xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision a5219e84)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	EMX_DEVICE(PCH_LPT_I217_LM),
165 	EMX_DEVICE(PCH_LPT_I217_V),
166 	EMX_DEVICE(PCH_LPTLP_I218_LM),
167 	EMX_DEVICE(PCH_LPTLP_I218_V),
168 
169 	/* required last entry */
170 	EMX_DEVICE_NULL
171 };
172 
173 static int	emx_probe(device_t);
174 static int	emx_attach(device_t);
175 static int	emx_detach(device_t);
176 static int	emx_shutdown(device_t);
177 static int	emx_suspend(device_t);
178 static int	emx_resume(device_t);
179 
180 static void	emx_init(void *);
181 static void	emx_stop(struct emx_softc *);
182 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
183 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
184 #ifdef IFPOLL_ENABLE
185 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
186 static void	emx_npoll_status(struct ifnet *);
187 static void	emx_npoll_tx(struct ifnet *, void *, int);
188 static void	emx_npoll_rx(struct ifnet *, void *, int);
189 #endif
190 static void	emx_watchdog(struct ifaltq_subque *);
191 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
192 static int	emx_media_change(struct ifnet *);
193 static void	emx_timer(void *);
194 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
195 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
196 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
197 #ifdef INVARIANTS
198 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
199 		    boolean_t);
200 #endif
201 
202 static void	emx_intr(void *);
203 static void	emx_intr_mask(void *);
204 static void	emx_intr_body(struct emx_softc *, boolean_t);
205 static void	emx_rxeof(struct emx_rxdata *, int);
206 static void	emx_txeof(struct emx_txdata *);
207 static void	emx_tx_collect(struct emx_txdata *);
208 static void	emx_tx_purge(struct emx_softc *);
209 static void	emx_enable_intr(struct emx_softc *);
210 static void	emx_disable_intr(struct emx_softc *);
211 
212 static int	emx_dma_alloc(struct emx_softc *);
213 static void	emx_dma_free(struct emx_softc *);
214 static void	emx_init_tx_ring(struct emx_txdata *);
215 static int	emx_init_rx_ring(struct emx_rxdata *);
216 static void	emx_free_tx_ring(struct emx_txdata *);
217 static void	emx_free_rx_ring(struct emx_rxdata *);
218 static int	emx_create_tx_ring(struct emx_txdata *);
219 static int	emx_create_rx_ring(struct emx_rxdata *);
220 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
221 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
222 static int	emx_newbuf(struct emx_rxdata *, int, int);
223 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
224 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
225 		    uint32_t *, uint32_t *);
226 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
227 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
228 		    uint32_t *, uint32_t *);
229 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
230 
231 static int 	emx_is_valid_eaddr(const uint8_t *);
232 static int	emx_reset(struct emx_softc *);
233 static void	emx_setup_ifp(struct emx_softc *);
234 static void	emx_init_tx_unit(struct emx_softc *);
235 static void	emx_init_rx_unit(struct emx_softc *);
236 static void	emx_update_stats(struct emx_softc *);
237 static void	emx_set_promisc(struct emx_softc *);
238 static void	emx_disable_promisc(struct emx_softc *);
239 static void	emx_set_multi(struct emx_softc *);
240 static void	emx_update_link_status(struct emx_softc *);
241 static void	emx_smartspeed(struct emx_softc *);
242 static void	emx_set_itr(struct emx_softc *, uint32_t);
243 static void	emx_disable_aspm(struct emx_softc *);
244 
245 static void	emx_print_debug_info(struct emx_softc *);
246 static void	emx_print_nvm_info(struct emx_softc *);
247 static void	emx_print_hw_stats(struct emx_softc *);
248 
249 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
250 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
251 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
252 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
253 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
254 #ifdef IFPOLL_ENABLE
255 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
256 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
257 #endif
258 static void	emx_add_sysctl(struct emx_softc *);
259 
260 static void	emx_serialize_skipmain(struct emx_softc *);
261 static void	emx_deserialize_skipmain(struct emx_softc *);
262 
263 /* Management and WOL Support */
264 static void	emx_get_mgmt(struct emx_softc *);
265 static void	emx_rel_mgmt(struct emx_softc *);
266 static void	emx_get_hw_control(struct emx_softc *);
267 static void	emx_rel_hw_control(struct emx_softc *);
268 static void	emx_enable_wol(device_t);
269 
270 static device_method_t emx_methods[] = {
271 	/* Device interface */
272 	DEVMETHOD(device_probe,		emx_probe),
273 	DEVMETHOD(device_attach,	emx_attach),
274 	DEVMETHOD(device_detach,	emx_detach),
275 	DEVMETHOD(device_shutdown,	emx_shutdown),
276 	DEVMETHOD(device_suspend,	emx_suspend),
277 	DEVMETHOD(device_resume,	emx_resume),
278 	DEVMETHOD_END
279 };
280 
281 static driver_t emx_driver = {
282 	"emx",
283 	emx_methods,
284 	sizeof(struct emx_softc),
285 };
286 
287 static devclass_t emx_devclass;
288 
289 DECLARE_DUMMY_MODULE(if_emx);
290 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
291 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
292 
293 /*
294  * Tunables
295  */
296 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
297 static int	emx_rxd = EMX_DEFAULT_RXD;
298 static int	emx_txd = EMX_DEFAULT_TXD;
299 static int	emx_smart_pwr_down = 0;
300 static int	emx_rxr = 0;
301 static int	emx_txr = 1;
302 
303 /* Controls whether promiscuous also shows bad packets */
304 static int	emx_debug_sbp = 0;
305 
306 static int	emx_82573_workaround = 1;
307 static int	emx_msi_enable = 1;
308 
309 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
310 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
311 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
312 TUNABLE_INT("hw.emx.txd", &emx_txd);
313 TUNABLE_INT("hw.emx.txr", &emx_txr);
314 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
315 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
316 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
317 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
318 
319 /* Global used in WOL setup with multiport cards */
320 static int	emx_global_quad_port_a = 0;
321 
322 /* Set this to one to display debug statistics */
323 static int	emx_display_debug_stats = 0;
324 
325 #if !defined(KTR_IF_EMX)
326 #define KTR_IF_EMX	KTR_ALL
327 #endif
328 KTR_INFO_MASTER(if_emx);
329 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
330 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
331 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
332 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
333 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
334 #define logif(name)	KTR_LOG(if_emx_ ## name)
335 
336 static __inline void
337 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
338 {
339 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
340 	/* DD bit must be cleared */
341 	rxd->rxd_staterr = 0;
342 }
343 
344 static __inline void
345 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
346 {
347 	/* Ignore Checksum bit is set */
348 	if (staterr & E1000_RXD_STAT_IXSM)
349 		return;
350 
351 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
352 	    E1000_RXD_STAT_IPCS)
353 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
354 
355 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
356 	    E1000_RXD_STAT_TCPCS) {
357 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
358 					   CSUM_PSEUDO_HDR |
359 					   CSUM_FRAG_NOT_CHECKED;
360 		mp->m_pkthdr.csum_data = htons(0xffff);
361 	}
362 }
363 
364 static __inline struct pktinfo *
365 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
366 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
367 {
368 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
369 	case EMX_RXDMRQ_IPV4_TCP:
370 		pi->pi_netisr = NETISR_IP;
371 		pi->pi_flags = 0;
372 		pi->pi_l3proto = IPPROTO_TCP;
373 		break;
374 
375 	case EMX_RXDMRQ_IPV6_TCP:
376 		pi->pi_netisr = NETISR_IPV6;
377 		pi->pi_flags = 0;
378 		pi->pi_l3proto = IPPROTO_TCP;
379 		break;
380 
381 	case EMX_RXDMRQ_IPV4:
382 		if (staterr & E1000_RXD_STAT_IXSM)
383 			return NULL;
384 
385 		if ((staterr &
386 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
387 		    E1000_RXD_STAT_TCPCS) {
388 			pi->pi_netisr = NETISR_IP;
389 			pi->pi_flags = 0;
390 			pi->pi_l3proto = IPPROTO_UDP;
391 			break;
392 		}
393 		/* FALL THROUGH */
394 	default:
395 		return NULL;
396 	}
397 
398 	m->m_flags |= M_HASH;
399 	m->m_pkthdr.hash = toeplitz_hash(hash);
400 	return pi;
401 }
402 
403 static int
404 emx_probe(device_t dev)
405 {
406 	const struct emx_device *d;
407 	uint16_t vid, did;
408 
409 	vid = pci_get_vendor(dev);
410 	did = pci_get_device(dev);
411 
412 	for (d = emx_devices; d->desc != NULL; ++d) {
413 		if (vid == d->vid && did == d->did) {
414 			device_set_desc(dev, d->desc);
415 			device_set_async_attach(dev, TRUE);
416 			return 0;
417 		}
418 	}
419 	return ENXIO;
420 }
421 
422 static int
423 emx_attach(device_t dev)
424 {
425 	struct emx_softc *sc = device_get_softc(dev);
426 	int error = 0, i, throttle, msi_enable, tx_ring_max;
427 	u_int intr_flags;
428 	uint16_t eeprom_data, device_id, apme_mask;
429 	driver_intr_t *intr_func;
430 #ifdef IFPOLL_ENABLE
431 	int offset, offset_def;
432 #endif
433 
434 	/*
435 	 * Setup RX rings
436 	 */
437 	for (i = 0; i < EMX_NRX_RING; ++i) {
438 		sc->rx_data[i].sc = sc;
439 		sc->rx_data[i].idx = i;
440 	}
441 
442 	/*
443 	 * Setup TX ring
444 	 */
445 	for (i = 0; i < EMX_NTX_RING; ++i) {
446 		sc->tx_data[i].sc = sc;
447 		sc->tx_data[i].idx = i;
448 	}
449 
450 	/*
451 	 * Initialize serializers
452 	 */
453 	lwkt_serialize_init(&sc->main_serialize);
454 	for (i = 0; i < EMX_NTX_RING; ++i)
455 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
456 	for (i = 0; i < EMX_NRX_RING; ++i)
457 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
458 
459 	/*
460 	 * Initialize serializer array
461 	 */
462 	i = 0;
463 
464 	KKASSERT(i < EMX_NSERIALIZE);
465 	sc->serializes[i++] = &sc->main_serialize;
466 
467 	KKASSERT(i < EMX_NSERIALIZE);
468 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
469 	KKASSERT(i < EMX_NSERIALIZE);
470 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
471 
472 	KKASSERT(i < EMX_NSERIALIZE);
473 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
474 	KKASSERT(i < EMX_NSERIALIZE);
475 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
476 
477 	KKASSERT(i == EMX_NSERIALIZE);
478 
479 	ifmedia_init(&sc->media, IFM_IMASK, emx_media_change, emx_media_status);
480 	callout_init_mp(&sc->timer);
481 
482 	sc->dev = sc->osdep.dev = dev;
483 
484 	/*
485 	 * Determine hardware and mac type
486 	 */
487 	sc->hw.vendor_id = pci_get_vendor(dev);
488 	sc->hw.device_id = pci_get_device(dev);
489 	sc->hw.revision_id = pci_get_revid(dev);
490 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
491 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
492 
493 	if (e1000_set_mac_type(&sc->hw))
494 		return ENXIO;
495 
496 	/* Enable bus mastering */
497 	pci_enable_busmaster(dev);
498 
499 	/*
500 	 * Allocate IO memory
501 	 */
502 	sc->memory_rid = EMX_BAR_MEM;
503 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
504 					    &sc->memory_rid, RF_ACTIVE);
505 	if (sc->memory == NULL) {
506 		device_printf(dev, "Unable to allocate bus resource: memory\n");
507 		error = ENXIO;
508 		goto fail;
509 	}
510 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
511 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
512 
513 	/* XXX This is quite goofy, it is not actually used */
514 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
515 
516 	/*
517 	 * Don't enable MSI-X on 82574, see:
518 	 * 82574 specification update errata #15
519 	 *
520 	 * Don't enable MSI on 82571/82572, see:
521 	 * 82571/82572 specification update errata #63
522 	 */
523 	msi_enable = emx_msi_enable;
524 	if (msi_enable &&
525 	    (sc->hw.mac.type == e1000_82571 ||
526 	     sc->hw.mac.type == e1000_82572))
527 		msi_enable = 0;
528 
529 	/*
530 	 * Allocate interrupt
531 	 */
532 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
533 	    &sc->intr_rid, &intr_flags);
534 
535 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
536 		int unshared;
537 
538 		unshared = device_getenv_int(dev, "irq.unshared", 0);
539 		if (!unshared) {
540 			sc->flags |= EMX_FLAG_SHARED_INTR;
541 			if (bootverbose)
542 				device_printf(dev, "IRQ shared\n");
543 		} else {
544 			intr_flags &= ~RF_SHAREABLE;
545 			if (bootverbose)
546 				device_printf(dev, "IRQ unshared\n");
547 		}
548 	}
549 
550 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
551 	    intr_flags);
552 	if (sc->intr_res == NULL) {
553 		device_printf(dev, "Unable to allocate bus resource: "
554 		    "interrupt\n");
555 		error = ENXIO;
556 		goto fail;
557 	}
558 
559 	/* Save PCI command register for Shared Code */
560 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
561 	sc->hw.back = &sc->osdep;
562 
563 	/*
564 	 * For I217/I218, we need to map the flash memory and this
565 	 * must happen after the MAC is identified.
566 	 */
567 	if (sc->hw.mac.type == e1000_pch_lpt) {
568 		sc->flash_rid = EMX_BAR_FLASH;
569 
570 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
571 		    &sc->flash_rid, RF_ACTIVE);
572 		if (sc->flash == NULL) {
573 			device_printf(dev, "Mapping of Flash failed\n");
574 			error = ENXIO;
575 			goto fail;
576 		}
577 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
578 		sc->osdep.flash_bus_space_handle =
579 		    rman_get_bushandle(sc->flash);
580 
581 		/*
582 		 * This is used in the shared code
583 		 * XXX this goof is actually not used.
584 		 */
585 		sc->hw.flash_address = (uint8_t *)sc->flash;
586 	}
587 
588 	/* Do Shared Code initialization */
589 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
590 		device_printf(dev, "Setup of Shared code failed\n");
591 		error = ENXIO;
592 		goto fail;
593 	}
594 	e1000_get_bus_info(&sc->hw);
595 
596 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
597 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
598 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
599 
600 	/*
601 	 * Interrupt throttle rate
602 	 */
603 	throttle = device_getenv_int(dev, "int_throttle_ceil",
604 	    emx_int_throttle_ceil);
605 	if (throttle == 0) {
606 		sc->int_throttle_ceil = 0;
607 	} else {
608 		if (throttle < 0)
609 			throttle = EMX_DEFAULT_ITR;
610 
611 		/* Recalculate the tunable value to get the exact frequency. */
612 		throttle = 1000000000 / 256 / throttle;
613 
614 		/* Upper 16bits of ITR is reserved and should be zero */
615 		if (throttle & 0xffff0000)
616 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
617 
618 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
619 	}
620 
621 	e1000_init_script_state_82541(&sc->hw, TRUE);
622 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
623 
624 	/* Copper options */
625 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
626 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
627 		sc->hw.phy.disable_polarity_correction = FALSE;
628 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
629 	}
630 
631 	/* Set the frame limits assuming standard ethernet sized frames. */
632 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
633 
634 	/* This controls when hardware reports transmit completion status. */
635 	sc->hw.mac.report_tx_early = 1;
636 
637 	/* Calculate # of RX rings */
638 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
639 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
640 
641 	/*
642 	 * Calculate # of TX rings
643 	 *
644 	 * XXX
645 	 * I217/I218 claims to have 2 TX queues
646 	 *
647 	 * NOTE:
648 	 * Don't enable multiple TX queues on 82574; it always gives
649 	 * watchdog timeout on TX queue0, when multiple TCP streams are
650 	 * received.  It was originally suspected that the hardware TX
651 	 * checksum offloading caused this watchdog timeout, since only
652 	 * TCP ACKs are sent during TCP receiving tests.  However, even
653 	 * if the hardware TX checksum offloading is disable, TX queue0
654 	 * still will give watchdog.
655 	 */
656 	tx_ring_max = 1;
657 	if (sc->hw.mac.type == e1000_82571 ||
658 	    sc->hw.mac.type == e1000_82572 ||
659 	    sc->hw.mac.type == e1000_80003es2lan)
660 		tx_ring_max = EMX_NTX_RING;
661 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
662 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
663 
664 	/* Allocate RX/TX rings' busdma(9) stuffs */
665 	error = emx_dma_alloc(sc);
666 	if (error)
667 		goto fail;
668 
669 	/* Allocate multicast array memory. */
670 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
671 	    M_DEVBUF, M_WAITOK);
672 
673 	/* Indicate SOL/IDER usage */
674 	if (e1000_check_reset_block(&sc->hw)) {
675 		device_printf(dev,
676 		    "PHY reset is blocked due to SOL/IDER session.\n");
677 	}
678 
679 	/* Disable EEE on I217/I218 */
680 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
681 
682 	/*
683 	 * Start from a known state, this is important in reading the
684 	 * nvm and mac from that.
685 	 */
686 	e1000_reset_hw(&sc->hw);
687 
688 	/* Make sure we have a good EEPROM before we read from it */
689 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
690 		/*
691 		 * Some PCI-E parts fail the first check due to
692 		 * the link being in sleep state, call it again,
693 		 * if it fails a second time its a real issue.
694 		 */
695 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
696 			device_printf(dev,
697 			    "The EEPROM Checksum Is Not Valid\n");
698 			error = EIO;
699 			goto fail;
700 		}
701 	}
702 
703 	/* Copy the permanent MAC address out of the EEPROM */
704 	if (e1000_read_mac_addr(&sc->hw) < 0) {
705 		device_printf(dev, "EEPROM read error while reading MAC"
706 		    " address\n");
707 		error = EIO;
708 		goto fail;
709 	}
710 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
711 		device_printf(dev, "Invalid MAC address\n");
712 		error = EIO;
713 		goto fail;
714 	}
715 
716 	/* Determine if we have to control management hardware */
717 	if (e1000_enable_mng_pass_thru(&sc->hw))
718 		sc->flags |= EMX_FLAG_HAS_MGMT;
719 
720 	/*
721 	 * Setup Wake-on-Lan
722 	 */
723 	apme_mask = EMX_EEPROM_APME;
724 	eeprom_data = 0;
725 	switch (sc->hw.mac.type) {
726 	case e1000_82573:
727 		sc->flags |= EMX_FLAG_HAS_AMT;
728 		/* FALL THROUGH */
729 
730 	case e1000_82571:
731 	case e1000_82572:
732 	case e1000_80003es2lan:
733 		if (sc->hw.bus.func == 1) {
734 			e1000_read_nvm(&sc->hw,
735 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
736 		} else {
737 			e1000_read_nvm(&sc->hw,
738 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
739 		}
740 		break;
741 
742 	default:
743 		e1000_read_nvm(&sc->hw,
744 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
745 		break;
746 	}
747 	if (eeprom_data & apme_mask)
748 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
749 
750 	/*
751          * We have the eeprom settings, now apply the special cases
752          * where the eeprom may be wrong or the board won't support
753          * wake on lan on a particular port
754 	 */
755 	device_id = pci_get_device(dev);
756         switch (device_id) {
757 	case E1000_DEV_ID_82571EB_FIBER:
758 		/*
759 		 * Wake events only supported on port A for dual fiber
760 		 * regardless of eeprom setting
761 		 */
762 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
763 		    E1000_STATUS_FUNC_1)
764 			sc->wol = 0;
765 		break;
766 
767 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
768 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
769 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
770                 /* if quad port sc, disable WoL on all but port A */
771 		if (emx_global_quad_port_a != 0)
772 			sc->wol = 0;
773 		/* Reset for multiple quad port adapters */
774 		if (++emx_global_quad_port_a == 4)
775 			emx_global_quad_port_a = 0;
776                 break;
777 	}
778 
779 	/* XXX disable wol */
780 	sc->wol = 0;
781 
782 #ifdef IFPOLL_ENABLE
783 	/*
784 	 * NPOLLING RX CPU offset
785 	 */
786 	if (sc->rx_ring_cnt == ncpus2) {
787 		offset = 0;
788 	} else {
789 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
790 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
791 		if (offset >= ncpus2 ||
792 		    offset % sc->rx_ring_cnt != 0) {
793 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
794 			    offset, offset_def);
795 			offset = offset_def;
796 		}
797 	}
798 	sc->rx_npoll_off = offset;
799 
800 	/*
801 	 * NPOLLING TX CPU offset
802 	 */
803 	if (sc->tx_ring_cnt == ncpus2) {
804 		offset = 0;
805 	} else {
806 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
807 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
808 		if (offset >= ncpus2 ||
809 		    offset % sc->tx_ring_cnt != 0) {
810 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
811 			    offset, offset_def);
812 			offset = offset_def;
813 		}
814 	}
815 	sc->tx_npoll_off = offset;
816 #endif
817 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
818 
819 	/* Setup OS specific network interface */
820 	emx_setup_ifp(sc);
821 
822 	/* Add sysctl tree, must after em_setup_ifp() */
823 	emx_add_sysctl(sc);
824 
825 	/* Reset the hardware */
826 	error = emx_reset(sc);
827 	if (error) {
828 		/*
829 		 * Some 82573 parts fail the first reset, call it again,
830 		 * if it fails a second time its a real issue.
831 		 */
832 		error = emx_reset(sc);
833 		if (error) {
834 			device_printf(dev, "Unable to reset the hardware\n");
835 			ether_ifdetach(&sc->arpcom.ac_if);
836 			goto fail;
837 		}
838 	}
839 
840 	/* Initialize statistics */
841 	emx_update_stats(sc);
842 
843 	sc->hw.mac.get_link_status = 1;
844 	emx_update_link_status(sc);
845 
846 	/* Non-AMT based hardware can now take control from firmware */
847 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
848 	    EMX_FLAG_HAS_MGMT)
849 		emx_get_hw_control(sc);
850 
851 	/*
852 	 * Missing Interrupt Following ICR read:
853 	 *
854 	 * 82571/82572 specification update errata #76
855 	 * 82573 specification update errata #31
856 	 * 82574 specification update errata #12
857 	 */
858 	intr_func = emx_intr;
859 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
860 	    (sc->hw.mac.type == e1000_82571 ||
861 	     sc->hw.mac.type == e1000_82572 ||
862 	     sc->hw.mac.type == e1000_82573 ||
863 	     sc->hw.mac.type == e1000_82574))
864 		intr_func = emx_intr_mask;
865 
866 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
867 			       &sc->intr_tag, &sc->main_serialize);
868 	if (error) {
869 		device_printf(dev, "Failed to register interrupt handler");
870 		ether_ifdetach(&sc->arpcom.ac_if);
871 		goto fail;
872 	}
873 	return (0);
874 fail:
875 	emx_detach(dev);
876 	return (error);
877 }
878 
879 static int
880 emx_detach(device_t dev)
881 {
882 	struct emx_softc *sc = device_get_softc(dev);
883 
884 	if (device_is_attached(dev)) {
885 		struct ifnet *ifp = &sc->arpcom.ac_if;
886 
887 		ifnet_serialize_all(ifp);
888 
889 		emx_stop(sc);
890 
891 		e1000_phy_hw_reset(&sc->hw);
892 
893 		emx_rel_mgmt(sc);
894 		emx_rel_hw_control(sc);
895 
896 		if (sc->wol) {
897 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
898 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
899 			emx_enable_wol(dev);
900 		}
901 
902 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
903 
904 		ifnet_deserialize_all(ifp);
905 
906 		ether_ifdetach(ifp);
907 	} else if (sc->memory != NULL) {
908 		emx_rel_hw_control(sc);
909 	}
910 
911 	ifmedia_removeall(&sc->media);
912 	bus_generic_detach(dev);
913 
914 	if (sc->intr_res != NULL) {
915 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
916 				     sc->intr_res);
917 	}
918 
919 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
920 		pci_release_msi(dev);
921 
922 	if (sc->memory != NULL) {
923 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
924 				     sc->memory);
925 	}
926 
927 	if (sc->flash != NULL) {
928 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
929 		    sc->flash);
930 	}
931 
932 	emx_dma_free(sc);
933 
934 	if (sc->mta != NULL)
935 		kfree(sc->mta, M_DEVBUF);
936 
937 	return (0);
938 }
939 
940 static int
941 emx_shutdown(device_t dev)
942 {
943 	return emx_suspend(dev);
944 }
945 
946 static int
947 emx_suspend(device_t dev)
948 {
949 	struct emx_softc *sc = device_get_softc(dev);
950 	struct ifnet *ifp = &sc->arpcom.ac_if;
951 
952 	ifnet_serialize_all(ifp);
953 
954 	emx_stop(sc);
955 
956 	emx_rel_mgmt(sc);
957 	emx_rel_hw_control(sc);
958 
959 	if (sc->wol) {
960 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
961 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
962 		emx_enable_wol(dev);
963 	}
964 
965 	ifnet_deserialize_all(ifp);
966 
967 	return bus_generic_suspend(dev);
968 }
969 
970 static int
971 emx_resume(device_t dev)
972 {
973 	struct emx_softc *sc = device_get_softc(dev);
974 	struct ifnet *ifp = &sc->arpcom.ac_if;
975 	int i;
976 
977 	ifnet_serialize_all(ifp);
978 
979 	emx_init(sc);
980 	emx_get_mgmt(sc);
981 	for (i = 0; i < sc->tx_ring_inuse; ++i)
982 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
983 
984 	ifnet_deserialize_all(ifp);
985 
986 	return bus_generic_resume(dev);
987 }
988 
989 static void
990 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
991 {
992 	struct emx_softc *sc = ifp->if_softc;
993 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
994 	struct mbuf *m_head;
995 	int idx = -1, nsegs = 0;
996 
997 	KKASSERT(tdata->ifsq == ifsq);
998 	ASSERT_SERIALIZED(&tdata->tx_serialize);
999 
1000 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1001 		return;
1002 
1003 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1004 		ifsq_purge(ifsq);
1005 		return;
1006 	}
1007 
1008 	while (!ifsq_is_empty(ifsq)) {
1009 		/* Now do we at least have a minimal? */
1010 		if (EMX_IS_OACTIVE(tdata)) {
1011 			emx_tx_collect(tdata);
1012 			if (EMX_IS_OACTIVE(tdata)) {
1013 				ifsq_set_oactive(ifsq);
1014 				break;
1015 			}
1016 		}
1017 
1018 		logif(pkt_txqueue);
1019 		m_head = ifsq_dequeue(ifsq);
1020 		if (m_head == NULL)
1021 			break;
1022 
1023 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1024 			IFNET_STAT_INC(ifp, oerrors, 1);
1025 			emx_tx_collect(tdata);
1026 			continue;
1027 		}
1028 
1029 		if (nsegs >= tdata->tx_wreg_nsegs) {
1030 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1031 			nsegs = 0;
1032 			idx = -1;
1033 		}
1034 
1035 		/* Send a copy of the frame to the BPF listener */
1036 		ETHER_BPF_MTAP(ifp, m_head);
1037 
1038 		/* Set timeout in case hardware has problems transmitting. */
1039 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1040 	}
1041 	if (idx >= 0)
1042 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1043 }
1044 
1045 static int
1046 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1047 {
1048 	struct emx_softc *sc = ifp->if_softc;
1049 	struct ifreq *ifr = (struct ifreq *)data;
1050 	uint16_t eeprom_data = 0;
1051 	int max_frame_size, mask, reinit;
1052 	int error = 0;
1053 
1054 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1055 
1056 	switch (command) {
1057 	case SIOCSIFMTU:
1058 		switch (sc->hw.mac.type) {
1059 		case e1000_82573:
1060 			/*
1061 			 * 82573 only supports jumbo frames
1062 			 * if ASPM is disabled.
1063 			 */
1064 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1065 				       &eeprom_data);
1066 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1067 				max_frame_size = ETHER_MAX_LEN;
1068 				break;
1069 			}
1070 			/* FALL THROUGH */
1071 
1072 		/* Limit Jumbo Frame size */
1073 		case e1000_82571:
1074 		case e1000_82572:
1075 		case e1000_82574:
1076 		case e1000_pch_lpt:
1077 		case e1000_80003es2lan:
1078 			max_frame_size = 9234;
1079 			break;
1080 
1081 		default:
1082 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1083 			break;
1084 		}
1085 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1086 		    ETHER_CRC_LEN) {
1087 			error = EINVAL;
1088 			break;
1089 		}
1090 
1091 		ifp->if_mtu = ifr->ifr_mtu;
1092 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1093 		    ETHER_CRC_LEN;
1094 
1095 		if (ifp->if_flags & IFF_RUNNING)
1096 			emx_init(sc);
1097 		break;
1098 
1099 	case SIOCSIFFLAGS:
1100 		if (ifp->if_flags & IFF_UP) {
1101 			if ((ifp->if_flags & IFF_RUNNING)) {
1102 				if ((ifp->if_flags ^ sc->if_flags) &
1103 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1104 					emx_disable_promisc(sc);
1105 					emx_set_promisc(sc);
1106 				}
1107 			} else {
1108 				emx_init(sc);
1109 			}
1110 		} else if (ifp->if_flags & IFF_RUNNING) {
1111 			emx_stop(sc);
1112 		}
1113 		sc->if_flags = ifp->if_flags;
1114 		break;
1115 
1116 	case SIOCADDMULTI:
1117 	case SIOCDELMULTI:
1118 		if (ifp->if_flags & IFF_RUNNING) {
1119 			emx_disable_intr(sc);
1120 			emx_set_multi(sc);
1121 #ifdef IFPOLL_ENABLE
1122 			if (!(ifp->if_flags & IFF_NPOLLING))
1123 #endif
1124 				emx_enable_intr(sc);
1125 		}
1126 		break;
1127 
1128 	case SIOCSIFMEDIA:
1129 		/* Check SOL/IDER usage */
1130 		if (e1000_check_reset_block(&sc->hw)) {
1131 			device_printf(sc->dev, "Media change is"
1132 			    " blocked due to SOL/IDER session.\n");
1133 			break;
1134 		}
1135 		/* FALL THROUGH */
1136 
1137 	case SIOCGIFMEDIA:
1138 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1139 		break;
1140 
1141 	case SIOCSIFCAP:
1142 		reinit = 0;
1143 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1144 		if (mask & IFCAP_RXCSUM) {
1145 			ifp->if_capenable ^= IFCAP_RXCSUM;
1146 			reinit = 1;
1147 		}
1148 		if (mask & IFCAP_VLAN_HWTAGGING) {
1149 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1150 			reinit = 1;
1151 		}
1152 		if (mask & IFCAP_TXCSUM) {
1153 			ifp->if_capenable ^= IFCAP_TXCSUM;
1154 			if (ifp->if_capenable & IFCAP_TXCSUM)
1155 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1156 			else
1157 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1158 		}
1159 		if (mask & IFCAP_TSO) {
1160 			ifp->if_capenable ^= IFCAP_TSO;
1161 			if (ifp->if_capenable & IFCAP_TSO)
1162 				ifp->if_hwassist |= CSUM_TSO;
1163 			else
1164 				ifp->if_hwassist &= ~CSUM_TSO;
1165 		}
1166 		if (mask & IFCAP_RSS)
1167 			ifp->if_capenable ^= IFCAP_RSS;
1168 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1169 			emx_init(sc);
1170 		break;
1171 
1172 	default:
1173 		error = ether_ioctl(ifp, command, data);
1174 		break;
1175 	}
1176 	return (error);
1177 }
1178 
1179 static void
1180 emx_watchdog(struct ifaltq_subque *ifsq)
1181 {
1182 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1183 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1184 	struct emx_softc *sc = ifp->if_softc;
1185 	int i;
1186 
1187 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1188 
1189 	/*
1190 	 * The timer is set to 5 every time start queues a packet.
1191 	 * Then txeof keeps resetting it as long as it cleans at
1192 	 * least one descriptor.
1193 	 * Finally, anytime all descriptors are clean the timer is
1194 	 * set to 0.
1195 	 */
1196 
1197 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1198 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1199 		/*
1200 		 * If we reach here, all TX jobs are completed and
1201 		 * the TX engine should have been idled for some time.
1202 		 * We don't need to call ifsq_devstart_sched() here.
1203 		 */
1204 		ifsq_clr_oactive(ifsq);
1205 		tdata->tx_watchdog.wd_timer = 0;
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * If we are in this routine because of pause frames, then
1211 	 * don't reset the hardware.
1212 	 */
1213 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1214 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1215 		return;
1216 	}
1217 
1218 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1219 
1220 	IFNET_STAT_INC(ifp, oerrors, 1);
1221 
1222 	emx_init(sc);
1223 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1224 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1225 }
1226 
1227 static void
1228 emx_init(void *xsc)
1229 {
1230 	struct emx_softc *sc = xsc;
1231 	struct ifnet *ifp = &sc->arpcom.ac_if;
1232 	device_t dev = sc->dev;
1233 	boolean_t polling;
1234 	int i;
1235 
1236 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1237 
1238 	emx_stop(sc);
1239 
1240 	/* Get the latest mac address, User can use a LAA */
1241         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1242 
1243 	/* Put the address into the Receive Address Array */
1244 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1245 
1246 	/*
1247 	 * With the 82571 sc, RAR[0] may be overwritten
1248 	 * when the other port is reset, we make a duplicate
1249 	 * in RAR[14] for that eventuality, this assures
1250 	 * the interface continues to function.
1251 	 */
1252 	if (sc->hw.mac.type == e1000_82571) {
1253 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1254 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1255 		    E1000_RAR_ENTRIES - 1);
1256 	}
1257 
1258 	/* Initialize the hardware */
1259 	if (emx_reset(sc)) {
1260 		device_printf(dev, "Unable to reset the hardware\n");
1261 		/* XXX emx_stop()? */
1262 		return;
1263 	}
1264 	emx_update_link_status(sc);
1265 
1266 	/* Setup VLAN support, basic and offload if available */
1267 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1268 
1269 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1270 		uint32_t ctrl;
1271 
1272 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1273 		ctrl |= E1000_CTRL_VME;
1274 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1275 	}
1276 
1277 	/* Configure for OS presence */
1278 	emx_get_mgmt(sc);
1279 
1280 	polling = FALSE;
1281 #ifdef IFPOLL_ENABLE
1282 	if (ifp->if_flags & IFF_NPOLLING)
1283 		polling = TRUE;
1284 #endif
1285 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1286 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1287 
1288 	/* Prepare transmit descriptors and buffers */
1289 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1290 		emx_init_tx_ring(&sc->tx_data[i]);
1291 	emx_init_tx_unit(sc);
1292 
1293 	/* Setup Multicast table */
1294 	emx_set_multi(sc);
1295 
1296 	/* Prepare receive descriptors and buffers */
1297 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1298 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1299 			device_printf(dev,
1300 			    "Could not setup receive structures\n");
1301 			emx_stop(sc);
1302 			return;
1303 		}
1304 	}
1305 	emx_init_rx_unit(sc);
1306 
1307 	/* Don't lose promiscuous settings */
1308 	emx_set_promisc(sc);
1309 
1310 	ifp->if_flags |= IFF_RUNNING;
1311 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1312 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1313 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1314 	}
1315 
1316 	callout_reset(&sc->timer, hz, emx_timer, sc);
1317 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1318 
1319 	/* MSI/X configuration for 82574 */
1320 	if (sc->hw.mac.type == e1000_82574) {
1321 		int tmp;
1322 
1323 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1324 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1325 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1326 		/*
1327 		 * XXX MSIX
1328 		 * Set the IVAR - interrupt vector routing.
1329 		 * Each nibble represents a vector, high bit
1330 		 * is enable, other 3 bits are the MSIX table
1331 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1332 		 * Link (other) to 2, hence the magic number.
1333 		 */
1334 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1335 	}
1336 
1337 	/*
1338 	 * Only enable interrupts if we are not polling, make sure
1339 	 * they are off otherwise.
1340 	 */
1341 	if (polling)
1342 		emx_disable_intr(sc);
1343 	else
1344 		emx_enable_intr(sc);
1345 
1346 	/* AMT based hardware can now take control from firmware */
1347 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1348 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1349 		emx_get_hw_control(sc);
1350 }
1351 
1352 static void
1353 emx_intr(void *xsc)
1354 {
1355 	emx_intr_body(xsc, TRUE);
1356 }
1357 
1358 static void
1359 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1360 {
1361 	struct ifnet *ifp = &sc->arpcom.ac_if;
1362 	uint32_t reg_icr;
1363 
1364 	logif(intr_beg);
1365 	ASSERT_SERIALIZED(&sc->main_serialize);
1366 
1367 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1368 
1369 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1370 		logif(intr_end);
1371 		return;
1372 	}
1373 
1374 	/*
1375 	 * XXX: some laptops trigger several spurious interrupts
1376 	 * on emx(4) when in the resume cycle. The ICR register
1377 	 * reports all-ones value in this case. Processing such
1378 	 * interrupts would lead to a freeze. I don't know why.
1379 	 */
1380 	if (reg_icr == 0xffffffff) {
1381 		logif(intr_end);
1382 		return;
1383 	}
1384 
1385 	if (ifp->if_flags & IFF_RUNNING) {
1386 		if (reg_icr &
1387 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1388 			int i;
1389 
1390 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1391 				lwkt_serialize_enter(
1392 				&sc->rx_data[i].rx_serialize);
1393 				emx_rxeof(&sc->rx_data[i], -1);
1394 				lwkt_serialize_exit(
1395 				&sc->rx_data[i].rx_serialize);
1396 			}
1397 		}
1398 		if (reg_icr & E1000_ICR_TXDW) {
1399 			struct emx_txdata *tdata = &sc->tx_data[0];
1400 
1401 			lwkt_serialize_enter(&tdata->tx_serialize);
1402 			emx_txeof(tdata);
1403 			if (!ifsq_is_empty(tdata->ifsq))
1404 				ifsq_devstart(tdata->ifsq);
1405 			lwkt_serialize_exit(&tdata->tx_serialize);
1406 		}
1407 	}
1408 
1409 	/* Link status change */
1410 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1411 		emx_serialize_skipmain(sc);
1412 
1413 		callout_stop(&sc->timer);
1414 		sc->hw.mac.get_link_status = 1;
1415 		emx_update_link_status(sc);
1416 
1417 		/* Deal with TX cruft when link lost */
1418 		emx_tx_purge(sc);
1419 
1420 		callout_reset(&sc->timer, hz, emx_timer, sc);
1421 
1422 		emx_deserialize_skipmain(sc);
1423 	}
1424 
1425 	if (reg_icr & E1000_ICR_RXO)
1426 		sc->rx_overruns++;
1427 
1428 	logif(intr_end);
1429 }
1430 
1431 static void
1432 emx_intr_mask(void *xsc)
1433 {
1434 	struct emx_softc *sc = xsc;
1435 
1436 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1437 	/*
1438 	 * NOTE:
1439 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1440 	 * so don't check it.
1441 	 */
1442 	emx_intr_body(sc, FALSE);
1443 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1444 }
1445 
1446 static void
1447 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1448 {
1449 	struct emx_softc *sc = ifp->if_softc;
1450 
1451 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1452 
1453 	emx_update_link_status(sc);
1454 
1455 	ifmr->ifm_status = IFM_AVALID;
1456 	ifmr->ifm_active = IFM_ETHER;
1457 
1458 	if (!sc->link_active)
1459 		return;
1460 
1461 	ifmr->ifm_status |= IFM_ACTIVE;
1462 
1463 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1464 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1465 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1466 	} else {
1467 		switch (sc->link_speed) {
1468 		case 10:
1469 			ifmr->ifm_active |= IFM_10_T;
1470 			break;
1471 		case 100:
1472 			ifmr->ifm_active |= IFM_100_TX;
1473 			break;
1474 
1475 		case 1000:
1476 			ifmr->ifm_active |= IFM_1000_T;
1477 			break;
1478 		}
1479 		if (sc->link_duplex == FULL_DUPLEX)
1480 			ifmr->ifm_active |= IFM_FDX;
1481 		else
1482 			ifmr->ifm_active |= IFM_HDX;
1483 	}
1484 }
1485 
1486 static int
1487 emx_media_change(struct ifnet *ifp)
1488 {
1489 	struct emx_softc *sc = ifp->if_softc;
1490 	struct ifmedia *ifm = &sc->media;
1491 
1492 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1493 
1494 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1495 		return (EINVAL);
1496 
1497 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1498 	case IFM_AUTO:
1499 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1500 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1501 		break;
1502 
1503 	case IFM_1000_LX:
1504 	case IFM_1000_SX:
1505 	case IFM_1000_T:
1506 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1507 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1508 		break;
1509 
1510 	case IFM_100_TX:
1511 		sc->hw.mac.autoneg = FALSE;
1512 		sc->hw.phy.autoneg_advertised = 0;
1513 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1514 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1515 		else
1516 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1517 		break;
1518 
1519 	case IFM_10_T:
1520 		sc->hw.mac.autoneg = FALSE;
1521 		sc->hw.phy.autoneg_advertised = 0;
1522 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1523 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1524 		else
1525 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1526 		break;
1527 
1528 	default:
1529 		if_printf(ifp, "Unsupported media type\n");
1530 		break;
1531 	}
1532 
1533 	emx_init(sc);
1534 
1535 	return (0);
1536 }
1537 
1538 static int
1539 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1540     int *segs_used, int *idx)
1541 {
1542 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1543 	bus_dmamap_t map;
1544 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1545 	struct e1000_tx_desc *ctxd = NULL;
1546 	struct mbuf *m_head = *m_headp;
1547 	uint32_t txd_upper, txd_lower, cmd = 0;
1548 	int maxsegs, nsegs, i, j, first, last = 0, error;
1549 
1550 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1551 		error = emx_tso_pullup(tdata, m_headp);
1552 		if (error)
1553 			return error;
1554 		m_head = *m_headp;
1555 	}
1556 
1557 	txd_upper = txd_lower = 0;
1558 
1559 	/*
1560 	 * Capture the first descriptor index, this descriptor
1561 	 * will have the index of the EOP which is the only one
1562 	 * that now gets a DONE bit writeback.
1563 	 */
1564 	first = tdata->next_avail_tx_desc;
1565 	tx_buffer = &tdata->tx_buf[first];
1566 	tx_buffer_mapped = tx_buffer;
1567 	map = tx_buffer->map;
1568 
1569 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1570 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1571 	if (maxsegs > EMX_MAX_SCATTER)
1572 		maxsegs = EMX_MAX_SCATTER;
1573 
1574 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1575 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1576 	if (error) {
1577 		m_freem(*m_headp);
1578 		*m_headp = NULL;
1579 		return error;
1580 	}
1581         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1582 
1583 	m_head = *m_headp;
1584 	tdata->tx_nsegs += nsegs;
1585 	*segs_used += nsegs;
1586 
1587 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1588 		/* TSO will consume one TX desc */
1589 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1590 		tdata->tx_nsegs += i;
1591 		*segs_used += i;
1592 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1593 		/* TX csum offloading will consume one TX desc */
1594 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1595 		tdata->tx_nsegs += i;
1596 		*segs_used += i;
1597 	}
1598 
1599         /* Handle VLAN tag */
1600 	if (m_head->m_flags & M_VLANTAG) {
1601 		/* Set the vlan id. */
1602 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1603 		/* Tell hardware to add tag */
1604 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1605 	}
1606 
1607 	i = tdata->next_avail_tx_desc;
1608 
1609 	/* Set up our transmit descriptors */
1610 	for (j = 0; j < nsegs; j++) {
1611 		tx_buffer = &tdata->tx_buf[i];
1612 		ctxd = &tdata->tx_desc_base[i];
1613 
1614 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1615 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1616 					   txd_lower | segs[j].ds_len);
1617 		ctxd->upper.data = htole32(txd_upper);
1618 
1619 		last = i;
1620 		if (++i == tdata->num_tx_desc)
1621 			i = 0;
1622 	}
1623 
1624 	tdata->next_avail_tx_desc = i;
1625 
1626 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1627 	tdata->num_tx_desc_avail -= nsegs;
1628 
1629 	tx_buffer->m_head = m_head;
1630 	tx_buffer_mapped->map = tx_buffer->map;
1631 	tx_buffer->map = map;
1632 
1633 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1634 		tdata->tx_nsegs = 0;
1635 
1636 		/*
1637 		 * Report Status (RS) is turned on
1638 		 * every tx_intr_nsegs descriptors.
1639 		 */
1640 		cmd = E1000_TXD_CMD_RS;
1641 
1642 		/*
1643 		 * Keep track of the descriptor, which will
1644 		 * be written back by hardware.
1645 		 */
1646 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1647 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1648 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1649 	}
1650 
1651 	/*
1652 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1653 	 */
1654 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1655 
1656 	/*
1657 	 * Defer TDT updating, until enough descriptors are setup
1658 	 */
1659 	*idx = i;
1660 
1661 #ifdef EMX_TSS_DEBUG
1662 	tdata->tx_pkts++;
1663 #endif
1664 
1665 	return (0);
1666 }
1667 
1668 static void
1669 emx_set_promisc(struct emx_softc *sc)
1670 {
1671 	struct ifnet *ifp = &sc->arpcom.ac_if;
1672 	uint32_t reg_rctl;
1673 
1674 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1675 
1676 	if (ifp->if_flags & IFF_PROMISC) {
1677 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1678 		/* Turn this on if you want to see bad packets */
1679 		if (emx_debug_sbp)
1680 			reg_rctl |= E1000_RCTL_SBP;
1681 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1682 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1683 		reg_rctl |= E1000_RCTL_MPE;
1684 		reg_rctl &= ~E1000_RCTL_UPE;
1685 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1686 	}
1687 }
1688 
1689 static void
1690 emx_disable_promisc(struct emx_softc *sc)
1691 {
1692 	uint32_t reg_rctl;
1693 
1694 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1695 
1696 	reg_rctl &= ~E1000_RCTL_UPE;
1697 	reg_rctl &= ~E1000_RCTL_MPE;
1698 	reg_rctl &= ~E1000_RCTL_SBP;
1699 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1700 }
1701 
1702 static void
1703 emx_set_multi(struct emx_softc *sc)
1704 {
1705 	struct ifnet *ifp = &sc->arpcom.ac_if;
1706 	struct ifmultiaddr *ifma;
1707 	uint32_t reg_rctl = 0;
1708 	uint8_t *mta;
1709 	int mcnt = 0;
1710 
1711 	mta = sc->mta;
1712 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1713 
1714 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1715 		if (ifma->ifma_addr->sa_family != AF_LINK)
1716 			continue;
1717 
1718 		if (mcnt == EMX_MCAST_ADDR_MAX)
1719 			break;
1720 
1721 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1722 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1723 		mcnt++;
1724 	}
1725 
1726 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1727 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1728 		reg_rctl |= E1000_RCTL_MPE;
1729 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1730 	} else {
1731 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1732 	}
1733 }
1734 
1735 /*
1736  * This routine checks for link status and updates statistics.
1737  */
1738 static void
1739 emx_timer(void *xsc)
1740 {
1741 	struct emx_softc *sc = xsc;
1742 	struct ifnet *ifp = &sc->arpcom.ac_if;
1743 
1744 	lwkt_serialize_enter(&sc->main_serialize);
1745 
1746 	emx_update_link_status(sc);
1747 	emx_update_stats(sc);
1748 
1749 	/* Reset LAA into RAR[0] on 82571 */
1750 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1751 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1752 
1753 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1754 		emx_print_hw_stats(sc);
1755 
1756 	emx_smartspeed(sc);
1757 
1758 	callout_reset(&sc->timer, hz, emx_timer, sc);
1759 
1760 	lwkt_serialize_exit(&sc->main_serialize);
1761 }
1762 
1763 static void
1764 emx_update_link_status(struct emx_softc *sc)
1765 {
1766 	struct e1000_hw *hw = &sc->hw;
1767 	struct ifnet *ifp = &sc->arpcom.ac_if;
1768 	device_t dev = sc->dev;
1769 	uint32_t link_check = 0;
1770 
1771 	/* Get the cached link value or read phy for real */
1772 	switch (hw->phy.media_type) {
1773 	case e1000_media_type_copper:
1774 		if (hw->mac.get_link_status) {
1775 			/* Do the work to read phy */
1776 			e1000_check_for_link(hw);
1777 			link_check = !hw->mac.get_link_status;
1778 			if (link_check) /* ESB2 fix */
1779 				e1000_cfg_on_link_up(hw);
1780 		} else {
1781 			link_check = TRUE;
1782 		}
1783 		break;
1784 
1785 	case e1000_media_type_fiber:
1786 		e1000_check_for_link(hw);
1787 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1788 		break;
1789 
1790 	case e1000_media_type_internal_serdes:
1791 		e1000_check_for_link(hw);
1792 		link_check = sc->hw.mac.serdes_has_link;
1793 		break;
1794 
1795 	case e1000_media_type_unknown:
1796 	default:
1797 		break;
1798 	}
1799 
1800 	/* Now check for a transition */
1801 	if (link_check && sc->link_active == 0) {
1802 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1803 		    &sc->link_duplex);
1804 
1805 		/*
1806 		 * Check if we should enable/disable SPEED_MODE bit on
1807 		 * 82571EB/82572EI
1808 		 */
1809 		if (sc->link_speed != SPEED_1000 &&
1810 		    (hw->mac.type == e1000_82571 ||
1811 		     hw->mac.type == e1000_82572)) {
1812 			int tarc0;
1813 
1814 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1815 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1816 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1817 		}
1818 		if (bootverbose) {
1819 			device_printf(dev, "Link is up %d Mbps %s\n",
1820 			    sc->link_speed,
1821 			    ((sc->link_duplex == FULL_DUPLEX) ?
1822 			    "Full Duplex" : "Half Duplex"));
1823 		}
1824 		sc->link_active = 1;
1825 		sc->smartspeed = 0;
1826 		ifp->if_baudrate = sc->link_speed * 1000000;
1827 		ifp->if_link_state = LINK_STATE_UP;
1828 		if_link_state_change(ifp);
1829 	} else if (!link_check && sc->link_active == 1) {
1830 		ifp->if_baudrate = sc->link_speed = 0;
1831 		sc->link_duplex = 0;
1832 		if (bootverbose)
1833 			device_printf(dev, "Link is Down\n");
1834 		sc->link_active = 0;
1835 		ifp->if_link_state = LINK_STATE_DOWN;
1836 		if_link_state_change(ifp);
1837 	}
1838 }
1839 
1840 static void
1841 emx_stop(struct emx_softc *sc)
1842 {
1843 	struct ifnet *ifp = &sc->arpcom.ac_if;
1844 	int i;
1845 
1846 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1847 
1848 	emx_disable_intr(sc);
1849 
1850 	callout_stop(&sc->timer);
1851 
1852 	ifp->if_flags &= ~IFF_RUNNING;
1853 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1854 		struct emx_txdata *tdata = &sc->tx_data[i];
1855 
1856 		ifsq_clr_oactive(tdata->ifsq);
1857 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1858 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1859 	}
1860 
1861 	/*
1862 	 * Disable multiple receive queues.
1863 	 *
1864 	 * NOTE:
1865 	 * We should disable multiple receive queues before
1866 	 * resetting the hardware.
1867 	 */
1868 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1869 
1870 	e1000_reset_hw(&sc->hw);
1871 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1872 
1873 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1874 		emx_free_tx_ring(&sc->tx_data[i]);
1875 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1876 		emx_free_rx_ring(&sc->rx_data[i]);
1877 }
1878 
1879 static int
1880 emx_reset(struct emx_softc *sc)
1881 {
1882 	device_t dev = sc->dev;
1883 	uint16_t rx_buffer_size;
1884 	uint32_t pba;
1885 
1886 	/* Set up smart power down as default off on newer adapters. */
1887 	if (!emx_smart_pwr_down &&
1888 	    (sc->hw.mac.type == e1000_82571 ||
1889 	     sc->hw.mac.type == e1000_82572)) {
1890 		uint16_t phy_tmp = 0;
1891 
1892 		/* Speed up time to link by disabling smart power down. */
1893 		e1000_read_phy_reg(&sc->hw,
1894 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1895 		phy_tmp &= ~IGP02E1000_PM_SPD;
1896 		e1000_write_phy_reg(&sc->hw,
1897 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1898 	}
1899 
1900 	/*
1901 	 * Packet Buffer Allocation (PBA)
1902 	 * Writing PBA sets the receive portion of the buffer
1903 	 * the remainder is used for the transmit buffer.
1904 	 */
1905 	switch (sc->hw.mac.type) {
1906 	/* Total Packet Buffer on these is 48K */
1907 	case e1000_82571:
1908 	case e1000_82572:
1909 	case e1000_80003es2lan:
1910 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1911 		break;
1912 
1913 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1914 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1915 		break;
1916 
1917 	case e1000_82574:
1918 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1919 		break;
1920 
1921 	case e1000_pch_lpt:
1922  		pba = E1000_PBA_26K;
1923  		break;
1924 
1925 	default:
1926 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1927 		if (sc->hw.mac.max_frame_size > 8192)
1928 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1929 		else
1930 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1931 	}
1932 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1933 
1934 	/*
1935 	 * These parameters control the automatic generation (Tx) and
1936 	 * response (Rx) to Ethernet PAUSE frames.
1937 	 * - High water mark should allow for at least two frames to be
1938 	 *   received after sending an XOFF.
1939 	 * - Low water mark works best when it is very near the high water mark.
1940 	 *   This allows the receiver to restart by sending XON when it has
1941 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1942 	 *   restart after one full frame is pulled from the buffer. There
1943 	 *   could be several smaller frames in the buffer and if so they will
1944 	 *   not trigger the XON until their total number reduces the buffer
1945 	 *   by 1500.
1946 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1947 	 */
1948 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1949 
1950 	sc->hw.fc.high_water = rx_buffer_size -
1951 	    roundup2(sc->hw.mac.max_frame_size, 1024);
1952 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1953 
1954 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1955 	sc->hw.fc.send_xon = TRUE;
1956 	sc->hw.fc.requested_mode = e1000_fc_full;
1957 
1958 	/*
1959 	 * Device specific overrides/settings
1960 	 */
1961 	if (sc->hw.mac.type == e1000_pch_lpt) {
1962 		sc->hw.fc.high_water = 0x5C20;
1963 		sc->hw.fc.low_water = 0x5048;
1964 		sc->hw.fc.pause_time = 0x0650;
1965 		sc->hw.fc.refresh_time = 0x0400;
1966 		/* Jumbos need adjusted PBA */
1967 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
1968 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
1969 		else
1970 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
1971 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
1972 		sc->hw.fc.pause_time = 0xFFFF;
1973 	}
1974 
1975 	/* Issue a global reset */
1976 	e1000_reset_hw(&sc->hw);
1977 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1978 	emx_disable_aspm(sc);
1979 
1980 	if (e1000_init_hw(&sc->hw) < 0) {
1981 		device_printf(dev, "Hardware Initialization Failed\n");
1982 		return (EIO);
1983 	}
1984 
1985 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1986 	e1000_get_phy_info(&sc->hw);
1987 	e1000_check_for_link(&sc->hw);
1988 
1989 	return (0);
1990 }
1991 
1992 static void
1993 emx_setup_ifp(struct emx_softc *sc)
1994 {
1995 	struct ifnet *ifp = &sc->arpcom.ac_if;
1996 	int i;
1997 
1998 	if_initname(ifp, device_get_name(sc->dev),
1999 		    device_get_unit(sc->dev));
2000 	ifp->if_softc = sc;
2001 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2002 	ifp->if_init =  emx_init;
2003 	ifp->if_ioctl = emx_ioctl;
2004 	ifp->if_start = emx_start;
2005 #ifdef IFPOLL_ENABLE
2006 	ifp->if_npoll = emx_npoll;
2007 #endif
2008 	ifp->if_serialize = emx_serialize;
2009 	ifp->if_deserialize = emx_deserialize;
2010 	ifp->if_tryserialize = emx_tryserialize;
2011 #ifdef INVARIANTS
2012 	ifp->if_serialize_assert = emx_serialize_assert;
2013 #endif
2014 
2015 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2016 	ifq_set_ready(&ifp->if_snd);
2017 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2018 
2019 	ifp->if_mapsubq = ifq_mapsubq_mask;
2020 	ifq_set_subq_mask(&ifp->if_snd, 0);
2021 
2022 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2023 
2024 	ifp->if_capabilities = IFCAP_HWCSUM |
2025 			       IFCAP_VLAN_HWTAGGING |
2026 			       IFCAP_VLAN_MTU |
2027 			       IFCAP_TSO;
2028 	if (sc->rx_ring_cnt > 1)
2029 		ifp->if_capabilities |= IFCAP_RSS;
2030 	ifp->if_capenable = ifp->if_capabilities;
2031 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2032 
2033 	/*
2034 	 * Tell the upper layer(s) we support long frames.
2035 	 */
2036 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2037 
2038 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2039 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2040 		struct emx_txdata *tdata = &sc->tx_data[i];
2041 
2042 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2043 		ifsq_set_priv(ifsq, tdata);
2044 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2045 		tdata->ifsq = ifsq;
2046 
2047 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2048 	}
2049 
2050 	/*
2051 	 * Specify the media types supported by this sc and register
2052 	 * callbacks to update media and link information
2053 	 */
2054 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2055 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2056 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2057 			    0, NULL);
2058 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
2059 	} else {
2060 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2061 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2062 			    0, NULL);
2063 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2064 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2065 			    0, NULL);
2066 		if (sc->hw.phy.type != e1000_phy_ife) {
2067 			ifmedia_add(&sc->media,
2068 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2069 			ifmedia_add(&sc->media,
2070 				IFM_ETHER | IFM_1000_T, 0, NULL);
2071 		}
2072 	}
2073 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2074 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2075 }
2076 
2077 /*
2078  * Workaround for SmartSpeed on 82541 and 82547 controllers
2079  */
2080 static void
2081 emx_smartspeed(struct emx_softc *sc)
2082 {
2083 	uint16_t phy_tmp;
2084 
2085 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2086 	    sc->hw.mac.autoneg == 0 ||
2087 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2088 		return;
2089 
2090 	if (sc->smartspeed == 0) {
2091 		/*
2092 		 * If Master/Slave config fault is asserted twice,
2093 		 * we assume back-to-back
2094 		 */
2095 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2096 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2097 			return;
2098 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2099 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2100 			e1000_read_phy_reg(&sc->hw,
2101 			    PHY_1000T_CTRL, &phy_tmp);
2102 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2103 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2104 				e1000_write_phy_reg(&sc->hw,
2105 				    PHY_1000T_CTRL, phy_tmp);
2106 				sc->smartspeed++;
2107 				if (sc->hw.mac.autoneg &&
2108 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2109 				    !e1000_read_phy_reg(&sc->hw,
2110 				     PHY_CONTROL, &phy_tmp)) {
2111 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2112 						   MII_CR_RESTART_AUTO_NEG;
2113 					e1000_write_phy_reg(&sc->hw,
2114 					    PHY_CONTROL, phy_tmp);
2115 				}
2116 			}
2117 		}
2118 		return;
2119 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2120 		/* If still no link, perhaps using 2/3 pair cable */
2121 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2122 		phy_tmp |= CR_1000T_MS_ENABLE;
2123 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2124 		if (sc->hw.mac.autoneg &&
2125 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2126 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2127 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2128 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2129 		}
2130 	}
2131 
2132 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2133 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2134 		sc->smartspeed = 0;
2135 }
2136 
2137 static int
2138 emx_create_tx_ring(struct emx_txdata *tdata)
2139 {
2140 	device_t dev = tdata->sc->dev;
2141 	struct emx_txbuf *tx_buffer;
2142 	int error, i, tsize, ntxd;
2143 
2144 	/*
2145 	 * Validate number of transmit descriptors.  It must not exceed
2146 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2147 	 */
2148 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2149 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2150 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2151 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2152 		    EMX_DEFAULT_TXD, ntxd);
2153 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2154 	} else {
2155 		tdata->num_tx_desc = ntxd;
2156 	}
2157 
2158 	/*
2159 	 * Allocate Transmit Descriptor ring
2160 	 */
2161 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2162 			 EMX_DBA_ALIGN);
2163 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2164 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2165 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2166 				&tdata->tx_desc_paddr);
2167 	if (tdata->tx_desc_base == NULL) {
2168 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2169 		return ENOMEM;
2170 	}
2171 
2172 	tsize = __VM_CACHELINE_ALIGN(
2173 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2174 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2175 
2176 	/*
2177 	 * Create DMA tags for tx buffers
2178 	 */
2179 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2180 			1, 0,			/* alignment, bounds */
2181 			BUS_SPACE_MAXADDR,	/* lowaddr */
2182 			BUS_SPACE_MAXADDR,	/* highaddr */
2183 			NULL, NULL,		/* filter, filterarg */
2184 			EMX_TSO_SIZE,		/* maxsize */
2185 			EMX_MAX_SCATTER,	/* nsegments */
2186 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2187 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2188 			BUS_DMA_ONEBPAGE,	/* flags */
2189 			&tdata->txtag);
2190 	if (error) {
2191 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2192 		kfree(tdata->tx_buf, M_DEVBUF);
2193 		tdata->tx_buf = NULL;
2194 		return error;
2195 	}
2196 
2197 	/*
2198 	 * Create DMA maps for tx buffers
2199 	 */
2200 	for (i = 0; i < tdata->num_tx_desc; i++) {
2201 		tx_buffer = &tdata->tx_buf[i];
2202 
2203 		error = bus_dmamap_create(tdata->txtag,
2204 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2205 					  &tx_buffer->map);
2206 		if (error) {
2207 			device_printf(dev, "Unable to create TX DMA map\n");
2208 			emx_destroy_tx_ring(tdata, i);
2209 			return error;
2210 		}
2211 	}
2212 
2213 	/*
2214 	 * Setup TX parameters
2215 	 */
2216 	tdata->spare_tx_desc = EMX_TX_SPARE;
2217 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2218 
2219 	/*
2220 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2221 	 * and tx_intr_nsegs:
2222 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2223 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2224 	 */
2225 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2226 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2227 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2228 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2229 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2230 
2231 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2232 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2233 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2234 
2235 	/*
2236 	 * Pullup extra 4bytes into the first data segment, see:
2237 	 * 82571/82572 specification update errata #7
2238 	 *
2239 	 * NOTE:
2240 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2241 	 * are pulled; mainly to keep rest of the data properly aligned.
2242 	 */
2243 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2244 	    tdata->sc->hw.mac.type == e1000_82572)
2245 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2246 
2247 	return (0);
2248 }
2249 
2250 static void
2251 emx_init_tx_ring(struct emx_txdata *tdata)
2252 {
2253 	/* Clear the old ring contents */
2254 	bzero(tdata->tx_desc_base,
2255 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2256 
2257 	/* Reset state */
2258 	tdata->next_avail_tx_desc = 0;
2259 	tdata->next_tx_to_clean = 0;
2260 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2261 
2262 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2263 	if (tdata->sc->tx_ring_inuse > 1) {
2264 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2265 		if (bootverbose) {
2266 			if_printf(&tdata->sc->arpcom.ac_if,
2267 			    "TX %d force ctx setup\n", tdata->idx);
2268 		}
2269 	}
2270 }
2271 
2272 static void
2273 emx_init_tx_unit(struct emx_softc *sc)
2274 {
2275 	uint32_t tctl, tarc, tipg = 0;
2276 	int i;
2277 
2278 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2279 		struct emx_txdata *tdata = &sc->tx_data[i];
2280 		uint64_t bus_addr;
2281 
2282 		/* Setup the Base and Length of the Tx Descriptor Ring */
2283 		bus_addr = tdata->tx_desc_paddr;
2284 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2285 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2286 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2287 		    (uint32_t)(bus_addr >> 32));
2288 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2289 		    (uint32_t)bus_addr);
2290 		/* Setup the HW Tx Head and Tail descriptor pointers */
2291 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2292 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2293 	}
2294 
2295 	/* Set the default values for the Tx Inter Packet Gap timer */
2296 	switch (sc->hw.mac.type) {
2297 	case e1000_80003es2lan:
2298 		tipg = DEFAULT_82543_TIPG_IPGR1;
2299 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2300 		    E1000_TIPG_IPGR2_SHIFT;
2301 		break;
2302 
2303 	default:
2304 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2305 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2306 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2307 		else
2308 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2309 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2310 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2311 		break;
2312 	}
2313 
2314 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2315 
2316 	/* NOTE: 0 is not allowed for TIDV */
2317 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2318 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2319 
2320 	if (sc->hw.mac.type == e1000_82571 ||
2321 	    sc->hw.mac.type == e1000_82572) {
2322 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2323 		tarc |= EMX_TARC_SPEED_MODE;
2324 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2325 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2326 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2327 		tarc |= 1;
2328 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2329 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2330 		tarc |= 1;
2331 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2332 	}
2333 
2334 	/* Program the Transmit Control Register */
2335 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2336 	tctl &= ~E1000_TCTL_CT;
2337 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2338 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2339 	tctl |= E1000_TCTL_MULR;
2340 
2341 	/* This write will effectively turn on the transmit unit. */
2342 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2343 
2344 	if (sc->hw.mac.type == e1000_82571 ||
2345 	    sc->hw.mac.type == e1000_82572 ||
2346 	    sc->hw.mac.type == e1000_80003es2lan) {
2347 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2348 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2349 		tarc &= ~(1 << 28);
2350 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2351 	}
2352 
2353 	if (sc->tx_ring_inuse > 1) {
2354 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2355 		tarc &= ~EMX_TARC_COUNT_MASK;
2356 		tarc |= 1;
2357 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2358 
2359 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2360 		tarc &= ~EMX_TARC_COUNT_MASK;
2361 		tarc |= 1;
2362 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2363 	}
2364 }
2365 
2366 static void
2367 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2368 {
2369 	struct emx_txbuf *tx_buffer;
2370 	int i;
2371 
2372 	/* Free Transmit Descriptor ring */
2373 	if (tdata->tx_desc_base) {
2374 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2375 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2376 				tdata->tx_desc_dmap);
2377 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2378 
2379 		tdata->tx_desc_base = NULL;
2380 	}
2381 
2382 	if (tdata->tx_buf == NULL)
2383 		return;
2384 
2385 	for (i = 0; i < ndesc; i++) {
2386 		tx_buffer = &tdata->tx_buf[i];
2387 
2388 		KKASSERT(tx_buffer->m_head == NULL);
2389 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2390 	}
2391 	bus_dma_tag_destroy(tdata->txtag);
2392 
2393 	kfree(tdata->tx_buf, M_DEVBUF);
2394 	tdata->tx_buf = NULL;
2395 }
2396 
2397 /*
2398  * The offload context needs to be set when we transfer the first
2399  * packet of a particular protocol (TCP/UDP).  This routine has been
2400  * enhanced to deal with inserted VLAN headers.
2401  *
2402  * If the new packet's ether header length, ip header length and
2403  * csum offloading type are same as the previous packet, we should
2404  * avoid allocating a new csum context descriptor; mainly to take
2405  * advantage of the pipeline effect of the TX data read request.
2406  *
2407  * This function returns number of TX descrptors allocated for
2408  * csum context.
2409  */
2410 static int
2411 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2412 	   uint32_t *txd_upper, uint32_t *txd_lower)
2413 {
2414 	struct e1000_context_desc *TXD;
2415 	int curr_txd, ehdrlen, csum_flags;
2416 	uint32_t cmd, hdr_len, ip_hlen;
2417 
2418 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2419 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2420 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2421 
2422 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2423 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2424 	    tdata->csum_flags == csum_flags) {
2425 		/*
2426 		 * Same csum offload context as the previous packets;
2427 		 * just return.
2428 		 */
2429 		*txd_upper = tdata->csum_txd_upper;
2430 		*txd_lower = tdata->csum_txd_lower;
2431 		return 0;
2432 	}
2433 
2434 	/*
2435 	 * Setup a new csum offload context.
2436 	 */
2437 
2438 	curr_txd = tdata->next_avail_tx_desc;
2439 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2440 
2441 	cmd = 0;
2442 
2443 	/* Setup of IP header checksum. */
2444 	if (csum_flags & CSUM_IP) {
2445 		/*
2446 		 * Start offset for header checksum calculation.
2447 		 * End offset for header checksum calculation.
2448 		 * Offset of place to put the checksum.
2449 		 */
2450 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2451 		TXD->lower_setup.ip_fields.ipcse =
2452 		    htole16(ehdrlen + ip_hlen - 1);
2453 		TXD->lower_setup.ip_fields.ipcso =
2454 		    ehdrlen + offsetof(struct ip, ip_sum);
2455 		cmd |= E1000_TXD_CMD_IP;
2456 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2457 	}
2458 	hdr_len = ehdrlen + ip_hlen;
2459 
2460 	if (csum_flags & CSUM_TCP) {
2461 		/*
2462 		 * Start offset for payload checksum calculation.
2463 		 * End offset for payload checksum calculation.
2464 		 * Offset of place to put the checksum.
2465 		 */
2466 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2467 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2468 		TXD->upper_setup.tcp_fields.tucso =
2469 		    hdr_len + offsetof(struct tcphdr, th_sum);
2470 		cmd |= E1000_TXD_CMD_TCP;
2471 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2472 	} else if (csum_flags & CSUM_UDP) {
2473 		/*
2474 		 * Start offset for header checksum calculation.
2475 		 * End offset for header checksum calculation.
2476 		 * Offset of place to put the checksum.
2477 		 */
2478 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2479 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2480 		TXD->upper_setup.tcp_fields.tucso =
2481 		    hdr_len + offsetof(struct udphdr, uh_sum);
2482 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2483 	}
2484 
2485 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2486 		     E1000_TXD_DTYP_D;		/* Data descr */
2487 
2488 	/* Save the information for this csum offloading context */
2489 	tdata->csum_lhlen = ehdrlen;
2490 	tdata->csum_iphlen = ip_hlen;
2491 	tdata->csum_flags = csum_flags;
2492 	tdata->csum_txd_upper = *txd_upper;
2493 	tdata->csum_txd_lower = *txd_lower;
2494 
2495 	TXD->tcp_seg_setup.data = htole32(0);
2496 	TXD->cmd_and_length =
2497 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2498 
2499 	if (++curr_txd == tdata->num_tx_desc)
2500 		curr_txd = 0;
2501 
2502 	KKASSERT(tdata->num_tx_desc_avail > 0);
2503 	tdata->num_tx_desc_avail--;
2504 
2505 	tdata->next_avail_tx_desc = curr_txd;
2506 	return 1;
2507 }
2508 
2509 static void
2510 emx_txeof(struct emx_txdata *tdata)
2511 {
2512 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2513 	struct emx_txbuf *tx_buffer;
2514 	int first, num_avail;
2515 
2516 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2517 		return;
2518 
2519 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2520 		return;
2521 
2522 	num_avail = tdata->num_tx_desc_avail;
2523 	first = tdata->next_tx_to_clean;
2524 
2525 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2526 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2527 		struct e1000_tx_desc *tx_desc;
2528 
2529 		tx_desc = &tdata->tx_desc_base[dd_idx];
2530 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2531 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2532 
2533 			if (++dd_idx == tdata->num_tx_desc)
2534 				dd_idx = 0;
2535 
2536 			while (first != dd_idx) {
2537 				logif(pkt_txclean);
2538 
2539 				num_avail++;
2540 
2541 				tx_buffer = &tdata->tx_buf[first];
2542 				if (tx_buffer->m_head) {
2543 					IFNET_STAT_INC(ifp, opackets, 1);
2544 					bus_dmamap_unload(tdata->txtag,
2545 							  tx_buffer->map);
2546 					m_freem(tx_buffer->m_head);
2547 					tx_buffer->m_head = NULL;
2548 				}
2549 
2550 				if (++first == tdata->num_tx_desc)
2551 					first = 0;
2552 			}
2553 		} else {
2554 			break;
2555 		}
2556 	}
2557 	tdata->next_tx_to_clean = first;
2558 	tdata->num_tx_desc_avail = num_avail;
2559 
2560 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2561 		tdata->tx_dd_head = 0;
2562 		tdata->tx_dd_tail = 0;
2563 	}
2564 
2565 	if (!EMX_IS_OACTIVE(tdata)) {
2566 		ifsq_clr_oactive(tdata->ifsq);
2567 
2568 		/* All clean, turn off the timer */
2569 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2570 			tdata->tx_watchdog.wd_timer = 0;
2571 	}
2572 }
2573 
2574 static void
2575 emx_tx_collect(struct emx_txdata *tdata)
2576 {
2577 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2578 	struct emx_txbuf *tx_buffer;
2579 	int tdh, first, num_avail, dd_idx = -1;
2580 
2581 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2582 		return;
2583 
2584 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2585 	if (tdh == tdata->next_tx_to_clean)
2586 		return;
2587 
2588 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2589 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2590 
2591 	num_avail = tdata->num_tx_desc_avail;
2592 	first = tdata->next_tx_to_clean;
2593 
2594 	while (first != tdh) {
2595 		logif(pkt_txclean);
2596 
2597 		num_avail++;
2598 
2599 		tx_buffer = &tdata->tx_buf[first];
2600 		if (tx_buffer->m_head) {
2601 			IFNET_STAT_INC(ifp, opackets, 1);
2602 			bus_dmamap_unload(tdata->txtag,
2603 					  tx_buffer->map);
2604 			m_freem(tx_buffer->m_head);
2605 			tx_buffer->m_head = NULL;
2606 		}
2607 
2608 		if (first == dd_idx) {
2609 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2610 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2611 				tdata->tx_dd_head = 0;
2612 				tdata->tx_dd_tail = 0;
2613 				dd_idx = -1;
2614 			} else {
2615 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2616 			}
2617 		}
2618 
2619 		if (++first == tdata->num_tx_desc)
2620 			first = 0;
2621 	}
2622 	tdata->next_tx_to_clean = first;
2623 	tdata->num_tx_desc_avail = num_avail;
2624 
2625 	if (!EMX_IS_OACTIVE(tdata)) {
2626 		ifsq_clr_oactive(tdata->ifsq);
2627 
2628 		/* All clean, turn off the timer */
2629 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2630 			tdata->tx_watchdog.wd_timer = 0;
2631 	}
2632 }
2633 
2634 /*
2635  * When Link is lost sometimes there is work still in the TX ring
2636  * which will result in a watchdog, rather than allow that do an
2637  * attempted cleanup and then reinit here.  Note that this has been
2638  * seens mostly with fiber adapters.
2639  */
2640 static void
2641 emx_tx_purge(struct emx_softc *sc)
2642 {
2643 	int i;
2644 
2645 	if (sc->link_active)
2646 		return;
2647 
2648 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2649 		struct emx_txdata *tdata = &sc->tx_data[i];
2650 
2651 		if (tdata->tx_watchdog.wd_timer) {
2652 			emx_tx_collect(tdata);
2653 			if (tdata->tx_watchdog.wd_timer) {
2654 				if_printf(&sc->arpcom.ac_if,
2655 				    "Link lost, TX pending, reinit\n");
2656 				emx_init(sc);
2657 				return;
2658 			}
2659 		}
2660 	}
2661 }
2662 
2663 static int
2664 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2665 {
2666 	struct mbuf *m;
2667 	bus_dma_segment_t seg;
2668 	bus_dmamap_t map;
2669 	struct emx_rxbuf *rx_buffer;
2670 	int error, nseg;
2671 
2672 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2673 	if (m == NULL) {
2674 		if (init) {
2675 			if_printf(&rdata->sc->arpcom.ac_if,
2676 				  "Unable to allocate RX mbuf\n");
2677 		}
2678 		return (ENOBUFS);
2679 	}
2680 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2681 
2682 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2683 		m_adj(m, ETHER_ALIGN);
2684 
2685 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2686 			rdata->rx_sparemap, m,
2687 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2688 	if (error) {
2689 		m_freem(m);
2690 		if (init) {
2691 			if_printf(&rdata->sc->arpcom.ac_if,
2692 				  "Unable to load RX mbuf\n");
2693 		}
2694 		return (error);
2695 	}
2696 
2697 	rx_buffer = &rdata->rx_buf[i];
2698 	if (rx_buffer->m_head != NULL)
2699 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2700 
2701 	map = rx_buffer->map;
2702 	rx_buffer->map = rdata->rx_sparemap;
2703 	rdata->rx_sparemap = map;
2704 
2705 	rx_buffer->m_head = m;
2706 	rx_buffer->paddr = seg.ds_addr;
2707 
2708 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2709 	return (0);
2710 }
2711 
2712 static int
2713 emx_create_rx_ring(struct emx_rxdata *rdata)
2714 {
2715 	device_t dev = rdata->sc->dev;
2716 	struct emx_rxbuf *rx_buffer;
2717 	int i, error, rsize, nrxd;
2718 
2719 	/*
2720 	 * Validate number of receive descriptors.  It must not exceed
2721 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2722 	 */
2723 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2724 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2725 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2726 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2727 		    EMX_DEFAULT_RXD, nrxd);
2728 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2729 	} else {
2730 		rdata->num_rx_desc = nrxd;
2731 	}
2732 
2733 	/*
2734 	 * Allocate Receive Descriptor ring
2735 	 */
2736 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2737 			 EMX_DBA_ALIGN);
2738 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2739 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2740 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2741 				&rdata->rx_desc_paddr);
2742 	if (rdata->rx_desc == NULL) {
2743 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2744 		return ENOMEM;
2745 	}
2746 
2747 	rsize = __VM_CACHELINE_ALIGN(
2748 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2749 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2750 
2751 	/*
2752 	 * Create DMA tag for rx buffers
2753 	 */
2754 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2755 			1, 0,			/* alignment, bounds */
2756 			BUS_SPACE_MAXADDR,	/* lowaddr */
2757 			BUS_SPACE_MAXADDR,	/* highaddr */
2758 			NULL, NULL,		/* filter, filterarg */
2759 			MCLBYTES,		/* maxsize */
2760 			1,			/* nsegments */
2761 			MCLBYTES,		/* maxsegsize */
2762 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2763 			&rdata->rxtag);
2764 	if (error) {
2765 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2766 		kfree(rdata->rx_buf, M_DEVBUF);
2767 		rdata->rx_buf = NULL;
2768 		return error;
2769 	}
2770 
2771 	/*
2772 	 * Create spare DMA map for rx buffers
2773 	 */
2774 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2775 				  &rdata->rx_sparemap);
2776 	if (error) {
2777 		device_printf(dev, "Unable to create spare RX DMA map\n");
2778 		bus_dma_tag_destroy(rdata->rxtag);
2779 		kfree(rdata->rx_buf, M_DEVBUF);
2780 		rdata->rx_buf = NULL;
2781 		return error;
2782 	}
2783 
2784 	/*
2785 	 * Create DMA maps for rx buffers
2786 	 */
2787 	for (i = 0; i < rdata->num_rx_desc; i++) {
2788 		rx_buffer = &rdata->rx_buf[i];
2789 
2790 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2791 					  &rx_buffer->map);
2792 		if (error) {
2793 			device_printf(dev, "Unable to create RX DMA map\n");
2794 			emx_destroy_rx_ring(rdata, i);
2795 			return error;
2796 		}
2797 	}
2798 	return (0);
2799 }
2800 
2801 static void
2802 emx_free_rx_ring(struct emx_rxdata *rdata)
2803 {
2804 	int i;
2805 
2806 	for (i = 0; i < rdata->num_rx_desc; i++) {
2807 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2808 
2809 		if (rx_buffer->m_head != NULL) {
2810 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2811 			m_freem(rx_buffer->m_head);
2812 			rx_buffer->m_head = NULL;
2813 		}
2814 	}
2815 
2816 	if (rdata->fmp != NULL)
2817 		m_freem(rdata->fmp);
2818 	rdata->fmp = NULL;
2819 	rdata->lmp = NULL;
2820 }
2821 
2822 static void
2823 emx_free_tx_ring(struct emx_txdata *tdata)
2824 {
2825 	int i;
2826 
2827 	for (i = 0; i < tdata->num_tx_desc; i++) {
2828 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2829 
2830 		if (tx_buffer->m_head != NULL) {
2831 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2832 			m_freem(tx_buffer->m_head);
2833 			tx_buffer->m_head = NULL;
2834 		}
2835 	}
2836 
2837 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2838 
2839 	tdata->csum_flags = 0;
2840 	tdata->csum_lhlen = 0;
2841 	tdata->csum_iphlen = 0;
2842 	tdata->csum_thlen = 0;
2843 	tdata->csum_mss = 0;
2844 	tdata->csum_pktlen = 0;
2845 
2846 	tdata->tx_dd_head = 0;
2847 	tdata->tx_dd_tail = 0;
2848 	tdata->tx_nsegs = 0;
2849 }
2850 
2851 static int
2852 emx_init_rx_ring(struct emx_rxdata *rdata)
2853 {
2854 	int i, error;
2855 
2856 	/* Reset descriptor ring */
2857 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2858 
2859 	/* Allocate new ones. */
2860 	for (i = 0; i < rdata->num_rx_desc; i++) {
2861 		error = emx_newbuf(rdata, i, 1);
2862 		if (error)
2863 			return (error);
2864 	}
2865 
2866 	/* Setup our descriptor pointers */
2867 	rdata->next_rx_desc_to_check = 0;
2868 
2869 	return (0);
2870 }
2871 
2872 static void
2873 emx_init_rx_unit(struct emx_softc *sc)
2874 {
2875 	struct ifnet *ifp = &sc->arpcom.ac_if;
2876 	uint64_t bus_addr;
2877 	uint32_t rctl, itr, rfctl;
2878 	int i;
2879 
2880 	/*
2881 	 * Make sure receives are disabled while setting
2882 	 * up the descriptor ring
2883 	 */
2884 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2885 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2886 
2887 	/*
2888 	 * Set the interrupt throttling rate. Value is calculated
2889 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2890 	 */
2891 	if (sc->int_throttle_ceil)
2892 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2893 	else
2894 		itr = 0;
2895 	emx_set_itr(sc, itr);
2896 
2897 	/* Use extended RX descriptor */
2898 	rfctl = E1000_RFCTL_EXTEN;
2899 
2900 	/* Disable accelerated ackknowledge */
2901 	if (sc->hw.mac.type == e1000_82574)
2902 		rfctl |= E1000_RFCTL_ACK_DIS;
2903 
2904 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2905 
2906 	/*
2907 	 * Receive Checksum Offload for TCP and UDP
2908 	 *
2909 	 * Checksum offloading is also enabled if multiple receive
2910 	 * queue is to be supported, since we need it to figure out
2911 	 * packet type.
2912 	 */
2913 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2914 	    sc->rx_ring_cnt > 1) {
2915 		uint32_t rxcsum;
2916 
2917 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2918 
2919 		/*
2920 		 * NOTE:
2921 		 * PCSD must be enabled to enable multiple
2922 		 * receive queues.
2923 		 */
2924 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2925 			  E1000_RXCSUM_PCSD;
2926 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2927 	}
2928 
2929 	/*
2930 	 * Configure multiple receive queue (RSS)
2931 	 */
2932 	if (sc->rx_ring_cnt > 1) {
2933 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2934 		uint32_t reta;
2935 
2936 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2937 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2938 
2939 		/*
2940 		 * NOTE:
2941 		 * When we reach here, RSS has already been disabled
2942 		 * in emx_stop(), so we could safely configure RSS key
2943 		 * and redirect table.
2944 		 */
2945 
2946 		/*
2947 		 * Configure RSS key
2948 		 */
2949 		toeplitz_get_key(key, sizeof(key));
2950 		for (i = 0; i < EMX_NRSSRK; ++i) {
2951 			uint32_t rssrk;
2952 
2953 			rssrk = EMX_RSSRK_VAL(key, i);
2954 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2955 
2956 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2957 		}
2958 
2959 		/*
2960 		 * Configure RSS redirect table in following fashion:
2961 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2962 		 */
2963 		reta = 0;
2964 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2965 			uint32_t q;
2966 
2967 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2968 			reta |= q << (8 * i);
2969 		}
2970 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2971 
2972 		for (i = 0; i < EMX_NRETA; ++i)
2973 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2974 
2975 		/*
2976 		 * Enable multiple receive queues.
2977 		 * Enable IPv4 RSS standard hash functions.
2978 		 * Disable RSS interrupt.
2979 		 */
2980 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2981 				E1000_MRQC_ENABLE_RSS_2Q |
2982 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2983 				E1000_MRQC_RSS_FIELD_IPV4);
2984 	}
2985 
2986 	/*
2987 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2988 	 * long latencies are observed, like Lenovo X60. This
2989 	 * change eliminates the problem, but since having positive
2990 	 * values in RDTR is a known source of problems on other
2991 	 * platforms another solution is being sought.
2992 	 */
2993 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2994 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2995 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2996 	}
2997 
2998 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2999 		struct emx_rxdata *rdata = &sc->rx_data[i];
3000 
3001 		/*
3002 		 * Setup the Base and Length of the Rx Descriptor Ring
3003 		 */
3004 		bus_addr = rdata->rx_desc_paddr;
3005 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3006 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3007 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3008 		    (uint32_t)(bus_addr >> 32));
3009 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3010 		    (uint32_t)bus_addr);
3011 
3012 		/*
3013 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3014 		 */
3015 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3016 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3017 		    sc->rx_data[i].num_rx_desc - 1);
3018 	}
3019 
3020 	if (sc->hw.mac.type >= e1000_pch2lan) {
3021 		if (ifp->if_mtu > ETHERMTU)
3022 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3023 		else
3024 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3025 	}
3026 
3027 	/* Setup the Receive Control Register */
3028 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3029 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3030 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3031 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3032 
3033 	/* Make sure VLAN Filters are off */
3034 	rctl &= ~E1000_RCTL_VFE;
3035 
3036 	/* Don't store bad paket */
3037 	rctl &= ~E1000_RCTL_SBP;
3038 
3039 	/* MCLBYTES */
3040 	rctl |= E1000_RCTL_SZ_2048;
3041 
3042 	if (ifp->if_mtu > ETHERMTU)
3043 		rctl |= E1000_RCTL_LPE;
3044 	else
3045 		rctl &= ~E1000_RCTL_LPE;
3046 
3047 	/* Enable Receives */
3048 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3049 }
3050 
3051 static void
3052 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3053 {
3054 	struct emx_rxbuf *rx_buffer;
3055 	int i;
3056 
3057 	/* Free Receive Descriptor ring */
3058 	if (rdata->rx_desc) {
3059 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3060 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3061 				rdata->rx_desc_dmap);
3062 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3063 
3064 		rdata->rx_desc = NULL;
3065 	}
3066 
3067 	if (rdata->rx_buf == NULL)
3068 		return;
3069 
3070 	for (i = 0; i < ndesc; i++) {
3071 		rx_buffer = &rdata->rx_buf[i];
3072 
3073 		KKASSERT(rx_buffer->m_head == NULL);
3074 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3075 	}
3076 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3077 	bus_dma_tag_destroy(rdata->rxtag);
3078 
3079 	kfree(rdata->rx_buf, M_DEVBUF);
3080 	rdata->rx_buf = NULL;
3081 }
3082 
3083 static void
3084 emx_rxeof(struct emx_rxdata *rdata, int count)
3085 {
3086 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3087 	uint32_t staterr;
3088 	emx_rxdesc_t *current_desc;
3089 	struct mbuf *mp;
3090 	int i, cpuid = mycpuid;
3091 
3092 	i = rdata->next_rx_desc_to_check;
3093 	current_desc = &rdata->rx_desc[i];
3094 	staterr = le32toh(current_desc->rxd_staterr);
3095 
3096 	if (!(staterr & E1000_RXD_STAT_DD))
3097 		return;
3098 
3099 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3100 		struct pktinfo *pi = NULL, pi0;
3101 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3102 		struct mbuf *m = NULL;
3103 		int eop, len;
3104 
3105 		logif(pkt_receive);
3106 
3107 		mp = rx_buf->m_head;
3108 
3109 		/*
3110 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3111 		 * needs to access the last received byte in the mbuf.
3112 		 */
3113 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3114 				BUS_DMASYNC_POSTREAD);
3115 
3116 		len = le16toh(current_desc->rxd_length);
3117 		if (staterr & E1000_RXD_STAT_EOP) {
3118 			count--;
3119 			eop = 1;
3120 		} else {
3121 			eop = 0;
3122 		}
3123 
3124 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3125 			uint16_t vlan = 0;
3126 			uint32_t mrq, rss_hash;
3127 
3128 			/*
3129 			 * Save several necessary information,
3130 			 * before emx_newbuf() destroy it.
3131 			 */
3132 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3133 				vlan = le16toh(current_desc->rxd_vlan);
3134 
3135 			mrq = le32toh(current_desc->rxd_mrq);
3136 			rss_hash = le32toh(current_desc->rxd_rss);
3137 
3138 			EMX_RSS_DPRINTF(rdata->sc, 10,
3139 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3140 			    rdata->idx, mrq, rss_hash);
3141 
3142 			if (emx_newbuf(rdata, i, 0) != 0) {
3143 				IFNET_STAT_INC(ifp, iqdrops, 1);
3144 				goto discard;
3145 			}
3146 
3147 			/* Assign correct length to the current fragment */
3148 			mp->m_len = len;
3149 
3150 			if (rdata->fmp == NULL) {
3151 				mp->m_pkthdr.len = len;
3152 				rdata->fmp = mp; /* Store the first mbuf */
3153 				rdata->lmp = mp;
3154 			} else {
3155 				/*
3156 				 * Chain mbuf's together
3157 				 */
3158 				rdata->lmp->m_next = mp;
3159 				rdata->lmp = rdata->lmp->m_next;
3160 				rdata->fmp->m_pkthdr.len += len;
3161 			}
3162 
3163 			if (eop) {
3164 				rdata->fmp->m_pkthdr.rcvif = ifp;
3165 				IFNET_STAT_INC(ifp, ipackets, 1);
3166 
3167 				if (ifp->if_capenable & IFCAP_RXCSUM)
3168 					emx_rxcsum(staterr, rdata->fmp);
3169 
3170 				if (staterr & E1000_RXD_STAT_VP) {
3171 					rdata->fmp->m_pkthdr.ether_vlantag =
3172 					    vlan;
3173 					rdata->fmp->m_flags |= M_VLANTAG;
3174 				}
3175 				m = rdata->fmp;
3176 				rdata->fmp = NULL;
3177 				rdata->lmp = NULL;
3178 
3179 				if (ifp->if_capenable & IFCAP_RSS) {
3180 					pi = emx_rssinfo(m, &pi0, mrq,
3181 							 rss_hash, staterr);
3182 				}
3183 #ifdef EMX_RSS_DEBUG
3184 				rdata->rx_pkts++;
3185 #endif
3186 			}
3187 		} else {
3188 			IFNET_STAT_INC(ifp, ierrors, 1);
3189 discard:
3190 			emx_setup_rxdesc(current_desc, rx_buf);
3191 			if (rdata->fmp != NULL) {
3192 				m_freem(rdata->fmp);
3193 				rdata->fmp = NULL;
3194 				rdata->lmp = NULL;
3195 			}
3196 			m = NULL;
3197 		}
3198 
3199 		if (m != NULL)
3200 			ifp->if_input(ifp, m, pi, cpuid);
3201 
3202 		/* Advance our pointers to the next descriptor. */
3203 		if (++i == rdata->num_rx_desc)
3204 			i = 0;
3205 
3206 		current_desc = &rdata->rx_desc[i];
3207 		staterr = le32toh(current_desc->rxd_staterr);
3208 	}
3209 	rdata->next_rx_desc_to_check = i;
3210 
3211 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3212 	if (--i < 0)
3213 		i = rdata->num_rx_desc - 1;
3214 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3215 }
3216 
3217 static void
3218 emx_enable_intr(struct emx_softc *sc)
3219 {
3220 	uint32_t ims_mask = IMS_ENABLE_MASK;
3221 
3222 	lwkt_serialize_handler_enable(&sc->main_serialize);
3223 
3224 #if 0
3225 	if (sc->hw.mac.type == e1000_82574) {
3226 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3227 		ims_mask |= EM_MSIX_MASK;
3228 	}
3229 #endif
3230 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3231 }
3232 
3233 static void
3234 emx_disable_intr(struct emx_softc *sc)
3235 {
3236 	if (sc->hw.mac.type == e1000_82574)
3237 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3238 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3239 
3240 	lwkt_serialize_handler_disable(&sc->main_serialize);
3241 }
3242 
3243 /*
3244  * Bit of a misnomer, what this really means is
3245  * to enable OS management of the system... aka
3246  * to disable special hardware management features
3247  */
3248 static void
3249 emx_get_mgmt(struct emx_softc *sc)
3250 {
3251 	/* A shared code workaround */
3252 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3253 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3254 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3255 
3256 		/* disable hardware interception of ARP */
3257 		manc &= ~(E1000_MANC_ARP_EN);
3258 
3259                 /* enable receiving management packets to the host */
3260 		manc |= E1000_MANC_EN_MNG2HOST;
3261 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3262 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3263 		manc2h |= E1000_MNG2HOST_PORT_623;
3264 		manc2h |= E1000_MNG2HOST_PORT_664;
3265 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3266 
3267 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3268 	}
3269 }
3270 
3271 /*
3272  * Give control back to hardware management
3273  * controller if there is one.
3274  */
3275 static void
3276 emx_rel_mgmt(struct emx_softc *sc)
3277 {
3278 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3279 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3280 
3281 		/* re-enable hardware interception of ARP */
3282 		manc |= E1000_MANC_ARP_EN;
3283 		manc &= ~E1000_MANC_EN_MNG2HOST;
3284 
3285 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3286 	}
3287 }
3288 
3289 /*
3290  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3291  * For ASF and Pass Through versions of f/w this means that
3292  * the driver is loaded.  For AMT version (only with 82573)
3293  * of the f/w this means that the network i/f is open.
3294  */
3295 static void
3296 emx_get_hw_control(struct emx_softc *sc)
3297 {
3298 	/* Let firmware know the driver has taken over */
3299 	if (sc->hw.mac.type == e1000_82573) {
3300 		uint32_t swsm;
3301 
3302 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3303 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3304 		    swsm | E1000_SWSM_DRV_LOAD);
3305 	} else {
3306 		uint32_t ctrl_ext;
3307 
3308 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3309 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3310 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3311 	}
3312 	sc->flags |= EMX_FLAG_HW_CTRL;
3313 }
3314 
3315 /*
3316  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3317  * For ASF and Pass Through versions of f/w this means that the
3318  * driver is no longer loaded.  For AMT version (only with 82573)
3319  * of the f/w this means that the network i/f is closed.
3320  */
3321 static void
3322 emx_rel_hw_control(struct emx_softc *sc)
3323 {
3324 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3325 		return;
3326 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3327 
3328 	/* Let firmware taken over control of h/w */
3329 	if (sc->hw.mac.type == e1000_82573) {
3330 		uint32_t swsm;
3331 
3332 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3333 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3334 		    swsm & ~E1000_SWSM_DRV_LOAD);
3335 	} else {
3336 		uint32_t ctrl_ext;
3337 
3338 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3339 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3340 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3341 	}
3342 }
3343 
3344 static int
3345 emx_is_valid_eaddr(const uint8_t *addr)
3346 {
3347 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3348 
3349 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3350 		return (FALSE);
3351 
3352 	return (TRUE);
3353 }
3354 
3355 /*
3356  * Enable PCI Wake On Lan capability
3357  */
3358 void
3359 emx_enable_wol(device_t dev)
3360 {
3361 	uint16_t cap, status;
3362 	uint8_t id;
3363 
3364 	/* First find the capabilities pointer*/
3365 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3366 
3367 	/* Read the PM Capabilities */
3368 	id = pci_read_config(dev, cap, 1);
3369 	if (id != PCIY_PMG)     /* Something wrong */
3370 		return;
3371 
3372 	/*
3373 	 * OK, we have the power capabilities,
3374 	 * so now get the status register
3375 	 */
3376 	cap += PCIR_POWER_STATUS;
3377 	status = pci_read_config(dev, cap, 2);
3378 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3379 	pci_write_config(dev, cap, status, 2);
3380 }
3381 
3382 static void
3383 emx_update_stats(struct emx_softc *sc)
3384 {
3385 	struct ifnet *ifp = &sc->arpcom.ac_if;
3386 
3387 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3388 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3389 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3390 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3391 	}
3392 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3393 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3394 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3395 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3396 
3397 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3398 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3399 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3400 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3401 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3402 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3403 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3404 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3405 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3406 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3407 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3408 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3409 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3410 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3411 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3412 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3413 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3414 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3415 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3416 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3417 
3418 	/* For the 64-bit byte counters the low dword must be read first. */
3419 	/* Both registers clear on the read of the high dword */
3420 
3421 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3422 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3423 
3424 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3425 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3426 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3427 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3428 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3429 
3430 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3431 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3432 
3433 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3434 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3435 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3436 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3437 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3438 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3439 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3440 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3441 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3442 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3443 
3444 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3445 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3446 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3447 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3448 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3449 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3450 
3451 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3452 
3453 	/* Rx Errors */
3454 	IFNET_STAT_SET(ifp, ierrors,
3455 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3456 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3457 
3458 	/* Tx Errors */
3459 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3460 }
3461 
3462 static void
3463 emx_print_debug_info(struct emx_softc *sc)
3464 {
3465 	device_t dev = sc->dev;
3466 	uint8_t *hw_addr = sc->hw.hw_addr;
3467 	int i;
3468 
3469 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3470 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3471 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3472 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3473 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3474 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3475 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3476 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3477 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3478 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3479 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3480 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3481 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3482 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3483 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3484 
3485 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3486 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3487 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3488 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3489 	}
3490 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3491 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3492 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3493 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3494 	}
3495 
3496 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3497 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3498 		    sc->tx_data[i].num_tx_desc_avail);
3499 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3500 		    sc->tx_data[i].tso_segments);
3501 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3502 		    sc->tx_data[i].tso_ctx_reused);
3503 	}
3504 }
3505 
3506 static void
3507 emx_print_hw_stats(struct emx_softc *sc)
3508 {
3509 	device_t dev = sc->dev;
3510 
3511 	device_printf(dev, "Excessive collisions = %lld\n",
3512 	    (long long)sc->stats.ecol);
3513 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3514 	device_printf(dev, "Symbol errors = %lld\n",
3515 	    (long long)sc->stats.symerrs);
3516 #endif
3517 	device_printf(dev, "Sequence errors = %lld\n",
3518 	    (long long)sc->stats.sec);
3519 	device_printf(dev, "Defer count = %lld\n",
3520 	    (long long)sc->stats.dc);
3521 	device_printf(dev, "Missed Packets = %lld\n",
3522 	    (long long)sc->stats.mpc);
3523 	device_printf(dev, "Receive No Buffers = %lld\n",
3524 	    (long long)sc->stats.rnbc);
3525 	/* RLEC is inaccurate on some hardware, calculate our own. */
3526 	device_printf(dev, "Receive Length Errors = %lld\n",
3527 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3528 	device_printf(dev, "Receive errors = %lld\n",
3529 	    (long long)sc->stats.rxerrc);
3530 	device_printf(dev, "Crc errors = %lld\n",
3531 	    (long long)sc->stats.crcerrs);
3532 	device_printf(dev, "Alignment errors = %lld\n",
3533 	    (long long)sc->stats.algnerrc);
3534 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3535 	    (long long)sc->stats.cexterr);
3536 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3537 	device_printf(dev, "XON Rcvd = %lld\n",
3538 	    (long long)sc->stats.xonrxc);
3539 	device_printf(dev, "XON Xmtd = %lld\n",
3540 	    (long long)sc->stats.xontxc);
3541 	device_printf(dev, "XOFF Rcvd = %lld\n",
3542 	    (long long)sc->stats.xoffrxc);
3543 	device_printf(dev, "XOFF Xmtd = %lld\n",
3544 	    (long long)sc->stats.xofftxc);
3545 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3546 	    (long long)sc->stats.gprc);
3547 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3548 	    (long long)sc->stats.gptc);
3549 }
3550 
3551 static void
3552 emx_print_nvm_info(struct emx_softc *sc)
3553 {
3554 	uint16_t eeprom_data;
3555 	int i, j, row = 0;
3556 
3557 	/* Its a bit crude, but it gets the job done */
3558 	kprintf("\nInterface EEPROM Dump:\n");
3559 	kprintf("Offset\n0x0000  ");
3560 	for (i = 0, j = 0; i < 32; i++, j++) {
3561 		if (j == 8) { /* Make the offset block */
3562 			j = 0; ++row;
3563 			kprintf("\n0x00%x0  ",row);
3564 		}
3565 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3566 		kprintf("%04x ", eeprom_data);
3567 	}
3568 	kprintf("\n");
3569 }
3570 
3571 static int
3572 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3573 {
3574 	struct emx_softc *sc;
3575 	struct ifnet *ifp;
3576 	int error, result;
3577 
3578 	result = -1;
3579 	error = sysctl_handle_int(oidp, &result, 0, req);
3580 	if (error || !req->newptr)
3581 		return (error);
3582 
3583 	sc = (struct emx_softc *)arg1;
3584 	ifp = &sc->arpcom.ac_if;
3585 
3586 	ifnet_serialize_all(ifp);
3587 
3588 	if (result == 1)
3589 		emx_print_debug_info(sc);
3590 
3591 	/*
3592 	 * This value will cause a hex dump of the
3593 	 * first 32 16-bit words of the EEPROM to
3594 	 * the screen.
3595 	 */
3596 	if (result == 2)
3597 		emx_print_nvm_info(sc);
3598 
3599 	ifnet_deserialize_all(ifp);
3600 
3601 	return (error);
3602 }
3603 
3604 static int
3605 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3606 {
3607 	int error, result;
3608 
3609 	result = -1;
3610 	error = sysctl_handle_int(oidp, &result, 0, req);
3611 	if (error || !req->newptr)
3612 		return (error);
3613 
3614 	if (result == 1) {
3615 		struct emx_softc *sc = (struct emx_softc *)arg1;
3616 		struct ifnet *ifp = &sc->arpcom.ac_if;
3617 
3618 		ifnet_serialize_all(ifp);
3619 		emx_print_hw_stats(sc);
3620 		ifnet_deserialize_all(ifp);
3621 	}
3622 	return (error);
3623 }
3624 
3625 static void
3626 emx_add_sysctl(struct emx_softc *sc)
3627 {
3628 	struct sysctl_ctx_list *ctx;
3629 	struct sysctl_oid *tree;
3630 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3631 	char pkt_desc[32];
3632 	int i;
3633 #endif
3634 
3635 	ctx = device_get_sysctl_ctx(sc->dev);
3636 	tree = device_get_sysctl_tree(sc->dev);
3637 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3638 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3639 			emx_sysctl_debug_info, "I", "Debug Information");
3640 
3641 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3642 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3643 			emx_sysctl_stats, "I", "Statistics");
3644 
3645 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3646 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3647 	    "# of RX descs");
3648 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3649 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3650 	    "# of TX descs");
3651 
3652 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3653 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3654 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3655 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3656 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3657 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3658 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3659 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3660 	    emx_sysctl_tx_wreg_nsegs, "I",
3661 	    "# segments sent before write to hardware register");
3662 
3663 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3664 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3665 	    "# of RX rings");
3666 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3667 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3668 	    "# of TX rings");
3669 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3670 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3671 	    "# of TX rings used");
3672 
3673 #ifdef IFPOLL_ENABLE
3674 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3675 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3676 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3677 			"NPOLLING RX cpu offset");
3678 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3679 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3680 			sc, 0, emx_sysctl_npoll_txoff, "I",
3681 			"NPOLLING TX cpu offset");
3682 #endif
3683 
3684 #ifdef EMX_RSS_DEBUG
3685 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3686 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3687 		       0, "RSS debug level");
3688 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3689 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3690 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3691 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3692 		    "RXed packets");
3693 	}
3694 #endif
3695 #ifdef EMX_TSS_DEBUG
3696 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3697 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3698 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3699 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3700 		    "TXed packets");
3701 	}
3702 #endif
3703 }
3704 
3705 static int
3706 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3707 {
3708 	struct emx_softc *sc = (void *)arg1;
3709 	struct ifnet *ifp = &sc->arpcom.ac_if;
3710 	int error, throttle;
3711 
3712 	throttle = sc->int_throttle_ceil;
3713 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3714 	if (error || req->newptr == NULL)
3715 		return error;
3716 	if (throttle < 0 || throttle > 1000000000 / 256)
3717 		return EINVAL;
3718 
3719 	if (throttle) {
3720 		/*
3721 		 * Set the interrupt throttling rate in 256ns increments,
3722 		 * recalculate sysctl value assignment to get exact frequency.
3723 		 */
3724 		throttle = 1000000000 / 256 / throttle;
3725 
3726 		/* Upper 16bits of ITR is reserved and should be zero */
3727 		if (throttle & 0xffff0000)
3728 			return EINVAL;
3729 	}
3730 
3731 	ifnet_serialize_all(ifp);
3732 
3733 	if (throttle)
3734 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3735 	else
3736 		sc->int_throttle_ceil = 0;
3737 
3738 	if (ifp->if_flags & IFF_RUNNING)
3739 		emx_set_itr(sc, throttle);
3740 
3741 	ifnet_deserialize_all(ifp);
3742 
3743 	if (bootverbose) {
3744 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3745 			  sc->int_throttle_ceil);
3746 	}
3747 	return 0;
3748 }
3749 
3750 static int
3751 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3752 {
3753 	struct emx_softc *sc = (void *)arg1;
3754 	struct ifnet *ifp = &sc->arpcom.ac_if;
3755 	struct emx_txdata *tdata = &sc->tx_data[0];
3756 	int error, segs;
3757 
3758 	segs = tdata->tx_intr_nsegs;
3759 	error = sysctl_handle_int(oidp, &segs, 0, req);
3760 	if (error || req->newptr == NULL)
3761 		return error;
3762 	if (segs <= 0)
3763 		return EINVAL;
3764 
3765 	ifnet_serialize_all(ifp);
3766 
3767 	/*
3768 	 * Don't allow tx_intr_nsegs to become:
3769 	 * o  Less the oact_tx_desc
3770 	 * o  Too large that no TX desc will cause TX interrupt to
3771 	 *    be generated (OACTIVE will never recover)
3772 	 * o  Too small that will cause tx_dd[] overflow
3773 	 */
3774 	if (segs < tdata->oact_tx_desc ||
3775 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3776 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3777 		error = EINVAL;
3778 	} else {
3779 		int i;
3780 
3781 		error = 0;
3782 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3783 			sc->tx_data[i].tx_intr_nsegs = segs;
3784 	}
3785 
3786 	ifnet_deserialize_all(ifp);
3787 
3788 	return error;
3789 }
3790 
3791 static int
3792 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3793 {
3794 	struct emx_softc *sc = (void *)arg1;
3795 	struct ifnet *ifp = &sc->arpcom.ac_if;
3796 	int error, nsegs, i;
3797 
3798 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3799 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3800 	if (error || req->newptr == NULL)
3801 		return error;
3802 
3803 	ifnet_serialize_all(ifp);
3804 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3805 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3806 	ifnet_deserialize_all(ifp);
3807 
3808 	return 0;
3809 }
3810 
3811 #ifdef IFPOLL_ENABLE
3812 
3813 static int
3814 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3815 {
3816 	struct emx_softc *sc = (void *)arg1;
3817 	struct ifnet *ifp = &sc->arpcom.ac_if;
3818 	int error, off;
3819 
3820 	off = sc->rx_npoll_off;
3821 	error = sysctl_handle_int(oidp, &off, 0, req);
3822 	if (error || req->newptr == NULL)
3823 		return error;
3824 	if (off < 0)
3825 		return EINVAL;
3826 
3827 	ifnet_serialize_all(ifp);
3828 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3829 		error = EINVAL;
3830 	} else {
3831 		error = 0;
3832 		sc->rx_npoll_off = off;
3833 	}
3834 	ifnet_deserialize_all(ifp);
3835 
3836 	return error;
3837 }
3838 
3839 static int
3840 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3841 {
3842 	struct emx_softc *sc = (void *)arg1;
3843 	struct ifnet *ifp = &sc->arpcom.ac_if;
3844 	int error, off;
3845 
3846 	off = sc->tx_npoll_off;
3847 	error = sysctl_handle_int(oidp, &off, 0, req);
3848 	if (error || req->newptr == NULL)
3849 		return error;
3850 	if (off < 0)
3851 		return EINVAL;
3852 
3853 	ifnet_serialize_all(ifp);
3854 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3855 		error = EINVAL;
3856 	} else {
3857 		error = 0;
3858 		sc->tx_npoll_off = off;
3859 	}
3860 	ifnet_deserialize_all(ifp);
3861 
3862 	return error;
3863 }
3864 
3865 #endif	/* IFPOLL_ENABLE */
3866 
3867 static int
3868 emx_dma_alloc(struct emx_softc *sc)
3869 {
3870 	int error, i;
3871 
3872 	/*
3873 	 * Create top level busdma tag
3874 	 */
3875 	error = bus_dma_tag_create(NULL, 1, 0,
3876 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3877 			NULL, NULL,
3878 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3879 			0, &sc->parent_dtag);
3880 	if (error) {
3881 		device_printf(sc->dev, "could not create top level DMA tag\n");
3882 		return error;
3883 	}
3884 
3885 	/*
3886 	 * Allocate transmit descriptors ring and buffers
3887 	 */
3888 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3889 		error = emx_create_tx_ring(&sc->tx_data[i]);
3890 		if (error) {
3891 			device_printf(sc->dev,
3892 			    "Could not setup transmit structures\n");
3893 			return error;
3894 		}
3895 	}
3896 
3897 	/*
3898 	 * Allocate receive descriptors ring and buffers
3899 	 */
3900 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3901 		error = emx_create_rx_ring(&sc->rx_data[i]);
3902 		if (error) {
3903 			device_printf(sc->dev,
3904 			    "Could not setup receive structures\n");
3905 			return error;
3906 		}
3907 	}
3908 	return 0;
3909 }
3910 
3911 static void
3912 emx_dma_free(struct emx_softc *sc)
3913 {
3914 	int i;
3915 
3916 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3917 		emx_destroy_tx_ring(&sc->tx_data[i],
3918 		    sc->tx_data[i].num_tx_desc);
3919 	}
3920 
3921 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3922 		emx_destroy_rx_ring(&sc->rx_data[i],
3923 		    sc->rx_data[i].num_rx_desc);
3924 	}
3925 
3926 	/* Free top level busdma tag */
3927 	if (sc->parent_dtag != NULL)
3928 		bus_dma_tag_destroy(sc->parent_dtag);
3929 }
3930 
3931 static void
3932 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3933 {
3934 	struct emx_softc *sc = ifp->if_softc;
3935 
3936 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3937 }
3938 
3939 static void
3940 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3941 {
3942 	struct emx_softc *sc = ifp->if_softc;
3943 
3944 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3945 }
3946 
3947 static int
3948 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3949 {
3950 	struct emx_softc *sc = ifp->if_softc;
3951 
3952 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3953 }
3954 
3955 static void
3956 emx_serialize_skipmain(struct emx_softc *sc)
3957 {
3958 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3959 }
3960 
3961 static void
3962 emx_deserialize_skipmain(struct emx_softc *sc)
3963 {
3964 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3965 }
3966 
3967 #ifdef INVARIANTS
3968 
3969 static void
3970 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3971     boolean_t serialized)
3972 {
3973 	struct emx_softc *sc = ifp->if_softc;
3974 
3975 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3976 	    slz, serialized);
3977 }
3978 
3979 #endif	/* INVARIANTS */
3980 
3981 #ifdef IFPOLL_ENABLE
3982 
3983 static void
3984 emx_npoll_status(struct ifnet *ifp)
3985 {
3986 	struct emx_softc *sc = ifp->if_softc;
3987 	uint32_t reg_icr;
3988 
3989 	ASSERT_SERIALIZED(&sc->main_serialize);
3990 
3991 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3992 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3993 		callout_stop(&sc->timer);
3994 		sc->hw.mac.get_link_status = 1;
3995 		emx_update_link_status(sc);
3996 		callout_reset(&sc->timer, hz, emx_timer, sc);
3997 	}
3998 }
3999 
4000 static void
4001 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4002 {
4003 	struct emx_txdata *tdata = arg;
4004 
4005 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4006 
4007 	emx_txeof(tdata);
4008 	if (!ifsq_is_empty(tdata->ifsq))
4009 		ifsq_devstart(tdata->ifsq);
4010 }
4011 
4012 static void
4013 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4014 {
4015 	struct emx_rxdata *rdata = arg;
4016 
4017 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4018 
4019 	emx_rxeof(rdata, cycle);
4020 }
4021 
4022 static void
4023 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4024 {
4025 	struct emx_softc *sc = ifp->if_softc;
4026 	int i, txr_cnt;
4027 
4028 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4029 
4030 	if (info) {
4031 		int off;
4032 
4033 		info->ifpi_status.status_func = emx_npoll_status;
4034 		info->ifpi_status.serializer = &sc->main_serialize;
4035 
4036 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4037 		off = sc->tx_npoll_off;
4038 		for (i = 0; i < txr_cnt; ++i) {
4039 			struct emx_txdata *tdata = &sc->tx_data[i];
4040 			int idx = i + off;
4041 
4042 			KKASSERT(idx < ncpus2);
4043 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4044 			info->ifpi_tx[idx].arg = tdata;
4045 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4046 			ifsq_set_cpuid(tdata->ifsq, idx);
4047 		}
4048 
4049 		off = sc->rx_npoll_off;
4050 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4051 			struct emx_rxdata *rdata = &sc->rx_data[i];
4052 			int idx = i + off;
4053 
4054 			KKASSERT(idx < ncpus2);
4055 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4056 			info->ifpi_rx[idx].arg = rdata;
4057 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4058 		}
4059 
4060 		if (ifp->if_flags & IFF_RUNNING) {
4061 			if (txr_cnt == sc->tx_ring_inuse)
4062 				emx_disable_intr(sc);
4063 			else
4064 				emx_init(sc);
4065 		}
4066 	} else {
4067 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4068 			struct emx_txdata *tdata = &sc->tx_data[i];
4069 
4070 			ifsq_set_cpuid(tdata->ifsq,
4071 			    rman_get_cpuid(sc->intr_res));
4072 		}
4073 
4074 		if (ifp->if_flags & IFF_RUNNING) {
4075 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4076 			if (txr_cnt == sc->tx_ring_inuse)
4077 				emx_enable_intr(sc);
4078 			else
4079 				emx_init(sc);
4080 		}
4081 	}
4082 }
4083 
4084 #endif	/* IFPOLL_ENABLE */
4085 
4086 static void
4087 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4088 {
4089 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4090 	if (sc->hw.mac.type == e1000_82574) {
4091 		int i;
4092 
4093 		/*
4094 		 * When using MSIX interrupts we need to
4095 		 * throttle using the EITR register
4096 		 */
4097 		for (i = 0; i < 4; ++i)
4098 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4099 	}
4100 }
4101 
4102 /*
4103  * Disable the L0s, 82574L Errata #20
4104  */
4105 static void
4106 emx_disable_aspm(struct emx_softc *sc)
4107 {
4108 	uint16_t link_cap, link_ctrl, disable;
4109 	uint8_t pcie_ptr, reg;
4110 	device_t dev = sc->dev;
4111 
4112 	switch (sc->hw.mac.type) {
4113 	case e1000_82571:
4114 	case e1000_82572:
4115 	case e1000_82573:
4116 		/*
4117 		 * 82573 specification update
4118 		 * errata #8 disable L0s
4119 		 * errata #41 disable L1
4120 		 *
4121 		 * 82571/82572 specification update
4122 		 # errata #13 disable L1
4123 		 * errata #68 disable L0s
4124 		 */
4125 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4126 		break;
4127 
4128 	case e1000_82574:
4129 		/*
4130 		 * 82574 specification update errata #20
4131 		 *
4132 		 * There is no need to disable L1
4133 		 */
4134 		disable = PCIEM_LNKCTL_ASPM_L0S;
4135 		break;
4136 
4137 	default:
4138 		return;
4139 	}
4140 
4141 	pcie_ptr = pci_get_pciecap_ptr(dev);
4142 	if (pcie_ptr == 0)
4143 		return;
4144 
4145 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4146 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4147 		return;
4148 
4149 	if (bootverbose)
4150 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4151 
4152 	reg = pcie_ptr + PCIER_LINKCTRL;
4153 	link_ctrl = pci_read_config(dev, reg, 2);
4154 	link_ctrl &= ~disable;
4155 	pci_write_config(dev, reg, link_ctrl, 2);
4156 }
4157 
4158 static int
4159 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4160 {
4161 	int iphlen, hoff, thoff, ex = 0;
4162 	struct mbuf *m;
4163 	struct ip *ip;
4164 
4165 	m = *mp;
4166 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4167 
4168 	iphlen = m->m_pkthdr.csum_iphlen;
4169 	thoff = m->m_pkthdr.csum_thlen;
4170 	hoff = m->m_pkthdr.csum_lhlen;
4171 
4172 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4173 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4174 	KASSERT(hoff > 0, ("invalid ether hlen"));
4175 
4176 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4177 		ex = 4;
4178 
4179 	if (m->m_len < hoff + iphlen + thoff + ex) {
4180 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4181 		if (m == NULL) {
4182 			*mp = NULL;
4183 			return ENOBUFS;
4184 		}
4185 		*mp = m;
4186 	}
4187 	ip = mtodoff(m, struct ip *, hoff);
4188 	ip->ip_len = 0;
4189 
4190 	return 0;
4191 }
4192 
4193 static int
4194 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4195     uint32_t *txd_upper, uint32_t *txd_lower)
4196 {
4197 	struct e1000_context_desc *TXD;
4198 	int hoff, iphlen, thoff, hlen;
4199 	int mss, pktlen, curr_txd;
4200 
4201 #ifdef EMX_TSO_DEBUG
4202 	tdata->tso_segments++;
4203 #endif
4204 
4205 	iphlen = mp->m_pkthdr.csum_iphlen;
4206 	thoff = mp->m_pkthdr.csum_thlen;
4207 	hoff = mp->m_pkthdr.csum_lhlen;
4208 	mss = mp->m_pkthdr.tso_segsz;
4209 	pktlen = mp->m_pkthdr.len;
4210 
4211 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4212 	    tdata->csum_flags == CSUM_TSO &&
4213 	    tdata->csum_iphlen == iphlen &&
4214 	    tdata->csum_lhlen == hoff &&
4215 	    tdata->csum_thlen == thoff &&
4216 	    tdata->csum_mss == mss &&
4217 	    tdata->csum_pktlen == pktlen) {
4218 		*txd_upper = tdata->csum_txd_upper;
4219 		*txd_lower = tdata->csum_txd_lower;
4220 #ifdef EMX_TSO_DEBUG
4221 		tdata->tso_ctx_reused++;
4222 #endif
4223 		return 0;
4224 	}
4225 	hlen = hoff + iphlen + thoff;
4226 
4227 	/*
4228 	 * Setup a new TSO context.
4229 	 */
4230 
4231 	curr_txd = tdata->next_avail_tx_desc;
4232 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4233 
4234 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4235 		     E1000_TXD_DTYP_D |		/* Data descr type */
4236 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4237 
4238 	/* IP and/or TCP header checksum calculation and insertion. */
4239 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4240 
4241 	/*
4242 	 * Start offset for header checksum calculation.
4243 	 * End offset for header checksum calculation.
4244 	 * Offset of place put the checksum.
4245 	 */
4246 	TXD->lower_setup.ip_fields.ipcss = hoff;
4247 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4248 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4249 
4250 	/*
4251 	 * Start offset for payload checksum calculation.
4252 	 * End offset for payload checksum calculation.
4253 	 * Offset of place to put the checksum.
4254 	 */
4255 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4256 	TXD->upper_setup.tcp_fields.tucse = 0;
4257 	TXD->upper_setup.tcp_fields.tucso =
4258 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4259 
4260 	/*
4261 	 * Payload size per packet w/o any headers.
4262 	 * Length of all headers up to payload.
4263 	 */
4264 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4265 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4266 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4267 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4268 				E1000_TXD_CMD_TSE |	/* TSE context */
4269 				E1000_TXD_CMD_IP |	/* Do IP csum */
4270 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4271 				(pktlen - hlen));	/* Total len */
4272 
4273 	/* Save the information for this TSO context */
4274 	tdata->csum_flags = CSUM_TSO;
4275 	tdata->csum_lhlen = hoff;
4276 	tdata->csum_iphlen = iphlen;
4277 	tdata->csum_thlen = thoff;
4278 	tdata->csum_mss = mss;
4279 	tdata->csum_pktlen = pktlen;
4280 	tdata->csum_txd_upper = *txd_upper;
4281 	tdata->csum_txd_lower = *txd_lower;
4282 
4283 	if (++curr_txd == tdata->num_tx_desc)
4284 		curr_txd = 0;
4285 
4286 	KKASSERT(tdata->num_tx_desc_avail > 0);
4287 	tdata->num_tx_desc_avail--;
4288 
4289 	tdata->next_avail_tx_desc = curr_txd;
4290 	return 1;
4291 }
4292 
4293 static int
4294 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4295 {
4296 	if (polling)
4297 		return sc->tx_ring_cnt;
4298 	else
4299 		return 1;
4300 }
4301