xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision 92fe556d)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/if_ringmap.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/ig_hal/e1000_dragonfly.h>
113 #include <dev/netif/emx/if_emx.h>
114 
115 #define DEBUG_HW 0
116 
117 #ifdef EMX_RSS_DEBUG
118 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
119 do { \
120 	if (sc->rss_debug >= lvl) \
121 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
122 } while (0)
123 #else	/* !EMX_RSS_DEBUG */
124 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
125 #endif	/* EMX_RSS_DEBUG */
126 
127 #define EMX_NAME	"Intel(R) PRO/1000 "
128 
129 #define EMX_DEVICE(id)	\
130 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
131 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
132 
133 static const struct emx_device {
134 	uint16_t	vid;
135 	uint16_t	did;
136 	const char	*desc;
137 } emx_devices[] = {
138 	EMX_DEVICE(82571EB_COPPER),
139 	EMX_DEVICE(82571EB_FIBER),
140 	EMX_DEVICE(82571EB_SERDES),
141 	EMX_DEVICE(82571EB_SERDES_DUAL),
142 	EMX_DEVICE(82571EB_SERDES_QUAD),
143 	EMX_DEVICE(82571EB_QUAD_COPPER),
144 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
145 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
146 	EMX_DEVICE(82571EB_QUAD_FIBER),
147 	EMX_DEVICE(82571PT_QUAD_COPPER),
148 
149 	EMX_DEVICE(82572EI_COPPER),
150 	EMX_DEVICE(82572EI_FIBER),
151 	EMX_DEVICE(82572EI_SERDES),
152 	EMX_DEVICE(82572EI),
153 
154 	EMX_DEVICE(82573E),
155 	EMX_DEVICE(82573E_IAMT),
156 	EMX_DEVICE(82573L),
157 
158 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
160 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
161 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
162 
163 	EMX_DEVICE(82574L),
164 	EMX_DEVICE(82574LA),
165 
166 	EMX_DEVICE(PCH_LPT_I217_LM),
167 	EMX_DEVICE(PCH_LPT_I217_V),
168 	EMX_DEVICE(PCH_LPTLP_I218_LM),
169 	EMX_DEVICE(PCH_LPTLP_I218_V),
170 	EMX_DEVICE(PCH_I218_LM2),
171 	EMX_DEVICE(PCH_I218_V2),
172 	EMX_DEVICE(PCH_I218_LM3),
173 	EMX_DEVICE(PCH_I218_V3),
174 	EMX_DEVICE(PCH_SPT_I219_LM),
175 	EMX_DEVICE(PCH_SPT_I219_V),
176 	EMX_DEVICE(PCH_SPT_I219_LM2),
177 	EMX_DEVICE(PCH_SPT_I219_V2),
178 	EMX_DEVICE(PCH_LBG_I219_LM3),
179 	EMX_DEVICE(PCH_SPT_I219_LM4),
180 	EMX_DEVICE(PCH_SPT_I219_V4),
181 	EMX_DEVICE(PCH_SPT_I219_LM5),
182 	EMX_DEVICE(PCH_SPT_I219_V5),
183 	EMX_DEVICE(PCH_CNP_I219_LM6),
184 	EMX_DEVICE(PCH_CNP_I219_V6),
185 	EMX_DEVICE(PCH_CNP_I219_LM7),
186 	EMX_DEVICE(PCH_CNP_I219_V7),
187 
188 	/* required last entry */
189 	EMX_DEVICE_NULL
190 };
191 
192 static int	emx_probe(device_t);
193 static int	emx_attach(device_t);
194 static int	emx_detach(device_t);
195 static int	emx_shutdown(device_t);
196 static int	emx_suspend(device_t);
197 static int	emx_resume(device_t);
198 
199 static void	emx_init(void *);
200 static void	emx_stop(struct emx_softc *);
201 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
202 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
203 #ifdef IFPOLL_ENABLE
204 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
205 static void	emx_npoll_status(struct ifnet *);
206 static void	emx_npoll_tx(struct ifnet *, void *, int);
207 static void	emx_npoll_rx(struct ifnet *, void *, int);
208 #endif
209 static void	emx_watchdog(struct ifaltq_subque *);
210 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
211 static int	emx_media_change(struct ifnet *);
212 static void	emx_timer(void *);
213 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
214 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
215 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
216 #ifdef INVARIANTS
217 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
218 		    boolean_t);
219 #endif
220 
221 static void	emx_intr(void *);
222 static void	emx_intr_mask(void *);
223 static void	emx_intr_body(struct emx_softc *, boolean_t);
224 static void	emx_rxeof(struct emx_rxdata *, int);
225 static void	emx_txeof(struct emx_txdata *);
226 static void	emx_tx_collect(struct emx_txdata *, boolean_t);
227 static void	emx_txgc_timer(void *);
228 static void	emx_tx_purge(struct emx_softc *);
229 static void	emx_enable_intr(struct emx_softc *);
230 static void	emx_disable_intr(struct emx_softc *);
231 
232 static int	emx_dma_alloc(struct emx_softc *);
233 static void	emx_dma_free(struct emx_softc *);
234 static void	emx_init_tx_ring(struct emx_txdata *);
235 static int	emx_init_rx_ring(struct emx_rxdata *);
236 static void	emx_free_tx_ring(struct emx_txdata *);
237 static void	emx_free_rx_ring(struct emx_rxdata *);
238 static int	emx_create_tx_ring(struct emx_txdata *);
239 static int	emx_create_rx_ring(struct emx_rxdata *);
240 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
241 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
242 static int	emx_newbuf(struct emx_rxdata *, int, int);
243 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
244 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
245 		    uint32_t *, uint32_t *);
246 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
247 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
248 		    uint32_t *, uint32_t *);
249 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
250 
251 static int 	emx_is_valid_eaddr(const uint8_t *);
252 static int	emx_reset(struct emx_softc *);
253 static void	emx_setup_ifp(struct emx_softc *);
254 static void	emx_init_tx_unit(struct emx_softc *);
255 static void	emx_init_rx_unit(struct emx_softc *);
256 static void	emx_update_stats(struct emx_softc *);
257 static void	emx_set_promisc(struct emx_softc *);
258 static void	emx_disable_promisc(struct emx_softc *);
259 static void	emx_set_multi(struct emx_softc *);
260 static void	emx_update_link_status(struct emx_softc *);
261 static void	emx_smartspeed(struct emx_softc *);
262 static void	emx_set_itr(struct emx_softc *, uint32_t);
263 static void	emx_disable_aspm(struct emx_softc *);
264 static void	emx_flush_tx_ring(struct emx_softc *);
265 static void	emx_flush_rx_ring(struct emx_softc *);
266 static void	emx_flush_txrx_ring(struct emx_softc *);
267 
268 static void	emx_print_debug_info(struct emx_softc *);
269 static void	emx_print_nvm_info(struct emx_softc *);
270 static void	emx_print_hw_stats(struct emx_softc *);
271 
272 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
273 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
274 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
275 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
276 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
277 static void	emx_add_sysctl(struct emx_softc *);
278 
279 static void	emx_serialize_skipmain(struct emx_softc *);
280 static void	emx_deserialize_skipmain(struct emx_softc *);
281 
282 /* Management and WOL Support */
283 static void	emx_get_mgmt(struct emx_softc *);
284 static void	emx_rel_mgmt(struct emx_softc *);
285 static void	emx_get_hw_control(struct emx_softc *);
286 static void	emx_rel_hw_control(struct emx_softc *);
287 static void	emx_enable_wol(device_t);
288 
289 static device_method_t emx_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		emx_probe),
292 	DEVMETHOD(device_attach,	emx_attach),
293 	DEVMETHOD(device_detach,	emx_detach),
294 	DEVMETHOD(device_shutdown,	emx_shutdown),
295 	DEVMETHOD(device_suspend,	emx_suspend),
296 	DEVMETHOD(device_resume,	emx_resume),
297 	DEVMETHOD_END
298 };
299 
300 static driver_t emx_driver = {
301 	"emx",
302 	emx_methods,
303 	sizeof(struct emx_softc),
304 };
305 
306 static devclass_t emx_devclass;
307 
308 DECLARE_DUMMY_MODULE(if_emx);
309 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
310 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
311 
312 /*
313  * Tunables
314  */
315 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
316 static int	emx_rxd = EMX_DEFAULT_RXD;
317 static int	emx_txd = EMX_DEFAULT_TXD;
318 static int	emx_smart_pwr_down = 0;
319 static int	emx_rxr = 0;
320 static int	emx_txr = 1;
321 
322 /* Controls whether promiscuous also shows bad packets */
323 static int	emx_debug_sbp = 0;
324 
325 static int	emx_82573_workaround = 1;
326 static int	emx_msi_enable = 1;
327 
328 static char	emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
329 
330 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
331 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
332 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
333 TUNABLE_INT("hw.emx.txd", &emx_txd);
334 TUNABLE_INT("hw.emx.txr", &emx_txr);
335 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
336 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
337 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
338 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
339 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
340 
341 /* Global used in WOL setup with multiport cards */
342 static int	emx_global_quad_port_a = 0;
343 
344 /* Set this to one to display debug statistics */
345 static int	emx_display_debug_stats = 0;
346 
347 #if !defined(KTR_IF_EMX)
348 #define KTR_IF_EMX	KTR_ALL
349 #endif
350 KTR_INFO_MASTER(if_emx);
351 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
352 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
353 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
354 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
355 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
356 #define logif(name)	KTR_LOG(if_emx_ ## name)
357 
358 static __inline void
359 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
360 {
361 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
362 	/* DD bit must be cleared */
363 	rxd->rxd_staterr = 0;
364 }
365 
366 static __inline void
367 emx_free_txbuf(struct emx_txdata *tdata, struct emx_txbuf *tx_buffer)
368 {
369 
370 	KKASSERT(tx_buffer->m_head != NULL);
371 	KKASSERT(tdata->tx_nmbuf > 0);
372 	tdata->tx_nmbuf--;
373 
374 	bus_dmamap_unload(tdata->txtag, tx_buffer->map);
375 	m_freem(tx_buffer->m_head);
376 	tx_buffer->m_head = NULL;
377 }
378 
379 static __inline void
380 emx_tx_intr(struct emx_txdata *tdata)
381 {
382 
383 	emx_txeof(tdata);
384 	if (!ifsq_is_empty(tdata->ifsq))
385 		ifsq_devstart(tdata->ifsq);
386 }
387 
388 static __inline void
389 emx_try_txgc(struct emx_txdata *tdata, int16_t dec)
390 {
391 
392 	if (tdata->tx_running > 0) {
393 		tdata->tx_running -= dec;
394 		if (tdata->tx_running <= 0 && tdata->tx_nmbuf &&
395 		    tdata->num_tx_desc_avail < tdata->num_tx_desc &&
396 		    tdata->num_tx_desc_avail + tdata->tx_intr_nsegs >
397 		    tdata->num_tx_desc)
398 			emx_tx_collect(tdata, TRUE);
399 	}
400 }
401 
402 static void
403 emx_txgc_timer(void *xtdata)
404 {
405 	struct emx_txdata *tdata = xtdata;
406 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
407 
408 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
409 	    (IFF_RUNNING | IFF_UP))
410 		return;
411 
412 	if (!lwkt_serialize_try(&tdata->tx_serialize))
413 		goto done;
414 
415 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
416 	    (IFF_RUNNING | IFF_UP)) {
417 		lwkt_serialize_exit(&tdata->tx_serialize);
418 		return;
419 	}
420 	emx_try_txgc(tdata, EMX_TX_RUNNING_DEC);
421 
422 	lwkt_serialize_exit(&tdata->tx_serialize);
423 done:
424 	callout_reset(&tdata->tx_gc_timer, 1, emx_txgc_timer, tdata);
425 }
426 
427 static __inline void
428 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
429 {
430 	/* Ignore Checksum bit is set */
431 	if (staterr & E1000_RXD_STAT_IXSM)
432 		return;
433 
434 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
435 	    E1000_RXD_STAT_IPCS)
436 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
437 
438 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
439 	    E1000_RXD_STAT_TCPCS) {
440 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
441 					   CSUM_PSEUDO_HDR |
442 					   CSUM_FRAG_NOT_CHECKED;
443 		mp->m_pkthdr.csum_data = htons(0xffff);
444 	}
445 }
446 
447 static __inline struct pktinfo *
448 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
449 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
450 {
451 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
452 	case EMX_RXDMRQ_IPV4_TCP:
453 		pi->pi_netisr = NETISR_IP;
454 		pi->pi_flags = 0;
455 		pi->pi_l3proto = IPPROTO_TCP;
456 		break;
457 
458 	case EMX_RXDMRQ_IPV6_TCP:
459 		pi->pi_netisr = NETISR_IPV6;
460 		pi->pi_flags = 0;
461 		pi->pi_l3proto = IPPROTO_TCP;
462 		break;
463 
464 	case EMX_RXDMRQ_IPV4:
465 		if (staterr & E1000_RXD_STAT_IXSM)
466 			return NULL;
467 
468 		if ((staterr &
469 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
470 		    E1000_RXD_STAT_TCPCS) {
471 			pi->pi_netisr = NETISR_IP;
472 			pi->pi_flags = 0;
473 			pi->pi_l3proto = IPPROTO_UDP;
474 			break;
475 		}
476 		/* FALL THROUGH */
477 	default:
478 		return NULL;
479 	}
480 
481 	m_sethash(m, toeplitz_hash(hash));
482 	return pi;
483 }
484 
485 static int
486 emx_probe(device_t dev)
487 {
488 	const struct emx_device *d;
489 	uint16_t vid, did;
490 
491 	vid = pci_get_vendor(dev);
492 	did = pci_get_device(dev);
493 
494 	for (d = emx_devices; d->desc != NULL; ++d) {
495 		if (vid == d->vid && did == d->did) {
496 			device_set_desc(dev, d->desc);
497 			device_set_async_attach(dev, TRUE);
498 			return 0;
499 		}
500 	}
501 	return ENXIO;
502 }
503 
504 static int
505 emx_attach(device_t dev)
506 {
507 	struct emx_softc *sc = device_get_softc(dev);
508 	int error = 0, i, throttle, msi_enable;
509 	int tx_ring_max, ring_cnt;
510 	u_int intr_flags;
511 	uint16_t eeprom_data, device_id, apme_mask;
512 	driver_intr_t *intr_func;
513 	char flowctrl[IFM_ETH_FC_STRLEN];
514 
515 	/*
516 	 * Setup RX rings
517 	 */
518 	for (i = 0; i < EMX_NRX_RING; ++i) {
519 		sc->rx_data[i].sc = sc;
520 		sc->rx_data[i].idx = i;
521 	}
522 
523 	/*
524 	 * Setup TX ring
525 	 */
526 	for (i = 0; i < EMX_NTX_RING; ++i) {
527 		sc->tx_data[i].sc = sc;
528 		sc->tx_data[i].idx = i;
529 		callout_init_mp(&sc->tx_data[i].tx_gc_timer);
530 	}
531 
532 	/*
533 	 * Initialize serializers
534 	 */
535 	lwkt_serialize_init(&sc->main_serialize);
536 	for (i = 0; i < EMX_NTX_RING; ++i)
537 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
538 	for (i = 0; i < EMX_NRX_RING; ++i)
539 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
540 
541 	/*
542 	 * Initialize serializer array
543 	 */
544 	i = 0;
545 
546 	KKASSERT(i < EMX_NSERIALIZE);
547 	sc->serializes[i++] = &sc->main_serialize;
548 
549 	KKASSERT(i < EMX_NSERIALIZE);
550 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
551 	KKASSERT(i < EMX_NSERIALIZE);
552 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
553 
554 	KKASSERT(i < EMX_NSERIALIZE);
555 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
556 	KKASSERT(i < EMX_NSERIALIZE);
557 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
558 
559 	KKASSERT(i == EMX_NSERIALIZE);
560 
561 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
562 	    emx_media_change, emx_media_status);
563 	callout_init_mp(&sc->timer);
564 
565 	sc->dev = sc->osdep.dev = dev;
566 
567 	/*
568 	 * Determine hardware and mac type
569 	 */
570 	sc->hw.vendor_id = pci_get_vendor(dev);
571 	sc->hw.device_id = pci_get_device(dev);
572 	sc->hw.revision_id = pci_get_revid(dev);
573 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
574 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
575 
576 	if (e1000_set_mac_type(&sc->hw))
577 		return ENXIO;
578 
579 	/* Enable bus mastering */
580 	pci_enable_busmaster(dev);
581 
582 	/*
583 	 * Allocate IO memory
584 	 */
585 	sc->memory_rid = EMX_BAR_MEM;
586 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
587 					    &sc->memory_rid, RF_ACTIVE);
588 	if (sc->memory == NULL) {
589 		device_printf(dev, "Unable to allocate bus resource: memory\n");
590 		error = ENXIO;
591 		goto fail;
592 	}
593 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
594 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
595 
596 	/* XXX This is quite goofy, it is not actually used */
597 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
598 
599 	/*
600 	 * Don't enable MSI-X on 82574, see:
601 	 * 82574 specification update errata #15
602 	 *
603 	 * Don't enable MSI on 82571/82572, see:
604 	 * 82571/82572 specification update errata #63
605 	 */
606 	msi_enable = emx_msi_enable;
607 	if (msi_enable &&
608 	    (sc->hw.mac.type == e1000_82571 ||
609 	     sc->hw.mac.type == e1000_82572))
610 		msi_enable = 0;
611 again:
612 	/*
613 	 * Allocate interrupt
614 	 */
615 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
616 	    &sc->intr_rid, &intr_flags);
617 
618 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
619 		int unshared;
620 
621 		unshared = device_getenv_int(dev, "irq.unshared", 0);
622 		if (!unshared) {
623 			sc->flags |= EMX_FLAG_SHARED_INTR;
624 			if (bootverbose)
625 				device_printf(dev, "IRQ shared\n");
626 		} else {
627 			intr_flags &= ~RF_SHAREABLE;
628 			if (bootverbose)
629 				device_printf(dev, "IRQ unshared\n");
630 		}
631 	}
632 
633 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
634 	    intr_flags);
635 	if (sc->intr_res == NULL) {
636 		device_printf(dev, "Unable to allocate bus resource: %s\n",
637 		    sc->intr_type == PCI_INTR_TYPE_MSI ? "MSI" : "legacy intr");
638 		if (!msi_enable) {
639 			/* Retry with MSI. */
640 			msi_enable = 1;
641 			sc->flags &= ~EMX_FLAG_SHARED_INTR;
642 			goto again;
643 		}
644 		error = ENXIO;
645 		goto fail;
646 	}
647 
648 	/* Save PCI command register for Shared Code */
649 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
650 	sc->hw.back = &sc->osdep;
651 
652 	/*
653 	 * For I217/I218, we need to map the flash memory and this
654 	 * must happen after the MAC is identified.
655 	 */
656 	if (sc->hw.mac.type == e1000_pch_lpt) {
657 		sc->flash_rid = EMX_BAR_FLASH;
658 
659 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
660 		    &sc->flash_rid, RF_ACTIVE);
661 		if (sc->flash == NULL) {
662 			device_printf(dev, "Mapping of Flash failed\n");
663 			error = ENXIO;
664 			goto fail;
665 		}
666 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
667 		sc->osdep.flash_bus_space_handle =
668 		    rman_get_bushandle(sc->flash);
669 
670 		/*
671 		 * This is used in the shared code
672 		 * XXX this goof is actually not used.
673 		 */
674 		sc->hw.flash_address = (uint8_t *)sc->flash;
675 	} else if (sc->hw.mac.type >= e1000_pch_spt) {
676 		/*
677 		 * In the new SPT device flash is not a seperate BAR,
678 		 * rather it is also in BAR0, so use the same tag and
679 		 * an offset handle for the FLASH read/write macros
680 		 * in the shared code.
681 		 */
682 		sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
683 		sc->osdep.flash_bus_space_handle =
684 		    sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
685 	}
686 
687 	/* Do Shared Code initialization */
688 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
689 		device_printf(dev, "Setup of Shared code failed\n");
690 		error = ENXIO;
691 		goto fail;
692 	}
693 	e1000_get_bus_info(&sc->hw);
694 
695 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
696 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
697 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
698 
699 	/*
700 	 * Interrupt throttle rate
701 	 */
702 	throttle = device_getenv_int(dev, "int_throttle_ceil",
703 	    emx_int_throttle_ceil);
704 	if (throttle == 0) {
705 		sc->int_throttle_ceil = 0;
706 	} else {
707 		if (throttle < 0)
708 			throttle = EMX_DEFAULT_ITR;
709 
710 		/* Recalculate the tunable value to get the exact frequency. */
711 		throttle = 1000000000 / 256 / throttle;
712 
713 		/* Upper 16bits of ITR is reserved and should be zero */
714 		if (throttle & 0xffff0000)
715 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
716 
717 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
718 	}
719 
720 	e1000_init_script_state_82541(&sc->hw, TRUE);
721 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
722 
723 	/* Copper options */
724 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
725 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
726 		sc->hw.phy.disable_polarity_correction = FALSE;
727 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
728 	}
729 
730 	/* Set the frame limits assuming standard ethernet sized frames. */
731 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
732 
733 	/* This controls when hardware reports transmit completion status. */
734 	sc->hw.mac.report_tx_early = 1;
735 
736 	/*
737 	 * Calculate # of RX/TX rings
738 	 */
739 	ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
740 	sc->rx_rmap = if_ringmap_alloc(dev, ring_cnt, EMX_NRX_RING);
741 
742 	tx_ring_max = 1;
743 	if (sc->hw.mac.type == e1000_82571 ||
744 	    sc->hw.mac.type == e1000_82572 ||
745 	    sc->hw.mac.type == e1000_80003es2lan ||
746 	    sc->hw.mac.type == e1000_pch_lpt ||
747 	    sc->hw.mac.type == e1000_pch_spt ||
748 	    sc->hw.mac.type == e1000_pch_cnp ||
749 	    sc->hw.mac.type == e1000_82574)
750 		tx_ring_max = EMX_NTX_RING;
751 	ring_cnt = device_getenv_int(dev, "txr", emx_txr);
752 	sc->tx_rmap = if_ringmap_alloc(dev, ring_cnt, tx_ring_max);
753 
754 	if_ringmap_match(dev, sc->rx_rmap, sc->tx_rmap);
755 	sc->rx_ring_cnt = if_ringmap_count(sc->rx_rmap);
756 	sc->tx_ring_cnt = if_ringmap_count(sc->tx_rmap);
757 
758 	/* Allocate RX/TX rings' busdma(9) stuffs */
759 	error = emx_dma_alloc(sc);
760 	if (error)
761 		goto fail;
762 
763 	/* Allocate multicast array memory. */
764 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
765 	    M_DEVBUF, M_WAITOK);
766 
767 	/* Indicate SOL/IDER usage */
768 	if (e1000_check_reset_block(&sc->hw)) {
769 		device_printf(dev,
770 		    "PHY reset is blocked due to SOL/IDER session.\n");
771 	}
772 
773 	/* Disable EEE on I217/I218 */
774 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
775 
776 	/*
777 	 * Start from a known state, this is important in reading the
778 	 * nvm and mac from that.
779 	 */
780 	e1000_reset_hw(&sc->hw);
781 
782 	/* Make sure we have a good EEPROM before we read from it */
783 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
784 		/*
785 		 * Some PCI-E parts fail the first check due to
786 		 * the link being in sleep state, call it again,
787 		 * if it fails a second time its a real issue.
788 		 */
789 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
790 			device_printf(dev,
791 			    "The EEPROM Checksum Is Not Valid\n");
792 			error = EIO;
793 			goto fail;
794 		}
795 	}
796 
797 	/* Copy the permanent MAC address out of the EEPROM */
798 	if (e1000_read_mac_addr(&sc->hw) < 0) {
799 		device_printf(dev, "EEPROM read error while reading MAC"
800 		    " address\n");
801 		error = EIO;
802 		goto fail;
803 	}
804 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
805 		device_printf(dev, "Invalid MAC address\n");
806 		error = EIO;
807 		goto fail;
808 	}
809 
810 	/* Disable ULP support */
811 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
812 
813 	/* Determine if we have to control management hardware */
814 	if (e1000_enable_mng_pass_thru(&sc->hw))
815 		sc->flags |= EMX_FLAG_HAS_MGMT;
816 
817 	/*
818 	 * Setup Wake-on-Lan
819 	 */
820 	apme_mask = EMX_EEPROM_APME;
821 	eeprom_data = 0;
822 	switch (sc->hw.mac.type) {
823 	case e1000_82573:
824 		sc->flags |= EMX_FLAG_HAS_AMT;
825 		/* FALL THROUGH */
826 
827 	case e1000_82571:
828 	case e1000_82572:
829 	case e1000_80003es2lan:
830 		if (sc->hw.bus.func == 1) {
831 			e1000_read_nvm(&sc->hw,
832 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
833 		} else {
834 			e1000_read_nvm(&sc->hw,
835 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
836 		}
837 		break;
838 
839 	case e1000_pch_lpt:
840 	case e1000_pch_spt:
841 	case e1000_pch_cnp:
842 		apme_mask = E1000_WUC_APME;
843 		sc->flags |= EMX_FLAG_HAS_AMT;
844 		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
845 		break;
846 
847 	default:
848 		e1000_read_nvm(&sc->hw,
849 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
850 		break;
851 	}
852 	if (eeprom_data & apme_mask)
853 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
854 
855 	/*
856          * We have the eeprom settings, now apply the special cases
857          * where the eeprom may be wrong or the board won't support
858          * wake on lan on a particular port
859 	 */
860 	device_id = pci_get_device(dev);
861         switch (device_id) {
862 	case E1000_DEV_ID_82571EB_FIBER:
863 		/*
864 		 * Wake events only supported on port A for dual fiber
865 		 * regardless of eeprom setting
866 		 */
867 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
868 		    E1000_STATUS_FUNC_1)
869 			sc->wol = 0;
870 		break;
871 
872 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
873 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
874 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
875                 /* if quad port sc, disable WoL on all but port A */
876 		if (emx_global_quad_port_a != 0)
877 			sc->wol = 0;
878 		/* Reset for multiple quad port adapters */
879 		if (++emx_global_quad_port_a == 4)
880 			emx_global_quad_port_a = 0;
881                 break;
882 	}
883 
884 	/* XXX disable wol */
885 	sc->wol = 0;
886 
887 	/* Initialized #of TX rings to use. */
888 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
889 
890 	/* Setup flow control. */
891 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
892 	    emx_flowctrl);
893 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
894 
895 	/* Setup OS specific network interface */
896 	emx_setup_ifp(sc);
897 
898 	/* Add sysctl tree, must after em_setup_ifp() */
899 	emx_add_sysctl(sc);
900 
901 	/* Reset the hardware */
902 	error = emx_reset(sc);
903 	if (error) {
904 		/*
905 		 * Some 82573 parts fail the first reset, call it again,
906 		 * if it fails a second time its a real issue.
907 		 */
908 		error = emx_reset(sc);
909 		if (error) {
910 			device_printf(dev, "Unable to reset the hardware\n");
911 			ether_ifdetach(&sc->arpcom.ac_if);
912 			goto fail;
913 		}
914 	}
915 
916 	/* Initialize statistics */
917 	emx_update_stats(sc);
918 
919 	sc->hw.mac.get_link_status = 1;
920 	emx_update_link_status(sc);
921 
922 	/* Non-AMT based hardware can now take control from firmware */
923 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
924 	    EMX_FLAG_HAS_MGMT)
925 		emx_get_hw_control(sc);
926 
927 	/*
928 	 * Missing Interrupt Following ICR read:
929 	 *
930 	 * 82571/82572 specification update errata #76
931 	 * 82573 specification update errata #31
932 	 * 82574 specification update errata #12
933 	 */
934 	intr_func = emx_intr;
935 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
936 	    (sc->hw.mac.type == e1000_82571 ||
937 	     sc->hw.mac.type == e1000_82572 ||
938 	     sc->hw.mac.type == e1000_82573 ||
939 	     sc->hw.mac.type == e1000_82574))
940 		intr_func = emx_intr_mask;
941 
942 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
943 			       &sc->intr_tag, &sc->main_serialize);
944 	if (error) {
945 		device_printf(dev, "Failed to register interrupt handler");
946 		ether_ifdetach(&sc->arpcom.ac_if);
947 		goto fail;
948 	}
949 	return (0);
950 fail:
951 	emx_detach(dev);
952 	return (error);
953 }
954 
955 static int
956 emx_detach(device_t dev)
957 {
958 	struct emx_softc *sc = device_get_softc(dev);
959 
960 	if (device_is_attached(dev)) {
961 		struct ifnet *ifp = &sc->arpcom.ac_if;
962 
963 		ifnet_serialize_all(ifp);
964 
965 		emx_stop(sc);
966 
967 		e1000_phy_hw_reset(&sc->hw);
968 
969 		emx_rel_mgmt(sc);
970 		emx_rel_hw_control(sc);
971 
972 		if (sc->wol) {
973 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
974 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
975 			emx_enable_wol(dev);
976 		}
977 
978 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
979 
980 		ifnet_deserialize_all(ifp);
981 
982 		ether_ifdetach(ifp);
983 	} else if (sc->memory != NULL) {
984 		emx_rel_hw_control(sc);
985 	}
986 
987 	ifmedia_removeall(&sc->media);
988 	bus_generic_detach(dev);
989 
990 	if (sc->intr_res != NULL) {
991 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
992 				     sc->intr_res);
993 	}
994 
995 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
996 		pci_release_msi(dev);
997 
998 	if (sc->memory != NULL) {
999 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
1000 				     sc->memory);
1001 	}
1002 
1003 	if (sc->flash != NULL) {
1004 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
1005 		    sc->flash);
1006 	}
1007 
1008 	emx_dma_free(sc);
1009 
1010 	if (sc->mta != NULL)
1011 		kfree(sc->mta, M_DEVBUF);
1012 
1013 	if (sc->rx_rmap != NULL)
1014 		if_ringmap_free(sc->rx_rmap);
1015 	if (sc->tx_rmap != NULL)
1016 		if_ringmap_free(sc->tx_rmap);
1017 
1018 	return (0);
1019 }
1020 
1021 static int
1022 emx_shutdown(device_t dev)
1023 {
1024 	return emx_suspend(dev);
1025 }
1026 
1027 static int
1028 emx_suspend(device_t dev)
1029 {
1030 	struct emx_softc *sc = device_get_softc(dev);
1031 	struct ifnet *ifp = &sc->arpcom.ac_if;
1032 
1033 	ifnet_serialize_all(ifp);
1034 
1035 	emx_stop(sc);
1036 
1037 	emx_rel_mgmt(sc);
1038 	emx_rel_hw_control(sc);
1039 
1040 	if (sc->wol) {
1041 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
1042 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
1043 		emx_enable_wol(dev);
1044 	}
1045 
1046 	ifnet_deserialize_all(ifp);
1047 
1048 	return bus_generic_suspend(dev);
1049 }
1050 
1051 static int
1052 emx_resume(device_t dev)
1053 {
1054 	struct emx_softc *sc = device_get_softc(dev);
1055 	struct ifnet *ifp = &sc->arpcom.ac_if;
1056 	int i;
1057 
1058 	ifnet_serialize_all(ifp);
1059 
1060 	emx_init(sc);
1061 	emx_get_mgmt(sc);
1062 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1063 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1064 
1065 	ifnet_deserialize_all(ifp);
1066 
1067 	return bus_generic_resume(dev);
1068 }
1069 
1070 static void
1071 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1072 {
1073 	struct emx_softc *sc = ifp->if_softc;
1074 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1075 	struct mbuf *m_head;
1076 	int idx = -1, nsegs = 0;
1077 
1078 	KKASSERT(tdata->ifsq == ifsq);
1079 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1080 
1081 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1082 		return;
1083 
1084 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1085 		ifsq_purge(ifsq);
1086 		return;
1087 	}
1088 
1089 	while (!ifsq_is_empty(ifsq)) {
1090 		/* Now do we at least have a minimal? */
1091 		if (EMX_IS_OACTIVE(tdata)) {
1092 			emx_tx_collect(tdata, FALSE);
1093 			if (EMX_IS_OACTIVE(tdata)) {
1094 				ifsq_set_oactive(ifsq);
1095 				break;
1096 			}
1097 		}
1098 
1099 		logif(pkt_txqueue);
1100 		m_head = ifsq_dequeue(ifsq);
1101 		if (m_head == NULL)
1102 			break;
1103 
1104 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1105 			IFNET_STAT_INC(ifp, oerrors, 1);
1106 			emx_tx_collect(tdata, FALSE);
1107 			continue;
1108 		}
1109 
1110 		/*
1111 		 * TX interrupt are aggressively aggregated, so increasing
1112 		 * opackets at TX interrupt time will make the opackets
1113 		 * statistics vastly inaccurate; we do the opackets increment
1114 		 * now.
1115 		 */
1116 		IFNET_STAT_INC(ifp, opackets, 1);
1117 
1118 		if (nsegs >= tdata->tx_wreg_nsegs) {
1119 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1120 			nsegs = 0;
1121 			idx = -1;
1122 		}
1123 
1124 		/* Send a copy of the frame to the BPF listener */
1125 		ETHER_BPF_MTAP(ifp, m_head);
1126 
1127 		/* Set timeout in case hardware has problems transmitting. */
1128 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1129 	}
1130 	if (idx >= 0)
1131 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1132 	tdata->tx_running = EMX_TX_RUNNING;
1133 }
1134 
1135 static int
1136 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1137 {
1138 	struct emx_softc *sc = ifp->if_softc;
1139 	struct ifreq *ifr = (struct ifreq *)data;
1140 	uint16_t eeprom_data = 0;
1141 	int max_frame_size, mask, reinit;
1142 	int error = 0;
1143 
1144 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1145 
1146 	switch (command) {
1147 	case SIOCSIFMTU:
1148 		switch (sc->hw.mac.type) {
1149 		case e1000_82573:
1150 			/*
1151 			 * 82573 only supports jumbo frames
1152 			 * if ASPM is disabled.
1153 			 */
1154 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1155 				       &eeprom_data);
1156 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1157 				max_frame_size = ETHER_MAX_LEN;
1158 				break;
1159 			}
1160 			/* FALL THROUGH */
1161 
1162 		/* Limit Jumbo Frame size */
1163 		case e1000_82571:
1164 		case e1000_82572:
1165 		case e1000_82574:
1166 		case e1000_pch_lpt:
1167 		case e1000_pch_spt:
1168 		case e1000_pch_cnp:
1169 		case e1000_80003es2lan:
1170 			max_frame_size = 9234;
1171 			break;
1172 
1173 		default:
1174 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1175 			break;
1176 		}
1177 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1178 		    ETHER_CRC_LEN) {
1179 			error = EINVAL;
1180 			break;
1181 		}
1182 
1183 		ifp->if_mtu = ifr->ifr_mtu;
1184 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1185 		    ETHER_CRC_LEN;
1186 
1187 		if (ifp->if_flags & IFF_RUNNING)
1188 			emx_init(sc);
1189 		break;
1190 
1191 	case SIOCSIFFLAGS:
1192 		if (ifp->if_flags & IFF_UP) {
1193 			if ((ifp->if_flags & IFF_RUNNING)) {
1194 				if ((ifp->if_flags ^ sc->if_flags) &
1195 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1196 					emx_disable_promisc(sc);
1197 					emx_set_promisc(sc);
1198 				}
1199 			} else {
1200 				emx_init(sc);
1201 			}
1202 		} else if (ifp->if_flags & IFF_RUNNING) {
1203 			emx_stop(sc);
1204 		}
1205 		sc->if_flags = ifp->if_flags;
1206 		break;
1207 
1208 	case SIOCADDMULTI:
1209 	case SIOCDELMULTI:
1210 		if (ifp->if_flags & IFF_RUNNING) {
1211 			emx_disable_intr(sc);
1212 			emx_set_multi(sc);
1213 #ifdef IFPOLL_ENABLE
1214 			if (!(ifp->if_flags & IFF_NPOLLING))
1215 #endif
1216 				emx_enable_intr(sc);
1217 		}
1218 		break;
1219 
1220 	case SIOCSIFMEDIA:
1221 		/* Check SOL/IDER usage */
1222 		if (e1000_check_reset_block(&sc->hw)) {
1223 			device_printf(sc->dev, "Media change is"
1224 			    " blocked due to SOL/IDER session.\n");
1225 			break;
1226 		}
1227 		/* FALL THROUGH */
1228 
1229 	case SIOCGIFMEDIA:
1230 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1231 		break;
1232 
1233 	case SIOCSIFCAP:
1234 		reinit = 0;
1235 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1236 		if (mask & IFCAP_RXCSUM) {
1237 			ifp->if_capenable ^= IFCAP_RXCSUM;
1238 			reinit = 1;
1239 		}
1240 		if (mask & IFCAP_VLAN_HWTAGGING) {
1241 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1242 			reinit = 1;
1243 		}
1244 		if (mask & IFCAP_TXCSUM) {
1245 			ifp->if_capenable ^= IFCAP_TXCSUM;
1246 			if (ifp->if_capenable & IFCAP_TXCSUM)
1247 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1248 			else
1249 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1250 		}
1251 		if (mask & IFCAP_TSO) {
1252 			ifp->if_capenable ^= IFCAP_TSO;
1253 			if (ifp->if_capenable & IFCAP_TSO)
1254 				ifp->if_hwassist |= CSUM_TSO;
1255 			else
1256 				ifp->if_hwassist &= ~CSUM_TSO;
1257 		}
1258 		if (mask & IFCAP_RSS)
1259 			ifp->if_capenable ^= IFCAP_RSS;
1260 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1261 			emx_init(sc);
1262 		break;
1263 
1264 	default:
1265 		error = ether_ioctl(ifp, command, data);
1266 		break;
1267 	}
1268 	return (error);
1269 }
1270 
1271 static void
1272 emx_watchdog(struct ifaltq_subque *ifsq)
1273 {
1274 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1275 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1276 	struct emx_softc *sc = ifp->if_softc;
1277 	int i;
1278 
1279 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1280 
1281 	/*
1282 	 * The timer is set to 5 every time start queues a packet.
1283 	 * Then txeof keeps resetting it as long as it cleans at
1284 	 * least one descriptor.
1285 	 * Finally, anytime all descriptors are clean the timer is
1286 	 * set to 0.
1287 	 */
1288 
1289 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1290 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1291 		/*
1292 		 * If we reach here, all TX jobs are completed and
1293 		 * the TX engine should have been idled for some time.
1294 		 * We don't need to call ifsq_devstart_sched() here.
1295 		 */
1296 		ifsq_clr_oactive(ifsq);
1297 		tdata->tx_watchdog.wd_timer = 0;
1298 		return;
1299 	}
1300 
1301 	/*
1302 	 * If we are in this routine because of pause frames, then
1303 	 * don't reset the hardware.
1304 	 */
1305 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1306 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1307 		return;
1308 	}
1309 
1310 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1311 
1312 	IFNET_STAT_INC(ifp, oerrors, 1);
1313 
1314 	emx_init(sc);
1315 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1316 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1317 }
1318 
1319 static void
1320 emx_init(void *xsc)
1321 {
1322 	struct emx_softc *sc = xsc;
1323 	struct ifnet *ifp = &sc->arpcom.ac_if;
1324 	device_t dev = sc->dev;
1325 	boolean_t polling;
1326 	int i;
1327 
1328 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1329 
1330 	emx_stop(sc);
1331 
1332 	/* Get the latest mac address, User can use a LAA */
1333         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1334 
1335 	/* Put the address into the Receive Address Array */
1336 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1337 
1338 	/*
1339 	 * With the 82571 sc, RAR[0] may be overwritten
1340 	 * when the other port is reset, we make a duplicate
1341 	 * in RAR[14] for that eventuality, this assures
1342 	 * the interface continues to function.
1343 	 */
1344 	if (sc->hw.mac.type == e1000_82571) {
1345 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1346 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1347 		    E1000_RAR_ENTRIES - 1);
1348 	}
1349 
1350 	/* Initialize the hardware */
1351 	if (emx_reset(sc)) {
1352 		device_printf(dev, "Unable to reset the hardware\n");
1353 		/* XXX emx_stop()? */
1354 		return;
1355 	}
1356 	emx_update_link_status(sc);
1357 
1358 	/* Setup VLAN support, basic and offload if available */
1359 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1360 
1361 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1362 		uint32_t ctrl;
1363 
1364 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1365 		ctrl |= E1000_CTRL_VME;
1366 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1367 	}
1368 
1369 	/* Configure for OS presence */
1370 	emx_get_mgmt(sc);
1371 
1372 	polling = FALSE;
1373 #ifdef IFPOLL_ENABLE
1374 	if (ifp->if_flags & IFF_NPOLLING)
1375 		polling = TRUE;
1376 #endif
1377 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1378 	ifq_set_subq_divisor(&ifp->if_snd, sc->tx_ring_inuse);
1379 
1380 	/* Prepare transmit descriptors and buffers */
1381 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1382 		emx_init_tx_ring(&sc->tx_data[i]);
1383 	emx_init_tx_unit(sc);
1384 
1385 	/* Setup Multicast table */
1386 	emx_set_multi(sc);
1387 
1388 	/* Prepare receive descriptors and buffers */
1389 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1390 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1391 			device_printf(dev,
1392 			    "Could not setup receive structures\n");
1393 			emx_stop(sc);
1394 			return;
1395 		}
1396 	}
1397 	emx_init_rx_unit(sc);
1398 
1399 	/* Don't lose promiscuous settings */
1400 	emx_set_promisc(sc);
1401 
1402 	/* Reset hardware counters */
1403 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1404 
1405 	/* MSI/X configuration for 82574 */
1406 	if (sc->hw.mac.type == e1000_82574) {
1407 		int tmp;
1408 
1409 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1410 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1411 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1412 		/*
1413 		 * XXX MSIX
1414 		 * Set the IVAR - interrupt vector routing.
1415 		 * Each nibble represents a vector, high bit
1416 		 * is enable, other 3 bits are the MSIX table
1417 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1418 		 * Link (other) to 2, hence the magic number.
1419 		 */
1420 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1421 	}
1422 
1423 	/*
1424 	 * Only enable interrupts if we are not polling, make sure
1425 	 * they are off otherwise.
1426 	 */
1427 	if (polling)
1428 		emx_disable_intr(sc);
1429 	else
1430 		emx_enable_intr(sc);
1431 
1432 	/* AMT based hardware can now take control from firmware */
1433 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1434 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1435 		emx_get_hw_control(sc);
1436 
1437 	ifp->if_flags |= IFF_RUNNING;
1438 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1439 		struct emx_txdata *tdata = &sc->tx_data[i];
1440 
1441 		ifsq_clr_oactive(tdata->ifsq);
1442 		ifsq_watchdog_start(&tdata->tx_watchdog);
1443 		if (!polling) {
1444 			callout_reset_bycpu(&tdata->tx_gc_timer, 1,
1445 			    emx_txgc_timer, tdata, ifsq_get_cpuid(tdata->ifsq));
1446 		}
1447 	}
1448 	callout_reset(&sc->timer, hz, emx_timer, sc);
1449 }
1450 
1451 static void
1452 emx_intr(void *xsc)
1453 {
1454 	emx_intr_body(xsc, TRUE);
1455 }
1456 
1457 static void
1458 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1459 {
1460 	struct ifnet *ifp = &sc->arpcom.ac_if;
1461 	uint32_t reg_icr;
1462 
1463 	logif(intr_beg);
1464 	ASSERT_SERIALIZED(&sc->main_serialize);
1465 
1466 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1467 
1468 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1469 		logif(intr_end);
1470 		return;
1471 	}
1472 
1473 	/*
1474 	 * XXX: some laptops trigger several spurious interrupts
1475 	 * on emx(4) when in the resume cycle. The ICR register
1476 	 * reports all-ones value in this case. Processing such
1477 	 * interrupts would lead to a freeze. I don't know why.
1478 	 */
1479 	if (reg_icr == 0xffffffff) {
1480 		logif(intr_end);
1481 		return;
1482 	}
1483 
1484 	if (ifp->if_flags & IFF_RUNNING) {
1485 		if (reg_icr &
1486 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1487 			int i;
1488 
1489 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1490 				lwkt_serialize_enter(
1491 				&sc->rx_data[i].rx_serialize);
1492 				emx_rxeof(&sc->rx_data[i], -1);
1493 				lwkt_serialize_exit(
1494 				&sc->rx_data[i].rx_serialize);
1495 			}
1496 		}
1497 		if (reg_icr & E1000_ICR_TXDW) {
1498 			struct emx_txdata *tdata = &sc->tx_data[0];
1499 
1500 			lwkt_serialize_enter(&tdata->tx_serialize);
1501 			emx_tx_intr(tdata);
1502 			lwkt_serialize_exit(&tdata->tx_serialize);
1503 		}
1504 	}
1505 
1506 	/* Link status change */
1507 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1508 		emx_serialize_skipmain(sc);
1509 
1510 		callout_stop(&sc->timer);
1511 		sc->hw.mac.get_link_status = 1;
1512 		emx_update_link_status(sc);
1513 
1514 		/* Deal with TX cruft when link lost */
1515 		emx_tx_purge(sc);
1516 
1517 		callout_reset(&sc->timer, hz, emx_timer, sc);
1518 
1519 		emx_deserialize_skipmain(sc);
1520 	}
1521 
1522 	if (reg_icr & E1000_ICR_RXO)
1523 		sc->rx_overruns++;
1524 
1525 	logif(intr_end);
1526 }
1527 
1528 static void
1529 emx_intr_mask(void *xsc)
1530 {
1531 	struct emx_softc *sc = xsc;
1532 
1533 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1534 	/*
1535 	 * NOTE:
1536 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1537 	 * so don't check it.
1538 	 */
1539 	emx_intr_body(sc, FALSE);
1540 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1541 }
1542 
1543 static void
1544 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1545 {
1546 	struct emx_softc *sc = ifp->if_softc;
1547 
1548 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1549 
1550 	emx_update_link_status(sc);
1551 
1552 	ifmr->ifm_status = IFM_AVALID;
1553 	ifmr->ifm_active = IFM_ETHER;
1554 
1555 	if (!sc->link_active) {
1556 		if (sc->hw.mac.autoneg)
1557 			ifmr->ifm_active |= IFM_NONE;
1558 		else
1559 			ifmr->ifm_active |= sc->media.ifm_media;
1560 		return;
1561 	}
1562 
1563 	ifmr->ifm_status |= IFM_ACTIVE;
1564 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1565 		ifmr->ifm_active |= sc->ifm_flowctrl;
1566 
1567 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1568 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1569 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1570 	} else {
1571 		switch (sc->link_speed) {
1572 		case 10:
1573 			ifmr->ifm_active |= IFM_10_T;
1574 			break;
1575 		case 100:
1576 			ifmr->ifm_active |= IFM_100_TX;
1577 			break;
1578 
1579 		case 1000:
1580 			ifmr->ifm_active |= IFM_1000_T;
1581 			break;
1582 		}
1583 		if (sc->link_duplex == FULL_DUPLEX)
1584 			ifmr->ifm_active |= IFM_FDX;
1585 		else
1586 			ifmr->ifm_active |= IFM_HDX;
1587 	}
1588 	if (ifmr->ifm_active & IFM_FDX)
1589 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1590 }
1591 
1592 static int
1593 emx_media_change(struct ifnet *ifp)
1594 {
1595 	struct emx_softc *sc = ifp->if_softc;
1596 	struct ifmedia *ifm = &sc->media;
1597 
1598 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1599 
1600 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1601 		return (EINVAL);
1602 
1603 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1604 	case IFM_AUTO:
1605 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1606 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1607 		break;
1608 
1609 	case IFM_1000_SX:
1610 	case IFM_1000_T:
1611 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1612 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1613 		break;
1614 
1615 	case IFM_100_TX:
1616 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1617 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1618 		} else {
1619 			if (IFM_OPTIONS(ifm->ifm_media) &
1620 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1621 				if (bootverbose) {
1622 					if_printf(ifp, "Flow control is not "
1623 					    "allowed for half-duplex\n");
1624 				}
1625 				return EINVAL;
1626 			}
1627 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1628 		}
1629 		sc->hw.mac.autoneg = FALSE;
1630 		sc->hw.phy.autoneg_advertised = 0;
1631 		break;
1632 
1633 	case IFM_10_T:
1634 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1635 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1636 		} else {
1637 			if (IFM_OPTIONS(ifm->ifm_media) &
1638 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1639 				if (bootverbose) {
1640 					if_printf(ifp, "Flow control is not "
1641 					    "allowed for half-duplex\n");
1642 				}
1643 				return EINVAL;
1644 			}
1645 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1646 		}
1647 		sc->hw.mac.autoneg = FALSE;
1648 		sc->hw.phy.autoneg_advertised = 0;
1649 		break;
1650 
1651 	default:
1652 		if (bootverbose) {
1653 			if_printf(ifp, "Unsupported media type %d\n",
1654 			    IFM_SUBTYPE(ifm->ifm_media));
1655 		}
1656 		return EINVAL;
1657 	}
1658 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1659 
1660 	if (ifp->if_flags & IFF_RUNNING)
1661 		emx_init(sc);
1662 
1663 	return (0);
1664 }
1665 
1666 static int
1667 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1668     int *segs_used, int *idx)
1669 {
1670 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1671 	bus_dmamap_t map;
1672 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1673 	struct e1000_tx_desc *ctxd = NULL;
1674 	struct mbuf *m_head = *m_headp;
1675 	uint32_t txd_upper, txd_lower, cmd = 0;
1676 	int maxsegs, nsegs, i, j, first, last = 0, error;
1677 
1678 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1679 		error = emx_tso_pullup(tdata, m_headp);
1680 		if (error)
1681 			return error;
1682 		m_head = *m_headp;
1683 	}
1684 
1685 	txd_upper = txd_lower = 0;
1686 
1687 	/*
1688 	 * Capture the first descriptor index, this descriptor
1689 	 * will have the index of the EOP which is the only one
1690 	 * that now gets a DONE bit writeback.
1691 	 */
1692 	first = tdata->next_avail_tx_desc;
1693 	tx_buffer = &tdata->tx_buf[first];
1694 	tx_buffer_mapped = tx_buffer;
1695 	map = tx_buffer->map;
1696 
1697 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1698 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1699 	if (maxsegs > EMX_MAX_SCATTER)
1700 		maxsegs = EMX_MAX_SCATTER;
1701 
1702 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1703 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1704 	if (error) {
1705 		m_freem(*m_headp);
1706 		*m_headp = NULL;
1707 		return error;
1708 	}
1709         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1710 
1711 	m_head = *m_headp;
1712 	tdata->tx_nsegs += nsegs;
1713 	*segs_used += nsegs;
1714 
1715 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1716 		/* TSO will consume one TX desc */
1717 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1718 		tdata->tx_nsegs += i;
1719 		*segs_used += i;
1720 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1721 		/* TX csum offloading will consume one TX desc */
1722 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1723 		tdata->tx_nsegs += i;
1724 		*segs_used += i;
1725 	}
1726 
1727         /* Handle VLAN tag */
1728 	if (m_head->m_flags & M_VLANTAG) {
1729 		/* Set the vlan id. */
1730 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1731 		/* Tell hardware to add tag */
1732 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1733 	}
1734 
1735 	i = tdata->next_avail_tx_desc;
1736 
1737 	/* Set up our transmit descriptors */
1738 	for (j = 0; j < nsegs; j++) {
1739 		tx_buffer = &tdata->tx_buf[i];
1740 		ctxd = &tdata->tx_desc_base[i];
1741 
1742 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1743 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1744 					   txd_lower | segs[j].ds_len);
1745 		ctxd->upper.data = htole32(txd_upper);
1746 
1747 		last = i;
1748 		if (++i == tdata->num_tx_desc)
1749 			i = 0;
1750 	}
1751 
1752 	tdata->next_avail_tx_desc = i;
1753 
1754 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1755 	tdata->num_tx_desc_avail -= nsegs;
1756 	tdata->tx_nmbuf++;
1757 
1758 	tx_buffer->m_head = m_head;
1759 	tx_buffer_mapped->map = tx_buffer->map;
1760 	tx_buffer->map = map;
1761 
1762 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1763 		tdata->tx_nsegs = 0;
1764 
1765 		/*
1766 		 * Report Status (RS) is turned on
1767 		 * every tx_intr_nsegs descriptors.
1768 		 */
1769 		cmd = E1000_TXD_CMD_RS;
1770 
1771 		/*
1772 		 * Keep track of the descriptor, which will
1773 		 * be written back by hardware.
1774 		 */
1775 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1776 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1777 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1778 	}
1779 
1780 	/*
1781 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1782 	 */
1783 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1784 
1785 	/*
1786 	 * Defer TDT updating, until enough descriptors are setup
1787 	 */
1788 	*idx = i;
1789 
1790 #ifdef EMX_TSS_DEBUG
1791 	tdata->tx_pkts++;
1792 #endif
1793 
1794 	return (0);
1795 }
1796 
1797 static void
1798 emx_set_promisc(struct emx_softc *sc)
1799 {
1800 	struct ifnet *ifp = &sc->arpcom.ac_if;
1801 	uint32_t reg_rctl;
1802 
1803 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1804 
1805 	if (ifp->if_flags & IFF_PROMISC) {
1806 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1807 		/* Turn this on if you want to see bad packets */
1808 		if (emx_debug_sbp)
1809 			reg_rctl |= E1000_RCTL_SBP;
1810 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1811 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1812 		reg_rctl |= E1000_RCTL_MPE;
1813 		reg_rctl &= ~E1000_RCTL_UPE;
1814 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1815 	}
1816 }
1817 
1818 static void
1819 emx_disable_promisc(struct emx_softc *sc)
1820 {
1821 	struct ifnet *ifp = &sc->arpcom.ac_if;
1822 	uint32_t reg_rctl;
1823 	int mcnt = 0;
1824 
1825 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1826 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1827 
1828 	if (ifp->if_flags & IFF_ALLMULTI) {
1829 		mcnt = EMX_MCAST_ADDR_MAX;
1830 	} else {
1831 		const struct ifmultiaddr *ifma;
1832 
1833 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1834 			if (ifma->ifma_addr->sa_family != AF_LINK)
1835 				continue;
1836 			if (mcnt == EMX_MCAST_ADDR_MAX)
1837 				break;
1838 			mcnt++;
1839 		}
1840 	}
1841 	/* Don't disable if in MAX groups */
1842 	if (mcnt < EMX_MCAST_ADDR_MAX)
1843 		reg_rctl &= ~E1000_RCTL_MPE;
1844 
1845 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1846 }
1847 
1848 static void
1849 emx_set_multi(struct emx_softc *sc)
1850 {
1851 	struct ifnet *ifp = &sc->arpcom.ac_if;
1852 	struct ifmultiaddr *ifma;
1853 	uint32_t reg_rctl = 0;
1854 	uint8_t *mta;
1855 	int mcnt = 0;
1856 
1857 	mta = sc->mta;
1858 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1859 
1860 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1861 		if (ifma->ifma_addr->sa_family != AF_LINK)
1862 			continue;
1863 
1864 		if (mcnt == EMX_MCAST_ADDR_MAX)
1865 			break;
1866 
1867 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1868 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1869 		mcnt++;
1870 	}
1871 
1872 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1873 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1874 		reg_rctl |= E1000_RCTL_MPE;
1875 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1876 	} else {
1877 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1878 	}
1879 }
1880 
1881 /*
1882  * This routine checks for link status and updates statistics.
1883  */
1884 static void
1885 emx_timer(void *xsc)
1886 {
1887 	struct emx_softc *sc = xsc;
1888 	struct ifnet *ifp = &sc->arpcom.ac_if;
1889 
1890 	lwkt_serialize_enter(&sc->main_serialize);
1891 
1892 	emx_update_link_status(sc);
1893 	emx_update_stats(sc);
1894 
1895 	/* Reset LAA into RAR[0] on 82571 */
1896 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1897 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1898 
1899 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1900 		emx_print_hw_stats(sc);
1901 
1902 	emx_smartspeed(sc);
1903 
1904 	callout_reset(&sc->timer, hz, emx_timer, sc);
1905 
1906 	lwkt_serialize_exit(&sc->main_serialize);
1907 }
1908 
1909 static void
1910 emx_update_link_status(struct emx_softc *sc)
1911 {
1912 	struct e1000_hw *hw = &sc->hw;
1913 	struct ifnet *ifp = &sc->arpcom.ac_if;
1914 	device_t dev = sc->dev;
1915 	uint32_t link_check = 0;
1916 
1917 	/* Get the cached link value or read phy for real */
1918 	switch (hw->phy.media_type) {
1919 	case e1000_media_type_copper:
1920 		if (hw->mac.get_link_status) {
1921 			if (hw->mac.type >= e1000_pch_spt)
1922 				msec_delay(50);
1923 			/* Do the work to read phy */
1924 			e1000_check_for_link(hw);
1925 			link_check = !hw->mac.get_link_status;
1926 			if (link_check) /* ESB2 fix */
1927 				e1000_cfg_on_link_up(hw);
1928 		} else {
1929 			link_check = TRUE;
1930 		}
1931 		break;
1932 
1933 	case e1000_media_type_fiber:
1934 		e1000_check_for_link(hw);
1935 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1936 		break;
1937 
1938 	case e1000_media_type_internal_serdes:
1939 		e1000_check_for_link(hw);
1940 		link_check = sc->hw.mac.serdes_has_link;
1941 		break;
1942 
1943 	case e1000_media_type_unknown:
1944 	default:
1945 		break;
1946 	}
1947 
1948 	/* Now check for a transition */
1949 	if (link_check && sc->link_active == 0) {
1950 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1951 		    &sc->link_duplex);
1952 
1953 		/*
1954 		 * Check if we should enable/disable SPEED_MODE bit on
1955 		 * 82571EB/82572EI
1956 		 */
1957 		if (sc->link_speed != SPEED_1000 &&
1958 		    (hw->mac.type == e1000_82571 ||
1959 		     hw->mac.type == e1000_82572)) {
1960 			int tarc0;
1961 
1962 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1963 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1964 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1965 		}
1966 		if (bootverbose) {
1967 			char flowctrl[IFM_ETH_FC_STRLEN];
1968 
1969 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1970 			    sizeof(flowctrl));
1971 			device_printf(dev, "Link is up %d Mbps %s, "
1972 			    "Flow control: %s\n",
1973 			    sc->link_speed,
1974 			    (sc->link_duplex == FULL_DUPLEX) ?
1975 			    "Full Duplex" : "Half Duplex",
1976 			    flowctrl);
1977 		}
1978 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1979 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1980 		sc->link_active = 1;
1981 		sc->smartspeed = 0;
1982 		ifp->if_baudrate = sc->link_speed * 1000000;
1983 		ifp->if_link_state = LINK_STATE_UP;
1984 		if_link_state_change(ifp);
1985 	} else if (!link_check && sc->link_active == 1) {
1986 		ifp->if_baudrate = sc->link_speed = 0;
1987 		sc->link_duplex = 0;
1988 		if (bootverbose)
1989 			device_printf(dev, "Link is Down\n");
1990 		sc->link_active = 0;
1991 		ifp->if_link_state = LINK_STATE_DOWN;
1992 		if_link_state_change(ifp);
1993 	}
1994 }
1995 
1996 static void
1997 emx_stop(struct emx_softc *sc)
1998 {
1999 	struct ifnet *ifp = &sc->arpcom.ac_if;
2000 	int i;
2001 
2002 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2003 
2004 	emx_disable_intr(sc);
2005 
2006 	callout_stop(&sc->timer);
2007 
2008 	ifp->if_flags &= ~IFF_RUNNING;
2009 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2010 		struct emx_txdata *tdata = &sc->tx_data[i];
2011 
2012 		ifsq_clr_oactive(tdata->ifsq);
2013 		ifsq_watchdog_stop(&tdata->tx_watchdog);
2014 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
2015 
2016 		tdata->tx_running = 0;
2017 		callout_stop(&tdata->tx_gc_timer);
2018 	}
2019 
2020 	/* I219 needs some special flushing to avoid hangs */
2021 	if (sc->hw.mac.type >= e1000_pch_spt)
2022 		emx_flush_txrx_ring(sc);
2023 
2024 	/*
2025 	 * Disable multiple receive queues.
2026 	 *
2027 	 * NOTE:
2028 	 * We should disable multiple receive queues before
2029 	 * resetting the hardware.
2030 	 */
2031 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
2032 
2033 	e1000_reset_hw(&sc->hw);
2034 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2035 
2036 	for (i = 0; i < sc->tx_ring_cnt; ++i)
2037 		emx_free_tx_ring(&sc->tx_data[i]);
2038 	for (i = 0; i < sc->rx_ring_cnt; ++i)
2039 		emx_free_rx_ring(&sc->rx_data[i]);
2040 }
2041 
2042 static int
2043 emx_reset(struct emx_softc *sc)
2044 {
2045 	device_t dev = sc->dev;
2046 	uint16_t rx_buffer_size;
2047 	uint32_t pba;
2048 
2049 	/* Set up smart power down as default off on newer adapters. */
2050 	if (!emx_smart_pwr_down &&
2051 	    (sc->hw.mac.type == e1000_82571 ||
2052 	     sc->hw.mac.type == e1000_82572)) {
2053 		uint16_t phy_tmp = 0;
2054 
2055 		/* Speed up time to link by disabling smart power down. */
2056 		e1000_read_phy_reg(&sc->hw,
2057 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2058 		phy_tmp &= ~IGP02E1000_PM_SPD;
2059 		e1000_write_phy_reg(&sc->hw,
2060 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2061 	}
2062 
2063 	/*
2064 	 * Packet Buffer Allocation (PBA)
2065 	 * Writing PBA sets the receive portion of the buffer
2066 	 * the remainder is used for the transmit buffer.
2067 	 */
2068 	switch (sc->hw.mac.type) {
2069 	/* Total Packet Buffer on these is 48K */
2070 	case e1000_82571:
2071 	case e1000_82572:
2072 	case e1000_80003es2lan:
2073 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2074 		break;
2075 
2076 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2077 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2078 		break;
2079 
2080 	case e1000_82574:
2081 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2082 		break;
2083 
2084 	case e1000_pch_lpt:
2085 	case e1000_pch_spt:
2086 	case e1000_pch_cnp:
2087  		pba = E1000_PBA_26K;
2088  		break;
2089 
2090 	default:
2091 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2092 		if (sc->hw.mac.max_frame_size > 8192)
2093 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2094 		else
2095 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2096 	}
2097 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2098 
2099 	/*
2100 	 * These parameters control the automatic generation (Tx) and
2101 	 * response (Rx) to Ethernet PAUSE frames.
2102 	 * - High water mark should allow for at least two frames to be
2103 	 *   received after sending an XOFF.
2104 	 * - Low water mark works best when it is very near the high water mark.
2105 	 *   This allows the receiver to restart by sending XON when it has
2106 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2107 	 *   restart after one full frame is pulled from the buffer. There
2108 	 *   could be several smaller frames in the buffer and if so they will
2109 	 *   not trigger the XON until their total number reduces the buffer
2110 	 *   by 1500.
2111 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2112 	 */
2113 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2114 
2115 	sc->hw.fc.high_water = rx_buffer_size -
2116 	    roundup2(sc->hw.mac.max_frame_size, 1024);
2117 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2118 
2119 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2120 	sc->hw.fc.send_xon = TRUE;
2121 	sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2122 
2123 	/*
2124 	 * Device specific overrides/settings
2125 	 */
2126 	if (sc->hw.mac.type == e1000_pch_lpt ||
2127 	    sc->hw.mac.type == e1000_pch_spt ||
2128 	    sc->hw.mac.type == e1000_pch_cnp) {
2129 		sc->hw.fc.high_water = 0x5C20;
2130 		sc->hw.fc.low_water = 0x5048;
2131 		sc->hw.fc.pause_time = 0x0650;
2132 		sc->hw.fc.refresh_time = 0x0400;
2133 		/* Jumbos need adjusted PBA */
2134 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2135 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2136 		else
2137 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2138 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2139 		sc->hw.fc.pause_time = 0xFFFF;
2140 	}
2141 
2142 	/* I219 needs some special flushing to avoid hangs */
2143 	if (sc->hw.mac.type >= e1000_pch_spt)
2144 		emx_flush_txrx_ring(sc);
2145 
2146 	/* Issue a global reset */
2147 	e1000_reset_hw(&sc->hw);
2148 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2149 	emx_disable_aspm(sc);
2150 
2151 	if (e1000_init_hw(&sc->hw) < 0) {
2152 		device_printf(dev, "Hardware Initialization Failed\n");
2153 		return (EIO);
2154 	}
2155 
2156 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2157 	e1000_get_phy_info(&sc->hw);
2158 	e1000_check_for_link(&sc->hw);
2159 
2160 	return (0);
2161 }
2162 
2163 static void
2164 emx_setup_ifp(struct emx_softc *sc)
2165 {
2166 	struct ifnet *ifp = &sc->arpcom.ac_if;
2167 	int i;
2168 
2169 	if_initname(ifp, device_get_name(sc->dev),
2170 		    device_get_unit(sc->dev));
2171 	ifp->if_softc = sc;
2172 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2173 	ifp->if_init =  emx_init;
2174 	ifp->if_ioctl = emx_ioctl;
2175 	ifp->if_start = emx_start;
2176 #ifdef IFPOLL_ENABLE
2177 	ifp->if_npoll = emx_npoll;
2178 #endif
2179 	ifp->if_serialize = emx_serialize;
2180 	ifp->if_deserialize = emx_deserialize;
2181 	ifp->if_tryserialize = emx_tryserialize;
2182 #ifdef INVARIANTS
2183 	ifp->if_serialize_assert = emx_serialize_assert;
2184 #endif
2185 
2186 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2187 
2188 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2189 	ifq_set_ready(&ifp->if_snd);
2190 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2191 
2192 	ifp->if_mapsubq = ifq_mapsubq_modulo;
2193 	ifq_set_subq_divisor(&ifp->if_snd, 1);
2194 
2195 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2196 
2197 	ifp->if_capabilities = IFCAP_HWCSUM |
2198 			       IFCAP_VLAN_HWTAGGING |
2199 			       IFCAP_VLAN_MTU |
2200 			       IFCAP_TSO;
2201 	if (sc->rx_ring_cnt > 1)
2202 		ifp->if_capabilities |= IFCAP_RSS;
2203 	ifp->if_capenable = ifp->if_capabilities;
2204 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2205 
2206 	/*
2207 	 * Tell the upper layer(s) we support long frames.
2208 	 */
2209 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2210 
2211 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2212 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2213 		struct emx_txdata *tdata = &sc->tx_data[i];
2214 
2215 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2216 		ifsq_set_priv(ifsq, tdata);
2217 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2218 		tdata->ifsq = ifsq;
2219 
2220 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2221 	}
2222 
2223 	/*
2224 	 * Specify the media types supported by this sc and register
2225 	 * callbacks to update media and link information
2226 	 */
2227 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2228 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2229 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2230 			    0, NULL);
2231 	} else {
2232 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2233 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2234 			    0, NULL);
2235 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2236 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2237 			    0, NULL);
2238 		if (sc->hw.phy.type != e1000_phy_ife) {
2239 			ifmedia_add(&sc->media,
2240 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2241 		}
2242 	}
2243 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2244 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2245 }
2246 
2247 /*
2248  * Workaround for SmartSpeed on 82541 and 82547 controllers
2249  */
2250 static void
2251 emx_smartspeed(struct emx_softc *sc)
2252 {
2253 	uint16_t phy_tmp;
2254 
2255 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2256 	    sc->hw.mac.autoneg == 0 ||
2257 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2258 		return;
2259 
2260 	if (sc->smartspeed == 0) {
2261 		/*
2262 		 * If Master/Slave config fault is asserted twice,
2263 		 * we assume back-to-back
2264 		 */
2265 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2266 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2267 			return;
2268 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2269 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2270 			e1000_read_phy_reg(&sc->hw,
2271 			    PHY_1000T_CTRL, &phy_tmp);
2272 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2273 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2274 				e1000_write_phy_reg(&sc->hw,
2275 				    PHY_1000T_CTRL, phy_tmp);
2276 				sc->smartspeed++;
2277 				if (sc->hw.mac.autoneg &&
2278 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2279 				    !e1000_read_phy_reg(&sc->hw,
2280 				     PHY_CONTROL, &phy_tmp)) {
2281 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2282 						   MII_CR_RESTART_AUTO_NEG;
2283 					e1000_write_phy_reg(&sc->hw,
2284 					    PHY_CONTROL, phy_tmp);
2285 				}
2286 			}
2287 		}
2288 		return;
2289 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2290 		/* If still no link, perhaps using 2/3 pair cable */
2291 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2292 		phy_tmp |= CR_1000T_MS_ENABLE;
2293 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2294 		if (sc->hw.mac.autoneg &&
2295 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2296 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2297 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2298 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2299 		}
2300 	}
2301 
2302 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2303 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2304 		sc->smartspeed = 0;
2305 }
2306 
2307 static int
2308 emx_create_tx_ring(struct emx_txdata *tdata)
2309 {
2310 	device_t dev = tdata->sc->dev;
2311 	struct emx_txbuf *tx_buffer;
2312 	int error, i, tsize, ntxd;
2313 
2314 	/*
2315 	 * Validate number of transmit descriptors.  It must not exceed
2316 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2317 	 */
2318 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2319 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2320 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2321 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2322 		    EMX_DEFAULT_TXD, ntxd);
2323 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2324 	} else {
2325 		tdata->num_tx_desc = ntxd;
2326 	}
2327 
2328 	/*
2329 	 * Allocate Transmit Descriptor ring
2330 	 */
2331 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2332 			 EMX_DBA_ALIGN);
2333 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2334 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2335 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2336 				&tdata->tx_desc_paddr);
2337 	if (tdata->tx_desc_base == NULL) {
2338 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2339 		return ENOMEM;
2340 	}
2341 
2342 	tsize = __VM_CACHELINE_ALIGN(
2343 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2344 	tdata->tx_buf = kmalloc(tsize, M_DEVBUF,
2345 				M_WAITOK | M_ZERO | M_CACHEALIGN);
2346 
2347 	/*
2348 	 * Create DMA tags for tx buffers
2349 	 */
2350 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2351 			1, 0,			/* alignment, bounds */
2352 			BUS_SPACE_MAXADDR,	/* lowaddr */
2353 			BUS_SPACE_MAXADDR,	/* highaddr */
2354 			NULL, NULL,		/* filter, filterarg */
2355 			EMX_TSO_SIZE,		/* maxsize */
2356 			EMX_MAX_SCATTER,	/* nsegments */
2357 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2358 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2359 			BUS_DMA_ONEBPAGE,	/* flags */
2360 			&tdata->txtag);
2361 	if (error) {
2362 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2363 		kfree(tdata->tx_buf, M_DEVBUF);
2364 		tdata->tx_buf = NULL;
2365 		return error;
2366 	}
2367 
2368 	/*
2369 	 * Create DMA maps for tx buffers
2370 	 */
2371 	for (i = 0; i < tdata->num_tx_desc; i++) {
2372 		tx_buffer = &tdata->tx_buf[i];
2373 
2374 		error = bus_dmamap_create(tdata->txtag,
2375 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2376 					  &tx_buffer->map);
2377 		if (error) {
2378 			device_printf(dev, "Unable to create TX DMA map\n");
2379 			emx_destroy_tx_ring(tdata, i);
2380 			return error;
2381 		}
2382 	}
2383 
2384 	/*
2385 	 * Setup TX parameters
2386 	 */
2387 	tdata->spare_tx_desc = EMX_TX_SPARE;
2388 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2389 
2390 	/*
2391 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2392 	 * and tx_intr_nsegs:
2393 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2394 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2395 	 */
2396 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2397 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2398 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2399 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2400 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2401 
2402 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2403 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2404 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2405 
2406 	/*
2407 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2408 	 * 82571/82572 specification update errata #7
2409 	 *
2410 	 * Same applies to I217 (and maybe I218 and I219).
2411 	 *
2412 	 * NOTE:
2413 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2414 	 * are pulled; mainly to keep rest of the data properly aligned.
2415 	 */
2416 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2417 	    tdata->sc->hw.mac.type == e1000_82572 ||
2418 	    tdata->sc->hw.mac.type == e1000_pch_lpt ||
2419 	    tdata->sc->hw.mac.type == e1000_pch_spt ||
2420 	    tdata->sc->hw.mac.type == e1000_pch_cnp)
2421 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2422 
2423 	return (0);
2424 }
2425 
2426 static void
2427 emx_init_tx_ring(struct emx_txdata *tdata)
2428 {
2429 	/* Clear the old ring contents */
2430 	bzero(tdata->tx_desc_base,
2431 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2432 
2433 	/* Reset state */
2434 	tdata->next_avail_tx_desc = 0;
2435 	tdata->next_tx_to_clean = 0;
2436 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2437 	tdata->tx_nmbuf = 0;
2438 	tdata->tx_running = 0;
2439 
2440 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2441 	if (tdata->sc->tx_ring_inuse > 1) {
2442 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2443 		if (bootverbose) {
2444 			if_printf(&tdata->sc->arpcom.ac_if,
2445 			    "TX %d force ctx setup\n", tdata->idx);
2446 		}
2447 	}
2448 }
2449 
2450 static void
2451 emx_init_tx_unit(struct emx_softc *sc)
2452 {
2453 	uint32_t tctl, tarc, tipg = 0, txdctl;
2454 	int i;
2455 
2456 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2457 		struct emx_txdata *tdata = &sc->tx_data[i];
2458 		uint64_t bus_addr;
2459 
2460 		/* Setup the Base and Length of the Tx Descriptor Ring */
2461 		bus_addr = tdata->tx_desc_paddr;
2462 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2463 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2464 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2465 		    (uint32_t)(bus_addr >> 32));
2466 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2467 		    (uint32_t)bus_addr);
2468 		/* Setup the HW Tx Head and Tail descriptor pointers */
2469 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2470 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2471 
2472 		txdctl = 0x1f;		/* PTHRESH */
2473 		txdctl |= 1 << 8;	/* HTHRESH */
2474 		txdctl |= 1 << 16;	/* WTHRESH */
2475 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2476 		txdctl |= E1000_TXDCTL_GRAN;
2477 		txdctl |= 1 << 25;	/* LWTHRESH */
2478 
2479 		E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(i), txdctl);
2480 	}
2481 
2482 	/* Set the default values for the Tx Inter Packet Gap timer */
2483 	switch (sc->hw.mac.type) {
2484 	case e1000_80003es2lan:
2485 		tipg = DEFAULT_82543_TIPG_IPGR1;
2486 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2487 		    E1000_TIPG_IPGR2_SHIFT;
2488 		break;
2489 
2490 	default:
2491 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2492 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2493 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2494 		else
2495 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2496 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2497 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2498 		break;
2499 	}
2500 
2501 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2502 
2503 	/* NOTE: 0 is not allowed for TIDV */
2504 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2505 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2506 
2507 	/*
2508 	 * Errata workaround (obtained from Linux).  This is necessary
2509 	 * to make multiple TX queues work on 82574.
2510 	 * XXX can't find it in any published errata though.
2511 	 */
2512 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2513 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2514 
2515 	if (sc->hw.mac.type == e1000_82571 ||
2516 	    sc->hw.mac.type == e1000_82572) {
2517 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2518 		tarc |= EMX_TARC_SPEED_MODE;
2519 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2520 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2521 		/* errata: program both queues to unweighted RR */
2522 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2523 		tarc |= 1;
2524 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2525 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2526 		tarc |= 1;
2527 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2528 	} else if (sc->hw.mac.type == e1000_82574) {
2529 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2530 		tarc |= EMX_TARC_ERRATA;
2531 		if (sc->tx_ring_inuse > 1) {
2532 			tarc |= (EMX_TARC_COMPENSATION_MODE | EMX_TARC_MQ_FIX);
2533 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2534 			E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2535 		} else {
2536 			E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2537 		}
2538 	}
2539 
2540 	/* Program the Transmit Control Register */
2541 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2542 	tctl &= ~E1000_TCTL_CT;
2543 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2544 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2545 	tctl |= E1000_TCTL_MULR;
2546 
2547 	/* This write will effectively turn on the transmit unit. */
2548 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2549 
2550 	if (sc->hw.mac.type == e1000_82571 ||
2551 	    sc->hw.mac.type == e1000_82572 ||
2552 	    sc->hw.mac.type == e1000_80003es2lan) {
2553 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2554 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2555 		tarc &= ~(1 << 28);
2556 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2557 	} else if (sc->hw.mac.type >= e1000_pch_spt) {
2558 		uint32_t reg;
2559 
2560 		reg = E1000_READ_REG(&sc->hw, E1000_IOSFPC);
2561 		reg |= E1000_RCTL_RDMTS_HEX;
2562 		E1000_WRITE_REG(&sc->hw, E1000_IOSFPC, reg);
2563 		reg = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2564 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2565 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), reg);
2566 	}
2567 
2568 	if (sc->tx_ring_inuse > 1) {
2569 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2570 		tarc &= ~EMX_TARC_COUNT_MASK;
2571 		tarc |= 1;
2572 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2573 
2574 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2575 		tarc &= ~EMX_TARC_COUNT_MASK;
2576 		tarc |= 1;
2577 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2578 	}
2579 }
2580 
2581 static void
2582 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2583 {
2584 	struct emx_txbuf *tx_buffer;
2585 	int i;
2586 
2587 	/* Free Transmit Descriptor ring */
2588 	if (tdata->tx_desc_base) {
2589 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2590 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2591 				tdata->tx_desc_dmap);
2592 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2593 
2594 		tdata->tx_desc_base = NULL;
2595 	}
2596 
2597 	if (tdata->tx_buf == NULL)
2598 		return;
2599 
2600 	for (i = 0; i < ndesc; i++) {
2601 		tx_buffer = &tdata->tx_buf[i];
2602 
2603 		KKASSERT(tx_buffer->m_head == NULL);
2604 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2605 	}
2606 	bus_dma_tag_destroy(tdata->txtag);
2607 
2608 	kfree(tdata->tx_buf, M_DEVBUF);
2609 	tdata->tx_buf = NULL;
2610 }
2611 
2612 /*
2613  * The offload context needs to be set when we transfer the first
2614  * packet of a particular protocol (TCP/UDP).  This routine has been
2615  * enhanced to deal with inserted VLAN headers.
2616  *
2617  * If the new packet's ether header length, ip header length and
2618  * csum offloading type are same as the previous packet, we should
2619  * avoid allocating a new csum context descriptor; mainly to take
2620  * advantage of the pipeline effect of the TX data read request.
2621  *
2622  * This function returns number of TX descrptors allocated for
2623  * csum context.
2624  */
2625 static int
2626 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2627 	   uint32_t *txd_upper, uint32_t *txd_lower)
2628 {
2629 	struct e1000_context_desc *TXD;
2630 	int curr_txd, ehdrlen, csum_flags;
2631 	uint32_t cmd, hdr_len, ip_hlen;
2632 
2633 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2634 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2635 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2636 
2637 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2638 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2639 	    tdata->csum_flags == csum_flags) {
2640 		/*
2641 		 * Same csum offload context as the previous packets;
2642 		 * just return.
2643 		 */
2644 		*txd_upper = tdata->csum_txd_upper;
2645 		*txd_lower = tdata->csum_txd_lower;
2646 		return 0;
2647 	}
2648 
2649 	/*
2650 	 * Setup a new csum offload context.
2651 	 */
2652 
2653 	curr_txd = tdata->next_avail_tx_desc;
2654 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2655 
2656 	cmd = 0;
2657 
2658 	/* Setup of IP header checksum. */
2659 	if (csum_flags & CSUM_IP) {
2660 		/*
2661 		 * Start offset for header checksum calculation.
2662 		 * End offset for header checksum calculation.
2663 		 * Offset of place to put the checksum.
2664 		 */
2665 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2666 		TXD->lower_setup.ip_fields.ipcse =
2667 		    htole16(ehdrlen + ip_hlen - 1);
2668 		TXD->lower_setup.ip_fields.ipcso =
2669 		    ehdrlen + offsetof(struct ip, ip_sum);
2670 		cmd |= E1000_TXD_CMD_IP;
2671 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2672 	}
2673 	hdr_len = ehdrlen + ip_hlen;
2674 
2675 	if (csum_flags & CSUM_TCP) {
2676 		/*
2677 		 * Start offset for payload checksum calculation.
2678 		 * End offset for payload checksum calculation.
2679 		 * Offset of place to put the checksum.
2680 		 */
2681 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2682 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2683 		TXD->upper_setup.tcp_fields.tucso =
2684 		    hdr_len + offsetof(struct tcphdr, th_sum);
2685 		cmd |= E1000_TXD_CMD_TCP;
2686 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2687 	} else if (csum_flags & CSUM_UDP) {
2688 		/*
2689 		 * Start offset for header checksum calculation.
2690 		 * End offset for header checksum calculation.
2691 		 * Offset of place to put the checksum.
2692 		 */
2693 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2694 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2695 		TXD->upper_setup.tcp_fields.tucso =
2696 		    hdr_len + offsetof(struct udphdr, uh_sum);
2697 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2698 	}
2699 
2700 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2701 		     E1000_TXD_DTYP_D;		/* Data descr */
2702 
2703 	/* Save the information for this csum offloading context */
2704 	tdata->csum_lhlen = ehdrlen;
2705 	tdata->csum_iphlen = ip_hlen;
2706 	tdata->csum_flags = csum_flags;
2707 	tdata->csum_txd_upper = *txd_upper;
2708 	tdata->csum_txd_lower = *txd_lower;
2709 
2710 	TXD->tcp_seg_setup.data = htole32(0);
2711 	TXD->cmd_and_length =
2712 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2713 
2714 	if (++curr_txd == tdata->num_tx_desc)
2715 		curr_txd = 0;
2716 
2717 	KKASSERT(tdata->num_tx_desc_avail > 0);
2718 	tdata->num_tx_desc_avail--;
2719 
2720 	tdata->next_avail_tx_desc = curr_txd;
2721 	return 1;
2722 }
2723 
2724 static void
2725 emx_txeof(struct emx_txdata *tdata)
2726 {
2727 	struct emx_txbuf *tx_buffer;
2728 	int first, num_avail;
2729 
2730 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2731 		return;
2732 
2733 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2734 		return;
2735 
2736 	num_avail = tdata->num_tx_desc_avail;
2737 	first = tdata->next_tx_to_clean;
2738 
2739 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2740 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2741 		struct e1000_tx_desc *tx_desc;
2742 
2743 		tx_desc = &tdata->tx_desc_base[dd_idx];
2744 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2745 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2746 
2747 			if (++dd_idx == tdata->num_tx_desc)
2748 				dd_idx = 0;
2749 
2750 			while (first != dd_idx) {
2751 				logif(pkt_txclean);
2752 
2753 				KKASSERT(num_avail < tdata->num_tx_desc);
2754 				num_avail++;
2755 
2756 				tx_buffer = &tdata->tx_buf[first];
2757 				if (tx_buffer->m_head)
2758 					emx_free_txbuf(tdata, tx_buffer);
2759 
2760 				if (++first == tdata->num_tx_desc)
2761 					first = 0;
2762 			}
2763 		} else {
2764 			break;
2765 		}
2766 	}
2767 	tdata->next_tx_to_clean = first;
2768 	tdata->num_tx_desc_avail = num_avail;
2769 
2770 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2771 		tdata->tx_dd_head = 0;
2772 		tdata->tx_dd_tail = 0;
2773 	}
2774 
2775 	if (!EMX_IS_OACTIVE(tdata)) {
2776 		ifsq_clr_oactive(tdata->ifsq);
2777 
2778 		/* All clean, turn off the timer */
2779 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2780 			tdata->tx_watchdog.wd_timer = 0;
2781 	}
2782 	tdata->tx_running = EMX_TX_RUNNING;
2783 }
2784 
2785 static void
2786 emx_tx_collect(struct emx_txdata *tdata, boolean_t gc)
2787 {
2788 	struct emx_txbuf *tx_buffer;
2789 	int tdh, first, num_avail, dd_idx = -1;
2790 
2791 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2792 		return;
2793 
2794 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2795 	if (tdh == tdata->next_tx_to_clean) {
2796 		if (gc && tdata->tx_nmbuf > 0)
2797 			tdata->tx_running = EMX_TX_RUNNING;
2798 		return;
2799 	}
2800 	if (gc)
2801 		tdata->tx_gc++;
2802 
2803 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2804 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2805 
2806 	num_avail = tdata->num_tx_desc_avail;
2807 	first = tdata->next_tx_to_clean;
2808 
2809 	while (first != tdh) {
2810 		logif(pkt_txclean);
2811 
2812 		KKASSERT(num_avail < tdata->num_tx_desc);
2813 		num_avail++;
2814 
2815 		tx_buffer = &tdata->tx_buf[first];
2816 		if (tx_buffer->m_head)
2817 			emx_free_txbuf(tdata, tx_buffer);
2818 
2819 		if (first == dd_idx) {
2820 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2821 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2822 				tdata->tx_dd_head = 0;
2823 				tdata->tx_dd_tail = 0;
2824 				dd_idx = -1;
2825 			} else {
2826 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2827 			}
2828 		}
2829 
2830 		if (++first == tdata->num_tx_desc)
2831 			first = 0;
2832 	}
2833 	tdata->next_tx_to_clean = first;
2834 	tdata->num_tx_desc_avail = num_avail;
2835 
2836 	if (!EMX_IS_OACTIVE(tdata)) {
2837 		ifsq_clr_oactive(tdata->ifsq);
2838 
2839 		/* All clean, turn off the timer */
2840 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2841 			tdata->tx_watchdog.wd_timer = 0;
2842 	}
2843 	if (!gc || tdata->tx_nmbuf > 0)
2844 		tdata->tx_running = EMX_TX_RUNNING;
2845 }
2846 
2847 /*
2848  * When Link is lost sometimes there is work still in the TX ring
2849  * which will result in a watchdog, rather than allow that do an
2850  * attempted cleanup and then reinit here.  Note that this has been
2851  * seens mostly with fiber adapters.
2852  */
2853 static void
2854 emx_tx_purge(struct emx_softc *sc)
2855 {
2856 	int i;
2857 
2858 	if (sc->link_active)
2859 		return;
2860 
2861 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2862 		struct emx_txdata *tdata = &sc->tx_data[i];
2863 
2864 		if (tdata->tx_watchdog.wd_timer) {
2865 			emx_tx_collect(tdata, FALSE);
2866 			if (tdata->tx_watchdog.wd_timer) {
2867 				if_printf(&sc->arpcom.ac_if,
2868 				    "Link lost, TX pending, reinit\n");
2869 				emx_init(sc);
2870 				return;
2871 			}
2872 		}
2873 	}
2874 }
2875 
2876 static int
2877 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2878 {
2879 	struct mbuf *m;
2880 	bus_dma_segment_t seg;
2881 	bus_dmamap_t map;
2882 	struct emx_rxbuf *rx_buffer;
2883 	int error, nseg;
2884 
2885 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2886 	if (m == NULL) {
2887 		if (init) {
2888 			if_printf(&rdata->sc->arpcom.ac_if,
2889 				  "Unable to allocate RX mbuf\n");
2890 		}
2891 		return (ENOBUFS);
2892 	}
2893 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2894 
2895 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2896 		m_adj(m, ETHER_ALIGN);
2897 
2898 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2899 			rdata->rx_sparemap, m,
2900 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2901 	if (error) {
2902 		m_freem(m);
2903 		if (init) {
2904 			if_printf(&rdata->sc->arpcom.ac_if,
2905 				  "Unable to load RX mbuf\n");
2906 		}
2907 		return (error);
2908 	}
2909 
2910 	rx_buffer = &rdata->rx_buf[i];
2911 	if (rx_buffer->m_head != NULL)
2912 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2913 
2914 	map = rx_buffer->map;
2915 	rx_buffer->map = rdata->rx_sparemap;
2916 	rdata->rx_sparemap = map;
2917 
2918 	rx_buffer->m_head = m;
2919 	rx_buffer->paddr = seg.ds_addr;
2920 
2921 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2922 	return (0);
2923 }
2924 
2925 static int
2926 emx_create_rx_ring(struct emx_rxdata *rdata)
2927 {
2928 	device_t dev = rdata->sc->dev;
2929 	struct emx_rxbuf *rx_buffer;
2930 	int i, error, rsize, nrxd;
2931 
2932 	/*
2933 	 * Validate number of receive descriptors.  It must not exceed
2934 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2935 	 */
2936 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2937 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2938 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2939 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2940 		    EMX_DEFAULT_RXD, nrxd);
2941 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2942 	} else {
2943 		rdata->num_rx_desc = nrxd;
2944 	}
2945 
2946 	/*
2947 	 * Allocate Receive Descriptor ring
2948 	 */
2949 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2950 			 EMX_DBA_ALIGN);
2951 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2952 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2953 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2954 				&rdata->rx_desc_paddr);
2955 	if (rdata->rx_desc == NULL) {
2956 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2957 		return ENOMEM;
2958 	}
2959 
2960 	rsize = __VM_CACHELINE_ALIGN(
2961 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2962 	rdata->rx_buf = kmalloc(rsize, M_DEVBUF,
2963 				M_WAITOK | M_ZERO | M_CACHEALIGN);
2964 
2965 	/*
2966 	 * Create DMA tag for rx buffers
2967 	 */
2968 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2969 			1, 0,			/* alignment, bounds */
2970 			BUS_SPACE_MAXADDR,	/* lowaddr */
2971 			BUS_SPACE_MAXADDR,	/* highaddr */
2972 			NULL, NULL,		/* filter, filterarg */
2973 			MCLBYTES,		/* maxsize */
2974 			1,			/* nsegments */
2975 			MCLBYTES,		/* maxsegsize */
2976 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2977 			&rdata->rxtag);
2978 	if (error) {
2979 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2980 		kfree(rdata->rx_buf, M_DEVBUF);
2981 		rdata->rx_buf = NULL;
2982 		return error;
2983 	}
2984 
2985 	/*
2986 	 * Create spare DMA map for rx buffers
2987 	 */
2988 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2989 				  &rdata->rx_sparemap);
2990 	if (error) {
2991 		device_printf(dev, "Unable to create spare RX DMA map\n");
2992 		bus_dma_tag_destroy(rdata->rxtag);
2993 		kfree(rdata->rx_buf, M_DEVBUF);
2994 		rdata->rx_buf = NULL;
2995 		return error;
2996 	}
2997 
2998 	/*
2999 	 * Create DMA maps for rx buffers
3000 	 */
3001 	for (i = 0; i < rdata->num_rx_desc; i++) {
3002 		rx_buffer = &rdata->rx_buf[i];
3003 
3004 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
3005 					  &rx_buffer->map);
3006 		if (error) {
3007 			device_printf(dev, "Unable to create RX DMA map\n");
3008 			emx_destroy_rx_ring(rdata, i);
3009 			return error;
3010 		}
3011 	}
3012 	return (0);
3013 }
3014 
3015 static void
3016 emx_free_rx_ring(struct emx_rxdata *rdata)
3017 {
3018 	int i;
3019 
3020 	for (i = 0; i < rdata->num_rx_desc; i++) {
3021 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
3022 
3023 		if (rx_buffer->m_head != NULL) {
3024 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
3025 			m_freem(rx_buffer->m_head);
3026 			rx_buffer->m_head = NULL;
3027 		}
3028 	}
3029 
3030 	if (rdata->fmp != NULL)
3031 		m_freem(rdata->fmp);
3032 	rdata->fmp = NULL;
3033 	rdata->lmp = NULL;
3034 }
3035 
3036 static void
3037 emx_free_tx_ring(struct emx_txdata *tdata)
3038 {
3039 	int i;
3040 
3041 	for (i = 0; i < tdata->num_tx_desc; i++) {
3042 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
3043 
3044 		if (tx_buffer->m_head != NULL)
3045 			emx_free_txbuf(tdata, tx_buffer);
3046 	}
3047 
3048 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
3049 
3050 	tdata->csum_flags = 0;
3051 	tdata->csum_lhlen = 0;
3052 	tdata->csum_iphlen = 0;
3053 	tdata->csum_thlen = 0;
3054 	tdata->csum_mss = 0;
3055 	tdata->csum_pktlen = 0;
3056 
3057 	tdata->tx_dd_head = 0;
3058 	tdata->tx_dd_tail = 0;
3059 	tdata->tx_nsegs = 0;
3060 }
3061 
3062 static int
3063 emx_init_rx_ring(struct emx_rxdata *rdata)
3064 {
3065 	int i, error;
3066 
3067 	/* Reset descriptor ring */
3068 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
3069 
3070 	/* Allocate new ones. */
3071 	for (i = 0; i < rdata->num_rx_desc; i++) {
3072 		error = emx_newbuf(rdata, i, 1);
3073 		if (error)
3074 			return (error);
3075 	}
3076 
3077 	/* Setup our descriptor pointers */
3078 	rdata->next_rx_desc_to_check = 0;
3079 
3080 	return (0);
3081 }
3082 
3083 static void
3084 emx_init_rx_unit(struct emx_softc *sc)
3085 {
3086 	struct ifnet *ifp = &sc->arpcom.ac_if;
3087 	uint64_t bus_addr;
3088 	uint32_t rctl, itr, rfctl, rxcsum;
3089 	int i;
3090 
3091 	/*
3092 	 * Make sure receives are disabled while setting
3093 	 * up the descriptor ring
3094 	 */
3095 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
3096 	/* Do not disable if ever enabled on this hardware */
3097 	if (sc->hw.mac.type != e1000_82574)
3098 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3099 
3100 	/*
3101 	 * Set the interrupt throttling rate. Value is calculated
3102 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3103 	 */
3104 	if (sc->int_throttle_ceil)
3105 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
3106 	else
3107 		itr = 0;
3108 	emx_set_itr(sc, itr);
3109 
3110 	/* Use extended RX descriptor */
3111 	rfctl = E1000_READ_REG(&sc->hw, E1000_RFCTL);
3112 	rfctl |= E1000_RFCTL_EXTEN;
3113 	/* Disable accelerated ackknowledge */
3114 	if (sc->hw.mac.type == e1000_82574)
3115 		rfctl |= E1000_RFCTL_ACK_DIS;
3116 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
3117 
3118 	/*
3119 	 * Receive Checksum Offload for TCP and UDP
3120 	 *
3121 	 * Checksum offloading is also enabled if multiple receive
3122 	 * queue is to be supported, since we need it to figure out
3123 	 * packet type.
3124 	 */
3125 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
3126 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
3127 	    sc->rx_ring_cnt > 1) {
3128 		/*
3129 		 * NOTE:
3130 		 * PCSD must be enabled to enable multiple
3131 		 * receive queues.
3132 		 */
3133 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3134 			  E1000_RXCSUM_PCSD;
3135 	} else {
3136 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3137 			    E1000_RXCSUM_PCSD);
3138 	}
3139 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3140 
3141 	/*
3142 	 * Configure multiple receive queue (RSS)
3143 	 */
3144 	if (sc->rx_ring_cnt > 1) {
3145 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3146 		int r, j;
3147 
3148 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3149 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3150 
3151 		/*
3152 		 * NOTE:
3153 		 * When we reach here, RSS has already been disabled
3154 		 * in emx_stop(), so we could safely configure RSS key
3155 		 * and redirect table.
3156 		 */
3157 
3158 		/*
3159 		 * Configure RSS key
3160 		 */
3161 		toeplitz_get_key(key, sizeof(key));
3162 		for (i = 0; i < EMX_NRSSRK; ++i) {
3163 			uint32_t rssrk;
3164 
3165 			rssrk = EMX_RSSRK_VAL(key, i);
3166 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3167 
3168 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3169 		}
3170 
3171 		/*
3172 		 * Configure RSS redirect table.
3173 		 */
3174 		if_ringmap_rdrtable(sc->rx_rmap, sc->rdr_table,
3175 		    EMX_RDRTABLE_SIZE);
3176 
3177 		r = 0;
3178 		for (j = 0; j < EMX_NRETA; ++j) {
3179 			uint32_t reta = 0;
3180 
3181 			for (i = 0; i < EMX_RETA_SIZE; ++i) {
3182 				uint32_t q;
3183 
3184 				q = sc->rdr_table[r] << EMX_RETA_RINGIDX_SHIFT;
3185 				reta |= q << (8 * i);
3186 				++r;
3187 			}
3188 			EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3189 			E1000_WRITE_REG(&sc->hw, E1000_RETA(j), reta);
3190 		}
3191 
3192 		/*
3193 		 * Enable multiple receive queues.
3194 		 * Enable IPv4 RSS standard hash functions.
3195 		 * Disable RSS interrupt.
3196 		 */
3197 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3198 				E1000_MRQC_ENABLE_RSS_2Q |
3199 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3200 				E1000_MRQC_RSS_FIELD_IPV4);
3201 	}
3202 
3203 	/*
3204 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3205 	 * long latencies are observed, like Lenovo X60. This
3206 	 * change eliminates the problem, but since having positive
3207 	 * values in RDTR is a known source of problems on other
3208 	 * platforms another solution is being sought.
3209 	 */
3210 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3211 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3212 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3213 	}
3214 
3215 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3216 		struct emx_rxdata *rdata = &sc->rx_data[i];
3217 
3218 		/*
3219 		 * Setup the Base and Length of the Rx Descriptor Ring
3220 		 */
3221 		bus_addr = rdata->rx_desc_paddr;
3222 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3223 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3224 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3225 		    (uint32_t)(bus_addr >> 32));
3226 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3227 		    (uint32_t)bus_addr);
3228 
3229 		/*
3230 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3231 		 */
3232 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3233 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3234 		    sc->rx_data[i].num_rx_desc - 1);
3235 	}
3236 
3237 	/* Set PTHRESH for improved jumbo performance */
3238 	if (ifp->if_mtu > ETHERMTU && sc->hw.mac.type == e1000_82574) {
3239 		uint32_t rxdctl;
3240 
3241 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3242 			rxdctl = E1000_READ_REG(&sc->hw, E1000_RXDCTL(i));
3243                 	rxdctl |= 0x20;		/* PTHRESH */
3244                 	rxdctl |= 4 << 8;	/* HTHRESH */
3245                 	rxdctl |= 4 << 16;	/* WTHRESH */
3246 			rxdctl |= 1 << 24;	/* Switch to granularity */
3247 			E1000_WRITE_REG(&sc->hw, E1000_RXDCTL(i), rxdctl);
3248 		}
3249 	}
3250 
3251 	if (sc->hw.mac.type >= e1000_pch2lan) {
3252 		if (ifp->if_mtu > ETHERMTU)
3253 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3254 		else
3255 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3256 	}
3257 
3258 	/* Setup the Receive Control Register */
3259 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3260 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3261 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3262 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3263 
3264 	/* Make sure VLAN Filters are off */
3265 	rctl &= ~E1000_RCTL_VFE;
3266 
3267 	/* Don't store bad paket */
3268 	rctl &= ~E1000_RCTL_SBP;
3269 
3270 	/* MCLBYTES */
3271 	rctl |= E1000_RCTL_SZ_2048;
3272 
3273 	if (ifp->if_mtu > ETHERMTU)
3274 		rctl |= E1000_RCTL_LPE;
3275 	else
3276 		rctl &= ~E1000_RCTL_LPE;
3277 
3278 	/* Enable Receives */
3279 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3280 }
3281 
3282 static void
3283 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3284 {
3285 	struct emx_rxbuf *rx_buffer;
3286 	int i;
3287 
3288 	/* Free Receive Descriptor ring */
3289 	if (rdata->rx_desc) {
3290 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3291 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3292 				rdata->rx_desc_dmap);
3293 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3294 
3295 		rdata->rx_desc = NULL;
3296 	}
3297 
3298 	if (rdata->rx_buf == NULL)
3299 		return;
3300 
3301 	for (i = 0; i < ndesc; i++) {
3302 		rx_buffer = &rdata->rx_buf[i];
3303 
3304 		KKASSERT(rx_buffer->m_head == NULL);
3305 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3306 	}
3307 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3308 	bus_dma_tag_destroy(rdata->rxtag);
3309 
3310 	kfree(rdata->rx_buf, M_DEVBUF);
3311 	rdata->rx_buf = NULL;
3312 }
3313 
3314 static void
3315 emx_rxeof(struct emx_rxdata *rdata, int count)
3316 {
3317 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3318 	uint32_t staterr;
3319 	emx_rxdesc_t *current_desc;
3320 	struct mbuf *mp;
3321 	int i, cpuid = mycpuid;
3322 
3323 	i = rdata->next_rx_desc_to_check;
3324 	current_desc = &rdata->rx_desc[i];
3325 	staterr = le32toh(current_desc->rxd_staterr);
3326 
3327 	if (!(staterr & E1000_RXD_STAT_DD))
3328 		return;
3329 
3330 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3331 		struct pktinfo *pi = NULL, pi0;
3332 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3333 		struct mbuf *m = NULL;
3334 		int eop, len;
3335 
3336 		logif(pkt_receive);
3337 
3338 		mp = rx_buf->m_head;
3339 
3340 		/*
3341 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3342 		 * needs to access the last received byte in the mbuf.
3343 		 */
3344 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3345 				BUS_DMASYNC_POSTREAD);
3346 
3347 		len = le16toh(current_desc->rxd_length);
3348 		if (staterr & E1000_RXD_STAT_EOP) {
3349 			count--;
3350 			eop = 1;
3351 		} else {
3352 			eop = 0;
3353 		}
3354 
3355 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3356 			uint16_t vlan = 0;
3357 			uint32_t mrq, rss_hash;
3358 
3359 			/*
3360 			 * Save several necessary information,
3361 			 * before emx_newbuf() destroy it.
3362 			 */
3363 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3364 				vlan = le16toh(current_desc->rxd_vlan);
3365 
3366 			mrq = le32toh(current_desc->rxd_mrq);
3367 			rss_hash = le32toh(current_desc->rxd_rss);
3368 
3369 			EMX_RSS_DPRINTF(rdata->sc, 10,
3370 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3371 			    rdata->idx, mrq, rss_hash);
3372 
3373 			if (emx_newbuf(rdata, i, 0) != 0) {
3374 				IFNET_STAT_INC(ifp, iqdrops, 1);
3375 				goto discard;
3376 			}
3377 
3378 			/* Assign correct length to the current fragment */
3379 			mp->m_len = len;
3380 
3381 			if (rdata->fmp == NULL) {
3382 				mp->m_pkthdr.len = len;
3383 				rdata->fmp = mp; /* Store the first mbuf */
3384 				rdata->lmp = mp;
3385 			} else {
3386 				/*
3387 				 * Chain mbuf's together
3388 				 */
3389 				rdata->lmp->m_next = mp;
3390 				rdata->lmp = rdata->lmp->m_next;
3391 				rdata->fmp->m_pkthdr.len += len;
3392 			}
3393 
3394 			if (eop) {
3395 				rdata->fmp->m_pkthdr.rcvif = ifp;
3396 				IFNET_STAT_INC(ifp, ipackets, 1);
3397 
3398 				if (ifp->if_capenable & IFCAP_RXCSUM)
3399 					emx_rxcsum(staterr, rdata->fmp);
3400 
3401 				if (staterr & E1000_RXD_STAT_VP) {
3402 					rdata->fmp->m_pkthdr.ether_vlantag =
3403 					    vlan;
3404 					rdata->fmp->m_flags |= M_VLANTAG;
3405 				}
3406 				m = rdata->fmp;
3407 				rdata->fmp = NULL;
3408 				rdata->lmp = NULL;
3409 
3410 				if (ifp->if_capenable & IFCAP_RSS) {
3411 					pi = emx_rssinfo(m, &pi0, mrq,
3412 							 rss_hash, staterr);
3413 				}
3414 #ifdef EMX_RSS_DEBUG
3415 				rdata->rx_pkts++;
3416 #endif
3417 			}
3418 		} else {
3419 			IFNET_STAT_INC(ifp, ierrors, 1);
3420 discard:
3421 			emx_setup_rxdesc(current_desc, rx_buf);
3422 			if (rdata->fmp != NULL) {
3423 				m_freem(rdata->fmp);
3424 				rdata->fmp = NULL;
3425 				rdata->lmp = NULL;
3426 			}
3427 			m = NULL;
3428 		}
3429 
3430 		if (m != NULL)
3431 			ifp->if_input(ifp, m, pi, cpuid);
3432 
3433 		/* Advance our pointers to the next descriptor. */
3434 		if (++i == rdata->num_rx_desc)
3435 			i = 0;
3436 
3437 		current_desc = &rdata->rx_desc[i];
3438 		staterr = le32toh(current_desc->rxd_staterr);
3439 	}
3440 	rdata->next_rx_desc_to_check = i;
3441 
3442 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3443 	if (--i < 0)
3444 		i = rdata->num_rx_desc - 1;
3445 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3446 }
3447 
3448 static void
3449 emx_enable_intr(struct emx_softc *sc)
3450 {
3451 	uint32_t ims_mask = IMS_ENABLE_MASK;
3452 
3453 	lwkt_serialize_handler_enable(&sc->main_serialize);
3454 
3455 #if 0
3456 	if (sc->hw.mac.type == e1000_82574) {
3457 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3458 		ims_mask |= EM_MSIX_MASK;
3459 	}
3460 #endif
3461 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3462 }
3463 
3464 static void
3465 emx_disable_intr(struct emx_softc *sc)
3466 {
3467 	if (sc->hw.mac.type == e1000_82574)
3468 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3469 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3470 
3471 	lwkt_serialize_handler_disable(&sc->main_serialize);
3472 }
3473 
3474 /*
3475  * Bit of a misnomer, what this really means is
3476  * to enable OS management of the system... aka
3477  * to disable special hardware management features
3478  */
3479 static void
3480 emx_get_mgmt(struct emx_softc *sc)
3481 {
3482 	/* A shared code workaround */
3483 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3484 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3485 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3486 
3487 		/* disable hardware interception of ARP */
3488 		manc &= ~(E1000_MANC_ARP_EN);
3489 
3490                 /* enable receiving management packets to the host */
3491 		manc |= E1000_MANC_EN_MNG2HOST;
3492 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3493 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3494 		manc2h |= E1000_MNG2HOST_PORT_623;
3495 		manc2h |= E1000_MNG2HOST_PORT_664;
3496 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3497 
3498 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3499 	}
3500 }
3501 
3502 /*
3503  * Give control back to hardware management
3504  * controller if there is one.
3505  */
3506 static void
3507 emx_rel_mgmt(struct emx_softc *sc)
3508 {
3509 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3510 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3511 
3512 		/* re-enable hardware interception of ARP */
3513 		manc |= E1000_MANC_ARP_EN;
3514 		manc &= ~E1000_MANC_EN_MNG2HOST;
3515 
3516 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3517 	}
3518 }
3519 
3520 /*
3521  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3522  * For ASF and Pass Through versions of f/w this means that
3523  * the driver is loaded.  For AMT version (only with 82573)
3524  * of the f/w this means that the network i/f is open.
3525  */
3526 static void
3527 emx_get_hw_control(struct emx_softc *sc)
3528 {
3529 	/* Let firmware know the driver has taken over */
3530 	if (sc->hw.mac.type == e1000_82573) {
3531 		uint32_t swsm;
3532 
3533 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3534 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3535 		    swsm | E1000_SWSM_DRV_LOAD);
3536 	} else {
3537 		uint32_t ctrl_ext;
3538 
3539 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3540 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3541 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3542 	}
3543 	sc->flags |= EMX_FLAG_HW_CTRL;
3544 }
3545 
3546 /*
3547  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3548  * For ASF and Pass Through versions of f/w this means that the
3549  * driver is no longer loaded.  For AMT version (only with 82573)
3550  * of the f/w this means that the network i/f is closed.
3551  */
3552 static void
3553 emx_rel_hw_control(struct emx_softc *sc)
3554 {
3555 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3556 		return;
3557 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3558 
3559 	/* Let firmware taken over control of h/w */
3560 	if (sc->hw.mac.type == e1000_82573) {
3561 		uint32_t swsm;
3562 
3563 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3564 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3565 		    swsm & ~E1000_SWSM_DRV_LOAD);
3566 	} else {
3567 		uint32_t ctrl_ext;
3568 
3569 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3570 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3571 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3572 	}
3573 }
3574 
3575 static int
3576 emx_is_valid_eaddr(const uint8_t *addr)
3577 {
3578 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3579 
3580 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3581 		return (FALSE);
3582 
3583 	return (TRUE);
3584 }
3585 
3586 /*
3587  * Enable PCI Wake On Lan capability
3588  */
3589 static void
3590 emx_enable_wol(device_t dev)
3591 {
3592 	uint16_t cap, status;
3593 	uint8_t id;
3594 
3595 	/* First find the capabilities pointer*/
3596 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3597 
3598 	/* Read the PM Capabilities */
3599 	id = pci_read_config(dev, cap, 1);
3600 	if (id != PCIY_PMG)     /* Something wrong */
3601 		return;
3602 
3603 	/*
3604 	 * OK, we have the power capabilities,
3605 	 * so now get the status register
3606 	 */
3607 	cap += PCIR_POWER_STATUS;
3608 	status = pci_read_config(dev, cap, 2);
3609 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3610 	pci_write_config(dev, cap, status, 2);
3611 }
3612 
3613 static void
3614 emx_update_stats(struct emx_softc *sc)
3615 {
3616 	struct ifnet *ifp = &sc->arpcom.ac_if;
3617 
3618 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3619 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3620 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3621 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3622 	}
3623 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3624 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3625 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3626 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3627 
3628 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3629 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3630 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3631 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3632 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3633 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3634 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3635 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3636 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3637 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3638 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3639 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3640 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3641 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3642 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3643 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3644 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3645 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3646 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3647 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3648 
3649 	/* For the 64-bit byte counters the low dword must be read first. */
3650 	/* Both registers clear on the read of the high dword */
3651 
3652 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3653 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3654 
3655 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3656 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3657 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3658 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3659 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3660 
3661 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3662 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3663 
3664 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3665 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3666 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3667 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3668 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3669 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3670 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3671 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3672 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3673 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3674 
3675 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3676 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3677 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3678 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3679 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3680 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3681 
3682 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3683 
3684 	/* Rx Errors */
3685 	IFNET_STAT_SET(ifp, ierrors,
3686 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3687 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3688 
3689 	/* Tx Errors */
3690 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3691 }
3692 
3693 static void
3694 emx_print_debug_info(struct emx_softc *sc)
3695 {
3696 	device_t dev = sc->dev;
3697 	uint8_t *hw_addr = sc->hw.hw_addr;
3698 	int i;
3699 
3700 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3701 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3702 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3703 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3704 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3705 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3706 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3707 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3708 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3709 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3710 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3711 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3712 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3713 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3714 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3715 
3716 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3717 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3718 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3719 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3720 	}
3721 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3722 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3723 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3724 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3725 	}
3726 
3727 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3728 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3729 		    sc->tx_data[i].num_tx_desc_avail);
3730 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3731 		    sc->tx_data[i].tso_segments);
3732 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3733 		    sc->tx_data[i].tso_ctx_reused);
3734 	}
3735 }
3736 
3737 static void
3738 emx_print_hw_stats(struct emx_softc *sc)
3739 {
3740 	device_t dev = sc->dev;
3741 
3742 	device_printf(dev, "Excessive collisions = %lld\n",
3743 	    (long long)sc->stats.ecol);
3744 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3745 	device_printf(dev, "Symbol errors = %lld\n",
3746 	    (long long)sc->stats.symerrs);
3747 #endif
3748 	device_printf(dev, "Sequence errors = %lld\n",
3749 	    (long long)sc->stats.sec);
3750 	device_printf(dev, "Defer count = %lld\n",
3751 	    (long long)sc->stats.dc);
3752 	device_printf(dev, "Missed Packets = %lld\n",
3753 	    (long long)sc->stats.mpc);
3754 	device_printf(dev, "Receive No Buffers = %lld\n",
3755 	    (long long)sc->stats.rnbc);
3756 	/* RLEC is inaccurate on some hardware, calculate our own. */
3757 	device_printf(dev, "Receive Length Errors = %lld\n",
3758 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3759 	device_printf(dev, "Receive errors = %lld\n",
3760 	    (long long)sc->stats.rxerrc);
3761 	device_printf(dev, "Crc errors = %lld\n",
3762 	    (long long)sc->stats.crcerrs);
3763 	device_printf(dev, "Alignment errors = %lld\n",
3764 	    (long long)sc->stats.algnerrc);
3765 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3766 	    (long long)sc->stats.cexterr);
3767 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3768 	device_printf(dev, "XON Rcvd = %lld\n",
3769 	    (long long)sc->stats.xonrxc);
3770 	device_printf(dev, "XON Xmtd = %lld\n",
3771 	    (long long)sc->stats.xontxc);
3772 	device_printf(dev, "XOFF Rcvd = %lld\n",
3773 	    (long long)sc->stats.xoffrxc);
3774 	device_printf(dev, "XOFF Xmtd = %lld\n",
3775 	    (long long)sc->stats.xofftxc);
3776 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3777 	    (long long)sc->stats.gprc);
3778 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3779 	    (long long)sc->stats.gptc);
3780 }
3781 
3782 static void
3783 emx_print_nvm_info(struct emx_softc *sc)
3784 {
3785 	uint16_t eeprom_data;
3786 	int i, j, row = 0;
3787 
3788 	/* Its a bit crude, but it gets the job done */
3789 	kprintf("\nInterface EEPROM Dump:\n");
3790 	kprintf("Offset\n0x0000  ");
3791 	for (i = 0, j = 0; i < 32; i++, j++) {
3792 		if (j == 8) { /* Make the offset block */
3793 			j = 0; ++row;
3794 			kprintf("\n0x00%x0  ",row);
3795 		}
3796 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3797 		kprintf("%04x ", eeprom_data);
3798 	}
3799 	kprintf("\n");
3800 }
3801 
3802 static int
3803 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3804 {
3805 	struct emx_softc *sc;
3806 	struct ifnet *ifp;
3807 	int error, result;
3808 
3809 	result = -1;
3810 	error = sysctl_handle_int(oidp, &result, 0, req);
3811 	if (error || !req->newptr)
3812 		return (error);
3813 
3814 	sc = (struct emx_softc *)arg1;
3815 	ifp = &sc->arpcom.ac_if;
3816 
3817 	ifnet_serialize_all(ifp);
3818 
3819 	if (result == 1)
3820 		emx_print_debug_info(sc);
3821 
3822 	/*
3823 	 * This value will cause a hex dump of the
3824 	 * first 32 16-bit words of the EEPROM to
3825 	 * the screen.
3826 	 */
3827 	if (result == 2)
3828 		emx_print_nvm_info(sc);
3829 
3830 	ifnet_deserialize_all(ifp);
3831 
3832 	return (error);
3833 }
3834 
3835 static int
3836 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3837 {
3838 	int error, result;
3839 
3840 	result = -1;
3841 	error = sysctl_handle_int(oidp, &result, 0, req);
3842 	if (error || !req->newptr)
3843 		return (error);
3844 
3845 	if (result == 1) {
3846 		struct emx_softc *sc = (struct emx_softc *)arg1;
3847 		struct ifnet *ifp = &sc->arpcom.ac_if;
3848 
3849 		ifnet_serialize_all(ifp);
3850 		emx_print_hw_stats(sc);
3851 		ifnet_deserialize_all(ifp);
3852 	}
3853 	return (error);
3854 }
3855 
3856 static void
3857 emx_add_sysctl(struct emx_softc *sc)
3858 {
3859 	struct sysctl_ctx_list *ctx;
3860 	struct sysctl_oid *tree;
3861 	char pkt_desc[32];
3862 	int i;
3863 
3864 	ctx = device_get_sysctl_ctx(sc->dev);
3865 	tree = device_get_sysctl_tree(sc->dev);
3866 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3867 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3868 			emx_sysctl_debug_info, "I", "Debug Information");
3869 
3870 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3871 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3872 			emx_sysctl_stats, "I", "Statistics");
3873 
3874 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3875 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3876 	    "# of RX descs");
3877 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3878 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3879 	    "# of TX descs");
3880 
3881 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3882 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3883 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3884 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3885 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3886 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3887 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3888 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3889 	    emx_sysctl_tx_wreg_nsegs, "I",
3890 	    "# segments sent before write to hardware register");
3891 
3892 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3893 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3894 	    "# of RX rings");
3895 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3896 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3897 	    "# of TX rings");
3898 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3899 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3900 	    "# of TX rings used");
3901 
3902 #ifdef IFPOLL_ENABLE
3903 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3904 	    OID_AUTO, "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3905 	    sc->tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3906 	    "TX polling CPU map");
3907 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3908 	    OID_AUTO, "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
3909 	    sc->rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
3910 	    "RX polling CPU map");
3911 #endif
3912 
3913 #ifdef EMX_RSS_DEBUG
3914 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3915 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3916 		       0, "RSS debug level");
3917 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3918 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3919 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3920 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3921 		    "RXed packets");
3922 	}
3923 #endif
3924 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3925 #ifdef EMX_TSS_DEBUG
3926 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3927 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3928 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3929 		    "TXed packets");
3930 #endif
3931 
3932 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_nmbuf", i);
3933 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3934 		    pkt_desc, CTLFLAG_RD, &sc->tx_data[i].tx_nmbuf, 0,
3935 		    "# of pending TX mbufs");
3936 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_gc", i);
3937 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3938 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_gc,
3939 		    "# of TX desc GC");
3940 	}
3941 }
3942 
3943 static int
3944 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3945 {
3946 	struct emx_softc *sc = (void *)arg1;
3947 	struct ifnet *ifp = &sc->arpcom.ac_if;
3948 	int error, throttle;
3949 
3950 	throttle = sc->int_throttle_ceil;
3951 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3952 	if (error || req->newptr == NULL)
3953 		return error;
3954 	if (throttle < 0 || throttle > 1000000000 / 256)
3955 		return EINVAL;
3956 
3957 	if (throttle) {
3958 		/*
3959 		 * Set the interrupt throttling rate in 256ns increments,
3960 		 * recalculate sysctl value assignment to get exact frequency.
3961 		 */
3962 		throttle = 1000000000 / 256 / throttle;
3963 
3964 		/* Upper 16bits of ITR is reserved and should be zero */
3965 		if (throttle & 0xffff0000)
3966 			return EINVAL;
3967 	}
3968 
3969 	ifnet_serialize_all(ifp);
3970 
3971 	if (throttle)
3972 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3973 	else
3974 		sc->int_throttle_ceil = 0;
3975 
3976 	if (ifp->if_flags & IFF_RUNNING)
3977 		emx_set_itr(sc, throttle);
3978 
3979 	ifnet_deserialize_all(ifp);
3980 
3981 	if (bootverbose) {
3982 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3983 			  sc->int_throttle_ceil);
3984 	}
3985 	return 0;
3986 }
3987 
3988 static int
3989 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3990 {
3991 	struct emx_softc *sc = (void *)arg1;
3992 	struct ifnet *ifp = &sc->arpcom.ac_if;
3993 	struct emx_txdata *tdata = &sc->tx_data[0];
3994 	int error, segs;
3995 
3996 	segs = tdata->tx_intr_nsegs;
3997 	error = sysctl_handle_int(oidp, &segs, 0, req);
3998 	if (error || req->newptr == NULL)
3999 		return error;
4000 	if (segs <= 0)
4001 		return EINVAL;
4002 
4003 	ifnet_serialize_all(ifp);
4004 
4005 	/*
4006 	 * Don't allow tx_intr_nsegs to become:
4007 	 * o  Less the oact_tx_desc
4008 	 * o  Too large that no TX desc will cause TX interrupt to
4009 	 *    be generated (OACTIVE will never recover)
4010 	 * o  Too small that will cause tx_dd[] overflow
4011 	 */
4012 	if (segs < tdata->oact_tx_desc ||
4013 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
4014 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
4015 		error = EINVAL;
4016 	} else {
4017 		int i;
4018 
4019 		error = 0;
4020 		for (i = 0; i < sc->tx_ring_cnt; ++i)
4021 			sc->tx_data[i].tx_intr_nsegs = segs;
4022 	}
4023 
4024 	ifnet_deserialize_all(ifp);
4025 
4026 	return error;
4027 }
4028 
4029 static int
4030 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
4031 {
4032 	struct emx_softc *sc = (void *)arg1;
4033 	struct ifnet *ifp = &sc->arpcom.ac_if;
4034 	int error, nsegs, i;
4035 
4036 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
4037 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
4038 	if (error || req->newptr == NULL)
4039 		return error;
4040 
4041 	ifnet_serialize_all(ifp);
4042 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4043 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
4044 	ifnet_deserialize_all(ifp);
4045 
4046 	return 0;
4047 }
4048 
4049 static int
4050 emx_dma_alloc(struct emx_softc *sc)
4051 {
4052 	int error, i;
4053 
4054 	/*
4055 	 * Create top level busdma tag
4056 	 */
4057 	error = bus_dma_tag_create(NULL, 1, 0,
4058 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4059 			NULL, NULL,
4060 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4061 			0, &sc->parent_dtag);
4062 	if (error) {
4063 		device_printf(sc->dev, "could not create top level DMA tag\n");
4064 		return error;
4065 	}
4066 
4067 	/*
4068 	 * Allocate transmit descriptors ring and buffers
4069 	 */
4070 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4071 		error = emx_create_tx_ring(&sc->tx_data[i]);
4072 		if (error) {
4073 			device_printf(sc->dev,
4074 			    "Could not setup transmit structures\n");
4075 			return error;
4076 		}
4077 	}
4078 
4079 	/*
4080 	 * Allocate receive descriptors ring and buffers
4081 	 */
4082 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4083 		error = emx_create_rx_ring(&sc->rx_data[i]);
4084 		if (error) {
4085 			device_printf(sc->dev,
4086 			    "Could not setup receive structures\n");
4087 			return error;
4088 		}
4089 	}
4090 	return 0;
4091 }
4092 
4093 static void
4094 emx_dma_free(struct emx_softc *sc)
4095 {
4096 	int i;
4097 
4098 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4099 		emx_destroy_tx_ring(&sc->tx_data[i],
4100 		    sc->tx_data[i].num_tx_desc);
4101 	}
4102 
4103 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4104 		emx_destroy_rx_ring(&sc->rx_data[i],
4105 		    sc->rx_data[i].num_rx_desc);
4106 	}
4107 
4108 	/* Free top level busdma tag */
4109 	if (sc->parent_dtag != NULL)
4110 		bus_dma_tag_destroy(sc->parent_dtag);
4111 }
4112 
4113 static void
4114 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4115 {
4116 	struct emx_softc *sc = ifp->if_softc;
4117 
4118 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4119 }
4120 
4121 static void
4122 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4123 {
4124 	struct emx_softc *sc = ifp->if_softc;
4125 
4126 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4127 }
4128 
4129 static int
4130 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4131 {
4132 	struct emx_softc *sc = ifp->if_softc;
4133 
4134 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4135 }
4136 
4137 static void
4138 emx_serialize_skipmain(struct emx_softc *sc)
4139 {
4140 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4141 }
4142 
4143 static void
4144 emx_deserialize_skipmain(struct emx_softc *sc)
4145 {
4146 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4147 }
4148 
4149 #ifdef INVARIANTS
4150 
4151 static void
4152 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4153     boolean_t serialized)
4154 {
4155 	struct emx_softc *sc = ifp->if_softc;
4156 
4157 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4158 	    slz, serialized);
4159 }
4160 
4161 #endif	/* INVARIANTS */
4162 
4163 #ifdef IFPOLL_ENABLE
4164 
4165 static void
4166 emx_npoll_status(struct ifnet *ifp)
4167 {
4168 	struct emx_softc *sc = ifp->if_softc;
4169 	uint32_t reg_icr;
4170 
4171 	ASSERT_SERIALIZED(&sc->main_serialize);
4172 
4173 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4174 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4175 		callout_stop(&sc->timer);
4176 		sc->hw.mac.get_link_status = 1;
4177 		emx_update_link_status(sc);
4178 		callout_reset(&sc->timer, hz, emx_timer, sc);
4179 	}
4180 }
4181 
4182 static void
4183 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4184 {
4185 	struct emx_txdata *tdata = arg;
4186 
4187 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4188 
4189 	emx_tx_intr(tdata);
4190 	emx_try_txgc(tdata, 1);
4191 }
4192 
4193 static void
4194 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4195 {
4196 	struct emx_rxdata *rdata = arg;
4197 
4198 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4199 
4200 	emx_rxeof(rdata, cycle);
4201 }
4202 
4203 static void
4204 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4205 {
4206 	struct emx_softc *sc = ifp->if_softc;
4207 	int i, txr_cnt;
4208 
4209 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4210 
4211 	if (info) {
4212 		int cpu;
4213 
4214 		info->ifpi_status.status_func = emx_npoll_status;
4215 		info->ifpi_status.serializer = &sc->main_serialize;
4216 
4217 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4218 		for (i = 0; i < txr_cnt; ++i) {
4219 			struct emx_txdata *tdata = &sc->tx_data[i];
4220 
4221 			cpu = if_ringmap_cpumap(sc->tx_rmap, i);
4222 			KKASSERT(cpu < netisr_ncpus);
4223 			info->ifpi_tx[cpu].poll_func = emx_npoll_tx;
4224 			info->ifpi_tx[cpu].arg = tdata;
4225 			info->ifpi_tx[cpu].serializer = &tdata->tx_serialize;
4226 			ifsq_set_cpuid(tdata->ifsq, cpu);
4227 		}
4228 
4229 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4230 			struct emx_rxdata *rdata = &sc->rx_data[i];
4231 
4232 			cpu = if_ringmap_cpumap(sc->rx_rmap, i);
4233 			KKASSERT(cpu < netisr_ncpus);
4234 			info->ifpi_rx[cpu].poll_func = emx_npoll_rx;
4235 			info->ifpi_rx[cpu].arg = rdata;
4236 			info->ifpi_rx[cpu].serializer = &rdata->rx_serialize;
4237 		}
4238 	} else {
4239 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4240 			struct emx_txdata *tdata = &sc->tx_data[i];
4241 
4242 			ifsq_set_cpuid(tdata->ifsq,
4243 			    rman_get_cpuid(sc->intr_res));
4244 		}
4245 	}
4246 	if (ifp->if_flags & IFF_RUNNING)
4247 		emx_init(sc);
4248 }
4249 
4250 #endif	/* IFPOLL_ENABLE */
4251 
4252 static void
4253 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4254 {
4255 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4256 	if (sc->hw.mac.type == e1000_82574) {
4257 		int i;
4258 
4259 		/*
4260 		 * When using MSIX interrupts we need to
4261 		 * throttle using the EITR register
4262 		 */
4263 		for (i = 0; i < 4; ++i)
4264 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4265 	}
4266 }
4267 
4268 /*
4269  * Disable the L0s, 82574L Errata #20
4270  */
4271 static void
4272 emx_disable_aspm(struct emx_softc *sc)
4273 {
4274 	uint16_t link_cap, link_ctrl, disable;
4275 	uint8_t pcie_ptr, reg;
4276 	device_t dev = sc->dev;
4277 
4278 	switch (sc->hw.mac.type) {
4279 	case e1000_82571:
4280 	case e1000_82572:
4281 	case e1000_82573:
4282 		/*
4283 		 * 82573 specification update
4284 		 * errata #8 disable L0s
4285 		 * errata #41 disable L1
4286 		 *
4287 		 * 82571/82572 specification update
4288 		 # errata #13 disable L1
4289 		 * errata #68 disable L0s
4290 		 */
4291 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4292 		break;
4293 
4294 	case e1000_82574:
4295 		/*
4296 		 * 82574 specification update errata #20
4297 		 *
4298 		 * There is no need to disable L1
4299 		 */
4300 		disable = PCIEM_LNKCTL_ASPM_L0S;
4301 		break;
4302 
4303 	default:
4304 		return;
4305 	}
4306 
4307 	pcie_ptr = pci_get_pciecap_ptr(dev);
4308 	if (pcie_ptr == 0)
4309 		return;
4310 
4311 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4312 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4313 		return;
4314 
4315 	if (bootverbose)
4316 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4317 
4318 	reg = pcie_ptr + PCIER_LINKCTRL;
4319 	link_ctrl = pci_read_config(dev, reg, 2);
4320 	link_ctrl &= ~disable;
4321 	pci_write_config(dev, reg, link_ctrl, 2);
4322 }
4323 
4324 static int
4325 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4326 {
4327 	int iphlen, hoff, thoff, ex = 0;
4328 	struct mbuf *m;
4329 	struct ip *ip;
4330 
4331 	m = *mp;
4332 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4333 
4334 	iphlen = m->m_pkthdr.csum_iphlen;
4335 	thoff = m->m_pkthdr.csum_thlen;
4336 	hoff = m->m_pkthdr.csum_lhlen;
4337 
4338 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4339 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4340 	KASSERT(hoff > 0, ("invalid ether hlen"));
4341 
4342 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4343 		ex = 4;
4344 
4345 	if (m->m_len < hoff + iphlen + thoff + ex) {
4346 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4347 		if (m == NULL) {
4348 			*mp = NULL;
4349 			return ENOBUFS;
4350 		}
4351 		*mp = m;
4352 	}
4353 	ip = mtodoff(m, struct ip *, hoff);
4354 	ip->ip_len = 0;
4355 
4356 	return 0;
4357 }
4358 
4359 static int
4360 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4361     uint32_t *txd_upper, uint32_t *txd_lower)
4362 {
4363 	struct e1000_context_desc *TXD;
4364 	int hoff, iphlen, thoff, hlen;
4365 	int mss, pktlen, curr_txd;
4366 
4367 #ifdef EMX_TSO_DEBUG
4368 	tdata->tso_segments++;
4369 #endif
4370 
4371 	iphlen = mp->m_pkthdr.csum_iphlen;
4372 	thoff = mp->m_pkthdr.csum_thlen;
4373 	hoff = mp->m_pkthdr.csum_lhlen;
4374 	mss = mp->m_pkthdr.tso_segsz;
4375 	pktlen = mp->m_pkthdr.len;
4376 
4377 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4378 	    tdata->csum_flags == CSUM_TSO &&
4379 	    tdata->csum_iphlen == iphlen &&
4380 	    tdata->csum_lhlen == hoff &&
4381 	    tdata->csum_thlen == thoff &&
4382 	    tdata->csum_mss == mss &&
4383 	    tdata->csum_pktlen == pktlen) {
4384 		*txd_upper = tdata->csum_txd_upper;
4385 		*txd_lower = tdata->csum_txd_lower;
4386 #ifdef EMX_TSO_DEBUG
4387 		tdata->tso_ctx_reused++;
4388 #endif
4389 		return 0;
4390 	}
4391 	hlen = hoff + iphlen + thoff;
4392 
4393 	/*
4394 	 * Setup a new TSO context.
4395 	 */
4396 
4397 	curr_txd = tdata->next_avail_tx_desc;
4398 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4399 
4400 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4401 		     E1000_TXD_DTYP_D |		/* Data descr type */
4402 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4403 
4404 	/* IP and/or TCP header checksum calculation and insertion. */
4405 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4406 
4407 	/*
4408 	 * Start offset for header checksum calculation.
4409 	 * End offset for header checksum calculation.
4410 	 * Offset of place put the checksum.
4411 	 */
4412 	TXD->lower_setup.ip_fields.ipcss = hoff;
4413 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4414 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4415 
4416 	/*
4417 	 * Start offset for payload checksum calculation.
4418 	 * End offset for payload checksum calculation.
4419 	 * Offset of place to put the checksum.
4420 	 */
4421 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4422 	TXD->upper_setup.tcp_fields.tucse = 0;
4423 	TXD->upper_setup.tcp_fields.tucso =
4424 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4425 
4426 	/*
4427 	 * Payload size per packet w/o any headers.
4428 	 * Length of all headers up to payload.
4429 	 */
4430 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4431 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4432 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4433 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4434 				E1000_TXD_CMD_TSE |	/* TSE context */
4435 				E1000_TXD_CMD_IP |	/* Do IP csum */
4436 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4437 				(pktlen - hlen));	/* Total len */
4438 
4439 	/* Save the information for this TSO context */
4440 	tdata->csum_flags = CSUM_TSO;
4441 	tdata->csum_lhlen = hoff;
4442 	tdata->csum_iphlen = iphlen;
4443 	tdata->csum_thlen = thoff;
4444 	tdata->csum_mss = mss;
4445 	tdata->csum_pktlen = pktlen;
4446 	tdata->csum_txd_upper = *txd_upper;
4447 	tdata->csum_txd_lower = *txd_lower;
4448 
4449 	if (++curr_txd == tdata->num_tx_desc)
4450 		curr_txd = 0;
4451 
4452 	KKASSERT(tdata->num_tx_desc_avail > 0);
4453 	tdata->num_tx_desc_avail--;
4454 
4455 	tdata->next_avail_tx_desc = curr_txd;
4456 	return 1;
4457 }
4458 
4459 static int
4460 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4461 {
4462 	if (polling)
4463 		return sc->tx_ring_cnt;
4464 	else
4465 		return 1;
4466 }
4467 
4468 /*
4469  * Remove all descriptors from the TX ring.
4470  *
4471  * We want to clear all pending descriptors from the TX ring.  Zeroing
4472  * happens when the HW reads the regs.  We assign the ring itself as
4473  * the data of the next descriptor.  We don't care about the data we
4474  * are about to reset the HW.
4475  */
4476 static void
4477 emx_flush_tx_ring(struct emx_softc *sc)
4478 {
4479 	struct e1000_hw *hw = &sc->hw;
4480 	uint32_t tctl;
4481 	int i;
4482 
4483 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4484 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4485 
4486 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
4487 		struct emx_txdata *tdata = &sc->tx_data[i];
4488 		struct e1000_tx_desc *txd;
4489 
4490 		if (E1000_READ_REG(hw, E1000_TDLEN(i)) == 0)
4491 			continue;
4492 
4493 		txd = &tdata->tx_desc_base[tdata->next_avail_tx_desc++];
4494 		if (tdata->next_avail_tx_desc == tdata->num_tx_desc)
4495 			tdata->next_avail_tx_desc = 0;
4496 
4497 		/* Just use the ring as a dummy buffer addr */
4498 		txd->buffer_addr = tdata->tx_desc_paddr;
4499 		txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4500 		txd->upper.data = 0;
4501 
4502 		E1000_WRITE_REG(hw, E1000_TDT(i), tdata->next_avail_tx_desc);
4503 		usec_delay(250);
4504 	}
4505 }
4506 
4507 /*
4508  * Remove all descriptors from the RX rings.
4509  *
4510  * Mark all descriptors in the RX rings as consumed and disable the RX rings.
4511  */
4512 static void
4513 emx_flush_rx_ring(struct emx_softc *sc)
4514 {
4515 	struct e1000_hw	*hw = &sc->hw;
4516 	uint32_t rctl;
4517 	int i;
4518 
4519 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4520 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4521 	E1000_WRITE_FLUSH(hw);
4522 	usec_delay(150);
4523 
4524 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4525 		uint32_t rxdctl;
4526 
4527 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
4528 		/* Zero the lower 14 bits (prefetch and host thresholds) */
4529 		rxdctl &= 0xffffc000;
4530 		/*
4531 		 * Update thresholds: prefetch threshold to 31, host threshold
4532 		 * to 1 and make sure the granularity is "descriptors" and not
4533 		 * "cache lines".
4534 		 */
4535 		rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4536 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
4537 	}
4538 
4539 	/* Momentarily enable the RX rings for the changes to take effect */
4540 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4541 	E1000_WRITE_FLUSH(hw);
4542 	usec_delay(150);
4543 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4544 }
4545 
4546 /*
4547  * Remove all descriptors from the descriptor rings.
4548  *
4549  * In i219, the descriptor rings must be emptied before resetting the HW
4550  * or before changing the device state to D3 during runtime (runtime PM).
4551  *
4552  * Failure to do this will cause the HW to enter a unit hang state which
4553  * can only be released by PCI reset on the device.
4554  */
4555 static void
4556 emx_flush_txrx_ring(struct emx_softc *sc)
4557 {
4558 	struct e1000_hw *hw = &sc->hw;
4559 	device_t dev = sc->dev;
4560 	uint16_t hang_state;
4561 	uint32_t fext_nvm11, tdlen;
4562 	int i;
4563 
4564 	/*
4565 	 * First, disable MULR fix in FEXTNVM11.
4566 	 */
4567 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4568 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4569 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4570 
4571 	/*
4572 	 * Do nothing if we're not in faulty state, or if the queue is
4573 	 * empty.
4574 	 */
4575 	tdlen = 0;
4576 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4577 		tdlen += E1000_READ_REG(hw, E1000_TDLEN(i));
4578 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4579 	if ((hang_state & EMX_FLUSH_DESC_REQUIRED) && tdlen)
4580 		emx_flush_tx_ring(sc);
4581 
4582 	/*
4583 	 * Recheck, maybe the fault is caused by the RX ring.
4584 	 */
4585 	hang_state = pci_read_config(dev, EMX_PCICFG_DESC_RING_STATUS, 2);
4586 	if (hang_state & EMX_FLUSH_DESC_REQUIRED)
4587 		emx_flush_rx_ring(sc);
4588 }
4589