xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision b29f78b5)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	EMX_DEVICE(PCH_LPT_I217_LM),
165 	EMX_DEVICE(PCH_LPT_I217_V),
166 	EMX_DEVICE(PCH_LPTLP_I218_LM),
167 	EMX_DEVICE(PCH_LPTLP_I218_V),
168 	EMX_DEVICE(PCH_I218_LM2),
169 	EMX_DEVICE(PCH_I218_V2),
170 	EMX_DEVICE(PCH_I218_LM3),
171 	EMX_DEVICE(PCH_I218_V3),
172 
173 	/* required last entry */
174 	EMX_DEVICE_NULL
175 };
176 
177 static int	emx_probe(device_t);
178 static int	emx_attach(device_t);
179 static int	emx_detach(device_t);
180 static int	emx_shutdown(device_t);
181 static int	emx_suspend(device_t);
182 static int	emx_resume(device_t);
183 
184 static void	emx_init(void *);
185 static void	emx_stop(struct emx_softc *);
186 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
187 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
188 #ifdef IFPOLL_ENABLE
189 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
190 static void	emx_npoll_status(struct ifnet *);
191 static void	emx_npoll_tx(struct ifnet *, void *, int);
192 static void	emx_npoll_rx(struct ifnet *, void *, int);
193 #endif
194 static void	emx_watchdog(struct ifaltq_subque *);
195 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
196 static int	emx_media_change(struct ifnet *);
197 static void	emx_timer(void *);
198 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
199 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
200 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
201 #ifdef INVARIANTS
202 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
203 		    boolean_t);
204 #endif
205 
206 static void	emx_intr(void *);
207 static void	emx_intr_mask(void *);
208 static void	emx_intr_body(struct emx_softc *, boolean_t);
209 static void	emx_rxeof(struct emx_rxdata *, int);
210 static void	emx_txeof(struct emx_txdata *);
211 static void	emx_tx_collect(struct emx_txdata *);
212 static void	emx_tx_purge(struct emx_softc *);
213 static void	emx_enable_intr(struct emx_softc *);
214 static void	emx_disable_intr(struct emx_softc *);
215 
216 static int	emx_dma_alloc(struct emx_softc *);
217 static void	emx_dma_free(struct emx_softc *);
218 static void	emx_init_tx_ring(struct emx_txdata *);
219 static int	emx_init_rx_ring(struct emx_rxdata *);
220 static void	emx_free_tx_ring(struct emx_txdata *);
221 static void	emx_free_rx_ring(struct emx_rxdata *);
222 static int	emx_create_tx_ring(struct emx_txdata *);
223 static int	emx_create_rx_ring(struct emx_rxdata *);
224 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
225 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
226 static int	emx_newbuf(struct emx_rxdata *, int, int);
227 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
228 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
229 		    uint32_t *, uint32_t *);
230 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
231 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
232 		    uint32_t *, uint32_t *);
233 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
234 
235 static int 	emx_is_valid_eaddr(const uint8_t *);
236 static int	emx_reset(struct emx_softc *);
237 static void	emx_setup_ifp(struct emx_softc *);
238 static void	emx_init_tx_unit(struct emx_softc *);
239 static void	emx_init_rx_unit(struct emx_softc *);
240 static void	emx_update_stats(struct emx_softc *);
241 static void	emx_set_promisc(struct emx_softc *);
242 static void	emx_disable_promisc(struct emx_softc *);
243 static void	emx_set_multi(struct emx_softc *);
244 static void	emx_update_link_status(struct emx_softc *);
245 static void	emx_smartspeed(struct emx_softc *);
246 static void	emx_set_itr(struct emx_softc *, uint32_t);
247 static void	emx_disable_aspm(struct emx_softc *);
248 
249 static void	emx_print_debug_info(struct emx_softc *);
250 static void	emx_print_nvm_info(struct emx_softc *);
251 static void	emx_print_hw_stats(struct emx_softc *);
252 
253 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
254 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
255 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
256 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
257 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
258 #ifdef IFPOLL_ENABLE
259 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
260 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
261 #endif
262 static void	emx_add_sysctl(struct emx_softc *);
263 
264 static void	emx_serialize_skipmain(struct emx_softc *);
265 static void	emx_deserialize_skipmain(struct emx_softc *);
266 
267 /* Management and WOL Support */
268 static void	emx_get_mgmt(struct emx_softc *);
269 static void	emx_rel_mgmt(struct emx_softc *);
270 static void	emx_get_hw_control(struct emx_softc *);
271 static void	emx_rel_hw_control(struct emx_softc *);
272 static void	emx_enable_wol(device_t);
273 
274 static device_method_t emx_methods[] = {
275 	/* Device interface */
276 	DEVMETHOD(device_probe,		emx_probe),
277 	DEVMETHOD(device_attach,	emx_attach),
278 	DEVMETHOD(device_detach,	emx_detach),
279 	DEVMETHOD(device_shutdown,	emx_shutdown),
280 	DEVMETHOD(device_suspend,	emx_suspend),
281 	DEVMETHOD(device_resume,	emx_resume),
282 	DEVMETHOD_END
283 };
284 
285 static driver_t emx_driver = {
286 	"emx",
287 	emx_methods,
288 	sizeof(struct emx_softc),
289 };
290 
291 static devclass_t emx_devclass;
292 
293 DECLARE_DUMMY_MODULE(if_emx);
294 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
295 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
296 
297 /*
298  * Tunables
299  */
300 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
301 static int	emx_rxd = EMX_DEFAULT_RXD;
302 static int	emx_txd = EMX_DEFAULT_TXD;
303 static int	emx_smart_pwr_down = 0;
304 static int	emx_rxr = 0;
305 static int	emx_txr = 1;
306 
307 /* Controls whether promiscuous also shows bad packets */
308 static int	emx_debug_sbp = 0;
309 
310 static int	emx_82573_workaround = 1;
311 static int	emx_msi_enable = 1;
312 
313 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
314 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
315 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
316 TUNABLE_INT("hw.emx.txd", &emx_txd);
317 TUNABLE_INT("hw.emx.txr", &emx_txr);
318 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
319 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
320 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
321 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
322 
323 /* Global used in WOL setup with multiport cards */
324 static int	emx_global_quad_port_a = 0;
325 
326 /* Set this to one to display debug statistics */
327 static int	emx_display_debug_stats = 0;
328 
329 #if !defined(KTR_IF_EMX)
330 #define KTR_IF_EMX	KTR_ALL
331 #endif
332 KTR_INFO_MASTER(if_emx);
333 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
334 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
335 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
336 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
337 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
338 #define logif(name)	KTR_LOG(if_emx_ ## name)
339 
340 static __inline void
341 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
342 {
343 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
344 	/* DD bit must be cleared */
345 	rxd->rxd_staterr = 0;
346 }
347 
348 static __inline void
349 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
350 {
351 	/* Ignore Checksum bit is set */
352 	if (staterr & E1000_RXD_STAT_IXSM)
353 		return;
354 
355 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
356 	    E1000_RXD_STAT_IPCS)
357 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
358 
359 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
360 	    E1000_RXD_STAT_TCPCS) {
361 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
362 					   CSUM_PSEUDO_HDR |
363 					   CSUM_FRAG_NOT_CHECKED;
364 		mp->m_pkthdr.csum_data = htons(0xffff);
365 	}
366 }
367 
368 static __inline struct pktinfo *
369 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
370 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
371 {
372 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
373 	case EMX_RXDMRQ_IPV4_TCP:
374 		pi->pi_netisr = NETISR_IP;
375 		pi->pi_flags = 0;
376 		pi->pi_l3proto = IPPROTO_TCP;
377 		break;
378 
379 	case EMX_RXDMRQ_IPV6_TCP:
380 		pi->pi_netisr = NETISR_IPV6;
381 		pi->pi_flags = 0;
382 		pi->pi_l3proto = IPPROTO_TCP;
383 		break;
384 
385 	case EMX_RXDMRQ_IPV4:
386 		if (staterr & E1000_RXD_STAT_IXSM)
387 			return NULL;
388 
389 		if ((staterr &
390 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
391 		    E1000_RXD_STAT_TCPCS) {
392 			pi->pi_netisr = NETISR_IP;
393 			pi->pi_flags = 0;
394 			pi->pi_l3proto = IPPROTO_UDP;
395 			break;
396 		}
397 		/* FALL THROUGH */
398 	default:
399 		return NULL;
400 	}
401 
402 	m->m_flags |= M_HASH;
403 	m->m_pkthdr.hash = toeplitz_hash(hash);
404 	return pi;
405 }
406 
407 static int
408 emx_probe(device_t dev)
409 {
410 	const struct emx_device *d;
411 	uint16_t vid, did;
412 
413 	vid = pci_get_vendor(dev);
414 	did = pci_get_device(dev);
415 
416 	for (d = emx_devices; d->desc != NULL; ++d) {
417 		if (vid == d->vid && did == d->did) {
418 			device_set_desc(dev, d->desc);
419 			device_set_async_attach(dev, TRUE);
420 			return 0;
421 		}
422 	}
423 	return ENXIO;
424 }
425 
426 static int
427 emx_attach(device_t dev)
428 {
429 	struct emx_softc *sc = device_get_softc(dev);
430 	int error = 0, i, throttle, msi_enable, tx_ring_max;
431 	u_int intr_flags;
432 	uint16_t eeprom_data, device_id, apme_mask;
433 	driver_intr_t *intr_func;
434 #ifdef IFPOLL_ENABLE
435 	int offset, offset_def;
436 #endif
437 
438 	/*
439 	 * Setup RX rings
440 	 */
441 	for (i = 0; i < EMX_NRX_RING; ++i) {
442 		sc->rx_data[i].sc = sc;
443 		sc->rx_data[i].idx = i;
444 	}
445 
446 	/*
447 	 * Setup TX ring
448 	 */
449 	for (i = 0; i < EMX_NTX_RING; ++i) {
450 		sc->tx_data[i].sc = sc;
451 		sc->tx_data[i].idx = i;
452 	}
453 
454 	/*
455 	 * Initialize serializers
456 	 */
457 	lwkt_serialize_init(&sc->main_serialize);
458 	for (i = 0; i < EMX_NTX_RING; ++i)
459 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
460 	for (i = 0; i < EMX_NRX_RING; ++i)
461 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
462 
463 	/*
464 	 * Initialize serializer array
465 	 */
466 	i = 0;
467 
468 	KKASSERT(i < EMX_NSERIALIZE);
469 	sc->serializes[i++] = &sc->main_serialize;
470 
471 	KKASSERT(i < EMX_NSERIALIZE);
472 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
473 	KKASSERT(i < EMX_NSERIALIZE);
474 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
475 
476 	KKASSERT(i < EMX_NSERIALIZE);
477 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
478 	KKASSERT(i < EMX_NSERIALIZE);
479 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
480 
481 	KKASSERT(i == EMX_NSERIALIZE);
482 
483 	ifmedia_init(&sc->media, IFM_IMASK, emx_media_change, emx_media_status);
484 	callout_init_mp(&sc->timer);
485 
486 	sc->dev = sc->osdep.dev = dev;
487 
488 	/*
489 	 * Determine hardware and mac type
490 	 */
491 	sc->hw.vendor_id = pci_get_vendor(dev);
492 	sc->hw.device_id = pci_get_device(dev);
493 	sc->hw.revision_id = pci_get_revid(dev);
494 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
495 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
496 
497 	if (e1000_set_mac_type(&sc->hw))
498 		return ENXIO;
499 
500 	/* Enable bus mastering */
501 	pci_enable_busmaster(dev);
502 
503 	/*
504 	 * Allocate IO memory
505 	 */
506 	sc->memory_rid = EMX_BAR_MEM;
507 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
508 					    &sc->memory_rid, RF_ACTIVE);
509 	if (sc->memory == NULL) {
510 		device_printf(dev, "Unable to allocate bus resource: memory\n");
511 		error = ENXIO;
512 		goto fail;
513 	}
514 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
515 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
516 
517 	/* XXX This is quite goofy, it is not actually used */
518 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
519 
520 	/*
521 	 * Don't enable MSI-X on 82574, see:
522 	 * 82574 specification update errata #15
523 	 *
524 	 * Don't enable MSI on 82571/82572, see:
525 	 * 82571/82572 specification update errata #63
526 	 */
527 	msi_enable = emx_msi_enable;
528 	if (msi_enable &&
529 	    (sc->hw.mac.type == e1000_82571 ||
530 	     sc->hw.mac.type == e1000_82572))
531 		msi_enable = 0;
532 
533 	/*
534 	 * Allocate interrupt
535 	 */
536 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
537 	    &sc->intr_rid, &intr_flags);
538 
539 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
540 		int unshared;
541 
542 		unshared = device_getenv_int(dev, "irq.unshared", 0);
543 		if (!unshared) {
544 			sc->flags |= EMX_FLAG_SHARED_INTR;
545 			if (bootverbose)
546 				device_printf(dev, "IRQ shared\n");
547 		} else {
548 			intr_flags &= ~RF_SHAREABLE;
549 			if (bootverbose)
550 				device_printf(dev, "IRQ unshared\n");
551 		}
552 	}
553 
554 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
555 	    intr_flags);
556 	if (sc->intr_res == NULL) {
557 		device_printf(dev, "Unable to allocate bus resource: "
558 		    "interrupt\n");
559 		error = ENXIO;
560 		goto fail;
561 	}
562 
563 	/* Save PCI command register for Shared Code */
564 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
565 	sc->hw.back = &sc->osdep;
566 
567 	/*
568 	 * For I217/I218, we need to map the flash memory and this
569 	 * must happen after the MAC is identified.
570 	 */
571 	if (sc->hw.mac.type == e1000_pch_lpt) {
572 		sc->flash_rid = EMX_BAR_FLASH;
573 
574 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
575 		    &sc->flash_rid, RF_ACTIVE);
576 		if (sc->flash == NULL) {
577 			device_printf(dev, "Mapping of Flash failed\n");
578 			error = ENXIO;
579 			goto fail;
580 		}
581 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
582 		sc->osdep.flash_bus_space_handle =
583 		    rman_get_bushandle(sc->flash);
584 
585 		/*
586 		 * This is used in the shared code
587 		 * XXX this goof is actually not used.
588 		 */
589 		sc->hw.flash_address = (uint8_t *)sc->flash;
590 	}
591 
592 	/* Do Shared Code initialization */
593 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
594 		device_printf(dev, "Setup of Shared code failed\n");
595 		error = ENXIO;
596 		goto fail;
597 	}
598 	e1000_get_bus_info(&sc->hw);
599 
600 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
601 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
602 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
603 
604 	/*
605 	 * Interrupt throttle rate
606 	 */
607 	throttle = device_getenv_int(dev, "int_throttle_ceil",
608 	    emx_int_throttle_ceil);
609 	if (throttle == 0) {
610 		sc->int_throttle_ceil = 0;
611 	} else {
612 		if (throttle < 0)
613 			throttle = EMX_DEFAULT_ITR;
614 
615 		/* Recalculate the tunable value to get the exact frequency. */
616 		throttle = 1000000000 / 256 / throttle;
617 
618 		/* Upper 16bits of ITR is reserved and should be zero */
619 		if (throttle & 0xffff0000)
620 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
621 
622 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
623 	}
624 
625 	e1000_init_script_state_82541(&sc->hw, TRUE);
626 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
627 
628 	/* Copper options */
629 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
630 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
631 		sc->hw.phy.disable_polarity_correction = FALSE;
632 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
633 	}
634 
635 	/* Set the frame limits assuming standard ethernet sized frames. */
636 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
637 
638 	/* This controls when hardware reports transmit completion status. */
639 	sc->hw.mac.report_tx_early = 1;
640 
641 	/* Calculate # of RX rings */
642 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
643 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
644 
645 	/*
646 	 * Calculate # of TX rings
647 	 *
648 	 * XXX
649 	 * I217/I218 claims to have 2 TX queues
650 	 *
651 	 * NOTE:
652 	 * Don't enable multiple TX queues on 82574; it always gives
653 	 * watchdog timeout on TX queue0, when multiple TCP streams are
654 	 * received.  It was originally suspected that the hardware TX
655 	 * checksum offloading caused this watchdog timeout, since only
656 	 * TCP ACKs are sent during TCP receiving tests.  However, even
657 	 * if the hardware TX checksum offloading is disable, TX queue0
658 	 * still will give watchdog.
659 	 */
660 	tx_ring_max = 1;
661 	if (sc->hw.mac.type == e1000_82571 ||
662 	    sc->hw.mac.type == e1000_82572 ||
663 	    sc->hw.mac.type == e1000_80003es2lan ||
664 	    sc->hw.mac.type == e1000_pch_lpt)
665 		tx_ring_max = EMX_NTX_RING;
666 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
667 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
668 
669 	/* Allocate RX/TX rings' busdma(9) stuffs */
670 	error = emx_dma_alloc(sc);
671 	if (error)
672 		goto fail;
673 
674 	/* Allocate multicast array memory. */
675 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
676 	    M_DEVBUF, M_WAITOK);
677 
678 	/* Indicate SOL/IDER usage */
679 	if (e1000_check_reset_block(&sc->hw)) {
680 		device_printf(dev,
681 		    "PHY reset is blocked due to SOL/IDER session.\n");
682 	}
683 
684 	/* Disable EEE on I217/I218 */
685 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
686 
687 	/*
688 	 * Start from a known state, this is important in reading the
689 	 * nvm and mac from that.
690 	 */
691 	e1000_reset_hw(&sc->hw);
692 
693 	/* Make sure we have a good EEPROM before we read from it */
694 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
695 		/*
696 		 * Some PCI-E parts fail the first check due to
697 		 * the link being in sleep state, call it again,
698 		 * if it fails a second time its a real issue.
699 		 */
700 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
701 			device_printf(dev,
702 			    "The EEPROM Checksum Is Not Valid\n");
703 			error = EIO;
704 			goto fail;
705 		}
706 	}
707 
708 	/* Copy the permanent MAC address out of the EEPROM */
709 	if (e1000_read_mac_addr(&sc->hw) < 0) {
710 		device_printf(dev, "EEPROM read error while reading MAC"
711 		    " address\n");
712 		error = EIO;
713 		goto fail;
714 	}
715 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
716 		device_printf(dev, "Invalid MAC address\n");
717 		error = EIO;
718 		goto fail;
719 	}
720 
721 	/* Disable ULP support */
722 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
723 
724 	/* Determine if we have to control management hardware */
725 	if (e1000_enable_mng_pass_thru(&sc->hw))
726 		sc->flags |= EMX_FLAG_HAS_MGMT;
727 
728 	/*
729 	 * Setup Wake-on-Lan
730 	 */
731 	apme_mask = EMX_EEPROM_APME;
732 	eeprom_data = 0;
733 	switch (sc->hw.mac.type) {
734 	case e1000_82573:
735 		sc->flags |= EMX_FLAG_HAS_AMT;
736 		/* FALL THROUGH */
737 
738 	case e1000_82571:
739 	case e1000_82572:
740 	case e1000_80003es2lan:
741 		if (sc->hw.bus.func == 1) {
742 			e1000_read_nvm(&sc->hw,
743 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
744 		} else {
745 			e1000_read_nvm(&sc->hw,
746 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
747 		}
748 		break;
749 
750 	default:
751 		e1000_read_nvm(&sc->hw,
752 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
753 		break;
754 	}
755 	if (eeprom_data & apme_mask)
756 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
757 
758 	/*
759          * We have the eeprom settings, now apply the special cases
760          * where the eeprom may be wrong or the board won't support
761          * wake on lan on a particular port
762 	 */
763 	device_id = pci_get_device(dev);
764         switch (device_id) {
765 	case E1000_DEV_ID_82571EB_FIBER:
766 		/*
767 		 * Wake events only supported on port A for dual fiber
768 		 * regardless of eeprom setting
769 		 */
770 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
771 		    E1000_STATUS_FUNC_1)
772 			sc->wol = 0;
773 		break;
774 
775 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
776 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
777 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
778                 /* if quad port sc, disable WoL on all but port A */
779 		if (emx_global_quad_port_a != 0)
780 			sc->wol = 0;
781 		/* Reset for multiple quad port adapters */
782 		if (++emx_global_quad_port_a == 4)
783 			emx_global_quad_port_a = 0;
784                 break;
785 	}
786 
787 	/* XXX disable wol */
788 	sc->wol = 0;
789 
790 #ifdef IFPOLL_ENABLE
791 	/*
792 	 * NPOLLING RX CPU offset
793 	 */
794 	if (sc->rx_ring_cnt == ncpus2) {
795 		offset = 0;
796 	} else {
797 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
798 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
799 		if (offset >= ncpus2 ||
800 		    offset % sc->rx_ring_cnt != 0) {
801 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
802 			    offset, offset_def);
803 			offset = offset_def;
804 		}
805 	}
806 	sc->rx_npoll_off = offset;
807 
808 	/*
809 	 * NPOLLING TX CPU offset
810 	 */
811 	if (sc->tx_ring_cnt == ncpus2) {
812 		offset = 0;
813 	} else {
814 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
815 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
816 		if (offset >= ncpus2 ||
817 		    offset % sc->tx_ring_cnt != 0) {
818 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
819 			    offset, offset_def);
820 			offset = offset_def;
821 		}
822 	}
823 	sc->tx_npoll_off = offset;
824 #endif
825 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
826 
827 	/* Setup OS specific network interface */
828 	emx_setup_ifp(sc);
829 
830 	/* Add sysctl tree, must after em_setup_ifp() */
831 	emx_add_sysctl(sc);
832 
833 	/* Reset the hardware */
834 	error = emx_reset(sc);
835 	if (error) {
836 		/*
837 		 * Some 82573 parts fail the first reset, call it again,
838 		 * if it fails a second time its a real issue.
839 		 */
840 		error = emx_reset(sc);
841 		if (error) {
842 			device_printf(dev, "Unable to reset the hardware\n");
843 			ether_ifdetach(&sc->arpcom.ac_if);
844 			goto fail;
845 		}
846 	}
847 
848 	/* Initialize statistics */
849 	emx_update_stats(sc);
850 
851 	sc->hw.mac.get_link_status = 1;
852 	emx_update_link_status(sc);
853 
854 	/* Non-AMT based hardware can now take control from firmware */
855 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
856 	    EMX_FLAG_HAS_MGMT)
857 		emx_get_hw_control(sc);
858 
859 	/*
860 	 * Missing Interrupt Following ICR read:
861 	 *
862 	 * 82571/82572 specification update errata #76
863 	 * 82573 specification update errata #31
864 	 * 82574 specification update errata #12
865 	 */
866 	intr_func = emx_intr;
867 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
868 	    (sc->hw.mac.type == e1000_82571 ||
869 	     sc->hw.mac.type == e1000_82572 ||
870 	     sc->hw.mac.type == e1000_82573 ||
871 	     sc->hw.mac.type == e1000_82574))
872 		intr_func = emx_intr_mask;
873 
874 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
875 			       &sc->intr_tag, &sc->main_serialize);
876 	if (error) {
877 		device_printf(dev, "Failed to register interrupt handler");
878 		ether_ifdetach(&sc->arpcom.ac_if);
879 		goto fail;
880 	}
881 	return (0);
882 fail:
883 	emx_detach(dev);
884 	return (error);
885 }
886 
887 static int
888 emx_detach(device_t dev)
889 {
890 	struct emx_softc *sc = device_get_softc(dev);
891 
892 	if (device_is_attached(dev)) {
893 		struct ifnet *ifp = &sc->arpcom.ac_if;
894 
895 		ifnet_serialize_all(ifp);
896 
897 		emx_stop(sc);
898 
899 		e1000_phy_hw_reset(&sc->hw);
900 
901 		emx_rel_mgmt(sc);
902 		emx_rel_hw_control(sc);
903 
904 		if (sc->wol) {
905 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
906 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
907 			emx_enable_wol(dev);
908 		}
909 
910 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
911 
912 		ifnet_deserialize_all(ifp);
913 
914 		ether_ifdetach(ifp);
915 	} else if (sc->memory != NULL) {
916 		emx_rel_hw_control(sc);
917 	}
918 
919 	ifmedia_removeall(&sc->media);
920 	bus_generic_detach(dev);
921 
922 	if (sc->intr_res != NULL) {
923 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
924 				     sc->intr_res);
925 	}
926 
927 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
928 		pci_release_msi(dev);
929 
930 	if (sc->memory != NULL) {
931 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
932 				     sc->memory);
933 	}
934 
935 	if (sc->flash != NULL) {
936 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
937 		    sc->flash);
938 	}
939 
940 	emx_dma_free(sc);
941 
942 	if (sc->mta != NULL)
943 		kfree(sc->mta, M_DEVBUF);
944 
945 	return (0);
946 }
947 
948 static int
949 emx_shutdown(device_t dev)
950 {
951 	return emx_suspend(dev);
952 }
953 
954 static int
955 emx_suspend(device_t dev)
956 {
957 	struct emx_softc *sc = device_get_softc(dev);
958 	struct ifnet *ifp = &sc->arpcom.ac_if;
959 
960 	ifnet_serialize_all(ifp);
961 
962 	emx_stop(sc);
963 
964 	emx_rel_mgmt(sc);
965 	emx_rel_hw_control(sc);
966 
967 	if (sc->wol) {
968 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
969 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
970 		emx_enable_wol(dev);
971 	}
972 
973 	ifnet_deserialize_all(ifp);
974 
975 	return bus_generic_suspend(dev);
976 }
977 
978 static int
979 emx_resume(device_t dev)
980 {
981 	struct emx_softc *sc = device_get_softc(dev);
982 	struct ifnet *ifp = &sc->arpcom.ac_if;
983 	int i;
984 
985 	ifnet_serialize_all(ifp);
986 
987 	emx_init(sc);
988 	emx_get_mgmt(sc);
989 	for (i = 0; i < sc->tx_ring_inuse; ++i)
990 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
991 
992 	ifnet_deserialize_all(ifp);
993 
994 	return bus_generic_resume(dev);
995 }
996 
997 static void
998 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
999 {
1000 	struct emx_softc *sc = ifp->if_softc;
1001 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1002 	struct mbuf *m_head;
1003 	int idx = -1, nsegs = 0;
1004 
1005 	KKASSERT(tdata->ifsq == ifsq);
1006 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1007 
1008 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1009 		return;
1010 
1011 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1012 		ifsq_purge(ifsq);
1013 		return;
1014 	}
1015 
1016 	while (!ifsq_is_empty(ifsq)) {
1017 		/* Now do we at least have a minimal? */
1018 		if (EMX_IS_OACTIVE(tdata)) {
1019 			emx_tx_collect(tdata);
1020 			if (EMX_IS_OACTIVE(tdata)) {
1021 				ifsq_set_oactive(ifsq);
1022 				break;
1023 			}
1024 		}
1025 
1026 		logif(pkt_txqueue);
1027 		m_head = ifsq_dequeue(ifsq);
1028 		if (m_head == NULL)
1029 			break;
1030 
1031 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1032 			IFNET_STAT_INC(ifp, oerrors, 1);
1033 			emx_tx_collect(tdata);
1034 			continue;
1035 		}
1036 
1037 		if (nsegs >= tdata->tx_wreg_nsegs) {
1038 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1039 			nsegs = 0;
1040 			idx = -1;
1041 		}
1042 
1043 		/* Send a copy of the frame to the BPF listener */
1044 		ETHER_BPF_MTAP(ifp, m_head);
1045 
1046 		/* Set timeout in case hardware has problems transmitting. */
1047 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1048 	}
1049 	if (idx >= 0)
1050 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1051 }
1052 
1053 static int
1054 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1055 {
1056 	struct emx_softc *sc = ifp->if_softc;
1057 	struct ifreq *ifr = (struct ifreq *)data;
1058 	uint16_t eeprom_data = 0;
1059 	int max_frame_size, mask, reinit;
1060 	int error = 0;
1061 
1062 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1063 
1064 	switch (command) {
1065 	case SIOCSIFMTU:
1066 		switch (sc->hw.mac.type) {
1067 		case e1000_82573:
1068 			/*
1069 			 * 82573 only supports jumbo frames
1070 			 * if ASPM is disabled.
1071 			 */
1072 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1073 				       &eeprom_data);
1074 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1075 				max_frame_size = ETHER_MAX_LEN;
1076 				break;
1077 			}
1078 			/* FALL THROUGH */
1079 
1080 		/* Limit Jumbo Frame size */
1081 		case e1000_82571:
1082 		case e1000_82572:
1083 		case e1000_82574:
1084 		case e1000_pch_lpt:
1085 		case e1000_80003es2lan:
1086 			max_frame_size = 9234;
1087 			break;
1088 
1089 		default:
1090 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1091 			break;
1092 		}
1093 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1094 		    ETHER_CRC_LEN) {
1095 			error = EINVAL;
1096 			break;
1097 		}
1098 
1099 		ifp->if_mtu = ifr->ifr_mtu;
1100 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1101 		    ETHER_CRC_LEN;
1102 
1103 		if (ifp->if_flags & IFF_RUNNING)
1104 			emx_init(sc);
1105 		break;
1106 
1107 	case SIOCSIFFLAGS:
1108 		if (ifp->if_flags & IFF_UP) {
1109 			if ((ifp->if_flags & IFF_RUNNING)) {
1110 				if ((ifp->if_flags ^ sc->if_flags) &
1111 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1112 					emx_disable_promisc(sc);
1113 					emx_set_promisc(sc);
1114 				}
1115 			} else {
1116 				emx_init(sc);
1117 			}
1118 		} else if (ifp->if_flags & IFF_RUNNING) {
1119 			emx_stop(sc);
1120 		}
1121 		sc->if_flags = ifp->if_flags;
1122 		break;
1123 
1124 	case SIOCADDMULTI:
1125 	case SIOCDELMULTI:
1126 		if (ifp->if_flags & IFF_RUNNING) {
1127 			emx_disable_intr(sc);
1128 			emx_set_multi(sc);
1129 #ifdef IFPOLL_ENABLE
1130 			if (!(ifp->if_flags & IFF_NPOLLING))
1131 #endif
1132 				emx_enable_intr(sc);
1133 		}
1134 		break;
1135 
1136 	case SIOCSIFMEDIA:
1137 		/* Check SOL/IDER usage */
1138 		if (e1000_check_reset_block(&sc->hw)) {
1139 			device_printf(sc->dev, "Media change is"
1140 			    " blocked due to SOL/IDER session.\n");
1141 			break;
1142 		}
1143 		/* FALL THROUGH */
1144 
1145 	case SIOCGIFMEDIA:
1146 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1147 		break;
1148 
1149 	case SIOCSIFCAP:
1150 		reinit = 0;
1151 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1152 		if (mask & IFCAP_RXCSUM) {
1153 			ifp->if_capenable ^= IFCAP_RXCSUM;
1154 			reinit = 1;
1155 		}
1156 		if (mask & IFCAP_VLAN_HWTAGGING) {
1157 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1158 			reinit = 1;
1159 		}
1160 		if (mask & IFCAP_TXCSUM) {
1161 			ifp->if_capenable ^= IFCAP_TXCSUM;
1162 			if (ifp->if_capenable & IFCAP_TXCSUM)
1163 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1164 			else
1165 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1166 		}
1167 		if (mask & IFCAP_TSO) {
1168 			ifp->if_capenable ^= IFCAP_TSO;
1169 			if (ifp->if_capenable & IFCAP_TSO)
1170 				ifp->if_hwassist |= CSUM_TSO;
1171 			else
1172 				ifp->if_hwassist &= ~CSUM_TSO;
1173 		}
1174 		if (mask & IFCAP_RSS)
1175 			ifp->if_capenable ^= IFCAP_RSS;
1176 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1177 			emx_init(sc);
1178 		break;
1179 
1180 	default:
1181 		error = ether_ioctl(ifp, command, data);
1182 		break;
1183 	}
1184 	return (error);
1185 }
1186 
1187 static void
1188 emx_watchdog(struct ifaltq_subque *ifsq)
1189 {
1190 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1191 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1192 	struct emx_softc *sc = ifp->if_softc;
1193 	int i;
1194 
1195 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1196 
1197 	/*
1198 	 * The timer is set to 5 every time start queues a packet.
1199 	 * Then txeof keeps resetting it as long as it cleans at
1200 	 * least one descriptor.
1201 	 * Finally, anytime all descriptors are clean the timer is
1202 	 * set to 0.
1203 	 */
1204 
1205 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1206 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1207 		/*
1208 		 * If we reach here, all TX jobs are completed and
1209 		 * the TX engine should have been idled for some time.
1210 		 * We don't need to call ifsq_devstart_sched() here.
1211 		 */
1212 		ifsq_clr_oactive(ifsq);
1213 		tdata->tx_watchdog.wd_timer = 0;
1214 		return;
1215 	}
1216 
1217 	/*
1218 	 * If we are in this routine because of pause frames, then
1219 	 * don't reset the hardware.
1220 	 */
1221 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1222 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1223 		return;
1224 	}
1225 
1226 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1227 
1228 	IFNET_STAT_INC(ifp, oerrors, 1);
1229 
1230 	emx_init(sc);
1231 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1232 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1233 }
1234 
1235 static void
1236 emx_init(void *xsc)
1237 {
1238 	struct emx_softc *sc = xsc;
1239 	struct ifnet *ifp = &sc->arpcom.ac_if;
1240 	device_t dev = sc->dev;
1241 	boolean_t polling;
1242 	int i;
1243 
1244 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1245 
1246 	emx_stop(sc);
1247 
1248 	/* Get the latest mac address, User can use a LAA */
1249         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1250 
1251 	/* Put the address into the Receive Address Array */
1252 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1253 
1254 	/*
1255 	 * With the 82571 sc, RAR[0] may be overwritten
1256 	 * when the other port is reset, we make a duplicate
1257 	 * in RAR[14] for that eventuality, this assures
1258 	 * the interface continues to function.
1259 	 */
1260 	if (sc->hw.mac.type == e1000_82571) {
1261 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1262 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1263 		    E1000_RAR_ENTRIES - 1);
1264 	}
1265 
1266 	/* Initialize the hardware */
1267 	if (emx_reset(sc)) {
1268 		device_printf(dev, "Unable to reset the hardware\n");
1269 		/* XXX emx_stop()? */
1270 		return;
1271 	}
1272 	emx_update_link_status(sc);
1273 
1274 	/* Setup VLAN support, basic and offload if available */
1275 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1276 
1277 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1278 		uint32_t ctrl;
1279 
1280 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1281 		ctrl |= E1000_CTRL_VME;
1282 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1283 	}
1284 
1285 	/* Configure for OS presence */
1286 	emx_get_mgmt(sc);
1287 
1288 	polling = FALSE;
1289 #ifdef IFPOLL_ENABLE
1290 	if (ifp->if_flags & IFF_NPOLLING)
1291 		polling = TRUE;
1292 #endif
1293 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1294 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1295 
1296 	/* Prepare transmit descriptors and buffers */
1297 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1298 		emx_init_tx_ring(&sc->tx_data[i]);
1299 	emx_init_tx_unit(sc);
1300 
1301 	/* Setup Multicast table */
1302 	emx_set_multi(sc);
1303 
1304 	/* Prepare receive descriptors and buffers */
1305 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1306 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1307 			device_printf(dev,
1308 			    "Could not setup receive structures\n");
1309 			emx_stop(sc);
1310 			return;
1311 		}
1312 	}
1313 	emx_init_rx_unit(sc);
1314 
1315 	/* Don't lose promiscuous settings */
1316 	emx_set_promisc(sc);
1317 
1318 	ifp->if_flags |= IFF_RUNNING;
1319 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1320 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1321 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1322 	}
1323 
1324 	callout_reset(&sc->timer, hz, emx_timer, sc);
1325 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1326 
1327 	/* MSI/X configuration for 82574 */
1328 	if (sc->hw.mac.type == e1000_82574) {
1329 		int tmp;
1330 
1331 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1332 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1333 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1334 		/*
1335 		 * XXX MSIX
1336 		 * Set the IVAR - interrupt vector routing.
1337 		 * Each nibble represents a vector, high bit
1338 		 * is enable, other 3 bits are the MSIX table
1339 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1340 		 * Link (other) to 2, hence the magic number.
1341 		 */
1342 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1343 	}
1344 
1345 	/*
1346 	 * Only enable interrupts if we are not polling, make sure
1347 	 * they are off otherwise.
1348 	 */
1349 	if (polling)
1350 		emx_disable_intr(sc);
1351 	else
1352 		emx_enable_intr(sc);
1353 
1354 	/* AMT based hardware can now take control from firmware */
1355 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1356 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1357 		emx_get_hw_control(sc);
1358 }
1359 
1360 static void
1361 emx_intr(void *xsc)
1362 {
1363 	emx_intr_body(xsc, TRUE);
1364 }
1365 
1366 static void
1367 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1368 {
1369 	struct ifnet *ifp = &sc->arpcom.ac_if;
1370 	uint32_t reg_icr;
1371 
1372 	logif(intr_beg);
1373 	ASSERT_SERIALIZED(&sc->main_serialize);
1374 
1375 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1376 
1377 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1378 		logif(intr_end);
1379 		return;
1380 	}
1381 
1382 	/*
1383 	 * XXX: some laptops trigger several spurious interrupts
1384 	 * on emx(4) when in the resume cycle. The ICR register
1385 	 * reports all-ones value in this case. Processing such
1386 	 * interrupts would lead to a freeze. I don't know why.
1387 	 */
1388 	if (reg_icr == 0xffffffff) {
1389 		logif(intr_end);
1390 		return;
1391 	}
1392 
1393 	if (ifp->if_flags & IFF_RUNNING) {
1394 		if (reg_icr &
1395 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1396 			int i;
1397 
1398 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1399 				lwkt_serialize_enter(
1400 				&sc->rx_data[i].rx_serialize);
1401 				emx_rxeof(&sc->rx_data[i], -1);
1402 				lwkt_serialize_exit(
1403 				&sc->rx_data[i].rx_serialize);
1404 			}
1405 		}
1406 		if (reg_icr & E1000_ICR_TXDW) {
1407 			struct emx_txdata *tdata = &sc->tx_data[0];
1408 
1409 			lwkt_serialize_enter(&tdata->tx_serialize);
1410 			emx_txeof(tdata);
1411 			if (!ifsq_is_empty(tdata->ifsq))
1412 				ifsq_devstart(tdata->ifsq);
1413 			lwkt_serialize_exit(&tdata->tx_serialize);
1414 		}
1415 	}
1416 
1417 	/* Link status change */
1418 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1419 		emx_serialize_skipmain(sc);
1420 
1421 		callout_stop(&sc->timer);
1422 		sc->hw.mac.get_link_status = 1;
1423 		emx_update_link_status(sc);
1424 
1425 		/* Deal with TX cruft when link lost */
1426 		emx_tx_purge(sc);
1427 
1428 		callout_reset(&sc->timer, hz, emx_timer, sc);
1429 
1430 		emx_deserialize_skipmain(sc);
1431 	}
1432 
1433 	if (reg_icr & E1000_ICR_RXO)
1434 		sc->rx_overruns++;
1435 
1436 	logif(intr_end);
1437 }
1438 
1439 static void
1440 emx_intr_mask(void *xsc)
1441 {
1442 	struct emx_softc *sc = xsc;
1443 
1444 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1445 	/*
1446 	 * NOTE:
1447 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1448 	 * so don't check it.
1449 	 */
1450 	emx_intr_body(sc, FALSE);
1451 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1452 }
1453 
1454 static void
1455 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1456 {
1457 	struct emx_softc *sc = ifp->if_softc;
1458 
1459 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1460 
1461 	emx_update_link_status(sc);
1462 
1463 	ifmr->ifm_status = IFM_AVALID;
1464 	ifmr->ifm_active = IFM_ETHER;
1465 
1466 	if (!sc->link_active)
1467 		return;
1468 
1469 	ifmr->ifm_status |= IFM_ACTIVE;
1470 
1471 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1472 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1473 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1474 	} else {
1475 		switch (sc->link_speed) {
1476 		case 10:
1477 			ifmr->ifm_active |= IFM_10_T;
1478 			break;
1479 		case 100:
1480 			ifmr->ifm_active |= IFM_100_TX;
1481 			break;
1482 
1483 		case 1000:
1484 			ifmr->ifm_active |= IFM_1000_T;
1485 			break;
1486 		}
1487 		if (sc->link_duplex == FULL_DUPLEX)
1488 			ifmr->ifm_active |= IFM_FDX;
1489 		else
1490 			ifmr->ifm_active |= IFM_HDX;
1491 	}
1492 }
1493 
1494 static int
1495 emx_media_change(struct ifnet *ifp)
1496 {
1497 	struct emx_softc *sc = ifp->if_softc;
1498 	struct ifmedia *ifm = &sc->media;
1499 
1500 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1501 
1502 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1503 		return (EINVAL);
1504 
1505 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1506 	case IFM_AUTO:
1507 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1508 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1509 		break;
1510 
1511 	case IFM_1000_LX:
1512 	case IFM_1000_SX:
1513 	case IFM_1000_T:
1514 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1515 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1516 		break;
1517 
1518 	case IFM_100_TX:
1519 		sc->hw.mac.autoneg = FALSE;
1520 		sc->hw.phy.autoneg_advertised = 0;
1521 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1522 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1523 		else
1524 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1525 		break;
1526 
1527 	case IFM_10_T:
1528 		sc->hw.mac.autoneg = FALSE;
1529 		sc->hw.phy.autoneg_advertised = 0;
1530 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1531 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1532 		else
1533 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1534 		break;
1535 
1536 	default:
1537 		if_printf(ifp, "Unsupported media type\n");
1538 		break;
1539 	}
1540 
1541 	emx_init(sc);
1542 
1543 	return (0);
1544 }
1545 
1546 static int
1547 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1548     int *segs_used, int *idx)
1549 {
1550 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1551 	bus_dmamap_t map;
1552 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1553 	struct e1000_tx_desc *ctxd = NULL;
1554 	struct mbuf *m_head = *m_headp;
1555 	uint32_t txd_upper, txd_lower, cmd = 0;
1556 	int maxsegs, nsegs, i, j, first, last = 0, error;
1557 
1558 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1559 		error = emx_tso_pullup(tdata, m_headp);
1560 		if (error)
1561 			return error;
1562 		m_head = *m_headp;
1563 	}
1564 
1565 	txd_upper = txd_lower = 0;
1566 
1567 	/*
1568 	 * Capture the first descriptor index, this descriptor
1569 	 * will have the index of the EOP which is the only one
1570 	 * that now gets a DONE bit writeback.
1571 	 */
1572 	first = tdata->next_avail_tx_desc;
1573 	tx_buffer = &tdata->tx_buf[first];
1574 	tx_buffer_mapped = tx_buffer;
1575 	map = tx_buffer->map;
1576 
1577 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1578 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1579 	if (maxsegs > EMX_MAX_SCATTER)
1580 		maxsegs = EMX_MAX_SCATTER;
1581 
1582 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1583 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1584 	if (error) {
1585 		m_freem(*m_headp);
1586 		*m_headp = NULL;
1587 		return error;
1588 	}
1589         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1590 
1591 	m_head = *m_headp;
1592 	tdata->tx_nsegs += nsegs;
1593 	*segs_used += nsegs;
1594 
1595 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1596 		/* TSO will consume one TX desc */
1597 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1598 		tdata->tx_nsegs += i;
1599 		*segs_used += i;
1600 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1601 		/* TX csum offloading will consume one TX desc */
1602 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1603 		tdata->tx_nsegs += i;
1604 		*segs_used += i;
1605 	}
1606 
1607         /* Handle VLAN tag */
1608 	if (m_head->m_flags & M_VLANTAG) {
1609 		/* Set the vlan id. */
1610 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1611 		/* Tell hardware to add tag */
1612 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1613 	}
1614 
1615 	i = tdata->next_avail_tx_desc;
1616 
1617 	/* Set up our transmit descriptors */
1618 	for (j = 0; j < nsegs; j++) {
1619 		tx_buffer = &tdata->tx_buf[i];
1620 		ctxd = &tdata->tx_desc_base[i];
1621 
1622 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1623 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1624 					   txd_lower | segs[j].ds_len);
1625 		ctxd->upper.data = htole32(txd_upper);
1626 
1627 		last = i;
1628 		if (++i == tdata->num_tx_desc)
1629 			i = 0;
1630 	}
1631 
1632 	tdata->next_avail_tx_desc = i;
1633 
1634 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1635 	tdata->num_tx_desc_avail -= nsegs;
1636 
1637 	tx_buffer->m_head = m_head;
1638 	tx_buffer_mapped->map = tx_buffer->map;
1639 	tx_buffer->map = map;
1640 
1641 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1642 		tdata->tx_nsegs = 0;
1643 
1644 		/*
1645 		 * Report Status (RS) is turned on
1646 		 * every tx_intr_nsegs descriptors.
1647 		 */
1648 		cmd = E1000_TXD_CMD_RS;
1649 
1650 		/*
1651 		 * Keep track of the descriptor, which will
1652 		 * be written back by hardware.
1653 		 */
1654 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1655 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1656 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1657 	}
1658 
1659 	/*
1660 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1661 	 */
1662 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1663 
1664 	/*
1665 	 * Defer TDT updating, until enough descriptors are setup
1666 	 */
1667 	*idx = i;
1668 
1669 #ifdef EMX_TSS_DEBUG
1670 	tdata->tx_pkts++;
1671 #endif
1672 
1673 	return (0);
1674 }
1675 
1676 static void
1677 emx_set_promisc(struct emx_softc *sc)
1678 {
1679 	struct ifnet *ifp = &sc->arpcom.ac_if;
1680 	uint32_t reg_rctl;
1681 
1682 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1683 
1684 	if (ifp->if_flags & IFF_PROMISC) {
1685 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1686 		/* Turn this on if you want to see bad packets */
1687 		if (emx_debug_sbp)
1688 			reg_rctl |= E1000_RCTL_SBP;
1689 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1690 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1691 		reg_rctl |= E1000_RCTL_MPE;
1692 		reg_rctl &= ~E1000_RCTL_UPE;
1693 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1694 	}
1695 }
1696 
1697 static void
1698 emx_disable_promisc(struct emx_softc *sc)
1699 {
1700 	uint32_t reg_rctl;
1701 
1702 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1703 
1704 	reg_rctl &= ~E1000_RCTL_UPE;
1705 	reg_rctl &= ~E1000_RCTL_MPE;
1706 	reg_rctl &= ~E1000_RCTL_SBP;
1707 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1708 }
1709 
1710 static void
1711 emx_set_multi(struct emx_softc *sc)
1712 {
1713 	struct ifnet *ifp = &sc->arpcom.ac_if;
1714 	struct ifmultiaddr *ifma;
1715 	uint32_t reg_rctl = 0;
1716 	uint8_t *mta;
1717 	int mcnt = 0;
1718 
1719 	mta = sc->mta;
1720 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1721 
1722 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1723 		if (ifma->ifma_addr->sa_family != AF_LINK)
1724 			continue;
1725 
1726 		if (mcnt == EMX_MCAST_ADDR_MAX)
1727 			break;
1728 
1729 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1730 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1731 		mcnt++;
1732 	}
1733 
1734 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1735 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1736 		reg_rctl |= E1000_RCTL_MPE;
1737 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1738 	} else {
1739 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1740 	}
1741 }
1742 
1743 /*
1744  * This routine checks for link status and updates statistics.
1745  */
1746 static void
1747 emx_timer(void *xsc)
1748 {
1749 	struct emx_softc *sc = xsc;
1750 	struct ifnet *ifp = &sc->arpcom.ac_if;
1751 
1752 	lwkt_serialize_enter(&sc->main_serialize);
1753 
1754 	emx_update_link_status(sc);
1755 	emx_update_stats(sc);
1756 
1757 	/* Reset LAA into RAR[0] on 82571 */
1758 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1759 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1760 
1761 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1762 		emx_print_hw_stats(sc);
1763 
1764 	emx_smartspeed(sc);
1765 
1766 	callout_reset(&sc->timer, hz, emx_timer, sc);
1767 
1768 	lwkt_serialize_exit(&sc->main_serialize);
1769 }
1770 
1771 static void
1772 emx_update_link_status(struct emx_softc *sc)
1773 {
1774 	struct e1000_hw *hw = &sc->hw;
1775 	struct ifnet *ifp = &sc->arpcom.ac_if;
1776 	device_t dev = sc->dev;
1777 	uint32_t link_check = 0;
1778 
1779 	/* Get the cached link value or read phy for real */
1780 	switch (hw->phy.media_type) {
1781 	case e1000_media_type_copper:
1782 		if (hw->mac.get_link_status) {
1783 			/* Do the work to read phy */
1784 			e1000_check_for_link(hw);
1785 			link_check = !hw->mac.get_link_status;
1786 			if (link_check) /* ESB2 fix */
1787 				e1000_cfg_on_link_up(hw);
1788 		} else {
1789 			link_check = TRUE;
1790 		}
1791 		break;
1792 
1793 	case e1000_media_type_fiber:
1794 		e1000_check_for_link(hw);
1795 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1796 		break;
1797 
1798 	case e1000_media_type_internal_serdes:
1799 		e1000_check_for_link(hw);
1800 		link_check = sc->hw.mac.serdes_has_link;
1801 		break;
1802 
1803 	case e1000_media_type_unknown:
1804 	default:
1805 		break;
1806 	}
1807 
1808 	/* Now check for a transition */
1809 	if (link_check && sc->link_active == 0) {
1810 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1811 		    &sc->link_duplex);
1812 
1813 		/*
1814 		 * Check if we should enable/disable SPEED_MODE bit on
1815 		 * 82571EB/82572EI
1816 		 */
1817 		if (sc->link_speed != SPEED_1000 &&
1818 		    (hw->mac.type == e1000_82571 ||
1819 		     hw->mac.type == e1000_82572)) {
1820 			int tarc0;
1821 
1822 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1823 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1824 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1825 		}
1826 		if (bootverbose) {
1827 			device_printf(dev, "Link is up %d Mbps %s\n",
1828 			    sc->link_speed,
1829 			    ((sc->link_duplex == FULL_DUPLEX) ?
1830 			    "Full Duplex" : "Half Duplex"));
1831 		}
1832 		sc->link_active = 1;
1833 		sc->smartspeed = 0;
1834 		ifp->if_baudrate = sc->link_speed * 1000000;
1835 		ifp->if_link_state = LINK_STATE_UP;
1836 		if_link_state_change(ifp);
1837 	} else if (!link_check && sc->link_active == 1) {
1838 		ifp->if_baudrate = sc->link_speed = 0;
1839 		sc->link_duplex = 0;
1840 		if (bootverbose)
1841 			device_printf(dev, "Link is Down\n");
1842 		sc->link_active = 0;
1843 		ifp->if_link_state = LINK_STATE_DOWN;
1844 		if_link_state_change(ifp);
1845 	}
1846 }
1847 
1848 static void
1849 emx_stop(struct emx_softc *sc)
1850 {
1851 	struct ifnet *ifp = &sc->arpcom.ac_if;
1852 	int i;
1853 
1854 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1855 
1856 	emx_disable_intr(sc);
1857 
1858 	callout_stop(&sc->timer);
1859 
1860 	ifp->if_flags &= ~IFF_RUNNING;
1861 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1862 		struct emx_txdata *tdata = &sc->tx_data[i];
1863 
1864 		ifsq_clr_oactive(tdata->ifsq);
1865 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1866 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1867 	}
1868 
1869 	/*
1870 	 * Disable multiple receive queues.
1871 	 *
1872 	 * NOTE:
1873 	 * We should disable multiple receive queues before
1874 	 * resetting the hardware.
1875 	 */
1876 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1877 
1878 	e1000_reset_hw(&sc->hw);
1879 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1880 
1881 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1882 		emx_free_tx_ring(&sc->tx_data[i]);
1883 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1884 		emx_free_rx_ring(&sc->rx_data[i]);
1885 }
1886 
1887 static int
1888 emx_reset(struct emx_softc *sc)
1889 {
1890 	device_t dev = sc->dev;
1891 	uint16_t rx_buffer_size;
1892 	uint32_t pba;
1893 
1894 	/* Set up smart power down as default off on newer adapters. */
1895 	if (!emx_smart_pwr_down &&
1896 	    (sc->hw.mac.type == e1000_82571 ||
1897 	     sc->hw.mac.type == e1000_82572)) {
1898 		uint16_t phy_tmp = 0;
1899 
1900 		/* Speed up time to link by disabling smart power down. */
1901 		e1000_read_phy_reg(&sc->hw,
1902 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1903 		phy_tmp &= ~IGP02E1000_PM_SPD;
1904 		e1000_write_phy_reg(&sc->hw,
1905 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1906 	}
1907 
1908 	/*
1909 	 * Packet Buffer Allocation (PBA)
1910 	 * Writing PBA sets the receive portion of the buffer
1911 	 * the remainder is used for the transmit buffer.
1912 	 */
1913 	switch (sc->hw.mac.type) {
1914 	/* Total Packet Buffer on these is 48K */
1915 	case e1000_82571:
1916 	case e1000_82572:
1917 	case e1000_80003es2lan:
1918 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1919 		break;
1920 
1921 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1922 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1923 		break;
1924 
1925 	case e1000_82574:
1926 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1927 		break;
1928 
1929 	case e1000_pch_lpt:
1930  		pba = E1000_PBA_26K;
1931  		break;
1932 
1933 	default:
1934 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1935 		if (sc->hw.mac.max_frame_size > 8192)
1936 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1937 		else
1938 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1939 	}
1940 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1941 
1942 	/*
1943 	 * These parameters control the automatic generation (Tx) and
1944 	 * response (Rx) to Ethernet PAUSE frames.
1945 	 * - High water mark should allow for at least two frames to be
1946 	 *   received after sending an XOFF.
1947 	 * - Low water mark works best when it is very near the high water mark.
1948 	 *   This allows the receiver to restart by sending XON when it has
1949 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1950 	 *   restart after one full frame is pulled from the buffer. There
1951 	 *   could be several smaller frames in the buffer and if so they will
1952 	 *   not trigger the XON until their total number reduces the buffer
1953 	 *   by 1500.
1954 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1955 	 */
1956 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1957 
1958 	sc->hw.fc.high_water = rx_buffer_size -
1959 	    roundup2(sc->hw.mac.max_frame_size, 1024);
1960 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1961 
1962 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1963 	sc->hw.fc.send_xon = TRUE;
1964 	sc->hw.fc.requested_mode = e1000_fc_full;
1965 
1966 	/*
1967 	 * Device specific overrides/settings
1968 	 */
1969 	if (sc->hw.mac.type == e1000_pch_lpt) {
1970 		sc->hw.fc.high_water = 0x5C20;
1971 		sc->hw.fc.low_water = 0x5048;
1972 		sc->hw.fc.pause_time = 0x0650;
1973 		sc->hw.fc.refresh_time = 0x0400;
1974 		/* Jumbos need adjusted PBA */
1975 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
1976 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
1977 		else
1978 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
1979 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
1980 		sc->hw.fc.pause_time = 0xFFFF;
1981 	}
1982 
1983 	/* Issue a global reset */
1984 	e1000_reset_hw(&sc->hw);
1985 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1986 	emx_disable_aspm(sc);
1987 
1988 	if (e1000_init_hw(&sc->hw) < 0) {
1989 		device_printf(dev, "Hardware Initialization Failed\n");
1990 		return (EIO);
1991 	}
1992 
1993 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1994 	e1000_get_phy_info(&sc->hw);
1995 	e1000_check_for_link(&sc->hw);
1996 
1997 	return (0);
1998 }
1999 
2000 static void
2001 emx_setup_ifp(struct emx_softc *sc)
2002 {
2003 	struct ifnet *ifp = &sc->arpcom.ac_if;
2004 	int i;
2005 
2006 	if_initname(ifp, device_get_name(sc->dev),
2007 		    device_get_unit(sc->dev));
2008 	ifp->if_softc = sc;
2009 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2010 	ifp->if_init =  emx_init;
2011 	ifp->if_ioctl = emx_ioctl;
2012 	ifp->if_start = emx_start;
2013 #ifdef IFPOLL_ENABLE
2014 	ifp->if_npoll = emx_npoll;
2015 #endif
2016 	ifp->if_serialize = emx_serialize;
2017 	ifp->if_deserialize = emx_deserialize;
2018 	ifp->if_tryserialize = emx_tryserialize;
2019 #ifdef INVARIANTS
2020 	ifp->if_serialize_assert = emx_serialize_assert;
2021 #endif
2022 
2023 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2024 	ifq_set_ready(&ifp->if_snd);
2025 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2026 
2027 	ifp->if_mapsubq = ifq_mapsubq_mask;
2028 	ifq_set_subq_mask(&ifp->if_snd, 0);
2029 
2030 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2031 
2032 	ifp->if_capabilities = IFCAP_HWCSUM |
2033 			       IFCAP_VLAN_HWTAGGING |
2034 			       IFCAP_VLAN_MTU |
2035 			       IFCAP_TSO;
2036 	if (sc->rx_ring_cnt > 1)
2037 		ifp->if_capabilities |= IFCAP_RSS;
2038 	ifp->if_capenable = ifp->if_capabilities;
2039 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2040 
2041 	/*
2042 	 * Tell the upper layer(s) we support long frames.
2043 	 */
2044 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2045 
2046 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2047 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2048 		struct emx_txdata *tdata = &sc->tx_data[i];
2049 
2050 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2051 		ifsq_set_priv(ifsq, tdata);
2052 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2053 		tdata->ifsq = ifsq;
2054 
2055 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2056 	}
2057 
2058 	/*
2059 	 * Specify the media types supported by this sc and register
2060 	 * callbacks to update media and link information
2061 	 */
2062 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2063 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2064 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2065 			    0, NULL);
2066 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
2067 	} else {
2068 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2069 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2070 			    0, NULL);
2071 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2072 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2073 			    0, NULL);
2074 		if (sc->hw.phy.type != e1000_phy_ife) {
2075 			ifmedia_add(&sc->media,
2076 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2077 			ifmedia_add(&sc->media,
2078 				IFM_ETHER | IFM_1000_T, 0, NULL);
2079 		}
2080 	}
2081 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2082 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2083 }
2084 
2085 /*
2086  * Workaround for SmartSpeed on 82541 and 82547 controllers
2087  */
2088 static void
2089 emx_smartspeed(struct emx_softc *sc)
2090 {
2091 	uint16_t phy_tmp;
2092 
2093 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2094 	    sc->hw.mac.autoneg == 0 ||
2095 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2096 		return;
2097 
2098 	if (sc->smartspeed == 0) {
2099 		/*
2100 		 * If Master/Slave config fault is asserted twice,
2101 		 * we assume back-to-back
2102 		 */
2103 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2104 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2105 			return;
2106 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2107 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2108 			e1000_read_phy_reg(&sc->hw,
2109 			    PHY_1000T_CTRL, &phy_tmp);
2110 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2111 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2112 				e1000_write_phy_reg(&sc->hw,
2113 				    PHY_1000T_CTRL, phy_tmp);
2114 				sc->smartspeed++;
2115 				if (sc->hw.mac.autoneg &&
2116 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2117 				    !e1000_read_phy_reg(&sc->hw,
2118 				     PHY_CONTROL, &phy_tmp)) {
2119 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2120 						   MII_CR_RESTART_AUTO_NEG;
2121 					e1000_write_phy_reg(&sc->hw,
2122 					    PHY_CONTROL, phy_tmp);
2123 				}
2124 			}
2125 		}
2126 		return;
2127 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2128 		/* If still no link, perhaps using 2/3 pair cable */
2129 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2130 		phy_tmp |= CR_1000T_MS_ENABLE;
2131 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2132 		if (sc->hw.mac.autoneg &&
2133 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2134 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2135 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2136 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2137 		}
2138 	}
2139 
2140 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2141 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2142 		sc->smartspeed = 0;
2143 }
2144 
2145 static int
2146 emx_create_tx_ring(struct emx_txdata *tdata)
2147 {
2148 	device_t dev = tdata->sc->dev;
2149 	struct emx_txbuf *tx_buffer;
2150 	int error, i, tsize, ntxd;
2151 
2152 	/*
2153 	 * Validate number of transmit descriptors.  It must not exceed
2154 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2155 	 */
2156 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2157 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2158 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2159 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2160 		    EMX_DEFAULT_TXD, ntxd);
2161 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2162 	} else {
2163 		tdata->num_tx_desc = ntxd;
2164 	}
2165 
2166 	/*
2167 	 * Allocate Transmit Descriptor ring
2168 	 */
2169 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2170 			 EMX_DBA_ALIGN);
2171 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2172 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2173 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2174 				&tdata->tx_desc_paddr);
2175 	if (tdata->tx_desc_base == NULL) {
2176 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2177 		return ENOMEM;
2178 	}
2179 
2180 	tsize = __VM_CACHELINE_ALIGN(
2181 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2182 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2183 
2184 	/*
2185 	 * Create DMA tags for tx buffers
2186 	 */
2187 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2188 			1, 0,			/* alignment, bounds */
2189 			BUS_SPACE_MAXADDR,	/* lowaddr */
2190 			BUS_SPACE_MAXADDR,	/* highaddr */
2191 			NULL, NULL,		/* filter, filterarg */
2192 			EMX_TSO_SIZE,		/* maxsize */
2193 			EMX_MAX_SCATTER,	/* nsegments */
2194 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2195 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2196 			BUS_DMA_ONEBPAGE,	/* flags */
2197 			&tdata->txtag);
2198 	if (error) {
2199 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2200 		kfree(tdata->tx_buf, M_DEVBUF);
2201 		tdata->tx_buf = NULL;
2202 		return error;
2203 	}
2204 
2205 	/*
2206 	 * Create DMA maps for tx buffers
2207 	 */
2208 	for (i = 0; i < tdata->num_tx_desc; i++) {
2209 		tx_buffer = &tdata->tx_buf[i];
2210 
2211 		error = bus_dmamap_create(tdata->txtag,
2212 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2213 					  &tx_buffer->map);
2214 		if (error) {
2215 			device_printf(dev, "Unable to create TX DMA map\n");
2216 			emx_destroy_tx_ring(tdata, i);
2217 			return error;
2218 		}
2219 	}
2220 
2221 	/*
2222 	 * Setup TX parameters
2223 	 */
2224 	tdata->spare_tx_desc = EMX_TX_SPARE;
2225 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2226 
2227 	/*
2228 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2229 	 * and tx_intr_nsegs:
2230 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2231 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2232 	 */
2233 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2234 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2235 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2236 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2237 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2238 
2239 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2240 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2241 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2242 
2243 	/*
2244 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2245 	 * 82571/82572 specification update errata #7
2246 	 *
2247 	 * Same applies to I217 (and maybe I218).
2248 	 *
2249 	 * NOTE:
2250 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2251 	 * are pulled; mainly to keep rest of the data properly aligned.
2252 	 */
2253 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2254 	    tdata->sc->hw.mac.type == e1000_82572 ||
2255 	    tdata->sc->hw.mac.type == e1000_pch_lpt)
2256 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2257 
2258 	return (0);
2259 }
2260 
2261 static void
2262 emx_init_tx_ring(struct emx_txdata *tdata)
2263 {
2264 	/* Clear the old ring contents */
2265 	bzero(tdata->tx_desc_base,
2266 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2267 
2268 	/* Reset state */
2269 	tdata->next_avail_tx_desc = 0;
2270 	tdata->next_tx_to_clean = 0;
2271 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2272 
2273 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2274 	if (tdata->sc->tx_ring_inuse > 1) {
2275 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2276 		if (bootverbose) {
2277 			if_printf(&tdata->sc->arpcom.ac_if,
2278 			    "TX %d force ctx setup\n", tdata->idx);
2279 		}
2280 	}
2281 }
2282 
2283 static void
2284 emx_init_tx_unit(struct emx_softc *sc)
2285 {
2286 	uint32_t tctl, tarc, tipg = 0;
2287 	int i;
2288 
2289 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2290 		struct emx_txdata *tdata = &sc->tx_data[i];
2291 		uint64_t bus_addr;
2292 
2293 		/* Setup the Base and Length of the Tx Descriptor Ring */
2294 		bus_addr = tdata->tx_desc_paddr;
2295 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2296 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2297 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2298 		    (uint32_t)(bus_addr >> 32));
2299 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2300 		    (uint32_t)bus_addr);
2301 		/* Setup the HW Tx Head and Tail descriptor pointers */
2302 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2303 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2304 	}
2305 
2306 	/* Set the default values for the Tx Inter Packet Gap timer */
2307 	switch (sc->hw.mac.type) {
2308 	case e1000_80003es2lan:
2309 		tipg = DEFAULT_82543_TIPG_IPGR1;
2310 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2311 		    E1000_TIPG_IPGR2_SHIFT;
2312 		break;
2313 
2314 	default:
2315 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2316 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2317 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2318 		else
2319 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2320 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2321 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2322 		break;
2323 	}
2324 
2325 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2326 
2327 	/* NOTE: 0 is not allowed for TIDV */
2328 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2329 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2330 
2331 	if (sc->hw.mac.type == e1000_82571 ||
2332 	    sc->hw.mac.type == e1000_82572) {
2333 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2334 		tarc |= EMX_TARC_SPEED_MODE;
2335 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2336 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2337 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2338 		tarc |= 1;
2339 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2340 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2341 		tarc |= 1;
2342 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2343 	}
2344 
2345 	/* Program the Transmit Control Register */
2346 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2347 	tctl &= ~E1000_TCTL_CT;
2348 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2349 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2350 	tctl |= E1000_TCTL_MULR;
2351 
2352 	/* This write will effectively turn on the transmit unit. */
2353 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2354 
2355 	if (sc->hw.mac.type == e1000_82571 ||
2356 	    sc->hw.mac.type == e1000_82572 ||
2357 	    sc->hw.mac.type == e1000_80003es2lan) {
2358 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2359 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2360 		tarc &= ~(1 << 28);
2361 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2362 	}
2363 
2364 	if (sc->tx_ring_inuse > 1) {
2365 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2366 		tarc &= ~EMX_TARC_COUNT_MASK;
2367 		tarc |= 1;
2368 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2369 
2370 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2371 		tarc &= ~EMX_TARC_COUNT_MASK;
2372 		tarc |= 1;
2373 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2374 	}
2375 }
2376 
2377 static void
2378 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2379 {
2380 	struct emx_txbuf *tx_buffer;
2381 	int i;
2382 
2383 	/* Free Transmit Descriptor ring */
2384 	if (tdata->tx_desc_base) {
2385 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2386 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2387 				tdata->tx_desc_dmap);
2388 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2389 
2390 		tdata->tx_desc_base = NULL;
2391 	}
2392 
2393 	if (tdata->tx_buf == NULL)
2394 		return;
2395 
2396 	for (i = 0; i < ndesc; i++) {
2397 		tx_buffer = &tdata->tx_buf[i];
2398 
2399 		KKASSERT(tx_buffer->m_head == NULL);
2400 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2401 	}
2402 	bus_dma_tag_destroy(tdata->txtag);
2403 
2404 	kfree(tdata->tx_buf, M_DEVBUF);
2405 	tdata->tx_buf = NULL;
2406 }
2407 
2408 /*
2409  * The offload context needs to be set when we transfer the first
2410  * packet of a particular protocol (TCP/UDP).  This routine has been
2411  * enhanced to deal with inserted VLAN headers.
2412  *
2413  * If the new packet's ether header length, ip header length and
2414  * csum offloading type are same as the previous packet, we should
2415  * avoid allocating a new csum context descriptor; mainly to take
2416  * advantage of the pipeline effect of the TX data read request.
2417  *
2418  * This function returns number of TX descrptors allocated for
2419  * csum context.
2420  */
2421 static int
2422 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2423 	   uint32_t *txd_upper, uint32_t *txd_lower)
2424 {
2425 	struct e1000_context_desc *TXD;
2426 	int curr_txd, ehdrlen, csum_flags;
2427 	uint32_t cmd, hdr_len, ip_hlen;
2428 
2429 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2430 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2431 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2432 
2433 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2434 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2435 	    tdata->csum_flags == csum_flags) {
2436 		/*
2437 		 * Same csum offload context as the previous packets;
2438 		 * just return.
2439 		 */
2440 		*txd_upper = tdata->csum_txd_upper;
2441 		*txd_lower = tdata->csum_txd_lower;
2442 		return 0;
2443 	}
2444 
2445 	/*
2446 	 * Setup a new csum offload context.
2447 	 */
2448 
2449 	curr_txd = tdata->next_avail_tx_desc;
2450 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2451 
2452 	cmd = 0;
2453 
2454 	/* Setup of IP header checksum. */
2455 	if (csum_flags & CSUM_IP) {
2456 		/*
2457 		 * Start offset for header checksum calculation.
2458 		 * End offset for header checksum calculation.
2459 		 * Offset of place to put the checksum.
2460 		 */
2461 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2462 		TXD->lower_setup.ip_fields.ipcse =
2463 		    htole16(ehdrlen + ip_hlen - 1);
2464 		TXD->lower_setup.ip_fields.ipcso =
2465 		    ehdrlen + offsetof(struct ip, ip_sum);
2466 		cmd |= E1000_TXD_CMD_IP;
2467 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2468 	}
2469 	hdr_len = ehdrlen + ip_hlen;
2470 
2471 	if (csum_flags & CSUM_TCP) {
2472 		/*
2473 		 * Start offset for payload checksum calculation.
2474 		 * End offset for payload checksum calculation.
2475 		 * Offset of place to put the checksum.
2476 		 */
2477 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2478 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2479 		TXD->upper_setup.tcp_fields.tucso =
2480 		    hdr_len + offsetof(struct tcphdr, th_sum);
2481 		cmd |= E1000_TXD_CMD_TCP;
2482 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2483 	} else if (csum_flags & CSUM_UDP) {
2484 		/*
2485 		 * Start offset for header checksum calculation.
2486 		 * End offset for header checksum calculation.
2487 		 * Offset of place to put the checksum.
2488 		 */
2489 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2490 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2491 		TXD->upper_setup.tcp_fields.tucso =
2492 		    hdr_len + offsetof(struct udphdr, uh_sum);
2493 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2494 	}
2495 
2496 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2497 		     E1000_TXD_DTYP_D;		/* Data descr */
2498 
2499 	/* Save the information for this csum offloading context */
2500 	tdata->csum_lhlen = ehdrlen;
2501 	tdata->csum_iphlen = ip_hlen;
2502 	tdata->csum_flags = csum_flags;
2503 	tdata->csum_txd_upper = *txd_upper;
2504 	tdata->csum_txd_lower = *txd_lower;
2505 
2506 	TXD->tcp_seg_setup.data = htole32(0);
2507 	TXD->cmd_and_length =
2508 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2509 
2510 	if (++curr_txd == tdata->num_tx_desc)
2511 		curr_txd = 0;
2512 
2513 	KKASSERT(tdata->num_tx_desc_avail > 0);
2514 	tdata->num_tx_desc_avail--;
2515 
2516 	tdata->next_avail_tx_desc = curr_txd;
2517 	return 1;
2518 }
2519 
2520 static void
2521 emx_txeof(struct emx_txdata *tdata)
2522 {
2523 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2524 	struct emx_txbuf *tx_buffer;
2525 	int first, num_avail;
2526 
2527 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2528 		return;
2529 
2530 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2531 		return;
2532 
2533 	num_avail = tdata->num_tx_desc_avail;
2534 	first = tdata->next_tx_to_clean;
2535 
2536 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2537 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2538 		struct e1000_tx_desc *tx_desc;
2539 
2540 		tx_desc = &tdata->tx_desc_base[dd_idx];
2541 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2542 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2543 
2544 			if (++dd_idx == tdata->num_tx_desc)
2545 				dd_idx = 0;
2546 
2547 			while (first != dd_idx) {
2548 				logif(pkt_txclean);
2549 
2550 				num_avail++;
2551 
2552 				tx_buffer = &tdata->tx_buf[first];
2553 				if (tx_buffer->m_head) {
2554 					IFNET_STAT_INC(ifp, opackets, 1);
2555 					bus_dmamap_unload(tdata->txtag,
2556 							  tx_buffer->map);
2557 					m_freem(tx_buffer->m_head);
2558 					tx_buffer->m_head = NULL;
2559 				}
2560 
2561 				if (++first == tdata->num_tx_desc)
2562 					first = 0;
2563 			}
2564 		} else {
2565 			break;
2566 		}
2567 	}
2568 	tdata->next_tx_to_clean = first;
2569 	tdata->num_tx_desc_avail = num_avail;
2570 
2571 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2572 		tdata->tx_dd_head = 0;
2573 		tdata->tx_dd_tail = 0;
2574 	}
2575 
2576 	if (!EMX_IS_OACTIVE(tdata)) {
2577 		ifsq_clr_oactive(tdata->ifsq);
2578 
2579 		/* All clean, turn off the timer */
2580 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2581 			tdata->tx_watchdog.wd_timer = 0;
2582 	}
2583 }
2584 
2585 static void
2586 emx_tx_collect(struct emx_txdata *tdata)
2587 {
2588 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2589 	struct emx_txbuf *tx_buffer;
2590 	int tdh, first, num_avail, dd_idx = -1;
2591 
2592 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2593 		return;
2594 
2595 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2596 	if (tdh == tdata->next_tx_to_clean)
2597 		return;
2598 
2599 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2600 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2601 
2602 	num_avail = tdata->num_tx_desc_avail;
2603 	first = tdata->next_tx_to_clean;
2604 
2605 	while (first != tdh) {
2606 		logif(pkt_txclean);
2607 
2608 		num_avail++;
2609 
2610 		tx_buffer = &tdata->tx_buf[first];
2611 		if (tx_buffer->m_head) {
2612 			IFNET_STAT_INC(ifp, opackets, 1);
2613 			bus_dmamap_unload(tdata->txtag,
2614 					  tx_buffer->map);
2615 			m_freem(tx_buffer->m_head);
2616 			tx_buffer->m_head = NULL;
2617 		}
2618 
2619 		if (first == dd_idx) {
2620 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2621 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2622 				tdata->tx_dd_head = 0;
2623 				tdata->tx_dd_tail = 0;
2624 				dd_idx = -1;
2625 			} else {
2626 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2627 			}
2628 		}
2629 
2630 		if (++first == tdata->num_tx_desc)
2631 			first = 0;
2632 	}
2633 	tdata->next_tx_to_clean = first;
2634 	tdata->num_tx_desc_avail = num_avail;
2635 
2636 	if (!EMX_IS_OACTIVE(tdata)) {
2637 		ifsq_clr_oactive(tdata->ifsq);
2638 
2639 		/* All clean, turn off the timer */
2640 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2641 			tdata->tx_watchdog.wd_timer = 0;
2642 	}
2643 }
2644 
2645 /*
2646  * When Link is lost sometimes there is work still in the TX ring
2647  * which will result in a watchdog, rather than allow that do an
2648  * attempted cleanup and then reinit here.  Note that this has been
2649  * seens mostly with fiber adapters.
2650  */
2651 static void
2652 emx_tx_purge(struct emx_softc *sc)
2653 {
2654 	int i;
2655 
2656 	if (sc->link_active)
2657 		return;
2658 
2659 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2660 		struct emx_txdata *tdata = &sc->tx_data[i];
2661 
2662 		if (tdata->tx_watchdog.wd_timer) {
2663 			emx_tx_collect(tdata);
2664 			if (tdata->tx_watchdog.wd_timer) {
2665 				if_printf(&sc->arpcom.ac_if,
2666 				    "Link lost, TX pending, reinit\n");
2667 				emx_init(sc);
2668 				return;
2669 			}
2670 		}
2671 	}
2672 }
2673 
2674 static int
2675 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2676 {
2677 	struct mbuf *m;
2678 	bus_dma_segment_t seg;
2679 	bus_dmamap_t map;
2680 	struct emx_rxbuf *rx_buffer;
2681 	int error, nseg;
2682 
2683 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2684 	if (m == NULL) {
2685 		if (init) {
2686 			if_printf(&rdata->sc->arpcom.ac_if,
2687 				  "Unable to allocate RX mbuf\n");
2688 		}
2689 		return (ENOBUFS);
2690 	}
2691 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2692 
2693 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2694 		m_adj(m, ETHER_ALIGN);
2695 
2696 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2697 			rdata->rx_sparemap, m,
2698 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2699 	if (error) {
2700 		m_freem(m);
2701 		if (init) {
2702 			if_printf(&rdata->sc->arpcom.ac_if,
2703 				  "Unable to load RX mbuf\n");
2704 		}
2705 		return (error);
2706 	}
2707 
2708 	rx_buffer = &rdata->rx_buf[i];
2709 	if (rx_buffer->m_head != NULL)
2710 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2711 
2712 	map = rx_buffer->map;
2713 	rx_buffer->map = rdata->rx_sparemap;
2714 	rdata->rx_sparemap = map;
2715 
2716 	rx_buffer->m_head = m;
2717 	rx_buffer->paddr = seg.ds_addr;
2718 
2719 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2720 	return (0);
2721 }
2722 
2723 static int
2724 emx_create_rx_ring(struct emx_rxdata *rdata)
2725 {
2726 	device_t dev = rdata->sc->dev;
2727 	struct emx_rxbuf *rx_buffer;
2728 	int i, error, rsize, nrxd;
2729 
2730 	/*
2731 	 * Validate number of receive descriptors.  It must not exceed
2732 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2733 	 */
2734 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2735 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2736 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2737 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2738 		    EMX_DEFAULT_RXD, nrxd);
2739 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2740 	} else {
2741 		rdata->num_rx_desc = nrxd;
2742 	}
2743 
2744 	/*
2745 	 * Allocate Receive Descriptor ring
2746 	 */
2747 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2748 			 EMX_DBA_ALIGN);
2749 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2750 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2751 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2752 				&rdata->rx_desc_paddr);
2753 	if (rdata->rx_desc == NULL) {
2754 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2755 		return ENOMEM;
2756 	}
2757 
2758 	rsize = __VM_CACHELINE_ALIGN(
2759 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2760 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2761 
2762 	/*
2763 	 * Create DMA tag for rx buffers
2764 	 */
2765 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2766 			1, 0,			/* alignment, bounds */
2767 			BUS_SPACE_MAXADDR,	/* lowaddr */
2768 			BUS_SPACE_MAXADDR,	/* highaddr */
2769 			NULL, NULL,		/* filter, filterarg */
2770 			MCLBYTES,		/* maxsize */
2771 			1,			/* nsegments */
2772 			MCLBYTES,		/* maxsegsize */
2773 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2774 			&rdata->rxtag);
2775 	if (error) {
2776 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2777 		kfree(rdata->rx_buf, M_DEVBUF);
2778 		rdata->rx_buf = NULL;
2779 		return error;
2780 	}
2781 
2782 	/*
2783 	 * Create spare DMA map for rx buffers
2784 	 */
2785 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2786 				  &rdata->rx_sparemap);
2787 	if (error) {
2788 		device_printf(dev, "Unable to create spare RX DMA map\n");
2789 		bus_dma_tag_destroy(rdata->rxtag);
2790 		kfree(rdata->rx_buf, M_DEVBUF);
2791 		rdata->rx_buf = NULL;
2792 		return error;
2793 	}
2794 
2795 	/*
2796 	 * Create DMA maps for rx buffers
2797 	 */
2798 	for (i = 0; i < rdata->num_rx_desc; i++) {
2799 		rx_buffer = &rdata->rx_buf[i];
2800 
2801 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2802 					  &rx_buffer->map);
2803 		if (error) {
2804 			device_printf(dev, "Unable to create RX DMA map\n");
2805 			emx_destroy_rx_ring(rdata, i);
2806 			return error;
2807 		}
2808 	}
2809 	return (0);
2810 }
2811 
2812 static void
2813 emx_free_rx_ring(struct emx_rxdata *rdata)
2814 {
2815 	int i;
2816 
2817 	for (i = 0; i < rdata->num_rx_desc; i++) {
2818 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2819 
2820 		if (rx_buffer->m_head != NULL) {
2821 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2822 			m_freem(rx_buffer->m_head);
2823 			rx_buffer->m_head = NULL;
2824 		}
2825 	}
2826 
2827 	if (rdata->fmp != NULL)
2828 		m_freem(rdata->fmp);
2829 	rdata->fmp = NULL;
2830 	rdata->lmp = NULL;
2831 }
2832 
2833 static void
2834 emx_free_tx_ring(struct emx_txdata *tdata)
2835 {
2836 	int i;
2837 
2838 	for (i = 0; i < tdata->num_tx_desc; i++) {
2839 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2840 
2841 		if (tx_buffer->m_head != NULL) {
2842 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2843 			m_freem(tx_buffer->m_head);
2844 			tx_buffer->m_head = NULL;
2845 		}
2846 	}
2847 
2848 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2849 
2850 	tdata->csum_flags = 0;
2851 	tdata->csum_lhlen = 0;
2852 	tdata->csum_iphlen = 0;
2853 	tdata->csum_thlen = 0;
2854 	tdata->csum_mss = 0;
2855 	tdata->csum_pktlen = 0;
2856 
2857 	tdata->tx_dd_head = 0;
2858 	tdata->tx_dd_tail = 0;
2859 	tdata->tx_nsegs = 0;
2860 }
2861 
2862 static int
2863 emx_init_rx_ring(struct emx_rxdata *rdata)
2864 {
2865 	int i, error;
2866 
2867 	/* Reset descriptor ring */
2868 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2869 
2870 	/* Allocate new ones. */
2871 	for (i = 0; i < rdata->num_rx_desc; i++) {
2872 		error = emx_newbuf(rdata, i, 1);
2873 		if (error)
2874 			return (error);
2875 	}
2876 
2877 	/* Setup our descriptor pointers */
2878 	rdata->next_rx_desc_to_check = 0;
2879 
2880 	return (0);
2881 }
2882 
2883 static void
2884 emx_init_rx_unit(struct emx_softc *sc)
2885 {
2886 	struct ifnet *ifp = &sc->arpcom.ac_if;
2887 	uint64_t bus_addr;
2888 	uint32_t rctl, itr, rfctl;
2889 	int i;
2890 
2891 	/*
2892 	 * Make sure receives are disabled while setting
2893 	 * up the descriptor ring
2894 	 */
2895 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2896 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2897 
2898 	/*
2899 	 * Set the interrupt throttling rate. Value is calculated
2900 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2901 	 */
2902 	if (sc->int_throttle_ceil)
2903 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2904 	else
2905 		itr = 0;
2906 	emx_set_itr(sc, itr);
2907 
2908 	/* Use extended RX descriptor */
2909 	rfctl = E1000_RFCTL_EXTEN;
2910 
2911 	/* Disable accelerated ackknowledge */
2912 	if (sc->hw.mac.type == e1000_82574)
2913 		rfctl |= E1000_RFCTL_ACK_DIS;
2914 
2915 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2916 
2917 	/*
2918 	 * Receive Checksum Offload for TCP and UDP
2919 	 *
2920 	 * Checksum offloading is also enabled if multiple receive
2921 	 * queue is to be supported, since we need it to figure out
2922 	 * packet type.
2923 	 */
2924 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2925 	    sc->rx_ring_cnt > 1) {
2926 		uint32_t rxcsum;
2927 
2928 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2929 
2930 		/*
2931 		 * NOTE:
2932 		 * PCSD must be enabled to enable multiple
2933 		 * receive queues.
2934 		 */
2935 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2936 			  E1000_RXCSUM_PCSD;
2937 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2938 	}
2939 
2940 	/*
2941 	 * Configure multiple receive queue (RSS)
2942 	 */
2943 	if (sc->rx_ring_cnt > 1) {
2944 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2945 		uint32_t reta;
2946 
2947 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2948 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2949 
2950 		/*
2951 		 * NOTE:
2952 		 * When we reach here, RSS has already been disabled
2953 		 * in emx_stop(), so we could safely configure RSS key
2954 		 * and redirect table.
2955 		 */
2956 
2957 		/*
2958 		 * Configure RSS key
2959 		 */
2960 		toeplitz_get_key(key, sizeof(key));
2961 		for (i = 0; i < EMX_NRSSRK; ++i) {
2962 			uint32_t rssrk;
2963 
2964 			rssrk = EMX_RSSRK_VAL(key, i);
2965 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2966 
2967 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2968 		}
2969 
2970 		/*
2971 		 * Configure RSS redirect table in following fashion:
2972 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2973 		 */
2974 		reta = 0;
2975 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2976 			uint32_t q;
2977 
2978 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2979 			reta |= q << (8 * i);
2980 		}
2981 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2982 
2983 		for (i = 0; i < EMX_NRETA; ++i)
2984 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2985 
2986 		/*
2987 		 * Enable multiple receive queues.
2988 		 * Enable IPv4 RSS standard hash functions.
2989 		 * Disable RSS interrupt.
2990 		 */
2991 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2992 				E1000_MRQC_ENABLE_RSS_2Q |
2993 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2994 				E1000_MRQC_RSS_FIELD_IPV4);
2995 	}
2996 
2997 	/*
2998 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2999 	 * long latencies are observed, like Lenovo X60. This
3000 	 * change eliminates the problem, but since having positive
3001 	 * values in RDTR is a known source of problems on other
3002 	 * platforms another solution is being sought.
3003 	 */
3004 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3005 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3006 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3007 	}
3008 
3009 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3010 		struct emx_rxdata *rdata = &sc->rx_data[i];
3011 
3012 		/*
3013 		 * Setup the Base and Length of the Rx Descriptor Ring
3014 		 */
3015 		bus_addr = rdata->rx_desc_paddr;
3016 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3017 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3018 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3019 		    (uint32_t)(bus_addr >> 32));
3020 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3021 		    (uint32_t)bus_addr);
3022 
3023 		/*
3024 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3025 		 */
3026 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3027 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3028 		    sc->rx_data[i].num_rx_desc - 1);
3029 	}
3030 
3031 	if (sc->hw.mac.type >= e1000_pch2lan) {
3032 		if (ifp->if_mtu > ETHERMTU)
3033 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3034 		else
3035 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3036 	}
3037 
3038 	/* Setup the Receive Control Register */
3039 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3040 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3041 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3042 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3043 
3044 	/* Make sure VLAN Filters are off */
3045 	rctl &= ~E1000_RCTL_VFE;
3046 
3047 	/* Don't store bad paket */
3048 	rctl &= ~E1000_RCTL_SBP;
3049 
3050 	/* MCLBYTES */
3051 	rctl |= E1000_RCTL_SZ_2048;
3052 
3053 	if (ifp->if_mtu > ETHERMTU)
3054 		rctl |= E1000_RCTL_LPE;
3055 	else
3056 		rctl &= ~E1000_RCTL_LPE;
3057 
3058 	/* Enable Receives */
3059 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3060 }
3061 
3062 static void
3063 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3064 {
3065 	struct emx_rxbuf *rx_buffer;
3066 	int i;
3067 
3068 	/* Free Receive Descriptor ring */
3069 	if (rdata->rx_desc) {
3070 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3071 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3072 				rdata->rx_desc_dmap);
3073 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3074 
3075 		rdata->rx_desc = NULL;
3076 	}
3077 
3078 	if (rdata->rx_buf == NULL)
3079 		return;
3080 
3081 	for (i = 0; i < ndesc; i++) {
3082 		rx_buffer = &rdata->rx_buf[i];
3083 
3084 		KKASSERT(rx_buffer->m_head == NULL);
3085 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3086 	}
3087 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3088 	bus_dma_tag_destroy(rdata->rxtag);
3089 
3090 	kfree(rdata->rx_buf, M_DEVBUF);
3091 	rdata->rx_buf = NULL;
3092 }
3093 
3094 static void
3095 emx_rxeof(struct emx_rxdata *rdata, int count)
3096 {
3097 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3098 	uint32_t staterr;
3099 	emx_rxdesc_t *current_desc;
3100 	struct mbuf *mp;
3101 	int i, cpuid = mycpuid;
3102 
3103 	i = rdata->next_rx_desc_to_check;
3104 	current_desc = &rdata->rx_desc[i];
3105 	staterr = le32toh(current_desc->rxd_staterr);
3106 
3107 	if (!(staterr & E1000_RXD_STAT_DD))
3108 		return;
3109 
3110 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3111 		struct pktinfo *pi = NULL, pi0;
3112 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3113 		struct mbuf *m = NULL;
3114 		int eop, len;
3115 
3116 		logif(pkt_receive);
3117 
3118 		mp = rx_buf->m_head;
3119 
3120 		/*
3121 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3122 		 * needs to access the last received byte in the mbuf.
3123 		 */
3124 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3125 				BUS_DMASYNC_POSTREAD);
3126 
3127 		len = le16toh(current_desc->rxd_length);
3128 		if (staterr & E1000_RXD_STAT_EOP) {
3129 			count--;
3130 			eop = 1;
3131 		} else {
3132 			eop = 0;
3133 		}
3134 
3135 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3136 			uint16_t vlan = 0;
3137 			uint32_t mrq, rss_hash;
3138 
3139 			/*
3140 			 * Save several necessary information,
3141 			 * before emx_newbuf() destroy it.
3142 			 */
3143 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3144 				vlan = le16toh(current_desc->rxd_vlan);
3145 
3146 			mrq = le32toh(current_desc->rxd_mrq);
3147 			rss_hash = le32toh(current_desc->rxd_rss);
3148 
3149 			EMX_RSS_DPRINTF(rdata->sc, 10,
3150 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3151 			    rdata->idx, mrq, rss_hash);
3152 
3153 			if (emx_newbuf(rdata, i, 0) != 0) {
3154 				IFNET_STAT_INC(ifp, iqdrops, 1);
3155 				goto discard;
3156 			}
3157 
3158 			/* Assign correct length to the current fragment */
3159 			mp->m_len = len;
3160 
3161 			if (rdata->fmp == NULL) {
3162 				mp->m_pkthdr.len = len;
3163 				rdata->fmp = mp; /* Store the first mbuf */
3164 				rdata->lmp = mp;
3165 			} else {
3166 				/*
3167 				 * Chain mbuf's together
3168 				 */
3169 				rdata->lmp->m_next = mp;
3170 				rdata->lmp = rdata->lmp->m_next;
3171 				rdata->fmp->m_pkthdr.len += len;
3172 			}
3173 
3174 			if (eop) {
3175 				rdata->fmp->m_pkthdr.rcvif = ifp;
3176 				IFNET_STAT_INC(ifp, ipackets, 1);
3177 
3178 				if (ifp->if_capenable & IFCAP_RXCSUM)
3179 					emx_rxcsum(staterr, rdata->fmp);
3180 
3181 				if (staterr & E1000_RXD_STAT_VP) {
3182 					rdata->fmp->m_pkthdr.ether_vlantag =
3183 					    vlan;
3184 					rdata->fmp->m_flags |= M_VLANTAG;
3185 				}
3186 				m = rdata->fmp;
3187 				rdata->fmp = NULL;
3188 				rdata->lmp = NULL;
3189 
3190 				if (ifp->if_capenable & IFCAP_RSS) {
3191 					pi = emx_rssinfo(m, &pi0, mrq,
3192 							 rss_hash, staterr);
3193 				}
3194 #ifdef EMX_RSS_DEBUG
3195 				rdata->rx_pkts++;
3196 #endif
3197 			}
3198 		} else {
3199 			IFNET_STAT_INC(ifp, ierrors, 1);
3200 discard:
3201 			emx_setup_rxdesc(current_desc, rx_buf);
3202 			if (rdata->fmp != NULL) {
3203 				m_freem(rdata->fmp);
3204 				rdata->fmp = NULL;
3205 				rdata->lmp = NULL;
3206 			}
3207 			m = NULL;
3208 		}
3209 
3210 		if (m != NULL)
3211 			ifp->if_input(ifp, m, pi, cpuid);
3212 
3213 		/* Advance our pointers to the next descriptor. */
3214 		if (++i == rdata->num_rx_desc)
3215 			i = 0;
3216 
3217 		current_desc = &rdata->rx_desc[i];
3218 		staterr = le32toh(current_desc->rxd_staterr);
3219 	}
3220 	rdata->next_rx_desc_to_check = i;
3221 
3222 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3223 	if (--i < 0)
3224 		i = rdata->num_rx_desc - 1;
3225 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3226 }
3227 
3228 static void
3229 emx_enable_intr(struct emx_softc *sc)
3230 {
3231 	uint32_t ims_mask = IMS_ENABLE_MASK;
3232 
3233 	lwkt_serialize_handler_enable(&sc->main_serialize);
3234 
3235 #if 0
3236 	if (sc->hw.mac.type == e1000_82574) {
3237 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3238 		ims_mask |= EM_MSIX_MASK;
3239 	}
3240 #endif
3241 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3242 }
3243 
3244 static void
3245 emx_disable_intr(struct emx_softc *sc)
3246 {
3247 	if (sc->hw.mac.type == e1000_82574)
3248 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3249 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3250 
3251 	lwkt_serialize_handler_disable(&sc->main_serialize);
3252 }
3253 
3254 /*
3255  * Bit of a misnomer, what this really means is
3256  * to enable OS management of the system... aka
3257  * to disable special hardware management features
3258  */
3259 static void
3260 emx_get_mgmt(struct emx_softc *sc)
3261 {
3262 	/* A shared code workaround */
3263 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3264 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3265 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3266 
3267 		/* disable hardware interception of ARP */
3268 		manc &= ~(E1000_MANC_ARP_EN);
3269 
3270                 /* enable receiving management packets to the host */
3271 		manc |= E1000_MANC_EN_MNG2HOST;
3272 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3273 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3274 		manc2h |= E1000_MNG2HOST_PORT_623;
3275 		manc2h |= E1000_MNG2HOST_PORT_664;
3276 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3277 
3278 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3279 	}
3280 }
3281 
3282 /*
3283  * Give control back to hardware management
3284  * controller if there is one.
3285  */
3286 static void
3287 emx_rel_mgmt(struct emx_softc *sc)
3288 {
3289 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3290 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3291 
3292 		/* re-enable hardware interception of ARP */
3293 		manc |= E1000_MANC_ARP_EN;
3294 		manc &= ~E1000_MANC_EN_MNG2HOST;
3295 
3296 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3297 	}
3298 }
3299 
3300 /*
3301  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3302  * For ASF and Pass Through versions of f/w this means that
3303  * the driver is loaded.  For AMT version (only with 82573)
3304  * of the f/w this means that the network i/f is open.
3305  */
3306 static void
3307 emx_get_hw_control(struct emx_softc *sc)
3308 {
3309 	/* Let firmware know the driver has taken over */
3310 	if (sc->hw.mac.type == e1000_82573) {
3311 		uint32_t swsm;
3312 
3313 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3314 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3315 		    swsm | E1000_SWSM_DRV_LOAD);
3316 	} else {
3317 		uint32_t ctrl_ext;
3318 
3319 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3320 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3321 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3322 	}
3323 	sc->flags |= EMX_FLAG_HW_CTRL;
3324 }
3325 
3326 /*
3327  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3328  * For ASF and Pass Through versions of f/w this means that the
3329  * driver is no longer loaded.  For AMT version (only with 82573)
3330  * of the f/w this means that the network i/f is closed.
3331  */
3332 static void
3333 emx_rel_hw_control(struct emx_softc *sc)
3334 {
3335 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3336 		return;
3337 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3338 
3339 	/* Let firmware taken over control of h/w */
3340 	if (sc->hw.mac.type == e1000_82573) {
3341 		uint32_t swsm;
3342 
3343 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3344 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3345 		    swsm & ~E1000_SWSM_DRV_LOAD);
3346 	} else {
3347 		uint32_t ctrl_ext;
3348 
3349 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3350 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3351 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3352 	}
3353 }
3354 
3355 static int
3356 emx_is_valid_eaddr(const uint8_t *addr)
3357 {
3358 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3359 
3360 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3361 		return (FALSE);
3362 
3363 	return (TRUE);
3364 }
3365 
3366 /*
3367  * Enable PCI Wake On Lan capability
3368  */
3369 void
3370 emx_enable_wol(device_t dev)
3371 {
3372 	uint16_t cap, status;
3373 	uint8_t id;
3374 
3375 	/* First find the capabilities pointer*/
3376 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3377 
3378 	/* Read the PM Capabilities */
3379 	id = pci_read_config(dev, cap, 1);
3380 	if (id != PCIY_PMG)     /* Something wrong */
3381 		return;
3382 
3383 	/*
3384 	 * OK, we have the power capabilities,
3385 	 * so now get the status register
3386 	 */
3387 	cap += PCIR_POWER_STATUS;
3388 	status = pci_read_config(dev, cap, 2);
3389 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3390 	pci_write_config(dev, cap, status, 2);
3391 }
3392 
3393 static void
3394 emx_update_stats(struct emx_softc *sc)
3395 {
3396 	struct ifnet *ifp = &sc->arpcom.ac_if;
3397 
3398 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3399 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3400 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3401 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3402 	}
3403 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3404 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3405 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3406 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3407 
3408 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3409 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3410 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3411 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3412 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3413 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3414 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3415 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3416 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3417 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3418 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3419 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3420 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3421 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3422 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3423 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3424 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3425 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3426 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3427 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3428 
3429 	/* For the 64-bit byte counters the low dword must be read first. */
3430 	/* Both registers clear on the read of the high dword */
3431 
3432 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3433 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3434 
3435 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3436 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3437 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3438 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3439 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3440 
3441 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3442 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3443 
3444 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3445 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3446 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3447 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3448 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3449 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3450 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3451 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3452 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3453 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3454 
3455 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3456 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3457 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3458 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3459 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3460 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3461 
3462 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3463 
3464 	/* Rx Errors */
3465 	IFNET_STAT_SET(ifp, ierrors,
3466 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3467 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3468 
3469 	/* Tx Errors */
3470 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3471 }
3472 
3473 static void
3474 emx_print_debug_info(struct emx_softc *sc)
3475 {
3476 	device_t dev = sc->dev;
3477 	uint8_t *hw_addr = sc->hw.hw_addr;
3478 	int i;
3479 
3480 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3481 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3482 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3483 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3484 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3485 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3486 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3487 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3488 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3489 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3490 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3491 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3492 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3493 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3494 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3495 
3496 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3497 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3498 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3499 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3500 	}
3501 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3502 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3503 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3504 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3505 	}
3506 
3507 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3508 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3509 		    sc->tx_data[i].num_tx_desc_avail);
3510 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3511 		    sc->tx_data[i].tso_segments);
3512 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3513 		    sc->tx_data[i].tso_ctx_reused);
3514 	}
3515 }
3516 
3517 static void
3518 emx_print_hw_stats(struct emx_softc *sc)
3519 {
3520 	device_t dev = sc->dev;
3521 
3522 	device_printf(dev, "Excessive collisions = %lld\n",
3523 	    (long long)sc->stats.ecol);
3524 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3525 	device_printf(dev, "Symbol errors = %lld\n",
3526 	    (long long)sc->stats.symerrs);
3527 #endif
3528 	device_printf(dev, "Sequence errors = %lld\n",
3529 	    (long long)sc->stats.sec);
3530 	device_printf(dev, "Defer count = %lld\n",
3531 	    (long long)sc->stats.dc);
3532 	device_printf(dev, "Missed Packets = %lld\n",
3533 	    (long long)sc->stats.mpc);
3534 	device_printf(dev, "Receive No Buffers = %lld\n",
3535 	    (long long)sc->stats.rnbc);
3536 	/* RLEC is inaccurate on some hardware, calculate our own. */
3537 	device_printf(dev, "Receive Length Errors = %lld\n",
3538 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3539 	device_printf(dev, "Receive errors = %lld\n",
3540 	    (long long)sc->stats.rxerrc);
3541 	device_printf(dev, "Crc errors = %lld\n",
3542 	    (long long)sc->stats.crcerrs);
3543 	device_printf(dev, "Alignment errors = %lld\n",
3544 	    (long long)sc->stats.algnerrc);
3545 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3546 	    (long long)sc->stats.cexterr);
3547 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3548 	device_printf(dev, "XON Rcvd = %lld\n",
3549 	    (long long)sc->stats.xonrxc);
3550 	device_printf(dev, "XON Xmtd = %lld\n",
3551 	    (long long)sc->stats.xontxc);
3552 	device_printf(dev, "XOFF Rcvd = %lld\n",
3553 	    (long long)sc->stats.xoffrxc);
3554 	device_printf(dev, "XOFF Xmtd = %lld\n",
3555 	    (long long)sc->stats.xofftxc);
3556 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3557 	    (long long)sc->stats.gprc);
3558 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3559 	    (long long)sc->stats.gptc);
3560 }
3561 
3562 static void
3563 emx_print_nvm_info(struct emx_softc *sc)
3564 {
3565 	uint16_t eeprom_data;
3566 	int i, j, row = 0;
3567 
3568 	/* Its a bit crude, but it gets the job done */
3569 	kprintf("\nInterface EEPROM Dump:\n");
3570 	kprintf("Offset\n0x0000  ");
3571 	for (i = 0, j = 0; i < 32; i++, j++) {
3572 		if (j == 8) { /* Make the offset block */
3573 			j = 0; ++row;
3574 			kprintf("\n0x00%x0  ",row);
3575 		}
3576 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3577 		kprintf("%04x ", eeprom_data);
3578 	}
3579 	kprintf("\n");
3580 }
3581 
3582 static int
3583 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3584 {
3585 	struct emx_softc *sc;
3586 	struct ifnet *ifp;
3587 	int error, result;
3588 
3589 	result = -1;
3590 	error = sysctl_handle_int(oidp, &result, 0, req);
3591 	if (error || !req->newptr)
3592 		return (error);
3593 
3594 	sc = (struct emx_softc *)arg1;
3595 	ifp = &sc->arpcom.ac_if;
3596 
3597 	ifnet_serialize_all(ifp);
3598 
3599 	if (result == 1)
3600 		emx_print_debug_info(sc);
3601 
3602 	/*
3603 	 * This value will cause a hex dump of the
3604 	 * first 32 16-bit words of the EEPROM to
3605 	 * the screen.
3606 	 */
3607 	if (result == 2)
3608 		emx_print_nvm_info(sc);
3609 
3610 	ifnet_deserialize_all(ifp);
3611 
3612 	return (error);
3613 }
3614 
3615 static int
3616 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3617 {
3618 	int error, result;
3619 
3620 	result = -1;
3621 	error = sysctl_handle_int(oidp, &result, 0, req);
3622 	if (error || !req->newptr)
3623 		return (error);
3624 
3625 	if (result == 1) {
3626 		struct emx_softc *sc = (struct emx_softc *)arg1;
3627 		struct ifnet *ifp = &sc->arpcom.ac_if;
3628 
3629 		ifnet_serialize_all(ifp);
3630 		emx_print_hw_stats(sc);
3631 		ifnet_deserialize_all(ifp);
3632 	}
3633 	return (error);
3634 }
3635 
3636 static void
3637 emx_add_sysctl(struct emx_softc *sc)
3638 {
3639 	struct sysctl_ctx_list *ctx;
3640 	struct sysctl_oid *tree;
3641 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3642 	char pkt_desc[32];
3643 	int i;
3644 #endif
3645 
3646 	ctx = device_get_sysctl_ctx(sc->dev);
3647 	tree = device_get_sysctl_tree(sc->dev);
3648 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3649 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3650 			emx_sysctl_debug_info, "I", "Debug Information");
3651 
3652 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3653 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3654 			emx_sysctl_stats, "I", "Statistics");
3655 
3656 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3657 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3658 	    "# of RX descs");
3659 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3660 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3661 	    "# of TX descs");
3662 
3663 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3664 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3665 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3666 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3667 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3668 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3669 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3670 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3671 	    emx_sysctl_tx_wreg_nsegs, "I",
3672 	    "# segments sent before write to hardware register");
3673 
3674 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3675 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3676 	    "# of RX rings");
3677 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3678 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3679 	    "# of TX rings");
3680 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3681 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3682 	    "# of TX rings used");
3683 
3684 #ifdef IFPOLL_ENABLE
3685 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3686 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3687 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3688 			"NPOLLING RX cpu offset");
3689 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3690 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3691 			sc, 0, emx_sysctl_npoll_txoff, "I",
3692 			"NPOLLING TX cpu offset");
3693 #endif
3694 
3695 #ifdef EMX_RSS_DEBUG
3696 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3697 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3698 		       0, "RSS debug level");
3699 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3700 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3701 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3702 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3703 		    "RXed packets");
3704 	}
3705 #endif
3706 #ifdef EMX_TSS_DEBUG
3707 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3708 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3709 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3710 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3711 		    "TXed packets");
3712 	}
3713 #endif
3714 }
3715 
3716 static int
3717 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3718 {
3719 	struct emx_softc *sc = (void *)arg1;
3720 	struct ifnet *ifp = &sc->arpcom.ac_if;
3721 	int error, throttle;
3722 
3723 	throttle = sc->int_throttle_ceil;
3724 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3725 	if (error || req->newptr == NULL)
3726 		return error;
3727 	if (throttle < 0 || throttle > 1000000000 / 256)
3728 		return EINVAL;
3729 
3730 	if (throttle) {
3731 		/*
3732 		 * Set the interrupt throttling rate in 256ns increments,
3733 		 * recalculate sysctl value assignment to get exact frequency.
3734 		 */
3735 		throttle = 1000000000 / 256 / throttle;
3736 
3737 		/* Upper 16bits of ITR is reserved and should be zero */
3738 		if (throttle & 0xffff0000)
3739 			return EINVAL;
3740 	}
3741 
3742 	ifnet_serialize_all(ifp);
3743 
3744 	if (throttle)
3745 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3746 	else
3747 		sc->int_throttle_ceil = 0;
3748 
3749 	if (ifp->if_flags & IFF_RUNNING)
3750 		emx_set_itr(sc, throttle);
3751 
3752 	ifnet_deserialize_all(ifp);
3753 
3754 	if (bootverbose) {
3755 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3756 			  sc->int_throttle_ceil);
3757 	}
3758 	return 0;
3759 }
3760 
3761 static int
3762 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3763 {
3764 	struct emx_softc *sc = (void *)arg1;
3765 	struct ifnet *ifp = &sc->arpcom.ac_if;
3766 	struct emx_txdata *tdata = &sc->tx_data[0];
3767 	int error, segs;
3768 
3769 	segs = tdata->tx_intr_nsegs;
3770 	error = sysctl_handle_int(oidp, &segs, 0, req);
3771 	if (error || req->newptr == NULL)
3772 		return error;
3773 	if (segs <= 0)
3774 		return EINVAL;
3775 
3776 	ifnet_serialize_all(ifp);
3777 
3778 	/*
3779 	 * Don't allow tx_intr_nsegs to become:
3780 	 * o  Less the oact_tx_desc
3781 	 * o  Too large that no TX desc will cause TX interrupt to
3782 	 *    be generated (OACTIVE will never recover)
3783 	 * o  Too small that will cause tx_dd[] overflow
3784 	 */
3785 	if (segs < tdata->oact_tx_desc ||
3786 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3787 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3788 		error = EINVAL;
3789 	} else {
3790 		int i;
3791 
3792 		error = 0;
3793 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3794 			sc->tx_data[i].tx_intr_nsegs = segs;
3795 	}
3796 
3797 	ifnet_deserialize_all(ifp);
3798 
3799 	return error;
3800 }
3801 
3802 static int
3803 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3804 {
3805 	struct emx_softc *sc = (void *)arg1;
3806 	struct ifnet *ifp = &sc->arpcom.ac_if;
3807 	int error, nsegs, i;
3808 
3809 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3810 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3811 	if (error || req->newptr == NULL)
3812 		return error;
3813 
3814 	ifnet_serialize_all(ifp);
3815 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3816 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3817 	ifnet_deserialize_all(ifp);
3818 
3819 	return 0;
3820 }
3821 
3822 #ifdef IFPOLL_ENABLE
3823 
3824 static int
3825 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3826 {
3827 	struct emx_softc *sc = (void *)arg1;
3828 	struct ifnet *ifp = &sc->arpcom.ac_if;
3829 	int error, off;
3830 
3831 	off = sc->rx_npoll_off;
3832 	error = sysctl_handle_int(oidp, &off, 0, req);
3833 	if (error || req->newptr == NULL)
3834 		return error;
3835 	if (off < 0)
3836 		return EINVAL;
3837 
3838 	ifnet_serialize_all(ifp);
3839 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3840 		error = EINVAL;
3841 	} else {
3842 		error = 0;
3843 		sc->rx_npoll_off = off;
3844 	}
3845 	ifnet_deserialize_all(ifp);
3846 
3847 	return error;
3848 }
3849 
3850 static int
3851 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3852 {
3853 	struct emx_softc *sc = (void *)arg1;
3854 	struct ifnet *ifp = &sc->arpcom.ac_if;
3855 	int error, off;
3856 
3857 	off = sc->tx_npoll_off;
3858 	error = sysctl_handle_int(oidp, &off, 0, req);
3859 	if (error || req->newptr == NULL)
3860 		return error;
3861 	if (off < 0)
3862 		return EINVAL;
3863 
3864 	ifnet_serialize_all(ifp);
3865 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3866 		error = EINVAL;
3867 	} else {
3868 		error = 0;
3869 		sc->tx_npoll_off = off;
3870 	}
3871 	ifnet_deserialize_all(ifp);
3872 
3873 	return error;
3874 }
3875 
3876 #endif	/* IFPOLL_ENABLE */
3877 
3878 static int
3879 emx_dma_alloc(struct emx_softc *sc)
3880 {
3881 	int error, i;
3882 
3883 	/*
3884 	 * Create top level busdma tag
3885 	 */
3886 	error = bus_dma_tag_create(NULL, 1, 0,
3887 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3888 			NULL, NULL,
3889 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3890 			0, &sc->parent_dtag);
3891 	if (error) {
3892 		device_printf(sc->dev, "could not create top level DMA tag\n");
3893 		return error;
3894 	}
3895 
3896 	/*
3897 	 * Allocate transmit descriptors ring and buffers
3898 	 */
3899 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3900 		error = emx_create_tx_ring(&sc->tx_data[i]);
3901 		if (error) {
3902 			device_printf(sc->dev,
3903 			    "Could not setup transmit structures\n");
3904 			return error;
3905 		}
3906 	}
3907 
3908 	/*
3909 	 * Allocate receive descriptors ring and buffers
3910 	 */
3911 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3912 		error = emx_create_rx_ring(&sc->rx_data[i]);
3913 		if (error) {
3914 			device_printf(sc->dev,
3915 			    "Could not setup receive structures\n");
3916 			return error;
3917 		}
3918 	}
3919 	return 0;
3920 }
3921 
3922 static void
3923 emx_dma_free(struct emx_softc *sc)
3924 {
3925 	int i;
3926 
3927 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3928 		emx_destroy_tx_ring(&sc->tx_data[i],
3929 		    sc->tx_data[i].num_tx_desc);
3930 	}
3931 
3932 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3933 		emx_destroy_rx_ring(&sc->rx_data[i],
3934 		    sc->rx_data[i].num_rx_desc);
3935 	}
3936 
3937 	/* Free top level busdma tag */
3938 	if (sc->parent_dtag != NULL)
3939 		bus_dma_tag_destroy(sc->parent_dtag);
3940 }
3941 
3942 static void
3943 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3944 {
3945 	struct emx_softc *sc = ifp->if_softc;
3946 
3947 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3948 }
3949 
3950 static void
3951 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3952 {
3953 	struct emx_softc *sc = ifp->if_softc;
3954 
3955 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3956 }
3957 
3958 static int
3959 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3960 {
3961 	struct emx_softc *sc = ifp->if_softc;
3962 
3963 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3964 }
3965 
3966 static void
3967 emx_serialize_skipmain(struct emx_softc *sc)
3968 {
3969 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3970 }
3971 
3972 static void
3973 emx_deserialize_skipmain(struct emx_softc *sc)
3974 {
3975 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3976 }
3977 
3978 #ifdef INVARIANTS
3979 
3980 static void
3981 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3982     boolean_t serialized)
3983 {
3984 	struct emx_softc *sc = ifp->if_softc;
3985 
3986 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3987 	    slz, serialized);
3988 }
3989 
3990 #endif	/* INVARIANTS */
3991 
3992 #ifdef IFPOLL_ENABLE
3993 
3994 static void
3995 emx_npoll_status(struct ifnet *ifp)
3996 {
3997 	struct emx_softc *sc = ifp->if_softc;
3998 	uint32_t reg_icr;
3999 
4000 	ASSERT_SERIALIZED(&sc->main_serialize);
4001 
4002 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4003 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4004 		callout_stop(&sc->timer);
4005 		sc->hw.mac.get_link_status = 1;
4006 		emx_update_link_status(sc);
4007 		callout_reset(&sc->timer, hz, emx_timer, sc);
4008 	}
4009 }
4010 
4011 static void
4012 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4013 {
4014 	struct emx_txdata *tdata = arg;
4015 
4016 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4017 
4018 	emx_txeof(tdata);
4019 	if (!ifsq_is_empty(tdata->ifsq))
4020 		ifsq_devstart(tdata->ifsq);
4021 }
4022 
4023 static void
4024 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4025 {
4026 	struct emx_rxdata *rdata = arg;
4027 
4028 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4029 
4030 	emx_rxeof(rdata, cycle);
4031 }
4032 
4033 static void
4034 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4035 {
4036 	struct emx_softc *sc = ifp->if_softc;
4037 	int i, txr_cnt;
4038 
4039 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4040 
4041 	if (info) {
4042 		int off;
4043 
4044 		info->ifpi_status.status_func = emx_npoll_status;
4045 		info->ifpi_status.serializer = &sc->main_serialize;
4046 
4047 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4048 		off = sc->tx_npoll_off;
4049 		for (i = 0; i < txr_cnt; ++i) {
4050 			struct emx_txdata *tdata = &sc->tx_data[i];
4051 			int idx = i + off;
4052 
4053 			KKASSERT(idx < ncpus2);
4054 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4055 			info->ifpi_tx[idx].arg = tdata;
4056 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4057 			ifsq_set_cpuid(tdata->ifsq, idx);
4058 		}
4059 
4060 		off = sc->rx_npoll_off;
4061 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4062 			struct emx_rxdata *rdata = &sc->rx_data[i];
4063 			int idx = i + off;
4064 
4065 			KKASSERT(idx < ncpus2);
4066 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4067 			info->ifpi_rx[idx].arg = rdata;
4068 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4069 		}
4070 
4071 		if (ifp->if_flags & IFF_RUNNING) {
4072 			if (txr_cnt == sc->tx_ring_inuse)
4073 				emx_disable_intr(sc);
4074 			else
4075 				emx_init(sc);
4076 		}
4077 	} else {
4078 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4079 			struct emx_txdata *tdata = &sc->tx_data[i];
4080 
4081 			ifsq_set_cpuid(tdata->ifsq,
4082 			    rman_get_cpuid(sc->intr_res));
4083 		}
4084 
4085 		if (ifp->if_flags & IFF_RUNNING) {
4086 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4087 			if (txr_cnt == sc->tx_ring_inuse)
4088 				emx_enable_intr(sc);
4089 			else
4090 				emx_init(sc);
4091 		}
4092 	}
4093 }
4094 
4095 #endif	/* IFPOLL_ENABLE */
4096 
4097 static void
4098 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4099 {
4100 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4101 	if (sc->hw.mac.type == e1000_82574) {
4102 		int i;
4103 
4104 		/*
4105 		 * When using MSIX interrupts we need to
4106 		 * throttle using the EITR register
4107 		 */
4108 		for (i = 0; i < 4; ++i)
4109 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4110 	}
4111 }
4112 
4113 /*
4114  * Disable the L0s, 82574L Errata #20
4115  */
4116 static void
4117 emx_disable_aspm(struct emx_softc *sc)
4118 {
4119 	uint16_t link_cap, link_ctrl, disable;
4120 	uint8_t pcie_ptr, reg;
4121 	device_t dev = sc->dev;
4122 
4123 	switch (sc->hw.mac.type) {
4124 	case e1000_82571:
4125 	case e1000_82572:
4126 	case e1000_82573:
4127 		/*
4128 		 * 82573 specification update
4129 		 * errata #8 disable L0s
4130 		 * errata #41 disable L1
4131 		 *
4132 		 * 82571/82572 specification update
4133 		 # errata #13 disable L1
4134 		 * errata #68 disable L0s
4135 		 */
4136 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4137 		break;
4138 
4139 	case e1000_82574:
4140 		/*
4141 		 * 82574 specification update errata #20
4142 		 *
4143 		 * There is no need to disable L1
4144 		 */
4145 		disable = PCIEM_LNKCTL_ASPM_L0S;
4146 		break;
4147 
4148 	default:
4149 		return;
4150 	}
4151 
4152 	pcie_ptr = pci_get_pciecap_ptr(dev);
4153 	if (pcie_ptr == 0)
4154 		return;
4155 
4156 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4157 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4158 		return;
4159 
4160 	if (bootverbose)
4161 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4162 
4163 	reg = pcie_ptr + PCIER_LINKCTRL;
4164 	link_ctrl = pci_read_config(dev, reg, 2);
4165 	link_ctrl &= ~disable;
4166 	pci_write_config(dev, reg, link_ctrl, 2);
4167 }
4168 
4169 static int
4170 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4171 {
4172 	int iphlen, hoff, thoff, ex = 0;
4173 	struct mbuf *m;
4174 	struct ip *ip;
4175 
4176 	m = *mp;
4177 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4178 
4179 	iphlen = m->m_pkthdr.csum_iphlen;
4180 	thoff = m->m_pkthdr.csum_thlen;
4181 	hoff = m->m_pkthdr.csum_lhlen;
4182 
4183 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4184 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4185 	KASSERT(hoff > 0, ("invalid ether hlen"));
4186 
4187 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4188 		ex = 4;
4189 
4190 	if (m->m_len < hoff + iphlen + thoff + ex) {
4191 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4192 		if (m == NULL) {
4193 			*mp = NULL;
4194 			return ENOBUFS;
4195 		}
4196 		*mp = m;
4197 	}
4198 	ip = mtodoff(m, struct ip *, hoff);
4199 	ip->ip_len = 0;
4200 
4201 	return 0;
4202 }
4203 
4204 static int
4205 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4206     uint32_t *txd_upper, uint32_t *txd_lower)
4207 {
4208 	struct e1000_context_desc *TXD;
4209 	int hoff, iphlen, thoff, hlen;
4210 	int mss, pktlen, curr_txd;
4211 
4212 #ifdef EMX_TSO_DEBUG
4213 	tdata->tso_segments++;
4214 #endif
4215 
4216 	iphlen = mp->m_pkthdr.csum_iphlen;
4217 	thoff = mp->m_pkthdr.csum_thlen;
4218 	hoff = mp->m_pkthdr.csum_lhlen;
4219 	mss = mp->m_pkthdr.tso_segsz;
4220 	pktlen = mp->m_pkthdr.len;
4221 
4222 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4223 	    tdata->csum_flags == CSUM_TSO &&
4224 	    tdata->csum_iphlen == iphlen &&
4225 	    tdata->csum_lhlen == hoff &&
4226 	    tdata->csum_thlen == thoff &&
4227 	    tdata->csum_mss == mss &&
4228 	    tdata->csum_pktlen == pktlen) {
4229 		*txd_upper = tdata->csum_txd_upper;
4230 		*txd_lower = tdata->csum_txd_lower;
4231 #ifdef EMX_TSO_DEBUG
4232 		tdata->tso_ctx_reused++;
4233 #endif
4234 		return 0;
4235 	}
4236 	hlen = hoff + iphlen + thoff;
4237 
4238 	/*
4239 	 * Setup a new TSO context.
4240 	 */
4241 
4242 	curr_txd = tdata->next_avail_tx_desc;
4243 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4244 
4245 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4246 		     E1000_TXD_DTYP_D |		/* Data descr type */
4247 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4248 
4249 	/* IP and/or TCP header checksum calculation and insertion. */
4250 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4251 
4252 	/*
4253 	 * Start offset for header checksum calculation.
4254 	 * End offset for header checksum calculation.
4255 	 * Offset of place put the checksum.
4256 	 */
4257 	TXD->lower_setup.ip_fields.ipcss = hoff;
4258 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4259 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4260 
4261 	/*
4262 	 * Start offset for payload checksum calculation.
4263 	 * End offset for payload checksum calculation.
4264 	 * Offset of place to put the checksum.
4265 	 */
4266 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4267 	TXD->upper_setup.tcp_fields.tucse = 0;
4268 	TXD->upper_setup.tcp_fields.tucso =
4269 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4270 
4271 	/*
4272 	 * Payload size per packet w/o any headers.
4273 	 * Length of all headers up to payload.
4274 	 */
4275 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4276 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4277 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4278 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4279 				E1000_TXD_CMD_TSE |	/* TSE context */
4280 				E1000_TXD_CMD_IP |	/* Do IP csum */
4281 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4282 				(pktlen - hlen));	/* Total len */
4283 
4284 	/* Save the information for this TSO context */
4285 	tdata->csum_flags = CSUM_TSO;
4286 	tdata->csum_lhlen = hoff;
4287 	tdata->csum_iphlen = iphlen;
4288 	tdata->csum_thlen = thoff;
4289 	tdata->csum_mss = mss;
4290 	tdata->csum_pktlen = pktlen;
4291 	tdata->csum_txd_upper = *txd_upper;
4292 	tdata->csum_txd_lower = *txd_lower;
4293 
4294 	if (++curr_txd == tdata->num_tx_desc)
4295 		curr_txd = 0;
4296 
4297 	KKASSERT(tdata->num_tx_desc_avail > 0);
4298 	tdata->num_tx_desc_avail--;
4299 
4300 	tdata->next_avail_tx_desc = curr_txd;
4301 	return 1;
4302 }
4303 
4304 static int
4305 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4306 {
4307 	if (polling)
4308 		return sc->tx_ring_cnt;
4309 	else
4310 		return 1;
4311 }
4312