct ifnet *);
184 static void	emx_timer(void *);
185 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
186 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
187 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
188 #ifdef INVARIANTS
189 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
190 		    boolean_t);
191 #endif
192 
193 static void	emx_intr(void *);
194 static void	emx_rxeof(struct emx_softc *, int, int);
195 static void	emx_txeof(struct emx_softc *);
196 static void	emx_tx_collect(struct emx_softc *);
197 static void	emx_tx_purge(struct emx_softc *);
198 static void	emx_enable_intr(struct emx_softc *);
199 static void	emx_disable_intr(struct emx_softc *);
200 
201 static int	emx_dma_alloc(struct emx_softc *);
202 static void	emx_dma_free(struct emx_softc *);
203 static void	emx_init_tx_ring(struct emx_softc *);
204 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
205 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
206 static int	emx_create_tx_ring(struct emx_softc *);
207 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
208 static void	emx_destroy_tx_ring(struct emx_softc *, int);
209 static void	emx_destroy_rx_ring(struct emx_softc *,
210 		    struct emx_rxdata *, int);
211 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
212 static int	emx_encap(struct emx_softc *, struct mbuf **);
213 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
214 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
215 		    uint32_t *, uint32_t *);
216 
217 static int 	emx_is_valid_eaddr(const uint8_t *);
218 static int	emx_reset(struct emx_softc *);
219 static void	emx_setup_ifp(struct emx_softc *);
220 static void	emx_init_tx_unit(struct emx_softc *);
221 static void	emx_init_rx_unit(struct emx_softc *);
222 static void	emx_update_stats(struct emx_softc *);
223 static void	emx_set_promisc(struct emx_softc *);
224 static void	emx_disable_promisc(struct emx_softc *);
225 static void	emx_set_multi(struct emx_softc *);
226 static void	emx_update_link_status(struct emx_softc *);
227 static void	emx_smartspeed(struct emx_softc *);
228 static void	emx_set_itr(struct emx_softc *, uint32_t);
229 
230 static void	emx_print_debug_info(struct emx_softc *);
231 static void	emx_print_nvm_info(struct emx_softc *);
232 static void	emx_print_hw_stats(struct emx_softc *);
233 
234 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
235 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
236 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
237 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
238 static void	emx_add_sysctl(struct emx_softc *);
239 
240 static void	emx_serialize_skipmain(struct emx_softc *);
241 static void	emx_deserialize_skipmain(struct emx_softc *);
242 
243 /* Management and WOL Support */
244 static void	emx_get_mgmt(struct emx_softc *);
245 static void	emx_rel_mgmt(struct emx_softc *);
246 static void	emx_get_hw_control(struct emx_softc *);
247 static void	emx_rel_hw_control(struct emx_softc *);
248 static void	emx_enable_wol(device_t);
249 
250 static device_method_t emx_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		emx_probe),
253 	DEVMETHOD(device_attach,	emx_attach),
254 	DEVMETHOD(device_detach,	emx_detach),
255 	DEVMETHOD(device_shutdown,	emx_shutdown),
256 	DEVMETHOD(device_suspend,	emx_suspend),
257 	DEVMETHOD(device_resume,	emx_resume),
258 	{ 0, 0 }
259 };
260 
261 static driver_t emx_driver = {
262 	"emx",
263 	emx_methods,
264 	sizeof(struct emx_softc),
265 };
266 
267 static devclass_t emx_devclass;
268 
269 DECLARE_DUMMY_MODULE(if_emx);
270 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
271 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
272 
273 /*
274  * Tunables
275  */
276 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
277 static int	emx_rxd = EMX_DEFAULT_RXD;
278 static int	emx_txd = EMX_DEFAULT_TXD;
279 static int	emx_smart_pwr_down = FALSE;
280 
281 /* Controls whether promiscuous also shows bad packets */
282 static int	emx_debug_sbp = FALSE;
283 
284 static int	emx_82573_workaround = TRUE;
285 
286 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
287 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
288 TUNABLE_INT("hw.emx.txd", &emx_txd);
289 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
290 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
291 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
292 
293 /* Global used in WOL setup with multiport cards */
294 static int	emx_global_quad_port_a = 0;
295 
296 /* Set this to one to display debug statistics */
297 static int	emx_display_debug_stats = 0;
298 
299 #if !defined(KTR_IF_EMX)
300 #define KTR_IF_EMX	KTR_ALL
301 #endif
302 KTR_INFO_MASTER(if_emx);
303 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
304 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
305 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
306 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
307 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
308 #define logif(name)	KTR_LOG(if_emx_ ## name)
309 
310 static __inline void
311 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
312 {
313 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
314 	/* DD bit must be cleared */
315 	rxd->rxd_staterr = 0;
316 }
317 
318 static __inline void
319 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
320 {
321 	/* Ignore Checksum bit is set */
322 	if (staterr & E1000_RXD_STAT_IXSM)
323 		return;
324 
325 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
326 	    E1000_RXD_STAT_IPCS)
327 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
328 
329 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
330 	    E1000_RXD_STAT_TCPCS) {
331 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
332 					   CSUM_PSEUDO_HDR |
333 					   CSUM_FRAG_NOT_CHECKED;
334 		mp->m_pkthdr.csum_data = htons(0xffff);
335 	}
336 }
337 
338 static __inline struct pktinfo *
339 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
340 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
341 {
342 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
343 	case EMX_RXDMRQ_IPV4_TCP:
344 		pi->pi_netisr = NETISR_IP;
345 		pi->pi_flags = 0;
346 		pi->pi_l3proto = IPPROTO_TCP;
347 		break;
348 
349 	case EMX_RXDMRQ_IPV6_TCP:
350 		pi->pi_netisr = NETISR_IPV6;
351 		pi->pi_flags = 0;
352 		pi->pi_l3proto = IPPROTO_TCP;
353 		break;
354 
355 	case EMX_RXDMRQ_IPV4:
356 		if (staterr & E1000_RXD_STAT_IXSM)
357 			return NULL;
358 
359 		if ((staterr &
360 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
361 		    E1000_RXD_STAT_TCPCS) {
362 			pi->pi_netisr = NETISR_IP;
363 			pi->pi_flags = 0;
364 			pi->pi_l3proto = IPPROTO_UDP;
365 			break;
366 		}
367 		/* FALL THROUGH */
368 	default:
369 		return NULL;
370 	}
371 
372 	m->m_flags |= M_HASH;
373 	m->m_pkthdr.hash = toeplitz_hash(hash);
374 	return pi;
375 }
376 
377 static int
378 emx_probe(device_t dev)
379 {
380 	const struct emx_device *d;
381 	uint16_t vid, did;
382 
383 	vid = pci_get_vendor(dev);
384 	did = pci_get_device(dev);
385 
386 	for (d = emx_devices; d->desc != NULL; ++d) {
387 		if (vid == d->vid && did == d->did) {
388 			device_set_desc(dev, d->desc);
389 			device_set_async_attach(dev, TRUE);
390 			return 0;
391 		}
392 	}
393 	return ENXIO;
394 }
395 
396 static int
397 emx_attach(device_t dev)
398 {
399 	struct emx_softc *sc = device_get_softc(dev);
400 	struct ifnet *ifp = &sc->arpcom.ac_if;
401 	int error = 0, i;
402 	uint16_t eeprom_data, device_id, apme_mask;
403 
404 	lwkt_serialize_init(&sc->main_serialize);
405 	lwkt_serialize_init(&sc->tx_serialize);
406 	for (i = 0; i < EMX_NRX_RING; ++i)
407 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
408 
409 	i = 0;
410 	sc->serializes[i++] = &sc->main_serialize;
411 	sc->serializes[i++] = &sc->tx_serialize;
412 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
413 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
414 	KKASSERT(i == EMX_NSERIALIZE);
415 
416 	callout_init_mp(&sc->timer);
417 
418 	sc->dev = sc->osdep.dev = dev;
419 
420 	/*
421 	 * Determine hardware and mac type
422 	 */
423 	sc->hw.vendor_id = pci_get_vendor(dev);
424 	sc->hw.device_id = pci_get_device(dev);
425 	sc->hw.revision_id = pci_get_revid(dev);
426 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
427 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
428 
429 	if (e1000_set_mac_type(&sc->hw))
430 		return ENXIO;
431 
432 	/* Enable bus mastering */
433 	pci_enable_busmaster(dev);
434 
435 	/*
436 	 * Allocate IO memory
437 	 */
438 	sc->memory_rid = EMX_BAR_MEM;
439 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
440 					    &sc->memory_rid, RF_ACTIVE);
441 	if (sc->memory == NULL) {
442 		device_printf(dev, "Unable to allocate bus resource: memory\n");
443 		error = ENXIO;
444 		goto fail;
445 	}
446 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
447 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
448 
449 	/* XXX This is quite goofy, it is not actually used */
450 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
451 
452 	/*
453 	 * Allocate interrupt
454 	 */
455 	sc->intr_rid = 0;
456 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
457 					      RF_SHAREABLE | RF_ACTIVE);
458 	if (sc->intr_res == NULL) {
459 		device_printf(dev, "Unable to allocate bus resource: "
460 		    "interrupt\n");
461 		error = ENXIO;
462 		goto fail;
463 	}
464 
465 	/* Save PCI command register for Shared Code */
466 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
467 	sc->hw.back = &sc->osdep;
468 
469 	/* Do Shared Code initialization */
470 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
471 		device_printf(dev, "Setup of Shared code failed\n");
472 		error = ENXIO;
473 		goto fail;
474 	}
475 	e1000_get_bus_info(&sc->hw);
476 
477 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
478 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
479 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
480 
481 	/*
482 	 * Interrupt throttle rate
483 	 */
484 	if (emx_int_throttle_ceil == 0) {
485 		sc->int_throttle_ceil = 0;
486 	} else {
487 		int throttle = emx_int_throttle_ceil;
488 
489 		if (throttle < 0)
490 			throttle = EMX_DEFAULT_ITR;
491 
492 		/* Recalculate the tunable value to get the exact frequency. */
493 		throttle = 1000000000 / 256 / throttle;
494 
495 		/* Upper 16bits of ITR is reserved and should be zero */
496 		if (throttle & 0xffff0000)
497 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
498 
499 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
500 	}
501 
502 	e1000_init_script_state_82541(&sc->hw, TRUE);
503 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
504 
505 	/* Copper options */
506 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
507 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
508 		sc->hw.phy.disable_polarity_correction = FALSE;
509 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
510 	}
511 
512 	/* Set the frame limits assuming standard ethernet sized frames. */
513 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
514 	sc->min_frame_size = ETHER_MIN_LEN;
515 
516 	/* This controls when hardware reports transmit completion status. */
517 	sc->hw.mac.report_tx_early = 1;
518 
519 	/* Calculate # of RX rings */
520 	if (ncpus > 1)
521 		sc->rx_ring_cnt = EMX_NRX_RING;
522 	else
523 		sc->rx_ring_cnt = 1;
524 	sc->rx_ring_inuse = sc->rx_ring_cnt;
525 
526 	/* Allocate RX/TX rings' busdma(9) stuffs */
527 	error = emx_dma_alloc(sc);
528 	if (error)
529 		goto fail;
530 
531 	/* Allocate multicast array memory. */
532 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
533 	    M_DEVBUF, M_WAITOK);
534 
535 	/* Indicate SOL/IDER usage */
536 	if (e1000_check_reset_block(&sc->hw)) {
537 		device_printf(dev,
538 		    "PHY reset is blocked due to SOL/IDER session.\n");
539 	}
540 
541 	/*
542 	 * Start from a known state, this is important in reading the
543 	 * nvm and mac from that.
544 	 */
545 	e1000_reset_hw(&sc->hw);
546 
547 	/* Make sure we have a good EEPROM before we read from it */
548 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
549 		/*
550 		 * Some PCI-E parts fail the first check due to
551 		 * the link being in sleep state, call it again,
552 		 * if it fails a second time its a real issue.
553 		 */
554 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
555 			device_printf(dev,
556 			    "The EEPROM Checksum Is Not Valid\n");
557 			error = EIO;
558 			goto fail;
559 		}
560 	}
561 
562 	/* Copy the permanent MAC address out of the EEPROM */
563 	if (e1000_read_mac_addr(&sc->hw) < 0) {
564 		device_printf(dev, "EEPROM read error while reading MAC"
565 		    " address\n");
566 		error = EIO;
567 		goto fail;
568 	}
569 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
570 		device_printf(dev, "Invalid MAC address\n");
571 		error = EIO;
572 		goto fail;
573 	}
574 
575 	/* Determine if we have to control management hardware */
576 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
577 
578 	/*
579 	 * Setup Wake-on-Lan
580 	 */
581 	apme_mask = EMX_EEPROM_APME;
582 	eeprom_data = 0;
583 	switch (sc->hw.mac.type) {
584 	case e1000_82573:
585 		sc->has_amt = 1;
586 		/* FALL THROUGH */
587 
588 	case e1000_82571:
589 	case e1000_82572:
590 	case e1000_80003es2lan:
591 		if (sc->hw.bus.func == 1) {
592 			e1000_read_nvm(&sc->hw,
593 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
594 		} else {
595 			e1000_read_nvm(&sc->hw,
596 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
597 		}
598 		break;
599 
600 	default:
601 		e1000_read_nvm(&sc->hw,
602 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
603 		break;
604 	}
605 	if (eeprom_data & apme_mask)
606 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
607 
608 	/*
609          * We have the eeprom settings, now apply the special cases
610          * where the eeprom may be wrong or the board won't support
611          * wake on lan on a particular port
612 	 */
613 	device_id = pci_get_device(dev);
614         switch (device_id) {
615 	case E1000_DEV_ID_82571EB_FIBER:
616 		/*
617 		 * Wake events only supported on port A for dual fiber
618 		 * regardless of eeprom setting
619 		 */
620 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
621 		    E1000_STATUS_FUNC_1)
622 			sc->wol = 0;
623 		break;
624 
625 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
626 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
627 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
628                 /* if quad port sc, disable WoL on all but port A */
629 		if (emx_global_quad_port_a != 0)
630 			sc->wol = 0;
631 		/* Reset for multiple quad port adapters */
632 		if (++emx_global_quad_port_a == 4)
633 			emx_global_quad_port_a = 0;
634                 break;
635 	}
636 
637 	/* XXX disable wol */
638 	sc->wol = 0;
639 
640 	/* Setup OS specific network interface */
641 	emx_setup_ifp(sc);
642 
643 	/* Add sysctl tree, must after em_setup_ifp() */
644 	emx_add_sysctl(sc);
645 
646 	/* Reset the hardware */
647 	error = emx_reset(sc);
648 	if (error) {
649 		device_printf(dev, "Unable to reset the hardware\n");
650 		goto fail;
651 	}
652 
653 	/* Initialize statistics */
654 	emx_update_stats(sc);
655 
656 	sc->hw.mac.get_link_status = 1;
657 	emx_update_link_status(sc);
658 
659 	sc->spare_tx_desc = EMX_TX_SPARE;
660 
661 	/*
662 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
663 	 * and tx_int_nsegs:
664 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
665 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
666 	 */
667 	sc->oact_tx_desc = sc->num_tx_desc / 8;
668 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
669 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
670 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
671 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
672 
673 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
674 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
675 		sc->tx_int_nsegs = sc->oact_tx_desc;
676 
677 	/* Non-AMT based hardware can now take control from firmware */
678 	if (sc->has_manage && !sc->has_amt)
679 		emx_get_hw_control(sc);
680 
681 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
682 			       &sc->intr_tag, &sc->main_serialize);
683 	if (error) {
684 		device_printf(dev, "Failed to register interrupt handler");
685 		ether_ifdetach(&sc->arpcom.ac_if);
686 		goto fail;
687 	}
688 
689 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
690 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
691 	return (0);
692 fail:
693 	emx_detach(dev);
694 	return (error);
695 }
696 
697 static int
698 emx_detach(device_t dev)
699 {
700 	struct emx_softc *sc = device_get_softc(dev);
701 
702 	if (device_is_attached(dev)) {
703 		struct ifnet *ifp = &sc->arpcom.ac_if;
704 
705 		ifnet_serialize_all(ifp);
706 
707 		emx_stop(sc);
708 
709 		e1000_phy_hw_reset(&sc->hw);
710 
711 		emx_rel_mgmt(sc);
712 		emx_rel_hw_control(sc);
713 
714 		if (sc->wol) {
715 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
716 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
717 			emx_enable_wol(dev);
718 		}
719 
720 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
721 
722 		ifnet_deserialize_all(ifp);
723 
724 		ether_ifdetach(ifp);
725 	} else {
726 		emx_rel_hw_control(sc);
727 	}
728 	bus_generic_detach(dev);
729 
730 	if (sc->intr_res != NULL) {
731 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
732 				     sc->intr_res);
733 	}
734 
735 	if (sc->memory != NULL) {
736 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
737 				     sc->memory);
738 	}
739 
740 	emx_dma_free(sc);
741 
742 	/* Free sysctl tree */
743 	if (sc->sysctl_tree != NULL)
744 		sysctl_ctx_free(&sc->sysctl_ctx);
745 
746 	return (0);
747 }
748 
749 static int
750 emx_shutdown(device_t dev)
751 {
752 	return emx_suspend(dev);
753 }
754 
755 static int
756 emx_suspend(device_t dev)
757 {
758 	struct emx_softc *sc = device_get_softc(dev);
759 	struct ifnet *ifp = &sc->arpcom.ac_if;
760 
761 	ifnet_serialize_all(ifp);
762 
763 	emx_stop(sc);
764 
765 	emx_rel_mgmt(sc);
766 	emx_rel_hw_control(sc);
767 
768 	if (sc->wol) {
769 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
770 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
771 		emx_enable_wol(dev);
772 	}
773 
774 	ifnet_deserialize_all(ifp);
775 
776 	return bus_generic_suspend(dev);
777 }
778 
779 static int
780 emx_resume(device_t dev)
781 {
782 	struct emx_softc *sc = device_get_softc(dev);
783 	struct ifnet *ifp = &sc->arpcom.ac_if;
784 
785 	ifnet_serialize_all(ifp);
786 
787 	emx_init(sc);
788 	emx_get_mgmt(sc);
789 	if_devstart(ifp);
790 
791 	ifnet_deserialize_all(ifp);
792 
793 	return bus_generic_resume(dev);
794 }
795 
796 static void
797 emx_start(struct ifnet *ifp)
798 {
799 	struct emx_softc *sc = ifp->if_softc;
800 	struct mbuf *m_head;
801 
802 	ASSERT_SERIALIZED(&sc->tx_serialize);
803 
804 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
805 		return;
806 
807 	if (!sc->link_active) {
808 		ifq_purge(&ifp->if_snd);
809 		return;
810 	}
811 
812 	while (!ifq_is_empty(&ifp->if_snd)) {
813 		/* Now do we at least have a minimal? */
814 		if (EMX_IS_OACTIVE(sc)) {
815 			emx_tx_collect(sc);
816 			if (EMX_IS_OACTIVE(sc)) {
817 				ifp->if_flags |= IFF_OACTIVE;
818 				sc->no_tx_desc_avail1++;
819 				break;
820 			}
821 		}
822 
823 		logif(pkt_txqueue);
824 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
825 		if (m_head == NULL)
826 			break;
827 
828 		if (emx_encap(sc, &m_head)) {
829 			ifp->if_oerrors++;
830 			emx_tx_collect(sc);
831 			continue;
832 		}
833 
834 		/* Send a copy of the frame to the BPF listener */
835 		ETHER_BPF_MTAP(ifp, m_head);
836 
837 		/* Set timeout in case hardware has problems transmitting. */
838 		ifp->if_timer = EMX_TX_TIMEOUT;
839 	}
840 }
841 
842 static int
843 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
844 {
845 	struct emx_softc *sc = ifp->if_softc;
846 	struct ifreq *ifr = (struct ifreq *)data;
847 	uint16_t eeprom_data = 0;
848 	int max_frame_size, mask, reinit;
849 	int error = 0;
850 
851 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
852 
853 	switch (command) {
854 	case SIOCSIFMTU:
855 		switch (sc->hw.mac.type) {
856 		case e1000_82573:
857 			/*
858 			 * 82573 only supports jumbo frames
859 			 * if ASPM is disabled.
860 			 */
861 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
862 				       &eeprom_data);
863 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
864 				max_frame_size = ETHER_MAX_LEN;
865 				break;
866 			}
867 			/* FALL THROUGH */
868 
869 		/* Limit Jumbo Frame size */
870 		case e1000_82571:
871 		case e1000_82572:
872 		case e1000_82574:
873 		case e1000_80003es2lan:
874 			max_frame_size = 9234;
875 			break;
876 
877 		default:
878 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
879 			break;
880 		}
881 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
882 		    ETHER_CRC_LEN) {
883 			error = EINVAL;
884 			break;
885 		}
886 
887 		ifp->if_mtu = ifr->ifr_mtu;
888 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
889 				     ETHER_CRC_LEN;
890 
891 		if (ifp->if_flags & IFF_RUNNING)
892 			emx_init(sc);
893 		break;
894 
895 	case SIOCSIFFLAGS:
896 		if (ifp->if_flags & IFF_UP) {
897 			if ((ifp->if_flags & IFF_RUNNING)) {
898 				if ((ifp->if_flags ^ sc->if_flags) &
899 				    (IFF_PROMISC | IFF_ALLMULTI)) {
900 					emx_disable_promisc(sc);
901 					emx_set_promisc(sc);
902 				}
903 			} else {
904 				emx_init(sc);
905 			}
906 		} else if (ifp->if_flags & IFF_RUNNING) {
907 			emx_stop(sc);
908 		}
909 		sc->if_flags = ifp->if_flags;
910 		break;
911 
912 	case SIOCADDMULTI:
913 	case SIOCDELMULTI:
914 		if (ifp->if_flags & IFF_RUNNING) {
915 			emx_disable_intr(sc);
916 			emx_set_multi(sc);
917 #ifdef IFPOLL_ENABLE
918 			if (!(ifp->if_flags & IFF_NPOLLING))
919 #endif
920 				emx_enable_intr(sc);
921 		}
922 		break;
923 
924 	case SIOCSIFMEDIA:
925 		/* Check SOL/IDER usage */
926 		if (e1000_check_reset_block(&sc->hw)) {
927 			device_printf(sc->dev, "Media change is"
928 			    " blocked due to SOL/IDER session.\n");
929 			break;
930 		}
931 		/* FALL THROUGH */
932 
933 	case SIOCGIFMEDIA:
934 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
935 		break;
936 
937 	case SIOCSIFCAP:
938 		reinit = 0;
939 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
940 		if (mask & IFCAP_HWCSUM) {
941 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
942 			reinit = 1;
943 		}
944 		if (mask & IFCAP_VLAN_HWTAGGING) {
945 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
946 			reinit = 1;
947 		}
948 		if (mask & IFCAP_RSS) {
949 			ifp->if_capenable ^= IFCAP_RSS;
950 			reinit = 1;
951 		}
952 		if (reinit && (ifp->if_flags & IFF_RUNNING))
953 			emx_init(sc);
954 		break;
955 
956 	default:
957 		error = ether_ioctl(ifp, command, data);
958 		break;
959 	}
960 	return (error);
961 }
962 
963 static void
964 emx_watchdog(struct ifnet *ifp)
965 {
966 	struct emx_softc *sc = ifp->if_softc;
967 
968 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
969 
970 	/*
971 	 * The timer is set to 5 every time start queues a packet.
972 	 * Then txeof keeps resetting it as long as it cleans at
973 	 * least one descriptor.
974 	 * Finally, anytime all descriptors are clean the timer is
975 	 * set to 0.
976 	 */
977 
978 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
979 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
980 		/*
981 		 * If we reach here, all TX jobs are completed and
982 		 * the TX engine should have been idled for some time.
983 		 * We don't need to call if_devstart() here.
984 		 */
985 		ifp->if_flags &= ~IFF_OACTIVE;
986 		ifp->if_timer = 0;
987 		return;
988 	}
989 
990 	/*
991 	 * If we are in this routine because of pause frames, then
992 	 * don't reset the hardware.
993 	 */
994 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
995 		ifp->if_timer = EMX_TX_TIMEOUT;
996 		return;
997 	}
998 
999 	if (e1000_check_for_link(&sc->hw) == 0)
1000 		if_printf(ifp, "watchdog timeout -- resetting\n");
1001 
1002 	ifp->if_oerrors++;
1003 	sc->watchdog_events++;
1004 
1005 	emx_init(sc);
1006 
1007 	if (!ifq_is_empty(&ifp->if_snd))
1008 		if_devstart(ifp);
1009 }
1010 
1011 static void
1012 emx_init(void *xsc)
1013 {
1014 	struct emx_softc *sc = xsc;
1015 	struct ifnet *ifp = &sc->arpcom.ac_if;
1016 	device_t dev = sc->dev;
1017 	uint32_t pba;
1018 	int i;
1019 
1020 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1021 
1022 	emx_stop(sc);
1023 
1024 	/*
1025 	 * Packet Buffer Allocation (PBA)
1026 	 * Writing PBA sets the receive portion of the buffer
1027 	 * the remainder is used for the transmit buffer.
1028 	 */
1029 	switch (sc->hw.mac.type) {
1030 	/* Total Packet Buffer on these is 48K */
1031 	case e1000_82571:
1032 	case e1000_82572:
1033 	case e1000_80003es2lan:
1034 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1035 		break;
1036 
1037 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1038 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1039 		break;
1040 
1041 	case e1000_82574:
1042 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1043 		break;
1044 
1045 	default:
1046 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1047 		if (sc->max_frame_size > 8192)
1048 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1049 		else
1050 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1051 	}
1052 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1053 
1054 	/* Get the latest mac address, User can use a LAA */
1055         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1056 
1057 	/* Put the address into the Receive Address Array */
1058 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1059 
1060 	/*
1061 	 * With the 82571 sc, RAR[0] may be overwritten
1062 	 * when the other port is reset, we make a duplicate
1063 	 * in RAR[14] for that eventuality, this assures
1064 	 * the interface continues to function.
1065 	 */
1066 	if (sc->hw.mac.type == e1000_82571) {
1067 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1068 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1069 		    E1000_RAR_ENTRIES - 1);
1070 	}
1071 
1072 	/* Initialize the hardware */
1073 	if (emx_reset(sc)) {
1074 		device_printf(dev, "Unable to reset the hardware\n");
1075 		/* XXX emx_stop()? */
1076 		return;
1077 	}
1078 	emx_update_link_status(sc);
1079 
1080 	/* Setup VLAN support, basic and offload if available */
1081 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1082 
1083 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1084 		uint32_t ctrl;
1085 
1086 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1087 		ctrl |= E1000_CTRL_VME;
1088 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1089 	}
1090 
1091 	/* Set hardware offload abilities */
1092 	if (ifp->if_capenable & IFCAP_TXCSUM)
1093 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1094 	else
1095 		ifp->if_hwassist = 0;
1096 
1097 	/* Configure for OS presence */
1098 	emx_get_mgmt(sc);
1099 
1100 	/* Prepare transmit descriptors and buffers */
1101 	emx_init_tx_ring(sc);
1102 	emx_init_tx_unit(sc);
1103 
1104 	/* Setup Multicast table */
1105 	emx_set_multi(sc);
1106 
1107 	/*
1108 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1109 	 */
1110 	if (ifp->if_capenable & IFCAP_RSS)
1111 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1112 	else
1113 		sc->rx_ring_inuse = 1;
1114 
1115 	/* Prepare receive descriptors and buffers */
1116 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1117 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1118 			device_printf(dev,
1119 			    "Could not setup receive structures\n");
1120 			emx_stop(sc);
1121 			return;
1122 		}
1123 	}
1124 	emx_init_rx_unit(sc);
1125 
1126 	/* Don't lose promiscuous settings */
1127 	emx_set_promisc(sc);
1128 
1129 	ifp->if_flags |= IFF_RUNNING;
1130 	ifp->if_flags &= ~IFF_OACTIVE;
1131 
1132 	callout_reset(&sc->timer, hz, emx_timer, sc);
1133 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1134 
1135 	/* MSI/X configuration for 82574 */
1136 	if (sc->hw.mac.type == e1000_82574) {
1137 		int tmp;
1138 
1139 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1140 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1141 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1142 		/*
1143 		 * XXX MSIX
1144 		 * Set the IVAR - interrupt vector routing.
1145 		 * Each nibble represents a vector, high bit
1146 		 * is enable, other 3 bits are the MSIX table
1147 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1148 		 * Link (other) to 2, hence the magic number.
1149 		 */
1150 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1151 	}
1152 
1153 #ifdef IFPOLL_ENABLE
1154 	/*
1155 	 * Only enable interrupts if we are not polling, make sure
1156 	 * they are off otherwise.
1157 	 */
1158 	if (ifp->if_flags & IFF_NPOLLING)
1159 		emx_disable_intr(sc);
1160 	else
1161 #endif /* IFPOLL_ENABLE */
1162 		emx_enable_intr(sc);
1163 
1164 	/* AMT based hardware can now take control from firmware */
1165 	if (sc->has_manage && sc->has_amt)
1166 		emx_get_hw_control(sc);
1167 
1168 	/* Don't reset the phy next time init gets called */
1169 	sc->hw.phy.reset_disable = TRUE;
1170 }
1171 
1172 static void
1173 emx_intr(void *xsc)
1174 {
1175 	struct emx_softc *sc = xsc;
1176 	struct ifnet *ifp = &sc->arpcom.ac_if;
1177 	uint32_t reg_icr;
1178 
1179 	logif(intr_beg);
1180 	ASSERT_SERIALIZED(&sc->main_serialize);
1181 
1182 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1183 
1184 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1185 		logif(intr_end);
1186 		return;
1187 	}
1188 
1189 	/*
1190 	 * XXX: some laptops trigger several spurious interrupts
1191 	 * on emx(4) when in the resume cycle. The ICR register
1192 	 * reports all-ones value in this case. Processing such
1193 	 * interrupts would lead to a freeze. I don't know why.
1194 	 */
1195 	if (reg_icr == 0xffffffff) {
1196 		logif(intr_end);
1197 		return;
1198 	}
1199 
1200 	if (ifp->if_flags & IFF_RUNNING) {
1201 		if (reg_icr &
1202 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1203 			int i;
1204 
1205 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
1206 				lwkt_serialize_enter(
1207 				&sc->rx_data[i].rx_serialize);
1208 				emx_rxeof(sc, i, -1);
1209 				lwkt_serialize_exit(
1210 				&sc->rx_data[i].rx_serialize);
1211 			}
1212 		}
1213 		if (reg_icr & E1000_ICR_TXDW) {
1214 			lwkt_serialize_enter(&sc->tx_serialize);
1215 			emx_txeof(sc);
1216 			if (!ifq_is_empty(&ifp->if_snd))
1217 				if_devstart(ifp);
1218 			lwkt_serialize_exit(&sc->tx_serialize);
1219 		}
1220 	}
1221 
1222 	/* Link status change */
1223 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1224 		emx_serialize_skipmain(sc);
1225 
1226 		callout_stop(&sc->timer);
1227 		sc->hw.mac.get_link_status = 1;
1228 		emx_update_link_status(sc);
1229 
1230 		/* Deal with TX cruft when link lost */
1231 		emx_tx_purge(sc);
1232 
1233 		callout_reset(&sc->timer, hz, emx_timer, sc);
1234 
1235 		emx_deserialize_skipmain(sc);
1236 	}
1237 
1238 	if (reg_icr & E1000_ICR_RXO)
1239 		sc->rx_overruns++;
1240 
1241 	logif(intr_end);
1242 }
1243 
1244 static void
1245 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1246 {
1247 	struct emx_softc *sc = ifp->if_softc;
1248 
1249 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1250 
1251 	emx_update_link_status(sc);
1252 
1253 	ifmr->ifm_status = IFM_AVALID;
1254 	ifmr->ifm_active = IFM_ETHER;
1255 
1256 	if (!sc->link_active)
1257 		return;
1258 
1259 	ifmr->ifm_status |= IFM_ACTIVE;
1260 
1261 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1262 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1263 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1264 	} else {
1265 		switch (sc->link_speed) {
1266 		case 10:
1267 			ifmr->ifm_active |= IFM_10_T;
1268 			break;
1269 		case 100:
1270 			ifmr->ifm_active |= IFM_100_TX;
1271 			break;
1272 
1273 		case 1000:
1274 			ifmr->ifm_active |= IFM_1000_T;
1275 			break;
1276 		}
1277 		if (sc->link_duplex == FULL_DUPLEX)
1278 			ifmr->ifm_active |= IFM_FDX;
1279 		else
1280 			ifmr->ifm_active |= IFM_HDX;
1281 	}
1282 }
1283 
1284 static int
1285 emx_media_change(struct ifnet *ifp)
1286 {
1287 	struct emx_softc *sc = ifp->if_softc;
1288 	struct ifmedia *ifm = &sc->media;
1289 
1290 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1291 
1292 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1293 		return (EINVAL);
1294 
1295 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1296 	case IFM_AUTO:
1297 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1298 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1299 		break;
1300 
1301 	case IFM_1000_LX:
1302 	case IFM_1000_SX:
1303 	case IFM_1000_T:
1304 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1305 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1306 		break;
1307 
1308 	case IFM_100_TX:
1309 		sc->hw.mac.autoneg = FALSE;
1310 		sc->hw.phy.autoneg_advertised = 0;
1311 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1312 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1313 		else
1314 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1315 		break;
1316 
1317 	case IFM_10_T:
1318 		sc->hw.mac.autoneg = FALSE;
1319 		sc->hw.phy.autoneg_advertised = 0;
1320 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1321 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1322 		else
1323 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1324 		break;
1325 
1326 	default:
1327 		if_printf(ifp, "Unsupported media type\n");
1328 		break;
1329 	}
1330 
1331 	/*
1332 	 * As the speed/duplex settings my have changed we need to
1333 	 * reset the PHY.
1334 	 */
1335 	sc->hw.phy.reset_disable = FALSE;
1336 
1337 	emx_init(sc);
1338 
1339 	return (0);
1340 }
1341 
1342 static int
1343 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1344 {
1345 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1346 	bus_dmamap_t map;
1347 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1348 	struct e1000_tx_desc *ctxd = NULL;
1349 	struct mbuf *m_head = *m_headp;
1350 	uint32_t txd_upper, txd_lower, cmd = 0;
1351 	int maxsegs, nsegs, i, j, first, last = 0, error;
1352 
1353 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1354 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1355 		/*
1356 		 * Make sure that ethernet header and ip.ip_hl are in
1357 		 * contiguous memory, since if TXCSUM is enabled, later
1358 		 * TX context descriptor's setup need to access ip.ip_hl.
1359 		 */
1360 		error = emx_txcsum_pullup(sc, m_headp);
1361 		if (error) {
1362 			KKASSERT(*m_headp == NULL);
1363 			return error;
1364 		}
1365 		m_head = *m_headp;
1366 	}
1367 
1368 	txd_upper = txd_lower = 0;
1369 
1370 	/*
1371 	 * Capture the first descriptor index, this descriptor
1372 	 * will have the index of the EOP which is the only one
1373 	 * that now gets a DONE bit writeback.
1374 	 */
1375 	first = sc->next_avail_tx_desc;
1376 	tx_buffer = &sc->tx_buf[first];
1377 	tx_buffer_mapped = tx_buffer;
1378 	map = tx_buffer->map;
1379 
1380 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1381 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1382 	if (maxsegs > EMX_MAX_SCATTER)
1383 		maxsegs = EMX_MAX_SCATTER;
1384 
1385 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1386 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1387 	if (error) {
1388 		if (error == ENOBUFS)
1389 			sc->mbuf_alloc_failed++;
1390 		else
1391 			sc->no_tx_dma_setup++;
1392 
1393 		m_freem(*m_headp);
1394 		*m_headp = NULL;
1395 		return error;
1396 	}
1397         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1398 
1399 	m_head = *m_headp;
1400 	sc->tx_nsegs += nsegs;
1401 
1402 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1403 		/* TX csum offloading will consume one TX desc */
1404 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1405 	}
1406 	i = sc->next_avail_tx_desc;
1407 
1408 	/* Set up our transmit descriptors */
1409 	for (j = 0; j < nsegs; j++) {
1410 		tx_buffer = &sc->tx_buf[i];
1411 		ctxd = &sc->tx_desc_base[i];
1412 
1413 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1414 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1415 					   txd_lower | segs[j].ds_len);
1416 		ctxd->upper.data = htole32(txd_upper);
1417 
1418 		last = i;
1419 		if (++i == sc->num_tx_desc)
1420 			i = 0;
1421 	}
1422 
1423 	sc->next_avail_tx_desc = i;
1424 
1425 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1426 	sc->num_tx_desc_avail -= nsegs;
1427 
1428         /* Handle VLAN tag */
1429 	if (m_head->m_flags & M_VLANTAG) {
1430 		/* Set the vlan id. */
1431 		ctxd->upper.fields.special =
1432 		    htole16(m_head->m_pkthdr.ether_vlantag);
1433 
1434 		/* Tell hardware to add tag */
1435 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1436 	}
1437 
1438 	tx_buffer->m_head = m_head;
1439 	tx_buffer_mapped->map = tx_buffer->map;
1440 	tx_buffer->map = map;
1441 
1442 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1443 		sc->tx_nsegs = 0;
1444 
1445 		/*
1446 		 * Report Status (RS) is turned on
1447 		 * every tx_int_nsegs descriptors.
1448 		 */
1449 		cmd = E1000_TXD_CMD_RS;
1450 
1451 		/*
1452 		 * Keep track of the descriptor, which will
1453 		 * be written back by hardware.
1454 		 */
1455 		sc->tx_dd[sc->tx_dd_tail] = last;
1456 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1457 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1458 	}
1459 
1460 	/*
1461 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1462 	 */
1463 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1464 
1465 	/*
1466 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1467 	 * the E1000 that this frame is available to transmit.
1468 	 */
1469 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1470 
1471 	return (0);
1472 }
1473 
1474 static void
1475 emx_set_promisc(struct emx_softc *sc)
1476 {
1477 	struct ifnet *ifp = &sc->arpcom.ac_if;
1478 	uint32_t reg_rctl;
1479 
1480 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1481 
1482 	if (ifp->if_flags & IFF_PROMISC) {
1483 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1484 		/* Turn this on if you want to see bad packets */
1485 		if (emx_debug_sbp)
1486 			reg_rctl |= E1000_RCTL_SBP;
1487 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1488 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1489 		reg_rctl |= E1000_RCTL_MPE;
1490 		reg_rctl &= ~E1000_RCTL_UPE;
1491 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1492 	}
1493 }
1494 
1495 static void
1496 emx_disable_promisc(struct emx_softc *sc)
1497 {
1498 	uint32_t reg_rctl;
1499 
1500 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1501 
1502 	reg_rctl &= ~E1000_RCTL_UPE;
1503 	reg_rctl &= ~E1000_RCTL_MPE;
1504 	reg_rctl &= ~E1000_RCTL_SBP;
1505 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1506 }
1507 
1508 static void
1509 emx_set_multi(struct emx_softc *sc)
1510 {
1511 	struct ifnet *ifp = &sc->arpcom.ac_if;
1512 	struct ifmultiaddr *ifma;
1513 	uint32_t reg_rctl = 0;
1514 	uint8_t *mta;
1515 	int mcnt = 0;
1516 
1517 	mta = sc->mta;
1518 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1519 
1520 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1521 		if (ifma->ifma_addr->sa_family != AF_LINK)
1522 			continue;
1523 
1524 		if (mcnt == EMX_MCAST_ADDR_MAX)
1525 			break;
1526 
1527 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1528 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1529 		mcnt++;
1530 	}
1531 
1532 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1533 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1534 		reg_rctl |= E1000_RCTL_MPE;
1535 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1536 	} else {
1537 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1538 	}
1539 }
1540 
1541 /*
1542  * This routine checks for link status and updates statistics.
1543  */
1544 static void
1545 emx_timer(void *xsc)
1546 {
1547 	struct emx_softc *sc = xsc;
1548 	struct ifnet *ifp = &sc->arpcom.ac_if;
1549 
1550 	ifnet_serialize_all(ifp);
1551 
1552 	emx_update_link_status(sc);
1553 	emx_update_stats(sc);
1554 
1555 	/* Reset LAA into RAR[0] on 82571 */
1556 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1557 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1558 
1559 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1560 		emx_print_hw_stats(sc);
1561 
1562 	emx_smartspeed(sc);
1563 
1564 	callout_reset(&sc->timer, hz, emx_timer, sc);
1565 
1566 	ifnet_deserialize_all(ifp);
1567 }
1568 
1569 static void
1570 emx_update_link_status(struct emx_softc *sc)
1571 {
1572 	struct e1000_hw *hw = &sc->hw;
1573 	struct ifnet *ifp = &sc->arpcom.ac_if;
1574 	device_t dev = sc->dev;
1575 	uint32_t link_check = 0;
1576 
1577 	/* Get the cached link value or read phy for real */
1578 	switch (hw->phy.media_type) {
1579 	case e1000_media_type_copper:
1580 		if (hw->mac.get_link_status) {
1581 			/* Do the work to read phy */
1582 			e1000_check_for_link(hw);
1583 			link_check = !hw->mac.get_link_status;
1584 			if (link_check) /* ESB2 fix */
1585 				e1000_cfg_on_link_up(hw);
1586 		} else {
1587 			link_check = TRUE;
1588 		}
1589 		break;
1590 
1591 	case e1000_media_type_fiber:
1592 		e1000_check_for_link(hw);
1593 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1594 		break;
1595 
1596 	case e1000_media_type_internal_serdes:
1597 		e1000_check_for_link(hw);
1598 		link_check = sc->hw.mac.serdes_has_link;
1599 		break;
1600 
1601 	case e1000_media_type_unknown:
1602 	default:
1603 		break;
1604 	}
1605 
1606 	/* Now check for a transition */
1607 	if (link_check && sc->link_active == 0) {
1608 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1609 		    &sc->link_duplex);
1610 
1611 		/*
1612 		 * Check if we should enable/disable SPEED_MODE bit on
1613 		 * 82571EB/82572EI
1614 		 */
1615 		if (sc->link_speed != SPEED_1000 &&
1616 		    (hw->mac.type == e1000_82571 ||
1617 		     hw->mac.type == e1000_82572)) {
1618 			int tarc0;
1619 
1620 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1621 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1622 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1623 		}
1624 		if (bootverbose) {
1625 			device_printf(dev, "Link is up %d Mbps %s\n",
1626 			    sc->link_speed,
1627 			    ((sc->link_duplex == FULL_DUPLEX) ?
1628 			    "Full Duplex" : "Half Duplex"));
1629 		}
1630 		sc->link_active = 1;
1631 		sc->smartspeed = 0;
1632 		ifp->if_baudrate = sc->link_speed * 1000000;
1633 		ifp->if_link_state = LINK_STATE_UP;
1634 		if_link_state_change(ifp);
1635 	} else if (!link_check && sc->link_active == 1) {
1636 		ifp->if_baudrate = sc->link_speed = 0;
1637 		sc->link_duplex = 0;
1638 		if (bootverbose)
1639 			device_printf(dev, "Link is Down\n");
1640 		sc->link_active = 0;
1641 #if 0
1642 		/* Link down, disable watchdog */
1643 		if->if_timer = 0;
1644 #endif
1645 		ifp->if_link_state = LINK_STATE_DOWN;
1646 		if_link_state_change(ifp);
1647 	}
1648 }
1649 
1650 static void
1651 emx_stop(struct emx_softc *sc)
1652 {
1653 	struct ifnet *ifp = &sc->arpcom.ac_if;
1654 	int i;
1655 
1656 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1657 
1658 	emx_disable_intr(sc);
1659 
1660 	callout_stop(&sc->timer);
1661 
1662 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1663 	ifp->if_timer = 0;
1664 
1665 	/*
1666 	 * Disable multiple receive queues.
1667 	 *
1668 	 * NOTE:
1669 	 * We should disable multiple receive queues before
1670 	 * resetting the hardware.
1671 	 */
1672 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1673 
1674 	e1000_reset_hw(&sc->hw);
1675 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1676 
1677 	for (i = 0; i < sc->num_tx_desc; i++) {
1678 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1679 
1680 		if (tx_buffer->m_head != NULL) {
1681 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1682 			m_freem(tx_buffer->m_head);
1683 			tx_buffer->m_head = NULL;
1684 		}
1685 	}
1686 
1687 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1688 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1689 
1690 	sc->csum_flags = 0;
1691 	sc->csum_ehlen = 0;
1692 	sc->csum_iphlen = 0;
1693 
1694 	sc->tx_dd_head = 0;
1695 	sc->tx_dd_tail = 0;
1696 	sc->tx_nsegs = 0;
1697 }
1698 
1699 static int
1700 emx_reset(struct emx_softc *sc)
1701 {
1702 	device_t dev = sc->dev;
1703 	uint16_t rx_buffer_size;
1704 
1705 	/* Set up smart power down as default off on newer adapters. */
1706 	if (!emx_smart_pwr_down &&
1707 	    (sc->hw.mac.type == e1000_82571 ||
1708 	     sc->hw.mac.type == e1000_82572)) {
1709 		uint16_t phy_tmp = 0;
1710 
1711 		/* Speed up time to link by disabling smart power down. */
1712 		e1000_read_phy_reg(&sc->hw,
1713 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1714 		phy_tmp &= ~IGP02E1000_PM_SPD;
1715 		e1000_write_phy_reg(&sc->hw,
1716 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1717 	}
1718 
1719 	/*
1720 	 * These parameters control the automatic generation (Tx) and
1721 	 * response (Rx) to Ethernet PAUSE frames.
1722 	 * - High water mark should allow for at least two frames to be
1723 	 *   received after sending an XOFF.
1724 	 * - Low water mark works best when it is very near the high water mark.
1725 	 *   This allows the receiver to restart by sending XON when it has
1726 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1727 	 *   restart after one full frame is pulled from the buffer. There
1728 	 *   could be several smaller frames in the buffer and if so they will
1729 	 *   not trigger the XON until their total number reduces the buffer
1730 	 *   by 1500.
1731 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1732 	 */
1733 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1734 
1735 	sc->hw.fc.high_water = rx_buffer_size -
1736 			       roundup2(sc->max_frame_size, 1024);
1737 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1738 
1739 	if (sc->hw.mac.type == e1000_80003es2lan)
1740 		sc->hw.fc.pause_time = 0xFFFF;
1741 	else
1742 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1743 	sc->hw.fc.send_xon = TRUE;
1744 	sc->hw.fc.requested_mode = e1000_fc_full;
1745 
1746 	/* Issue a global reset */
1747 	e1000_reset_hw(&sc->hw);
1748 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1749 
1750 	if (e1000_init_hw(&sc->hw) < 0) {
1751 		device_printf(dev, "Hardware Initialization Failed\n");
1752 		return (EIO);
1753 	}
1754 
1755 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1756 	e1000_get_phy_info(&sc->hw);
1757 	e1000_check_for_link(&sc->hw);
1758 
1759 	return (0);
1760 }
1761 
1762 static void
1763 emx_setup_ifp(struct emx_softc *sc)
1764 {
1765 	struct ifnet *ifp = &sc->arpcom.ac_if;
1766 
1767 	if_initname(ifp, device_get_name(sc->dev),
1768 		    device_get_unit(sc->dev));
1769 	ifp->if_softc = sc;
1770 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1771 	ifp->if_init =  emx_init;
1772 	ifp->if_ioctl = emx_ioctl;
1773 	ifp->if_start = emx_start;
1774 #ifdef IFPOLL_ENABLE
1775 	ifp->if_qpoll = emx_qpoll;
1776 #endif
1777 	ifp->if_watchdog = emx_watchdog;
1778 	ifp->if_serialize = emx_serialize;
1779 	ifp->if_deserialize = emx_deserialize;
1780 	ifp->if_tryserialize = emx_tryserialize;
1781 #ifdef INVARIANTS
1782 	ifp->if_serialize_assert = emx_serialize_assert;
1783 #endif
1784 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1785 	ifq_set_ready(&ifp->if_snd);
1786 
1787 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1788 
1789 	ifp->if_capabilities = IFCAP_HWCSUM |
1790 			       IFCAP_VLAN_HWTAGGING |
1791 			       IFCAP_VLAN_MTU;
1792 	if (sc->rx_ring_cnt > 1)
1793 		ifp->if_capabilities |= IFCAP_RSS;
1794 	ifp->if_capenable = ifp->if_capabilities;
1795 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1796 
1797 	/*
1798 	 * Tell the upper layer(s) we support long frames.
1799 	 */
1800 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1801 
1802 	/*
1803 	 * Specify the media types supported by this sc and register
1804 	 * callbacks to update media and link information
1805 	 */
1806 	ifmedia_init(&sc->media, IFM_IMASK,
1807 		     emx_media_change, emx_media_status);
1808 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1809 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1810 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1811 			    0, NULL);
1812 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1813 	} else {
1814 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1815 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1816 			    0, NULL);
1817 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1818 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1819 			    0, NULL);
1820 		if (sc->hw.phy.type != e1000_phy_ife) {
1821 			ifmedia_add(&sc->media,
1822 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1823 			ifmedia_add(&sc->media,
1824 				IFM_ETHER | IFM_1000_T, 0, NULL);
1825 		}
1826 	}
1827 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1828 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1829 }
1830 
1831 /*
1832  * Workaround for SmartSpeed on 82541 and 82547 controllers
1833  */
1834 static void
1835 emx_smartspeed(struct emx_softc *sc)
1836 {
1837 	uint16_t phy_tmp;
1838 
1839 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1840 	    sc->hw.mac.autoneg == 0 ||
1841 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1842 		return;
1843 
1844 	if (sc->smartspeed == 0) {
1845 		/*
1846 		 * If Master/Slave config fault is asserted twice,
1847 		 * we assume back-to-back
1848 		 */
1849 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1850 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1851 			return;
1852 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1853 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1854 			e1000_read_phy_reg(&sc->hw,
1855 			    PHY_1000T_CTRL, &phy_tmp);
1856 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1857 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1858 				e1000_write_phy_reg(&sc->hw,
1859 				    PHY_1000T_CTRL, phy_tmp);
1860 				sc->smartspeed++;
1861 				if (sc->hw.mac.autoneg &&
1862 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1863 				    !e1000_read_phy_reg(&sc->hw,
1864 				     PHY_CONTROL, &phy_tmp)) {
1865 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1866 						   MII_CR_RESTART_AUTO_NEG;
1867 					e1000_write_phy_reg(&sc->hw,
1868 					    PHY_CONTROL, phy_tmp);
1869 				}
1870 			}
1871 		}
1872 		return;
1873 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1874 		/* If still no link, perhaps using 2/3 pair cable */
1875 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1876 		phy_tmp |= CR_1000T_MS_ENABLE;
1877 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1878 		if (sc->hw.mac.autoneg &&
1879 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1880 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1881 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1882 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1883 		}
1884 	}
1885 
1886 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1887 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1888 		sc->smartspeed = 0;
1889 }
1890 
1891 static int
1892 emx_create_tx_ring(struct emx_softc *sc)
1893 {
1894 	device_t dev = sc->dev;
1895 	struct emx_txbuf *tx_buffer;
1896 	int error, i, tsize;
1897 
1898 	/*
1899 	 * Validate number of transmit descriptors.  It must not exceed
1900 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1901 	 */
1902 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1903 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1904 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1905 		    EMX_DEFAULT_TXD, emx_txd);
1906 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1907 	} else {
1908 		sc->num_tx_desc = emx_txd;
1909 	}
1910 
1911 	/*
1912 	 * Allocate Transmit Descriptor ring
1913 	 */
1914 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1915 			 EMX_DBA_ALIGN);
1916 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1917 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1918 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1919 				&sc->tx_desc_paddr);
1920 	if (sc->tx_desc_base == NULL) {
1921 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1922 		return ENOMEM;
1923 	}
1924 
1925 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1926 			     M_DEVBUF, M_WAITOK | M_ZERO);
1927 
1928 	/*
1929 	 * Create DMA tags for tx buffers
1930 	 */
1931 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1932 			1, 0,			/* alignment, bounds */
1933 			BUS_SPACE_MAXADDR,	/* lowaddr */
1934 			BUS_SPACE_MAXADDR,	/* highaddr */
1935 			NULL, NULL,		/* filter, filterarg */
1936 			EMX_TSO_SIZE,		/* maxsize */
1937 			EMX_MAX_SCATTER,	/* nsegments */
1938 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1939 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1940 			BUS_DMA_ONEBPAGE,	/* flags */
1941 			&sc->txtag);
1942 	if (error) {
1943 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1944 		kfree(sc->tx_buf, M_DEVBUF);
1945 		sc->tx_buf = NULL;
1946 		return error;
1947 	}
1948 
1949 	/*
1950 	 * Create DMA maps for tx buffers
1951 	 */
1952 	for (i = 0; i < sc->num_tx_desc; i++) {
1953 		tx_buffer = &sc->tx_buf[i];
1954 
1955 		error = bus_dmamap_create(sc->txtag,
1956 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1957 					  &tx_buffer->map);
1958 		if (error) {
1959 			device_printf(dev, "Unable to create TX DMA map\n");
1960 			emx_destroy_tx_ring(sc, i);
1961 			return error;
1962 		}
1963 	}
1964 	return (0);
1965 }
1966 
1967 static void
1968 emx_init_tx_ring(struct emx_softc *sc)
1969 {
1970 	/* Clear the old ring contents */
1971 	bzero(sc->tx_desc_base,
1972 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1973 
1974 	/* Reset state */
1975 	sc->next_avail_tx_desc = 0;
1976 	sc->next_tx_to_clean = 0;
1977 	sc->num_tx_desc_avail = sc->num_tx_desc;
1978 }
1979 
1980 static void
1981 emx_init_tx_unit(struct emx_softc *sc)
1982 {
1983 	uint32_t tctl, tarc, tipg = 0;
1984 	uint64_t bus_addr;
1985 
1986 	/* Setup the Base and Length of the Tx Descriptor Ring */
1987 	bus_addr = sc->tx_desc_paddr;
1988 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1989 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1990 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1991 	    (uint32_t)(bus_addr >> 32));
1992 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
1993 	    (uint32_t)bus_addr);
1994 	/* Setup the HW Tx Head and Tail descriptor pointers */
1995 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
1996 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
1997 
1998 	/* Set the default values for the Tx Inter Packet Gap timer */
1999 	switch (sc->hw.mac.type) {
2000 	case e1000_80003es2lan:
2001 		tipg = DEFAULT_82543_TIPG_IPGR1;
2002 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2003 		    E1000_TIPG_IPGR2_SHIFT;
2004 		break;
2005 
2006 	default:
2007 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2008 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2009 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2010 		else
2011 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2012 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2013 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2014 		break;
2015 	}
2016 
2017 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2018 
2019 	/* NOTE: 0 is not allowed for TIDV */
2020 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2021 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2022 
2023 	if (sc->hw.mac.type == e1000_82571 ||
2024 	    sc->hw.mac.type == e1000_82572) {
2025 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2026 		tarc |= EMX_TARC_SPEED_MODE;
2027 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2028 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2029 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2030 		tarc |= 1;
2031 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2032 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2033 		tarc |= 1;
2034 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2035 	}
2036 
2037 	/* Program the Transmit Control Register */
2038 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2039 	tctl &= ~E1000_TCTL_CT;
2040 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2041 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2042 	tctl |= E1000_TCTL_MULR;
2043 
2044 	/* This write will effectively turn on the transmit unit. */
2045 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2046 }
2047 
2048 static void
2049 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2050 {
2051 	struct emx_txbuf *tx_buffer;
2052 	int i;
2053 
2054 	/* Free Transmit Descriptor ring */
2055 	if (sc->tx_desc_base) {
2056 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2057 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2058 				sc->tx_desc_dmap);
2059 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2060 
2061 		sc->tx_desc_base = NULL;
2062 	}
2063 
2064 	if (sc->tx_buf == NULL)
2065 		return;
2066 
2067 	for (i = 0; i < ndesc; i++) {
2068 		tx_buffer = &sc->tx_buf[i];
2069 
2070 		KKASSERT(tx_buffer->m_head == NULL);
2071 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2072 	}
2073 	bus_dma_tag_destroy(sc->txtag);
2074 
2075 	kfree(sc->tx_buf, M_DEVBUF);
2076 	sc->tx_buf = NULL;
2077 }
2078 
2079 /*
2080  * The offload context needs to be set when we transfer the first
2081  * packet of a particular protocol (TCP/UDP).  This routine has been
2082  * enhanced to deal with inserted VLAN headers.
2083  *
2084  * If the new packet's ether header length, ip header length and
2085  * csum offloading type are same as the previous packet, we should
2086  * avoid allocating a new csum context descriptor; mainly to take
2087  * advantage of the pipeline effect of the TX data read request.
2088  *
2089  * This function returns number of TX descrptors allocated for
2090  * csum context.
2091  */
2092 static int
2093 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2094 	   uint32_t *txd_upper, uint32_t *txd_lower)
2095 {
2096 	struct e1000_context_desc *TXD;
2097 	struct emx_txbuf *tx_buffer;
2098 	struct ether_vlan_header *eh;
2099 	struct ip *ip;
2100 	int curr_txd, ehdrlen, csum_flags;
2101 	uint32_t cmd, hdr_len, ip_hlen;
2102 	uint16_t etype;
2103 
2104 	/*
2105 	 * Determine where frame payload starts.
2106 	 * Jump over vlan headers if already present,
2107 	 * helpful for QinQ too.
2108 	 */
2109 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2110 		("emx_txcsum_pullup is not called (eh)?\n"));
2111 	eh = mtod(mp, struct ether_vlan_header *);
2112 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2113 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2114 			("emx_txcsum_pullup is not called (evh)?\n"));
2115 		etype = ntohs(eh->evl_proto);
2116 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2117 	} else {
2118 		etype = ntohs(eh->evl_encap_proto);
2119 		ehdrlen = ETHER_HDR_LEN;
2120 	}
2121 
2122 	/*
2123 	 * We only support TCP/UDP for IPv4 for the moment.
2124 	 * TODO: Support SCTP too when it hits the tree.
2125 	 */
2126 	if (etype != ETHERTYPE_IP)
2127 		return 0;
2128 
2129 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2130 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2131 
2132 	/* NOTE: We could only safely access ip.ip_vhl part */
2133 	ip = (struct ip *)(mp->m_data + ehdrlen);
2134 	ip_hlen = ip->ip_hl << 2;
2135 
2136 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2137 
2138 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2139 	    sc->csum_flags == csum_flags) {
2140 		/*
2141 		 * Same csum offload context as the previous packets;
2142 		 * just return.
2143 		 */
2144 		*txd_upper = sc->csum_txd_upper;
2145 		*txd_lower = sc->csum_txd_lower;
2146 		return 0;
2147 	}
2148 
2149 	/*
2150 	 * Setup a new csum offload context.
2151 	 */
2152 
2153 	curr_txd = sc->next_avail_tx_desc;
2154 	tx_buffer = &sc->tx_buf[curr_txd];
2155 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2156 
2157 	cmd = 0;
2158 
2159 	/* Setup of IP header checksum. */
2160 	if (csum_flags & CSUM_IP) {
2161 		/*
2162 		 * Start offset for header checksum calculation.
2163 		 * End offset for header checksum calculation.
2164 		 * Offset of place to put the checksum.
2165 		 */
2166 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2167 		TXD->lower_setup.ip_fields.ipcse =
2168 		    htole16(ehdrlen + ip_hlen - 1);
2169 		TXD->lower_setup.ip_fields.ipcso =
2170 		    ehdrlen + offsetof(struct ip, ip_sum);
2171 		cmd |= E1000_TXD_CMD_IP;
2172 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2173 	}
2174 	hdr_len = ehdrlen + ip_hlen;
2175 
2176 	if (csum_flags & CSUM_TCP) {
2177 		/*
2178 		 * Start offset for payload checksum calculation.
2179 		 * End offset for payload checksum calculation.
2180 		 * Offset of place to put the checksum.
2181 		 */
2182 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2183 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2184 		TXD->upper_setup.tcp_fields.tucso =
2185 		    hdr_len + offsetof(struct tcphdr, th_sum);
2186 		cmd |= E1000_TXD_CMD_TCP;
2187 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2188 	} else if (csum_flags & CSUM_UDP) {
2189 		/*
2190 		 * Start offset for header checksum calculation.
2191 		 * End offset for header checksum calculation.
2192 		 * Offset of place to put the checksum.
2193 		 */
2194 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2195 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2196 		TXD->upper_setup.tcp_fields.tucso =
2197 		    hdr_len + offsetof(struct udphdr, uh_sum);
2198 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2199 	}
2200 
2201 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2202 		     E1000_TXD_DTYP_D;		/* Data descr */
2203 
2204 	/* Save the information for this csum offloading context */
2205 	sc->csum_ehlen = ehdrlen;
2206 	sc->csum_iphlen = ip_hlen;
2207 	sc->csum_flags = csum_flags;
2208 	sc->csum_txd_upper = *txd_upper;
2209 	sc->csum_txd_lower = *txd_lower;
2210 
2211 	TXD->tcp_seg_setup.data = htole32(0);
2212 	TXD->cmd_and_length =
2213 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2214 
2215 	if (++curr_txd == sc->num_tx_desc)
2216 		curr_txd = 0;
2217 
2218 	KKASSERT(sc->num_tx_desc_avail > 0);
2219 	sc->num_tx_desc_avail--;
2220 
2221 	sc->next_avail_tx_desc = curr_txd;
2222 	return 1;
2223 }
2224 
2225 static int
2226 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2227 {
2228 	struct mbuf *m = *m0;
2229 	struct ether_header *eh;
2230 	int len;
2231 
2232 	sc->tx_csum_try_pullup++;
2233 
2234 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2235 
2236 	if (__predict_false(!M_WRITABLE(m))) {
2237 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2238 			sc->tx_csum_drop1++;
2239 			m_freem(m);
2240 			*m0 = NULL;
2241 			return ENOBUFS;
2242 		}
2243 		eh = mtod(m, struct ether_header *);
2244 
2245 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2246 			len += EVL_ENCAPLEN;
2247 
2248 		if (m->m_len < len) {
2249 			sc->tx_csum_drop2++;
2250 			m_freem(m);
2251 			*m0 = NULL;
2252 			return ENOBUFS;
2253 		}
2254 		return 0;
2255 	}
2256 
2257 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2258 		sc->tx_csum_pullup1++;
2259 		m = m_pullup(m, ETHER_HDR_LEN);
2260 		if (m == NULL) {
2261 			sc->tx_csum_pullup1_failed++;
2262 			*m0 = NULL;
2263 			return ENOBUFS;
2264 		}
2265 		*m0 = m;
2266 	}
2267 	eh = mtod(m, struct ether_header *);
2268 
2269 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2270 		len += EVL_ENCAPLEN;
2271 
2272 	if (m->m_len < len) {
2273 		sc->tx_csum_pullup2++;
2274 		m = m_pullup(m, len);
2275 		if (m == NULL) {
2276 			sc->tx_csum_pullup2_failed++;
2277 			*m0 = NULL;
2278 			return ENOBUFS;
2279 		}
2280 		*m0 = m;
2281 	}
2282 	return 0;
2283 }
2284 
2285 static void
2286 emx_txeof(struct emx_softc *sc)
2287 {
2288 	struct ifnet *ifp = &sc->arpcom.ac_if;
2289 	struct emx_txbuf *tx_buffer;
2290 	int first, num_avail;
2291 
2292 	if (sc->tx_dd_head == sc->tx_dd_tail)
2293 		return;
2294 
2295 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2296 		return;
2297 
2298 	num_avail = sc->num_tx_desc_avail;
2299 	first = sc->next_tx_to_clean;
2300 
2301 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2302 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2303 		struct e1000_tx_desc *tx_desc;
2304 
2305 		tx_desc = &sc->tx_desc_base[dd_idx];
2306 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2307 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2308 
2309 			if (++dd_idx == sc->num_tx_desc)
2310 				dd_idx = 0;
2311 
2312 			while (first != dd_idx) {
2313 				logif(pkt_txclean);
2314 
2315 				num_avail++;
2316 
2317 				tx_buffer = &sc->tx_buf[first];
2318 				if (tx_buffer->m_head) {
2319 					ifp->if_opackets++;
2320 					bus_dmamap_unload(sc->txtag,
2321 							  tx_buffer->map);
2322 					m_freem(tx_buffer->m_head);
2323 					tx_buffer->m_head = NULL;
2324 				}
2325 
2326 				if (++first == sc->num_tx_desc)
2327 					first = 0;
2328 			}
2329 		} else {
2330 			break;
2331 		}
2332 	}
2333 	sc->next_tx_to_clean = first;
2334 	sc->num_tx_desc_avail = num_avail;
2335 
2336 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2337 		sc->tx_dd_head = 0;
2338 		sc->tx_dd_tail = 0;
2339 	}
2340 
2341 	if (!EMX_IS_OACTIVE(sc)) {
2342 		ifp->if_flags &= ~IFF_OACTIVE;
2343 
2344 		/* All clean, turn off the timer */
2345 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2346 			ifp->if_timer = 0;
2347 	}
2348 }
2349 
2350 static void
2351 emx_tx_collect(struct emx_softc *sc)
2352 {
2353 	struct ifnet *ifp = &sc->arpcom.ac_if;
2354 	struct emx_txbuf *tx_buffer;
2355 	int tdh, first, num_avail, dd_idx = -1;
2356 
2357 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2358 		return;
2359 
2360 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2361 	if (tdh == sc->next_tx_to_clean)
2362 		return;
2363 
2364 	if (sc->tx_dd_head != sc->tx_dd_tail)
2365 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2366 
2367 	num_avail = sc->num_tx_desc_avail;
2368 	first = sc->next_tx_to_clean;
2369 
2370 	while (first != tdh) {
2371 		logif(pkt_txclean);
2372 
2373 		num_avail++;
2374 
2375 		tx_buffer = &sc->tx_buf[first];
2376 		if (tx_buffer->m_head) {
2377 			ifp->if_opackets++;
2378 			bus_dmamap_unload(sc->txtag,
2379 					  tx_buffer->map);
2380 			m_freem(tx_buffer->m_head);
2381 			tx_buffer->m_head = NULL;
2382 		}
2383 
2384 		if (first == dd_idx) {
2385 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2386 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2387 				sc->tx_dd_head = 0;
2388 				sc->tx_dd_tail = 0;
2389 				dd_idx = -1;
2390 			} else {
2391 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2392 			}
2393 		}
2394 
2395 		if (++first == sc->num_tx_desc)
2396 			first = 0;
2397 	}
2398 	sc->next_tx_to_clean = first;
2399 	sc->num_tx_desc_avail = num_avail;
2400 
2401 	if (!EMX_IS_OACTIVE(sc)) {
2402 		ifp->if_flags &= ~IFF_OACTIVE;
2403 
2404 		/* All clean, turn off the timer */
2405 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2406 			ifp->if_timer = 0;
2407 	}
2408 }
2409 
2410 /*
2411  * When Link is lost sometimes there is work still in the TX ring
2412  * which will result in a watchdog, rather than allow that do an
2413  * attempted cleanup and then reinit here.  Note that this has been
2414  * seens mostly with fiber adapters.
2415  */
2416 static void
2417 emx_tx_purge(struct emx_softc *sc)
2418 {
2419 	struct ifnet *ifp = &sc->arpcom.ac_if;
2420 
2421 	if (!sc->link_active && ifp->if_timer) {
2422 		emx_tx_collect(sc);
2423 		if (ifp->if_timer) {
2424 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2425 			ifp->if_timer = 0;
2426 			emx_init(sc);
2427 		}
2428 	}
2429 }
2430 
2431 static int
2432 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2433 {
2434 	struct mbuf *m;
2435 	bus_dma_segment_t seg;
2436 	bus_dmamap_t map;
2437 	struct emx_rxbuf *rx_buffer;
2438 	int error, nseg;
2439 
2440 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2441 	if (m == NULL) {
2442 		rdata->mbuf_cluster_failed++;
2443 		if (init) {
2444 			if_printf(&sc->arpcom.ac_if,
2445 				  "Unable to allocate RX mbuf\n");
2446 		}
2447 		return (ENOBUFS);
2448 	}
2449 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2450 
2451 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2452 		m_adj(m, ETHER_ALIGN);
2453 
2454 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2455 			rdata->rx_sparemap, m,
2456 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2457 	if (error) {
2458 		m_freem(m);
2459 		if (init) {
2460 			if_printf(&sc->arpcom.ac_if,
2461 				  "Unable to load RX mbuf\n");
2462 		}
2463 		return (error);
2464 	}
2465 
2466 	rx_buffer = &rdata->rx_buf[i];
2467 	if (rx_buffer->m_head != NULL)
2468 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2469 
2470 	map = rx_buffer->map;
2471 	rx_buffer->map = rdata->rx_sparemap;
2472 	rdata->rx_sparemap = map;
2473 
2474 	rx_buffer->m_head = m;
2475 	rx_buffer->paddr = seg.ds_addr;
2476 
2477 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2478 	return (0);
2479 }
2480 
2481 static int
2482 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2483 {
2484 	device_t dev = sc->dev;
2485 	struct emx_rxbuf *rx_buffer;
2486 	int i, error, rsize;
2487 
2488 	/*
2489 	 * Validate number of receive descriptors.  It must not exceed
2490 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2491 	 */
2492 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2493 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2494 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2495 		    EMX_DEFAULT_RXD, emx_rxd);
2496 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2497 	} else {
2498 		rdata->num_rx_desc = emx_rxd;
2499 	}
2500 
2501 	/*
2502 	 * Allocate Receive Descriptor ring
2503 	 */
2504 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2505 			 EMX_DBA_ALIGN);
2506 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2507 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2508 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2509 				&rdata->rx_desc_paddr);
2510 	if (rdata->rx_desc == NULL) {
2511 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2512 		return ENOMEM;
2513 	}
2514 
2515 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2516 				M_DEVBUF, M_WAITOK | M_ZERO);
2517 
2518 	/*
2519 	 * Create DMA tag for rx buffers
2520 	 */
2521 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2522 			1, 0,			/* alignment, bounds */
2523 			BUS_SPACE_MAXADDR,	/* lowaddr */
2524 			BUS_SPACE_MAXADDR,	/* highaddr */
2525 			NULL, NULL,		/* filter, filterarg */
2526 			MCLBYTES,		/* maxsize */
2527 			1,			/* nsegments */
2528 			MCLBYTES,		/* maxsegsize */
2529 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2530 			&rdata->rxtag);
2531 	if (error) {
2532 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2533 		kfree(rdata->rx_buf, M_DEVBUF);
2534 		rdata->rx_buf = NULL;
2535 		return error;
2536 	}
2537 
2538 	/*
2539 	 * Create spare DMA map for rx buffers
2540 	 */
2541 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2542 				  &rdata->rx_sparemap);
2543 	if (error) {
2544 		device_printf(dev, "Unable to create spare RX DMA map\n");
2545 		bus_dma_tag_destroy(rdata->rxtag);
2546 		kfree(rdata->rx_buf, M_DEVBUF);
2547 		rdata->rx_buf = NULL;
2548 		return error;
2549 	}
2550 
2551 	/*
2552 	 * Create DMA maps for rx buffers
2553 	 */
2554 	for (i = 0; i < rdata->num_rx_desc; i++) {
2555 		rx_buffer = &rdata->rx_buf[i];
2556 
2557 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2558 					  &rx_buffer->map);
2559 		if (error) {
2560 			device_printf(dev, "Unable to create RX DMA map\n");
2561 			emx_destroy_rx_ring(sc, rdata, i);
2562 			return error;
2563 		}
2564 	}
2565 	return (0);
2566 }
2567 
2568 static void
2569 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2570 {
2571 	int i;
2572 
2573 	for (i = 0; i < rdata->num_rx_desc; i++) {
2574 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2575 
2576 		if (rx_buffer->m_head != NULL) {
2577 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2578 			m_freem(rx_buffer->m_head);
2579 			rx_buffer->m_head = NULL;
2580 		}
2581 	}
2582 
2583 	if (rdata->fmp != NULL)
2584 		m_freem(rdata->fmp);
2585 	rdata->fmp = NULL;
2586 	rdata->lmp = NULL;
2587 }
2588 
2589 static int
2590 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2591 {
2592 	int i, error;
2593 
2594 	/* Reset descriptor ring */
2595 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2596 
2597 	/* Allocate new ones. */
2598 	for (i = 0; i < rdata->num_rx_desc; i++) {
2599 		error = emx_newbuf(sc, rdata, i, 1);
2600 		if (error)
2601 			return (error);
2602 	}
2603 
2604 	/* Setup our descriptor pointers */
2605 	rdata->next_rx_desc_to_check = 0;
2606 
2607 	return (0);
2608 }
2609 
2610 static void
2611 emx_init_rx_unit(struct emx_softc *sc)
2612 {
2613 	struct ifnet *ifp = &sc->arpcom.ac_if;
2614 	uint64_t bus_addr;
2615 	uint32_t rctl, itr, rfctl;
2616 	int i;
2617 
2618 	/*
2619 	 * Make sure receives are disabled while setting
2620 	 * up the descriptor ring
2621 	 */
2622 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2623 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2624 
2625 	/*
2626 	 * Set the interrupt throttling rate. Value is calculated
2627 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2628 	 */
2629 	if (sc->int_throttle_ceil)
2630 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2631 	else
2632 		itr = 0;
2633 	emx_set_itr(sc, itr);
2634 
2635 	/* Use extended RX descriptor */
2636 	rfctl = E1000_RFCTL_EXTEN;
2637 
2638 	/* Disable accelerated ackknowledge */
2639 	if (sc->hw.mac.type == e1000_82574)
2640 		rfctl |= E1000_RFCTL_ACK_DIS;
2641 
2642 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2643 
2644 	/*
2645 	 * Receive Checksum Offload for TCP and UDP
2646 	 *
2647 	 * Checksum offloading is also enabled if multiple receive
2648 	 * queue is to be supported, since we need it to figure out
2649 	 * packet type.
2650 	 */
2651 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2652 		uint32_t rxcsum;
2653 
2654 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2655 
2656 		/*
2657 		 * NOTE:
2658 		 * PCSD must be enabled to enable multiple
2659 		 * receive queues.
2660 		 */
2661 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2662 			  E1000_RXCSUM_PCSD;
2663 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2664 	}
2665 
2666 	/*
2667 	 * Configure multiple receive queue (RSS)
2668 	 */
2669 	if (ifp->if_capenable & IFCAP_RSS) {
2670 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2671 		uint32_t reta;
2672 
2673 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2674 			("invalid number of RX ring (%d)",
2675 			 sc->rx_ring_inuse));
2676 
2677 		/*
2678 		 * NOTE:
2679 		 * When we reach here, RSS has already been disabled
2680 		 * in emx_stop(), so we could safely configure RSS key
2681 		 * and redirect table.
2682 		 */
2683 
2684 		/*
2685 		 * Configure RSS key
2686 		 */
2687 		toeplitz_get_key(key, sizeof(key));
2688 		for (i = 0; i < EMX_NRSSRK; ++i) {
2689 			uint32_t rssrk;
2690 
2691 			rssrk = EMX_RSSRK_VAL(key, i);
2692 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2693 
2694 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2695 		}
2696 
2697 		/*
2698 		 * Configure RSS redirect table in following fashion:
2699 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2700 		 */
2701 		reta = 0;
2702 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2703 			uint32_t q;
2704 
2705 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2706 			reta |= q << (8 * i);
2707 		}
2708 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2709 
2710 		for (i = 0; i < EMX_NRETA; ++i)
2711 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2712 
2713 		/*
2714 		 * Enable multiple receive queues.
2715 		 * Enable IPv4 RSS standard hash functions.
2716 		 * Disable RSS interrupt.
2717 		 */
2718 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2719 				E1000_MRQC_ENABLE_RSS_2Q |
2720 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2721 				E1000_MRQC_RSS_FIELD_IPV4);
2722 	}
2723 
2724 	/*
2725 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2726 	 * long latencies are observed, like Lenovo X60. This
2727 	 * change eliminates the problem, but since having positive
2728 	 * values in RDTR is a known source of problems on other
2729 	 * platforms another solution is being sought.
2730 	 */
2731 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2732 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2733 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2734 	}
2735 
2736 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2737 		struct emx_rxdata *rdata = &sc->rx_data[i];
2738 
2739 		/*
2740 		 * Setup the Base and Length of the Rx Descriptor Ring
2741 		 */
2742 		bus_addr = rdata->rx_desc_paddr;
2743 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2744 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2745 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2746 		    (uint32_t)(bus_addr >> 32));
2747 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2748 		    (uint32_t)bus_addr);
2749 
2750 		/*
2751 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2752 		 */
2753 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2754 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2755 		    sc->rx_data[i].num_rx_desc - 1);
2756 	}
2757 
2758 	/* Setup the Receive Control Register */
2759 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2760 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2761 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2762 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2763 
2764 	/* Make sure VLAN Filters are off */
2765 	rctl &= ~E1000_RCTL_VFE;
2766 
2767 	/* Don't store bad paket */
2768 	rctl &= ~E1000_RCTL_SBP;
2769 
2770 	/* MCLBYTES */
2771 	rctl |= E1000_RCTL_SZ_2048;
2772 
2773 	if (ifp->if_mtu > ETHERMTU)
2774 		rctl |= E1000_RCTL_LPE;
2775 	else
2776 		rctl &= ~E1000_RCTL_LPE;
2777 
2778 	/* Enable Receives */
2779 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2780 }
2781 
2782 static void
2783 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2784 {
2785 	struct emx_rxbuf *rx_buffer;
2786 	int i;
2787 
2788 	/* Free Receive Descriptor ring */
2789 	if (rdata->rx_desc) {
2790 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2791 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2792 				rdata->rx_desc_dmap);
2793 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2794 
2795 		rdata->rx_desc = NULL;
2796 	}
2797 
2798 	if (rdata->rx_buf == NULL)
2799 		return;
2800 
2801 	for (i = 0; i < ndesc; i++) {
2802 		rx_buffer = &rdata->rx_buf[i];
2803 
2804 		KKASSERT(rx_buffer->m_head == NULL);
2805 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2806 	}
2807 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2808 	bus_dma_tag_destroy(rdata->rxtag);
2809 
2810 	kfree(rdata->rx_buf, M_DEVBUF);
2811 	rdata->rx_buf = NULL;
2812 }
2813 
2814 static void
2815 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2816 {
2817 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2818 	struct ifnet *ifp = &sc->arpcom.ac_if;
2819 	uint32_t staterr;
2820 	emx_rxdesc_t *current_desc;
2821 	struct mbuf *mp;
2822 	int i;
2823 	struct mbuf_chain chain[MAXCPU];
2824 
2825 	i = rdata->next_rx_desc_to_check;
2826 	current_desc = &rdata->rx_desc[i];
2827 	staterr = le32toh(current_desc->rxd_staterr);
2828 
2829 	if (!(staterr & E1000_RXD_STAT_DD))
2830 		return;
2831 
2832 	ether_input_chain_init(chain);
2833 
2834 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2835 		struct pktinfo *pi = NULL, pi0;
2836 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2837 		struct mbuf *m = NULL;
2838 		int eop, len;
2839 
2840 		logif(pkt_receive);
2841 
2842 		mp = rx_buf->m_head;
2843 
2844 		/*
2845 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2846 		 * needs to access the last received byte in the mbuf.
2847 		 */
2848 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2849 				BUS_DMASYNC_POSTREAD);
2850 
2851 		len = le16toh(current_desc->rxd_length);
2852 		if (staterr & E1000_RXD_STAT_EOP) {
2853 			count--;
2854 			eop = 1;
2855 		} else {
2856 			eop = 0;
2857 		}
2858 
2859 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2860 			uint16_t vlan = 0;
2861 			uint32_t mrq, rss_hash;
2862 
2863 			/*
2864 			 * Save several necessary information,
2865 			 * before emx_newbuf() destroy it.
2866 			 */
2867 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2868 				vlan = le16toh(current_desc->rxd_vlan);
2869 
2870 			mrq = le32toh(current_desc->rxd_mrq);
2871 			rss_hash = le32toh(current_desc->rxd_rss);
2872 
2873 			EMX_RSS_DPRINTF(sc, 10,
2874 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2875 			    ring_idx, mrq, rss_hash);
2876 
2877 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2878 				ifp->if_iqdrops++;
2879 				goto discard;
2880 			}
2881 
2882 			/* Assign correct length to the current fragment */
2883 			mp->m_len = len;
2884 
2885 			if (rdata->fmp == NULL) {
2886 				mp->m_pkthdr.len = len;
2887 				rdata->fmp = mp; /* Store the first mbuf */
2888 				rdata->lmp = mp;
2889 			} else {
2890 				/*
2891 				 * Chain mbuf's together
2892 				 */
2893 				rdata->lmp->m_next = mp;
2894 				rdata->lmp = rdata->lmp->m_next;
2895 				rdata->fmp->m_pkthdr.len += len;
2896 			}
2897 
2898 			if (eop) {
2899 				rdata->fmp->m_pkthdr.rcvif = ifp;
2900 				ifp->if_ipackets++;
2901 
2902 				if (ifp->if_capenable & IFCAP_RXCSUM)
2903 					emx_rxcsum(staterr, rdata->fmp);
2904 
2905 				if (staterr & E1000_RXD_STAT_VP) {
2906 					rdata->fmp->m_pkthdr.ether_vlantag =
2907 					    vlan;
2908 					rdata->fmp->m_flags |= M_VLANTAG;
2909 				}
2910 				m = rdata->fmp;
2911 				rdata->fmp = NULL;
2912 				rdata->lmp = NULL;
2913 
2914 				if (ifp->if_capenable & IFCAP_RSS) {
2915 					pi = emx_rssinfo(m, &pi0, mrq,
2916 							 rss_hash, staterr);
2917 				}
2918 #ifdef EMX_RSS_DEBUG
2919 				rdata->rx_pkts++;
2920 #endif
2921 			}
2922 		} else {
2923 			ifp->if_ierrors++;
2924 discard:
2925 			emx_setup_rxdesc(current_desc, rx_buf);
2926 			if (rdata->fmp != NULL) {
2927 				m_freem(rdata->fmp);
2928 				rdata->fmp = NULL;
2929 				rdata->lmp = NULL;
2930 			}
2931 			m = NULL;
2932 		}
2933 
2934 		if (m != NULL)
2935 			ether_input_chain(ifp, m, pi, chain);
2936 
2937 		/* Advance our pointers to the next descriptor. */
2938 		if (++i == rdata->num_rx_desc)
2939 			i = 0;
2940 
2941 		current_desc = &rdata->rx_desc[i];
2942 		staterr = le32toh(current_desc->rxd_staterr);
2943 	}
2944 	rdata->next_rx_desc_to_check = i;
2945 
2946 	ether_input_dispatch(chain);
2947 
2948 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2949 	if (--i < 0)
2950 		i = rdata->num_rx_desc - 1;
2951 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2952 }
2953 
2954 static void
2955 emx_enable_intr(struct emx_softc *sc)
2956 {
2957 	uint32_t ims_mask = IMS_ENABLE_MASK;
2958 
2959 	lwkt_serialize_handler_enable(&sc->main_serialize);
2960 
2961 #if 0
2962 	if (sc->hw.mac.type == e1000_82574) {
2963 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2964 		ims_mask |= EM_MSIX_MASK;
2965 	}
2966 #endif
2967 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2968 }
2969 
2970 static void
2971 emx_disable_intr(struct emx_softc *sc)
2972 {
2973 	if (sc->hw.mac.type == e1000_82574)
2974 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2975 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2976 
2977 	lwkt_serialize_handler_disable(&sc->main_serialize);
2978 }
2979 
2980 /*
2981  * Bit of a misnomer, what this really means is
2982  * to enable OS management of the system... aka
2983  * to disable special hardware management features
2984  */
2985 static void
2986 emx_get_mgmt(struct emx_softc *sc)
2987 {
2988 	/* A shared code workaround */
2989 	if (sc->has_manage) {
2990 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2991 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2992 
2993 		/* disable hardware interception of ARP */
2994 		manc &= ~(E1000_MANC_ARP_EN);
2995 
2996                 /* enable receiving management packets to the host */
2997 		manc |= E1000_MANC_EN_MNG2HOST;
2998 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2999 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3000 		manc2h |= E1000_MNG2HOST_PORT_623;
3001 		manc2h |= E1000_MNG2HOST_PORT_664;
3002 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3003 
3004 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3005 	}
3006 }
3007 
3008 /*
3009  * Give control back to hardware management
3010  * controller if there is one.
3011  */
3012 static void
3013 emx_rel_mgmt(struct emx_softc *sc)
3014 {
3015 	if (sc->has_manage) {
3016 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3017 
3018 		/* re-enable hardware interception of ARP */
3019 		manc |= E1000_MANC_ARP_EN;
3020 		manc &= ~E1000_MANC_EN_MNG2HOST;
3021 
3022 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3023 	}
3024 }
3025 
3026 /*
3027  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3028  * For ASF and Pass Through versions of f/w this means that
3029  * the driver is loaded.  For AMT version (only with 82573)
3030  * of the f/w this means that the network i/f is open.
3031  */
3032 static void
3033 emx_get_hw_control(struct emx_softc *sc)
3034 {
3035 	/* Let firmware know the driver has taken over */
3036 	if (sc->hw.mac.type == e1000_82573) {
3037 		uint32_t swsm;
3038 
3039 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3040 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3041 		    swsm | E1000_SWSM_DRV_LOAD);
3042 	} else {
3043 		uint32_t ctrl_ext;
3044 
3045 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3046 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3047 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3048 	}
3049 	sc->control_hw = 1;
3050 }
3051 
3052 /*
3053  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3054  * For ASF and Pass Through versions of f/w this means that the
3055  * driver is no longer loaded.  For AMT version (only with 82573)
3056  * of the f/w this means that the network i/f is closed.
3057  */
3058 static void
3059 emx_rel_hw_control(struct emx_softc *sc)
3060 {
3061 	if (!sc->control_hw)
3062 		return;
3063 	sc->control_hw = 0;
3064 
3065 	/* Let firmware taken over control of h/w */
3066 	if (sc->hw.mac.type == e1000_82573) {
3067 		uint32_t swsm;
3068 
3069 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3070 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3071 		    swsm & ~E1000_SWSM_DRV_LOAD);
3072 	} else {
3073 		uint32_t ctrl_ext;
3074 
3075 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3076 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3077 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3078 	}
3079 }
3080 
3081 static int
3082 emx_is_valid_eaddr(const uint8_t *addr)
3083 {
3084 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3085 
3086 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3087 		return (FALSE);
3088 
3089 	return (TRUE);
3090 }
3091 
3092 /*
3093  * Enable PCI Wake On Lan capability
3094  */
3095 void
3096 emx_enable_wol(device_t dev)
3097 {
3098 	uint16_t cap, status;
3099 	uint8_t id;
3100 
3101 	/* First find the capabilities pointer*/
3102 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3103 
3104 	/* Read the PM Capabilities */
3105 	id = pci_read_config(dev, cap, 1);
3106 	if (id != PCIY_PMG)     /* Something wrong */
3107 		return;
3108 
3109 	/*
3110 	 * OK, we have the power capabilities,
3111 	 * so now get the status register
3112 	 */
3113 	cap += PCIR_POWER_STATUS;
3114 	status = pci_read_config(dev, cap, 2);
3115 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3116 	pci_write_config(dev, cap, status, 2);
3117 }
3118 
3119 static void
3120 emx_update_stats(struct emx_softc *sc)
3121 {
3122 	struct ifnet *ifp = &sc->arpcom.ac_if;
3123 
3124 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3125 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3126 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3127 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3128 	}
3129 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3130 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3131 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3132 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3133 
3134 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3135 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3136 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3137 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3138 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3139 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3140 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3141 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3142 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3143 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3144 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3145 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3146 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3147 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3148 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3149 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3150 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3151 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3152 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3153 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3154 
3155 	/* For the 64-bit byte counters the low dword must be read first. */
3156 	/* Both registers clear on the read of the high dword */
3157 
3158 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3159 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3160 
3161 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3162 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3163 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3164 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3165 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3166 
3167 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3168 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3169 
3170 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3171 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3172 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3173 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3174 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3175 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3176 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3177 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3178 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3179 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3180 
3181 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3182 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3183 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3184 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3185 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3186 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3187 
3188 	ifp->if_collisions = sc->stats.colc;
3189 
3190 	/* Rx Errors */
3191 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3192 			  sc->stats.crcerrs + sc->stats.algnerrc +
3193 			  sc->stats.ruc + sc->stats.roc +
3194 			  sc->stats.mpc + sc->stats.cexterr;
3195 
3196 	/* Tx Errors */
3197 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3198 			  sc->watchdog_events;
3199 }
3200 
3201 static void
3202 emx_print_debug_info(struct emx_softc *sc)
3203 {
3204 	device_t dev = sc->dev;
3205 	uint8_t *hw_addr = sc->hw.hw_addr;
3206 
3207 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3208 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3209 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3210 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3211 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3212 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3213 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3214 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3215 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3216 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3217 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3218 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3219 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3220 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3221 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3222 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3223 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3224 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3225 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3226 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3227 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3228 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3229 	    sc->num_tx_desc_avail);
3230 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3231 	    sc->no_tx_desc_avail1);
3232 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3233 	    sc->no_tx_desc_avail2);
3234 	device_printf(dev, "Std mbuf failed = %ld\n",
3235 	    sc->mbuf_alloc_failed);
3236 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3237 	    sc->rx_data[0].mbuf_cluster_failed);
3238 	device_printf(dev, "Driver dropped packets = %ld\n",
3239 	    sc->dropped_pkts);
3240 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3241 	    sc->no_tx_dma_setup);
3242 
3243 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3244 	    sc->tx_csum_try_pullup);
3245 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3246 	    sc->tx_csum_pullup1);
3247 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3248 	    sc->tx_csum_pullup1_failed);
3249 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3250 	    sc->tx_csum_pullup2);
3251 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3252 	    sc->tx_csum_pullup2_failed);
3253 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3254 	    sc->tx_csum_drop1);
3255 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3256 	    sc->tx_csum_drop2);
3257 }
3258 
3259 static void
3260 emx_print_hw_stats(struct emx_softc *sc)
3261 {
3262 	device_t dev = sc->dev;
3263 
3264 	device_printf(dev, "Excessive collisions = %lld\n",
3265 	    (long long)sc->stats.ecol);
3266 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3267 	device_printf(dev, "Symbol errors = %lld\n",
3268 	    (long long)sc->stats.symerrs);
3269 #endif
3270 	device_printf(dev, "Sequence errors = %lld\n",
3271 	    (long long)sc->stats.sec);
3272 	device_printf(dev, "Defer count = %lld\n",
3273 	    (long long)sc->stats.dc);
3274 	device_printf(dev, "Missed Packets = %lld\n",
3275 	    (long long)sc->stats.mpc);
3276 	device_printf(dev, "Receive No Buffers = %lld\n",
3277 	    (long long)sc->stats.rnbc);
3278 	/* RLEC is inaccurate on some hardware, calculate our own. */
3279 	device_printf(dev, "Receive Length Errors = %lld\n",
3280 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3281 	device_printf(dev, "Receive errors = %lld\n",
3282 	    (long long)sc->stats.rxerrc);
3283 	device_printf(dev, "Crc errors = %lld\n",
3284 	    (long long)sc->stats.crcerrs);
3285 	device_printf(dev, "Alignment errors = %lld\n",
3286 	    (long long)sc->stats.algnerrc);
3287 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3288 	    (long long)sc->stats.cexterr);
3289 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3290 	device_printf(dev, "watchdog timeouts = %ld\n",
3291 	    sc->watchdog_events);
3292 	device_printf(dev, "XON Rcvd = %lld\n",
3293 	    (long long)sc->stats.xonrxc);
3294 	device_printf(dev, "XON Xmtd = %lld\n",
3295 	    (long long)sc->stats.xontxc);
3296 	device_printf(dev, "XOFF Rcvd = %lld\n",
3297 	    (long long)sc->stats.xoffrxc);
3298 	device_printf(dev, "XOFF Xmtd = %lld\n",
3299 	    (long long)sc->stats.xofftxc);
3300 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3301 	    (long long)sc->stats.gprc);
3302 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3303 	    (long long)sc->stats.gptc);
3304 }
3305 
3306 static void
3307 emx_print_nvm_info(struct emx_softc *sc)
3308 {
3309 	uint16_t eeprom_data;
3310 	int i, j, row = 0;
3311 
3312 	/* Its a bit crude, but it gets the job done */
3313 	kprintf("\nInterface EEPROM Dump:\n");
3314 	kprintf("Offset\n0x0000  ");
3315 	for (i = 0, j = 0; i < 32; i++, j++) {
3316 		if (j == 8) { /* Make the offset block */
3317 			j = 0; ++row;
3318 			kprintf("\n0x00%x0  ",row);
3319 		}
3320 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3321 		kprintf("%04x ", eeprom_data);
3322 	}
3323 	kprintf("\n");
3324 }
3325 
3326 static int
3327 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3328 {
3329 	struct emx_softc *sc;
3330 	struct ifnet *ifp;
3331 	int error, result;
3332 
3333 	result = -1;
3334 	error = sysctl_handle_int(oidp, &result, 0, req);
3335 	if (error || !req->newptr)
3336 		return (error);
3337 
3338 	sc = (struct emx_softc *)arg1;
3339 	ifp = &sc->arpcom.ac_if;
3340 
3341 	ifnet_serialize_all(ifp);
3342 
3343 	if (result == 1)
3344 		emx_print_debug_info(sc);
3345 
3346 	/*
3347 	 * This value will cause a hex dump of the
3348 	 * first 32 16-bit words of the EEPROM to
3349 	 * the screen.
3350 	 */
3351 	if (result == 2)
3352 		emx_print_nvm_info(sc);
3353 
3354 	ifnet_deserialize_all(ifp);
3355 
3356 	return (error);
3357 }
3358 
3359 static int
3360 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3361 {
3362 	int error, result;
3363 
3364 	result = -1;
3365 	error = sysctl_handle_int(oidp, &result, 0, req);
3366 	if (error || !req->newptr)
3367 		return (error);
3368 
3369 	if (result == 1) {
3370 		struct emx_softc *sc = (struct emx_softc *)arg1;
3371 		struct ifnet *ifp = &sc->arpcom.ac_if;
3372 
3373 		ifnet_serialize_all(ifp);
3374 		emx_print_hw_stats(sc);
3375 		ifnet_deserialize_all(ifp);
3376 	}
3377 	return (error);
3378 }
3379 
3380 static void
3381 emx_add_sysctl(struct emx_softc *sc)
3382 {
3383 #ifdef EMX_RSS_DEBUG
3384 	char rx_pkt[32];
3385 	int i;
3386 #endif
3387 
3388 	sysctl_ctx_init(&sc->sysctl_ctx);
3389 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3390 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3391 				device_get_nameunit(sc->dev),
3392 				CTLFLAG_RD, 0, "");
3393 	if (sc->sysctl_tree == NULL) {
3394 		device_printf(sc->dev, "can't add sysctl node\n");
3395 		return;
3396 	}
3397 
3398 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3399 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3400 			emx_sysctl_debug_info, "I", "Debug Information");
3401 
3402 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3403 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3404 			emx_sysctl_stats, "I", "Statistics");
3405 
3406 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3407 		       OID_AUTO, "rxd", CTLFLAG_RD,
3408 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3409 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3410 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3411 
3412 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3413 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3414 			sc, 0, emx_sysctl_int_throttle, "I",
3415 			"interrupt throttling rate");
3416 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3417 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3418 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3419 			"# segments per TX interrupt");
3420 
3421 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3422 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3423 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3424 
3425 #ifdef EMX_RSS_DEBUG
3426 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3427 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3428 		       0, "RSS debug level");
3429 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3430 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3431 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3432 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3433 				rx_pkt, CTLFLAG_RW,
3434 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3435 	}
3436 #endif
3437 }
3438 
3439 static int
3440 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3441 {
3442 	struct emx_softc *sc = (void *)arg1;
3443 	struct ifnet *ifp = &sc->arpcom.ac_if;
3444 	int error, throttle;
3445 
3446 	throttle = sc->int_throttle_ceil;
3447 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3448 	if (error || req->newptr == NULL)
3449 		return error;
3450 	if (throttle < 0 || throttle > 1000000000 / 256)
3451 		return EINVAL;
3452 
3453 	if (throttle) {
3454 		/*
3455 		 * Set the interrupt throttling rate in 256ns increments,
3456 		 * recalculate sysctl value assignment to get exact frequency.
3457 		 */
3458 		throttle = 1000000000 / 256 / throttle;
3459 
3460 		/* Upper 16bits of ITR is reserved and should be zero */
3461 		if (throttle & 0xffff0000)
3462 			return EINVAL;
3463 	}
3464 
3465 	ifnet_serialize_all(ifp);
3466 
3467 	if (throttle)
3468 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3469 	else
3470 		sc->int_throttle_ceil = 0;
3471 
3472 	if (ifp->if_flags & IFF_RUNNING)
3473 		emx_set_itr(sc, throttle);
3474 
3475 	ifnet_deserialize_all(ifp);
3476 
3477 	if (bootverbose) {
3478 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3479 			  sc->int_throttle_ceil);
3480 	}
3481 	return 0;
3482 }
3483 
3484 static int
3485 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3486 {
3487 	struct emx_softc *sc = (void *)arg1;
3488 	struct ifnet *ifp = &sc->arpcom.ac_if;
3489 	int error, segs;
3490 
3491 	segs = sc->tx_int_nsegs;
3492 	error = sysctl_handle_int(oidp, &segs, 0, req);
3493 	if (error || req->newptr == NULL)
3494 		return error;
3495 	if (segs <= 0)
3496 		return EINVAL;
3497 
3498 	ifnet_serialize_all(ifp);
3499 
3500 	/*
3501 	 * Don't allow int_tx_nsegs to become:
3502 	 * o  Less the oact_tx_desc
3503 	 * o  Too large that no TX desc will cause TX interrupt to
3504 	 *    be generated (OACTIVE will never recover)
3505 	 * o  Too small that will cause tx_dd[] overflow
3506 	 */
3507 	if (segs < sc->oact_tx_desc ||
3508 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3509 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3510 		error = EINVAL;
3511 	} else {
3512 		error = 0;
3513 		sc->tx_int_nsegs = segs;
3514 	}
3515 
3516 	ifnet_deserialize_all(ifp);
3517 
3518 	return error;
3519 }
3520 
3521 static int
3522 emx_dma_alloc(struct emx_softc *sc)
3523 {
3524 	int error, i;
3525 
3526 	/*
3527 	 * Create top level busdma tag
3528 	 */
3529 	error = bus_dma_tag_create(NULL, 1, 0,
3530 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3531 			NULL, NULL,
3532 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3533 			0, &sc->parent_dtag);
3534 	if (error) {
3535 		device_printf(sc->dev, "could not create top level DMA tag\n");
3536 		return error;
3537 	}
3538 
3539 	/*
3540 	 * Allocate transmit descriptors ring and buffers
3541 	 */
3542 	error = emx_create_tx_ring(sc);
3543 	if (error) {
3544 		device_printf(sc->dev, "Could not setup transmit structures\n");
3545 		return error;
3546 	}
3547 
3548 	/*
3549 	 * Allocate receive descriptors ring and buffers
3550 	 */
3551 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3552 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3553 		if (error) {
3554 			device_printf(sc->dev,
3555 			    "Could not setup receive structures\n");
3556 			return error;
3557 		}
3558 	}
3559 	return 0;
3560 }
3561 
3562 static void
3563 emx_dma_free(struct emx_softc *sc)
3564 {
3565 	int i;
3566 
3567 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3568 
3569 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3570 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3571 				    sc->rx_data[i].num_rx_desc);
3572 	}
3573 
3574 	/* Free top level busdma tag */
3575 	if (sc->parent_dtag != NULL)
3576 		bus_dma_tag_destroy(sc->parent_dtag);
3577 }
3578 
3579 static void
3580 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3581 {
3582 	struct emx_softc *sc = ifp->if_softc;
3583 
3584 	switch (slz) {
3585 	case IFNET_SERIALIZE_ALL:
3586 		lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 0);
3587 		break;
3588 
3589 	case IFNET_SERIALIZE_MAIN:
3590 		lwkt_serialize_enter(&sc->main_serialize);
3591 		break;
3592 
3593 	case IFNET_SERIALIZE_TX:
3594 		lwkt_serialize_enter(&sc->tx_serialize);
3595 		break;
3596 
3597 	case IFNET_SERIALIZE_RX(0):
3598 		lwkt_serialize_enter(&sc->rx_data[0].rx_serialize);
3599 		break;
3600 
3601 	case IFNET_SERIALIZE_RX(1):
3602 		lwkt_serialize_enter(&sc->rx_data[1].rx_serialize);
3603 		break;
3604 
3605 	default:
3606 		panic("%s unsupported serialize type\n", ifp->if_xname);
3607 	}
3608 }
3609 
3610 static void
3611 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3612 {
3613 	struct emx_softc *sc = ifp->if_softc;
3614 
3615 	switch (slz) {
3616 	case IFNET_SERIALIZE_ALL:
3617 		lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 0);
3618 		break;
3619 
3620 	case IFNET_SERIALIZE_MAIN:
3621 		lwkt_serialize_exit(&sc->main_serialize);
3622 		break;
3623 
3624 	case IFNET_SERIALIZE_TX:
3625 		lwkt_serialize_exit(&sc->tx_serialize);
3626 		break;
3627 
3628 	case IFNET_SERIALIZE_RX(0):
3629 		lwkt_serialize_exit(&sc->rx_data[0].rx_serialize);
3630 		break;
3631 
3632 	case IFNET_SERIALIZE_RX(1):
3633 		lwkt_serialize_exit(&sc->rx_data[1].rx_serialize);
3634 		break;
3635 
3636 	default:
3637 		panic("%s unsupported serialize type\n", ifp->if_xname);
3638 	}
3639 }
3640 
3641 static int
3642 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3643 {
3644 	struct emx_softc *sc = ifp->if_softc;
3645 
3646 	switch (slz) {
3647 	case IFNET_SERIALIZE_ALL:
3648 		return lwkt_serialize_array_try(sc->serializes,
3649 						EMX_NSERIALIZE, 0);
3650 
3651 	case IFNET_SERIALIZE_MAIN:
3652 		return lwkt_serialize_try(&sc->main_serialize);
3653 
3654 	case IFNET_SERIALIZE_TX:
3655 		return lwkt_serialize_try(&sc->tx_serialize);
3656 
3657 	case IFNET_SERIALIZE_RX(0):
3658 		return lwkt_serialize_try(&sc->rx_data[0].rx_serialize);
3659 
3660 	case IFNET_SERIALIZE_RX(1):
3661 		return lwkt_serialize_try(&sc->rx_data[1].rx_serialize);
3662 
3663 	default:
3664 		panic("%s unsupported serialize type\n", ifp->if_xname);
3665 	}
3666 }
3667 
3668 static void
3669 emx_serialize_skipmain(struct emx_softc *sc)
3670 {
3671 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3672 }
3673 
3674 static void
3675 emx_deserialize_skipmain(struct emx_softc *sc)
3676 {
3677 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3678 }
3679 
3680 #ifdef INVARIANTS
3681 
3682 static void
3683 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3684 		     boolean_t serialized)
3685 {
3686 	struct emx_softc *sc = ifp->if_softc;
3687 	int i;
3688 
3689 	switch (slz) {
3690 	case IFNET_SERIALIZE_ALL:
3691 		if (serialized) {
3692 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3693 				ASSERT_SERIALIZED(sc->serializes[i]);
3694 		} else {
3695 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3696 				ASSERT_NOT_SERIALIZED(sc->serializes[i]);
3697 		}
3698 		break;
3699 
3700 	case IFNET_SERIALIZE_MAIN:
3701 		if (serialized)
3702 			ASSERT_SERIALIZED(&sc->main_serialize);
3703 		else
3704 			ASSERT_NOT_SERIALIZED(&sc->main_serialize);
3705 		break;
3706 
3707 	case IFNET_SERIALIZE_TX:
3708 		if (serialized)
3709 			ASSERT_SERIALIZED(&sc->tx_serialize);
3710 		else
3711 			ASSERT_NOT_SERIALIZED(&sc->tx_serialize);
3712 		break;
3713 
3714 	case IFNET_SERIALIZE_RX(0):
3715 		if (serialized)
3716 			ASSERT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3717 		else
3718 			ASSERT_NOT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3719 		break;
3720 
3721 	case IFNET_SERIALIZE_RX(1):
3722 		if (serialized)
3723 			ASSERT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3724 		else
3725 			ASSERT_NOT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3726 		break;
3727 
3728 	default:
3729 		panic("%s unsupported serialize type\n", ifp->if_xname);
3730 	}
3731 }
3732 
3733 #endif	/* INVARIANTS */
3734 
3735 #ifdef IFPOLL_ENABLE
3736 
3737 static void
3738 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3739 {
3740 	struct emx_softc *sc = ifp->if_softc;
3741 	uint32_t reg_icr;
3742 
3743 	ASSERT_SERIALIZED(&sc->main_serialize);
3744 
3745 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3746 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3747 		emx_serialize_skipmain(sc);
3748 
3749 		callout_stop(&sc->timer);
3750 		sc->hw.mac.get_link_status = 1;
3751 		emx_update_link_status(sc);
3752 		callout_reset(&sc->timer, hz, emx_timer, sc);
3753 
3754 		emx_deserialize_skipmain(sc);
3755 	}
3756 }
3757 
3758 static void
3759 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3760 {
3761 	struct emx_softc *sc = ifp->if_softc;
3762 
3763 	ASSERT_SERIALIZED(&sc->tx_serialize);
3764 
3765 	emx_txeof(sc);
3766 	if (!ifq_is_empty(&ifp->if_snd))
3767 		if_devstart(ifp);
3768 }
3769 
3770 static void
3771 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3772 {
3773 	struct emx_softc *sc = ifp->if_softc;
3774 	struct emx_rxdata *rdata = arg;
3775 
3776 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3777 
3778 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3779 }
3780 
3781 static void
3782 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3783 {
3784 	struct emx_softc *sc = ifp->if_softc;
3785 
3786 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3787 
3788 	if (info) {
3789 		int i;
3790 
3791 		info->ifpi_status.status_func = emx_qpoll_status;
3792 		info->ifpi_status.serializer = &sc->main_serialize;
3793 
3794 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3795 		info->ifpi_tx[0].arg = NULL;
3796 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3797 
3798 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3799 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3800 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3801 			info->ifpi_rx[i].serializer =
3802 				&sc->rx_data[i].rx_serialize;
3803 		}
3804 
3805 		if (ifp->if_flags & IFF_RUNNING)
3806 			emx_disable_intr(sc);
3807 	} else if (ifp->if_flags & IFF_RUNNING) {
3808 		emx_enable_intr(sc);
3809 	}
3810 }
3811 
3812 #endif	/* IFPOLL_ENABLE */
3813 
3814 static void
3815 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3816 {
3817 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3818 	if (sc->hw.mac.type == e1000_82574) {
3819 		int i;
3820 
3821 		/*
3822 		 * When using MSIX interrupts we need to
3823 		 * throttle using the EITR register
3824 		 */
3825 		for (i = 0; i < 4; ++i)
3826 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3827 	}
3828 }
3829