xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 77b0c609)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_TX_SERIALIZE	1
124 #define EMX_RX_SERIALIZE	2
125 
126 #define EMX_NAME	"Intel(R) PRO/1000 "
127 
128 #define EMX_DEVICE(id)	\
129 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
131 
132 static const struct emx_device {
133 	uint16_t	vid;
134 	uint16_t	did;
135 	const char	*desc;
136 } emx_devices[] = {
137 	EMX_DEVICE(82571EB_COPPER),
138 	EMX_DEVICE(82571EB_FIBER),
139 	EMX_DEVICE(82571EB_SERDES),
140 	EMX_DEVICE(82571EB_SERDES_DUAL),
141 	EMX_DEVICE(82571EB_SERDES_QUAD),
142 	EMX_DEVICE(82571EB_QUAD_COPPER),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 	EMX_DEVICE(82571EB_QUAD_FIBER),
146 	EMX_DEVICE(82571PT_QUAD_COPPER),
147 
148 	EMX_DEVICE(82572EI_COPPER),
149 	EMX_DEVICE(82572EI_FIBER),
150 	EMX_DEVICE(82572EI_SERDES),
151 	EMX_DEVICE(82572EI),
152 
153 	EMX_DEVICE(82573E),
154 	EMX_DEVICE(82573E_IAMT),
155 	EMX_DEVICE(82573L),
156 
157 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161 
162 	EMX_DEVICE(82574L),
163 	EMX_DEVICE(82574LA),
164 
165 	/* required last entry */
166 	EMX_DEVICE_NULL
167 };
168 
169 static int	emx_probe(device_t);
170 static int	emx_attach(device_t);
171 static int	emx_detach(device_t);
172 static int	emx_shutdown(device_t);
173 static int	emx_suspend(device_t);
174 static int	emx_resume(device_t);
175 
176 static void	emx_init(void *);
177 static void	emx_stop(struct emx_softc *);
178 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
179 static void	emx_start(struct ifnet *);
180 #ifdef IFPOLL_ENABLE
181 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
182 static void	emx_npoll_status(struct ifnet *);
183 static void	emx_npoll_tx(struct ifnet *, void *, int);
184 static void	emx_npoll_rx(struct ifnet *, void *, int);
185 #endif
186 static void	emx_watchdog(struct ifnet *);
187 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
188 static int	emx_media_change(struct ifnet *);
189 static void	emx_timer(void *);
190 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
191 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
192 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
193 #ifdef INVARIANTS
194 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
195 		    boolean_t);
196 #endif
197 
198 static void	emx_intr(void *);
199 static void	emx_intr_mask(void *);
200 static void	emx_intr_body(struct emx_softc *, boolean_t);
201 static void	emx_rxeof(struct emx_rxdata *, int);
202 static void	emx_txeof(struct emx_txdata *);
203 static void	emx_tx_collect(struct emx_txdata *);
204 static void	emx_tx_purge(struct emx_softc *);
205 static void	emx_enable_intr(struct emx_softc *);
206 static void	emx_disable_intr(struct emx_softc *);
207 
208 static int	emx_dma_alloc(struct emx_softc *);
209 static void	emx_dma_free(struct emx_softc *);
210 static void	emx_init_tx_ring(struct emx_txdata *);
211 static int	emx_init_rx_ring(struct emx_rxdata *);
212 static void	emx_free_rx_ring(struct emx_rxdata *);
213 static int	emx_create_tx_ring(struct emx_txdata *);
214 static int	emx_create_rx_ring(struct emx_rxdata *);
215 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
216 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
217 static int	emx_newbuf(struct emx_rxdata *, int, int);
218 static int	emx_encap(struct emx_txdata *, struct mbuf **);
219 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
220 		    uint32_t *, uint32_t *);
221 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
222 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
223 		    uint32_t *, uint32_t *);
224 
225 static int 	emx_is_valid_eaddr(const uint8_t *);
226 static int	emx_reset(struct emx_softc *);
227 static void	emx_setup_ifp(struct emx_softc *);
228 static void	emx_init_tx_unit(struct emx_softc *);
229 static void	emx_init_rx_unit(struct emx_softc *);
230 static void	emx_update_stats(struct emx_softc *);
231 static void	emx_set_promisc(struct emx_softc *);
232 static void	emx_disable_promisc(struct emx_softc *);
233 static void	emx_set_multi(struct emx_softc *);
234 static void	emx_update_link_status(struct emx_softc *);
235 static void	emx_smartspeed(struct emx_softc *);
236 static void	emx_set_itr(struct emx_softc *, uint32_t);
237 static void	emx_disable_aspm(struct emx_softc *);
238 
239 static void	emx_print_debug_info(struct emx_softc *);
240 static void	emx_print_nvm_info(struct emx_softc *);
241 static void	emx_print_hw_stats(struct emx_softc *);
242 
243 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
244 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
245 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
246 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
247 #ifdef IFPOLL_ENABLE
248 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
249 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
250 #endif
251 static void	emx_add_sysctl(struct emx_softc *);
252 
253 static void	emx_serialize_skipmain(struct emx_softc *);
254 static void	emx_deserialize_skipmain(struct emx_softc *);
255 
256 /* Management and WOL Support */
257 static void	emx_get_mgmt(struct emx_softc *);
258 static void	emx_rel_mgmt(struct emx_softc *);
259 static void	emx_get_hw_control(struct emx_softc *);
260 static void	emx_rel_hw_control(struct emx_softc *);
261 static void	emx_enable_wol(device_t);
262 
263 static device_method_t emx_methods[] = {
264 	/* Device interface */
265 	DEVMETHOD(device_probe,		emx_probe),
266 	DEVMETHOD(device_attach,	emx_attach),
267 	DEVMETHOD(device_detach,	emx_detach),
268 	DEVMETHOD(device_shutdown,	emx_shutdown),
269 	DEVMETHOD(device_suspend,	emx_suspend),
270 	DEVMETHOD(device_resume,	emx_resume),
271 	{ 0, 0 }
272 };
273 
274 static driver_t emx_driver = {
275 	"emx",
276 	emx_methods,
277 	sizeof(struct emx_softc),
278 };
279 
280 static devclass_t emx_devclass;
281 
282 DECLARE_DUMMY_MODULE(if_emx);
283 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
284 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
285 
286 /*
287  * Tunables
288  */
289 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
290 static int	emx_rxd = EMX_DEFAULT_RXD;
291 static int	emx_txd = EMX_DEFAULT_TXD;
292 static int	emx_smart_pwr_down = 0;
293 static int	emx_rxr = 0;
294 
295 /* Controls whether promiscuous also shows bad packets */
296 static int	emx_debug_sbp = 0;
297 
298 static int	emx_82573_workaround = 1;
299 static int	emx_msi_enable = 1;
300 
301 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
302 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
303 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
304 TUNABLE_INT("hw.emx.txd", &emx_txd);
305 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
306 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
307 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
308 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
309 
310 /* Global used in WOL setup with multiport cards */
311 static int	emx_global_quad_port_a = 0;
312 
313 /* Set this to one to display debug statistics */
314 static int	emx_display_debug_stats = 0;
315 
316 #if !defined(KTR_IF_EMX)
317 #define KTR_IF_EMX	KTR_ALL
318 #endif
319 KTR_INFO_MASTER(if_emx);
320 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
321 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
322 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
323 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
324 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
325 #define logif(name)	KTR_LOG(if_emx_ ## name)
326 
327 static __inline void
328 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
329 {
330 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
331 	/* DD bit must be cleared */
332 	rxd->rxd_staterr = 0;
333 }
334 
335 static __inline void
336 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
337 {
338 	/* Ignore Checksum bit is set */
339 	if (staterr & E1000_RXD_STAT_IXSM)
340 		return;
341 
342 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
343 	    E1000_RXD_STAT_IPCS)
344 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
345 
346 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
347 	    E1000_RXD_STAT_TCPCS) {
348 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
349 					   CSUM_PSEUDO_HDR |
350 					   CSUM_FRAG_NOT_CHECKED;
351 		mp->m_pkthdr.csum_data = htons(0xffff);
352 	}
353 }
354 
355 static __inline struct pktinfo *
356 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
357 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
358 {
359 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
360 	case EMX_RXDMRQ_IPV4_TCP:
361 		pi->pi_netisr = NETISR_IP;
362 		pi->pi_flags = 0;
363 		pi->pi_l3proto = IPPROTO_TCP;
364 		break;
365 
366 	case EMX_RXDMRQ_IPV6_TCP:
367 		pi->pi_netisr = NETISR_IPV6;
368 		pi->pi_flags = 0;
369 		pi->pi_l3proto = IPPROTO_TCP;
370 		break;
371 
372 	case EMX_RXDMRQ_IPV4:
373 		if (staterr & E1000_RXD_STAT_IXSM)
374 			return NULL;
375 
376 		if ((staterr &
377 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
378 		    E1000_RXD_STAT_TCPCS) {
379 			pi->pi_netisr = NETISR_IP;
380 			pi->pi_flags = 0;
381 			pi->pi_l3proto = IPPROTO_UDP;
382 			break;
383 		}
384 		/* FALL THROUGH */
385 	default:
386 		return NULL;
387 	}
388 
389 	m->m_flags |= M_HASH;
390 	m->m_pkthdr.hash = toeplitz_hash(hash);
391 	return pi;
392 }
393 
394 static int
395 emx_probe(device_t dev)
396 {
397 	const struct emx_device *d;
398 	uint16_t vid, did;
399 
400 	vid = pci_get_vendor(dev);
401 	did = pci_get_device(dev);
402 
403 	for (d = emx_devices; d->desc != NULL; ++d) {
404 		if (vid == d->vid && did == d->did) {
405 			device_set_desc(dev, d->desc);
406 			device_set_async_attach(dev, TRUE);
407 			return 0;
408 		}
409 	}
410 	return ENXIO;
411 }
412 
413 static int
414 emx_attach(device_t dev)
415 {
416 	struct emx_softc *sc = device_get_softc(dev);
417 	struct ifnet *ifp = &sc->arpcom.ac_if;
418 	int error = 0, i, throttle, msi_enable;
419 	u_int intr_flags;
420 	uint16_t eeprom_data, device_id, apme_mask;
421 	driver_intr_t *intr_func;
422 #ifdef IFPOLL_ENABLE
423 	int offset, offset_def;
424 #endif
425 
426 	/*
427 	 * Setup RX rings
428 	 */
429 	for (i = 0; i < EMX_NRX_RING; ++i) {
430 		sc->rx_data[i].sc = sc;
431 		sc->rx_data[i].idx = i;
432 	}
433 
434 	/*
435 	 * Setup TX ring
436 	 */
437 	sc->tx_data.sc = sc;
438 	sc->tx_data.idx = 0;
439 
440 	/*
441 	 * Initialize serializers
442 	 */
443 	lwkt_serialize_init(&sc->main_serialize);
444 	lwkt_serialize_init(&sc->tx_data.tx_serialize);
445 	for (i = 0; i < EMX_NRX_RING; ++i)
446 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
447 
448 	/*
449 	 * Initialize serializer array
450 	 */
451 	i = 0;
452 	sc->serializes[i++] = &sc->main_serialize;
453 
454 	KKASSERT(i == EMX_TX_SERIALIZE);
455 	sc->serializes[i++] = &sc->tx_data.tx_serialize;
456 
457 	KKASSERT(i == EMX_RX_SERIALIZE);
458 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
459 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
460 	KKASSERT(i == EMX_NSERIALIZE);
461 
462 	callout_init_mp(&sc->timer);
463 
464 	sc->dev = sc->osdep.dev = dev;
465 
466 	/*
467 	 * Determine hardware and mac type
468 	 */
469 	sc->hw.vendor_id = pci_get_vendor(dev);
470 	sc->hw.device_id = pci_get_device(dev);
471 	sc->hw.revision_id = pci_get_revid(dev);
472 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
473 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
474 
475 	if (e1000_set_mac_type(&sc->hw))
476 		return ENXIO;
477 
478 	/*
479 	 * Pullup extra 4bytes into the first data segment, see:
480 	 * 82571/82572 specification update errata #7
481 	 *
482 	 * NOTE:
483 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
484 	 * are pulled; mainly to keep rest of the data properly aligned.
485 	 */
486 	if (sc->hw.mac.type == e1000_82571 || sc->hw.mac.type == e1000_82572)
487 		sc->flags |= EMX_FLAG_TSO_PULLEX;
488 
489 	/* Enable bus mastering */
490 	pci_enable_busmaster(dev);
491 
492 	/*
493 	 * Allocate IO memory
494 	 */
495 	sc->memory_rid = EMX_BAR_MEM;
496 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
497 					    &sc->memory_rid, RF_ACTIVE);
498 	if (sc->memory == NULL) {
499 		device_printf(dev, "Unable to allocate bus resource: memory\n");
500 		error = ENXIO;
501 		goto fail;
502 	}
503 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
504 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
505 
506 	/* XXX This is quite goofy, it is not actually used */
507 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
508 
509 	/*
510 	 * Don't enable MSI-X on 82574, see:
511 	 * 82574 specification update errata #15
512 	 *
513 	 * Don't enable MSI on 82571/82572, see:
514 	 * 82571/82572 specification update errata #63
515 	 */
516 	msi_enable = emx_msi_enable;
517 	if (msi_enable &&
518 	    (sc->hw.mac.type == e1000_82571 ||
519 	     sc->hw.mac.type == e1000_82572))
520 		msi_enable = 0;
521 
522 	/*
523 	 * Allocate interrupt
524 	 */
525 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
526 	    &sc->intr_rid, &intr_flags);
527 
528 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
529 		int unshared;
530 
531 		unshared = device_getenv_int(dev, "irq.unshared", 0);
532 		if (!unshared) {
533 			sc->flags |= EMX_FLAG_SHARED_INTR;
534 			if (bootverbose)
535 				device_printf(dev, "IRQ shared\n");
536 		} else {
537 			intr_flags &= ~RF_SHAREABLE;
538 			if (bootverbose)
539 				device_printf(dev, "IRQ unshared\n");
540 		}
541 	}
542 
543 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
544 	    intr_flags);
545 	if (sc->intr_res == NULL) {
546 		device_printf(dev, "Unable to allocate bus resource: "
547 		    "interrupt\n");
548 		error = ENXIO;
549 		goto fail;
550 	}
551 
552 	/* Save PCI command register for Shared Code */
553 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
554 	sc->hw.back = &sc->osdep;
555 
556 	/* Do Shared Code initialization */
557 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
558 		device_printf(dev, "Setup of Shared code failed\n");
559 		error = ENXIO;
560 		goto fail;
561 	}
562 	e1000_get_bus_info(&sc->hw);
563 
564 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
565 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
566 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
567 
568 	/*
569 	 * Interrupt throttle rate
570 	 */
571 	throttle = device_getenv_int(dev, "int_throttle_ceil",
572 	    emx_int_throttle_ceil);
573 	if (throttle == 0) {
574 		sc->int_throttle_ceil = 0;
575 	} else {
576 		if (throttle < 0)
577 			throttle = EMX_DEFAULT_ITR;
578 
579 		/* Recalculate the tunable value to get the exact frequency. */
580 		throttle = 1000000000 / 256 / throttle;
581 
582 		/* Upper 16bits of ITR is reserved and should be zero */
583 		if (throttle & 0xffff0000)
584 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
585 
586 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
587 	}
588 
589 	e1000_init_script_state_82541(&sc->hw, TRUE);
590 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
591 
592 	/* Copper options */
593 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
594 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
595 		sc->hw.phy.disable_polarity_correction = FALSE;
596 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
597 	}
598 
599 	/* Set the frame limits assuming standard ethernet sized frames. */
600 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
601 	sc->min_frame_size = ETHER_MIN_LEN;
602 
603 	/* This controls when hardware reports transmit completion status. */
604 	sc->hw.mac.report_tx_early = 1;
605 
606 	/* Calculate # of RX rings */
607 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
608 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
609 
610 	/* Allocate RX/TX rings' busdma(9) stuffs */
611 	error = emx_dma_alloc(sc);
612 	if (error)
613 		goto fail;
614 
615 	/* Allocate multicast array memory. */
616 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
617 	    M_DEVBUF, M_WAITOK);
618 
619 	/* Indicate SOL/IDER usage */
620 	if (e1000_check_reset_block(&sc->hw)) {
621 		device_printf(dev,
622 		    "PHY reset is blocked due to SOL/IDER session.\n");
623 	}
624 
625 	/*
626 	 * Start from a known state, this is important in reading the
627 	 * nvm and mac from that.
628 	 */
629 	e1000_reset_hw(&sc->hw);
630 
631 	/* Make sure we have a good EEPROM before we read from it */
632 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
633 		/*
634 		 * Some PCI-E parts fail the first check due to
635 		 * the link being in sleep state, call it again,
636 		 * if it fails a second time its a real issue.
637 		 */
638 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
639 			device_printf(dev,
640 			    "The EEPROM Checksum Is Not Valid\n");
641 			error = EIO;
642 			goto fail;
643 		}
644 	}
645 
646 	/* Copy the permanent MAC address out of the EEPROM */
647 	if (e1000_read_mac_addr(&sc->hw) < 0) {
648 		device_printf(dev, "EEPROM read error while reading MAC"
649 		    " address\n");
650 		error = EIO;
651 		goto fail;
652 	}
653 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
654 		device_printf(dev, "Invalid MAC address\n");
655 		error = EIO;
656 		goto fail;
657 	}
658 
659 	/* Determine if we have to control management hardware */
660 	if (e1000_enable_mng_pass_thru(&sc->hw))
661 		sc->flags |= EMX_FLAG_HAS_MGMT;
662 
663 	/*
664 	 * Setup Wake-on-Lan
665 	 */
666 	apme_mask = EMX_EEPROM_APME;
667 	eeprom_data = 0;
668 	switch (sc->hw.mac.type) {
669 	case e1000_82573:
670 		sc->flags |= EMX_FLAG_HAS_AMT;
671 		/* FALL THROUGH */
672 
673 	case e1000_82571:
674 	case e1000_82572:
675 	case e1000_80003es2lan:
676 		if (sc->hw.bus.func == 1) {
677 			e1000_read_nvm(&sc->hw,
678 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
679 		} else {
680 			e1000_read_nvm(&sc->hw,
681 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
682 		}
683 		break;
684 
685 	default:
686 		e1000_read_nvm(&sc->hw,
687 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
688 		break;
689 	}
690 	if (eeprom_data & apme_mask)
691 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
692 
693 	/*
694          * We have the eeprom settings, now apply the special cases
695          * where the eeprom may be wrong or the board won't support
696          * wake on lan on a particular port
697 	 */
698 	device_id = pci_get_device(dev);
699         switch (device_id) {
700 	case E1000_DEV_ID_82571EB_FIBER:
701 		/*
702 		 * Wake events only supported on port A for dual fiber
703 		 * regardless of eeprom setting
704 		 */
705 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
706 		    E1000_STATUS_FUNC_1)
707 			sc->wol = 0;
708 		break;
709 
710 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
711 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
712 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
713                 /* if quad port sc, disable WoL on all but port A */
714 		if (emx_global_quad_port_a != 0)
715 			sc->wol = 0;
716 		/* Reset for multiple quad port adapters */
717 		if (++emx_global_quad_port_a == 4)
718 			emx_global_quad_port_a = 0;
719                 break;
720 	}
721 
722 	/* XXX disable wol */
723 	sc->wol = 0;
724 
725 #ifdef IFPOLL_ENABLE
726 	/*
727 	 * NPOLLING RX CPU offset
728 	 */
729 	if (sc->rx_ring_cnt == ncpus2) {
730 		offset = 0;
731 	} else {
732 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
733 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
734 		if (offset >= ncpus2 ||
735 		    offset % sc->rx_ring_cnt != 0) {
736 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
737 			    offset, offset_def);
738 			offset = offset_def;
739 		}
740 	}
741 	sc->rx_npoll_off = offset;
742 
743 	/*
744 	 * NPOLLING TX CPU offset
745 	 */
746 	offset_def = sc->rx_npoll_off;
747 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
748 	if (offset >= ncpus2) {
749 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
750 		    offset, offset_def);
751 		offset = offset_def;
752 	}
753 	sc->tx_npoll_off = offset;
754 #endif
755 
756 	/* Setup OS specific network interface */
757 	emx_setup_ifp(sc);
758 
759 	/* Add sysctl tree, must after em_setup_ifp() */
760 	emx_add_sysctl(sc);
761 
762 	/* Reset the hardware */
763 	error = emx_reset(sc);
764 	if (error) {
765 		device_printf(dev, "Unable to reset the hardware\n");
766 		goto fail;
767 	}
768 
769 	/* Initialize statistics */
770 	emx_update_stats(sc);
771 
772 	sc->hw.mac.get_link_status = 1;
773 	emx_update_link_status(sc);
774 
775 	sc->tx_data.spare_tx_desc = EMX_TX_SPARE;
776 
777 	/*
778 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
779 	 * and tx_int_nsegs:
780 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
781 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
782 	 */
783 	sc->tx_data.oact_tx_desc = sc->tx_data.num_tx_desc / 8;
784 	if (sc->tx_data.oact_tx_desc > EMX_TX_OACTIVE_MAX)
785 		sc->tx_data.oact_tx_desc = EMX_TX_OACTIVE_MAX;
786 	if (sc->tx_data.oact_tx_desc <
787 	    sc->tx_data.spare_tx_desc + EMX_TX_RESERVED) {
788 		sc->tx_data.oact_tx_desc = sc->tx_data.spare_tx_desc +
789 		    EMX_TX_RESERVED;
790 	}
791 
792 	sc->tx_data.tx_int_nsegs = sc->tx_data.num_tx_desc / 16;
793 	if (sc->tx_data.tx_int_nsegs < sc->tx_data.oact_tx_desc)
794 		sc->tx_data.tx_int_nsegs = sc->tx_data.oact_tx_desc;
795 
796 	/* Non-AMT based hardware can now take control from firmware */
797 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
798 	    EMX_FLAG_HAS_MGMT)
799 		emx_get_hw_control(sc);
800 
801 	/*
802 	 * Missing Interrupt Following ICR read:
803 	 *
804 	 * 82571/82572 specification update errata #76
805 	 * 82573 specification update errata #31
806 	 * 82574 specification update errata #12
807 	 */
808 	intr_func = emx_intr;
809 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
810 	    (sc->hw.mac.type == e1000_82571 ||
811 	     sc->hw.mac.type == e1000_82572 ||
812 	     sc->hw.mac.type == e1000_82573 ||
813 	     sc->hw.mac.type == e1000_82574))
814 		intr_func = emx_intr_mask;
815 
816 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
817 			       &sc->intr_tag, &sc->main_serialize);
818 	if (error) {
819 		device_printf(dev, "Failed to register interrupt handler");
820 		ether_ifdetach(&sc->arpcom.ac_if);
821 		goto fail;
822 	}
823 
824 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
825 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
826 	return (0);
827 fail:
828 	emx_detach(dev);
829 	return (error);
830 }
831 
832 static int
833 emx_detach(device_t dev)
834 {
835 	struct emx_softc *sc = device_get_softc(dev);
836 
837 	if (device_is_attached(dev)) {
838 		struct ifnet *ifp = &sc->arpcom.ac_if;
839 
840 		ifnet_serialize_all(ifp);
841 
842 		emx_stop(sc);
843 
844 		e1000_phy_hw_reset(&sc->hw);
845 
846 		emx_rel_mgmt(sc);
847 		emx_rel_hw_control(sc);
848 
849 		if (sc->wol) {
850 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
851 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
852 			emx_enable_wol(dev);
853 		}
854 
855 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
856 
857 		ifnet_deserialize_all(ifp);
858 
859 		ether_ifdetach(ifp);
860 	} else if (sc->memory != NULL) {
861 		emx_rel_hw_control(sc);
862 	}
863 	bus_generic_detach(dev);
864 
865 	if (sc->intr_res != NULL) {
866 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
867 				     sc->intr_res);
868 	}
869 
870 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
871 		pci_release_msi(dev);
872 
873 	if (sc->memory != NULL) {
874 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
875 				     sc->memory);
876 	}
877 
878 	emx_dma_free(sc);
879 
880 	/* Free sysctl tree */
881 	if (sc->sysctl_tree != NULL)
882 		sysctl_ctx_free(&sc->sysctl_ctx);
883 
884 	if (sc->mta != NULL)
885 		kfree(sc->mta, M_DEVBUF);
886 
887 	return (0);
888 }
889 
890 static int
891 emx_shutdown(device_t dev)
892 {
893 	return emx_suspend(dev);
894 }
895 
896 static int
897 emx_suspend(device_t dev)
898 {
899 	struct emx_softc *sc = device_get_softc(dev);
900 	struct ifnet *ifp = &sc->arpcom.ac_if;
901 
902 	ifnet_serialize_all(ifp);
903 
904 	emx_stop(sc);
905 
906 	emx_rel_mgmt(sc);
907 	emx_rel_hw_control(sc);
908 
909 	if (sc->wol) {
910 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
911 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
912 		emx_enable_wol(dev);
913 	}
914 
915 	ifnet_deserialize_all(ifp);
916 
917 	return bus_generic_suspend(dev);
918 }
919 
920 static int
921 emx_resume(device_t dev)
922 {
923 	struct emx_softc *sc = device_get_softc(dev);
924 	struct ifnet *ifp = &sc->arpcom.ac_if;
925 
926 	ifnet_serialize_all(ifp);
927 
928 	emx_init(sc);
929 	emx_get_mgmt(sc);
930 	if_devstart(ifp);
931 
932 	ifnet_deserialize_all(ifp);
933 
934 	return bus_generic_resume(dev);
935 }
936 
937 static void
938 emx_start(struct ifnet *ifp)
939 {
940 	struct emx_softc *sc = ifp->if_softc;
941 	struct emx_txdata *tdata = &sc->tx_data;
942 	struct mbuf *m_head;
943 
944 	ASSERT_SERIALIZED(&sc->tx_data.tx_serialize);
945 
946 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
947 		return;
948 
949 	if (!sc->link_active) {
950 		ifq_purge(&ifp->if_snd);
951 		return;
952 	}
953 
954 	while (!ifq_is_empty(&ifp->if_snd)) {
955 		/* Now do we at least have a minimal? */
956 		if (EMX_IS_OACTIVE(tdata)) {
957 			emx_tx_collect(tdata);
958 			if (EMX_IS_OACTIVE(tdata)) {
959 				ifp->if_flags |= IFF_OACTIVE;
960 				break;
961 			}
962 		}
963 
964 		logif(pkt_txqueue);
965 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
966 		if (m_head == NULL)
967 			break;
968 
969 		if (emx_encap(tdata, &m_head)) {
970 			ifp->if_oerrors++;
971 			emx_tx_collect(tdata);
972 			continue;
973 		}
974 
975 		/* Send a copy of the frame to the BPF listener */
976 		ETHER_BPF_MTAP(ifp, m_head);
977 
978 		/* Set timeout in case hardware has problems transmitting. */
979 		ifp->if_timer = EMX_TX_TIMEOUT;
980 	}
981 }
982 
983 static int
984 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
985 {
986 	struct emx_softc *sc = ifp->if_softc;
987 	struct ifreq *ifr = (struct ifreq *)data;
988 	uint16_t eeprom_data = 0;
989 	int max_frame_size, mask, reinit;
990 	int error = 0;
991 
992 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
993 
994 	switch (command) {
995 	case SIOCSIFMTU:
996 		switch (sc->hw.mac.type) {
997 		case e1000_82573:
998 			/*
999 			 * 82573 only supports jumbo frames
1000 			 * if ASPM is disabled.
1001 			 */
1002 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1003 				       &eeprom_data);
1004 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1005 				max_frame_size = ETHER_MAX_LEN;
1006 				break;
1007 			}
1008 			/* FALL THROUGH */
1009 
1010 		/* Limit Jumbo Frame size */
1011 		case e1000_82571:
1012 		case e1000_82572:
1013 		case e1000_82574:
1014 		case e1000_80003es2lan:
1015 			max_frame_size = 9234;
1016 			break;
1017 
1018 		default:
1019 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1020 			break;
1021 		}
1022 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1023 		    ETHER_CRC_LEN) {
1024 			error = EINVAL;
1025 			break;
1026 		}
1027 
1028 		ifp->if_mtu = ifr->ifr_mtu;
1029 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1030 				     ETHER_CRC_LEN;
1031 
1032 		if (ifp->if_flags & IFF_RUNNING)
1033 			emx_init(sc);
1034 		break;
1035 
1036 	case SIOCSIFFLAGS:
1037 		if (ifp->if_flags & IFF_UP) {
1038 			if ((ifp->if_flags & IFF_RUNNING)) {
1039 				if ((ifp->if_flags ^ sc->if_flags) &
1040 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1041 					emx_disable_promisc(sc);
1042 					emx_set_promisc(sc);
1043 				}
1044 			} else {
1045 				emx_init(sc);
1046 			}
1047 		} else if (ifp->if_flags & IFF_RUNNING) {
1048 			emx_stop(sc);
1049 		}
1050 		sc->if_flags = ifp->if_flags;
1051 		break;
1052 
1053 	case SIOCADDMULTI:
1054 	case SIOCDELMULTI:
1055 		if (ifp->if_flags & IFF_RUNNING) {
1056 			emx_disable_intr(sc);
1057 			emx_set_multi(sc);
1058 #ifdef IFPOLL_ENABLE
1059 			if (!(ifp->if_flags & IFF_NPOLLING))
1060 #endif
1061 				emx_enable_intr(sc);
1062 		}
1063 		break;
1064 
1065 	case SIOCSIFMEDIA:
1066 		/* Check SOL/IDER usage */
1067 		if (e1000_check_reset_block(&sc->hw)) {
1068 			device_printf(sc->dev, "Media change is"
1069 			    " blocked due to SOL/IDER session.\n");
1070 			break;
1071 		}
1072 		/* FALL THROUGH */
1073 
1074 	case SIOCGIFMEDIA:
1075 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1076 		break;
1077 
1078 	case SIOCSIFCAP:
1079 		reinit = 0;
1080 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1081 		if (mask & IFCAP_RXCSUM) {
1082 			ifp->if_capenable ^= IFCAP_RXCSUM;
1083 			reinit = 1;
1084 		}
1085 		if (mask & IFCAP_VLAN_HWTAGGING) {
1086 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1087 			reinit = 1;
1088 		}
1089 		if (mask & IFCAP_TXCSUM) {
1090 			ifp->if_capenable ^= IFCAP_TXCSUM;
1091 			if (ifp->if_capenable & IFCAP_TXCSUM)
1092 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1093 			else
1094 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1095 		}
1096 		if (mask & IFCAP_TSO) {
1097 			ifp->if_capenable ^= IFCAP_TSO;
1098 			if (ifp->if_capenable & IFCAP_TSO)
1099 				ifp->if_hwassist |= CSUM_TSO;
1100 			else
1101 				ifp->if_hwassist &= ~CSUM_TSO;
1102 		}
1103 		if (mask & IFCAP_RSS)
1104 			ifp->if_capenable ^= IFCAP_RSS;
1105 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1106 			emx_init(sc);
1107 		break;
1108 
1109 	default:
1110 		error = ether_ioctl(ifp, command, data);
1111 		break;
1112 	}
1113 	return (error);
1114 }
1115 
1116 static void
1117 emx_watchdog(struct ifnet *ifp)
1118 {
1119 	struct emx_softc *sc = ifp->if_softc;
1120 
1121 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1122 
1123 	/*
1124 	 * The timer is set to 5 every time start queues a packet.
1125 	 * Then txeof keeps resetting it as long as it cleans at
1126 	 * least one descriptor.
1127 	 * Finally, anytime all descriptors are clean the timer is
1128 	 * set to 0.
1129 	 */
1130 
1131 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1132 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1133 		/*
1134 		 * If we reach here, all TX jobs are completed and
1135 		 * the TX engine should have been idled for some time.
1136 		 * We don't need to call if_devstart() here.
1137 		 */
1138 		ifp->if_flags &= ~IFF_OACTIVE;
1139 		ifp->if_timer = 0;
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * If we are in this routine because of pause frames, then
1145 	 * don't reset the hardware.
1146 	 */
1147 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1148 		ifp->if_timer = EMX_TX_TIMEOUT;
1149 		return;
1150 	}
1151 
1152 	if (e1000_check_for_link(&sc->hw) == 0)
1153 		if_printf(ifp, "watchdog timeout -- resetting\n");
1154 
1155 	ifp->if_oerrors++;
1156 
1157 	emx_init(sc);
1158 
1159 	if (!ifq_is_empty(&ifp->if_snd))
1160 		if_devstart(ifp);
1161 }
1162 
1163 static void
1164 emx_init(void *xsc)
1165 {
1166 	struct emx_softc *sc = xsc;
1167 	struct ifnet *ifp = &sc->arpcom.ac_if;
1168 	device_t dev = sc->dev;
1169 	uint32_t pba;
1170 	int i;
1171 
1172 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1173 
1174 	emx_stop(sc);
1175 
1176 	/*
1177 	 * Packet Buffer Allocation (PBA)
1178 	 * Writing PBA sets the receive portion of the buffer
1179 	 * the remainder is used for the transmit buffer.
1180 	 */
1181 	switch (sc->hw.mac.type) {
1182 	/* Total Packet Buffer on these is 48K */
1183 	case e1000_82571:
1184 	case e1000_82572:
1185 	case e1000_80003es2lan:
1186 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1187 		break;
1188 
1189 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1190 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1191 		break;
1192 
1193 	case e1000_82574:
1194 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1195 		break;
1196 
1197 	default:
1198 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1199 		if (sc->max_frame_size > 8192)
1200 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1201 		else
1202 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1203 	}
1204 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1205 
1206 	/* Get the latest mac address, User can use a LAA */
1207         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1208 
1209 	/* Put the address into the Receive Address Array */
1210 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1211 
1212 	/*
1213 	 * With the 82571 sc, RAR[0] may be overwritten
1214 	 * when the other port is reset, we make a duplicate
1215 	 * in RAR[14] for that eventuality, this assures
1216 	 * the interface continues to function.
1217 	 */
1218 	if (sc->hw.mac.type == e1000_82571) {
1219 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1220 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1221 		    E1000_RAR_ENTRIES - 1);
1222 	}
1223 
1224 	/* Initialize the hardware */
1225 	if (emx_reset(sc)) {
1226 		device_printf(dev, "Unable to reset the hardware\n");
1227 		/* XXX emx_stop()? */
1228 		return;
1229 	}
1230 	emx_update_link_status(sc);
1231 
1232 	/* Setup VLAN support, basic and offload if available */
1233 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1234 
1235 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1236 		uint32_t ctrl;
1237 
1238 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1239 		ctrl |= E1000_CTRL_VME;
1240 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1241 	}
1242 
1243 	/* Configure for OS presence */
1244 	emx_get_mgmt(sc);
1245 
1246 	/* Prepare transmit descriptors and buffers */
1247 	emx_init_tx_ring(&sc->tx_data);
1248 	emx_init_tx_unit(sc);
1249 
1250 	/* Setup Multicast table */
1251 	emx_set_multi(sc);
1252 
1253 	/* Prepare receive descriptors and buffers */
1254 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1255 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1256 			device_printf(dev,
1257 			    "Could not setup receive structures\n");
1258 			emx_stop(sc);
1259 			return;
1260 		}
1261 	}
1262 	emx_init_rx_unit(sc);
1263 
1264 	/* Don't lose promiscuous settings */
1265 	emx_set_promisc(sc);
1266 
1267 	ifp->if_flags |= IFF_RUNNING;
1268 	ifp->if_flags &= ~IFF_OACTIVE;
1269 
1270 	callout_reset(&sc->timer, hz, emx_timer, sc);
1271 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1272 
1273 	/* MSI/X configuration for 82574 */
1274 	if (sc->hw.mac.type == e1000_82574) {
1275 		int tmp;
1276 
1277 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1278 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1279 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1280 		/*
1281 		 * XXX MSIX
1282 		 * Set the IVAR - interrupt vector routing.
1283 		 * Each nibble represents a vector, high bit
1284 		 * is enable, other 3 bits are the MSIX table
1285 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1286 		 * Link (other) to 2, hence the magic number.
1287 		 */
1288 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1289 	}
1290 
1291 #ifdef IFPOLL_ENABLE
1292 	/*
1293 	 * Only enable interrupts if we are not polling, make sure
1294 	 * they are off otherwise.
1295 	 */
1296 	if (ifp->if_flags & IFF_NPOLLING)
1297 		emx_disable_intr(sc);
1298 	else
1299 #endif /* IFPOLL_ENABLE */
1300 		emx_enable_intr(sc);
1301 
1302 	/* AMT based hardware can now take control from firmware */
1303 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1304 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1305 		emx_get_hw_control(sc);
1306 
1307 	/* Don't reset the phy next time init gets called */
1308 	sc->hw.phy.reset_disable = TRUE;
1309 }
1310 
1311 static void
1312 emx_intr(void *xsc)
1313 {
1314 	emx_intr_body(xsc, TRUE);
1315 }
1316 
1317 static void
1318 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1319 {
1320 	struct ifnet *ifp = &sc->arpcom.ac_if;
1321 	uint32_t reg_icr;
1322 
1323 	logif(intr_beg);
1324 	ASSERT_SERIALIZED(&sc->main_serialize);
1325 
1326 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1327 
1328 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1329 		logif(intr_end);
1330 		return;
1331 	}
1332 
1333 	/*
1334 	 * XXX: some laptops trigger several spurious interrupts
1335 	 * on emx(4) when in the resume cycle. The ICR register
1336 	 * reports all-ones value in this case. Processing such
1337 	 * interrupts would lead to a freeze. I don't know why.
1338 	 */
1339 	if (reg_icr == 0xffffffff) {
1340 		logif(intr_end);
1341 		return;
1342 	}
1343 
1344 	if (ifp->if_flags & IFF_RUNNING) {
1345 		if (reg_icr &
1346 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1347 			int i;
1348 
1349 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1350 				lwkt_serialize_enter(
1351 				&sc->rx_data[i].rx_serialize);
1352 				emx_rxeof(&sc->rx_data[i], -1);
1353 				lwkt_serialize_exit(
1354 				&sc->rx_data[i].rx_serialize);
1355 			}
1356 		}
1357 		if (reg_icr & E1000_ICR_TXDW) {
1358 			lwkt_serialize_enter(&sc->tx_data.tx_serialize);
1359 			emx_txeof(&sc->tx_data);
1360 			if (!ifq_is_empty(&ifp->if_snd))
1361 				if_devstart(ifp);
1362 			lwkt_serialize_exit(&sc->tx_data.tx_serialize);
1363 		}
1364 	}
1365 
1366 	/* Link status change */
1367 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1368 		emx_serialize_skipmain(sc);
1369 
1370 		callout_stop(&sc->timer);
1371 		sc->hw.mac.get_link_status = 1;
1372 		emx_update_link_status(sc);
1373 
1374 		/* Deal with TX cruft when link lost */
1375 		emx_tx_purge(sc);
1376 
1377 		callout_reset(&sc->timer, hz, emx_timer, sc);
1378 
1379 		emx_deserialize_skipmain(sc);
1380 	}
1381 
1382 	if (reg_icr & E1000_ICR_RXO)
1383 		sc->rx_overruns++;
1384 
1385 	logif(intr_end);
1386 }
1387 
1388 static void
1389 emx_intr_mask(void *xsc)
1390 {
1391 	struct emx_softc *sc = xsc;
1392 
1393 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1394 	/*
1395 	 * NOTE:
1396 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1397 	 * so don't check it.
1398 	 */
1399 	emx_intr_body(sc, FALSE);
1400 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1401 }
1402 
1403 static void
1404 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1405 {
1406 	struct emx_softc *sc = ifp->if_softc;
1407 
1408 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1409 
1410 	emx_update_link_status(sc);
1411 
1412 	ifmr->ifm_status = IFM_AVALID;
1413 	ifmr->ifm_active = IFM_ETHER;
1414 
1415 	if (!sc->link_active)
1416 		return;
1417 
1418 	ifmr->ifm_status |= IFM_ACTIVE;
1419 
1420 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1421 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1422 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1423 	} else {
1424 		switch (sc->link_speed) {
1425 		case 10:
1426 			ifmr->ifm_active |= IFM_10_T;
1427 			break;
1428 		case 100:
1429 			ifmr->ifm_active |= IFM_100_TX;
1430 			break;
1431 
1432 		case 1000:
1433 			ifmr->ifm_active |= IFM_1000_T;
1434 			break;
1435 		}
1436 		if (sc->link_duplex == FULL_DUPLEX)
1437 			ifmr->ifm_active |= IFM_FDX;
1438 		else
1439 			ifmr->ifm_active |= IFM_HDX;
1440 	}
1441 }
1442 
1443 static int
1444 emx_media_change(struct ifnet *ifp)
1445 {
1446 	struct emx_softc *sc = ifp->if_softc;
1447 	struct ifmedia *ifm = &sc->media;
1448 
1449 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1450 
1451 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1452 		return (EINVAL);
1453 
1454 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1455 	case IFM_AUTO:
1456 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1457 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1458 		break;
1459 
1460 	case IFM_1000_LX:
1461 	case IFM_1000_SX:
1462 	case IFM_1000_T:
1463 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1464 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1465 		break;
1466 
1467 	case IFM_100_TX:
1468 		sc->hw.mac.autoneg = FALSE;
1469 		sc->hw.phy.autoneg_advertised = 0;
1470 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1471 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1472 		else
1473 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1474 		break;
1475 
1476 	case IFM_10_T:
1477 		sc->hw.mac.autoneg = FALSE;
1478 		sc->hw.phy.autoneg_advertised = 0;
1479 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1480 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1481 		else
1482 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1483 		break;
1484 
1485 	default:
1486 		if_printf(ifp, "Unsupported media type\n");
1487 		break;
1488 	}
1489 
1490 	/*
1491 	 * As the speed/duplex settings my have changed we need to
1492 	 * reset the PHY.
1493 	 */
1494 	sc->hw.phy.reset_disable = FALSE;
1495 
1496 	emx_init(sc);
1497 
1498 	return (0);
1499 }
1500 
1501 static int
1502 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp)
1503 {
1504 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1505 	bus_dmamap_t map;
1506 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1507 	struct e1000_tx_desc *ctxd = NULL;
1508 	struct mbuf *m_head = *m_headp;
1509 	uint32_t txd_upper, txd_lower, cmd = 0;
1510 	int maxsegs, nsegs, i, j, first, last = 0, error;
1511 
1512 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1513 		error = emx_tso_pullup(tdata, m_headp);
1514 		if (error)
1515 			return error;
1516 		m_head = *m_headp;
1517 	}
1518 
1519 	txd_upper = txd_lower = 0;
1520 
1521 	/*
1522 	 * Capture the first descriptor index, this descriptor
1523 	 * will have the index of the EOP which is the only one
1524 	 * that now gets a DONE bit writeback.
1525 	 */
1526 	first = tdata->next_avail_tx_desc;
1527 	tx_buffer = &tdata->tx_buf[first];
1528 	tx_buffer_mapped = tx_buffer;
1529 	map = tx_buffer->map;
1530 
1531 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1532 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1533 	if (maxsegs > EMX_MAX_SCATTER)
1534 		maxsegs = EMX_MAX_SCATTER;
1535 
1536 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1537 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1538 	if (error) {
1539 		m_freem(*m_headp);
1540 		*m_headp = NULL;
1541 		return error;
1542 	}
1543         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1544 
1545 	m_head = *m_headp;
1546 	tdata->tx_nsegs += nsegs;
1547 
1548 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1549 		/* TSO will consume one TX desc */
1550 		tdata->tx_nsegs += emx_tso_setup(tdata, m_head,
1551 		    &txd_upper, &txd_lower);
1552 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1553 		/* TX csum offloading will consume one TX desc */
1554 		tdata->tx_nsegs += emx_txcsum(tdata, m_head,
1555 		    &txd_upper, &txd_lower);
1556 	}
1557 	i = tdata->next_avail_tx_desc;
1558 
1559 	/* Set up our transmit descriptors */
1560 	for (j = 0; j < nsegs; j++) {
1561 		tx_buffer = &tdata->tx_buf[i];
1562 		ctxd = &tdata->tx_desc_base[i];
1563 
1564 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1565 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1566 					   txd_lower | segs[j].ds_len);
1567 		ctxd->upper.data = htole32(txd_upper);
1568 
1569 		last = i;
1570 		if (++i == tdata->num_tx_desc)
1571 			i = 0;
1572 	}
1573 
1574 	tdata->next_avail_tx_desc = i;
1575 
1576 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1577 	tdata->num_tx_desc_avail -= nsegs;
1578 
1579         /* Handle VLAN tag */
1580 	if (m_head->m_flags & M_VLANTAG) {
1581 		/* Set the vlan id. */
1582 		ctxd->upper.fields.special =
1583 		    htole16(m_head->m_pkthdr.ether_vlantag);
1584 
1585 		/* Tell hardware to add tag */
1586 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1587 	}
1588 
1589 	tx_buffer->m_head = m_head;
1590 	tx_buffer_mapped->map = tx_buffer->map;
1591 	tx_buffer->map = map;
1592 
1593 	if (tdata->tx_nsegs >= tdata->tx_int_nsegs) {
1594 		tdata->tx_nsegs = 0;
1595 
1596 		/*
1597 		 * Report Status (RS) is turned on
1598 		 * every tx_int_nsegs descriptors.
1599 		 */
1600 		cmd = E1000_TXD_CMD_RS;
1601 
1602 		/*
1603 		 * Keep track of the descriptor, which will
1604 		 * be written back by hardware.
1605 		 */
1606 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1607 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1608 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1609 	}
1610 
1611 	/*
1612 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1613 	 */
1614 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1615 
1616 	/*
1617 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1618 	 * the E1000 that this frame is available to transmit.
1619 	 */
1620 	E1000_WRITE_REG(&tdata->sc->hw, E1000_TDT(0), i);
1621 
1622 	return (0);
1623 }
1624 
1625 static void
1626 emx_set_promisc(struct emx_softc *sc)
1627 {
1628 	struct ifnet *ifp = &sc->arpcom.ac_if;
1629 	uint32_t reg_rctl;
1630 
1631 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1632 
1633 	if (ifp->if_flags & IFF_PROMISC) {
1634 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1635 		/* Turn this on if you want to see bad packets */
1636 		if (emx_debug_sbp)
1637 			reg_rctl |= E1000_RCTL_SBP;
1638 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1639 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1640 		reg_rctl |= E1000_RCTL_MPE;
1641 		reg_rctl &= ~E1000_RCTL_UPE;
1642 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1643 	}
1644 }
1645 
1646 static void
1647 emx_disable_promisc(struct emx_softc *sc)
1648 {
1649 	uint32_t reg_rctl;
1650 
1651 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1652 
1653 	reg_rctl &= ~E1000_RCTL_UPE;
1654 	reg_rctl &= ~E1000_RCTL_MPE;
1655 	reg_rctl &= ~E1000_RCTL_SBP;
1656 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1657 }
1658 
1659 static void
1660 emx_set_multi(struct emx_softc *sc)
1661 {
1662 	struct ifnet *ifp = &sc->arpcom.ac_if;
1663 	struct ifmultiaddr *ifma;
1664 	uint32_t reg_rctl = 0;
1665 	uint8_t *mta;
1666 	int mcnt = 0;
1667 
1668 	mta = sc->mta;
1669 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1670 
1671 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1672 		if (ifma->ifma_addr->sa_family != AF_LINK)
1673 			continue;
1674 
1675 		if (mcnt == EMX_MCAST_ADDR_MAX)
1676 			break;
1677 
1678 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1679 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1680 		mcnt++;
1681 	}
1682 
1683 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1684 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1685 		reg_rctl |= E1000_RCTL_MPE;
1686 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1687 	} else {
1688 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1689 	}
1690 }
1691 
1692 /*
1693  * This routine checks for link status and updates statistics.
1694  */
1695 static void
1696 emx_timer(void *xsc)
1697 {
1698 	struct emx_softc *sc = xsc;
1699 	struct ifnet *ifp = &sc->arpcom.ac_if;
1700 
1701 	lwkt_serialize_enter(&sc->main_serialize);
1702 
1703 	emx_update_link_status(sc);
1704 	emx_update_stats(sc);
1705 
1706 	/* Reset LAA into RAR[0] on 82571 */
1707 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1708 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1709 
1710 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1711 		emx_print_hw_stats(sc);
1712 
1713 	emx_smartspeed(sc);
1714 
1715 	callout_reset(&sc->timer, hz, emx_timer, sc);
1716 
1717 	lwkt_serialize_exit(&sc->main_serialize);
1718 }
1719 
1720 static void
1721 emx_update_link_status(struct emx_softc *sc)
1722 {
1723 	struct e1000_hw *hw = &sc->hw;
1724 	struct ifnet *ifp = &sc->arpcom.ac_if;
1725 	device_t dev = sc->dev;
1726 	uint32_t link_check = 0;
1727 
1728 	/* Get the cached link value or read phy for real */
1729 	switch (hw->phy.media_type) {
1730 	case e1000_media_type_copper:
1731 		if (hw->mac.get_link_status) {
1732 			/* Do the work to read phy */
1733 			e1000_check_for_link(hw);
1734 			link_check = !hw->mac.get_link_status;
1735 			if (link_check) /* ESB2 fix */
1736 				e1000_cfg_on_link_up(hw);
1737 		} else {
1738 			link_check = TRUE;
1739 		}
1740 		break;
1741 
1742 	case e1000_media_type_fiber:
1743 		e1000_check_for_link(hw);
1744 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1745 		break;
1746 
1747 	case e1000_media_type_internal_serdes:
1748 		e1000_check_for_link(hw);
1749 		link_check = sc->hw.mac.serdes_has_link;
1750 		break;
1751 
1752 	case e1000_media_type_unknown:
1753 	default:
1754 		break;
1755 	}
1756 
1757 	/* Now check for a transition */
1758 	if (link_check && sc->link_active == 0) {
1759 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1760 		    &sc->link_duplex);
1761 
1762 		/*
1763 		 * Check if we should enable/disable SPEED_MODE bit on
1764 		 * 82571EB/82572EI
1765 		 */
1766 		if (sc->link_speed != SPEED_1000 &&
1767 		    (hw->mac.type == e1000_82571 ||
1768 		     hw->mac.type == e1000_82572)) {
1769 			int tarc0;
1770 
1771 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1772 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1773 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1774 		}
1775 		if (bootverbose) {
1776 			device_printf(dev, "Link is up %d Mbps %s\n",
1777 			    sc->link_speed,
1778 			    ((sc->link_duplex == FULL_DUPLEX) ?
1779 			    "Full Duplex" : "Half Duplex"));
1780 		}
1781 		sc->link_active = 1;
1782 		sc->smartspeed = 0;
1783 		ifp->if_baudrate = sc->link_speed * 1000000;
1784 		ifp->if_link_state = LINK_STATE_UP;
1785 		if_link_state_change(ifp);
1786 	} else if (!link_check && sc->link_active == 1) {
1787 		ifp->if_baudrate = sc->link_speed = 0;
1788 		sc->link_duplex = 0;
1789 		if (bootverbose)
1790 			device_printf(dev, "Link is Down\n");
1791 		sc->link_active = 0;
1792 #if 0
1793 		/* Link down, disable watchdog */
1794 		if->if_timer = 0;
1795 #endif
1796 		ifp->if_link_state = LINK_STATE_DOWN;
1797 		if_link_state_change(ifp);
1798 	}
1799 }
1800 
1801 static void
1802 emx_stop(struct emx_softc *sc)
1803 {
1804 	struct ifnet *ifp = &sc->arpcom.ac_if;
1805 	struct emx_txdata *tdata = &sc->tx_data;
1806 	int i;
1807 
1808 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1809 
1810 	emx_disable_intr(sc);
1811 
1812 	callout_stop(&sc->timer);
1813 
1814 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1815 	ifp->if_timer = 0;
1816 
1817 	/*
1818 	 * Disable multiple receive queues.
1819 	 *
1820 	 * NOTE:
1821 	 * We should disable multiple receive queues before
1822 	 * resetting the hardware.
1823 	 */
1824 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1825 
1826 	e1000_reset_hw(&sc->hw);
1827 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1828 
1829 	for (i = 0; i < tdata->num_tx_desc; i++) {
1830 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
1831 
1832 		if (tx_buffer->m_head != NULL) {
1833 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
1834 			m_freem(tx_buffer->m_head);
1835 			tx_buffer->m_head = NULL;
1836 		}
1837 	}
1838 
1839 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1840 		emx_free_rx_ring(&sc->rx_data[i]);
1841 
1842 	tdata->csum_flags = 0;
1843 	tdata->csum_lhlen = 0;
1844 	tdata->csum_iphlen = 0;
1845 	tdata->csum_thlen = 0;
1846 	tdata->csum_mss = 0;
1847 	tdata->csum_pktlen = 0;
1848 
1849 	tdata->tx_dd_head = 0;
1850 	tdata->tx_dd_tail = 0;
1851 	tdata->tx_nsegs = 0;
1852 }
1853 
1854 static int
1855 emx_reset(struct emx_softc *sc)
1856 {
1857 	device_t dev = sc->dev;
1858 	uint16_t rx_buffer_size;
1859 
1860 	/* Set up smart power down as default off on newer adapters. */
1861 	if (!emx_smart_pwr_down &&
1862 	    (sc->hw.mac.type == e1000_82571 ||
1863 	     sc->hw.mac.type == e1000_82572)) {
1864 		uint16_t phy_tmp = 0;
1865 
1866 		/* Speed up time to link by disabling smart power down. */
1867 		e1000_read_phy_reg(&sc->hw,
1868 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1869 		phy_tmp &= ~IGP02E1000_PM_SPD;
1870 		e1000_write_phy_reg(&sc->hw,
1871 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1872 	}
1873 
1874 	/*
1875 	 * These parameters control the automatic generation (Tx) and
1876 	 * response (Rx) to Ethernet PAUSE frames.
1877 	 * - High water mark should allow for at least two frames to be
1878 	 *   received after sending an XOFF.
1879 	 * - Low water mark works best when it is very near the high water mark.
1880 	 *   This allows the receiver to restart by sending XON when it has
1881 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1882 	 *   restart after one full frame is pulled from the buffer. There
1883 	 *   could be several smaller frames in the buffer and if so they will
1884 	 *   not trigger the XON until their total number reduces the buffer
1885 	 *   by 1500.
1886 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1887 	 */
1888 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1889 
1890 	sc->hw.fc.high_water = rx_buffer_size -
1891 			       roundup2(sc->max_frame_size, 1024);
1892 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1893 
1894 	if (sc->hw.mac.type == e1000_80003es2lan)
1895 		sc->hw.fc.pause_time = 0xFFFF;
1896 	else
1897 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1898 	sc->hw.fc.send_xon = TRUE;
1899 	sc->hw.fc.requested_mode = e1000_fc_full;
1900 
1901 	/* Issue a global reset */
1902 	e1000_reset_hw(&sc->hw);
1903 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1904 	emx_disable_aspm(sc);
1905 
1906 	if (e1000_init_hw(&sc->hw) < 0) {
1907 		device_printf(dev, "Hardware Initialization Failed\n");
1908 		return (EIO);
1909 	}
1910 
1911 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1912 	e1000_get_phy_info(&sc->hw);
1913 	e1000_check_for_link(&sc->hw);
1914 
1915 	return (0);
1916 }
1917 
1918 static void
1919 emx_setup_ifp(struct emx_softc *sc)
1920 {
1921 	struct ifnet *ifp = &sc->arpcom.ac_if;
1922 
1923 	if_initname(ifp, device_get_name(sc->dev),
1924 		    device_get_unit(sc->dev));
1925 	ifp->if_softc = sc;
1926 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1927 	ifp->if_init =  emx_init;
1928 	ifp->if_ioctl = emx_ioctl;
1929 	ifp->if_start = emx_start;
1930 #ifdef IFPOLL_ENABLE
1931 	ifp->if_npoll = emx_npoll;
1932 #endif
1933 	ifp->if_watchdog = emx_watchdog;
1934 	ifp->if_serialize = emx_serialize;
1935 	ifp->if_deserialize = emx_deserialize;
1936 	ifp->if_tryserialize = emx_tryserialize;
1937 #ifdef INVARIANTS
1938 	ifp->if_serialize_assert = emx_serialize_assert;
1939 #endif
1940 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data.num_tx_desc - 1);
1941 	ifq_set_ready(&ifp->if_snd);
1942 
1943 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1944 
1945 	ifp->if_capabilities = IFCAP_HWCSUM |
1946 			       IFCAP_VLAN_HWTAGGING |
1947 			       IFCAP_VLAN_MTU |
1948 			       IFCAP_TSO;
1949 	if (sc->rx_ring_cnt > 1)
1950 		ifp->if_capabilities |= IFCAP_RSS;
1951 	ifp->if_capenable = ifp->if_capabilities;
1952 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1953 
1954 	/*
1955 	 * Tell the upper layer(s) we support long frames.
1956 	 */
1957 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1958 
1959 	/*
1960 	 * Specify the media types supported by this sc and register
1961 	 * callbacks to update media and link information
1962 	 */
1963 	ifmedia_init(&sc->media, IFM_IMASK,
1964 		     emx_media_change, emx_media_status);
1965 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1966 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1967 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1968 			    0, NULL);
1969 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1970 	} else {
1971 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1972 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1973 			    0, NULL);
1974 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1975 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1976 			    0, NULL);
1977 		if (sc->hw.phy.type != e1000_phy_ife) {
1978 			ifmedia_add(&sc->media,
1979 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1980 			ifmedia_add(&sc->media,
1981 				IFM_ETHER | IFM_1000_T, 0, NULL);
1982 		}
1983 	}
1984 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1985 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1986 }
1987 
1988 /*
1989  * Workaround for SmartSpeed on 82541 and 82547 controllers
1990  */
1991 static void
1992 emx_smartspeed(struct emx_softc *sc)
1993 {
1994 	uint16_t phy_tmp;
1995 
1996 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1997 	    sc->hw.mac.autoneg == 0 ||
1998 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1999 		return;
2000 
2001 	if (sc->smartspeed == 0) {
2002 		/*
2003 		 * If Master/Slave config fault is asserted twice,
2004 		 * we assume back-to-back
2005 		 */
2006 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2007 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2008 			return;
2009 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2010 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2011 			e1000_read_phy_reg(&sc->hw,
2012 			    PHY_1000T_CTRL, &phy_tmp);
2013 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2014 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2015 				e1000_write_phy_reg(&sc->hw,
2016 				    PHY_1000T_CTRL, phy_tmp);
2017 				sc->smartspeed++;
2018 				if (sc->hw.mac.autoneg &&
2019 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2020 				    !e1000_read_phy_reg(&sc->hw,
2021 				     PHY_CONTROL, &phy_tmp)) {
2022 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2023 						   MII_CR_RESTART_AUTO_NEG;
2024 					e1000_write_phy_reg(&sc->hw,
2025 					    PHY_CONTROL, phy_tmp);
2026 				}
2027 			}
2028 		}
2029 		return;
2030 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2031 		/* If still no link, perhaps using 2/3 pair cable */
2032 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2033 		phy_tmp |= CR_1000T_MS_ENABLE;
2034 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2035 		if (sc->hw.mac.autoneg &&
2036 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2037 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2038 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2039 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2040 		}
2041 	}
2042 
2043 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2044 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2045 		sc->smartspeed = 0;
2046 }
2047 
2048 static int
2049 emx_create_tx_ring(struct emx_txdata *tdata)
2050 {
2051 	device_t dev = tdata->sc->dev;
2052 	struct emx_txbuf *tx_buffer;
2053 	int error, i, tsize, ntxd;
2054 
2055 	/*
2056 	 * Validate number of transmit descriptors.  It must not exceed
2057 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2058 	 */
2059 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2060 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2061 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2062 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2063 		    EMX_DEFAULT_TXD, ntxd);
2064 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2065 	} else {
2066 		tdata->num_tx_desc = ntxd;
2067 	}
2068 
2069 	/*
2070 	 * Allocate Transmit Descriptor ring
2071 	 */
2072 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2073 			 EMX_DBA_ALIGN);
2074 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2075 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2076 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2077 				&tdata->tx_desc_paddr);
2078 	if (tdata->tx_desc_base == NULL) {
2079 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2080 		return ENOMEM;
2081 	}
2082 
2083 	tsize = __VM_CACHELINE_ALIGN(
2084 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2085 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2086 
2087 	/*
2088 	 * Create DMA tags for tx buffers
2089 	 */
2090 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2091 			1, 0,			/* alignment, bounds */
2092 			BUS_SPACE_MAXADDR,	/* lowaddr */
2093 			BUS_SPACE_MAXADDR,	/* highaddr */
2094 			NULL, NULL,		/* filter, filterarg */
2095 			EMX_TSO_SIZE,		/* maxsize */
2096 			EMX_MAX_SCATTER,	/* nsegments */
2097 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2098 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2099 			BUS_DMA_ONEBPAGE,	/* flags */
2100 			&tdata->txtag);
2101 	if (error) {
2102 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2103 		kfree(tdata->tx_buf, M_DEVBUF);
2104 		tdata->tx_buf = NULL;
2105 		return error;
2106 	}
2107 
2108 	/*
2109 	 * Create DMA maps for tx buffers
2110 	 */
2111 	for (i = 0; i < tdata->num_tx_desc; i++) {
2112 		tx_buffer = &tdata->tx_buf[i];
2113 
2114 		error = bus_dmamap_create(tdata->txtag,
2115 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2116 					  &tx_buffer->map);
2117 		if (error) {
2118 			device_printf(dev, "Unable to create TX DMA map\n");
2119 			emx_destroy_tx_ring(tdata, i);
2120 			return error;
2121 		}
2122 	}
2123 	return (0);
2124 }
2125 
2126 static void
2127 emx_init_tx_ring(struct emx_txdata *tdata)
2128 {
2129 	/* Clear the old ring contents */
2130 	bzero(tdata->tx_desc_base,
2131 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2132 
2133 	/* Reset state */
2134 	tdata->next_avail_tx_desc = 0;
2135 	tdata->next_tx_to_clean = 0;
2136 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2137 }
2138 
2139 static void
2140 emx_init_tx_unit(struct emx_softc *sc)
2141 {
2142 	uint32_t tctl, tarc, tipg = 0;
2143 	uint64_t bus_addr;
2144 
2145 	/* Setup the Base and Length of the Tx Descriptor Ring */
2146 	bus_addr = sc->tx_data.tx_desc_paddr;
2147 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2148 	    sc->tx_data.num_tx_desc * sizeof(struct e1000_tx_desc));
2149 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2150 	    (uint32_t)(bus_addr >> 32));
2151 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2152 	    (uint32_t)bus_addr);
2153 	/* Setup the HW Tx Head and Tail descriptor pointers */
2154 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2155 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2156 
2157 	/* Set the default values for the Tx Inter Packet Gap timer */
2158 	switch (sc->hw.mac.type) {
2159 	case e1000_80003es2lan:
2160 		tipg = DEFAULT_82543_TIPG_IPGR1;
2161 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2162 		    E1000_TIPG_IPGR2_SHIFT;
2163 		break;
2164 
2165 	default:
2166 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2167 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2168 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2169 		else
2170 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2171 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2172 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2173 		break;
2174 	}
2175 
2176 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2177 
2178 	/* NOTE: 0 is not allowed for TIDV */
2179 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2180 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2181 
2182 	if (sc->hw.mac.type == e1000_82571 ||
2183 	    sc->hw.mac.type == e1000_82572) {
2184 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2185 		tarc |= EMX_TARC_SPEED_MODE;
2186 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2187 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2188 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2189 		tarc |= 1;
2190 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2191 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2192 		tarc |= 1;
2193 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2194 	}
2195 
2196 	/* Program the Transmit Control Register */
2197 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2198 	tctl &= ~E1000_TCTL_CT;
2199 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2200 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2201 	tctl |= E1000_TCTL_MULR;
2202 
2203 	/* This write will effectively turn on the transmit unit. */
2204 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2205 }
2206 
2207 static void
2208 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2209 {
2210 	struct emx_txbuf *tx_buffer;
2211 	int i;
2212 
2213 	/* Free Transmit Descriptor ring */
2214 	if (tdata->tx_desc_base) {
2215 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2216 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2217 				tdata->tx_desc_dmap);
2218 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2219 
2220 		tdata->tx_desc_base = NULL;
2221 	}
2222 
2223 	if (tdata->tx_buf == NULL)
2224 		return;
2225 
2226 	for (i = 0; i < ndesc; i++) {
2227 		tx_buffer = &tdata->tx_buf[i];
2228 
2229 		KKASSERT(tx_buffer->m_head == NULL);
2230 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2231 	}
2232 	bus_dma_tag_destroy(tdata->txtag);
2233 
2234 	kfree(tdata->tx_buf, M_DEVBUF);
2235 	tdata->tx_buf = NULL;
2236 }
2237 
2238 /*
2239  * The offload context needs to be set when we transfer the first
2240  * packet of a particular protocol (TCP/UDP).  This routine has been
2241  * enhanced to deal with inserted VLAN headers.
2242  *
2243  * If the new packet's ether header length, ip header length and
2244  * csum offloading type are same as the previous packet, we should
2245  * avoid allocating a new csum context descriptor; mainly to take
2246  * advantage of the pipeline effect of the TX data read request.
2247  *
2248  * This function returns number of TX descrptors allocated for
2249  * csum context.
2250  */
2251 static int
2252 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2253 	   uint32_t *txd_upper, uint32_t *txd_lower)
2254 {
2255 	struct e1000_context_desc *TXD;
2256 	int curr_txd, ehdrlen, csum_flags;
2257 	uint32_t cmd, hdr_len, ip_hlen;
2258 
2259 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2260 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2261 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2262 
2263 	if (tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2264 	    tdata->csum_flags == csum_flags) {
2265 		/*
2266 		 * Same csum offload context as the previous packets;
2267 		 * just return.
2268 		 */
2269 		*txd_upper = tdata->csum_txd_upper;
2270 		*txd_lower = tdata->csum_txd_lower;
2271 		return 0;
2272 	}
2273 
2274 	/*
2275 	 * Setup a new csum offload context.
2276 	 */
2277 
2278 	curr_txd = tdata->next_avail_tx_desc;
2279 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2280 
2281 	cmd = 0;
2282 
2283 	/* Setup of IP header checksum. */
2284 	if (csum_flags & CSUM_IP) {
2285 		/*
2286 		 * Start offset for header checksum calculation.
2287 		 * End offset for header checksum calculation.
2288 		 * Offset of place to put the checksum.
2289 		 */
2290 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2291 		TXD->lower_setup.ip_fields.ipcse =
2292 		    htole16(ehdrlen + ip_hlen - 1);
2293 		TXD->lower_setup.ip_fields.ipcso =
2294 		    ehdrlen + offsetof(struct ip, ip_sum);
2295 		cmd |= E1000_TXD_CMD_IP;
2296 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2297 	}
2298 	hdr_len = ehdrlen + ip_hlen;
2299 
2300 	if (csum_flags & CSUM_TCP) {
2301 		/*
2302 		 * Start offset for payload checksum calculation.
2303 		 * End offset for payload checksum calculation.
2304 		 * Offset of place to put the checksum.
2305 		 */
2306 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2307 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2308 		TXD->upper_setup.tcp_fields.tucso =
2309 		    hdr_len + offsetof(struct tcphdr, th_sum);
2310 		cmd |= E1000_TXD_CMD_TCP;
2311 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2312 	} else if (csum_flags & CSUM_UDP) {
2313 		/*
2314 		 * Start offset for header checksum calculation.
2315 		 * End offset for header checksum calculation.
2316 		 * Offset of place to put the checksum.
2317 		 */
2318 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2319 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2320 		TXD->upper_setup.tcp_fields.tucso =
2321 		    hdr_len + offsetof(struct udphdr, uh_sum);
2322 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2323 	}
2324 
2325 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2326 		     E1000_TXD_DTYP_D;		/* Data descr */
2327 
2328 	/* Save the information for this csum offloading context */
2329 	tdata->csum_lhlen = ehdrlen;
2330 	tdata->csum_iphlen = ip_hlen;
2331 	tdata->csum_flags = csum_flags;
2332 	tdata->csum_txd_upper = *txd_upper;
2333 	tdata->csum_txd_lower = *txd_lower;
2334 
2335 	TXD->tcp_seg_setup.data = htole32(0);
2336 	TXD->cmd_and_length =
2337 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2338 
2339 	if (++curr_txd == tdata->num_tx_desc)
2340 		curr_txd = 0;
2341 
2342 	KKASSERT(tdata->num_tx_desc_avail > 0);
2343 	tdata->num_tx_desc_avail--;
2344 
2345 	tdata->next_avail_tx_desc = curr_txd;
2346 	return 1;
2347 }
2348 
2349 static void
2350 emx_txeof(struct emx_txdata *tdata)
2351 {
2352 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2353 	struct emx_txbuf *tx_buffer;
2354 	int first, num_avail;
2355 
2356 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2357 		return;
2358 
2359 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2360 		return;
2361 
2362 	num_avail = tdata->num_tx_desc_avail;
2363 	first = tdata->next_tx_to_clean;
2364 
2365 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2366 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2367 		struct e1000_tx_desc *tx_desc;
2368 
2369 		tx_desc = &tdata->tx_desc_base[dd_idx];
2370 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2371 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2372 
2373 			if (++dd_idx == tdata->num_tx_desc)
2374 				dd_idx = 0;
2375 
2376 			while (first != dd_idx) {
2377 				logif(pkt_txclean);
2378 
2379 				num_avail++;
2380 
2381 				tx_buffer = &tdata->tx_buf[first];
2382 				if (tx_buffer->m_head) {
2383 					ifp->if_opackets++;
2384 					bus_dmamap_unload(tdata->txtag,
2385 							  tx_buffer->map);
2386 					m_freem(tx_buffer->m_head);
2387 					tx_buffer->m_head = NULL;
2388 				}
2389 
2390 				if (++first == tdata->num_tx_desc)
2391 					first = 0;
2392 			}
2393 		} else {
2394 			break;
2395 		}
2396 	}
2397 	tdata->next_tx_to_clean = first;
2398 	tdata->num_tx_desc_avail = num_avail;
2399 
2400 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2401 		tdata->tx_dd_head = 0;
2402 		tdata->tx_dd_tail = 0;
2403 	}
2404 
2405 	if (!EMX_IS_OACTIVE(tdata)) {
2406 		ifp->if_flags &= ~IFF_OACTIVE;
2407 
2408 		/* All clean, turn off the timer */
2409 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2410 			ifp->if_timer = 0;
2411 	}
2412 }
2413 
2414 static void
2415 emx_tx_collect(struct emx_txdata *tdata)
2416 {
2417 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2418 	struct emx_txbuf *tx_buffer;
2419 	int tdh, first, num_avail, dd_idx = -1;
2420 
2421 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2422 		return;
2423 
2424 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(0));
2425 	if (tdh == tdata->next_tx_to_clean)
2426 		return;
2427 
2428 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2429 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2430 
2431 	num_avail = tdata->num_tx_desc_avail;
2432 	first = tdata->next_tx_to_clean;
2433 
2434 	while (first != tdh) {
2435 		logif(pkt_txclean);
2436 
2437 		num_avail++;
2438 
2439 		tx_buffer = &tdata->tx_buf[first];
2440 		if (tx_buffer->m_head) {
2441 			ifp->if_opackets++;
2442 			bus_dmamap_unload(tdata->txtag,
2443 					  tx_buffer->map);
2444 			m_freem(tx_buffer->m_head);
2445 			tx_buffer->m_head = NULL;
2446 		}
2447 
2448 		if (first == dd_idx) {
2449 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2450 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2451 				tdata->tx_dd_head = 0;
2452 				tdata->tx_dd_tail = 0;
2453 				dd_idx = -1;
2454 			} else {
2455 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2456 			}
2457 		}
2458 
2459 		if (++first == tdata->num_tx_desc)
2460 			first = 0;
2461 	}
2462 	tdata->next_tx_to_clean = first;
2463 	tdata->num_tx_desc_avail = num_avail;
2464 
2465 	if (!EMX_IS_OACTIVE(tdata)) {
2466 		ifp->if_flags &= ~IFF_OACTIVE;
2467 
2468 		/* All clean, turn off the timer */
2469 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2470 			ifp->if_timer = 0;
2471 	}
2472 }
2473 
2474 /*
2475  * When Link is lost sometimes there is work still in the TX ring
2476  * which will result in a watchdog, rather than allow that do an
2477  * attempted cleanup and then reinit here.  Note that this has been
2478  * seens mostly with fiber adapters.
2479  */
2480 static void
2481 emx_tx_purge(struct emx_softc *sc)
2482 {
2483 	struct ifnet *ifp = &sc->arpcom.ac_if;
2484 
2485 	if (!sc->link_active && ifp->if_timer) {
2486 		emx_tx_collect(&sc->tx_data);
2487 		if (ifp->if_timer) {
2488 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2489 			ifp->if_timer = 0;
2490 			emx_init(sc);
2491 		}
2492 	}
2493 }
2494 
2495 static int
2496 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2497 {
2498 	struct mbuf *m;
2499 	bus_dma_segment_t seg;
2500 	bus_dmamap_t map;
2501 	struct emx_rxbuf *rx_buffer;
2502 	int error, nseg;
2503 
2504 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2505 	if (m == NULL) {
2506 		if (init) {
2507 			if_printf(&rdata->sc->arpcom.ac_if,
2508 				  "Unable to allocate RX mbuf\n");
2509 		}
2510 		return (ENOBUFS);
2511 	}
2512 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2513 
2514 	if (rdata->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2515 		m_adj(m, ETHER_ALIGN);
2516 
2517 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2518 			rdata->rx_sparemap, m,
2519 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2520 	if (error) {
2521 		m_freem(m);
2522 		if (init) {
2523 			if_printf(&rdata->sc->arpcom.ac_if,
2524 				  "Unable to load RX mbuf\n");
2525 		}
2526 		return (error);
2527 	}
2528 
2529 	rx_buffer = &rdata->rx_buf[i];
2530 	if (rx_buffer->m_head != NULL)
2531 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2532 
2533 	map = rx_buffer->map;
2534 	rx_buffer->map = rdata->rx_sparemap;
2535 	rdata->rx_sparemap = map;
2536 
2537 	rx_buffer->m_head = m;
2538 	rx_buffer->paddr = seg.ds_addr;
2539 
2540 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2541 	return (0);
2542 }
2543 
2544 static int
2545 emx_create_rx_ring(struct emx_rxdata *rdata)
2546 {
2547 	device_t dev = rdata->sc->dev;
2548 	struct emx_rxbuf *rx_buffer;
2549 	int i, error, rsize, nrxd;
2550 
2551 	/*
2552 	 * Validate number of receive descriptors.  It must not exceed
2553 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2554 	 */
2555 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2556 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2557 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2558 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2559 		    EMX_DEFAULT_RXD, nrxd);
2560 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2561 	} else {
2562 		rdata->num_rx_desc = nrxd;
2563 	}
2564 
2565 	/*
2566 	 * Allocate Receive Descriptor ring
2567 	 */
2568 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2569 			 EMX_DBA_ALIGN);
2570 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2571 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2572 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2573 				&rdata->rx_desc_paddr);
2574 	if (rdata->rx_desc == NULL) {
2575 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2576 		return ENOMEM;
2577 	}
2578 
2579 	rsize = __VM_CACHELINE_ALIGN(
2580 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2581 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2582 
2583 	/*
2584 	 * Create DMA tag for rx buffers
2585 	 */
2586 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2587 			1, 0,			/* alignment, bounds */
2588 			BUS_SPACE_MAXADDR,	/* lowaddr */
2589 			BUS_SPACE_MAXADDR,	/* highaddr */
2590 			NULL, NULL,		/* filter, filterarg */
2591 			MCLBYTES,		/* maxsize */
2592 			1,			/* nsegments */
2593 			MCLBYTES,		/* maxsegsize */
2594 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2595 			&rdata->rxtag);
2596 	if (error) {
2597 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2598 		kfree(rdata->rx_buf, M_DEVBUF);
2599 		rdata->rx_buf = NULL;
2600 		return error;
2601 	}
2602 
2603 	/*
2604 	 * Create spare DMA map for rx buffers
2605 	 */
2606 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2607 				  &rdata->rx_sparemap);
2608 	if (error) {
2609 		device_printf(dev, "Unable to create spare RX DMA map\n");
2610 		bus_dma_tag_destroy(rdata->rxtag);
2611 		kfree(rdata->rx_buf, M_DEVBUF);
2612 		rdata->rx_buf = NULL;
2613 		return error;
2614 	}
2615 
2616 	/*
2617 	 * Create DMA maps for rx buffers
2618 	 */
2619 	for (i = 0; i < rdata->num_rx_desc; i++) {
2620 		rx_buffer = &rdata->rx_buf[i];
2621 
2622 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2623 					  &rx_buffer->map);
2624 		if (error) {
2625 			device_printf(dev, "Unable to create RX DMA map\n");
2626 			emx_destroy_rx_ring(rdata, i);
2627 			return error;
2628 		}
2629 	}
2630 	return (0);
2631 }
2632 
2633 static void
2634 emx_free_rx_ring(struct emx_rxdata *rdata)
2635 {
2636 	int i;
2637 
2638 	for (i = 0; i < rdata->num_rx_desc; i++) {
2639 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2640 
2641 		if (rx_buffer->m_head != NULL) {
2642 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2643 			m_freem(rx_buffer->m_head);
2644 			rx_buffer->m_head = NULL;
2645 		}
2646 	}
2647 
2648 	if (rdata->fmp != NULL)
2649 		m_freem(rdata->fmp);
2650 	rdata->fmp = NULL;
2651 	rdata->lmp = NULL;
2652 }
2653 
2654 static int
2655 emx_init_rx_ring(struct emx_rxdata *rdata)
2656 {
2657 	int i, error;
2658 
2659 	/* Reset descriptor ring */
2660 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2661 
2662 	/* Allocate new ones. */
2663 	for (i = 0; i < rdata->num_rx_desc; i++) {
2664 		error = emx_newbuf(rdata, i, 1);
2665 		if (error)
2666 			return (error);
2667 	}
2668 
2669 	/* Setup our descriptor pointers */
2670 	rdata->next_rx_desc_to_check = 0;
2671 
2672 	return (0);
2673 }
2674 
2675 static void
2676 emx_init_rx_unit(struct emx_softc *sc)
2677 {
2678 	struct ifnet *ifp = &sc->arpcom.ac_if;
2679 	uint64_t bus_addr;
2680 	uint32_t rctl, itr, rfctl;
2681 	int i;
2682 
2683 	/*
2684 	 * Make sure receives are disabled while setting
2685 	 * up the descriptor ring
2686 	 */
2687 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2688 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2689 
2690 	/*
2691 	 * Set the interrupt throttling rate. Value is calculated
2692 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2693 	 */
2694 	if (sc->int_throttle_ceil)
2695 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2696 	else
2697 		itr = 0;
2698 	emx_set_itr(sc, itr);
2699 
2700 	/* Use extended RX descriptor */
2701 	rfctl = E1000_RFCTL_EXTEN;
2702 
2703 	/* Disable accelerated ackknowledge */
2704 	if (sc->hw.mac.type == e1000_82574)
2705 		rfctl |= E1000_RFCTL_ACK_DIS;
2706 
2707 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2708 
2709 	/*
2710 	 * Receive Checksum Offload for TCP and UDP
2711 	 *
2712 	 * Checksum offloading is also enabled if multiple receive
2713 	 * queue is to be supported, since we need it to figure out
2714 	 * packet type.
2715 	 */
2716 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2717 	    sc->rx_ring_cnt > 1) {
2718 		uint32_t rxcsum;
2719 
2720 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2721 
2722 		/*
2723 		 * NOTE:
2724 		 * PCSD must be enabled to enable multiple
2725 		 * receive queues.
2726 		 */
2727 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2728 			  E1000_RXCSUM_PCSD;
2729 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2730 	}
2731 
2732 	/*
2733 	 * Configure multiple receive queue (RSS)
2734 	 */
2735 	if (sc->rx_ring_cnt > 1) {
2736 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2737 		uint32_t reta;
2738 
2739 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2740 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2741 
2742 		/*
2743 		 * NOTE:
2744 		 * When we reach here, RSS has already been disabled
2745 		 * in emx_stop(), so we could safely configure RSS key
2746 		 * and redirect table.
2747 		 */
2748 
2749 		/*
2750 		 * Configure RSS key
2751 		 */
2752 		toeplitz_get_key(key, sizeof(key));
2753 		for (i = 0; i < EMX_NRSSRK; ++i) {
2754 			uint32_t rssrk;
2755 
2756 			rssrk = EMX_RSSRK_VAL(key, i);
2757 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2758 
2759 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2760 		}
2761 
2762 		/*
2763 		 * Configure RSS redirect table in following fashion:
2764 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2765 		 */
2766 		reta = 0;
2767 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2768 			uint32_t q;
2769 
2770 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2771 			reta |= q << (8 * i);
2772 		}
2773 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2774 
2775 		for (i = 0; i < EMX_NRETA; ++i)
2776 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2777 
2778 		/*
2779 		 * Enable multiple receive queues.
2780 		 * Enable IPv4 RSS standard hash functions.
2781 		 * Disable RSS interrupt.
2782 		 */
2783 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2784 				E1000_MRQC_ENABLE_RSS_2Q |
2785 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2786 				E1000_MRQC_RSS_FIELD_IPV4);
2787 	}
2788 
2789 	/*
2790 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2791 	 * long latencies are observed, like Lenovo X60. This
2792 	 * change eliminates the problem, but since having positive
2793 	 * values in RDTR is a known source of problems on other
2794 	 * platforms another solution is being sought.
2795 	 */
2796 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2797 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2798 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2799 	}
2800 
2801 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2802 		struct emx_rxdata *rdata = &sc->rx_data[i];
2803 
2804 		/*
2805 		 * Setup the Base and Length of the Rx Descriptor Ring
2806 		 */
2807 		bus_addr = rdata->rx_desc_paddr;
2808 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2809 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2810 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2811 		    (uint32_t)(bus_addr >> 32));
2812 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2813 		    (uint32_t)bus_addr);
2814 
2815 		/*
2816 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2817 		 */
2818 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2819 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2820 		    sc->rx_data[i].num_rx_desc - 1);
2821 	}
2822 
2823 	/* Setup the Receive Control Register */
2824 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2825 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2826 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2827 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2828 
2829 	/* Make sure VLAN Filters are off */
2830 	rctl &= ~E1000_RCTL_VFE;
2831 
2832 	/* Don't store bad paket */
2833 	rctl &= ~E1000_RCTL_SBP;
2834 
2835 	/* MCLBYTES */
2836 	rctl |= E1000_RCTL_SZ_2048;
2837 
2838 	if (ifp->if_mtu > ETHERMTU)
2839 		rctl |= E1000_RCTL_LPE;
2840 	else
2841 		rctl &= ~E1000_RCTL_LPE;
2842 
2843 	/* Enable Receives */
2844 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2845 }
2846 
2847 static void
2848 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
2849 {
2850 	struct emx_rxbuf *rx_buffer;
2851 	int i;
2852 
2853 	/* Free Receive Descriptor ring */
2854 	if (rdata->rx_desc) {
2855 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2856 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2857 				rdata->rx_desc_dmap);
2858 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2859 
2860 		rdata->rx_desc = NULL;
2861 	}
2862 
2863 	if (rdata->rx_buf == NULL)
2864 		return;
2865 
2866 	for (i = 0; i < ndesc; i++) {
2867 		rx_buffer = &rdata->rx_buf[i];
2868 
2869 		KKASSERT(rx_buffer->m_head == NULL);
2870 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2871 	}
2872 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2873 	bus_dma_tag_destroy(rdata->rxtag);
2874 
2875 	kfree(rdata->rx_buf, M_DEVBUF);
2876 	rdata->rx_buf = NULL;
2877 }
2878 
2879 static void
2880 emx_rxeof(struct emx_rxdata *rdata, int count)
2881 {
2882 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
2883 	uint32_t staterr;
2884 	emx_rxdesc_t *current_desc;
2885 	struct mbuf *mp;
2886 	int i;
2887 
2888 	i = rdata->next_rx_desc_to_check;
2889 	current_desc = &rdata->rx_desc[i];
2890 	staterr = le32toh(current_desc->rxd_staterr);
2891 
2892 	if (!(staterr & E1000_RXD_STAT_DD))
2893 		return;
2894 
2895 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2896 		struct pktinfo *pi = NULL, pi0;
2897 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2898 		struct mbuf *m = NULL;
2899 		int eop, len;
2900 
2901 		logif(pkt_receive);
2902 
2903 		mp = rx_buf->m_head;
2904 
2905 		/*
2906 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2907 		 * needs to access the last received byte in the mbuf.
2908 		 */
2909 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2910 				BUS_DMASYNC_POSTREAD);
2911 
2912 		len = le16toh(current_desc->rxd_length);
2913 		if (staterr & E1000_RXD_STAT_EOP) {
2914 			count--;
2915 			eop = 1;
2916 		} else {
2917 			eop = 0;
2918 		}
2919 
2920 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2921 			uint16_t vlan = 0;
2922 			uint32_t mrq, rss_hash;
2923 
2924 			/*
2925 			 * Save several necessary information,
2926 			 * before emx_newbuf() destroy it.
2927 			 */
2928 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2929 				vlan = le16toh(current_desc->rxd_vlan);
2930 
2931 			mrq = le32toh(current_desc->rxd_mrq);
2932 			rss_hash = le32toh(current_desc->rxd_rss);
2933 
2934 			EMX_RSS_DPRINTF(rdata->sc, 10,
2935 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2936 			    rdata->idx, mrq, rss_hash);
2937 
2938 			if (emx_newbuf(rdata, i, 0) != 0) {
2939 				ifp->if_iqdrops++;
2940 				goto discard;
2941 			}
2942 
2943 			/* Assign correct length to the current fragment */
2944 			mp->m_len = len;
2945 
2946 			if (rdata->fmp == NULL) {
2947 				mp->m_pkthdr.len = len;
2948 				rdata->fmp = mp; /* Store the first mbuf */
2949 				rdata->lmp = mp;
2950 			} else {
2951 				/*
2952 				 * Chain mbuf's together
2953 				 */
2954 				rdata->lmp->m_next = mp;
2955 				rdata->lmp = rdata->lmp->m_next;
2956 				rdata->fmp->m_pkthdr.len += len;
2957 			}
2958 
2959 			if (eop) {
2960 				rdata->fmp->m_pkthdr.rcvif = ifp;
2961 				ifp->if_ipackets++;
2962 
2963 				if (ifp->if_capenable & IFCAP_RXCSUM)
2964 					emx_rxcsum(staterr, rdata->fmp);
2965 
2966 				if (staterr & E1000_RXD_STAT_VP) {
2967 					rdata->fmp->m_pkthdr.ether_vlantag =
2968 					    vlan;
2969 					rdata->fmp->m_flags |= M_VLANTAG;
2970 				}
2971 				m = rdata->fmp;
2972 				rdata->fmp = NULL;
2973 				rdata->lmp = NULL;
2974 
2975 				if (ifp->if_capenable & IFCAP_RSS) {
2976 					pi = emx_rssinfo(m, &pi0, mrq,
2977 							 rss_hash, staterr);
2978 				}
2979 #ifdef EMX_RSS_DEBUG
2980 				rdata->rx_pkts++;
2981 #endif
2982 			}
2983 		} else {
2984 			ifp->if_ierrors++;
2985 discard:
2986 			emx_setup_rxdesc(current_desc, rx_buf);
2987 			if (rdata->fmp != NULL) {
2988 				m_freem(rdata->fmp);
2989 				rdata->fmp = NULL;
2990 				rdata->lmp = NULL;
2991 			}
2992 			m = NULL;
2993 		}
2994 
2995 		if (m != NULL)
2996 			ether_input_pkt(ifp, m, pi);
2997 
2998 		/* Advance our pointers to the next descriptor. */
2999 		if (++i == rdata->num_rx_desc)
3000 			i = 0;
3001 
3002 		current_desc = &rdata->rx_desc[i];
3003 		staterr = le32toh(current_desc->rxd_staterr);
3004 	}
3005 	rdata->next_rx_desc_to_check = i;
3006 
3007 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3008 	if (--i < 0)
3009 		i = rdata->num_rx_desc - 1;
3010 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3011 }
3012 
3013 static void
3014 emx_enable_intr(struct emx_softc *sc)
3015 {
3016 	uint32_t ims_mask = IMS_ENABLE_MASK;
3017 
3018 	lwkt_serialize_handler_enable(&sc->main_serialize);
3019 
3020 #if 0
3021 	if (sc->hw.mac.type == e1000_82574) {
3022 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3023 		ims_mask |= EM_MSIX_MASK;
3024 	}
3025 #endif
3026 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3027 }
3028 
3029 static void
3030 emx_disable_intr(struct emx_softc *sc)
3031 {
3032 	if (sc->hw.mac.type == e1000_82574)
3033 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3034 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3035 
3036 	lwkt_serialize_handler_disable(&sc->main_serialize);
3037 }
3038 
3039 /*
3040  * Bit of a misnomer, what this really means is
3041  * to enable OS management of the system... aka
3042  * to disable special hardware management features
3043  */
3044 static void
3045 emx_get_mgmt(struct emx_softc *sc)
3046 {
3047 	/* A shared code workaround */
3048 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3049 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3050 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3051 
3052 		/* disable hardware interception of ARP */
3053 		manc &= ~(E1000_MANC_ARP_EN);
3054 
3055                 /* enable receiving management packets to the host */
3056 		manc |= E1000_MANC_EN_MNG2HOST;
3057 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3058 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3059 		manc2h |= E1000_MNG2HOST_PORT_623;
3060 		manc2h |= E1000_MNG2HOST_PORT_664;
3061 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3062 
3063 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3064 	}
3065 }
3066 
3067 /*
3068  * Give control back to hardware management
3069  * controller if there is one.
3070  */
3071 static void
3072 emx_rel_mgmt(struct emx_softc *sc)
3073 {
3074 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3075 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3076 
3077 		/* re-enable hardware interception of ARP */
3078 		manc |= E1000_MANC_ARP_EN;
3079 		manc &= ~E1000_MANC_EN_MNG2HOST;
3080 
3081 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3082 	}
3083 }
3084 
3085 /*
3086  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3087  * For ASF and Pass Through versions of f/w this means that
3088  * the driver is loaded.  For AMT version (only with 82573)
3089  * of the f/w this means that the network i/f is open.
3090  */
3091 static void
3092 emx_get_hw_control(struct emx_softc *sc)
3093 {
3094 	/* Let firmware know the driver has taken over */
3095 	if (sc->hw.mac.type == e1000_82573) {
3096 		uint32_t swsm;
3097 
3098 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3099 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3100 		    swsm | E1000_SWSM_DRV_LOAD);
3101 	} else {
3102 		uint32_t ctrl_ext;
3103 
3104 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3105 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3106 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3107 	}
3108 	sc->flags |= EMX_FLAG_HW_CTRL;
3109 }
3110 
3111 /*
3112  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3113  * For ASF and Pass Through versions of f/w this means that the
3114  * driver is no longer loaded.  For AMT version (only with 82573)
3115  * of the f/w this means that the network i/f is closed.
3116  */
3117 static void
3118 emx_rel_hw_control(struct emx_softc *sc)
3119 {
3120 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3121 		return;
3122 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3123 
3124 	/* Let firmware taken over control of h/w */
3125 	if (sc->hw.mac.type == e1000_82573) {
3126 		uint32_t swsm;
3127 
3128 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3129 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3130 		    swsm & ~E1000_SWSM_DRV_LOAD);
3131 	} else {
3132 		uint32_t ctrl_ext;
3133 
3134 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3135 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3136 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3137 	}
3138 }
3139 
3140 static int
3141 emx_is_valid_eaddr(const uint8_t *addr)
3142 {
3143 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3144 
3145 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3146 		return (FALSE);
3147 
3148 	return (TRUE);
3149 }
3150 
3151 /*
3152  * Enable PCI Wake On Lan capability
3153  */
3154 void
3155 emx_enable_wol(device_t dev)
3156 {
3157 	uint16_t cap, status;
3158 	uint8_t id;
3159 
3160 	/* First find the capabilities pointer*/
3161 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3162 
3163 	/* Read the PM Capabilities */
3164 	id = pci_read_config(dev, cap, 1);
3165 	if (id != PCIY_PMG)     /* Something wrong */
3166 		return;
3167 
3168 	/*
3169 	 * OK, we have the power capabilities,
3170 	 * so now get the status register
3171 	 */
3172 	cap += PCIR_POWER_STATUS;
3173 	status = pci_read_config(dev, cap, 2);
3174 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3175 	pci_write_config(dev, cap, status, 2);
3176 }
3177 
3178 static void
3179 emx_update_stats(struct emx_softc *sc)
3180 {
3181 	struct ifnet *ifp = &sc->arpcom.ac_if;
3182 
3183 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3184 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3185 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3186 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3187 	}
3188 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3189 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3190 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3191 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3192 
3193 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3194 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3195 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3196 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3197 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3198 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3199 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3200 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3201 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3202 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3203 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3204 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3205 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3206 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3207 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3208 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3209 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3210 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3211 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3212 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3213 
3214 	/* For the 64-bit byte counters the low dword must be read first. */
3215 	/* Both registers clear on the read of the high dword */
3216 
3217 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3218 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3219 
3220 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3221 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3222 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3223 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3224 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3225 
3226 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3227 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3228 
3229 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3230 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3231 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3232 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3233 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3234 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3235 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3236 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3237 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3238 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3239 
3240 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3241 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3242 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3243 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3244 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3245 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3246 
3247 	ifp->if_collisions = sc->stats.colc;
3248 
3249 	/* Rx Errors */
3250 	ifp->if_ierrors = sc->stats.rxerrc +
3251 			  sc->stats.crcerrs + sc->stats.algnerrc +
3252 			  sc->stats.ruc + sc->stats.roc +
3253 			  sc->stats.mpc + sc->stats.cexterr;
3254 
3255 	/* Tx Errors */
3256 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol;
3257 }
3258 
3259 static void
3260 emx_print_debug_info(struct emx_softc *sc)
3261 {
3262 	device_t dev = sc->dev;
3263 	uint8_t *hw_addr = sc->hw.hw_addr;
3264 
3265 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3266 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3267 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3268 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3269 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3270 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3271 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3272 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3273 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3274 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3275 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3276 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3277 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3278 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3279 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3280 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3281 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3282 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3283 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3284 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3285 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3286 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3287 	    sc->tx_data.num_tx_desc_avail);
3288 
3289 	device_printf(dev, "TSO segments %lu\n", sc->tx_data.tso_segments);
3290 	device_printf(dev, "TSO ctx reused %lu\n", sc->tx_data.tso_ctx_reused);
3291 }
3292 
3293 static void
3294 emx_print_hw_stats(struct emx_softc *sc)
3295 {
3296 	device_t dev = sc->dev;
3297 
3298 	device_printf(dev, "Excessive collisions = %lld\n",
3299 	    (long long)sc->stats.ecol);
3300 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3301 	device_printf(dev, "Symbol errors = %lld\n",
3302 	    (long long)sc->stats.symerrs);
3303 #endif
3304 	device_printf(dev, "Sequence errors = %lld\n",
3305 	    (long long)sc->stats.sec);
3306 	device_printf(dev, "Defer count = %lld\n",
3307 	    (long long)sc->stats.dc);
3308 	device_printf(dev, "Missed Packets = %lld\n",
3309 	    (long long)sc->stats.mpc);
3310 	device_printf(dev, "Receive No Buffers = %lld\n",
3311 	    (long long)sc->stats.rnbc);
3312 	/* RLEC is inaccurate on some hardware, calculate our own. */
3313 	device_printf(dev, "Receive Length Errors = %lld\n",
3314 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3315 	device_printf(dev, "Receive errors = %lld\n",
3316 	    (long long)sc->stats.rxerrc);
3317 	device_printf(dev, "Crc errors = %lld\n",
3318 	    (long long)sc->stats.crcerrs);
3319 	device_printf(dev, "Alignment errors = %lld\n",
3320 	    (long long)sc->stats.algnerrc);
3321 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3322 	    (long long)sc->stats.cexterr);
3323 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3324 	device_printf(dev, "XON Rcvd = %lld\n",
3325 	    (long long)sc->stats.xonrxc);
3326 	device_printf(dev, "XON Xmtd = %lld\n",
3327 	    (long long)sc->stats.xontxc);
3328 	device_printf(dev, "XOFF Rcvd = %lld\n",
3329 	    (long long)sc->stats.xoffrxc);
3330 	device_printf(dev, "XOFF Xmtd = %lld\n",
3331 	    (long long)sc->stats.xofftxc);
3332 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3333 	    (long long)sc->stats.gprc);
3334 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3335 	    (long long)sc->stats.gptc);
3336 }
3337 
3338 static void
3339 emx_print_nvm_info(struct emx_softc *sc)
3340 {
3341 	uint16_t eeprom_data;
3342 	int i, j, row = 0;
3343 
3344 	/* Its a bit crude, but it gets the job done */
3345 	kprintf("\nInterface EEPROM Dump:\n");
3346 	kprintf("Offset\n0x0000  ");
3347 	for (i = 0, j = 0; i < 32; i++, j++) {
3348 		if (j == 8) { /* Make the offset block */
3349 			j = 0; ++row;
3350 			kprintf("\n0x00%x0  ",row);
3351 		}
3352 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3353 		kprintf("%04x ", eeprom_data);
3354 	}
3355 	kprintf("\n");
3356 }
3357 
3358 static int
3359 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3360 {
3361 	struct emx_softc *sc;
3362 	struct ifnet *ifp;
3363 	int error, result;
3364 
3365 	result = -1;
3366 	error = sysctl_handle_int(oidp, &result, 0, req);
3367 	if (error || !req->newptr)
3368 		return (error);
3369 
3370 	sc = (struct emx_softc *)arg1;
3371 	ifp = &sc->arpcom.ac_if;
3372 
3373 	ifnet_serialize_all(ifp);
3374 
3375 	if (result == 1)
3376 		emx_print_debug_info(sc);
3377 
3378 	/*
3379 	 * This value will cause a hex dump of the
3380 	 * first 32 16-bit words of the EEPROM to
3381 	 * the screen.
3382 	 */
3383 	if (result == 2)
3384 		emx_print_nvm_info(sc);
3385 
3386 	ifnet_deserialize_all(ifp);
3387 
3388 	return (error);
3389 }
3390 
3391 static int
3392 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3393 {
3394 	int error, result;
3395 
3396 	result = -1;
3397 	error = sysctl_handle_int(oidp, &result, 0, req);
3398 	if (error || !req->newptr)
3399 		return (error);
3400 
3401 	if (result == 1) {
3402 		struct emx_softc *sc = (struct emx_softc *)arg1;
3403 		struct ifnet *ifp = &sc->arpcom.ac_if;
3404 
3405 		ifnet_serialize_all(ifp);
3406 		emx_print_hw_stats(sc);
3407 		ifnet_deserialize_all(ifp);
3408 	}
3409 	return (error);
3410 }
3411 
3412 static void
3413 emx_add_sysctl(struct emx_softc *sc)
3414 {
3415 #ifdef EMX_RSS_DEBUG
3416 	char rx_pkt[32];
3417 	int i;
3418 #endif
3419 
3420 	sysctl_ctx_init(&sc->sysctl_ctx);
3421 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3422 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3423 				device_get_nameunit(sc->dev),
3424 				CTLFLAG_RD, 0, "");
3425 	if (sc->sysctl_tree == NULL) {
3426 		device_printf(sc->dev, "can't add sysctl node\n");
3427 		return;
3428 	}
3429 
3430 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3431 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3432 			emx_sysctl_debug_info, "I", "Debug Information");
3433 
3434 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3435 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3436 			emx_sysctl_stats, "I", "Statistics");
3437 
3438 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3439 		       OID_AUTO, "rxd", CTLFLAG_RD,
3440 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3441 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3442 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data.num_tx_desc, 0, NULL);
3443 
3444 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3445 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3446 			sc, 0, emx_sysctl_int_throttle, "I",
3447 			"interrupt throttling rate");
3448 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3449 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3450 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3451 			"# segments per TX interrupt");
3452 
3453 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3454 		       OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3455 		       &sc->rx_ring_cnt, 0, "RX ring count");
3456 
3457 #ifdef IFPOLL_ENABLE
3458 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3459 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3460 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3461 			"NPOLLING RX cpu offset");
3462 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3463 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3464 			sc, 0, emx_sysctl_npoll_txoff, "I",
3465 			"NPOLLING TX cpu offset");
3466 #endif
3467 
3468 #ifdef EMX_RSS_DEBUG
3469 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3470 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3471 		       0, "RSS debug level");
3472 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3473 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3474 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3475 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3476 				rx_pkt, CTLFLAG_RW,
3477 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3478 	}
3479 #endif
3480 }
3481 
3482 static int
3483 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3484 {
3485 	struct emx_softc *sc = (void *)arg1;
3486 	struct ifnet *ifp = &sc->arpcom.ac_if;
3487 	int error, throttle;
3488 
3489 	throttle = sc->int_throttle_ceil;
3490 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3491 	if (error || req->newptr == NULL)
3492 		return error;
3493 	if (throttle < 0 || throttle > 1000000000 / 256)
3494 		return EINVAL;
3495 
3496 	if (throttle) {
3497 		/*
3498 		 * Set the interrupt throttling rate in 256ns increments,
3499 		 * recalculate sysctl value assignment to get exact frequency.
3500 		 */
3501 		throttle = 1000000000 / 256 / throttle;
3502 
3503 		/* Upper 16bits of ITR is reserved and should be zero */
3504 		if (throttle & 0xffff0000)
3505 			return EINVAL;
3506 	}
3507 
3508 	ifnet_serialize_all(ifp);
3509 
3510 	if (throttle)
3511 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3512 	else
3513 		sc->int_throttle_ceil = 0;
3514 
3515 	if (ifp->if_flags & IFF_RUNNING)
3516 		emx_set_itr(sc, throttle);
3517 
3518 	ifnet_deserialize_all(ifp);
3519 
3520 	if (bootverbose) {
3521 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3522 			  sc->int_throttle_ceil);
3523 	}
3524 	return 0;
3525 }
3526 
3527 static int
3528 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3529 {
3530 	struct emx_softc *sc = (void *)arg1;
3531 	struct ifnet *ifp = &sc->arpcom.ac_if;
3532 	int error, segs;
3533 
3534 	segs = sc->tx_data.tx_int_nsegs;
3535 	error = sysctl_handle_int(oidp, &segs, 0, req);
3536 	if (error || req->newptr == NULL)
3537 		return error;
3538 	if (segs <= 0)
3539 		return EINVAL;
3540 
3541 	ifnet_serialize_all(ifp);
3542 
3543 	/*
3544 	 * Don't allow int_tx_nsegs to become:
3545 	 * o  Less the oact_tx_desc
3546 	 * o  Too large that no TX desc will cause TX interrupt to
3547 	 *    be generated (OACTIVE will never recover)
3548 	 * o  Too small that will cause tx_dd[] overflow
3549 	 */
3550 	if (segs < sc->tx_data.oact_tx_desc ||
3551 	    segs >= sc->tx_data.num_tx_desc - sc->tx_data.oact_tx_desc ||
3552 	    segs < sc->tx_data.num_tx_desc / EMX_TXDD_SAFE) {
3553 		error = EINVAL;
3554 	} else {
3555 		error = 0;
3556 		sc->tx_data.tx_int_nsegs = segs;
3557 	}
3558 
3559 	ifnet_deserialize_all(ifp);
3560 
3561 	return error;
3562 }
3563 
3564 #ifdef IFPOLL_ENABLE
3565 
3566 static int
3567 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3568 {
3569 	struct emx_softc *sc = (void *)arg1;
3570 	struct ifnet *ifp = &sc->arpcom.ac_if;
3571 	int error, off;
3572 
3573 	off = sc->rx_npoll_off;
3574 	error = sysctl_handle_int(oidp, &off, 0, req);
3575 	if (error || req->newptr == NULL)
3576 		return error;
3577 	if (off < 0)
3578 		return EINVAL;
3579 
3580 	ifnet_serialize_all(ifp);
3581 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3582 		error = EINVAL;
3583 	} else {
3584 		error = 0;
3585 		sc->rx_npoll_off = off;
3586 	}
3587 	ifnet_deserialize_all(ifp);
3588 
3589 	return error;
3590 }
3591 
3592 static int
3593 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3594 {
3595 	struct emx_softc *sc = (void *)arg1;
3596 	struct ifnet *ifp = &sc->arpcom.ac_if;
3597 	int error, off;
3598 
3599 	off = sc->tx_npoll_off;
3600 	error = sysctl_handle_int(oidp, &off, 0, req);
3601 	if (error || req->newptr == NULL)
3602 		return error;
3603 	if (off < 0)
3604 		return EINVAL;
3605 
3606 	ifnet_serialize_all(ifp);
3607 	if (off >= ncpus2) {
3608 		error = EINVAL;
3609 	} else {
3610 		error = 0;
3611 		sc->tx_npoll_off = off;
3612 	}
3613 	ifnet_deserialize_all(ifp);
3614 
3615 	return error;
3616 }
3617 
3618 #endif	/* IFPOLL_ENABLE */
3619 
3620 static int
3621 emx_dma_alloc(struct emx_softc *sc)
3622 {
3623 	int error, i;
3624 
3625 	/*
3626 	 * Create top level busdma tag
3627 	 */
3628 	error = bus_dma_tag_create(NULL, 1, 0,
3629 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3630 			NULL, NULL,
3631 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3632 			0, &sc->parent_dtag);
3633 	if (error) {
3634 		device_printf(sc->dev, "could not create top level DMA tag\n");
3635 		return error;
3636 	}
3637 
3638 	/*
3639 	 * Allocate transmit descriptors ring and buffers
3640 	 */
3641 	error = emx_create_tx_ring(&sc->tx_data);
3642 	if (error) {
3643 		device_printf(sc->dev, "Could not setup transmit structures\n");
3644 		return error;
3645 	}
3646 
3647 	/*
3648 	 * Allocate receive descriptors ring and buffers
3649 	 */
3650 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3651 		error = emx_create_rx_ring(&sc->rx_data[i]);
3652 		if (error) {
3653 			device_printf(sc->dev,
3654 			    "Could not setup receive structures\n");
3655 			return error;
3656 		}
3657 	}
3658 	return 0;
3659 }
3660 
3661 static void
3662 emx_dma_free(struct emx_softc *sc)
3663 {
3664 	int i;
3665 
3666 	emx_destroy_tx_ring(&sc->tx_data, sc->tx_data.num_tx_desc);
3667 
3668 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3669 		emx_destroy_rx_ring(&sc->rx_data[i],
3670 				    sc->rx_data[i].num_rx_desc);
3671 	}
3672 
3673 	/* Free top level busdma tag */
3674 	if (sc->parent_dtag != NULL)
3675 		bus_dma_tag_destroy(sc->parent_dtag);
3676 }
3677 
3678 static void
3679 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3680 {
3681 	struct emx_softc *sc = ifp->if_softc;
3682 
3683 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3684 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3685 }
3686 
3687 static void
3688 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3689 {
3690 	struct emx_softc *sc = ifp->if_softc;
3691 
3692 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3693 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3694 }
3695 
3696 static int
3697 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3698 {
3699 	struct emx_softc *sc = ifp->if_softc;
3700 
3701 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3702 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3703 }
3704 
3705 static void
3706 emx_serialize_skipmain(struct emx_softc *sc)
3707 {
3708 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3709 }
3710 
3711 static void
3712 emx_deserialize_skipmain(struct emx_softc *sc)
3713 {
3714 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3715 }
3716 
3717 #ifdef INVARIANTS
3718 
3719 static void
3720 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3721     boolean_t serialized)
3722 {
3723 	struct emx_softc *sc = ifp->if_softc;
3724 
3725 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3726 	    EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3727 }
3728 
3729 #endif	/* INVARIANTS */
3730 
3731 #ifdef IFPOLL_ENABLE
3732 
3733 static void
3734 emx_npoll_status(struct ifnet *ifp)
3735 {
3736 	struct emx_softc *sc = ifp->if_softc;
3737 	uint32_t reg_icr;
3738 
3739 	ASSERT_SERIALIZED(&sc->main_serialize);
3740 
3741 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3742 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3743 		callout_stop(&sc->timer);
3744 		sc->hw.mac.get_link_status = 1;
3745 		emx_update_link_status(sc);
3746 		callout_reset(&sc->timer, hz, emx_timer, sc);
3747 	}
3748 }
3749 
3750 static void
3751 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3752 {
3753 	struct emx_txdata *tdata = arg;
3754 
3755 	ASSERT_SERIALIZED(&tdata->tx_serialize);
3756 
3757 	emx_txeof(tdata);
3758 	if (!ifq_is_empty(&ifp->if_snd))
3759 		if_devstart(ifp);
3760 }
3761 
3762 static void
3763 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3764 {
3765 	struct emx_rxdata *rdata = arg;
3766 
3767 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3768 
3769 	emx_rxeof(rdata, cycle);
3770 }
3771 
3772 static void
3773 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3774 {
3775 	struct emx_softc *sc = ifp->if_softc;
3776 
3777 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3778 
3779 	if (info) {
3780 		int i, off;
3781 
3782 		info->ifpi_status.status_func = emx_npoll_status;
3783 		info->ifpi_status.serializer = &sc->main_serialize;
3784 
3785 		off = sc->tx_npoll_off;
3786 		KKASSERT(off < ncpus2);
3787 		info->ifpi_tx[off].poll_func = emx_npoll_tx;
3788 		info->ifpi_tx[off].arg = &sc->tx_data;
3789 		info->ifpi_tx[off].serializer = &sc->tx_data.tx_serialize;
3790 
3791 		off = sc->rx_npoll_off;
3792 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3793 			struct emx_rxdata *rdata = &sc->rx_data[i];
3794 			int idx = i + off;
3795 
3796 			KKASSERT(idx < ncpus2);
3797 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
3798 			info->ifpi_rx[idx].arg = rdata;
3799 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
3800 		}
3801 
3802 		if (ifp->if_flags & IFF_RUNNING)
3803 			emx_disable_intr(sc);
3804 		ifp->if_npoll_cpuid = sc->tx_npoll_off;
3805 	} else {
3806 		if (ifp->if_flags & IFF_RUNNING)
3807 			emx_enable_intr(sc);
3808 		ifp->if_npoll_cpuid = -1;
3809 	}
3810 }
3811 
3812 #endif	/* IFPOLL_ENABLE */
3813 
3814 static void
3815 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3816 {
3817 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3818 	if (sc->hw.mac.type == e1000_82574) {
3819 		int i;
3820 
3821 		/*
3822 		 * When using MSIX interrupts we need to
3823 		 * throttle using the EITR register
3824 		 */
3825 		for (i = 0; i < 4; ++i)
3826 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3827 	}
3828 }
3829 
3830 /*
3831  * Disable the L0s, 82574L Errata #20
3832  */
3833 static void
3834 emx_disable_aspm(struct emx_softc *sc)
3835 {
3836 	uint16_t link_cap, link_ctrl, disable;
3837 	uint8_t pcie_ptr, reg;
3838 	device_t dev = sc->dev;
3839 
3840 	switch (sc->hw.mac.type) {
3841 	case e1000_82571:
3842 	case e1000_82572:
3843 	case e1000_82573:
3844 		/*
3845 		 * 82573 specification update
3846 		 * errata #8 disable L0s
3847 		 * errata #41 disable L1
3848 		 *
3849 		 * 82571/82572 specification update
3850 		 # errata #13 disable L1
3851 		 * errata #68 disable L0s
3852 		 */
3853 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3854 		break;
3855 
3856 	case e1000_82574:
3857 		/*
3858 		 * 82574 specification update errata #20
3859 		 *
3860 		 * There is no need to disable L1
3861 		 */
3862 		disable = PCIEM_LNKCTL_ASPM_L0S;
3863 		break;
3864 
3865 	default:
3866 		return;
3867 	}
3868 
3869 	pcie_ptr = pci_get_pciecap_ptr(dev);
3870 	if (pcie_ptr == 0)
3871 		return;
3872 
3873 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3874 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3875 		return;
3876 
3877 	if (bootverbose)
3878 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3879 
3880 	reg = pcie_ptr + PCIER_LINKCTRL;
3881 	link_ctrl = pci_read_config(dev, reg, 2);
3882 	link_ctrl &= ~disable;
3883 	pci_write_config(dev, reg, link_ctrl, 2);
3884 }
3885 
3886 static int
3887 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
3888 {
3889 	int iphlen, hoff, thoff, ex = 0;
3890 	struct mbuf *m;
3891 	struct ip *ip;
3892 
3893 	m = *mp;
3894 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
3895 
3896 	iphlen = m->m_pkthdr.csum_iphlen;
3897 	thoff = m->m_pkthdr.csum_thlen;
3898 	hoff = m->m_pkthdr.csum_lhlen;
3899 
3900 	KASSERT(iphlen > 0, ("invalid ip hlen"));
3901 	KASSERT(thoff > 0, ("invalid tcp hlen"));
3902 	KASSERT(hoff > 0, ("invalid ether hlen"));
3903 
3904 	if (tdata->sc->flags & EMX_FLAG_TSO_PULLEX)
3905 		ex = 4;
3906 
3907 	if (m->m_len < hoff + iphlen + thoff + ex) {
3908 		m = m_pullup(m, hoff + iphlen + thoff + ex);
3909 		if (m == NULL) {
3910 			*mp = NULL;
3911 			return ENOBUFS;
3912 		}
3913 		*mp = m;
3914 	}
3915 	ip = mtodoff(m, struct ip *, hoff);
3916 	ip->ip_len = 0;
3917 
3918 	return 0;
3919 }
3920 
3921 static int
3922 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
3923     uint32_t *txd_upper, uint32_t *txd_lower)
3924 {
3925 	struct e1000_context_desc *TXD;
3926 	int hoff, iphlen, thoff, hlen;
3927 	int mss, pktlen, curr_txd;
3928 
3929 #ifdef EMX_TSO_DEBUG
3930 	tdata->tso_segments++;
3931 #endif
3932 
3933 	iphlen = mp->m_pkthdr.csum_iphlen;
3934 	thoff = mp->m_pkthdr.csum_thlen;
3935 	hoff = mp->m_pkthdr.csum_lhlen;
3936 	mss = mp->m_pkthdr.tso_segsz;
3937 	pktlen = mp->m_pkthdr.len;
3938 
3939 	if (tdata->csum_flags == CSUM_TSO &&
3940 	    tdata->csum_iphlen == iphlen &&
3941 	    tdata->csum_lhlen == hoff &&
3942 	    tdata->csum_thlen == thoff &&
3943 	    tdata->csum_mss == mss &&
3944 	    tdata->csum_pktlen == pktlen) {
3945 		*txd_upper = tdata->csum_txd_upper;
3946 		*txd_lower = tdata->csum_txd_lower;
3947 #ifdef EMX_TSO_DEBUG
3948 		tdata->tso_ctx_reused++;
3949 #endif
3950 		return 0;
3951 	}
3952 	hlen = hoff + iphlen + thoff;
3953 
3954 	/*
3955 	 * Setup a new TSO context.
3956 	 */
3957 
3958 	curr_txd = tdata->next_avail_tx_desc;
3959 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
3960 
3961 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3962 		     E1000_TXD_DTYP_D |		/* Data descr type */
3963 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
3964 
3965 	/* IP and/or TCP header checksum calculation and insertion. */
3966 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
3967 
3968 	/*
3969 	 * Start offset for header checksum calculation.
3970 	 * End offset for header checksum calculation.
3971 	 * Offset of place put the checksum.
3972 	 */
3973 	TXD->lower_setup.ip_fields.ipcss = hoff;
3974 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
3975 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
3976 
3977 	/*
3978 	 * Start offset for payload checksum calculation.
3979 	 * End offset for payload checksum calculation.
3980 	 * Offset of place to put the checksum.
3981 	 */
3982 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
3983 	TXD->upper_setup.tcp_fields.tucse = 0;
3984 	TXD->upper_setup.tcp_fields.tucso =
3985 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
3986 
3987 	/*
3988 	 * Payload size per packet w/o any headers.
3989 	 * Length of all headers up to payload.
3990 	 */
3991 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
3992 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
3993 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
3994 				E1000_TXD_CMD_DEXT |	/* Extended descr */
3995 				E1000_TXD_CMD_TSE |	/* TSE context */
3996 				E1000_TXD_CMD_IP |	/* Do IP csum */
3997 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
3998 				(pktlen - hlen));	/* Total len */
3999 
4000 	/* Save the information for this TSO context */
4001 	tdata->csum_flags = CSUM_TSO;
4002 	tdata->csum_lhlen = hoff;
4003 	tdata->csum_iphlen = iphlen;
4004 	tdata->csum_thlen = thoff;
4005 	tdata->csum_mss = mss;
4006 	tdata->csum_pktlen = pktlen;
4007 	tdata->csum_txd_upper = *txd_upper;
4008 	tdata->csum_txd_lower = *txd_lower;
4009 
4010 	if (++curr_txd == tdata->num_tx_desc)
4011 		curr_txd = 0;
4012 
4013 	KKASSERT(tdata->num_tx_desc_avail > 0);
4014 	tdata->num_tx_desc_avail--;
4015 
4016 	tdata->next_avail_tx_desc = curr_txd;
4017 	return 1;
4018 }
4019