xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 7d84b73d)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/if_ringmap.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/ig_hal/e1000_dragonfly.h>
113 #include <dev/netif/emx/if_emx.h>
114 
115 #define DEBUG_HW 0
116 
117 #ifdef EMX_RSS_DEBUG
118 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
119 do { \
120 	if (sc->rss_debug >= lvl) \
121 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
122 } while (0)
123 #else	/* !EMX_RSS_DEBUG */
124 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
125 #endif	/* EMX_RSS_DEBUG */
126 
127 #define EMX_NAME	"Intel(R) PRO/1000 "
128 
129 #define EMX_DEVICE(id)	\
130 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
131 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
132 
133 static const struct emx_device {
134 	uint16_t	vid;
135 	uint16_t	did;
136 	const char	*desc;
137 } emx_devices[] = {
138 	EMX_DEVICE(82571EB_COPPER),
139 	EMX_DEVICE(82571EB_FIBER),
140 	EMX_DEVICE(82571EB_SERDES),
141 	EMX_DEVICE(82571EB_SERDES_DUAL),
142 	EMX_DEVICE(82571EB_SERDES_QUAD),
143 	EMX_DEVICE(82571EB_QUAD_COPPER),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
145 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
146 	EMX_DEVICE(82571EB_QUAD_FIBER),
147 	EMX_DEVICE(82571PT_QUAD_COPPER),
148 
149 	EMX_DEVICE(82572EI_COPPER),
150 	EMX_DEVICE(82572EI_FIBER),
151 	EMX_DEVICE(82572EI_SERDES),
152 	EMX_DEVICE(82572EI),
153 
154 	EMX_DEVICE(82573E),
155 	EMX_DEVICE(82573E_IAMT),
156 	EMX_DEVICE(82573L),
157 
158 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
160 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
161 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
162 
163 	EMX_DEVICE(82574L),
164 	EMX_DEVICE(82574LA),
165 
166 	EMX_DEVICE(PCH_LPT_I217_LM),
167 	EMX_DEVICE(PCH_LPT_I217_V),
168 	EMX_DEVICE(PCH_LPTLP_I218_LM),
169 	EMX_DEVICE(PCH_LPTLP_I218_V),
170 	EMX_DEVICE(PCH_I218_LM2),
171 	EMX_DEVICE(PCH_I218_V2),
172 	EMX_DEVICE(PCH_I218_LM3),
173 	EMX_DEVICE(PCH_I218_V3),
174 	EMX_DEVICE(PCH_SPT_I219_LM),
175 	EMX_DEVICE(PCH_SPT_I219_V),
176 	EMX_DEVICE(PCH_SPT_I219_LM2),
177 	EMX_DEVICE(PCH_SPT_I219_V2),
178 	EMX_DEVICE(PCH_LBG_I219_LM3),
179 	EMX_DEVICE(PCH_SPT_I219_LM4),
180 	EMX_DEVICE(PCH_SPT_I219_V4),
181 	EMX_DEVICE(PCH_SPT_I219_LM5),
182 	EMX_DEVICE(PCH_SPT_I219_V5),
183 	EMX_DEVICE(PCH_CNP_I219_LM6),
184 	EMX_DEVICE(PCH_CNP_I219_V6),
185 	EMX_DEVICE(PCH_CNP_I219_LM7),
186 	EMX_DEVICE(PCH_CNP_I219_V7),
187 	EMX_DEVICE(PCH_ICP_I219_LM8),
188 	EMX_DEVICE(PCH_ICP_I219_V8),
189 	EMX_DEVICE(PCH_ICP_I219_LM9),
190 	EMX_DEVICE(PCH_ICP_I219_V9),
191 	EMX_DEVICE(PCH_CMP_I219_LM10),
192 	EMX_DEVICE(PCH_CMP_I219_V10),
193 	EMX_DEVICE(PCH_CMP_I219_LM11),
194 	EMX_DEVICE(PCH_CMP_I219_V11),
195 	EMX_DEVICE(PCH_CMP_I219_LM12),
196 	EMX_DEVICE(PCH_CMP_I219_V12),
197 	EMX_DEVICE(PCH_TGP_I219_LM13),
198 	EMX_DEVICE(PCH_TGP_I219_V13),
199 	EMX_DEVICE(PCH_TGP_I219_LM14),
200 	EMX_DEVICE(PCH_TGP_I219_V14),
201 	EMX_DEVICE(PCH_TGP_I219_LM15),
202 	EMX_DEVICE(PCH_TGP_I219_V15),
203 	EMX_DEVICE(PCH_ADP_I219_LM16),
204 	EMX_DEVICE(PCH_ADP_I219_V16),
205 	EMX_DEVICE(PCH_ADP_I219_LM17),
206 	EMX_DEVICE(PCH_ADP_I219_V17),
207 	EMX_DEVICE(PCH_MTP_I219_LM18),
208 	EMX_DEVICE(PCH_MTP_I219_V18),
209 	EMX_DEVICE(PCH_MTP_I219_LM19),
210 	EMX_DEVICE(PCH_MTP_I219_V19),
211 
212 	/* required last entry */
213 	EMX_DEVICE_NULL
214 };
215 
216 static int	emx_probe(device_t);
217 static int	emx_attach(device_t);
218 static int	emx_detach(device_t);
219 static int	emx_shutdown(device_t);
220 static int	emx_suspend(device_t);
221 static int	emx_resume(device_t);
222 
223 static void	emx_init(void *);
224 static void	emx_stop(struct emx_softc *);
225 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
226 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
227 #ifdef IFPOLL_ENABLE
228 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
229 static void	emx_npoll_status(struct ifnet *);
230 static void	emx_npoll_tx(struct ifnet *, void *, int);
231 static void	emx_npoll_rx(struct ifnet *, void *, int);
232 #endif
233 static void	emx_watchdog(struct ifaltq_subque *);
234 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
235 static int	emx_media_change(struct ifnet *);
236 static void	emx_timer(void *);
237 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
238 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
239 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
240 #ifdef INVARIANTS
241 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
242 		    boolean_t);
243 #endif
244 
245 static void	emx_intr(void *);
246 static void	emx_intr_mask(void *);
247 static void	emx_intr_body(struct emx_softc *, boolean_t);
248 static void	emx_rxeof(struct emx_rxdata *, int);
249 static void	emx_txeof(struct emx_txdata *);
250 static void	emx_tx_collect(struct emx_txdata *, boolean_t);
251 static void	emx_txgc_timer(void *);
252 static void	emx_tx_purge(struct emx_softc *);
253 static void	emx_enable_intr(struct emx_softc *);
254 static void	emx_disable_intr(struct emx_softc *);
255 
256 static int	emx_dma_alloc(struct emx_softc *);
257 static void	emx_dma_free(struct emx_softc *);
258 static void	emx_init_tx_ring(struct emx_txdata *);
259 static int	emx_init_rx_ring(struct emx_rxdata *);
260 static void	emx_free_tx_ring(struct emx_txdata *);
261 static void	emx_free_rx_ring(struct emx_rxdata *);
262 static int	emx_create_tx_ring(struct emx_txdata *);
263 static int	emx_create_rx_ring(struct emx_rxdata *);
264 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
265 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
266 static int	emx_newbuf(struct emx_rxdata *, int, int);
267 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
268 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
269 		    uint32_t *, uint32_t *);
270 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
271 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
272 		    uint32_t *, uint32_t *);
273 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
274 
275 static int 	emx_is_valid_eaddr(const uint8_t *);
276 static int	emx_reset(struct emx_softc *);
277 static void	emx_setup_ifp(struct emx_softc *);
278 static void	emx_init_tx_unit(struct emx_softc *);
279 static void	emx_init_rx_unit(struct emx_softc *);
280 static void	emx_update_stats(struct emx_softc *);
281 static void	emx_set_promisc(struct emx_softc *);
282 static void	emx_disable_promisc(struct emx_softc *);
283 static void	emx_set_multi(struct emx_softc *);
284 static void	emx_update_link_status(struct emx_softc *);
285 static void	emx_smartspeed(struct emx_softc *);
286 static void	emx_set_itr(struct emx_softc *, uint32_t);
287 static void	emx_disable_aspm(struct emx_softc *);
288 static void	emx_flush_tx_ring(struct emx_softc *);
289 static void	emx_flush_rx_ring(struct emx_softc *);
290 static void	emx_flush_txrx_ring(struct emx_softc *);
291 
292 static void	emx_print_debug_info(struct emx_softc *);
293 static void	emx_print_nvm_info(struct emx_softc *);
294 static void	emx_print_hw_stats(struct emx_softc *);
295 
296 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
297 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
298 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
299 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
300 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
301 static void	emx_add_sysctl(struct emx_softc *);
302 
303 static void	emx_serialize_skipmain(struct emx_softc *);
304 static void	emx_deserialize_skipmain(struct emx_softc *);
305 
306 /* Management and WOL Support */
307 static void	emx_get_mgmt(struct emx_softc *);
308 static void	emx_rel_mgmt(struct emx_softc *);
309 static void	emx_get_hw_control(struct emx_softc *);
310 static void	emx_rel_hw_control(struct emx_softc *);
311 static void	emx_enable_wol(device_t);
312 
313 static device_method_t emx_methods[] = {
314 	/* Device interface */
315 	DEVMETHOD(device_probe,		emx_probe),
316 	DEVMETHOD(device_attach,	emx_attach),
317 	DEVMETHOD(device_detach,	emx_detach),
318 	DEVMETHOD(device_shutdown,	emx_shutdown),
319 	DEVMETHOD(device_suspend,	emx_suspend),
320 	DEVMETHOD(device_resume,	emx_resume),
321 	DEVMETHOD_END
322 };
323 
324 static driver_t emx_driver = {
325 	"emx",
326 	emx_methods,
327 	sizeof(struct emx_softc),
328 };
329 
330 static devclass_t emx_devclass;
331 
332 DECLARE_DUMMY_MODULE(if_emx);
333 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
334 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
335 
336 /*
337  * Tunables
338  */
339 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
340 static int	emx_rxd = EMX_DEFAULT_RXD;
341 static int	emx_txd = EMX_DEFAULT_TXD;
342 static int	emx_smart_pwr_down = 0;
343 static int	emx_rxr = 0;
344 static int	emx_txr = 1;
345 
346 /* Controls whether promiscuous also shows bad packets */
347 static int	emx_debug_sbp = 0;
348 
349 static int	emx_82573_workaround = 1;
350 static int	emx_msi_enable = 1;
351 
352 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
353 
354 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
355 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
356 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
357 TUNABLE_INT("hw.emx.txd", &emx_txd);
358 TUNABLE_INT("hw.emx.txr", &emx_txr);
359 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
360 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
361 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
362 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
363 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
364 
365 /* Global used in WOL setup with multiport cards */
366 static int	emx_global_quad_port_a = 0;
367 
368 /* Set this to one to display debug statistics */
369 static int	emx_display_debug_stats = 0;
370 
371 #if !defined(KTR_IF_EMX)
372 #define KTR_IF_EMX	KTR_ALL
373 #endif
374 KTR_INFO_MASTER(if_emx);
375 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
376 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
377 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
378 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
379 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
380 #define logif(name)	KTR_LOG(if_emx_ ## name)
381 
382 static __inline void
383 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
384 {
385 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
386 	/* DD bit must be cleared */
387 	rxd->rxd_staterr = 0;
388 }
389 
390 static __inline void
391 emx_free_txbuf(struct emx_txdata *tdata, struct emx_txbuf *tx_buffer)
392 {
393 
394 	KKASSERT(tx_buffer->m_head != NULL);
395 	KKASSERT(tdata->tx_nmbuf > 0);
396 	tdata->tx_nmbuf--;
397 
398 	bus_dmamap_unload(tdata->txtag, tx_buffer->map);
399 	m_freem(tx_buffer->m_head);
400 	tx_buffer->m_head = NULL;
401 }
402 
403 static __inline void
404 emx_tx_intr(struct emx_txdata *tdata)
405 {
406 
407 	emx_txeof(tdata);
408 	if (!ifsq_is_empty(tdata->ifsq))
409 		ifsq_devstart(tdata->ifsq);
410 }
411 
412 static __inline void
413 emx_try_txgc(struct emx_txdata *tdata, int16_t dec)
414 {
415 
416 	if (tdata->tx_running > 0) {
417 		tdata->tx_running -= dec;
418 		if (tdata->tx_running <= 0 && tdata->tx_nmbuf &&
419 		    tdata->num_tx_desc_avail < tdata->num_tx_desc &&
420 		    tdata->num_tx_desc_avail + tdata->tx_intr_nsegs >
421 		    tdata->num_tx_desc)
422 			emx_tx_collect(tdata, TRUE);
423 	}
424 }
425 
426 static void
427 emx_txgc_timer(void *xtdata)
428 {
429 	struct emx_txdata *tdata = xtdata;
430 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
431 
432 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
433 	    (IFF_RUNNING | IFF_UP))
434 		return;
435 
436 	if (!lwkt_serialize_try(&tdata->tx_serialize))
437 		goto done;
438 
439 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
440 	    (IFF_RUNNING | IFF_UP)) {
441 		lwkt_serialize_exit(&tdata->tx_serialize);
442 		return;
443 	}
444 	emx_try_txgc(tdata, EMX_TX_RUNNING_DEC);
445 
446 	lwkt_serialize_exit(&tdata->tx_serialize);
447 done:
448 	callout_reset(&tdata->tx_gc_timer, 1, emx_txgc_timer, tdata);
449 }
450 
451 static __inline void
452 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
453 {
454 	/* Ignore Checksum bit is set */
455 	if (staterr & E1000_RXD_STAT_IXSM)
456 		return;
457 
458 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
459 	    E1000_RXD_STAT_IPCS)
460 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
461 
462 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
463 	    E1000_RXD_STAT_TCPCS) {
464 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
465 					   CSUM_PSEUDO_HDR |
466 					   CSUM_FRAG_NOT_CHECKED;
467 		mp->m_pkthdr.csum_data = htons(0xffff);
468 	}
469 }
470 
471 static __inline struct pktinfo *
472 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
473 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
474 {
475 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
476 	case EMX_RXDMRQ_IPV4_TCP:
477 		pi->pi_netisr = NETISR_IP;
478 		pi->pi_flags = 0;
479 		pi->pi_l3proto = IPPROTO_TCP;
480 		break;
481 
482 	case EMX_RXDMRQ_IPV6_TCP:
483 		pi->pi_netisr = NETISR_IPV6;
484 		pi->pi_flags = 0;
485 		pi->pi_l3proto = IPPROTO_TCP;
486 		break;
487 
488 	case EMX_RXDMRQ_IPV4:
489 		if (staterr & E1000_RXD_STAT_IXSM)
490 			return NULL;
491 
492 		if ((staterr &
493 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
494 		    E1000_RXD_STAT_TCPCS) {
495 			pi->pi_netisr = NETISR_IP;
496 			pi->pi_flags = 0;
497 			pi->pi_l3proto = IPPROTO_UDP;
498 			break;
499 		}
500 		/* FALL THROUGH */
501 	default:
502 		return NULL;
503 	}
504 
505 	m_sethash(m, toeplitz_hash(hash));
506 	return pi;
507 }
508 
509 static int
510 emx_probe(device_t dev)
511 {
512 	const struct emx_device *d;
513 	uint16_t vid, did;
514 
515 	vid = pci_get_vendor(dev);
516 	did = pci_get_device(dev);
517 
518 	for (d = emx_devices; d->desc != NULL; ++d) {
519 		if (vid == d->vid && did == d->did) {
520 			device_set_desc(dev, d->desc);
521 			device_set_async_attach(dev, TRUE);
522 			return 0;
523 		}
524 	}
525 	return ENXIO;
526 }
527 
528 static int
529 emx_attach(device_t dev)
530 {
531 	struct emx_softc *sc = device_get_softc(dev);
532 	int error = 0, i, throttle, msi_enable;
533 	int tx_ring_max, ring_cnt;
534 	u_int intr_flags;
535 	uint16_t eeprom_data, device_id, apme_mask;
536 	driver_intr_t *intr_func;
537 	char flowctrl[IFM_ETH_FC_STRLEN];
538 
539 	/*
540 	 * Setup RX rings
541 	 */
542 	for (i = 0; i < EMX_NRX_RING; ++i) {
543 		sc->rx_data[i].sc = sc;
544 		sc->rx_data[i].idx = i;
545 	}
546 
547 	/*
548 	 * Setup TX ring
549 	 */
550 	for (i = 0; i < EMX_NTX_RING; ++i) {
551 		sc->tx_data[i].sc = sc;
552 		sc->tx_data[i].idx = i;
553 		callout_init_mp(&sc->tx_data[i].tx_gc_timer);
554 	}
555 
556 	/*
557 	 * Initialize serializers
558 	 */
559 	lwkt_serialize_init(&sc->main_serialize);
560 	for (i = 0; i < EMX_NTX_RING; ++i)
561 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
562 	for (i = 0; i < EMX_NRX_RING; ++i)
563 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
564 
565 	/*
566 	 * Initialize serializer array
567 	 */
568 	i = 0;
569 
570 	KKASSERT(i < EMX_NSERIALIZE);
571 	sc->serializes[i++] = &sc->main_serialize;
572 
573 	KKASSERT(i < EMX_NSERIALIZE);
574 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
575 	KKASSERT(i < EMX_NSERIALIZE);
576 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
577 
578 	KKASSERT(i < EMX_NSERIALIZE);
579 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
580 	KKASSERT(i < EMX_NSERIALIZE);
581 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
582 
583 	KKASSERT(i == EMX_NSERIALIZE);
584 
585 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
586 	    emx_media_change, emx_media_status);
587 	callout_init_mp(&sc->timer);
588 
589 	sc->dev = sc->osdep.dev = dev;
590 
591 	/*
592 	 * Determine hardware and mac type
593 	 */
594 	sc->hw.vendor_id = pci_get_vendor(dev);
595 	sc->hw.device_id = pci_get_device(dev);
596 	sc->hw.revision_id = pci_get_revid(dev);
597 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
598 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
599 
600 	if (e1000_set_mac_type(&sc->hw))
601 		return ENXIO;
602 
603 	/* Enable bus mastering */
604 	pci_enable_busmaster(dev);
605 
606 	/*
607 	 * Allocate IO memory
608 	 */
609 	sc->memory_rid = EMX_BAR_MEM;
610 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
611 					    &sc->memory_rid, RF_ACTIVE);
612 	if (sc->memory == NULL) {
613 		device_printf(dev, "Unable to allocate bus resource: memory\n");
614 		error = ENXIO;
615 		goto fail;
616 	}
617 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
618 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
619 
620 	/* XXX This is quite goofy, it is not actually used */
621 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
622 
623 	/*
624 	 * Don't enable MSI-X on 82574, see:
625 	 * 82574 specification update errata #15
626 	 *
627 	 * Don't enable MSI on 82571/82572, see:
628 	 * 82571/82572 specification update errata #63
629 	 */
630 	msi_enable = emx_msi_enable;
631 	if (msi_enable &&
632 	    (sc->hw.mac.type == e1000_82571 ||
633 	     sc->hw.mac.type == e1000_82572))
634 		msi_enable = 0;
635 again:
636 	/*
637 	 * Allocate interrupt
638 	 */
639 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
640 	    &sc->intr_rid, &intr_flags);
641 
642 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
643 		int unshared;
644 
645 		unshared = device_getenv_int(dev, "irq.unshared", 0);
646 		if (!unshared) {
647 			sc->flags |= EMX_FLAG_SHARED_INTR;
648 			if (bootverbose)
649 				device_printf(dev, "IRQ shared\n");
650 		} else {
651 			intr_flags &= ~RF_SHAREABLE;
652 			if (bootverbose)
653 				device_printf(dev, "IRQ unshared\n");
654 		}
655 	}
656 
657 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
658 	    intr_flags);
659 	if (sc->intr_res == NULL) {
660 		device_printf(dev, "Unable to allocate bus resource: %s\n",
661 		    sc->intr_type == PCI_INTR_TYPE_MSI ? "MSI" : "legacy intr");
662 		if (!msi_enable) {
663 			/* Retry with MSI. */
664 			msi_enable = 1;
665 			sc->flags &= ~EMX_FLAG_SHARED_INTR;
666 			goto again;
667 		}
668 		error = ENXIO;
669 		goto fail;
670 	}
671 
672 	/* Save PCI command register for Shared Code */
673 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
674 	sc->hw.back = &sc->osdep;
675 
676 	/*
677 	 * For I217/I218, we need to map the flash memory and this
678 	 * must happen after the MAC is identified.
679 	 */
680 	if (sc->hw.mac.type == e1000_pch_lpt) {
681 		sc->flash_rid = EMX_BAR_FLASH;
682 
683 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
684 		    &sc->flash_rid, RF_ACTIVE);
685 		if (sc->flash == NULL) {
686 			device_printf(dev, "Mapping of Flash failed\n");
687 			error = ENXIO;
688 			goto fail;
689 		}
690 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
691 		sc->osdep.flash_bus_space_handle =
692 		    rman_get_bushandle(sc->flash);
693 
694 		/*
695 		 * This is used in the shared code
696 		 * XXX this goof is actually not used.
697 		 */
698 		sc->hw.flash_address = (uint8_t *)sc->flash;
699 	} else if (sc->hw.mac.type >= e1000_pch_spt) {
700 		/*
701 		 * In the new SPT device flash is not a seperate BAR,
702 		 * rather it is also in BAR0, so use the same tag and
703 		 * an offset handle for the FLASH read/write macros
704 		 * in the shared code.
705 		 */
706 		sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
707 		sc->osdep.flash_bus_space_handle =
708 		    sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
709 	}
710 
711 	/* Do Shared Code initialization */
712 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
713 		device_printf(dev, "Setup of Shared code failed\n");
714 		error = ENXIO;
715 		goto fail;
716 	}
717 	e1000_get_bus_info(&sc->hw);
718 
719 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
720 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
721 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
722 
723 	/*
724 	 * Interrupt throttle rate
725 	 */
726 	throttle = device_getenv_int(dev, "int_throttle_ceil",
727 	    emx_int_throttle_ceil);
728 	if (throttle == 0) {
729 		sc->int_throttle_ceil = 0;
730 	} else {
731 		if (throttle < 0)
732 			throttle = EMX_DEFAULT_ITR;
733 
734 		/* Recalculate the tunable value to get the exact frequency. */
735 		throttle = 1000000000 / 256 / throttle;
736 
737 		/* Upper 16bits of ITR is reserved and should be zero */
738 		if (throttle & 0xffff0000)
739 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
740 
741 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
742 	}
743 
744 	e1000_init_script_state_82541(&sc->hw, TRUE);
745 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
746 
747 	/* Copper options */
748 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
749 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
750 		sc->hw.phy.disable_polarity_correction = FALSE;
751 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
752 	}
753 
754 	/* Set the frame limits assuming standard ethernet sized frames. */
755 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
756 
757 	/* This controls when hardware reports transmit completion status. */
758 	sc->hw.mac.report_tx_early = 1;
759 
760 	/*
761 	 * Calculate # of RX/TX rings
762 	 */
763 	ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
764 	sc->rx_rmap = if_ringmap_alloc(dev, ring_cnt, EMX_NRX_RING);
765 
766 	tx_ring_max = 1;
767 	if (sc->hw.mac.type == e1000_82571 ||
768 	    sc->hw.mac.type == e1000_82572 ||
769 	    sc->hw.mac.type == e1000_80003es2lan ||
770 	    sc->hw.mac.type == e1000_pch_lpt ||
771 	    sc->hw.mac.type == e1000_pch_spt ||
772 	    sc->hw.mac.type == e1000_pch_cnp ||
773 	    sc->hw.mac.type == e1000_82574)
774 		tx_ring_max = EMX_NTX_RING;
775 	ring_cnt = device_getenv_int(dev, "txr", emx_txr);
776 	sc->tx_rmap = if_ringmap_alloc(dev, ring_cnt, tx_ring_max);
777 
778 	if_ringmap_match(dev, sc->rx_rmap, sc->tx_rmap);
779 	sc->rx_ring_cnt = if_ringmap_count(sc->rx_rmap);
780 	sc->tx_ring_cnt = if_ringmap_count(sc->tx_rmap);
781 
782 	/* Allocate RX/TX rings' busdma(9) stuffs */
783 	error = emx_dma_alloc(sc);
784 	if (error)
785 		goto fail;
786 
787 	/* Allocate multicast array memory. */
788 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
789 	    M_DEVBUF, M_WAITOK);
790 
791 	/* Indicate SOL/IDER usage */
792 	if (e1000_check_reset_block(&sc->hw)) {
793 		device_printf(dev,
794 		    "PHY reset is blocked due to SOL/IDER session.\n");
795 	}
796 
797 	/* Disable EEE on I217/I218 */
798 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
799 
800 	/*
801 	 * Start from a known state, this is important in reading the
802 	 * nvm and mac from that.
803 	 */
804 	e1000_reset_hw(&sc->hw);
805 
806 	/* Make sure we have a good EEPROM before we read from it */
807 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
808 		/*
809 		 * Some PCI-E parts fail the first check due to
810 		 * the link being in sleep state, call it again,
811 		 * if it fails a second time its a real issue.
812 		 */
813 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
814 			device_printf(dev,
815 			    "The EEPROM Checksum Is Not Valid\n");
816 			error = EIO;
817 			goto fail;
818 		}
819 	}
820 
821 	/* Copy the permanent MAC address out of the EEPROM */
822 	if (e1000_read_mac_addr(&sc->hw) < 0) {
823 		device_printf(dev, "EEPROM read error while reading MAC"
824 		    " address\n");
825 		error = EIO;
826 		goto fail;
827 	}
828 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
829 		device_printf(dev, "Invalid MAC address\n");
830 		error = EIO;
831 		goto fail;
832 	}
833 
834 	/* Disable ULP support */
835 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
836 
837 	/* Determine if we have to control management hardware */
838 	if (e1000_enable_mng_pass_thru(&sc->hw))
839 		sc->flags |= EMX_FLAG_HAS_MGMT;
840 
841 	/*
842 	 * Setup Wake-on-Lan
843 	 */
844 	apme_mask = EMX_EEPROM_APME;
845 	eeprom_data = 0;
846 	switch (sc->hw.mac.type) {
847 	case e1000_82573:
848 		sc->flags |= EMX_FLAG_HAS_AMT;
849 		/* FALL THROUGH */
850 
851 	case e1000_82571:
852 	case e1000_82572:
853 	case e1000_80003es2lan:
854 		if (sc->hw.bus.func == 1) {
855 			e1000_read_nvm(&sc->hw,
856 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
857 		} else {
858 			e1000_read_nvm(&sc->hw,
859 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
860 		}
861 		break;
862 
863 	case e1000_pch_lpt:
864 	case e1000_pch_spt:
865 	case e1000_pch_cnp:
866 		apme_mask = E1000_WUC_APME;
867 		sc->flags |= EMX_FLAG_HAS_AMT;
868 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
869 		break;
870 
871 	default:
872 		e1000_read_nvm(&sc->hw,
873 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
874 		break;
875 	}
876 	if (eeprom_data & apme_mask)
877 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
878 
879 	/*
880          * We have the eeprom settings, now apply the special cases
881          * where the eeprom may be wrong or the board won't support
882          * wake on lan on a particular port
883 	 */
884 	device_id = pci_get_device(dev);
885         switch (device_id) {
886 	case E1000_DEV_ID_82571EB_FIBER:
887 		/*
888 		 * Wake events only supported on port A for dual fiber
889 		 * regardless of eeprom setting
890 		 */
891 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
892 		    E1000_STATUS_FUNC_1)
893 			sc->wol = 0;
894 		break;
895 
896 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
897 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
898 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
899                 /* if quad port sc, disable WoL on all but port A */
900 		if (emx_global_quad_port_a != 0)
901 			sc->wol = 0;
902 		/* Reset for multiple quad port adapters */
903 		if (++emx_global_quad_port_a == 4)
904 			emx_global_quad_port_a = 0;
905                 break;
906 	}
907 
908 	/* XXX disable wol */
909 	sc->wol = 0;
910 
911 	/* Initialized #of TX rings to use. */
912 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
913 
914 	/* Setup flow control. */
915 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
916 	    emx_flowctrl);
917 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
918 
919 	/* Setup OS specific network interface */
920 	emx_setup_ifp(sc);
921 
922 	/* Add sysctl tree, must after em_setup_ifp() */
923 	emx_add_sysctl(sc);
924 
925 	/* Reset the hardware */
926 	error = emx_reset(sc);
927 	if (error) {
928 		/*
929 		 * Some 82573 parts fail the first reset, call it again,
930 		 * if it fails a second time its a real issue.
931 		 */
932 		error = emx_reset(sc);
933 		if (error) {
934 			device_printf(dev, "Unable to reset the hardware\n");
935 			ether_ifdetach(&sc->arpcom.ac_if);
936 			goto fail;
937 		}
938 	}
939 
940 	/* Initialize statistics */
941 	emx_update_stats(sc);
942 
943 	sc->hw.mac.get_link_status = 1;
944 	emx_update_link_status(sc);
945 
946 	/* Non-AMT based hardware can now take control from firmware */
947 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
948 	    EMX_FLAG_HAS_MGMT)
949 		emx_get_hw_control(sc);
950 
951 	/*
952 	 * Missing Interrupt Following ICR read:
953 	 *
954 	 * 82571/82572 specification update errata #76
955 	 * 82573 specification update errata #31
956 	 * 82574 specification update errata #12
957 	 */
958 	intr_func = emx_intr;
959 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
960 	    (sc->hw.mac.type == e1000_82571 ||
961 	     sc->hw.mac.type == e1000_82572 ||
962 	     sc->hw.mac.type == e1000_82573 ||
963 	     sc->hw.mac.type == e1000_82574))
964 		intr_func = emx_intr_mask;
965 
966 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
967 			       &sc->intr_tag, &sc->main_serialize);
968 	if (error) {
969 		device_printf(dev, "Failed to register interrupt handler");
970 		ether_ifdetach(&sc->arpcom.ac_if);
971 		goto fail;
972 	}
973 	return (0);
974 fail:
975 	emx_detach(dev);
976 	return (error);
977 }
978 
979 static int
980 emx_detach(device_t dev)
981 {
982 	struct emx_softc *sc = device_get_softc(dev);
983 
984 	if (device_is_attached(dev)) {
985 		struct ifnet *ifp = &sc->arpcom.ac_if;
986 
987 		ifnet_serialize_all(ifp);
988 
989 		emx_stop(sc);
990 
991 		e1000_phy_hw_reset(&sc->hw);
992 
993 		emx_rel_mgmt(sc);
994 		emx_rel_hw_control(sc);
995 
996 		if (sc->wol) {
997 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
998 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
999 			emx_enable_wol(dev);
1000 		}
1001 
1002 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
1003 
1004 		ifnet_deserialize_all(ifp);
1005 
1006 		ether_ifdetach(ifp);
1007 	} else if (sc->memory != NULL) {
1008 		emx_rel_hw_control(sc);
1009 	}
1010 
1011 	ifmedia_removeall(&sc->media);
1012 	bus_generic_detach(dev);
1013 
1014 	if (sc->intr_res != NULL) {
1015 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
1016 				     sc->intr_res);
1017 	}
1018 
1019 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
1020 		pci_release_msi(dev);
1021 
1022 	if (sc->memory != NULL) {
1023 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
1024 				     sc->memory);
1025 	}
1026 
1027 	if (sc->flash != NULL) {
1028 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
1029 		    sc->flash);
1030 	}
1031 
1032 	emx_dma_free(sc);
1033 
1034 	if (sc->mta != NULL)
1035 		kfree(sc->mta, M_DEVBUF);
1036 
1037 	if (sc->rx_rmap != NULL)
1038 		if_ringmap_free(sc->rx_rmap);
1039 	if (sc->tx_rmap != NULL)
1040 		if_ringmap_free(sc->tx_rmap);
1041 
1042 	return (0);
1043 }
1044 
1045 static int
1046 emx_shutdown(device_t dev)
1047 {
1048 	return emx_suspend(dev);
1049 }
1050 
1051 static int
1052 emx_suspend(device_t dev)
1053 {
1054 	struct emx_softc *sc = device_get_softc(dev);
1055 	struct ifnet *ifp = &sc->arpcom.ac_if;
1056 
1057 	ifnet_serialize_all(ifp);
1058 
1059 	emx_stop(sc);
1060 
1061 	emx_rel_mgmt(sc);
1062 	emx_rel_hw_control(sc);
1063 
1064 	if (sc->wol) {
1065 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
1066 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
1067 		emx_enable_wol(dev);
1068 	}
1069 
1070 	ifnet_deserialize_all(ifp);
1071 
1072 	return bus_generic_suspend(dev);
1073 }
1074 
1075 static int
1076 emx_resume(device_t dev)
1077 {
1078 	struct emx_softc *sc = device_get_softc(dev);
1079 	struct ifnet *ifp = &sc->arpcom.ac_if;
1080 	int i;
1081 
1082 	ifnet_serialize_all(ifp);
1083 
1084 	emx_init(sc);
1085 	emx_get_mgmt(sc);
1086 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1087 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1088 
1089 	ifnet_deserialize_all(ifp);
1090 
1091 	return bus_generic_resume(dev);
1092 }
1093 
1094 static void
1095 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1096 {
1097 	struct emx_softc *sc = ifp->if_softc;
1098 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1099 	struct mbuf *m_head;
1100 	int idx = -1, nsegs = 0;
1101 
1102 	KKASSERT(tdata->ifsq == ifsq);
1103 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1104 
1105 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1106 		return;
1107 
1108 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1109 		ifsq_purge(ifsq);
1110 		return;
1111 	}
1112 
1113 	while (!ifsq_is_empty(ifsq)) {
1114 		/* Now do we at least have a minimal? */
1115 		if (EMX_IS_OACTIVE(tdata)) {
1116 			emx_tx_collect(tdata, FALSE);
1117 			if (EMX_IS_OACTIVE(tdata)) {
1118 				ifsq_set_oactive(ifsq);
1119 				break;
1120 			}
1121 		}
1122 
1123 		logif(pkt_txqueue);
1124 		m_head = ifsq_dequeue(ifsq);
1125 		if (m_head == NULL)
1126 			break;
1127 
1128 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1129 			IFNET_STAT_INC(ifp, oerrors, 1);
1130 			emx_tx_collect(tdata, FALSE);
1131 			continue;
1132 		}
1133 
1134 		/*
1135 		 * TX interrupt are aggressively aggregated, so increasing
1136 		 * opackets at TX interrupt time will make the opackets
1137 		 * statistics vastly inaccurate; we do the opackets increment
1138 		 * now.
1139 		 */
1140 		IFNET_STAT_INC(ifp, opackets, 1);
1141 
1142 		if (nsegs >= tdata->tx_wreg_nsegs) {
1143 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1144 			nsegs = 0;
1145 			idx = -1;
1146 		}
1147 
1148 		/* Send a copy of the frame to the BPF listener */
1149 		ETHER_BPF_MTAP(ifp, m_head);
1150 
1151 		/* Set timeout in case hardware has problems transmitting. */
1152 		ifsq_watchdog_set_count(&tdata->tx_watchdog, EMX_TX_TIMEOUT);
1153 	}
1154 	if (idx >= 0)
1155 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1156 	tdata->tx_running = EMX_TX_RUNNING;
1157 }
1158 
1159 static int
1160 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1161 {
1162 	struct emx_softc *sc = ifp->if_softc;
1163 	struct ifreq *ifr = (struct ifreq *)data;
1164 	uint16_t eeprom_data = 0;
1165 	int max_frame_size, mask, reinit;
1166 	int error = 0;
1167 
1168 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1169 
1170 	switch (command) {
1171 	case SIOCSIFMTU:
1172 		switch (sc->hw.mac.type) {
1173 		case e1000_82573:
1174 			/*
1175 			 * 82573 only supports jumbo frames
1176 			 * if ASPM is disabled.
1177 			 */
1178 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1179 				       &eeprom_data);
1180 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1181 				max_frame_size = ETHER_MAX_LEN;
1182 				break;
1183 			}
1184 			/* FALL THROUGH */
1185 
1186 		/* Limit Jumbo Frame size */
1187 		case e1000_82571:
1188 		case e1000_82572:
1189 		case e1000_82574:
1190 		case e1000_pch_lpt:
1191 		case e1000_pch_spt:
1192 		case e1000_pch_cnp:
1193 		case e1000_80003es2lan:
1194 			max_frame_size = 9234;
1195 			break;
1196 
1197 		default:
1198 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1199 			break;
1200 		}
1201 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1202 		    ETHER_CRC_LEN) {
1203 			error = EINVAL;
1204 			break;
1205 		}
1206 
1207 		ifp->if_mtu = ifr->ifr_mtu;
1208 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1209 		    ETHER_CRC_LEN;
1210 
1211 		if (ifp->if_flags & IFF_RUNNING)
1212 			emx_init(sc);
1213 		break;
1214 
1215 	case SIOCSIFFLAGS:
1216 		if (ifp->if_flags & IFF_UP) {
1217 			if ((ifp->if_flags & IFF_RUNNING)) {
1218 				if ((ifp->if_flags ^ sc->if_flags) &
1219 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1220 					emx_disable_promisc(sc);
1221 					emx_set_promisc(sc);
1222 				}
1223 			} else {
1224 				emx_init(sc);
1225 			}
1226 		} else if (ifp->if_flags & IFF_RUNNING) {
1227 			emx_stop(sc);
1228 		}
1229 		sc->if_flags = ifp->if_flags;
1230 		break;
1231 
1232 	case SIOCADDMULTI:
1233 	case SIOCDELMULTI:
1234 		if (ifp->if_flags & IFF_RUNNING) {
1235 			emx_disable_intr(sc);
1236 			emx_set_multi(sc);
1237 #ifdef IFPOLL_ENABLE
1238 			if (!(ifp->if_flags & IFF_NPOLLING))
1239 #endif
1240 				emx_enable_intr(sc);
1241 		}
1242 		break;
1243 
1244 	case SIOCSIFMEDIA:
1245 		/* Check SOL/IDER usage */
1246 		if (e1000_check_reset_block(&sc->hw)) {
1247 			device_printf(sc->dev, "Media change is"
1248 			    " blocked due to SOL/IDER session.\n");
1249 			break;
1250 		}
1251 		/* FALL THROUGH */
1252 
1253 	case SIOCGIFMEDIA:
1254 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1255 		break;
1256 
1257 	case SIOCSIFCAP:
1258 		reinit = 0;
1259 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1260 		if (mask & IFCAP_RXCSUM) {
1261 			ifp->if_capenable ^= IFCAP_RXCSUM;
1262 			reinit = 1;
1263 		}
1264 		if (mask & IFCAP_VLAN_HWTAGGING) {
1265 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1266 			reinit = 1;
1267 		}
1268 		if (mask & IFCAP_TXCSUM) {
1269 			ifp->if_capenable ^= IFCAP_TXCSUM;
1270 			if (ifp->if_capenable & IFCAP_TXCSUM)
1271 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1272 			else
1273 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1274 		}
1275 		if (mask & IFCAP_TSO) {
1276 			ifp->if_capenable ^= IFCAP_TSO;
1277 			if (ifp->if_capenable & IFCAP_TSO)
1278 				ifp->if_hwassist |= CSUM_TSO;
1279 			else
1280 				ifp->if_hwassist &= ~CSUM_TSO;
1281 		}
1282 		if (mask & IFCAP_RSS)
1283 			ifp->if_capenable ^= IFCAP_RSS;
1284 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1285 			emx_init(sc);
1286 		break;
1287 
1288 	default:
1289 		error = ether_ioctl(ifp, command, data);
1290 		break;
1291 	}
1292 	return (error);
1293 }
1294 
1295 static void
1296 emx_watchdog(struct ifaltq_subque *ifsq)
1297 {
1298 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1299 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1300 	struct emx_softc *sc = ifp->if_softc;
1301 	int i;
1302 
1303 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1304 
1305 	/*
1306 	 * The timer is set to 5 every time start queues a packet.
1307 	 * Then txeof keeps resetting it as long as it cleans at
1308 	 * least one descriptor.
1309 	 * Finally, anytime all descriptors are clean the timer is
1310 	 * set to 0.
1311 	 */
1312 
1313 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1314 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1315 		/*
1316 		 * If we reach here, all TX jobs are completed and
1317 		 * the TX engine should have been idled for some time.
1318 		 * We don't need to call ifsq_devstart_sched() here.
1319 		 */
1320 		ifsq_clr_oactive(ifsq);
1321 		ifsq_watchdog_set_count(&tdata->tx_watchdog, 0);
1322 		return;
1323 	}
1324 
1325 	/*
1326 	 * If we are in this routine because of pause frames, then
1327 	 * don't reset the hardware.
1328 	 */
1329 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1330 		ifsq_watchdog_set_count(&tdata->tx_watchdog, EMX_TX_TIMEOUT);
1331 		return;
1332 	}
1333 
1334 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1335 
1336 	IFNET_STAT_INC(ifp, oerrors, 1);
1337 
1338 	emx_init(sc);
1339 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1340 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1341 }
1342 
1343 static void
1344 emx_init(void *xsc)
1345 {
1346 	struct emx_softc *sc = xsc;
1347 	struct ifnet *ifp = &sc->arpcom.ac_if;
1348 	device_t dev = sc->dev;
1349 	boolean_t polling;
1350 	int i;
1351 
1352 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1353 
1354 	emx_stop(sc);
1355 
1356 	/* Get the latest mac address, User can use a LAA */
1357         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1358 
1359 	/* Put the address into the Receive Address Array */
1360 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1361 
1362 	/*
1363 	 * With the 82571 sc, RAR[0] may be overwritten
1364 	 * when the other port is reset, we make a duplicate
1365 	 * in RAR[14] for that eventuality, this assures
1366 	 * the interface continues to function.
1367 	 */
1368 	if (sc->hw.mac.type == e1000_82571) {
1369 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1370 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1371 		    E1000_RAR_ENTRIES - 1);
1372 	}
1373 
1374 	/* Initialize the hardware */
1375 	if (emx_reset(sc)) {
1376 		device_printf(dev, "Unable to reset the hardware\n");
1377 		/* XXX emx_stop()? */
1378 		return;
1379 	}
1380 	emx_update_link_status(sc);
1381 
1382 	/* Setup VLAN support, basic and offload if available */
1383 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1384 
1385 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1386 		uint32_t ctrl;
1387 
1388 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1389 		ctrl |= E1000_CTRL_VME;
1390 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1391 	}
1392 
1393 	/* Configure for OS presence */
1394 	emx_get_mgmt(sc);
1395 
1396 	polling = FALSE;
1397 #ifdef IFPOLL_ENABLE
1398 	if (ifp->if_flags & IFF_NPOLLING)
1399 		polling = TRUE;
1400 #endif
1401 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1402 	ifq_set_subq_divisor(&ifp->if_snd, sc->tx_ring_inuse);
1403 
1404 	/* Prepare transmit descriptors and buffers */
1405 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1406 		emx_init_tx_ring(&sc->tx_data[i]);
1407 	emx_init_tx_unit(sc);
1408 
1409 	/* Setup Multicast table */
1410 	emx_set_multi(sc);
1411 
1412 	/* Prepare receive descriptors and buffers */
1413 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1414 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1415 			device_printf(dev,
1416 			    "Could not setup receive structures\n");
1417 			emx_stop(sc);
1418 			return;
1419 		}
1420 	}
1421 	emx_init_rx_unit(sc);
1422 
1423 	/* Don't lose promiscuous settings */
1424 	emx_set_promisc(sc);
1425 
1426 	/* Reset hardware counters */
1427 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1428 
1429 	/* MSI/X configuration for 82574 */
1430 	if (sc->hw.mac.type == e1000_82574) {
1431 		int tmp;
1432 
1433 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1434 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1435 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1436 		/*
1437 		 * XXX MSIX
1438 		 * Set the IVAR - interrupt vector routing.
1439 		 * Each nibble represents a vector, high bit
1440 		 * is enable, other 3 bits are the MSIX table
1441 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1442 		 * Link (other) to 2, hence the magic number.
1443 		 */
1444 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1445 	}
1446 
1447 	/*
1448 	 * Only enable interrupts if we are not polling, make sure
1449 	 * they are off otherwise.
1450 	 */
1451 	if (polling)
1452 		emx_disable_intr(sc);
1453 	else
1454 		emx_enable_intr(sc);
1455 
1456 	/* AMT based hardware can now take control from firmware */
1457 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1458 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1459 		emx_get_hw_control(sc);
1460 
1461 	ifp->if_flags |= IFF_RUNNING;
1462 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1463 		struct emx_txdata *tdata = &sc->tx_data[i];
1464 
1465 		ifsq_clr_oactive(tdata->ifsq);
1466 		ifsq_watchdog_start(&tdata->tx_watchdog);
1467 		if (!polling) {
1468 			callout_reset_bycpu(&tdata->tx_gc_timer, 1,
1469 			    emx_txgc_timer, tdata, ifsq_get_cpuid(tdata->ifsq));
1470 		}
1471 	}
1472 	callout_reset(&sc->timer, hz, emx_timer, sc);
1473 }
1474 
1475 static void
1476 emx_intr(void *xsc)
1477 {
1478 	emx_intr_body(xsc, TRUE);
1479 }
1480 
1481 static void
1482 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1483 {
1484 	struct ifnet *ifp = &sc->arpcom.ac_if;
1485 	uint32_t reg_icr;
1486 
1487 	logif(intr_beg);
1488 	ASSERT_SERIALIZED(&sc->main_serialize);
1489 
1490 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1491 
1492 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1493 		logif(intr_end);
1494 		return;
1495 	}
1496 
1497 	/*
1498 	 * XXX: some laptops trigger several spurious interrupts
1499 	 * on emx(4) when in the resume cycle. The ICR register
1500 	 * reports all-ones value in this case. Processing such
1501 	 * interrupts would lead to a freeze. I don't know why.
1502 	 */
1503 	if (reg_icr == 0xffffffff) {
1504 		logif(intr_end);
1505 		return;
1506 	}
1507 
1508 	if (ifp->if_flags & IFF_RUNNING) {
1509 		if (reg_icr &
1510 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1511 			int i;
1512 
1513 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1514 				lwkt_serialize_enter(
1515 				&sc->rx_data[i].rx_serialize);
1516 				emx_rxeof(&sc->rx_data[i], -1);
1517 				lwkt_serialize_exit(
1518 				&sc->rx_data[i].rx_serialize);
1519 			}
1520 		}
1521 		if (reg_icr & E1000_ICR_TXDW) {
1522 			struct emx_txdata *tdata = &sc->tx_data[0];
1523 
1524 			lwkt_serialize_enter(&tdata->tx_serialize);
1525 			emx_tx_intr(tdata);
1526 			lwkt_serialize_exit(&tdata->tx_serialize);
1527 		}
1528 	}
1529 
1530 	/* Link status change */
1531 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1532 		emx_serialize_skipmain(sc);
1533 
1534 		callout_stop(&sc->timer);
1535 		sc->hw.mac.get_link_status = 1;
1536 		emx_update_link_status(sc);
1537 
1538 		/* Deal with TX cruft when link lost */
1539 		emx_tx_purge(sc);
1540 
1541 		callout_reset(&sc->timer, hz, emx_timer, sc);
1542 
1543 		emx_deserialize_skipmain(sc);
1544 	}
1545 
1546 	if (reg_icr & E1000_ICR_RXO)
1547 		sc->rx_overruns++;
1548 
1549 	logif(intr_end);
1550 }
1551 
1552 static void
1553 emx_intr_mask(void *xsc)
1554 {
1555 	struct emx_softc *sc = xsc;
1556 
1557 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1558 	/*
1559 	 * NOTE:
1560 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1561 	 * so don't check it.
1562 	 */
1563 	emx_intr_body(sc, FALSE);
1564 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1565 }
1566 
1567 static void
1568 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1569 {
1570 	struct emx_softc *sc = ifp->if_softc;
1571 
1572 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1573 
1574 	emx_update_link_status(sc);
1575 
1576 	ifmr->ifm_status = IFM_AVALID;
1577 	ifmr->ifm_active = IFM_ETHER;
1578 
1579 	if (!sc->link_active) {
1580 		if (sc->hw.mac.autoneg)
1581 			ifmr->ifm_active |= IFM_NONE;
1582 		else
1583 			ifmr->ifm_active |= sc->media.ifm_media;
1584 		return;
1585 	}
1586 
1587 	ifmr->ifm_status |= IFM_ACTIVE;
1588 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1589 		ifmr->ifm_active |= sc->ifm_flowctrl;
1590 
1591 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1592 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1593 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1594 	} else {
1595 		switch (sc->link_speed) {
1596 		case 10:
1597 			ifmr->ifm_active |= IFM_10_T;
1598 			break;
1599 		case 100:
1600 			ifmr->ifm_active |= IFM_100_TX;
1601 			break;
1602 
1603 		case 1000:
1604 			ifmr->ifm_active |= IFM_1000_T;
1605 			break;
1606 		}
1607 		if (sc->link_duplex == FULL_DUPLEX)
1608 			ifmr->ifm_active |= IFM_FDX;
1609 		else
1610 			ifmr->ifm_active |= IFM_HDX;
1611 	}
1612 	if (ifmr->ifm_active & IFM_FDX)
1613 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1614 }
1615 
1616 static int
1617 emx_media_change(struct ifnet *ifp)
1618 {
1619 	struct emx_softc *sc = ifp->if_softc;
1620 	struct ifmedia *ifm = &sc->media;
1621 
1622 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1623 
1624 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1625 		return (EINVAL);
1626 
1627 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1628 	case IFM_AUTO:
1629 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1630 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1631 		break;
1632 
1633 	case IFM_1000_SX:
1634 	case IFM_1000_T:
1635 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1636 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1637 		break;
1638 
1639 	case IFM_100_TX:
1640 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1641 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1642 		} else {
1643 			if (IFM_OPTIONS(ifm->ifm_media) &
1644 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1645 				if (bootverbose) {
1646 					if_printf(ifp, "Flow control is not "
1647 					    "allowed for half-duplex\n");
1648 				}
1649 				return EINVAL;
1650 			}
1651 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1652 		}
1653 		sc->hw.mac.autoneg = FALSE;
1654 		sc->hw.phy.autoneg_advertised = 0;
1655 		break;
1656 
1657 	case IFM_10_T:
1658 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1659 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1660 		} else {
1661 			if (IFM_OPTIONS(ifm->ifm_media) &
1662 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1663 				if (bootverbose) {
1664 					if_printf(ifp, "Flow control is not "
1665 					    "allowed for half-duplex\n");
1666 				}
1667 				return EINVAL;
1668 			}
1669 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1670 		}
1671 		sc->hw.mac.autoneg = FALSE;
1672 		sc->hw.phy.autoneg_advertised = 0;
1673 		break;
1674 
1675 	default:
1676 		if (bootverbose) {
1677 			if_printf(ifp, "Unsupported media type %d\n",
1678 			    IFM_SUBTYPE(ifm->ifm_media));
1679 		}
1680 		return EINVAL;
1681 	}
1682 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1683 
1684 	if (ifp->if_flags & IFF_RUNNING)
1685 		emx_init(sc);
1686 
1687 	return (0);
1688 }
1689 
1690 static int
1691 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1692     int *segs_used, int *idx)
1693 {
1694 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1695 	bus_dmamap_t map;
1696 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1697 	struct e1000_tx_desc *ctxd = NULL;
1698 	struct mbuf *m_head = *m_headp;
1699 	uint32_t txd_upper, txd_lower, cmd = 0;
1700 	int maxsegs, nsegs, i, j, first, last = 0, error;
1701 
1702 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1703 		error = emx_tso_pullup(tdata, m_headp);
1704 		if (error)
1705 			return error;
1706 		m_head = *m_headp;
1707 	}
1708 
1709 	txd_upper = txd_lower = 0;
1710 
1711 	/*
1712 	 * Capture the first descriptor index, this descriptor
1713 	 * will have the index of the EOP which is the only one
1714 	 * that now gets a DONE bit writeback.
1715 	 */
1716 	first = tdata->next_avail_tx_desc;
1717 	tx_buffer = &tdata->tx_buf[first];
1718 	tx_buffer_mapped = tx_buffer;
1719 	map = tx_buffer->map;
1720 
1721 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1722 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1723 	if (maxsegs > EMX_MAX_SCATTER)
1724 		maxsegs = EMX_MAX_SCATTER;
1725 
1726 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1727 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1728 	if (error) {
1729 		m_freem(*m_headp);
1730 		*m_headp = NULL;
1731 		return error;
1732 	}
1733         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1734 
1735 	m_head = *m_headp;
1736 	tdata->tx_nsegs += nsegs;
1737 	*segs_used += nsegs;
1738 
1739 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1740 		/* TSO will consume one TX desc */
1741 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1742 		tdata->tx_nsegs += i;
1743 		*segs_used += i;
1744 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1745 		/* TX csum offloading will consume one TX desc */
1746 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1747 		tdata->tx_nsegs += i;
1748 		*segs_used += i;
1749 	}
1750 
1751         /* Handle VLAN tag */
1752 	if (m_head->m_flags & M_VLANTAG) {
1753 		/* Set the vlan id. */
1754 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1755 		/* Tell hardware to add tag */
1756 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1757 	}
1758 
1759 	i = tdata->next_avail_tx_desc;
1760 
1761 	/* Set up our transmit descriptors */
1762 	for (j = 0; j < nsegs; j++) {
1763 		tx_buffer = &tdata->tx_buf[i];
1764 		ctxd = &tdata->tx_desc_base[i];
1765 
1766 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1767 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1768 					   txd_lower | segs[j].ds_len);
1769 		ctxd->upper.data = htole32(txd_upper);
1770 
1771 		last = i;
1772 		if (++i == tdata->num_tx_desc)
1773 			i = 0;
1774 	}
1775 
1776 	tdata->next_avail_tx_desc = i;
1777 
1778 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1779 	tdata->num_tx_desc_avail -= nsegs;
1780 	tdata->tx_nmbuf++;
1781 
1782 	tx_buffer->m_head = m_head;
1783 	tx_buffer_mapped->map = tx_buffer->map;
1784 	tx_buffer->map = map;
1785 
1786 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1787 		tdata->tx_nsegs = 0;
1788 
1789 		/*
1790 		 * Report Status (RS) is turned on
1791 		 * every tx_intr_nsegs descriptors.
1792 		 */
1793 		cmd = E1000_TXD_CMD_RS;
1794 
1795 		/*
1796 		 * Keep track of the descriptor, which will
1797 		 * be written back by hardware.
1798 		 */
1799 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1800 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1801 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1802 	}
1803 
1804 	/*
1805 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1806 	 */
1807 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1808 
1809 	/*
1810 	 * Defer TDT updating, until enough descriptors are setup
1811 	 */
1812 	*idx = i;
1813 
1814 #ifdef EMX_TSS_DEBUG
1815 	tdata->tx_pkts++;
1816 #endif
1817 
1818 	return (0);
1819 }
1820 
1821 static void
1822 emx_set_promisc(struct emx_softc *sc)
1823 {
1824 	struct ifnet *ifp = &sc->arpcom.ac_if;
1825 	uint32_t reg_rctl;
1826 
1827 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1828 
1829 	if (ifp->if_flags & IFF_PROMISC) {
1830 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1831 		/* Turn this on if you want to see bad packets */
1832 		if (emx_debug_sbp)
1833 			reg_rctl |= E1000_RCTL_SBP;
1834 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1835 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1836 		reg_rctl |= E1000_RCTL_MPE;
1837 		reg_rctl &= ~E1000_RCTL_UPE;
1838 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1839 	}
1840 }
1841 
1842 static void
1843 emx_disable_promisc(struct emx_softc *sc)
1844 {
1845 	struct ifnet *ifp = &sc->arpcom.ac_if;
1846 	uint32_t reg_rctl;
1847 	int mcnt = 0;
1848 
1849 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1850 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1851 
1852 	if (ifp->if_flags & IFF_ALLMULTI) {
1853 		mcnt = EMX_MCAST_ADDR_MAX;
1854 	} else {
1855 		const struct ifmultiaddr *ifma;
1856 
1857 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1858 			if (ifma->ifma_addr->sa_family != AF_LINK)
1859 				continue;
1860 			if (mcnt == EMX_MCAST_ADDR_MAX)
1861 				break;
1862 			mcnt++;
1863 		}
1864 	}
1865 	/* Don't disable if in MAX groups */
1866 	if (mcnt < EMX_MCAST_ADDR_MAX)
1867 		reg_rctl &= ~E1000_RCTL_MPE;
1868 
1869 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1870 }
1871 
1872 static void
1873 emx_set_multi(struct emx_softc *sc)
1874 {
1875 	struct ifnet *ifp = &sc->arpcom.ac_if;
1876 	struct ifmultiaddr *ifma;
1877 	uint32_t reg_rctl = 0;
1878 	uint8_t *mta;
1879 	int mcnt = 0;
1880 
1881 	mta = sc->mta;
1882 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1883 
1884 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1885 		if (ifma->ifma_addr->sa_family != AF_LINK)
1886 			continue;
1887 
1888 		if (mcnt == EMX_MCAST_ADDR_MAX)
1889 			break;
1890 
1891 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1892 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1893 		mcnt++;
1894 	}
1895 
1896 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1897 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1898 		reg_rctl |= E1000_RCTL_MPE;
1899 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1900 	} else {
1901 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1902 	}
1903 }
1904 
1905 /*
1906  * This routine checks for link status and updates statistics.
1907  */
1908 static void
1909 emx_timer(void *xsc)
1910 {
1911 	struct emx_softc *sc = xsc;
1912 	struct ifnet *ifp = &sc->arpcom.ac_if;
1913 
1914 	lwkt_serialize_enter(&sc->main_serialize);
1915 
1916 	emx_update_link_status(sc);
1917 	emx_update_stats(sc);
1918 
1919 	/* Reset LAA into RAR[0] on 82571 */
1920 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1921 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1922 
1923 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1924 		emx_print_hw_stats(sc);
1925 
1926 	emx_smartspeed(sc);
1927 
1928 	callout_reset(&sc->timer, hz, emx_timer, sc);
1929 
1930 	lwkt_serialize_exit(&sc->main_serialize);
1931 }
1932 
1933 static void
1934 emx_update_link_status(struct emx_softc *sc)
1935 {
1936 	struct e1000_hw *hw = &sc->hw;
1937 	struct ifnet *ifp = &sc->arpcom.ac_if;
1938 	device_t dev = sc->dev;
1939 	uint32_t link_check = 0;
1940 
1941 	/* Get the cached link value or read phy for real */
1942 	switch (hw->phy.media_type) {
1943 	case e1000_media_type_copper:
1944 		if (hw->mac.get_link_status) {
1945 			if (hw->mac.type >= e1000_pch_spt)
1946 				msec_delay(50);
1947 			/* Do the work to read phy */
1948 			e1000_check_for_link(hw);
1949 			link_check = !hw->mac.get_link_status;
1950 			if (link_check) /* ESB2 fix */
1951 				e1000_cfg_on_link_up(hw);
1952 		} else {
1953 			link_check = TRUE;
1954 		}
1955 		break;
1956 
1957 	case e1000_media_type_fiber:
1958 		e1000_check_for_link(hw);
1959 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1960 		break;
1961 
1962 	case e1000_media_type_internal_serdes:
1963 		e1000_check_for_link(hw);
1964 		link_check = sc->hw.mac.serdes_has_link;
1965 		break;
1966 
1967 	case e1000_media_type_unknown:
1968 	default:
1969 		break;
1970 	}
1971 
1972 	/* Now check for a transition */
1973 	if (link_check && sc->link_active == 0) {
1974 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1975 		    &sc->link_duplex);
1976 
1977 		/*
1978 		 * Check if we should enable/disable SPEED_MODE bit on
1979 		 * 82571EB/82572EI
1980 		 */
1981 		if (sc->link_speed != SPEED_1000 &&
1982 		    (hw->mac.type == e1000_82571 ||
1983 		     hw->mac.type == e1000_82572)) {
1984 			int tarc0;
1985 
1986 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1987 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1988 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1989 		}
1990 		if (bootverbose) {
1991 			char flowctrl[IFM_ETH_FC_STRLEN];
1992 
1993 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1994 			    sizeof(flowctrl));
1995 			device_printf(dev, "Link is up %d Mbps %s, "
1996 			    "Flow control: %s\n",
1997 			    sc->link_speed,
1998 			    (sc->link_duplex == FULL_DUPLEX) ?
1999 			    "Full Duplex" : "Half Duplex",
2000 			    flowctrl);
2001 		}
2002 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2003 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
2004 		sc->link_active = 1;
2005 		sc->smartspeed = 0;
2006 		ifp->if_baudrate = sc->link_speed * 1000000;
2007 		ifp->if_link_state = LINK_STATE_UP;
2008 		if_link_state_change(ifp);
2009 	} else if (!link_check && sc->link_active == 1) {
2010 		ifp->if_baudrate = sc->link_speed = 0;
2011 		sc->link_duplex = 0;
2012 		if (bootverbose)
2013 			device_printf(dev, "Link is Down\n");
2014 		sc->link_active = 0;
2015 		ifp->if_link_state = LINK_STATE_DOWN;
2016 		if_link_state_change(ifp);
2017 	}
2018 }
2019 
2020 static void
2021 emx_stop(struct emx_softc *sc)
2022 {
2023 	struct ifnet *ifp = &sc->arpcom.ac_if;
2024 	int i;
2025 
2026 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2027 
2028 	emx_disable_intr(sc);
2029 
2030 	callout_stop(&sc->timer);
2031 
2032 	ifp->if_flags &= ~IFF_RUNNING;
2033 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2034 		struct emx_txdata *tdata = &sc->tx_data[i];
2035 
2036 		ifsq_clr_oactive(tdata->ifsq);
2037 		ifsq_watchdog_stop(&tdata->tx_watchdog);
2038 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
2039 
2040 		tdata->tx_running = 0;
2041 		callout_stop(&tdata->tx_gc_timer);
2042 	}
2043 
2044 	/* I219 needs some special flushing to avoid hangs */
2045 	if (sc->hw.mac.type >= e1000_pch_spt)
2046 		emx_flush_txrx_ring(sc);
2047 
2048 	/*
2049 	 * Disable multiple receive queues.
2050 	 *
2051 	 * NOTE:
2052 	 * We should disable multiple receive queues before
2053 	 * resetting the hardware.
2054 	 */
2055 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
2056 
2057 	e1000_reset_hw(&sc->hw);
2058 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2059 
2060 	for (i = 0; i < sc->tx_ring_cnt; ++i)
2061 		emx_free_tx_ring(&sc->tx_data[i]);
2062 	for (i = 0; i < sc->rx_ring_cnt; ++i)
2063 		emx_free_rx_ring(&sc->rx_data[i]);
2064 }
2065 
2066 static int
2067 emx_reset(struct emx_softc *sc)
2068 {
2069 	device_t dev = sc->dev;
2070 	uint16_t rx_buffer_size;
2071 	uint32_t pba;
2072 
2073 	/* Set up smart power down as default off on newer adapters. */
2074 	if (!emx_smart_pwr_down &&
2075 	    (sc->hw.mac.type == e1000_82571 ||
2076 	     sc->hw.mac.type == e1000_82572)) {
2077 		uint16_t phy_tmp = 0;
2078 
2079 		/* Speed up time to link by disabling smart power down. */
2080 		e1000_read_phy_reg(&sc->hw,
2081 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2082 		phy_tmp &= ~IGP02E1000_PM_SPD;
2083 		e1000_write_phy_reg(&sc->hw,
2084 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2085 	}
2086 
2087 	/*
2088 	 * Packet Buffer Allocation (PBA)
2089 	 * Writing PBA sets the receive portion of the buffer
2090 	 * the remainder is used for the transmit buffer.
2091 	 */
2092 	switch (sc->hw.mac.type) {
2093 	/* Total Packet Buffer on these is 48K */
2094 	case e1000_82571:
2095 	case e1000_82572:
2096 	case e1000_80003es2lan:
2097 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2098 		break;
2099 
2100 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2101 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2102 		break;
2103 
2104 	case e1000_82574:
2105 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2106 		break;
2107 
2108 	case e1000_pch_lpt:
2109 	case e1000_pch_spt:
2110 	case e1000_pch_cnp:
2111  		pba = E1000_PBA_26K;
2112  		break;
2113 
2114 	default:
2115 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2116 		if (sc->hw.mac.max_frame_size > 8192)
2117 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2118 		else
2119 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2120 	}
2121 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2122 
2123 	/*
2124 	 * These parameters control the automatic generation (Tx) and
2125 	 * response (Rx) to Ethernet PAUSE frames.
2126 	 * - High water mark should allow for at least two frames to be
2127 	 *   received after sending an XOFF.
2128 	 * - Low water mark works best when it is very near the high water mark.
2129 	 *   This allows the receiver to restart by sending XON when it has
2130 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2131 	 *   restart after one full frame is pulled from the buffer. There
2132 	 *   could be several smaller frames in the buffer and if so they will
2133 	 *   not trigger the XON until their total number reduces the buffer
2134 	 *   by 1500.
2135 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2136 	 */
2137 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2138 
2139 	sc->hw.fc.high_water = rx_buffer_size -
2140 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2141 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2142 
2143 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2144 	sc->hw.fc.send_xon = TRUE;
2145 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2146 
2147 	/*
2148 	 * Device specific overrides/settings
2149 	 */
2150 	if (sc->hw.mac.type == e1000_pch_lpt ||
2151 	    sc->hw.mac.type == e1000_pch_spt ||
2152 	    sc->hw.mac.type == e1000_pch_cnp) {
2153 		sc->hw.fc.high_water = 0x5C20;
2154 		sc->hw.fc.low_water = 0x5048;
2155 		sc->hw.fc.pause_time = 0x0650;
2156 		sc->hw.fc.refresh_time = 0x0400;
2157 		/* Jumbos need adjusted PBA */
2158 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2159 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2160 		else
2161 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2162 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2163 		sc->hw.fc.pause_time = 0xFFFF;
2164 	}
2165 
2166 	/* I219 needs some special flushing to avoid hangs */
2167 	if (sc->hw.mac.type >= e1000_pch_spt)
2168 		emx_flush_txrx_ring(sc);
2169 
2170 	/* Issue a global reset */
2171 	e1000_reset_hw(&sc->hw);
2172 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2173 	emx_disable_aspm(sc);
2174 
2175 	if (e1000_init_hw(&sc->hw) < 0) {
2176 		device_printf(dev, "Hardware Initialization Failed\n");
2177 		return (EIO);
2178 	}
2179 
2180 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2181 	e1000_get_phy_info(&sc->hw);
2182 	e1000_check_for_link(&sc->hw);
2183 
2184 	return (0);
2185 }
2186 
2187 static void
2188 emx_setup_ifp(struct emx_softc *sc)
2189 {
2190 	struct ifnet *ifp = &sc->arpcom.ac_if;
2191 	int i;
2192 
2193 	if_initname(ifp, device_get_name(sc->dev),
2194 		    device_get_unit(sc->dev));
2195 	ifp->if_softc = sc;
2196 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2197 	ifp->if_init =  emx_init;
2198 	ifp->if_ioctl = emx_ioctl;
2199 	ifp->if_start = emx_start;
2200 #ifdef IFPOLL_ENABLE
2201 	ifp->if_npoll = emx_npoll;
2202 #endif
2203 	ifp->if_serialize = emx_serialize;
2204 	ifp->if_deserialize = emx_deserialize;
2205 	ifp->if_tryserialize = emx_tryserialize;
2206 #ifdef INVARIANTS
2207 	ifp->if_serialize_assert = emx_serialize_assert;
2208 #endif
2209 
2210 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2211 
2212 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2213 	ifq_set_ready(&ifp->if_snd);
2214 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2215 
2216 	ifp->if_mapsubq = ifq_mapsubq_modulo;
2217 	ifq_set_subq_divisor(&ifp->if_snd, 1);
2218 
2219 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2220 
2221 	ifp->if_capabilities = IFCAP_HWCSUM |
2222 			       IFCAP_VLAN_HWTAGGING |
2223 			       IFCAP_VLAN_MTU |
2224 			       IFCAP_TSO;
2225 	if (sc->rx_ring_cnt > 1)
2226 		ifp->if_capabilities |= IFCAP_RSS;
2227 	ifp->if_capenable = ifp->if_capabilities;
2228 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2229 
2230 	/*
2231 	 * Tell the upper layer(s) we support long frames.
2232 	 */
2233 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2234 
2235 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2236 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2237 		struct emx_txdata *tdata = &sc->tx_data[i];
2238 
2239 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2240 		ifsq_set_priv(ifsq, tdata);
2241 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2242 		tdata->ifsq = ifsq;
2243 
2244 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog, 0);
2245 	}
2246 
2247 	/*
2248 	 * Specify the media types supported by this sc and register
2249 	 * callbacks to update media and link information
2250 	 */
2251 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2252 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2253 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2254 			    0, NULL);
2255 	} else {
2256 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2257 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2258 			    0, NULL);
2259 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2260 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2261 			    0, NULL);
2262 		if (sc->hw.phy.type != e1000_phy_ife) {
2263 			ifmedia_add(&sc->media,
2264 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2265 		}
2266 	}
2267 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2268 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2269 }
2270 
2271 /*
2272  * Workaround for SmartSpeed on 82541 and 82547 controllers
2273  */
2274 static void
2275 emx_smartspeed(struct emx_softc *sc)
2276 {
2277 	uint16_t phy_tmp;
2278 
2279 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2280 	    sc->hw.mac.autoneg == 0 ||
2281 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2282 		return;
2283 
2284 	if (sc->smartspeed == 0) {
2285 		/*
2286 		 * If Master/Slave config fault is asserted twice,
2287 		 * we assume back-to-back
2288 		 */
2289 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2290 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2291 			return;
2292 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2293 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2294 			e1000_read_phy_reg(&sc->hw,
2295 			    PHY_1000T_CTRL, &phy_tmp);
2296 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2297 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2298 				e1000_write_phy_reg(&sc->hw,
2299 				    PHY_1000T_CTRL, phy_tmp);
2300 				sc->smartspeed++;
2301 				if (sc->hw.mac.autoneg &&
2302 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2303 				    !e1000_read_phy_reg(&sc->hw,
2304 				     PHY_CONTROL, &phy_tmp)) {
2305 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2306 						   MII_CR_RESTART_AUTO_NEG;
2307 					e1000_write_phy_reg(&sc->hw,
2308 					    PHY_CONTROL, phy_tmp);
2309 				}
2310 			}
2311 		}
2312 		return;
2313 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2314 		/* If still no link, perhaps using 2/3 pair cable */
2315 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2316 		phy_tmp |= CR_1000T_MS_ENABLE;
2317 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2318 		if (sc->hw.mac.autoneg &&
2319 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2320 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2321 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2322 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2323 		}
2324 	}
2325 
2326 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2327 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2328 		sc->smartspeed = 0;
2329 }
2330 
2331 static int
2332 emx_create_tx_ring(struct emx_txdata *tdata)
2333 {
2334 	device_t dev = tdata->sc->dev;
2335 	struct emx_txbuf *tx_buffer;
2336 	int error, i, tsize, ntxd;
2337 
2338 	/*
2339 	 * Validate number of transmit descriptors.  It must not exceed
2340 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2341 	 */
2342 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2343 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2344 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2345 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2346 		    EMX_DEFAULT_TXD, ntxd);
2347 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2348 	} else {
2349 		tdata->num_tx_desc = ntxd;
2350 	}
2351 
2352 	/*
2353 	 * Allocate Transmit Descriptor ring
2354 	 */
2355 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2356 			 EMX_DBA_ALIGN);
2357 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2358 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2359 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2360 				&tdata->tx_desc_paddr);
2361 	if (tdata->tx_desc_base == NULL) {
2362 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2363 		return ENOMEM;
2364 	}
2365 
2366 	tsize = __VM_CACHELINE_ALIGN(
2367 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2368 	tdata->tx_buf = kmalloc(tsize, M_DEVBUF,
2369 				M_WAITOK | M_ZERO | M_CACHEALIGN);
2370 
2371 	/*
2372 	 * Create DMA tags for tx buffers
2373 	 */
2374 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2375 			1, 0,			/* alignment, bounds */
2376 			BUS_SPACE_MAXADDR,	/* lowaddr */
2377 			BUS_SPACE_MAXADDR,	/* highaddr */
2378 			EMX_TSO_SIZE,		/* maxsize */
2379 			EMX_MAX_SCATTER,	/* nsegments */
2380 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2381 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2382 			BUS_DMA_ONEBPAGE,	/* flags */
2383 			&tdata->txtag);
2384 	if (error) {
2385 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2386 		kfree(tdata->tx_buf, M_DEVBUF);
2387 		tdata->tx_buf = NULL;
2388 		return error;
2389 	}
2390 
2391 	/*
2392 	 * Create DMA maps for tx buffers
2393 	 */
2394 	for (i = 0; i < tdata->num_tx_desc; i++) {
2395 		tx_buffer = &tdata->tx_buf[i];
2396 
2397 		error = bus_dmamap_create(tdata->txtag,
2398 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2399 					  &tx_buffer->map);
2400 		if (error) {
2401 			device_printf(dev, "Unable to create TX DMA map\n");
2402 			emx_destroy_tx_ring(tdata, i);
2403 			return error;
2404 		}
2405 	}
2406 
2407 	/*
2408 	 * Setup TX parameters
2409 	 */
2410 	tdata->spare_tx_desc = EMX_TX_SPARE;
2411 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2412 
2413 	/*
2414 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2415 	 * and tx_intr_nsegs:
2416 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2417 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2418 	 */
2419 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2420 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2421 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2422 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2423 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2424 
2425 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2426 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2427 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2428 
2429 	/*
2430 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2431 	 * 82571/82572 specification update errata #7
2432 	 *
2433 	 * Same applies to I217 (and maybe I218 and I219).
2434 	 *
2435 	 * NOTE:
2436 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2437 	 * are pulled; mainly to keep rest of the data properly aligned.
2438 	 */
2439 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2440 	    tdata->sc->hw.mac.type == e1000_82572 ||
2441 	    tdata->sc->hw.mac.type == e1000_pch_lpt ||
2442 	    tdata->sc->hw.mac.type == e1000_pch_spt ||
2443 	    tdata->sc->hw.mac.type == e1000_pch_cnp)
2444 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2445 
2446 	return (0);
2447 }
2448 
2449 static void
2450 emx_init_tx_ring(struct emx_txdata *tdata)
2451 {
2452 	/* Clear the old ring contents */
2453 	bzero(tdata->tx_desc_base,
2454 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2455 
2456 	/* Reset state */
2457 	tdata->next_avail_tx_desc = 0;
2458 	tdata->next_tx_to_clean = 0;
2459 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2460 	tdata->tx_nmbuf = 0;
2461 	tdata->tx_running = 0;
2462 
2463 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2464 	if (tdata->sc->tx_ring_inuse > 1) {
2465 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2466 		if (bootverbose) {
2467 			if_printf(&tdata->sc->arpcom.ac_if,
2468 			    "TX %d force ctx setup\n", tdata->idx);
2469 		}
2470 	}
2471 }
2472 
2473 static void
2474 emx_init_tx_unit(struct emx_softc *sc)
2475 {
2476 	uint32_t tctl, tarc, tipg = 0, txdctl;
2477 	int i;
2478 
2479 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2480 		struct emx_txdata *tdata = &sc->tx_data[i];
2481 		uint64_t bus_addr;
2482 
2483 		/* Setup the Base and Length of the Tx Descriptor Ring */
2484 		bus_addr = tdata->tx_desc_paddr;
2485 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2486 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2487 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2488 		    (uint32_t)(bus_addr >> 32));
2489 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2490 		    (uint32_t)bus_addr);
2491 		/* Setup the HW Tx Head and Tail descriptor pointers */
2492 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2493 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2494 
2495 		txdctl = 0x1f;		/* PTHRESH */
2496 		txdctl |= 1 << 8;	/* HTHRESH */
2497 		txdctl |= 1 << 16;	/* WTHRESH */
2498 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2499 		txdctl |= E1000_TXDCTL_GRAN;
2500 		txdctl |= 1 << 25;	/* LWTHRESH */
2501 
2502 		E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(i), txdctl);
2503 	}
2504 
2505 	/* Set the default values for the Tx Inter Packet Gap timer */
2506 	switch (sc->hw.mac.type) {
2507 	case e1000_80003es2lan:
2508 		tipg = DEFAULT_82543_TIPG_IPGR1;
2509 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2510 		    E1000_TIPG_IPGR2_SHIFT;
2511 		break;
2512 
2513 	default:
2514 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2515 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2516 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2517 		else
2518 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2519 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2520 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2521 		break;
2522 	}
2523 
2524 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2525 
2526 	/* NOTE: 0 is not allowed for TIDV */
2527 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2528 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2529 
2530 	/*
2531 	 * Errata workaround (obtained from Linux).  This is necessary
2532 	 * to make multiple TX queues work on 82574.
2533 	 * XXX can't find it in any published errata though.
2534 	 */
2535 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2536 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2537 
2538 	if (sc->hw.mac.type == e1000_82571 ||
2539 	    sc->hw.mac.type == e1000_82572) {
2540 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2541 		tarc |= EMX_TARC_SPEED_MODE;
2542 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2543 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2544 		/* errata: program both queues to unweighted RR */
2545 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2546 		tarc |= 1;
2547 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2548 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2549 		tarc |= 1;
2550 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2551 	} else if (sc->hw.mac.type == e1000_82574) {
2552 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2553 		tarc |= EMX_TARC_ERRATA;
2554 		if (sc->tx_ring_inuse > 1) {
2555 			tarc |= (EMX_TARC_COMPENSATION_MODE | EMX_TARC_MQ_FIX);
2556 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2557 			E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2558 		} else {
2559 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2560 		}
2561 	}
2562 
2563 	/* Program the Transmit Control Register */
2564 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2565 	tctl &= ~E1000_TCTL_CT;
2566 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2567 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2568 	tctl |= E1000_TCTL_MULR;
2569 
2570 	/* This write will effectively turn on the transmit unit. */
2571 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2572 
2573 	if (sc->hw.mac.type == e1000_82571 ||
2574 	    sc->hw.mac.type == e1000_82572 ||
2575 	    sc->hw.mac.type == e1000_80003es2lan) {
2576 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2577 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2578 		tarc &= ~(1 << 28);
2579 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2580 	} else if (sc->hw.mac.type >= e1000_pch_spt) {
2581 		uint32_t reg;
2582 
2583 		reg = E1000_READ_REG(&sc->hw, E1000_IOSFPC);
2584 		reg |= E1000_RCTL_RDMTS_HEX;
2585 		E1000_WRITE_REG(&sc->hw, E1000_IOSFPC, reg);
2586 		reg = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2587 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2588 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), reg);
2589 	}
2590 
2591 	if (sc->tx_ring_inuse > 1) {
2592 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2593 		tarc &= ~EMX_TARC_COUNT_MASK;
2594 		tarc |= 1;
2595 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2596 
2597 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2598 		tarc &= ~EMX_TARC_COUNT_MASK;
2599 		tarc |= 1;
2600 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2601 	}
2602 }
2603 
2604 static void
2605 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2606 {
2607 	struct emx_txbuf *tx_buffer;
2608 	int i;
2609 
2610 	/* Free Transmit Descriptor ring */
2611 	if (tdata->tx_desc_base) {
2612 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2613 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2614 				tdata->tx_desc_dmap);
2615 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2616 
2617 		tdata->tx_desc_base = NULL;
2618 	}
2619 
2620 	if (tdata->tx_buf == NULL)
2621 		return;
2622 
2623 	for (i = 0; i < ndesc; i++) {
2624 		tx_buffer = &tdata->tx_buf[i];
2625 
2626 		KKASSERT(tx_buffer->m_head == NULL);
2627 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2628 	}
2629 	bus_dma_tag_destroy(tdata->txtag);
2630 
2631 	kfree(tdata->tx_buf, M_DEVBUF);
2632 	tdata->tx_buf = NULL;
2633 }
2634 
2635 /*
2636  * The offload context needs to be set when we transfer the first
2637  * packet of a particular protocol (TCP/UDP).  This routine has been
2638  * enhanced to deal with inserted VLAN headers.
2639  *
2640  * If the new packet's ether header length, ip header length and
2641  * csum offloading type are same as the previous packet, we should
2642  * avoid allocating a new csum context descriptor; mainly to take
2643  * advantage of the pipeline effect of the TX data read request.
2644  *
2645  * This function returns number of TX descrptors allocated for
2646  * csum context.
2647  */
2648 static int
2649 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2650 	   uint32_t *txd_upper, uint32_t *txd_lower)
2651 {
2652 	struct e1000_context_desc *TXD;
2653 	int curr_txd, ehdrlen, csum_flags;
2654 	uint32_t cmd, hdr_len, ip_hlen;
2655 
2656 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2657 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2658 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2659 
2660 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2661 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2662 	    tdata->csum_flags == csum_flags) {
2663 		/*
2664 		 * Same csum offload context as the previous packets;
2665 		 * just return.
2666 		 */
2667 		*txd_upper = tdata->csum_txd_upper;
2668 		*txd_lower = tdata->csum_txd_lower;
2669 		return 0;
2670 	}
2671 
2672 	/*
2673 	 * Setup a new csum offload context.
2674 	 */
2675 
2676 	curr_txd = tdata->next_avail_tx_desc;
2677 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2678 
2679 	cmd = 0;
2680 
2681 	/* Setup of IP header checksum. */
2682 	if (csum_flags & CSUM_IP) {
2683 		/*
2684 		 * Start offset for header checksum calculation.
2685 		 * End offset for header checksum calculation.
2686 		 * Offset of place to put the checksum.
2687 		 */
2688 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2689 		TXD->lower_setup.ip_fields.ipcse =
2690 		    htole16(ehdrlen + ip_hlen - 1);
2691 		TXD->lower_setup.ip_fields.ipcso =
2692 		    ehdrlen + offsetof(struct ip, ip_sum);
2693 		cmd |= E1000_TXD_CMD_IP;
2694 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2695 	}
2696 	hdr_len = ehdrlen + ip_hlen;
2697 
2698 	if (csum_flags & CSUM_TCP) {
2699 		/*
2700 		 * Start offset for payload checksum calculation.
2701 		 * End offset for payload checksum calculation.
2702 		 * Offset of place to put the checksum.
2703 		 */
2704 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2705 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2706 		TXD->upper_setup.tcp_fields.tucso =
2707 		    hdr_len + offsetof(struct tcphdr, th_sum);
2708 		cmd |= E1000_TXD_CMD_TCP;
2709 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2710 	} else if (csum_flags & CSUM_UDP) {
2711 		/*
2712 		 * Start offset for header checksum calculation.
2713 		 * End offset for header checksum calculation.
2714 		 * Offset of place to put the checksum.
2715 		 */
2716 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2717 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2718 		TXD->upper_setup.tcp_fields.tucso =
2719 		    hdr_len + offsetof(struct udphdr, uh_sum);
2720 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2721 	}
2722 
2723 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2724 		     E1000_TXD_DTYP_D;		/* Data descr */
2725 
2726 	/* Save the information for this csum offloading context */
2727 	tdata->csum_lhlen = ehdrlen;
2728 	tdata->csum_iphlen = ip_hlen;
2729 	tdata->csum_flags = csum_flags;
2730 	tdata->csum_txd_upper = *txd_upper;
2731 	tdata->csum_txd_lower = *txd_lower;
2732 
2733 	TXD->tcp_seg_setup.data = htole32(0);
2734 	TXD->cmd_and_length =
2735 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2736 
2737 	if (++curr_txd == tdata->num_tx_desc)
2738 		curr_txd = 0;
2739 
2740 	KKASSERT(tdata->num_tx_desc_avail > 0);
2741 	tdata->num_tx_desc_avail--;
2742 
2743 	tdata->next_avail_tx_desc = curr_txd;
2744 	return 1;
2745 }
2746 
2747 static void
2748 emx_txeof(struct emx_txdata *tdata)
2749 {
2750 	struct emx_txbuf *tx_buffer;
2751 	int first, num_avail;
2752 
2753 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2754 		return;
2755 
2756 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2757 		return;
2758 
2759 	num_avail = tdata->num_tx_desc_avail;
2760 	first = tdata->next_tx_to_clean;
2761 
2762 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2763 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2764 		struct e1000_tx_desc *tx_desc;
2765 
2766 		tx_desc = &tdata->tx_desc_base[dd_idx];
2767 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2768 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2769 
2770 			if (++dd_idx == tdata->num_tx_desc)
2771 				dd_idx = 0;
2772 
2773 			while (first != dd_idx) {
2774 				logif(pkt_txclean);
2775 
2776 				KKASSERT(num_avail < tdata->num_tx_desc);
2777 				num_avail++;
2778 
2779 				tx_buffer = &tdata->tx_buf[first];
2780 				if (tx_buffer->m_head)
2781 					emx_free_txbuf(tdata, tx_buffer);
2782 
2783 				if (++first == tdata->num_tx_desc)
2784 					first = 0;
2785 			}
2786 		} else {
2787 			break;
2788 		}
2789 	}
2790 	tdata->next_tx_to_clean = first;
2791 	tdata->num_tx_desc_avail = num_avail;
2792 
2793 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2794 		tdata->tx_dd_head = 0;
2795 		tdata->tx_dd_tail = 0;
2796 	}
2797 
2798 	if (!EMX_IS_OACTIVE(tdata)) {
2799 		ifsq_clr_oactive(tdata->ifsq);
2800 
2801 		/* All clean, turn off the timer */
2802 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2803 			ifsq_watchdog_set_count(&tdata->tx_watchdog, 0);
2804 	}
2805 	tdata->tx_running = EMX_TX_RUNNING;
2806 }
2807 
2808 static void
2809 emx_tx_collect(struct emx_txdata *tdata, boolean_t gc)
2810 {
2811 	struct emx_txbuf *tx_buffer;
2812 	int tdh, first, num_avail, dd_idx = -1;
2813 
2814 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2815 		return;
2816 
2817 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2818 	if (tdh == tdata->next_tx_to_clean) {
2819 		if (gc && tdata->tx_nmbuf > 0)
2820 			tdata->tx_running = EMX_TX_RUNNING;
2821 		return;
2822 	}
2823 	if (gc)
2824 		tdata->tx_gc++;
2825 
2826 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2827 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2828 
2829 	num_avail = tdata->num_tx_desc_avail;
2830 	first = tdata->next_tx_to_clean;
2831 
2832 	while (first != tdh) {
2833 		logif(pkt_txclean);
2834 
2835 		KKASSERT(num_avail < tdata->num_tx_desc);
2836 		num_avail++;
2837 
2838 		tx_buffer = &tdata->tx_buf[first];
2839 		if (tx_buffer->m_head)
2840 			emx_free_txbuf(tdata, tx_buffer);
2841 
2842 		if (first == dd_idx) {
2843 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2844 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2845 				tdata->tx_dd_head = 0;
2846 				tdata->tx_dd_tail = 0;
2847 				dd_idx = -1;
2848 			} else {
2849 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2850 			}
2851 		}
2852 
2853 		if (++first == tdata->num_tx_desc)
2854 			first = 0;
2855 	}
2856 	tdata->next_tx_to_clean = first;
2857 	tdata->num_tx_desc_avail = num_avail;
2858 
2859 	if (!EMX_IS_OACTIVE(tdata)) {
2860 		ifsq_clr_oactive(tdata->ifsq);
2861 
2862 		/* All clean, turn off the timer */
2863 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2864 			ifsq_watchdog_set_count(&tdata->tx_watchdog, 0);
2865 	}
2866 	if (!gc || tdata->tx_nmbuf > 0)
2867 		tdata->tx_running = EMX_TX_RUNNING;
2868 }
2869 
2870 /*
2871  * When Link is lost sometimes there is work still in the TX ring
2872  * which will result in a watchdog, rather than allow that do an
2873  * attempted cleanup and then reinit here.  Note that this has been
2874  * seens mostly with fiber adapters.
2875  */
2876 static void
2877 emx_tx_purge(struct emx_softc *sc)
2878 {
2879 	int i;
2880 
2881 	if (sc->link_active)
2882 		return;
2883 
2884 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2885 		struct emx_txdata *tdata = &sc->tx_data[i];
2886 
2887 		if (tdata->tx_watchdog.wd_timer) {
2888 			emx_tx_collect(tdata, FALSE);
2889 			if (tdata->tx_watchdog.wd_timer) {
2890 				if_printf(&sc->arpcom.ac_if,
2891 				    "Link lost, TX pending, reinit\n");
2892 				emx_init(sc);
2893 				return;
2894 			}
2895 		}
2896 	}
2897 }
2898 
2899 static int
2900 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2901 {
2902 	struct mbuf *m;
2903 	bus_dma_segment_t seg;
2904 	bus_dmamap_t map;
2905 	struct emx_rxbuf *rx_buffer;
2906 	int error, nseg;
2907 
2908 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2909 	if (m == NULL) {
2910 		if (init) {
2911 			if_printf(&rdata->sc->arpcom.ac_if,
2912 				  "Unable to allocate RX mbuf\n");
2913 		}
2914 		return (ENOBUFS);
2915 	}
2916 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2917 
2918 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2919 		m_adj(m, ETHER_ALIGN);
2920 
2921 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2922 			rdata->rx_sparemap, m,
2923 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2924 	if (error) {
2925 		m_freem(m);
2926 		if (init) {
2927 			if_printf(&rdata->sc->arpcom.ac_if,
2928 				  "Unable to load RX mbuf\n");
2929 		}
2930 		return (error);
2931 	}
2932 
2933 	rx_buffer = &rdata->rx_buf[i];
2934 	if (rx_buffer->m_head != NULL)
2935 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2936 
2937 	map = rx_buffer->map;
2938 	rx_buffer->map = rdata->rx_sparemap;
2939 	rdata->rx_sparemap = map;
2940 
2941 	rx_buffer->m_head = m;
2942 	rx_buffer->paddr = seg.ds_addr;
2943 
2944 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2945 	return (0);
2946 }
2947 
2948 static int
2949 emx_create_rx_ring(struct emx_rxdata *rdata)
2950 {
2951 	device_t dev = rdata->sc->dev;
2952 	struct emx_rxbuf *rx_buffer;
2953 	int i, error, rsize, nrxd;
2954 
2955 	/*
2956 	 * Validate number of receive descriptors.  It must not exceed
2957 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2958 	 */
2959 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2960 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2961 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2962 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2963 		    EMX_DEFAULT_RXD, nrxd);
2964 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2965 	} else {
2966 		rdata->num_rx_desc = nrxd;
2967 	}
2968 
2969 	/*
2970 	 * Allocate Receive Descriptor ring
2971 	 */
2972 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2973 			 EMX_DBA_ALIGN);
2974 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2975 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2976 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2977 				&rdata->rx_desc_paddr);
2978 	if (rdata->rx_desc == NULL) {
2979 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2980 		return ENOMEM;
2981 	}
2982 
2983 	rsize = __VM_CACHELINE_ALIGN(
2984 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2985 	rdata->rx_buf = kmalloc(rsize, M_DEVBUF,
2986 				M_WAITOK | M_ZERO | M_CACHEALIGN);
2987 
2988 	/*
2989 	 * Create DMA tag for rx buffers
2990 	 */
2991 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2992 			1, 0,			/* alignment, bounds */
2993 			BUS_SPACE_MAXADDR,	/* lowaddr */
2994 			BUS_SPACE_MAXADDR,	/* highaddr */
2995 			MCLBYTES,		/* maxsize */
2996 			1,			/* nsegments */
2997 			MCLBYTES,		/* maxsegsize */
2998 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2999 			&rdata->rxtag);
3000 	if (error) {
3001 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3002 		kfree(rdata->rx_buf, M_DEVBUF);
3003 		rdata->rx_buf = NULL;
3004 		return error;
3005 	}
3006 
3007 	/*
3008 	 * Create spare DMA map for rx buffers
3009 	 */
3010 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
3011 				  &rdata->rx_sparemap);
3012 	if (error) {
3013 		device_printf(dev, "Unable to create spare RX DMA map\n");
3014 		bus_dma_tag_destroy(rdata->rxtag);
3015 		kfree(rdata->rx_buf, M_DEVBUF);
3016 		rdata->rx_buf = NULL;
3017 		return error;
3018 	}
3019 
3020 	/*
3021 	 * Create DMA maps for rx buffers
3022 	 */
3023 	for (i = 0; i < rdata->num_rx_desc; i++) {
3024 		rx_buffer = &rdata->rx_buf[i];
3025 
3026 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
3027 					  &rx_buffer->map);
3028 		if (error) {
3029 			device_printf(dev, "Unable to create RX DMA map\n");
3030 			emx_destroy_rx_ring(rdata, i);
3031 			return error;
3032 		}
3033 	}
3034 	return (0);
3035 }
3036 
3037 static void
3038 emx_free_rx_ring(struct emx_rxdata *rdata)
3039 {
3040 	int i;
3041 
3042 	for (i = 0; i < rdata->num_rx_desc; i++) {
3043 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
3044 
3045 		if (rx_buffer->m_head != NULL) {
3046 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
3047 			m_freem(rx_buffer->m_head);
3048 			rx_buffer->m_head = NULL;
3049 		}
3050 	}
3051 
3052 	if (rdata->fmp != NULL)
3053 		m_freem(rdata->fmp);
3054 	rdata->fmp = NULL;
3055 	rdata->lmp = NULL;
3056 }
3057 
3058 static void
3059 emx_free_tx_ring(struct emx_txdata *tdata)
3060 {
3061 	int i;
3062 
3063 	for (i = 0; i < tdata->num_tx_desc; i++) {
3064 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
3065 
3066 		if (tx_buffer->m_head != NULL)
3067 			emx_free_txbuf(tdata, tx_buffer);
3068 	}
3069 
3070 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
3071 
3072 	tdata->csum_flags = 0;
3073 	tdata->csum_lhlen = 0;
3074 	tdata->csum_iphlen = 0;
3075 	tdata->csum_thlen = 0;
3076 	tdata->csum_mss = 0;
3077 	tdata->csum_pktlen = 0;
3078 
3079 	tdata->tx_dd_head = 0;
3080 	tdata->tx_dd_tail = 0;
3081 	tdata->tx_nsegs = 0;
3082 }
3083 
3084 static int
3085 emx_init_rx_ring(struct emx_rxdata *rdata)
3086 {
3087 	int i, error;
3088 
3089 	/* Reset descriptor ring */
3090 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
3091 
3092 	/* Allocate new ones. */
3093 	for (i = 0; i < rdata->num_rx_desc; i++) {
3094 		error = emx_newbuf(rdata, i, 1);
3095 		if (error)
3096 			return (error);
3097 	}
3098 
3099 	/* Setup our descriptor pointers */
3100 	rdata->next_rx_desc_to_check = 0;
3101 
3102 	return (0);
3103 }
3104 
3105 static void
3106 emx_init_rx_unit(struct emx_softc *sc)
3107 {
3108 	struct ifnet *ifp = &sc->arpcom.ac_if;
3109 	uint64_t bus_addr;
3110 	uint32_t rctl, itr, rfctl, rxcsum;
3111 	int i;
3112 
3113 	/*
3114 	 * Make sure receives are disabled while setting
3115 	 * up the descriptor ring
3116 	 */
3117 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3118 	/* Do not disable if ever enabled on this hardware */
3119 	if (sc->hw.mac.type != e1000_82574)
3120 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3121 
3122 	/*
3123 	 * Set the interrupt throttling rate. Value is calculated
3124 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3125 	 */
3126 	if (sc->int_throttle_ceil)
3127 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
3128 	else
3129 		itr = 0;
3130 	emx_set_itr(sc, itr);
3131 
3132 	/* Use extended RX descriptor */
3133 	rfctl = E1000_READ_REG(&sc->hw, E1000_RFCTL);
3134 	rfctl |= E1000_RFCTL_EXTEN;
3135 	/* Disable accelerated ackknowledge */
3136 	if (sc->hw.mac.type == e1000_82574)
3137 		rfctl |= E1000_RFCTL_ACK_DIS;
3138 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
3139 
3140 	/*
3141 	 * Receive Checksum Offload for TCP and UDP
3142 	 *
3143 	 * Checksum offloading is also enabled if multiple receive
3144 	 * queue is to be supported, since we need it to figure out
3145 	 * packet type.
3146 	 */
3147 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
3148 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
3149 	    sc->rx_ring_cnt > 1) {
3150 		/*
3151 		 * NOTE:
3152 		 * PCSD must be enabled to enable multiple
3153 		 * receive queues.
3154 		 */
3155 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3156 			  E1000_RXCSUM_PCSD;
3157 	} else {
3158 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3159 			    E1000_RXCSUM_PCSD);
3160 	}
3161 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3162 
3163 	/*
3164 	 * Configure multiple receive queue (RSS)
3165 	 */
3166 	if (sc->rx_ring_cnt > 1) {
3167 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3168 		int r, j;
3169 
3170 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3171 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3172 
3173 		/*
3174 		 * NOTE:
3175 		 * When we reach here, RSS has already been disabled
3176 		 * in emx_stop(), so we could safely configure RSS key
3177 		 * and redirect table.
3178 		 */
3179 
3180 		/*
3181 		 * Configure RSS key
3182 		 */
3183 		toeplitz_get_key(key, sizeof(key));
3184 		for (i = 0; i < EMX_NRSSRK; ++i) {
3185 			uint32_t rssrk;
3186 
3187 			rssrk = EMX_RSSRK_VAL(key, i);
3188 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3189 
3190 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3191 		}
3192 
3193 		/*
3194 		 * Configure RSS redirect table.
3195 		 */
3196 		if_ringmap_rdrtable(sc->rx_rmap, sc->rdr_table,
3197 		    EMX_RDRTABLE_SIZE);
3198 
3199 		r = 0;
3200 		for (j = 0; j < EMX_NRETA; ++j) {
3201 			uint32_t reta = 0;
3202 
3203 			for (i = 0; i < EMX_RETA_SIZE; ++i) {
3204 				uint32_t q;
3205 
3206 				q = sc->rdr_table[r] << EMX_RETA_RINGIDX_SHIFT;
3207 				reta |= q << (8 * i);
3208 				++r;
3209 			}
3210 			EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3211 			E1000_WRITE_REG(&sc->hw, E1000_RETA(j), reta);
3212 		}
3213 
3214 		/*
3215 		 * Enable multiple receive queues.
3216 		 * Enable IPv4 RSS standard hash functions.
3217 		 * Disable RSS interrupt.
3218 		 */
3219 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3220 				E1000_MRQC_ENABLE_RSS_2Q |
3221 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3222 				E1000_MRQC_RSS_FIELD_IPV4);
3223 	}
3224 
3225 	/*
3226 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3227 	 * long latencies are observed, like Lenovo X60. This
3228 	 * change eliminates the problem, but since having positive
3229 	 * values in RDTR is a known source of problems on other
3230 	 * platforms another solution is being sought.
3231 	 */
3232 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3233 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3234 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3235 	}
3236 
3237 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3238 		struct emx_rxdata *rdata = &sc->rx_data[i];
3239 
3240 		/*
3241 		 * Setup the Base and Length of the Rx Descriptor Ring
3242 		 */
3243 		bus_addr = rdata->rx_desc_paddr;
3244 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3245 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3246 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3247 		    (uint32_t)(bus_addr >> 32));
3248 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3249 		    (uint32_t)bus_addr);
3250 
3251 		/*
3252 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3253 		 */
3254 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3255 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3256 		    sc->rx_data[i].num_rx_desc - 1);
3257 	}
3258 
3259 	/* Set PTHRESH for improved jumbo performance */
3260 	if (ifp->if_mtu > ETHERMTU && sc->hw.mac.type == e1000_82574) {
3261 		uint32_t rxdctl;
3262 
3263 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3264 			rxdctl = E1000_READ_REG(&sc->hw, E1000_RXDCTL(i));
3265                 	rxdctl |= 0x20;		/* PTHRESH */
3266                 	rxdctl |= 4 << 8;	/* HTHRESH */
3267                 	rxdctl |= 4 << 16;	/* WTHRESH */
3268 			rxdctl |= 1 << 24;	/* Switch to granularity */
3269 			E1000_WRITE_REG(&sc->hw, E1000_RXDCTL(i), rxdctl);
3270 		}
3271 	}
3272 
3273 	if (sc->hw.mac.type >= e1000_pch2lan) {
3274 		if (ifp->if_mtu > ETHERMTU)
3275 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3276 		else
3277 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3278 	}
3279 
3280 	/* Setup the Receive Control Register */
3281 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3282 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3283 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3284 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3285 
3286 	/* Make sure VLAN Filters are off */
3287 	rctl &= ~E1000_RCTL_VFE;
3288 
3289 	/* Don't store bad paket */
3290 	rctl &= ~E1000_RCTL_SBP;
3291 
3292 	/* MCLBYTES */
3293 	rctl |= E1000_RCTL_SZ_2048;
3294 
3295 	if (ifp->if_mtu > ETHERMTU)
3296 		rctl |= E1000_RCTL_LPE;
3297 	else
3298 		rctl &= ~E1000_RCTL_LPE;
3299 
3300 	/* Enable Receives */
3301 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3302 }
3303 
3304 static void
3305 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3306 {
3307 	struct emx_rxbuf *rx_buffer;
3308 	int i;
3309 
3310 	/* Free Receive Descriptor ring */
3311 	if (rdata->rx_desc) {
3312 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3313 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3314 				rdata->rx_desc_dmap);
3315 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3316 
3317 		rdata->rx_desc = NULL;
3318 	}
3319 
3320 	if (rdata->rx_buf == NULL)
3321 		return;
3322 
3323 	for (i = 0; i < ndesc; i++) {
3324 		rx_buffer = &rdata->rx_buf[i];
3325 
3326 		KKASSERT(rx_buffer->m_head == NULL);
3327 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3328 	}
3329 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3330 	bus_dma_tag_destroy(rdata->rxtag);
3331 
3332 	kfree(rdata->rx_buf, M_DEVBUF);
3333 	rdata->rx_buf = NULL;
3334 }
3335 
3336 static void
3337 emx_rxeof(struct emx_rxdata *rdata, int count)
3338 {
3339 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3340 	uint32_t staterr;
3341 	emx_rxdesc_t *current_desc;
3342 	struct mbuf *mp;
3343 	int i, cpuid = mycpuid;
3344 
3345 	i = rdata->next_rx_desc_to_check;
3346 	current_desc = &rdata->rx_desc[i];
3347 	staterr = le32toh(current_desc->rxd_staterr);
3348 
3349 	if (!(staterr & E1000_RXD_STAT_DD))
3350 		return;
3351 
3352 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3353 		struct pktinfo *pi = NULL, pi0;
3354 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3355 		struct mbuf *m = NULL;
3356 		int eop, len;
3357 
3358 		logif(pkt_receive);
3359 
3360 		mp = rx_buf->m_head;
3361 
3362 		/*
3363 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3364 		 * needs to access the last received byte in the mbuf.
3365 		 */
3366 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3367 				BUS_DMASYNC_POSTREAD);
3368 
3369 		len = le16toh(current_desc->rxd_length);
3370 		if (staterr & E1000_RXD_STAT_EOP) {
3371 			count--;
3372 			eop = 1;
3373 		} else {
3374 			eop = 0;
3375 		}
3376 
3377 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3378 			uint16_t vlan = 0;
3379 			uint32_t mrq, rss_hash;
3380 
3381 			/*
3382 			 * Save several necessary information,
3383 			 * before emx_newbuf() destroy it.
3384 			 */
3385 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3386 				vlan = le16toh(current_desc->rxd_vlan);
3387 
3388 			mrq = le32toh(current_desc->rxd_mrq);
3389 			rss_hash = le32toh(current_desc->rxd_rss);
3390 
3391 			EMX_RSS_DPRINTF(rdata->sc, 10,
3392 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3393 			    rdata->idx, mrq, rss_hash);
3394 
3395 			if (emx_newbuf(rdata, i, 0) != 0) {
3396 				IFNET_STAT_INC(ifp, iqdrops, 1);
3397 				goto discard;
3398 			}
3399 
3400 			/* Assign correct length to the current fragment */
3401 			mp->m_len = len;
3402 
3403 			if (rdata->fmp == NULL) {
3404 				mp->m_pkthdr.len = len;
3405 				rdata->fmp = mp; /* Store the first mbuf */
3406 				rdata->lmp = mp;
3407 			} else {
3408 				/*
3409 				 * Chain mbuf's together
3410 				 */
3411 				rdata->lmp->m_next = mp;
3412 				rdata->lmp = rdata->lmp->m_next;
3413 				rdata->fmp->m_pkthdr.len += len;
3414 			}
3415 
3416 			if (eop) {
3417 				rdata->fmp->m_pkthdr.rcvif = ifp;
3418 				IFNET_STAT_INC(ifp, ipackets, 1);
3419 
3420 				if (ifp->if_capenable & IFCAP_RXCSUM)
3421 					emx_rxcsum(staterr, rdata->fmp);
3422 
3423 				if (staterr & E1000_RXD_STAT_VP) {
3424 					rdata->fmp->m_pkthdr.ether_vlantag =
3425 					    vlan;
3426 					rdata->fmp->m_flags |= M_VLANTAG;
3427 				}
3428 				m = rdata->fmp;
3429 				rdata->fmp = NULL;
3430 				rdata->lmp = NULL;
3431 
3432 				if (ifp->if_capenable & IFCAP_RSS) {
3433 					pi = emx_rssinfo(m, &pi0, mrq,
3434 							 rss_hash, staterr);
3435 				}
3436 #ifdef EMX_RSS_DEBUG
3437 				rdata->rx_pkts++;
3438 #endif
3439 			}
3440 		} else {
3441 			IFNET_STAT_INC(ifp, ierrors, 1);
3442 discard:
3443 			emx_setup_rxdesc(current_desc, rx_buf);
3444 			if (rdata->fmp != NULL) {
3445 				m_freem(rdata->fmp);
3446 				rdata->fmp = NULL;
3447 				rdata->lmp = NULL;
3448 			}
3449 			m = NULL;
3450 		}
3451 
3452 		if (m != NULL)
3453 			ifp->if_input(ifp, m, pi, cpuid);
3454 
3455 		/* Advance our pointers to the next descriptor. */
3456 		if (++i == rdata->num_rx_desc)
3457 			i = 0;
3458 
3459 		current_desc = &rdata->rx_desc[i];
3460 		staterr = le32toh(current_desc->rxd_staterr);
3461 	}
3462 	rdata->next_rx_desc_to_check = i;
3463 
3464 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3465 	if (--i < 0)
3466 		i = rdata->num_rx_desc - 1;
3467 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3468 }
3469 
3470 static void
3471 emx_enable_intr(struct emx_softc *sc)
3472 {
3473 	uint32_t ims_mask = IMS_ENABLE_MASK;
3474 
3475 	lwkt_serialize_handler_enable(&sc->main_serialize);
3476 
3477 #if 0
3478 	if (sc->hw.mac.type == e1000_82574) {
3479 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3480 		ims_mask |= EM_MSIX_MASK;
3481 	}
3482 #endif
3483 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3484 }
3485 
3486 static void
3487 emx_disable_intr(struct emx_softc *sc)
3488 {
3489 	if (sc->hw.mac.type == e1000_82574)
3490 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3491 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3492 
3493 	lwkt_serialize_handler_disable(&sc->main_serialize);
3494 }
3495 
3496 /*
3497  * Bit of a misnomer, what this really means is
3498  * to enable OS management of the system... aka
3499  * to disable special hardware management features
3500  */
3501 static void
3502 emx_get_mgmt(struct emx_softc *sc)
3503 {
3504 	/* A shared code workaround */
3505 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3506 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3507 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3508 
3509 		/* disable hardware interception of ARP */
3510 		manc &= ~(E1000_MANC_ARP_EN);
3511 
3512                 /* enable receiving management packets to the host */
3513 		manc |= E1000_MANC_EN_MNG2HOST;
3514 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3515 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3516 		manc2h |= E1000_MNG2HOST_PORT_623;
3517 		manc2h |= E1000_MNG2HOST_PORT_664;
3518 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3519 
3520 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3521 	}
3522 }
3523 
3524 /*
3525  * Give control back to hardware management
3526  * controller if there is one.
3527  */
3528 static void
3529 emx_rel_mgmt(struct emx_softc *sc)
3530 {
3531 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3532 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3533 
3534 		/* re-enable hardware interception of ARP */
3535 		manc |= E1000_MANC_ARP_EN;
3536 		manc &= ~E1000_MANC_EN_MNG2HOST;
3537 
3538 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3539 	}
3540 }
3541 
3542 /*
3543  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3544  * For ASF and Pass Through versions of f/w this means that
3545  * the driver is loaded.  For AMT version (only with 82573)
3546  * of the f/w this means that the network i/f is open.
3547  */
3548 static void
3549 emx_get_hw_control(struct emx_softc *sc)
3550 {
3551 	/* Let firmware know the driver has taken over */
3552 	if (sc->hw.mac.type == e1000_82573) {
3553 		uint32_t swsm;
3554 
3555 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3556 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3557 		    swsm | E1000_SWSM_DRV_LOAD);
3558 	} else {
3559 		uint32_t ctrl_ext;
3560 
3561 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3562 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3563 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3564 	}
3565 	sc->flags |= EMX_FLAG_HW_CTRL;
3566 }
3567 
3568 /*
3569  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3570  * For ASF and Pass Through versions of f/w this means that the
3571  * driver is no longer loaded.  For AMT version (only with 82573)
3572  * of the f/w this means that the network i/f is closed.
3573  */
3574 static void
3575 emx_rel_hw_control(struct emx_softc *sc)
3576 {
3577 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3578 		return;
3579 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3580 
3581 	/* Let firmware taken over control of h/w */
3582 	if (sc->hw.mac.type == e1000_82573) {
3583 		uint32_t swsm;
3584 
3585 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3586 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3587 		    swsm & ~E1000_SWSM_DRV_LOAD);
3588 	} else {
3589 		uint32_t ctrl_ext;
3590 
3591 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3592 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3593 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3594 	}
3595 }
3596 
3597 static int
3598 emx_is_valid_eaddr(const uint8_t *addr)
3599 {
3600 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3601 
3602 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3603 		return (FALSE);
3604 
3605 	return (TRUE);
3606 }
3607 
3608 /*
3609  * Enable PCI Wake On Lan capability
3610  */
3611 static void
3612 emx_enable_wol(device_t dev)
3613 {
3614 	uint16_t cap, status;
3615 	uint8_t id;
3616 
3617 	/* First find the capabilities pointer*/
3618 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3619 
3620 	/* Read the PM Capabilities */
3621 	id = pci_read_config(dev, cap, 1);
3622 	if (id != PCIY_PMG)     /* Something wrong */
3623 		return;
3624 
3625 	/*
3626 	 * OK, we have the power capabilities,
3627 	 * so now get the status register
3628 	 */
3629 	cap += PCIR_POWER_STATUS;
3630 	status = pci_read_config(dev, cap, 2);
3631 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3632 	pci_write_config(dev, cap, status, 2);
3633 }
3634 
3635 static void
3636 emx_update_stats(struct emx_softc *sc)
3637 {
3638 	struct ifnet *ifp = &sc->arpcom.ac_if;
3639 
3640 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3641 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3642 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3643 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3644 	}
3645 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3646 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3647 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3648 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3649 
3650 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3651 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3652 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3653 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3654 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3655 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3656 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3657 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3658 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3659 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3660 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3661 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3662 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3663 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3664 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3665 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3666 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3667 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3668 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3669 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3670 
3671 	/* For the 64-bit byte counters the low dword must be read first. */
3672 	/* Both registers clear on the read of the high dword */
3673 
3674 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3675 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3676 
3677 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3678 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3679 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3680 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3681 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3682 
3683 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3684 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3685 
3686 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3687 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3688 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3689 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3690 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3691 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3692 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3693 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3694 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3695 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3696 
3697 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3698 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3699 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3700 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3701 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3702 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3703 
3704 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3705 
3706 	/* Rx Errors */
3707 	IFNET_STAT_SET(ifp, ierrors,
3708 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3709 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3710 
3711 	/* Tx Errors */
3712 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3713 }
3714 
3715 static void
3716 emx_print_debug_info(struct emx_softc *sc)
3717 {
3718 	device_t dev = sc->dev;
3719 	uint8_t *hw_addr = sc->hw.hw_addr;
3720 	int i;
3721 
3722 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3723 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3724 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3725 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3726 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3727 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3728 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3729 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3730 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3731 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3732 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3733 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3734 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3735 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3736 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3737 
3738 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3739 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3740 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3741 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3742 	}
3743 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3744 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3745 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3746 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3747 	}
3748 
3749 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3750 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3751 		    sc->tx_data[i].num_tx_desc_avail);
3752 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3753 		    sc->tx_data[i].tso_segments);
3754 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3755 		    sc->tx_data[i].tso_ctx_reused);
3756 	}
3757 }
3758 
3759 static void
3760 emx_print_hw_stats(struct emx_softc *sc)
3761 {
3762 	device_t dev = sc->dev;
3763 
3764 	device_printf(dev, "Excessive collisions = %lld\n",
3765 	    (long long)sc->stats.ecol);
3766 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3767 	device_printf(dev, "Symbol errors = %lld\n",
3768 	    (long long)sc->stats.symerrs);
3769 #endif
3770 	device_printf(dev, "Sequence errors = %lld\n",
3771 	    (long long)sc->stats.sec);
3772 	device_printf(dev, "Defer count = %lld\n",
3773 	    (long long)sc->stats.dc);
3774 	device_printf(dev, "Missed Packets = %lld\n",
3775 	    (long long)sc->stats.mpc);
3776 	device_printf(dev, "Receive No Buffers = %lld\n",
3777 	    (long long)sc->stats.rnbc);
3778 	/* RLEC is inaccurate on some hardware, calculate our own. */
3779 	device_printf(dev, "Receive Length Errors = %lld\n",
3780 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3781 	device_printf(dev, "Receive errors = %lld\n",
3782 	    (long long)sc->stats.rxerrc);
3783 	device_printf(dev, "Crc errors = %lld\n",
3784 	    (long long)sc->stats.crcerrs);
3785 	device_printf(dev, "Alignment errors = %lld\n",
3786 	    (long long)sc->stats.algnerrc);
3787 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3788 	    (long long)sc->stats.cexterr);
3789 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3790 	device_printf(dev, "XON Rcvd = %lld\n",
3791 	    (long long)sc->stats.xonrxc);
3792 	device_printf(dev, "XON Xmtd = %lld\n",
3793 	    (long long)sc->stats.xontxc);
3794 	device_printf(dev, "XOFF Rcvd = %lld\n",
3795 	    (long long)sc->stats.xoffrxc);
3796 	device_printf(dev, "XOFF Xmtd = %lld\n",
3797 	    (long long)sc->stats.xofftxc);
3798 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3799 	    (long long)sc->stats.gprc);
3800 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3801 	    (long long)sc->stats.gptc);
3802 }
3803 
3804 static void
3805 emx_print_nvm_info(struct emx_softc *sc)
3806 {
3807 	uint16_t eeprom_data;
3808 	int i, j, row = 0;
3809 
3810 	/* Its a bit crude, but it gets the job done */
3811 	kprintf("\nInterface EEPROM Dump:\n");
3812 	kprintf("Offset\n0x0000  ");
3813 	for (i = 0, j = 0; i < 32; i++, j++) {
3814 		if (j == 8) { /* Make the offset block */
3815 			j = 0; ++row;
3816 			kprintf("\n0x00%x0  ",row);
3817 		}
3818 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3819 		kprintf("%04x ", eeprom_data);
3820 	}
3821 	kprintf("\n");
3822 }
3823 
3824 static int
3825 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3826 {
3827 	struct emx_softc *sc;
3828 	struct ifnet *ifp;
3829 	int error, result;
3830 
3831 	result = -1;
3832 	error = sysctl_handle_int(oidp, &result, 0, req);
3833 	if (error || !req->newptr)
3834 		return (error);
3835 
3836 	sc = (struct emx_softc *)arg1;
3837 	ifp = &sc->arpcom.ac_if;
3838 
3839 	ifnet_serialize_all(ifp);
3840 
3841 	if (result == 1)
3842 		emx_print_debug_info(sc);
3843 
3844 	/*
3845 	 * This value will cause a hex dump of the
3846 	 * first 32 16-bit words of the EEPROM to
3847 	 * the screen.
3848 	 */
3849 	if (result == 2)
3850 		emx_print_nvm_info(sc);
3851 
3852 	ifnet_deserialize_all(ifp);
3853 
3854 	return (error);
3855 }
3856 
3857 static int
3858 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3859 {
3860 	int error, result;
3861 
3862 	result = -1;
3863 	error = sysctl_handle_int(oidp, &result, 0, req);
3864 	if (error || !req->newptr)
3865 		return (error);
3866 
3867 	if (result == 1) {
3868 		struct emx_softc *sc = (struct emx_softc *)arg1;
3869 		struct ifnet *ifp = &sc->arpcom.ac_if;
3870 
3871 		ifnet_serialize_all(ifp);
3872 		emx_print_hw_stats(sc);
3873 		ifnet_deserialize_all(ifp);
3874 	}
3875 	return (error);
3876 }
3877 
3878 static void
3879 emx_add_sysctl(struct emx_softc *sc)
3880 {
3881 	struct sysctl_ctx_list *ctx;
3882 	struct sysctl_oid *tree;
3883 	char pkt_desc[32];
3884 	int i;
3885 
3886 	ctx = device_get_sysctl_ctx(sc->dev);
3887 	tree = device_get_sysctl_tree(sc->dev);
3888 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3889 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3890 			emx_sysctl_debug_info, "I", "Debug Information");
3891 
3892 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3893 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3894 			emx_sysctl_stats, "I", "Statistics");
3895 
3896 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3897 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3898 	    "# of RX descs");
3899 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3900 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3901 	    "# of TX descs");
3902 
3903 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3904 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3905 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3906 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3907 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3908 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3909 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3910 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3911 	    emx_sysctl_tx_wreg_nsegs, "I",
3912 	    "# segments sent before write to hardware register");
3913 
3914 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3915 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3916 	    "# of RX rings");
3917 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3918 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3919 	    "# of TX rings");
3920 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3921 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3922 	    "# of TX rings used");
3923 
3924 #ifdef IFPOLL_ENABLE
3925 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3926 	    OID_AUTO, "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3927 	    sc->tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3928 	    "TX polling CPU map");
3929 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3930 	    OID_AUTO, "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3931 	    sc->rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3932 	    "RX polling CPU map");
3933 #endif
3934 
3935 #ifdef EMX_RSS_DEBUG
3936 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3937 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3938 		       0, "RSS debug level");
3939 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3940 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3941 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3942 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3943 		    "RXed packets");
3944 	}
3945 #endif
3946 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3947 #ifdef EMX_TSS_DEBUG
3948 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3949 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3950 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3951 		    "TXed packets");
3952 #endif
3953 
3954 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_nmbuf", i);
3955 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3956 		    pkt_desc, CTLFLAG_RD, &sc->tx_data[i].tx_nmbuf, 0,
3957 		    "# of pending TX mbufs");
3958 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_gc", i);
3959 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3960 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_gc,
3961 		    "# of TX desc GC");
3962 	}
3963 }
3964 
3965 static int
3966 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3967 {
3968 	struct emx_softc *sc = (void *)arg1;
3969 	struct ifnet *ifp = &sc->arpcom.ac_if;
3970 	int error, throttle;
3971 
3972 	throttle = sc->int_throttle_ceil;
3973 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3974 	if (error || req->newptr == NULL)
3975 		return error;
3976 	if (throttle < 0 || throttle > 1000000000 / 256)
3977 		return EINVAL;
3978 
3979 	if (throttle) {
3980 		/*
3981 		 * Set the interrupt throttling rate in 256ns increments,
3982 		 * recalculate sysctl value assignment to get exact frequency.
3983 		 */
3984 		throttle = 1000000000 / 256 / throttle;
3985 
3986 		/* Upper 16bits of ITR is reserved and should be zero */
3987 		if (throttle & 0xffff0000)
3988 			return EINVAL;
3989 	}
3990 
3991 	ifnet_serialize_all(ifp);
3992 
3993 	if (throttle)
3994 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3995 	else
3996 		sc->int_throttle_ceil = 0;
3997 
3998 	if (ifp->if_flags & IFF_RUNNING)
3999 		emx_set_itr(sc, throttle);
4000 
4001 	ifnet_deserialize_all(ifp);
4002 
4003 	if (bootverbose) {
4004 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4005 			  sc->int_throttle_ceil);
4006 	}
4007 	return 0;
4008 }
4009 
4010 static int
4011 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
4012 {
4013 	struct emx_softc *sc = (void *)arg1;
4014 	struct ifnet *ifp = &sc->arpcom.ac_if;
4015 	struct emx_txdata *tdata = &sc->tx_data[0];
4016 	int error, segs;
4017 
4018 	segs = tdata->tx_intr_nsegs;
4019 	error = sysctl_handle_int(oidp, &segs, 0, req);
4020 	if (error || req->newptr == NULL)
4021 		return error;
4022 	if (segs <= 0)
4023 		return EINVAL;
4024 
4025 	ifnet_serialize_all(ifp);
4026 
4027 	/*
4028 	 * Don't allow tx_intr_nsegs to become:
4029 	 * o  Less the oact_tx_desc
4030 	 * o  Too large that no TX desc will cause TX interrupt to
4031 	 *    be generated (OACTIVE will never recover)
4032 	 * o  Too small that will cause tx_dd[] overflow
4033 	 */
4034 	if (segs < tdata->oact_tx_desc ||
4035 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
4036 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
4037 		error = EINVAL;
4038 	} else {
4039 		int i;
4040 
4041 		error = 0;
4042 		for (i = 0; i < sc->tx_ring_cnt; ++i)
4043 			sc->tx_data[i].tx_intr_nsegs = segs;
4044 	}
4045 
4046 	ifnet_deserialize_all(ifp);
4047 
4048 	return error;
4049 }
4050 
4051 static int
4052 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
4053 {
4054 	struct emx_softc *sc = (void *)arg1;
4055 	struct ifnet *ifp = &sc->arpcom.ac_if;
4056 	int error, nsegs, i;
4057 
4058 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
4059 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
4060 	if (error || req->newptr == NULL)
4061 		return error;
4062 
4063 	ifnet_serialize_all(ifp);
4064 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4065 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
4066 	ifnet_deserialize_all(ifp);
4067 
4068 	return 0;
4069 }
4070 
4071 static int
4072 emx_dma_alloc(struct emx_softc *sc)
4073 {
4074 	int error, i;
4075 
4076 	/*
4077 	 * Create top level busdma tag
4078 	 */
4079 	error = bus_dma_tag_create(NULL, 1, 0,
4080 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4081 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4082 			0, &sc->parent_dtag);
4083 	if (error) {
4084 		device_printf(sc->dev, "could not create top level DMA tag\n");
4085 		return error;
4086 	}
4087 
4088 	/*
4089 	 * Allocate transmit descriptors ring and buffers
4090 	 */
4091 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4092 		error = emx_create_tx_ring(&sc->tx_data[i]);
4093 		if (error) {
4094 			device_printf(sc->dev,
4095 			    "Could not setup transmit structures\n");
4096 			return error;
4097 		}
4098 	}
4099 
4100 	/*
4101 	 * Allocate receive descriptors ring and buffers
4102 	 */
4103 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4104 		error = emx_create_rx_ring(&sc->rx_data[i]);
4105 		if (error) {
4106 			device_printf(sc->dev,
4107 			    "Could not setup receive structures\n");
4108 			return error;
4109 		}
4110 	}
4111 	return 0;
4112 }
4113 
4114 static void
4115 emx_dma_free(struct emx_softc *sc)
4116 {
4117 	int i;
4118 
4119 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4120 		emx_destroy_tx_ring(&sc->tx_data[i],
4121 		    sc->tx_data[i].num_tx_desc);
4122 	}
4123 
4124 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4125 		emx_destroy_rx_ring(&sc->rx_data[i],
4126 		    sc->rx_data[i].num_rx_desc);
4127 	}
4128 
4129 	/* Free top level busdma tag */
4130 	if (sc->parent_dtag != NULL)
4131 		bus_dma_tag_destroy(sc->parent_dtag);
4132 }
4133 
4134 static void
4135 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4136 {
4137 	struct emx_softc *sc = ifp->if_softc;
4138 
4139 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4140 }
4141 
4142 static void
4143 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4144 {
4145 	struct emx_softc *sc = ifp->if_softc;
4146 
4147 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4148 }
4149 
4150 static int
4151 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4152 {
4153 	struct emx_softc *sc = ifp->if_softc;
4154 
4155 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4156 }
4157 
4158 static void
4159 emx_serialize_skipmain(struct emx_softc *sc)
4160 {
4161 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4162 }
4163 
4164 static void
4165 emx_deserialize_skipmain(struct emx_softc *sc)
4166 {
4167 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4168 }
4169 
4170 #ifdef INVARIANTS
4171 
4172 static void
4173 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4174     boolean_t serialized)
4175 {
4176 	struct emx_softc *sc = ifp->if_softc;
4177 
4178 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4179 	    slz, serialized);
4180 }
4181 
4182 #endif	/* INVARIANTS */
4183 
4184 #ifdef IFPOLL_ENABLE
4185 
4186 static void
4187 emx_npoll_status(struct ifnet *ifp)
4188 {
4189 	struct emx_softc *sc = ifp->if_softc;
4190 	uint32_t reg_icr;
4191 
4192 	ASSERT_SERIALIZED(&sc->main_serialize);
4193 
4194 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4195 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4196 		callout_stop(&sc->timer);
4197 		sc->hw.mac.get_link_status = 1;
4198 		emx_update_link_status(sc);
4199 		callout_reset(&sc->timer, hz, emx_timer, sc);
4200 	}
4201 }
4202 
4203 static void
4204 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4205 {
4206 	struct emx_txdata *tdata = arg;
4207 
4208 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4209 
4210 	emx_tx_intr(tdata);
4211 	emx_try_txgc(tdata, 1);
4212 }
4213 
4214 static void
4215 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4216 {
4217 	struct emx_rxdata *rdata = arg;
4218 
4219 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4220 
4221 	emx_rxeof(rdata, cycle);
4222 }
4223 
4224 static void
4225 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4226 {
4227 	struct emx_softc *sc = ifp->if_softc;
4228 	int i, txr_cnt;
4229 
4230 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4231 
4232 	if (info) {
4233 		int cpu;
4234 
4235 		info->ifpi_status.status_func = emx_npoll_status;
4236 		info->ifpi_status.serializer = &sc->main_serialize;
4237 
4238 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4239 		for (i = 0; i < txr_cnt; ++i) {
4240 			struct emx_txdata *tdata = &sc->tx_data[i];
4241 
4242 			cpu = if_ringmap_cpumap(sc->tx_rmap, i);
4243 			KKASSERT(cpu < netisr_ncpus);
4244 			info->ifpi_tx[cpu].poll_func = emx_npoll_tx;
4245 			info->ifpi_tx[cpu].arg = tdata;
4246 			info->ifpi_tx[cpu].serializer = &tdata->tx_serialize;
4247 			ifsq_set_cpuid(tdata->ifsq, cpu);
4248 		}
4249 
4250 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4251 			struct emx_rxdata *rdata = &sc->rx_data[i];
4252 
4253 			cpu = if_ringmap_cpumap(sc->rx_rmap, i);
4254 			KKASSERT(cpu < netisr_ncpus);
4255 			info->ifpi_rx[cpu].poll_func = emx_npoll_rx;
4256 			info->ifpi_rx[cpu].arg = rdata;
4257 			info->ifpi_rx[cpu].serializer = &rdata->rx_serialize;
4258 		}
4259 	} else {
4260 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4261 			struct emx_txdata *tdata = &sc->tx_data[i];
4262 
4263 			ifsq_set_cpuid(tdata->ifsq,
4264 			    rman_get_cpuid(sc->intr_res));
4265 		}
4266 	}
4267 	if (ifp->if_flags & IFF_RUNNING)
4268 		emx_init(sc);
4269 }
4270 
4271 #endif	/* IFPOLL_ENABLE */
4272 
4273 static void
4274 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4275 {
4276 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4277 	if (sc->hw.mac.type == e1000_82574) {
4278 		int i;
4279 
4280 		/*
4281 		 * When using MSIX interrupts we need to
4282 		 * throttle using the EITR register
4283 		 */
4284 		for (i = 0; i < 4; ++i)
4285 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4286 	}
4287 }
4288 
4289 /*
4290  * Disable the L0s, 82574L Errata #20
4291  */
4292 static void
4293 emx_disable_aspm(struct emx_softc *sc)
4294 {
4295 	uint16_t link_cap, link_ctrl, disable;
4296 	uint8_t pcie_ptr, reg;
4297 	device_t dev = sc->dev;
4298 
4299 	switch (sc->hw.mac.type) {
4300 	case e1000_82571:
4301 	case e1000_82572:
4302 	case e1000_82573:
4303 		/*
4304 		 * 82573 specification update
4305 		 * errata #8 disable L0s
4306 		 * errata #41 disable L1
4307 		 *
4308 		 * 82571/82572 specification update
4309 		 # errata #13 disable L1
4310 		 * errata #68 disable L0s
4311 		 */
4312 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4313 		break;
4314 
4315 	case e1000_82574:
4316 		/*
4317 		 * 82574 specification update errata #20
4318 		 *
4319 		 * There is no need to disable L1
4320 		 */
4321 		disable = PCIEM_LNKCTL_ASPM_L0S;
4322 		break;
4323 
4324 	default:
4325 		return;
4326 	}
4327 
4328 	pcie_ptr = pci_get_pciecap_ptr(dev);
4329 	if (pcie_ptr == 0)
4330 		return;
4331 
4332 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4333 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4334 		return;
4335 
4336 	if (bootverbose)
4337 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4338 
4339 	reg = pcie_ptr + PCIER_LINKCTRL;
4340 	link_ctrl = pci_read_config(dev, reg, 2);
4341 	link_ctrl &= ~disable;
4342 	pci_write_config(dev, reg, link_ctrl, 2);
4343 }
4344 
4345 static int
4346 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4347 {
4348 	int iphlen, hoff, thoff, ex = 0;
4349 	struct mbuf *m;
4350 	struct ip *ip;
4351 
4352 	m = *mp;
4353 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4354 
4355 	iphlen = m->m_pkthdr.csum_iphlen;
4356 	thoff = m->m_pkthdr.csum_thlen;
4357 	hoff = m->m_pkthdr.csum_lhlen;
4358 
4359 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4360 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4361 	KASSERT(hoff > 0, ("invalid ether hlen"));
4362 
4363 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4364 		ex = 4;
4365 
4366 	if (m->m_len < hoff + iphlen + thoff + ex) {
4367 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4368 		if (m == NULL) {
4369 			*mp = NULL;
4370 			return ENOBUFS;
4371 		}
4372 		*mp = m;
4373 	}
4374 	ip = mtodoff(m, struct ip *, hoff);
4375 	ip->ip_len = 0;
4376 
4377 	return 0;
4378 }
4379 
4380 static int
4381 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4382     uint32_t *txd_upper, uint32_t *txd_lower)
4383 {
4384 	struct e1000_context_desc *TXD;
4385 	int hoff, iphlen, thoff, hlen;
4386 	int mss, pktlen, curr_txd;
4387 
4388 #ifdef EMX_TSO_DEBUG
4389 	tdata->tso_segments++;
4390 #endif
4391 
4392 	iphlen = mp->m_pkthdr.csum_iphlen;
4393 	thoff = mp->m_pkthdr.csum_thlen;
4394 	hoff = mp->m_pkthdr.csum_lhlen;
4395 	mss = mp->m_pkthdr.tso_segsz;
4396 	pktlen = mp->m_pkthdr.len;
4397 
4398 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4399 	    tdata->csum_flags == CSUM_TSO &&
4400 	    tdata->csum_iphlen == iphlen &&
4401 	    tdata->csum_lhlen == hoff &&
4402 	    tdata->csum_thlen == thoff &&
4403 	    tdata->csum_mss == mss &&
4404 	    tdata->csum_pktlen == pktlen) {
4405 		*txd_upper = tdata->csum_txd_upper;
4406 		*txd_lower = tdata->csum_txd_lower;
4407 #ifdef EMX_TSO_DEBUG
4408 		tdata->tso_ctx_reused++;
4409 #endif
4410 		return 0;
4411 	}
4412 	hlen = hoff + iphlen + thoff;
4413 
4414 	/*
4415 	 * Setup a new TSO context.
4416 	 */
4417 
4418 	curr_txd = tdata->next_avail_tx_desc;
4419 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4420 
4421 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4422 		     E1000_TXD_DTYP_D |		/* Data descr type */
4423 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4424 
4425 	/* IP and/or TCP header checksum calculation and insertion. */
4426 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4427 
4428 	/*
4429 	 * Start offset for header checksum calculation.
4430 	 * End offset for header checksum calculation.
4431 	 * Offset of place put the checksum.
4432 	 */
4433 	TXD->lower_setup.ip_fields.ipcss = hoff;
4434 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4435 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4436 
4437 	/*
4438 	 * Start offset for payload checksum calculation.
4439 	 * End offset for payload checksum calculation.
4440 	 * Offset of place to put the checksum.
4441 	 */
4442 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4443 	TXD->upper_setup.tcp_fields.tucse = 0;
4444 	TXD->upper_setup.tcp_fields.tucso =
4445 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4446 
4447 	/*
4448 	 * Payload size per packet w/o any headers.
4449 	 * Length of all headers up to payload.
4450 	 */
4451 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4452 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4453 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4454 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4455 				E1000_TXD_CMD_TSE |	/* TSE context */
4456 				E1000_TXD_CMD_IP |	/* Do IP csum */
4457 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4458 				(pktlen - hlen));	/* Total len */
4459 
4460 	/* Save the information for this TSO context */
4461 	tdata->csum_flags = CSUM_TSO;
4462 	tdata->csum_lhlen = hoff;
4463 	tdata->csum_iphlen = iphlen;
4464 	tdata->csum_thlen = thoff;
4465 	tdata->csum_mss = mss;
4466 	tdata->csum_pktlen = pktlen;
4467 	tdata->csum_txd_upper = *txd_upper;
4468 	tdata->csum_txd_lower = *txd_lower;
4469 
4470 	if (++curr_txd == tdata->num_tx_desc)
4471 		curr_txd = 0;
4472 
4473 	KKASSERT(tdata->num_tx_desc_avail > 0);
4474 	tdata->num_tx_desc_avail--;
4475 
4476 	tdata->next_avail_tx_desc = curr_txd;
4477 	return 1;
4478 }
4479 
4480 static int
4481 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4482 {
4483 	if (polling)
4484 		return sc->tx_ring_cnt;
4485 	else
4486 		return 1;
4487 }
4488 
4489 /*
4490  * Remove all descriptors from the TX ring.
4491  *
4492  * We want to clear all pending descriptors from the TX ring.  Zeroing
4493  * happens when the HW reads the regs.  We assign the ring itself as
4494  * the data of the next descriptor.  We don't care about the data we
4495  * are about to reset the HW.
4496  */
4497 static void
4498 emx_flush_tx_ring(struct emx_softc *sc)
4499 {
4500 	struct e1000_hw *hw = &sc->hw;
4501 	uint32_t tctl;
4502 	int i;
4503 
4504 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4505 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4506 
4507 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
4508 		struct emx_txdata *tdata = &sc->tx_data[i];
4509 		struct e1000_tx_desc *txd;
4510 
4511 		if (E1000_READ_REG(hw, E1000_TDLEN(i)) == 0)
4512 			continue;
4513 
4514 		txd = &tdata->tx_desc_base[tdata->next_avail_tx_desc++];
4515 		if (tdata->next_avail_tx_desc == tdata->num_tx_desc)
4516 			tdata->next_avail_tx_desc = 0;
4517 
4518 		/* Just use the ring as a dummy buffer addr */
4519 		txd->buffer_addr = tdata->tx_desc_paddr;
4520 		txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4521 		txd->upper.data = 0;
4522 
4523 		E1000_WRITE_REG(hw, E1000_TDT(i), tdata->next_avail_tx_desc);
4524 		usec_delay(250);
4525 	}
4526 }
4527 
4528 /*
4529  * Remove all descriptors from the RX rings.
4530  *
4531  * Mark all descriptors in the RX rings as consumed and disable the RX rings.
4532  */
4533 static void
4534 emx_flush_rx_ring(struct emx_softc *sc)
4535 {
4536 	struct e1000_hw	*hw = &sc->hw;
4537 	uint32_t rctl;
4538 	int i;
4539 
4540 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4541 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4542 	E1000_WRITE_FLUSH(hw);
4543 	usec_delay(150);
4544 
4545 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4546 		uint32_t rxdctl;
4547 
4548 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
4549 		/* Zero the lower 14 bits (prefetch and host thresholds) */
4550 		rxdctl &= 0xffffc000;
4551 		/*
4552 		 * Update thresholds: prefetch threshold to 31, host threshold
4553 		 * to 1 and make sure the granularity is "descriptors" and not
4554 		 * "cache lines".
4555 		 */
4556 		rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4557 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
4558 	}
4559 
4560 	/* Momentarily enable the RX rings for the changes to take effect */
4561 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4562 	E1000_WRITE_FLUSH(hw);
4563 	usec_delay(150);
4564 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4565 }
4566 
4567 /*
4568  * Remove all descriptors from the descriptor rings.
4569  *
4570  * In i219, the descriptor rings must be emptied before resetting the HW
4571  * or before changing the device state to D3 during runtime (runtime PM).
4572  *
4573  * Failure to do this will cause the HW to enter a unit hang state which
4574  * can only be released by PCI reset on the device.
4575  */
4576 static void
4577 emx_flush_txrx_ring(struct emx_softc *sc)
4578 {
4579 	struct e1000_hw *hw = &sc->hw;
4580 	device_t dev = sc->dev;
4581 	uint16_t hang_state;
4582 	uint32_t fext_nvm11, tdlen;
4583 	int i;
4584 
4585 	/*
4586 	 * First, disable MULR fix in FEXTNVM11.
4587 	 */
4588 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4589 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4590 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4591 
4592 	/*
4593 	 * Do nothing if we're not in faulty state, or if the queue is
4594 	 * empty.
4595 	 */
4596 	tdlen = 0;
4597 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4598 		tdlen += E1000_READ_REG(hw, E1000_TDLEN(i));
4599 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4600 	if ((hang_state & EMX_FLUSH_DESC_REQUIRED) && tdlen)
4601 		emx_flush_tx_ring(sc);
4602 
4603 	/*
4604 	 * Recheck, maybe the fault is caused by the RX ring.
4605 	 */
4606 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4607 	if (hang_state & EMX_FLUSH_DESC_REQUIRED)
4608 		emx_flush_rx_ring(sc);
4609 }
4610