xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision c6f73aab)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	EMX_DEVICE(PCH_LPT_I217_LM),
165 	EMX_DEVICE(PCH_LPT_I217_V),
166 	EMX_DEVICE(PCH_LPTLP_I218_LM),
167 	EMX_DEVICE(PCH_LPTLP_I218_V),
168 	EMX_DEVICE(PCH_I218_LM2),
169 	EMX_DEVICE(PCH_I218_V2),
170 	EMX_DEVICE(PCH_I218_LM3),
171 	EMX_DEVICE(PCH_I218_V3),
172 
173 	/* required last entry */
174 	EMX_DEVICE_NULL
175 };
176 
177 static int	emx_probe(device_t);
178 static int	emx_attach(device_t);
179 static int	emx_detach(device_t);
180 static int	emx_shutdown(device_t);
181 static int	emx_suspend(device_t);
182 static int	emx_resume(device_t);
183 
184 static void	emx_init(void *);
185 static void	emx_stop(struct emx_softc *);
186 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
187 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
188 #ifdef IFPOLL_ENABLE
189 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
190 static void	emx_npoll_status(struct ifnet *);
191 static void	emx_npoll_tx(struct ifnet *, void *, int);
192 static void	emx_npoll_rx(struct ifnet *, void *, int);
193 #endif
194 static void	emx_watchdog(struct ifaltq_subque *);
195 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
196 static int	emx_media_change(struct ifnet *);
197 static void	emx_timer(void *);
198 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
199 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
200 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
201 #ifdef INVARIANTS
202 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
203 		    boolean_t);
204 #endif
205 
206 static void	emx_intr(void *);
207 static void	emx_intr_mask(void *);
208 static void	emx_intr_body(struct emx_softc *, boolean_t);
209 static void	emx_rxeof(struct emx_rxdata *, int);
210 static void	emx_txeof(struct emx_txdata *);
211 static void	emx_tx_collect(struct emx_txdata *);
212 static void	emx_tx_purge(struct emx_softc *);
213 static void	emx_enable_intr(struct emx_softc *);
214 static void	emx_disable_intr(struct emx_softc *);
215 
216 static int	emx_dma_alloc(struct emx_softc *);
217 static void	emx_dma_free(struct emx_softc *);
218 static void	emx_init_tx_ring(struct emx_txdata *);
219 static int	emx_init_rx_ring(struct emx_rxdata *);
220 static void	emx_free_tx_ring(struct emx_txdata *);
221 static void	emx_free_rx_ring(struct emx_rxdata *);
222 static int	emx_create_tx_ring(struct emx_txdata *);
223 static int	emx_create_rx_ring(struct emx_rxdata *);
224 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
225 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
226 static int	emx_newbuf(struct emx_rxdata *, int, int);
227 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
228 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
229 		    uint32_t *, uint32_t *);
230 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
231 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
232 		    uint32_t *, uint32_t *);
233 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
234 
235 static int 	emx_is_valid_eaddr(const uint8_t *);
236 static int	emx_reset(struct emx_softc *);
237 static void	emx_setup_ifp(struct emx_softc *);
238 static void	emx_init_tx_unit(struct emx_softc *);
239 static void	emx_init_rx_unit(struct emx_softc *);
240 static void	emx_update_stats(struct emx_softc *);
241 static void	emx_set_promisc(struct emx_softc *);
242 static void	emx_disable_promisc(struct emx_softc *);
243 static void	emx_set_multi(struct emx_softc *);
244 static void	emx_update_link_status(struct emx_softc *);
245 static void	emx_smartspeed(struct emx_softc *);
246 static void	emx_set_itr(struct emx_softc *, uint32_t);
247 static void	emx_disable_aspm(struct emx_softc *);
248 
249 static void	emx_print_debug_info(struct emx_softc *);
250 static void	emx_print_nvm_info(struct emx_softc *);
251 static void	emx_print_hw_stats(struct emx_softc *);
252 
253 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
254 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
255 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
256 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
257 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
258 #ifdef IFPOLL_ENABLE
259 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
260 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
261 #endif
262 static void	emx_add_sysctl(struct emx_softc *);
263 
264 static void	emx_serialize_skipmain(struct emx_softc *);
265 static void	emx_deserialize_skipmain(struct emx_softc *);
266 
267 /* Management and WOL Support */
268 static void	emx_get_mgmt(struct emx_softc *);
269 static void	emx_rel_mgmt(struct emx_softc *);
270 static void	emx_get_hw_control(struct emx_softc *);
271 static void	emx_rel_hw_control(struct emx_softc *);
272 static void	emx_enable_wol(device_t);
273 
274 static device_method_t emx_methods[] = {
275 	/* Device interface */
276 	DEVMETHOD(device_probe,		emx_probe),
277 	DEVMETHOD(device_attach,	emx_attach),
278 	DEVMETHOD(device_detach,	emx_detach),
279 	DEVMETHOD(device_shutdown,	emx_shutdown),
280 	DEVMETHOD(device_suspend,	emx_suspend),
281 	DEVMETHOD(device_resume,	emx_resume),
282 	DEVMETHOD_END
283 };
284 
285 static driver_t emx_driver = {
286 	"emx",
287 	emx_methods,
288 	sizeof(struct emx_softc),
289 };
290 
291 static devclass_t emx_devclass;
292 
293 DECLARE_DUMMY_MODULE(if_emx);
294 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
295 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
296 
297 /*
298  * Tunables
299  */
300 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
301 static int	emx_rxd = EMX_DEFAULT_RXD;
302 static int	emx_txd = EMX_DEFAULT_TXD;
303 static int	emx_smart_pwr_down = 0;
304 static int	emx_rxr = 0;
305 static int	emx_txr = 1;
306 
307 /* Controls whether promiscuous also shows bad packets */
308 static int	emx_debug_sbp = 0;
309 
310 static int	emx_82573_workaround = 1;
311 static int	emx_msi_enable = 1;
312 
313 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
314 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
315 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
316 TUNABLE_INT("hw.emx.txd", &emx_txd);
317 TUNABLE_INT("hw.emx.txr", &emx_txr);
318 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
319 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
320 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
321 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
322 
323 /* Global used in WOL setup with multiport cards */
324 static int	emx_global_quad_port_a = 0;
325 
326 /* Set this to one to display debug statistics */
327 static int	emx_display_debug_stats = 0;
328 
329 #if !defined(KTR_IF_EMX)
330 #define KTR_IF_EMX	KTR_ALL
331 #endif
332 KTR_INFO_MASTER(if_emx);
333 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
334 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
335 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
336 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
337 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
338 #define logif(name)	KTR_LOG(if_emx_ ## name)
339 
340 static __inline void
341 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
342 {
343 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
344 	/* DD bit must be cleared */
345 	rxd->rxd_staterr = 0;
346 }
347 
348 static __inline void
349 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
350 {
351 	/* Ignore Checksum bit is set */
352 	if (staterr & E1000_RXD_STAT_IXSM)
353 		return;
354 
355 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
356 	    E1000_RXD_STAT_IPCS)
357 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
358 
359 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
360 	    E1000_RXD_STAT_TCPCS) {
361 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
362 					   CSUM_PSEUDO_HDR |
363 					   CSUM_FRAG_NOT_CHECKED;
364 		mp->m_pkthdr.csum_data = htons(0xffff);
365 	}
366 }
367 
368 static __inline struct pktinfo *
369 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
370 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
371 {
372 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
373 	case EMX_RXDMRQ_IPV4_TCP:
374 		pi->pi_netisr = NETISR_IP;
375 		pi->pi_flags = 0;
376 		pi->pi_l3proto = IPPROTO_TCP;
377 		break;
378 
379 	case EMX_RXDMRQ_IPV6_TCP:
380 		pi->pi_netisr = NETISR_IPV6;
381 		pi->pi_flags = 0;
382 		pi->pi_l3proto = IPPROTO_TCP;
383 		break;
384 
385 	case EMX_RXDMRQ_IPV4:
386 		if (staterr & E1000_RXD_STAT_IXSM)
387 			return NULL;
388 
389 		if ((staterr &
390 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
391 		    E1000_RXD_STAT_TCPCS) {
392 			pi->pi_netisr = NETISR_IP;
393 			pi->pi_flags = 0;
394 			pi->pi_l3proto = IPPROTO_UDP;
395 			break;
396 		}
397 		/* FALL THROUGH */
398 	default:
399 		return NULL;
400 	}
401 
402 	m->m_flags |= M_HASH;
403 	m->m_pkthdr.hash = toeplitz_hash(hash);
404 	return pi;
405 }
406 
407 static int
408 emx_probe(device_t dev)
409 {
410 	const struct emx_device *d;
411 	uint16_t vid, did;
412 
413 	vid = pci_get_vendor(dev);
414 	did = pci_get_device(dev);
415 
416 	for (d = emx_devices; d->desc != NULL; ++d) {
417 		if (vid == d->vid && did == d->did) {
418 			device_set_desc(dev, d->desc);
419 			device_set_async_attach(dev, TRUE);
420 			return 0;
421 		}
422 	}
423 	return ENXIO;
424 }
425 
426 static int
427 emx_attach(device_t dev)
428 {
429 	struct emx_softc *sc = device_get_softc(dev);
430 	int error = 0, i, throttle, msi_enable, tx_ring_max;
431 	u_int intr_flags;
432 	uint16_t eeprom_data, device_id, apme_mask;
433 	driver_intr_t *intr_func;
434 #ifdef IFPOLL_ENABLE
435 	int offset, offset_def;
436 #endif
437 
438 	/*
439 	 * Setup RX rings
440 	 */
441 	for (i = 0; i < EMX_NRX_RING; ++i) {
442 		sc->rx_data[i].sc = sc;
443 		sc->rx_data[i].idx = i;
444 	}
445 
446 	/*
447 	 * Setup TX ring
448 	 */
449 	for (i = 0; i < EMX_NTX_RING; ++i) {
450 		sc->tx_data[i].sc = sc;
451 		sc->tx_data[i].idx = i;
452 	}
453 
454 	/*
455 	 * Initialize serializers
456 	 */
457 	lwkt_serialize_init(&sc->main_serialize);
458 	for (i = 0; i < EMX_NTX_RING; ++i)
459 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
460 	for (i = 0; i < EMX_NRX_RING; ++i)
461 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
462 
463 	/*
464 	 * Initialize serializer array
465 	 */
466 	i = 0;
467 
468 	KKASSERT(i < EMX_NSERIALIZE);
469 	sc->serializes[i++] = &sc->main_serialize;
470 
471 	KKASSERT(i < EMX_NSERIALIZE);
472 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
473 	KKASSERT(i < EMX_NSERIALIZE);
474 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
475 
476 	KKASSERT(i < EMX_NSERIALIZE);
477 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
478 	KKASSERT(i < EMX_NSERIALIZE);
479 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
480 
481 	KKASSERT(i == EMX_NSERIALIZE);
482 
483 	ifmedia_init(&sc->media, IFM_IMASK, emx_media_change, emx_media_status);
484 	callout_init_mp(&sc->timer);
485 
486 	sc->dev = sc->osdep.dev = dev;
487 
488 	/*
489 	 * Determine hardware and mac type
490 	 */
491 	sc->hw.vendor_id = pci_get_vendor(dev);
492 	sc->hw.device_id = pci_get_device(dev);
493 	sc->hw.revision_id = pci_get_revid(dev);
494 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
495 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
496 
497 	if (e1000_set_mac_type(&sc->hw))
498 		return ENXIO;
499 
500 	/* Enable bus mastering */
501 	pci_enable_busmaster(dev);
502 
503 	/*
504 	 * Allocate IO memory
505 	 */
506 	sc->memory_rid = EMX_BAR_MEM;
507 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
508 					    &sc->memory_rid, RF_ACTIVE);
509 	if (sc->memory == NULL) {
510 		device_printf(dev, "Unable to allocate bus resource: memory\n");
511 		error = ENXIO;
512 		goto fail;
513 	}
514 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
515 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
516 
517 	/* XXX This is quite goofy, it is not actually used */
518 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
519 
520 	/*
521 	 * Don't enable MSI-X on 82574, see:
522 	 * 82574 specification update errata #15
523 	 *
524 	 * Don't enable MSI on 82571/82572, see:
525 	 * 82571/82572 specification update errata #63
526 	 */
527 	msi_enable = emx_msi_enable;
528 	if (msi_enable &&
529 	    (sc->hw.mac.type == e1000_82571 ||
530 	     sc->hw.mac.type == e1000_82572))
531 		msi_enable = 0;
532 
533 	/*
534 	 * Allocate interrupt
535 	 */
536 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
537 	    &sc->intr_rid, &intr_flags);
538 
539 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
540 		int unshared;
541 
542 		unshared = device_getenv_int(dev, "irq.unshared", 0);
543 		if (!unshared) {
544 			sc->flags |= EMX_FLAG_SHARED_INTR;
545 			if (bootverbose)
546 				device_printf(dev, "IRQ shared\n");
547 		} else {
548 			intr_flags &= ~RF_SHAREABLE;
549 			if (bootverbose)
550 				device_printf(dev, "IRQ unshared\n");
551 		}
552 	}
553 
554 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
555 	    intr_flags);
556 	if (sc->intr_res == NULL) {
557 		device_printf(dev, "Unable to allocate bus resource: "
558 		    "interrupt\n");
559 		error = ENXIO;
560 		goto fail;
561 	}
562 
563 	/* Save PCI command register for Shared Code */
564 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
565 	sc->hw.back = &sc->osdep;
566 
567 	/*
568 	 * For I217/I218, we need to map the flash memory and this
569 	 * must happen after the MAC is identified.
570 	 */
571 	if (sc->hw.mac.type == e1000_pch_lpt) {
572 		sc->flash_rid = EMX_BAR_FLASH;
573 
574 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
575 		    &sc->flash_rid, RF_ACTIVE);
576 		if (sc->flash == NULL) {
577 			device_printf(dev, "Mapping of Flash failed\n");
578 			error = ENXIO;
579 			goto fail;
580 		}
581 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
582 		sc->osdep.flash_bus_space_handle =
583 		    rman_get_bushandle(sc->flash);
584 
585 		/*
586 		 * This is used in the shared code
587 		 * XXX this goof is actually not used.
588 		 */
589 		sc->hw.flash_address = (uint8_t *)sc->flash;
590 	}
591 
592 	/* Do Shared Code initialization */
593 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
594 		device_printf(dev, "Setup of Shared code failed\n");
595 		error = ENXIO;
596 		goto fail;
597 	}
598 	e1000_get_bus_info(&sc->hw);
599 
600 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
601 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
602 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
603 
604 	/*
605 	 * Interrupt throttle rate
606 	 */
607 	throttle = device_getenv_int(dev, "int_throttle_ceil",
608 	    emx_int_throttle_ceil);
609 	if (throttle == 0) {
610 		sc->int_throttle_ceil = 0;
611 	} else {
612 		if (throttle < 0)
613 			throttle = EMX_DEFAULT_ITR;
614 
615 		/* Recalculate the tunable value to get the exact frequency. */
616 		throttle = 1000000000 / 256 / throttle;
617 
618 		/* Upper 16bits of ITR is reserved and should be zero */
619 		if (throttle & 0xffff0000)
620 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
621 
622 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
623 	}
624 
625 	e1000_init_script_state_82541(&sc->hw, TRUE);
626 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
627 
628 	/* Copper options */
629 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
630 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
631 		sc->hw.phy.disable_polarity_correction = FALSE;
632 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
633 	}
634 
635 	/* Set the frame limits assuming standard ethernet sized frames. */
636 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
637 
638 	/* This controls when hardware reports transmit completion status. */
639 	sc->hw.mac.report_tx_early = 1;
640 
641 	/* Calculate # of RX rings */
642 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
643 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
644 
645 	/*
646 	 * Calculate # of TX rings
647 	 *
648 	 * XXX
649 	 * I217/I218 claims to have 2 TX queues
650 	 *
651 	 * NOTE:
652 	 * Don't enable multiple TX queues on 82574; it always gives
653 	 * watchdog timeout on TX queue0, when multiple TCP streams are
654 	 * received.  It was originally suspected that the hardware TX
655 	 * checksum offloading caused this watchdog timeout, since only
656 	 * TCP ACKs are sent during TCP receiving tests.  However, even
657 	 * if the hardware TX checksum offloading is disable, TX queue0
658 	 * still will give watchdog.
659 	 */
660 	tx_ring_max = 1;
661 	if (sc->hw.mac.type == e1000_82571 ||
662 	    sc->hw.mac.type == e1000_82572 ||
663 	    sc->hw.mac.type == e1000_80003es2lan ||
664 	    sc->hw.mac.type == e1000_pch_lpt ||
665 	    sc->hw.mac.type == e1000_82574)
666 		tx_ring_max = EMX_NTX_RING;
667 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
668 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
669 
670 	/* Allocate RX/TX rings' busdma(9) stuffs */
671 	error = emx_dma_alloc(sc);
672 	if (error)
673 		goto fail;
674 
675 	/* Allocate multicast array memory. */
676 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
677 	    M_DEVBUF, M_WAITOK);
678 
679 	/* Indicate SOL/IDER usage */
680 	if (e1000_check_reset_block(&sc->hw)) {
681 		device_printf(dev,
682 		    "PHY reset is blocked due to SOL/IDER session.\n");
683 	}
684 
685 	/* Disable EEE on I217/I218 */
686 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
687 
688 	/*
689 	 * Start from a known state, this is important in reading the
690 	 * nvm and mac from that.
691 	 */
692 	e1000_reset_hw(&sc->hw);
693 
694 	/* Make sure we have a good EEPROM before we read from it */
695 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
696 		/*
697 		 * Some PCI-E parts fail the first check due to
698 		 * the link being in sleep state, call it again,
699 		 * if it fails a second time its a real issue.
700 		 */
701 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
702 			device_printf(dev,
703 			    "The EEPROM Checksum Is Not Valid\n");
704 			error = EIO;
705 			goto fail;
706 		}
707 	}
708 
709 	/* Copy the permanent MAC address out of the EEPROM */
710 	if (e1000_read_mac_addr(&sc->hw) < 0) {
711 		device_printf(dev, "EEPROM read error while reading MAC"
712 		    " address\n");
713 		error = EIO;
714 		goto fail;
715 	}
716 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
717 		device_printf(dev, "Invalid MAC address\n");
718 		error = EIO;
719 		goto fail;
720 	}
721 
722 	/* Disable ULP support */
723 	e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
724 
725 	/* Determine if we have to control management hardware */
726 	if (e1000_enable_mng_pass_thru(&sc->hw))
727 		sc->flags |= EMX_FLAG_HAS_MGMT;
728 
729 	/*
730 	 * Setup Wake-on-Lan
731 	 */
732 	apme_mask = EMX_EEPROM_APME;
733 	eeprom_data = 0;
734 	switch (sc->hw.mac.type) {
735 	case e1000_82573:
736 		sc->flags |= EMX_FLAG_HAS_AMT;
737 		/* FALL THROUGH */
738 
739 	case e1000_82571:
740 	case e1000_82572:
741 	case e1000_80003es2lan:
742 		if (sc->hw.bus.func == 1) {
743 			e1000_read_nvm(&sc->hw,
744 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
745 		} else {
746 			e1000_read_nvm(&sc->hw,
747 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
748 		}
749 		break;
750 
751 	default:
752 		e1000_read_nvm(&sc->hw,
753 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
754 		break;
755 	}
756 	if (eeprom_data & apme_mask)
757 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
758 
759 	/*
760          * We have the eeprom settings, now apply the special cases
761          * where the eeprom may be wrong or the board won't support
762          * wake on lan on a particular port
763 	 */
764 	device_id = pci_get_device(dev);
765         switch (device_id) {
766 	case E1000_DEV_ID_82571EB_FIBER:
767 		/*
768 		 * Wake events only supported on port A for dual fiber
769 		 * regardless of eeprom setting
770 		 */
771 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
772 		    E1000_STATUS_FUNC_1)
773 			sc->wol = 0;
774 		break;
775 
776 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
777 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
778 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
779                 /* if quad port sc, disable WoL on all but port A */
780 		if (emx_global_quad_port_a != 0)
781 			sc->wol = 0;
782 		/* Reset for multiple quad port adapters */
783 		if (++emx_global_quad_port_a == 4)
784 			emx_global_quad_port_a = 0;
785                 break;
786 	}
787 
788 	/* XXX disable wol */
789 	sc->wol = 0;
790 
791 #ifdef IFPOLL_ENABLE
792 	/*
793 	 * NPOLLING RX CPU offset
794 	 */
795 	if (sc->rx_ring_cnt == ncpus2) {
796 		offset = 0;
797 	} else {
798 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
799 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
800 		if (offset >= ncpus2 ||
801 		    offset % sc->rx_ring_cnt != 0) {
802 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
803 			    offset, offset_def);
804 			offset = offset_def;
805 		}
806 	}
807 	sc->rx_npoll_off = offset;
808 
809 	/*
810 	 * NPOLLING TX CPU offset
811 	 */
812 	if (sc->tx_ring_cnt == ncpus2) {
813 		offset = 0;
814 	} else {
815 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
816 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
817 		if (offset >= ncpus2 ||
818 		    offset % sc->tx_ring_cnt != 0) {
819 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
820 			    offset, offset_def);
821 			offset = offset_def;
822 		}
823 	}
824 	sc->tx_npoll_off = offset;
825 #endif
826 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
827 
828 	/* Setup OS specific network interface */
829 	emx_setup_ifp(sc);
830 
831 	/* Add sysctl tree, must after em_setup_ifp() */
832 	emx_add_sysctl(sc);
833 
834 	/* Reset the hardware */
835 	error = emx_reset(sc);
836 	if (error) {
837 		/*
838 		 * Some 82573 parts fail the first reset, call it again,
839 		 * if it fails a second time its a real issue.
840 		 */
841 		error = emx_reset(sc);
842 		if (error) {
843 			device_printf(dev, "Unable to reset the hardware\n");
844 			ether_ifdetach(&sc->arpcom.ac_if);
845 			goto fail;
846 		}
847 	}
848 
849 	/* Initialize statistics */
850 	emx_update_stats(sc);
851 
852 	sc->hw.mac.get_link_status = 1;
853 	emx_update_link_status(sc);
854 
855 	/* Non-AMT based hardware can now take control from firmware */
856 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
857 	    EMX_FLAG_HAS_MGMT)
858 		emx_get_hw_control(sc);
859 
860 	/*
861 	 * Missing Interrupt Following ICR read:
862 	 *
863 	 * 82571/82572 specification update errata #76
864 	 * 82573 specification update errata #31
865 	 * 82574 specification update errata #12
866 	 */
867 	intr_func = emx_intr;
868 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
869 	    (sc->hw.mac.type == e1000_82571 ||
870 	     sc->hw.mac.type == e1000_82572 ||
871 	     sc->hw.mac.type == e1000_82573 ||
872 	     sc->hw.mac.type == e1000_82574))
873 		intr_func = emx_intr_mask;
874 
875 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
876 			       &sc->intr_tag, &sc->main_serialize);
877 	if (error) {
878 		device_printf(dev, "Failed to register interrupt handler");
879 		ether_ifdetach(&sc->arpcom.ac_if);
880 		goto fail;
881 	}
882 	return (0);
883 fail:
884 	emx_detach(dev);
885 	return (error);
886 }
887 
888 static int
889 emx_detach(device_t dev)
890 {
891 	struct emx_softc *sc = device_get_softc(dev);
892 
893 	if (device_is_attached(dev)) {
894 		struct ifnet *ifp = &sc->arpcom.ac_if;
895 
896 		ifnet_serialize_all(ifp);
897 
898 		emx_stop(sc);
899 
900 		e1000_phy_hw_reset(&sc->hw);
901 
902 		emx_rel_mgmt(sc);
903 		emx_rel_hw_control(sc);
904 
905 		if (sc->wol) {
906 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
907 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
908 			emx_enable_wol(dev);
909 		}
910 
911 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
912 
913 		ifnet_deserialize_all(ifp);
914 
915 		ether_ifdetach(ifp);
916 	} else if (sc->memory != NULL) {
917 		emx_rel_hw_control(sc);
918 	}
919 
920 	ifmedia_removeall(&sc->media);
921 	bus_generic_detach(dev);
922 
923 	if (sc->intr_res != NULL) {
924 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
925 				     sc->intr_res);
926 	}
927 
928 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
929 		pci_release_msi(dev);
930 
931 	if (sc->memory != NULL) {
932 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
933 				     sc->memory);
934 	}
935 
936 	if (sc->flash != NULL) {
937 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
938 		    sc->flash);
939 	}
940 
941 	emx_dma_free(sc);
942 
943 	if (sc->mta != NULL)
944 		kfree(sc->mta, M_DEVBUF);
945 
946 	return (0);
947 }
948 
949 static int
950 emx_shutdown(device_t dev)
951 {
952 	return emx_suspend(dev);
953 }
954 
955 static int
956 emx_suspend(device_t dev)
957 {
958 	struct emx_softc *sc = device_get_softc(dev);
959 	struct ifnet *ifp = &sc->arpcom.ac_if;
960 
961 	ifnet_serialize_all(ifp);
962 
963 	emx_stop(sc);
964 
965 	emx_rel_mgmt(sc);
966 	emx_rel_hw_control(sc);
967 
968 	if (sc->wol) {
969 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
970 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
971 		emx_enable_wol(dev);
972 	}
973 
974 	ifnet_deserialize_all(ifp);
975 
976 	return bus_generic_suspend(dev);
977 }
978 
979 static int
980 emx_resume(device_t dev)
981 {
982 	struct emx_softc *sc = device_get_softc(dev);
983 	struct ifnet *ifp = &sc->arpcom.ac_if;
984 	int i;
985 
986 	ifnet_serialize_all(ifp);
987 
988 	emx_init(sc);
989 	emx_get_mgmt(sc);
990 	for (i = 0; i < sc->tx_ring_inuse; ++i)
991 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
992 
993 	ifnet_deserialize_all(ifp);
994 
995 	return bus_generic_resume(dev);
996 }
997 
998 static void
999 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1000 {
1001 	struct emx_softc *sc = ifp->if_softc;
1002 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1003 	struct mbuf *m_head;
1004 	int idx = -1, nsegs = 0;
1005 
1006 	KKASSERT(tdata->ifsq == ifsq);
1007 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1008 
1009 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1010 		return;
1011 
1012 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1013 		ifsq_purge(ifsq);
1014 		return;
1015 	}
1016 
1017 	while (!ifsq_is_empty(ifsq)) {
1018 		/* Now do we at least have a minimal? */
1019 		if (EMX_IS_OACTIVE(tdata)) {
1020 			emx_tx_collect(tdata);
1021 			if (EMX_IS_OACTIVE(tdata)) {
1022 				ifsq_set_oactive(ifsq);
1023 				break;
1024 			}
1025 		}
1026 
1027 		logif(pkt_txqueue);
1028 		m_head = ifsq_dequeue(ifsq);
1029 		if (m_head == NULL)
1030 			break;
1031 
1032 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1033 			IFNET_STAT_INC(ifp, oerrors, 1);
1034 			emx_tx_collect(tdata);
1035 			continue;
1036 		}
1037 
1038 		/*
1039 		 * TX interrupt are aggressively aggregated, so increasing
1040 		 * opackets at TX interrupt time will make the opackets
1041 		 * statistics vastly inaccurate; we do the opackets increment
1042 		 * now.
1043 		 */
1044 		IFNET_STAT_INC(ifp, opackets, 1);
1045 
1046 		if (nsegs >= tdata->tx_wreg_nsegs) {
1047 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1048 			nsegs = 0;
1049 			idx = -1;
1050 		}
1051 
1052 		/* Send a copy of the frame to the BPF listener */
1053 		ETHER_BPF_MTAP(ifp, m_head);
1054 
1055 		/* Set timeout in case hardware has problems transmitting. */
1056 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1057 	}
1058 	if (idx >= 0)
1059 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1060 }
1061 
1062 static int
1063 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1064 {
1065 	struct emx_softc *sc = ifp->if_softc;
1066 	struct ifreq *ifr = (struct ifreq *)data;
1067 	uint16_t eeprom_data = 0;
1068 	int max_frame_size, mask, reinit;
1069 	int error = 0;
1070 
1071 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1072 
1073 	switch (command) {
1074 	case SIOCSIFMTU:
1075 		switch (sc->hw.mac.type) {
1076 		case e1000_82573:
1077 			/*
1078 			 * 82573 only supports jumbo frames
1079 			 * if ASPM is disabled.
1080 			 */
1081 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1082 				       &eeprom_data);
1083 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1084 				max_frame_size = ETHER_MAX_LEN;
1085 				break;
1086 			}
1087 			/* FALL THROUGH */
1088 
1089 		/* Limit Jumbo Frame size */
1090 		case e1000_82571:
1091 		case e1000_82572:
1092 		case e1000_82574:
1093 		case e1000_pch_lpt:
1094 		case e1000_80003es2lan:
1095 			max_frame_size = 9234;
1096 			break;
1097 
1098 		default:
1099 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1100 			break;
1101 		}
1102 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1103 		    ETHER_CRC_LEN) {
1104 			error = EINVAL;
1105 			break;
1106 		}
1107 
1108 		ifp->if_mtu = ifr->ifr_mtu;
1109 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1110 		    ETHER_CRC_LEN;
1111 
1112 		if (ifp->if_flags & IFF_RUNNING)
1113 			emx_init(sc);
1114 		break;
1115 
1116 	case SIOCSIFFLAGS:
1117 		if (ifp->if_flags & IFF_UP) {
1118 			if ((ifp->if_flags & IFF_RUNNING)) {
1119 				if ((ifp->if_flags ^ sc->if_flags) &
1120 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1121 					emx_disable_promisc(sc);
1122 					emx_set_promisc(sc);
1123 				}
1124 			} else {
1125 				emx_init(sc);
1126 			}
1127 		} else if (ifp->if_flags & IFF_RUNNING) {
1128 			emx_stop(sc);
1129 		}
1130 		sc->if_flags = ifp->if_flags;
1131 		break;
1132 
1133 	case SIOCADDMULTI:
1134 	case SIOCDELMULTI:
1135 		if (ifp->if_flags & IFF_RUNNING) {
1136 			emx_disable_intr(sc);
1137 			emx_set_multi(sc);
1138 #ifdef IFPOLL_ENABLE
1139 			if (!(ifp->if_flags & IFF_NPOLLING))
1140 #endif
1141 				emx_enable_intr(sc);
1142 		}
1143 		break;
1144 
1145 	case SIOCSIFMEDIA:
1146 		/* Check SOL/IDER usage */
1147 		if (e1000_check_reset_block(&sc->hw)) {
1148 			device_printf(sc->dev, "Media change is"
1149 			    " blocked due to SOL/IDER session.\n");
1150 			break;
1151 		}
1152 		/* FALL THROUGH */
1153 
1154 	case SIOCGIFMEDIA:
1155 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1156 		break;
1157 
1158 	case SIOCSIFCAP:
1159 		reinit = 0;
1160 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1161 		if (mask & IFCAP_RXCSUM) {
1162 			ifp->if_capenable ^= IFCAP_RXCSUM;
1163 			reinit = 1;
1164 		}
1165 		if (mask & IFCAP_VLAN_HWTAGGING) {
1166 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1167 			reinit = 1;
1168 		}
1169 		if (mask & IFCAP_TXCSUM) {
1170 			ifp->if_capenable ^= IFCAP_TXCSUM;
1171 			if (ifp->if_capenable & IFCAP_TXCSUM)
1172 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1173 			else
1174 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1175 		}
1176 		if (mask & IFCAP_TSO) {
1177 			ifp->if_capenable ^= IFCAP_TSO;
1178 			if (ifp->if_capenable & IFCAP_TSO)
1179 				ifp->if_hwassist |= CSUM_TSO;
1180 			else
1181 				ifp->if_hwassist &= ~CSUM_TSO;
1182 		}
1183 		if (mask & IFCAP_RSS)
1184 			ifp->if_capenable ^= IFCAP_RSS;
1185 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1186 			emx_init(sc);
1187 		break;
1188 
1189 	default:
1190 		error = ether_ioctl(ifp, command, data);
1191 		break;
1192 	}
1193 	return (error);
1194 }
1195 
1196 static void
1197 emx_watchdog(struct ifaltq_subque *ifsq)
1198 {
1199 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1200 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1201 	struct emx_softc *sc = ifp->if_softc;
1202 	int i;
1203 
1204 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1205 
1206 	/*
1207 	 * The timer is set to 5 every time start queues a packet.
1208 	 * Then txeof keeps resetting it as long as it cleans at
1209 	 * least one descriptor.
1210 	 * Finally, anytime all descriptors are clean the timer is
1211 	 * set to 0.
1212 	 */
1213 
1214 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1215 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1216 		/*
1217 		 * If we reach here, all TX jobs are completed and
1218 		 * the TX engine should have been idled for some time.
1219 		 * We don't need to call ifsq_devstart_sched() here.
1220 		 */
1221 		ifsq_clr_oactive(ifsq);
1222 		tdata->tx_watchdog.wd_timer = 0;
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * If we are in this routine because of pause frames, then
1228 	 * don't reset the hardware.
1229 	 */
1230 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1231 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1232 		return;
1233 	}
1234 
1235 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1236 
1237 	IFNET_STAT_INC(ifp, oerrors, 1);
1238 
1239 	emx_init(sc);
1240 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1241 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1242 }
1243 
1244 static void
1245 emx_init(void *xsc)
1246 {
1247 	struct emx_softc *sc = xsc;
1248 	struct ifnet *ifp = &sc->arpcom.ac_if;
1249 	device_t dev = sc->dev;
1250 	boolean_t polling;
1251 	int i;
1252 
1253 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1254 
1255 	emx_stop(sc);
1256 
1257 	/* Get the latest mac address, User can use a LAA */
1258         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1259 
1260 	/* Put the address into the Receive Address Array */
1261 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1262 
1263 	/*
1264 	 * With the 82571 sc, RAR[0] may be overwritten
1265 	 * when the other port is reset, we make a duplicate
1266 	 * in RAR[14] for that eventuality, this assures
1267 	 * the interface continues to function.
1268 	 */
1269 	if (sc->hw.mac.type == e1000_82571) {
1270 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1271 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1272 		    E1000_RAR_ENTRIES - 1);
1273 	}
1274 
1275 	/* Initialize the hardware */
1276 	if (emx_reset(sc)) {
1277 		device_printf(dev, "Unable to reset the hardware\n");
1278 		/* XXX emx_stop()? */
1279 		return;
1280 	}
1281 	emx_update_link_status(sc);
1282 
1283 	/* Setup VLAN support, basic and offload if available */
1284 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1285 
1286 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1287 		uint32_t ctrl;
1288 
1289 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1290 		ctrl |= E1000_CTRL_VME;
1291 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1292 	}
1293 
1294 	/* Configure for OS presence */
1295 	emx_get_mgmt(sc);
1296 
1297 	polling = FALSE;
1298 #ifdef IFPOLL_ENABLE
1299 	if (ifp->if_flags & IFF_NPOLLING)
1300 		polling = TRUE;
1301 #endif
1302 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1303 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1304 
1305 	/* Prepare transmit descriptors and buffers */
1306 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1307 		emx_init_tx_ring(&sc->tx_data[i]);
1308 	emx_init_tx_unit(sc);
1309 
1310 	/* Setup Multicast table */
1311 	emx_set_multi(sc);
1312 
1313 	/* Prepare receive descriptors and buffers */
1314 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1315 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1316 			device_printf(dev,
1317 			    "Could not setup receive structures\n");
1318 			emx_stop(sc);
1319 			return;
1320 		}
1321 	}
1322 	emx_init_rx_unit(sc);
1323 
1324 	/* Don't lose promiscuous settings */
1325 	emx_set_promisc(sc);
1326 
1327 	ifp->if_flags |= IFF_RUNNING;
1328 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1329 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1330 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1331 	}
1332 
1333 	callout_reset(&sc->timer, hz, emx_timer, sc);
1334 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1335 
1336 	/* MSI/X configuration for 82574 */
1337 	if (sc->hw.mac.type == e1000_82574) {
1338 		int tmp;
1339 
1340 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1341 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1342 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1343 		/*
1344 		 * XXX MSIX
1345 		 * Set the IVAR - interrupt vector routing.
1346 		 * Each nibble represents a vector, high bit
1347 		 * is enable, other 3 bits are the MSIX table
1348 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1349 		 * Link (other) to 2, hence the magic number.
1350 		 */
1351 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1352 	}
1353 
1354 	/*
1355 	 * Only enable interrupts if we are not polling, make sure
1356 	 * they are off otherwise.
1357 	 */
1358 	if (polling)
1359 		emx_disable_intr(sc);
1360 	else
1361 		emx_enable_intr(sc);
1362 
1363 	/* AMT based hardware can now take control from firmware */
1364 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1365 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1366 		emx_get_hw_control(sc);
1367 }
1368 
1369 static void
1370 emx_intr(void *xsc)
1371 {
1372 	emx_intr_body(xsc, TRUE);
1373 }
1374 
1375 static void
1376 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1377 {
1378 	struct ifnet *ifp = &sc->arpcom.ac_if;
1379 	uint32_t reg_icr;
1380 
1381 	logif(intr_beg);
1382 	ASSERT_SERIALIZED(&sc->main_serialize);
1383 
1384 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1385 
1386 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1387 		logif(intr_end);
1388 		return;
1389 	}
1390 
1391 	/*
1392 	 * XXX: some laptops trigger several spurious interrupts
1393 	 * on emx(4) when in the resume cycle. The ICR register
1394 	 * reports all-ones value in this case. Processing such
1395 	 * interrupts would lead to a freeze. I don't know why.
1396 	 */
1397 	if (reg_icr == 0xffffffff) {
1398 		logif(intr_end);
1399 		return;
1400 	}
1401 
1402 	if (ifp->if_flags & IFF_RUNNING) {
1403 		if (reg_icr &
1404 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1405 			int i;
1406 
1407 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1408 				lwkt_serialize_enter(
1409 				&sc->rx_data[i].rx_serialize);
1410 				emx_rxeof(&sc->rx_data[i], -1);
1411 				lwkt_serialize_exit(
1412 				&sc->rx_data[i].rx_serialize);
1413 			}
1414 		}
1415 		if (reg_icr & E1000_ICR_TXDW) {
1416 			struct emx_txdata *tdata = &sc->tx_data[0];
1417 
1418 			lwkt_serialize_enter(&tdata->tx_serialize);
1419 			emx_txeof(tdata);
1420 			if (!ifsq_is_empty(tdata->ifsq))
1421 				ifsq_devstart(tdata->ifsq);
1422 			lwkt_serialize_exit(&tdata->tx_serialize);
1423 		}
1424 	}
1425 
1426 	/* Link status change */
1427 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1428 		emx_serialize_skipmain(sc);
1429 
1430 		callout_stop(&sc->timer);
1431 		sc->hw.mac.get_link_status = 1;
1432 		emx_update_link_status(sc);
1433 
1434 		/* Deal with TX cruft when link lost */
1435 		emx_tx_purge(sc);
1436 
1437 		callout_reset(&sc->timer, hz, emx_timer, sc);
1438 
1439 		emx_deserialize_skipmain(sc);
1440 	}
1441 
1442 	if (reg_icr & E1000_ICR_RXO)
1443 		sc->rx_overruns++;
1444 
1445 	logif(intr_end);
1446 }
1447 
1448 static void
1449 emx_intr_mask(void *xsc)
1450 {
1451 	struct emx_softc *sc = xsc;
1452 
1453 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1454 	/*
1455 	 * NOTE:
1456 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1457 	 * so don't check it.
1458 	 */
1459 	emx_intr_body(sc, FALSE);
1460 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1461 }
1462 
1463 static void
1464 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1465 {
1466 	struct emx_softc *sc = ifp->if_softc;
1467 
1468 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1469 
1470 	emx_update_link_status(sc);
1471 
1472 	ifmr->ifm_status = IFM_AVALID;
1473 	ifmr->ifm_active = IFM_ETHER;
1474 
1475 	if (!sc->link_active)
1476 		return;
1477 
1478 	ifmr->ifm_status |= IFM_ACTIVE;
1479 
1480 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1481 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1482 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1483 	} else {
1484 		switch (sc->link_speed) {
1485 		case 10:
1486 			ifmr->ifm_active |= IFM_10_T;
1487 			break;
1488 		case 100:
1489 			ifmr->ifm_active |= IFM_100_TX;
1490 			break;
1491 
1492 		case 1000:
1493 			ifmr->ifm_active |= IFM_1000_T;
1494 			break;
1495 		}
1496 		if (sc->link_duplex == FULL_DUPLEX)
1497 			ifmr->ifm_active |= IFM_FDX;
1498 		else
1499 			ifmr->ifm_active |= IFM_HDX;
1500 	}
1501 }
1502 
1503 static int
1504 emx_media_change(struct ifnet *ifp)
1505 {
1506 	struct emx_softc *sc = ifp->if_softc;
1507 	struct ifmedia *ifm = &sc->media;
1508 
1509 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1510 
1511 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1512 		return (EINVAL);
1513 
1514 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1515 	case IFM_AUTO:
1516 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1517 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1518 		break;
1519 
1520 	case IFM_1000_LX:
1521 	case IFM_1000_SX:
1522 	case IFM_1000_T:
1523 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1524 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1525 		break;
1526 
1527 	case IFM_100_TX:
1528 		sc->hw.mac.autoneg = FALSE;
1529 		sc->hw.phy.autoneg_advertised = 0;
1530 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1531 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1532 		else
1533 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1534 		break;
1535 
1536 	case IFM_10_T:
1537 		sc->hw.mac.autoneg = FALSE;
1538 		sc->hw.phy.autoneg_advertised = 0;
1539 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1540 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1541 		else
1542 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1543 		break;
1544 
1545 	default:
1546 		if_printf(ifp, "Unsupported media type\n");
1547 		break;
1548 	}
1549 
1550 	emx_init(sc);
1551 
1552 	return (0);
1553 }
1554 
1555 static int
1556 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1557     int *segs_used, int *idx)
1558 {
1559 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1560 	bus_dmamap_t map;
1561 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1562 	struct e1000_tx_desc *ctxd = NULL;
1563 	struct mbuf *m_head = *m_headp;
1564 	uint32_t txd_upper, txd_lower, cmd = 0;
1565 	int maxsegs, nsegs, i, j, first, last = 0, error;
1566 
1567 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1568 		error = emx_tso_pullup(tdata, m_headp);
1569 		if (error)
1570 			return error;
1571 		m_head = *m_headp;
1572 	}
1573 
1574 	txd_upper = txd_lower = 0;
1575 
1576 	/*
1577 	 * Capture the first descriptor index, this descriptor
1578 	 * will have the index of the EOP which is the only one
1579 	 * that now gets a DONE bit writeback.
1580 	 */
1581 	first = tdata->next_avail_tx_desc;
1582 	tx_buffer = &tdata->tx_buf[first];
1583 	tx_buffer_mapped = tx_buffer;
1584 	map = tx_buffer->map;
1585 
1586 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1587 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1588 	if (maxsegs > EMX_MAX_SCATTER)
1589 		maxsegs = EMX_MAX_SCATTER;
1590 
1591 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1592 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1593 	if (error) {
1594 		m_freem(*m_headp);
1595 		*m_headp = NULL;
1596 		return error;
1597 	}
1598         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1599 
1600 	m_head = *m_headp;
1601 	tdata->tx_nsegs += nsegs;
1602 	*segs_used += nsegs;
1603 
1604 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1605 		/* TSO will consume one TX desc */
1606 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1607 		tdata->tx_nsegs += i;
1608 		*segs_used += i;
1609 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1610 		/* TX csum offloading will consume one TX desc */
1611 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1612 		tdata->tx_nsegs += i;
1613 		*segs_used += i;
1614 	}
1615 
1616         /* Handle VLAN tag */
1617 	if (m_head->m_flags & M_VLANTAG) {
1618 		/* Set the vlan id. */
1619 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1620 		/* Tell hardware to add tag */
1621 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1622 	}
1623 
1624 	i = tdata->next_avail_tx_desc;
1625 
1626 	/* Set up our transmit descriptors */
1627 	for (j = 0; j < nsegs; j++) {
1628 		tx_buffer = &tdata->tx_buf[i];
1629 		ctxd = &tdata->tx_desc_base[i];
1630 
1631 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1632 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1633 					   txd_lower | segs[j].ds_len);
1634 		ctxd->upper.data = htole32(txd_upper);
1635 
1636 		last = i;
1637 		if (++i == tdata->num_tx_desc)
1638 			i = 0;
1639 	}
1640 
1641 	tdata->next_avail_tx_desc = i;
1642 
1643 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1644 	tdata->num_tx_desc_avail -= nsegs;
1645 
1646 	tx_buffer->m_head = m_head;
1647 	tx_buffer_mapped->map = tx_buffer->map;
1648 	tx_buffer->map = map;
1649 
1650 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1651 		tdata->tx_nsegs = 0;
1652 
1653 		/*
1654 		 * Report Status (RS) is turned on
1655 		 * every tx_intr_nsegs descriptors.
1656 		 */
1657 		cmd = E1000_TXD_CMD_RS;
1658 
1659 		/*
1660 		 * Keep track of the descriptor, which will
1661 		 * be written back by hardware.
1662 		 */
1663 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1664 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1665 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1666 	}
1667 
1668 	/*
1669 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1670 	 */
1671 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1672 
1673 	/*
1674 	 * Defer TDT updating, until enough descriptors are setup
1675 	 */
1676 	*idx = i;
1677 
1678 #ifdef EMX_TSS_DEBUG
1679 	tdata->tx_pkts++;
1680 #endif
1681 
1682 	return (0);
1683 }
1684 
1685 static void
1686 emx_set_promisc(struct emx_softc *sc)
1687 {
1688 	struct ifnet *ifp = &sc->arpcom.ac_if;
1689 	uint32_t reg_rctl;
1690 
1691 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1692 
1693 	if (ifp->if_flags & IFF_PROMISC) {
1694 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1695 		/* Turn this on if you want to see bad packets */
1696 		if (emx_debug_sbp)
1697 			reg_rctl |= E1000_RCTL_SBP;
1698 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1699 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1700 		reg_rctl |= E1000_RCTL_MPE;
1701 		reg_rctl &= ~E1000_RCTL_UPE;
1702 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1703 	}
1704 }
1705 
1706 static void
1707 emx_disable_promisc(struct emx_softc *sc)
1708 {
1709 	uint32_t reg_rctl;
1710 
1711 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1712 
1713 	reg_rctl &= ~E1000_RCTL_UPE;
1714 	reg_rctl &= ~E1000_RCTL_MPE;
1715 	reg_rctl &= ~E1000_RCTL_SBP;
1716 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1717 }
1718 
1719 static void
1720 emx_set_multi(struct emx_softc *sc)
1721 {
1722 	struct ifnet *ifp = &sc->arpcom.ac_if;
1723 	struct ifmultiaddr *ifma;
1724 	uint32_t reg_rctl = 0;
1725 	uint8_t *mta;
1726 	int mcnt = 0;
1727 
1728 	mta = sc->mta;
1729 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1730 
1731 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1732 		if (ifma->ifma_addr->sa_family != AF_LINK)
1733 			continue;
1734 
1735 		if (mcnt == EMX_MCAST_ADDR_MAX)
1736 			break;
1737 
1738 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1739 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1740 		mcnt++;
1741 	}
1742 
1743 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1744 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1745 		reg_rctl |= E1000_RCTL_MPE;
1746 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1747 	} else {
1748 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1749 	}
1750 }
1751 
1752 /*
1753  * This routine checks for link status and updates statistics.
1754  */
1755 static void
1756 emx_timer(void *xsc)
1757 {
1758 	struct emx_softc *sc = xsc;
1759 	struct ifnet *ifp = &sc->arpcom.ac_if;
1760 
1761 	lwkt_serialize_enter(&sc->main_serialize);
1762 
1763 	emx_update_link_status(sc);
1764 	emx_update_stats(sc);
1765 
1766 	/* Reset LAA into RAR[0] on 82571 */
1767 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1768 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1769 
1770 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1771 		emx_print_hw_stats(sc);
1772 
1773 	emx_smartspeed(sc);
1774 
1775 	callout_reset(&sc->timer, hz, emx_timer, sc);
1776 
1777 	lwkt_serialize_exit(&sc->main_serialize);
1778 }
1779 
1780 static void
1781 emx_update_link_status(struct emx_softc *sc)
1782 {
1783 	struct e1000_hw *hw = &sc->hw;
1784 	struct ifnet *ifp = &sc->arpcom.ac_if;
1785 	device_t dev = sc->dev;
1786 	uint32_t link_check = 0;
1787 
1788 	/* Get the cached link value or read phy for real */
1789 	switch (hw->phy.media_type) {
1790 	case e1000_media_type_copper:
1791 		if (hw->mac.get_link_status) {
1792 			/* Do the work to read phy */
1793 			e1000_check_for_link(hw);
1794 			link_check = !hw->mac.get_link_status;
1795 			if (link_check) /* ESB2 fix */
1796 				e1000_cfg_on_link_up(hw);
1797 		} else {
1798 			link_check = TRUE;
1799 		}
1800 		break;
1801 
1802 	case e1000_media_type_fiber:
1803 		e1000_check_for_link(hw);
1804 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1805 		break;
1806 
1807 	case e1000_media_type_internal_serdes:
1808 		e1000_check_for_link(hw);
1809 		link_check = sc->hw.mac.serdes_has_link;
1810 		break;
1811 
1812 	case e1000_media_type_unknown:
1813 	default:
1814 		break;
1815 	}
1816 
1817 	/* Now check for a transition */
1818 	if (link_check && sc->link_active == 0) {
1819 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1820 		    &sc->link_duplex);
1821 
1822 		/*
1823 		 * Check if we should enable/disable SPEED_MODE bit on
1824 		 * 82571EB/82572EI
1825 		 */
1826 		if (sc->link_speed != SPEED_1000 &&
1827 		    (hw->mac.type == e1000_82571 ||
1828 		     hw->mac.type == e1000_82572)) {
1829 			int tarc0;
1830 
1831 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1832 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1833 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1834 		}
1835 		if (bootverbose) {
1836 			device_printf(dev, "Link is up %d Mbps %s\n",
1837 			    sc->link_speed,
1838 			    ((sc->link_duplex == FULL_DUPLEX) ?
1839 			    "Full Duplex" : "Half Duplex"));
1840 		}
1841 		sc->link_active = 1;
1842 		sc->smartspeed = 0;
1843 		ifp->if_baudrate = sc->link_speed * 1000000;
1844 		ifp->if_link_state = LINK_STATE_UP;
1845 		if_link_state_change(ifp);
1846 	} else if (!link_check && sc->link_active == 1) {
1847 		ifp->if_baudrate = sc->link_speed = 0;
1848 		sc->link_duplex = 0;
1849 		if (bootverbose)
1850 			device_printf(dev, "Link is Down\n");
1851 		sc->link_active = 0;
1852 		ifp->if_link_state = LINK_STATE_DOWN;
1853 		if_link_state_change(ifp);
1854 	}
1855 }
1856 
1857 static void
1858 emx_stop(struct emx_softc *sc)
1859 {
1860 	struct ifnet *ifp = &sc->arpcom.ac_if;
1861 	int i;
1862 
1863 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1864 
1865 	emx_disable_intr(sc);
1866 
1867 	callout_stop(&sc->timer);
1868 
1869 	ifp->if_flags &= ~IFF_RUNNING;
1870 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1871 		struct emx_txdata *tdata = &sc->tx_data[i];
1872 
1873 		ifsq_clr_oactive(tdata->ifsq);
1874 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1875 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1876 	}
1877 
1878 	/*
1879 	 * Disable multiple receive queues.
1880 	 *
1881 	 * NOTE:
1882 	 * We should disable multiple receive queues before
1883 	 * resetting the hardware.
1884 	 */
1885 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1886 
1887 	e1000_reset_hw(&sc->hw);
1888 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1889 
1890 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1891 		emx_free_tx_ring(&sc->tx_data[i]);
1892 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1893 		emx_free_rx_ring(&sc->rx_data[i]);
1894 }
1895 
1896 static int
1897 emx_reset(struct emx_softc *sc)
1898 {
1899 	device_t dev = sc->dev;
1900 	uint16_t rx_buffer_size;
1901 	uint32_t pba;
1902 
1903 	/* Set up smart power down as default off on newer adapters. */
1904 	if (!emx_smart_pwr_down &&
1905 	    (sc->hw.mac.type == e1000_82571 ||
1906 	     sc->hw.mac.type == e1000_82572)) {
1907 		uint16_t phy_tmp = 0;
1908 
1909 		/* Speed up time to link by disabling smart power down. */
1910 		e1000_read_phy_reg(&sc->hw,
1911 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1912 		phy_tmp &= ~IGP02E1000_PM_SPD;
1913 		e1000_write_phy_reg(&sc->hw,
1914 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1915 	}
1916 
1917 	/*
1918 	 * Packet Buffer Allocation (PBA)
1919 	 * Writing PBA sets the receive portion of the buffer
1920 	 * the remainder is used for the transmit buffer.
1921 	 */
1922 	switch (sc->hw.mac.type) {
1923 	/* Total Packet Buffer on these is 48K */
1924 	case e1000_82571:
1925 	case e1000_82572:
1926 	case e1000_80003es2lan:
1927 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1928 		break;
1929 
1930 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1931 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1932 		break;
1933 
1934 	case e1000_82574:
1935 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1936 		break;
1937 
1938 	case e1000_pch_lpt:
1939  		pba = E1000_PBA_26K;
1940  		break;
1941 
1942 	default:
1943 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1944 		if (sc->hw.mac.max_frame_size > 8192)
1945 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1946 		else
1947 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1948 	}
1949 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1950 
1951 	/*
1952 	 * These parameters control the automatic generation (Tx) and
1953 	 * response (Rx) to Ethernet PAUSE frames.
1954 	 * - High water mark should allow for at least two frames to be
1955 	 *   received after sending an XOFF.
1956 	 * - Low water mark works best when it is very near the high water mark.
1957 	 *   This allows the receiver to restart by sending XON when it has
1958 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1959 	 *   restart after one full frame is pulled from the buffer. There
1960 	 *   could be several smaller frames in the buffer and if so they will
1961 	 *   not trigger the XON until their total number reduces the buffer
1962 	 *   by 1500.
1963 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1964 	 */
1965 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1966 
1967 	sc->hw.fc.high_water = rx_buffer_size -
1968 	    roundup2(sc->hw.mac.max_frame_size, 1024);
1969 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1970 
1971 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1972 	sc->hw.fc.send_xon = TRUE;
1973 	sc->hw.fc.requested_mode = e1000_fc_full;
1974 
1975 	/*
1976 	 * Device specific overrides/settings
1977 	 */
1978 	if (sc->hw.mac.type == e1000_pch_lpt) {
1979 		sc->hw.fc.high_water = 0x5C20;
1980 		sc->hw.fc.low_water = 0x5048;
1981 		sc->hw.fc.pause_time = 0x0650;
1982 		sc->hw.fc.refresh_time = 0x0400;
1983 		/* Jumbos need adjusted PBA */
1984 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
1985 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
1986 		else
1987 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
1988 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
1989 		sc->hw.fc.pause_time = 0xFFFF;
1990 	}
1991 
1992 	/* Issue a global reset */
1993 	e1000_reset_hw(&sc->hw);
1994 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1995 	emx_disable_aspm(sc);
1996 
1997 	if (e1000_init_hw(&sc->hw) < 0) {
1998 		device_printf(dev, "Hardware Initialization Failed\n");
1999 		return (EIO);
2000 	}
2001 
2002 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2003 	e1000_get_phy_info(&sc->hw);
2004 	e1000_check_for_link(&sc->hw);
2005 
2006 	return (0);
2007 }
2008 
2009 static void
2010 emx_setup_ifp(struct emx_softc *sc)
2011 {
2012 	struct ifnet *ifp = &sc->arpcom.ac_if;
2013 	int i;
2014 
2015 	if_initname(ifp, device_get_name(sc->dev),
2016 		    device_get_unit(sc->dev));
2017 	ifp->if_softc = sc;
2018 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2019 	ifp->if_init =  emx_init;
2020 	ifp->if_ioctl = emx_ioctl;
2021 	ifp->if_start = emx_start;
2022 #ifdef IFPOLL_ENABLE
2023 	ifp->if_npoll = emx_npoll;
2024 #endif
2025 	ifp->if_serialize = emx_serialize;
2026 	ifp->if_deserialize = emx_deserialize;
2027 	ifp->if_tryserialize = emx_tryserialize;
2028 #ifdef INVARIANTS
2029 	ifp->if_serialize_assert = emx_serialize_assert;
2030 #endif
2031 
2032 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2033 
2034 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2035 	ifq_set_ready(&ifp->if_snd);
2036 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2037 
2038 	ifp->if_mapsubq = ifq_mapsubq_mask;
2039 	ifq_set_subq_mask(&ifp->if_snd, 0);
2040 
2041 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2042 
2043 	ifp->if_capabilities = IFCAP_HWCSUM |
2044 			       IFCAP_VLAN_HWTAGGING |
2045 			       IFCAP_VLAN_MTU |
2046 			       IFCAP_TSO;
2047 	if (sc->rx_ring_cnt > 1)
2048 		ifp->if_capabilities |= IFCAP_RSS;
2049 	ifp->if_capenable = ifp->if_capabilities;
2050 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2051 
2052 	/*
2053 	 * Tell the upper layer(s) we support long frames.
2054 	 */
2055 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2056 
2057 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2058 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2059 		struct emx_txdata *tdata = &sc->tx_data[i];
2060 
2061 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2062 		ifsq_set_priv(ifsq, tdata);
2063 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2064 		tdata->ifsq = ifsq;
2065 
2066 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2067 	}
2068 
2069 	/*
2070 	 * Specify the media types supported by this sc and register
2071 	 * callbacks to update media and link information
2072 	 */
2073 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2074 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2075 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2076 			    0, NULL);
2077 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
2078 	} else {
2079 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2080 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2081 			    0, NULL);
2082 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2083 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2084 			    0, NULL);
2085 		if (sc->hw.phy.type != e1000_phy_ife) {
2086 			ifmedia_add(&sc->media,
2087 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2088 			ifmedia_add(&sc->media,
2089 				IFM_ETHER | IFM_1000_T, 0, NULL);
2090 		}
2091 	}
2092 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2093 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2094 }
2095 
2096 /*
2097  * Workaround for SmartSpeed on 82541 and 82547 controllers
2098  */
2099 static void
2100 emx_smartspeed(struct emx_softc *sc)
2101 {
2102 	uint16_t phy_tmp;
2103 
2104 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2105 	    sc->hw.mac.autoneg == 0 ||
2106 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2107 		return;
2108 
2109 	if (sc->smartspeed == 0) {
2110 		/*
2111 		 * If Master/Slave config fault is asserted twice,
2112 		 * we assume back-to-back
2113 		 */
2114 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2115 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2116 			return;
2117 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2118 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2119 			e1000_read_phy_reg(&sc->hw,
2120 			    PHY_1000T_CTRL, &phy_tmp);
2121 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2122 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2123 				e1000_write_phy_reg(&sc->hw,
2124 				    PHY_1000T_CTRL, phy_tmp);
2125 				sc->smartspeed++;
2126 				if (sc->hw.mac.autoneg &&
2127 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2128 				    !e1000_read_phy_reg(&sc->hw,
2129 				     PHY_CONTROL, &phy_tmp)) {
2130 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2131 						   MII_CR_RESTART_AUTO_NEG;
2132 					e1000_write_phy_reg(&sc->hw,
2133 					    PHY_CONTROL, phy_tmp);
2134 				}
2135 			}
2136 		}
2137 		return;
2138 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2139 		/* If still no link, perhaps using 2/3 pair cable */
2140 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2141 		phy_tmp |= CR_1000T_MS_ENABLE;
2142 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2143 		if (sc->hw.mac.autoneg &&
2144 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2145 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2146 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2147 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2148 		}
2149 	}
2150 
2151 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2152 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2153 		sc->smartspeed = 0;
2154 }
2155 
2156 static int
2157 emx_create_tx_ring(struct emx_txdata *tdata)
2158 {
2159 	device_t dev = tdata->sc->dev;
2160 	struct emx_txbuf *tx_buffer;
2161 	int error, i, tsize, ntxd;
2162 
2163 	/*
2164 	 * Validate number of transmit descriptors.  It must not exceed
2165 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2166 	 */
2167 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2168 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2169 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2170 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2171 		    EMX_DEFAULT_TXD, ntxd);
2172 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2173 	} else {
2174 		tdata->num_tx_desc = ntxd;
2175 	}
2176 
2177 	/*
2178 	 * Allocate Transmit Descriptor ring
2179 	 */
2180 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2181 			 EMX_DBA_ALIGN);
2182 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2183 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2184 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2185 				&tdata->tx_desc_paddr);
2186 	if (tdata->tx_desc_base == NULL) {
2187 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2188 		return ENOMEM;
2189 	}
2190 
2191 	tsize = __VM_CACHELINE_ALIGN(
2192 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2193 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2194 
2195 	/*
2196 	 * Create DMA tags for tx buffers
2197 	 */
2198 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2199 			1, 0,			/* alignment, bounds */
2200 			BUS_SPACE_MAXADDR,	/* lowaddr */
2201 			BUS_SPACE_MAXADDR,	/* highaddr */
2202 			NULL, NULL,		/* filter, filterarg */
2203 			EMX_TSO_SIZE,		/* maxsize */
2204 			EMX_MAX_SCATTER,	/* nsegments */
2205 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2206 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2207 			BUS_DMA_ONEBPAGE,	/* flags */
2208 			&tdata->txtag);
2209 	if (error) {
2210 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2211 		kfree(tdata->tx_buf, M_DEVBUF);
2212 		tdata->tx_buf = NULL;
2213 		return error;
2214 	}
2215 
2216 	/*
2217 	 * Create DMA maps for tx buffers
2218 	 */
2219 	for (i = 0; i < tdata->num_tx_desc; i++) {
2220 		tx_buffer = &tdata->tx_buf[i];
2221 
2222 		error = bus_dmamap_create(tdata->txtag,
2223 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2224 					  &tx_buffer->map);
2225 		if (error) {
2226 			device_printf(dev, "Unable to create TX DMA map\n");
2227 			emx_destroy_tx_ring(tdata, i);
2228 			return error;
2229 		}
2230 	}
2231 
2232 	/*
2233 	 * Setup TX parameters
2234 	 */
2235 	tdata->spare_tx_desc = EMX_TX_SPARE;
2236 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2237 
2238 	/*
2239 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2240 	 * and tx_intr_nsegs:
2241 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2242 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2243 	 */
2244 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2245 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2246 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2247 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2248 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2249 
2250 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2251 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2252 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2253 
2254 	/*
2255 	 * Pullup extra 4bytes into the first data segment for TSO, see:
2256 	 * 82571/82572 specification update errata #7
2257 	 *
2258 	 * Same applies to I217 (and maybe I218).
2259 	 *
2260 	 * NOTE:
2261 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2262 	 * are pulled; mainly to keep rest of the data properly aligned.
2263 	 */
2264 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2265 	    tdata->sc->hw.mac.type == e1000_82572 ||
2266 	    tdata->sc->hw.mac.type == e1000_pch_lpt)
2267 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2268 
2269 	return (0);
2270 }
2271 
2272 static void
2273 emx_init_tx_ring(struct emx_txdata *tdata)
2274 {
2275 	/* Clear the old ring contents */
2276 	bzero(tdata->tx_desc_base,
2277 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2278 
2279 	/* Reset state */
2280 	tdata->next_avail_tx_desc = 0;
2281 	tdata->next_tx_to_clean = 0;
2282 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2283 
2284 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2285 	if (tdata->sc->tx_ring_inuse > 1) {
2286 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2287 		if (bootverbose) {
2288 			if_printf(&tdata->sc->arpcom.ac_if,
2289 			    "TX %d force ctx setup\n", tdata->idx);
2290 		}
2291 	}
2292 }
2293 
2294 static void
2295 emx_init_tx_unit(struct emx_softc *sc)
2296 {
2297 	uint32_t tctl, tarc, tipg = 0, txdctl;
2298 	int i;
2299 
2300 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2301 		struct emx_txdata *tdata = &sc->tx_data[i];
2302 		uint64_t bus_addr;
2303 
2304 		/* Setup the Base and Length of the Tx Descriptor Ring */
2305 		bus_addr = tdata->tx_desc_paddr;
2306 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2307 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2308 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2309 		    (uint32_t)(bus_addr >> 32));
2310 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2311 		    (uint32_t)bus_addr);
2312 		/* Setup the HW Tx Head and Tail descriptor pointers */
2313 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2314 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2315 	}
2316 
2317 	/* Set the default values for the Tx Inter Packet Gap timer */
2318 	switch (sc->hw.mac.type) {
2319 	case e1000_80003es2lan:
2320 		tipg = DEFAULT_82543_TIPG_IPGR1;
2321 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2322 		    E1000_TIPG_IPGR2_SHIFT;
2323 		break;
2324 
2325 	default:
2326 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2327 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2328 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2329 		else
2330 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2331 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2332 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2333 		break;
2334 	}
2335 
2336 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2337 
2338 	/* NOTE: 0 is not allowed for TIDV */
2339 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2340 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2341 
2342 	/*
2343 	 * Errata workaround (obtained from Linux).  This is necessary
2344 	 * to make multiple TX queues work on 82574.
2345 	 * XXX can't find it in any published errata though.
2346 	 */
2347 	txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2348 	E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2349 
2350 	if (sc->hw.mac.type == e1000_82571 ||
2351 	    sc->hw.mac.type == e1000_82572) {
2352 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2353 		tarc |= EMX_TARC_SPEED_MODE;
2354 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2355 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2356 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2357 		tarc |= 1;
2358 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2359 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2360 		tarc |= 1;
2361 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2362 	}
2363 
2364 	/* Program the Transmit Control Register */
2365 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2366 	tctl &= ~E1000_TCTL_CT;
2367 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2368 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2369 	tctl |= E1000_TCTL_MULR;
2370 
2371 	/* This write will effectively turn on the transmit unit. */
2372 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2373 
2374 	if (sc->hw.mac.type == e1000_82571 ||
2375 	    sc->hw.mac.type == e1000_82572 ||
2376 	    sc->hw.mac.type == e1000_80003es2lan) {
2377 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2378 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2379 		tarc &= ~(1 << 28);
2380 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2381 	}
2382 
2383 	if (sc->tx_ring_inuse > 1) {
2384 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2385 		tarc &= ~EMX_TARC_COUNT_MASK;
2386 		tarc |= 1;
2387 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2388 
2389 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2390 		tarc &= ~EMX_TARC_COUNT_MASK;
2391 		tarc |= 1;
2392 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2393 	}
2394 }
2395 
2396 static void
2397 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2398 {
2399 	struct emx_txbuf *tx_buffer;
2400 	int i;
2401 
2402 	/* Free Transmit Descriptor ring */
2403 	if (tdata->tx_desc_base) {
2404 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2405 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2406 				tdata->tx_desc_dmap);
2407 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2408 
2409 		tdata->tx_desc_base = NULL;
2410 	}
2411 
2412 	if (tdata->tx_buf == NULL)
2413 		return;
2414 
2415 	for (i = 0; i < ndesc; i++) {
2416 		tx_buffer = &tdata->tx_buf[i];
2417 
2418 		KKASSERT(tx_buffer->m_head == NULL);
2419 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2420 	}
2421 	bus_dma_tag_destroy(tdata->txtag);
2422 
2423 	kfree(tdata->tx_buf, M_DEVBUF);
2424 	tdata->tx_buf = NULL;
2425 }
2426 
2427 /*
2428  * The offload context needs to be set when we transfer the first
2429  * packet of a particular protocol (TCP/UDP).  This routine has been
2430  * enhanced to deal with inserted VLAN headers.
2431  *
2432  * If the new packet's ether header length, ip header length and
2433  * csum offloading type are same as the previous packet, we should
2434  * avoid allocating a new csum context descriptor; mainly to take
2435  * advantage of the pipeline effect of the TX data read request.
2436  *
2437  * This function returns number of TX descrptors allocated for
2438  * csum context.
2439  */
2440 static int
2441 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2442 	   uint32_t *txd_upper, uint32_t *txd_lower)
2443 {
2444 	struct e1000_context_desc *TXD;
2445 	int curr_txd, ehdrlen, csum_flags;
2446 	uint32_t cmd, hdr_len, ip_hlen;
2447 
2448 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2449 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2450 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2451 
2452 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2453 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2454 	    tdata->csum_flags == csum_flags) {
2455 		/*
2456 		 * Same csum offload context as the previous packets;
2457 		 * just return.
2458 		 */
2459 		*txd_upper = tdata->csum_txd_upper;
2460 		*txd_lower = tdata->csum_txd_lower;
2461 		return 0;
2462 	}
2463 
2464 	/*
2465 	 * Setup a new csum offload context.
2466 	 */
2467 
2468 	curr_txd = tdata->next_avail_tx_desc;
2469 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2470 
2471 	cmd = 0;
2472 
2473 	/* Setup of IP header checksum. */
2474 	if (csum_flags & CSUM_IP) {
2475 		/*
2476 		 * Start offset for header checksum calculation.
2477 		 * End offset for header checksum calculation.
2478 		 * Offset of place to put the checksum.
2479 		 */
2480 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2481 		TXD->lower_setup.ip_fields.ipcse =
2482 		    htole16(ehdrlen + ip_hlen - 1);
2483 		TXD->lower_setup.ip_fields.ipcso =
2484 		    ehdrlen + offsetof(struct ip, ip_sum);
2485 		cmd |= E1000_TXD_CMD_IP;
2486 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2487 	}
2488 	hdr_len = ehdrlen + ip_hlen;
2489 
2490 	if (csum_flags & CSUM_TCP) {
2491 		/*
2492 		 * Start offset for payload checksum calculation.
2493 		 * End offset for payload checksum calculation.
2494 		 * Offset of place to put the checksum.
2495 		 */
2496 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2497 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2498 		TXD->upper_setup.tcp_fields.tucso =
2499 		    hdr_len + offsetof(struct tcphdr, th_sum);
2500 		cmd |= E1000_TXD_CMD_TCP;
2501 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2502 	} else if (csum_flags & CSUM_UDP) {
2503 		/*
2504 		 * Start offset for header checksum calculation.
2505 		 * End offset for header checksum calculation.
2506 		 * Offset of place to put the checksum.
2507 		 */
2508 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2509 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2510 		TXD->upper_setup.tcp_fields.tucso =
2511 		    hdr_len + offsetof(struct udphdr, uh_sum);
2512 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2513 	}
2514 
2515 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2516 		     E1000_TXD_DTYP_D;		/* Data descr */
2517 
2518 	/* Save the information for this csum offloading context */
2519 	tdata->csum_lhlen = ehdrlen;
2520 	tdata->csum_iphlen = ip_hlen;
2521 	tdata->csum_flags = csum_flags;
2522 	tdata->csum_txd_upper = *txd_upper;
2523 	tdata->csum_txd_lower = *txd_lower;
2524 
2525 	TXD->tcp_seg_setup.data = htole32(0);
2526 	TXD->cmd_and_length =
2527 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2528 
2529 	if (++curr_txd == tdata->num_tx_desc)
2530 		curr_txd = 0;
2531 
2532 	KKASSERT(tdata->num_tx_desc_avail > 0);
2533 	tdata->num_tx_desc_avail--;
2534 
2535 	tdata->next_avail_tx_desc = curr_txd;
2536 	return 1;
2537 }
2538 
2539 static void
2540 emx_txeof(struct emx_txdata *tdata)
2541 {
2542 	struct emx_txbuf *tx_buffer;
2543 	int first, num_avail;
2544 
2545 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2546 		return;
2547 
2548 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2549 		return;
2550 
2551 	num_avail = tdata->num_tx_desc_avail;
2552 	first = tdata->next_tx_to_clean;
2553 
2554 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2555 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2556 		struct e1000_tx_desc *tx_desc;
2557 
2558 		tx_desc = &tdata->tx_desc_base[dd_idx];
2559 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2560 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2561 
2562 			if (++dd_idx == tdata->num_tx_desc)
2563 				dd_idx = 0;
2564 
2565 			while (first != dd_idx) {
2566 				logif(pkt_txclean);
2567 
2568 				num_avail++;
2569 
2570 				tx_buffer = &tdata->tx_buf[first];
2571 				if (tx_buffer->m_head) {
2572 					bus_dmamap_unload(tdata->txtag,
2573 							  tx_buffer->map);
2574 					m_freem(tx_buffer->m_head);
2575 					tx_buffer->m_head = NULL;
2576 				}
2577 
2578 				if (++first == tdata->num_tx_desc)
2579 					first = 0;
2580 			}
2581 		} else {
2582 			break;
2583 		}
2584 	}
2585 	tdata->next_tx_to_clean = first;
2586 	tdata->num_tx_desc_avail = num_avail;
2587 
2588 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2589 		tdata->tx_dd_head = 0;
2590 		tdata->tx_dd_tail = 0;
2591 	}
2592 
2593 	if (!EMX_IS_OACTIVE(tdata)) {
2594 		ifsq_clr_oactive(tdata->ifsq);
2595 
2596 		/* All clean, turn off the timer */
2597 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2598 			tdata->tx_watchdog.wd_timer = 0;
2599 	}
2600 }
2601 
2602 static void
2603 emx_tx_collect(struct emx_txdata *tdata)
2604 {
2605 	struct emx_txbuf *tx_buffer;
2606 	int tdh, first, num_avail, dd_idx = -1;
2607 
2608 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2609 		return;
2610 
2611 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2612 	if (tdh == tdata->next_tx_to_clean)
2613 		return;
2614 
2615 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2616 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2617 
2618 	num_avail = tdata->num_tx_desc_avail;
2619 	first = tdata->next_tx_to_clean;
2620 
2621 	while (first != tdh) {
2622 		logif(pkt_txclean);
2623 
2624 		num_avail++;
2625 
2626 		tx_buffer = &tdata->tx_buf[first];
2627 		if (tx_buffer->m_head) {
2628 			bus_dmamap_unload(tdata->txtag,
2629 					  tx_buffer->map);
2630 			m_freem(tx_buffer->m_head);
2631 			tx_buffer->m_head = NULL;
2632 		}
2633 
2634 		if (first == dd_idx) {
2635 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2636 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2637 				tdata->tx_dd_head = 0;
2638 				tdata->tx_dd_tail = 0;
2639 				dd_idx = -1;
2640 			} else {
2641 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2642 			}
2643 		}
2644 
2645 		if (++first == tdata->num_tx_desc)
2646 			first = 0;
2647 	}
2648 	tdata->next_tx_to_clean = first;
2649 	tdata->num_tx_desc_avail = num_avail;
2650 
2651 	if (!EMX_IS_OACTIVE(tdata)) {
2652 		ifsq_clr_oactive(tdata->ifsq);
2653 
2654 		/* All clean, turn off the timer */
2655 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2656 			tdata->tx_watchdog.wd_timer = 0;
2657 	}
2658 }
2659 
2660 /*
2661  * When Link is lost sometimes there is work still in the TX ring
2662  * which will result in a watchdog, rather than allow that do an
2663  * attempted cleanup and then reinit here.  Note that this has been
2664  * seens mostly with fiber adapters.
2665  */
2666 static void
2667 emx_tx_purge(struct emx_softc *sc)
2668 {
2669 	int i;
2670 
2671 	if (sc->link_active)
2672 		return;
2673 
2674 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2675 		struct emx_txdata *tdata = &sc->tx_data[i];
2676 
2677 		if (tdata->tx_watchdog.wd_timer) {
2678 			emx_tx_collect(tdata);
2679 			if (tdata->tx_watchdog.wd_timer) {
2680 				if_printf(&sc->arpcom.ac_if,
2681 				    "Link lost, TX pending, reinit\n");
2682 				emx_init(sc);
2683 				return;
2684 			}
2685 		}
2686 	}
2687 }
2688 
2689 static int
2690 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2691 {
2692 	struct mbuf *m;
2693 	bus_dma_segment_t seg;
2694 	bus_dmamap_t map;
2695 	struct emx_rxbuf *rx_buffer;
2696 	int error, nseg;
2697 
2698 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2699 	if (m == NULL) {
2700 		if (init) {
2701 			if_printf(&rdata->sc->arpcom.ac_if,
2702 				  "Unable to allocate RX mbuf\n");
2703 		}
2704 		return (ENOBUFS);
2705 	}
2706 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2707 
2708 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2709 		m_adj(m, ETHER_ALIGN);
2710 
2711 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2712 			rdata->rx_sparemap, m,
2713 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2714 	if (error) {
2715 		m_freem(m);
2716 		if (init) {
2717 			if_printf(&rdata->sc->arpcom.ac_if,
2718 				  "Unable to load RX mbuf\n");
2719 		}
2720 		return (error);
2721 	}
2722 
2723 	rx_buffer = &rdata->rx_buf[i];
2724 	if (rx_buffer->m_head != NULL)
2725 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2726 
2727 	map = rx_buffer->map;
2728 	rx_buffer->map = rdata->rx_sparemap;
2729 	rdata->rx_sparemap = map;
2730 
2731 	rx_buffer->m_head = m;
2732 	rx_buffer->paddr = seg.ds_addr;
2733 
2734 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2735 	return (0);
2736 }
2737 
2738 static int
2739 emx_create_rx_ring(struct emx_rxdata *rdata)
2740 {
2741 	device_t dev = rdata->sc->dev;
2742 	struct emx_rxbuf *rx_buffer;
2743 	int i, error, rsize, nrxd;
2744 
2745 	/*
2746 	 * Validate number of receive descriptors.  It must not exceed
2747 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2748 	 */
2749 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2750 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2751 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2752 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2753 		    EMX_DEFAULT_RXD, nrxd);
2754 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2755 	} else {
2756 		rdata->num_rx_desc = nrxd;
2757 	}
2758 
2759 	/*
2760 	 * Allocate Receive Descriptor ring
2761 	 */
2762 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2763 			 EMX_DBA_ALIGN);
2764 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2765 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2766 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2767 				&rdata->rx_desc_paddr);
2768 	if (rdata->rx_desc == NULL) {
2769 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2770 		return ENOMEM;
2771 	}
2772 
2773 	rsize = __VM_CACHELINE_ALIGN(
2774 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2775 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2776 
2777 	/*
2778 	 * Create DMA tag for rx buffers
2779 	 */
2780 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2781 			1, 0,			/* alignment, bounds */
2782 			BUS_SPACE_MAXADDR,	/* lowaddr */
2783 			BUS_SPACE_MAXADDR,	/* highaddr */
2784 			NULL, NULL,		/* filter, filterarg */
2785 			MCLBYTES,		/* maxsize */
2786 			1,			/* nsegments */
2787 			MCLBYTES,		/* maxsegsize */
2788 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2789 			&rdata->rxtag);
2790 	if (error) {
2791 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2792 		kfree(rdata->rx_buf, M_DEVBUF);
2793 		rdata->rx_buf = NULL;
2794 		return error;
2795 	}
2796 
2797 	/*
2798 	 * Create spare DMA map for rx buffers
2799 	 */
2800 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2801 				  &rdata->rx_sparemap);
2802 	if (error) {
2803 		device_printf(dev, "Unable to create spare RX DMA map\n");
2804 		bus_dma_tag_destroy(rdata->rxtag);
2805 		kfree(rdata->rx_buf, M_DEVBUF);
2806 		rdata->rx_buf = NULL;
2807 		return error;
2808 	}
2809 
2810 	/*
2811 	 * Create DMA maps for rx buffers
2812 	 */
2813 	for (i = 0; i < rdata->num_rx_desc; i++) {
2814 		rx_buffer = &rdata->rx_buf[i];
2815 
2816 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2817 					  &rx_buffer->map);
2818 		if (error) {
2819 			device_printf(dev, "Unable to create RX DMA map\n");
2820 			emx_destroy_rx_ring(rdata, i);
2821 			return error;
2822 		}
2823 	}
2824 	return (0);
2825 }
2826 
2827 static void
2828 emx_free_rx_ring(struct emx_rxdata *rdata)
2829 {
2830 	int i;
2831 
2832 	for (i = 0; i < rdata->num_rx_desc; i++) {
2833 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2834 
2835 		if (rx_buffer->m_head != NULL) {
2836 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2837 			m_freem(rx_buffer->m_head);
2838 			rx_buffer->m_head = NULL;
2839 		}
2840 	}
2841 
2842 	if (rdata->fmp != NULL)
2843 		m_freem(rdata->fmp);
2844 	rdata->fmp = NULL;
2845 	rdata->lmp = NULL;
2846 }
2847 
2848 static void
2849 emx_free_tx_ring(struct emx_txdata *tdata)
2850 {
2851 	int i;
2852 
2853 	for (i = 0; i < tdata->num_tx_desc; i++) {
2854 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2855 
2856 		if (tx_buffer->m_head != NULL) {
2857 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2858 			m_freem(tx_buffer->m_head);
2859 			tx_buffer->m_head = NULL;
2860 		}
2861 	}
2862 
2863 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2864 
2865 	tdata->csum_flags = 0;
2866 	tdata->csum_lhlen = 0;
2867 	tdata->csum_iphlen = 0;
2868 	tdata->csum_thlen = 0;
2869 	tdata->csum_mss = 0;
2870 	tdata->csum_pktlen = 0;
2871 
2872 	tdata->tx_dd_head = 0;
2873 	tdata->tx_dd_tail = 0;
2874 	tdata->tx_nsegs = 0;
2875 }
2876 
2877 static int
2878 emx_init_rx_ring(struct emx_rxdata *rdata)
2879 {
2880 	int i, error;
2881 
2882 	/* Reset descriptor ring */
2883 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2884 
2885 	/* Allocate new ones. */
2886 	for (i = 0; i < rdata->num_rx_desc; i++) {
2887 		error = emx_newbuf(rdata, i, 1);
2888 		if (error)
2889 			return (error);
2890 	}
2891 
2892 	/* Setup our descriptor pointers */
2893 	rdata->next_rx_desc_to_check = 0;
2894 
2895 	return (0);
2896 }
2897 
2898 static void
2899 emx_init_rx_unit(struct emx_softc *sc)
2900 {
2901 	struct ifnet *ifp = &sc->arpcom.ac_if;
2902 	uint64_t bus_addr;
2903 	uint32_t rctl, itr, rfctl;
2904 	int i;
2905 
2906 	/*
2907 	 * Make sure receives are disabled while setting
2908 	 * up the descriptor ring
2909 	 */
2910 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2911 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2912 
2913 	/*
2914 	 * Set the interrupt throttling rate. Value is calculated
2915 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2916 	 */
2917 	if (sc->int_throttle_ceil)
2918 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2919 	else
2920 		itr = 0;
2921 	emx_set_itr(sc, itr);
2922 
2923 	/* Use extended RX descriptor */
2924 	rfctl = E1000_RFCTL_EXTEN;
2925 
2926 	/* Disable accelerated ackknowledge */
2927 	if (sc->hw.mac.type == e1000_82574)
2928 		rfctl |= E1000_RFCTL_ACK_DIS;
2929 
2930 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2931 
2932 	/*
2933 	 * Receive Checksum Offload for TCP and UDP
2934 	 *
2935 	 * Checksum offloading is also enabled if multiple receive
2936 	 * queue is to be supported, since we need it to figure out
2937 	 * packet type.
2938 	 */
2939 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2940 	    sc->rx_ring_cnt > 1) {
2941 		uint32_t rxcsum;
2942 
2943 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2944 
2945 		/*
2946 		 * NOTE:
2947 		 * PCSD must be enabled to enable multiple
2948 		 * receive queues.
2949 		 */
2950 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2951 			  E1000_RXCSUM_PCSD;
2952 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2953 	}
2954 
2955 	/*
2956 	 * Configure multiple receive queue (RSS)
2957 	 */
2958 	if (sc->rx_ring_cnt > 1) {
2959 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2960 		uint32_t reta;
2961 
2962 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2963 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2964 
2965 		/*
2966 		 * NOTE:
2967 		 * When we reach here, RSS has already been disabled
2968 		 * in emx_stop(), so we could safely configure RSS key
2969 		 * and redirect table.
2970 		 */
2971 
2972 		/*
2973 		 * Configure RSS key
2974 		 */
2975 		toeplitz_get_key(key, sizeof(key));
2976 		for (i = 0; i < EMX_NRSSRK; ++i) {
2977 			uint32_t rssrk;
2978 
2979 			rssrk = EMX_RSSRK_VAL(key, i);
2980 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2981 
2982 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2983 		}
2984 
2985 		/*
2986 		 * Configure RSS redirect table in following fashion:
2987 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2988 		 */
2989 		reta = 0;
2990 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2991 			uint32_t q;
2992 
2993 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2994 			reta |= q << (8 * i);
2995 		}
2996 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2997 
2998 		for (i = 0; i < EMX_NRETA; ++i)
2999 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
3000 
3001 		/*
3002 		 * Enable multiple receive queues.
3003 		 * Enable IPv4 RSS standard hash functions.
3004 		 * Disable RSS interrupt.
3005 		 */
3006 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3007 				E1000_MRQC_ENABLE_RSS_2Q |
3008 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
3009 				E1000_MRQC_RSS_FIELD_IPV4);
3010 	}
3011 
3012 	/*
3013 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3014 	 * long latencies are observed, like Lenovo X60. This
3015 	 * change eliminates the problem, but since having positive
3016 	 * values in RDTR is a known source of problems on other
3017 	 * platforms another solution is being sought.
3018 	 */
3019 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3020 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3021 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3022 	}
3023 
3024 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3025 		struct emx_rxdata *rdata = &sc->rx_data[i];
3026 
3027 		/*
3028 		 * Setup the Base and Length of the Rx Descriptor Ring
3029 		 */
3030 		bus_addr = rdata->rx_desc_paddr;
3031 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3032 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3033 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3034 		    (uint32_t)(bus_addr >> 32));
3035 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3036 		    (uint32_t)bus_addr);
3037 
3038 		/*
3039 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3040 		 */
3041 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3042 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3043 		    sc->rx_data[i].num_rx_desc - 1);
3044 	}
3045 
3046 	if (sc->hw.mac.type >= e1000_pch2lan) {
3047 		if (ifp->if_mtu > ETHERMTU)
3048 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3049 		else
3050 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3051 	}
3052 
3053 	/* Setup the Receive Control Register */
3054 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3055 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3056 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3057 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3058 
3059 	/* Make sure VLAN Filters are off */
3060 	rctl &= ~E1000_RCTL_VFE;
3061 
3062 	/* Don't store bad paket */
3063 	rctl &= ~E1000_RCTL_SBP;
3064 
3065 	/* MCLBYTES */
3066 	rctl |= E1000_RCTL_SZ_2048;
3067 
3068 	if (ifp->if_mtu > ETHERMTU)
3069 		rctl |= E1000_RCTL_LPE;
3070 	else
3071 		rctl &= ~E1000_RCTL_LPE;
3072 
3073 	/* Enable Receives */
3074 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3075 }
3076 
3077 static void
3078 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3079 {
3080 	struct emx_rxbuf *rx_buffer;
3081 	int i;
3082 
3083 	/* Free Receive Descriptor ring */
3084 	if (rdata->rx_desc) {
3085 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3086 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3087 				rdata->rx_desc_dmap);
3088 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3089 
3090 		rdata->rx_desc = NULL;
3091 	}
3092 
3093 	if (rdata->rx_buf == NULL)
3094 		return;
3095 
3096 	for (i = 0; i < ndesc; i++) {
3097 		rx_buffer = &rdata->rx_buf[i];
3098 
3099 		KKASSERT(rx_buffer->m_head == NULL);
3100 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3101 	}
3102 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3103 	bus_dma_tag_destroy(rdata->rxtag);
3104 
3105 	kfree(rdata->rx_buf, M_DEVBUF);
3106 	rdata->rx_buf = NULL;
3107 }
3108 
3109 static void
3110 emx_rxeof(struct emx_rxdata *rdata, int count)
3111 {
3112 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3113 	uint32_t staterr;
3114 	emx_rxdesc_t *current_desc;
3115 	struct mbuf *mp;
3116 	int i, cpuid = mycpuid;
3117 
3118 	i = rdata->next_rx_desc_to_check;
3119 	current_desc = &rdata->rx_desc[i];
3120 	staterr = le32toh(current_desc->rxd_staterr);
3121 
3122 	if (!(staterr & E1000_RXD_STAT_DD))
3123 		return;
3124 
3125 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3126 		struct pktinfo *pi = NULL, pi0;
3127 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3128 		struct mbuf *m = NULL;
3129 		int eop, len;
3130 
3131 		logif(pkt_receive);
3132 
3133 		mp = rx_buf->m_head;
3134 
3135 		/*
3136 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3137 		 * needs to access the last received byte in the mbuf.
3138 		 */
3139 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3140 				BUS_DMASYNC_POSTREAD);
3141 
3142 		len = le16toh(current_desc->rxd_length);
3143 		if (staterr & E1000_RXD_STAT_EOP) {
3144 			count--;
3145 			eop = 1;
3146 		} else {
3147 			eop = 0;
3148 		}
3149 
3150 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3151 			uint16_t vlan = 0;
3152 			uint32_t mrq, rss_hash;
3153 
3154 			/*
3155 			 * Save several necessary information,
3156 			 * before emx_newbuf() destroy it.
3157 			 */
3158 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3159 				vlan = le16toh(current_desc->rxd_vlan);
3160 
3161 			mrq = le32toh(current_desc->rxd_mrq);
3162 			rss_hash = le32toh(current_desc->rxd_rss);
3163 
3164 			EMX_RSS_DPRINTF(rdata->sc, 10,
3165 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3166 			    rdata->idx, mrq, rss_hash);
3167 
3168 			if (emx_newbuf(rdata, i, 0) != 0) {
3169 				IFNET_STAT_INC(ifp, iqdrops, 1);
3170 				goto discard;
3171 			}
3172 
3173 			/* Assign correct length to the current fragment */
3174 			mp->m_len = len;
3175 
3176 			if (rdata->fmp == NULL) {
3177 				mp->m_pkthdr.len = len;
3178 				rdata->fmp = mp; /* Store the first mbuf */
3179 				rdata->lmp = mp;
3180 			} else {
3181 				/*
3182 				 * Chain mbuf's together
3183 				 */
3184 				rdata->lmp->m_next = mp;
3185 				rdata->lmp = rdata->lmp->m_next;
3186 				rdata->fmp->m_pkthdr.len += len;
3187 			}
3188 
3189 			if (eop) {
3190 				rdata->fmp->m_pkthdr.rcvif = ifp;
3191 				IFNET_STAT_INC(ifp, ipackets, 1);
3192 
3193 				if (ifp->if_capenable & IFCAP_RXCSUM)
3194 					emx_rxcsum(staterr, rdata->fmp);
3195 
3196 				if (staterr & E1000_RXD_STAT_VP) {
3197 					rdata->fmp->m_pkthdr.ether_vlantag =
3198 					    vlan;
3199 					rdata->fmp->m_flags |= M_VLANTAG;
3200 				}
3201 				m = rdata->fmp;
3202 				rdata->fmp = NULL;
3203 				rdata->lmp = NULL;
3204 
3205 				if (ifp->if_capenable & IFCAP_RSS) {
3206 					pi = emx_rssinfo(m, &pi0, mrq,
3207 							 rss_hash, staterr);
3208 				}
3209 #ifdef EMX_RSS_DEBUG
3210 				rdata->rx_pkts++;
3211 #endif
3212 			}
3213 		} else {
3214 			IFNET_STAT_INC(ifp, ierrors, 1);
3215 discard:
3216 			emx_setup_rxdesc(current_desc, rx_buf);
3217 			if (rdata->fmp != NULL) {
3218 				m_freem(rdata->fmp);
3219 				rdata->fmp = NULL;
3220 				rdata->lmp = NULL;
3221 			}
3222 			m = NULL;
3223 		}
3224 
3225 		if (m != NULL)
3226 			ifp->if_input(ifp, m, pi, cpuid);
3227 
3228 		/* Advance our pointers to the next descriptor. */
3229 		if (++i == rdata->num_rx_desc)
3230 			i = 0;
3231 
3232 		current_desc = &rdata->rx_desc[i];
3233 		staterr = le32toh(current_desc->rxd_staterr);
3234 	}
3235 	rdata->next_rx_desc_to_check = i;
3236 
3237 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3238 	if (--i < 0)
3239 		i = rdata->num_rx_desc - 1;
3240 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3241 }
3242 
3243 static void
3244 emx_enable_intr(struct emx_softc *sc)
3245 {
3246 	uint32_t ims_mask = IMS_ENABLE_MASK;
3247 
3248 	lwkt_serialize_handler_enable(&sc->main_serialize);
3249 
3250 #if 0
3251 	if (sc->hw.mac.type == e1000_82574) {
3252 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3253 		ims_mask |= EM_MSIX_MASK;
3254 	}
3255 #endif
3256 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3257 }
3258 
3259 static void
3260 emx_disable_intr(struct emx_softc *sc)
3261 {
3262 	if (sc->hw.mac.type == e1000_82574)
3263 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3264 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3265 
3266 	lwkt_serialize_handler_disable(&sc->main_serialize);
3267 }
3268 
3269 /*
3270  * Bit of a misnomer, what this really means is
3271  * to enable OS management of the system... aka
3272  * to disable special hardware management features
3273  */
3274 static void
3275 emx_get_mgmt(struct emx_softc *sc)
3276 {
3277 	/* A shared code workaround */
3278 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3279 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3280 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3281 
3282 		/* disable hardware interception of ARP */
3283 		manc &= ~(E1000_MANC_ARP_EN);
3284 
3285                 /* enable receiving management packets to the host */
3286 		manc |= E1000_MANC_EN_MNG2HOST;
3287 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3288 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3289 		manc2h |= E1000_MNG2HOST_PORT_623;
3290 		manc2h |= E1000_MNG2HOST_PORT_664;
3291 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3292 
3293 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3294 	}
3295 }
3296 
3297 /*
3298  * Give control back to hardware management
3299  * controller if there is one.
3300  */
3301 static void
3302 emx_rel_mgmt(struct emx_softc *sc)
3303 {
3304 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3305 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3306 
3307 		/* re-enable hardware interception of ARP */
3308 		manc |= E1000_MANC_ARP_EN;
3309 		manc &= ~E1000_MANC_EN_MNG2HOST;
3310 
3311 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3312 	}
3313 }
3314 
3315 /*
3316  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3317  * For ASF and Pass Through versions of f/w this means that
3318  * the driver is loaded.  For AMT version (only with 82573)
3319  * of the f/w this means that the network i/f is open.
3320  */
3321 static void
3322 emx_get_hw_control(struct emx_softc *sc)
3323 {
3324 	/* Let firmware know the driver has taken over */
3325 	if (sc->hw.mac.type == e1000_82573) {
3326 		uint32_t swsm;
3327 
3328 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3329 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3330 		    swsm | E1000_SWSM_DRV_LOAD);
3331 	} else {
3332 		uint32_t ctrl_ext;
3333 
3334 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3335 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3336 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3337 	}
3338 	sc->flags |= EMX_FLAG_HW_CTRL;
3339 }
3340 
3341 /*
3342  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3343  * For ASF and Pass Through versions of f/w this means that the
3344  * driver is no longer loaded.  For AMT version (only with 82573)
3345  * of the f/w this means that the network i/f is closed.
3346  */
3347 static void
3348 emx_rel_hw_control(struct emx_softc *sc)
3349 {
3350 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3351 		return;
3352 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3353 
3354 	/* Let firmware taken over control of h/w */
3355 	if (sc->hw.mac.type == e1000_82573) {
3356 		uint32_t swsm;
3357 
3358 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3359 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3360 		    swsm & ~E1000_SWSM_DRV_LOAD);
3361 	} else {
3362 		uint32_t ctrl_ext;
3363 
3364 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3365 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3366 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3367 	}
3368 }
3369 
3370 static int
3371 emx_is_valid_eaddr(const uint8_t *addr)
3372 {
3373 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3374 
3375 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3376 		return (FALSE);
3377 
3378 	return (TRUE);
3379 }
3380 
3381 /*
3382  * Enable PCI Wake On Lan capability
3383  */
3384 void
3385 emx_enable_wol(device_t dev)
3386 {
3387 	uint16_t cap, status;
3388 	uint8_t id;
3389 
3390 	/* First find the capabilities pointer*/
3391 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3392 
3393 	/* Read the PM Capabilities */
3394 	id = pci_read_config(dev, cap, 1);
3395 	if (id != PCIY_PMG)     /* Something wrong */
3396 		return;
3397 
3398 	/*
3399 	 * OK, we have the power capabilities,
3400 	 * so now get the status register
3401 	 */
3402 	cap += PCIR_POWER_STATUS;
3403 	status = pci_read_config(dev, cap, 2);
3404 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3405 	pci_write_config(dev, cap, status, 2);
3406 }
3407 
3408 static void
3409 emx_update_stats(struct emx_softc *sc)
3410 {
3411 	struct ifnet *ifp = &sc->arpcom.ac_if;
3412 
3413 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3414 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3415 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3416 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3417 	}
3418 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3419 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3420 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3421 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3422 
3423 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3424 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3425 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3426 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3427 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3428 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3429 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3430 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3431 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3432 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3433 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3434 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3435 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3436 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3437 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3438 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3439 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3440 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3441 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3442 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3443 
3444 	/* For the 64-bit byte counters the low dword must be read first. */
3445 	/* Both registers clear on the read of the high dword */
3446 
3447 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3448 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3449 
3450 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3451 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3452 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3453 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3454 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3455 
3456 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3457 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3458 
3459 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3460 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3461 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3462 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3463 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3464 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3465 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3466 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3467 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3468 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3469 
3470 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3471 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3472 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3473 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3474 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3475 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3476 
3477 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3478 
3479 	/* Rx Errors */
3480 	IFNET_STAT_SET(ifp, ierrors,
3481 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3482 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3483 
3484 	/* Tx Errors */
3485 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3486 }
3487 
3488 static void
3489 emx_print_debug_info(struct emx_softc *sc)
3490 {
3491 	device_t dev = sc->dev;
3492 	uint8_t *hw_addr = sc->hw.hw_addr;
3493 	int i;
3494 
3495 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3496 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3497 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3498 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3499 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3500 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3501 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3502 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3503 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3504 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3505 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3506 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3507 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3508 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3509 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3510 
3511 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3512 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3513 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3514 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3515 	}
3516 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3517 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3518 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3519 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3520 	}
3521 
3522 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3523 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3524 		    sc->tx_data[i].num_tx_desc_avail);
3525 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3526 		    sc->tx_data[i].tso_segments);
3527 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3528 		    sc->tx_data[i].tso_ctx_reused);
3529 	}
3530 }
3531 
3532 static void
3533 emx_print_hw_stats(struct emx_softc *sc)
3534 {
3535 	device_t dev = sc->dev;
3536 
3537 	device_printf(dev, "Excessive collisions = %lld\n",
3538 	    (long long)sc->stats.ecol);
3539 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3540 	device_printf(dev, "Symbol errors = %lld\n",
3541 	    (long long)sc->stats.symerrs);
3542 #endif
3543 	device_printf(dev, "Sequence errors = %lld\n",
3544 	    (long long)sc->stats.sec);
3545 	device_printf(dev, "Defer count = %lld\n",
3546 	    (long long)sc->stats.dc);
3547 	device_printf(dev, "Missed Packets = %lld\n",
3548 	    (long long)sc->stats.mpc);
3549 	device_printf(dev, "Receive No Buffers = %lld\n",
3550 	    (long long)sc->stats.rnbc);
3551 	/* RLEC is inaccurate on some hardware, calculate our own. */
3552 	device_printf(dev, "Receive Length Errors = %lld\n",
3553 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3554 	device_printf(dev, "Receive errors = %lld\n",
3555 	    (long long)sc->stats.rxerrc);
3556 	device_printf(dev, "Crc errors = %lld\n",
3557 	    (long long)sc->stats.crcerrs);
3558 	device_printf(dev, "Alignment errors = %lld\n",
3559 	    (long long)sc->stats.algnerrc);
3560 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3561 	    (long long)sc->stats.cexterr);
3562 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3563 	device_printf(dev, "XON Rcvd = %lld\n",
3564 	    (long long)sc->stats.xonrxc);
3565 	device_printf(dev, "XON Xmtd = %lld\n",
3566 	    (long long)sc->stats.xontxc);
3567 	device_printf(dev, "XOFF Rcvd = %lld\n",
3568 	    (long long)sc->stats.xoffrxc);
3569 	device_printf(dev, "XOFF Xmtd = %lld\n",
3570 	    (long long)sc->stats.xofftxc);
3571 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3572 	    (long long)sc->stats.gprc);
3573 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3574 	    (long long)sc->stats.gptc);
3575 }
3576 
3577 static void
3578 emx_print_nvm_info(struct emx_softc *sc)
3579 {
3580 	uint16_t eeprom_data;
3581 	int i, j, row = 0;
3582 
3583 	/* Its a bit crude, but it gets the job done */
3584 	kprintf("\nInterface EEPROM Dump:\n");
3585 	kprintf("Offset\n0x0000  ");
3586 	for (i = 0, j = 0; i < 32; i++, j++) {
3587 		if (j == 8) { /* Make the offset block */
3588 			j = 0; ++row;
3589 			kprintf("\n0x00%x0  ",row);
3590 		}
3591 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3592 		kprintf("%04x ", eeprom_data);
3593 	}
3594 	kprintf("\n");
3595 }
3596 
3597 static int
3598 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3599 {
3600 	struct emx_softc *sc;
3601 	struct ifnet *ifp;
3602 	int error, result;
3603 
3604 	result = -1;
3605 	error = sysctl_handle_int(oidp, &result, 0, req);
3606 	if (error || !req->newptr)
3607 		return (error);
3608 
3609 	sc = (struct emx_softc *)arg1;
3610 	ifp = &sc->arpcom.ac_if;
3611 
3612 	ifnet_serialize_all(ifp);
3613 
3614 	if (result == 1)
3615 		emx_print_debug_info(sc);
3616 
3617 	/*
3618 	 * This value will cause a hex dump of the
3619 	 * first 32 16-bit words of the EEPROM to
3620 	 * the screen.
3621 	 */
3622 	if (result == 2)
3623 		emx_print_nvm_info(sc);
3624 
3625 	ifnet_deserialize_all(ifp);
3626 
3627 	return (error);
3628 }
3629 
3630 static int
3631 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3632 {
3633 	int error, result;
3634 
3635 	result = -1;
3636 	error = sysctl_handle_int(oidp, &result, 0, req);
3637 	if (error || !req->newptr)
3638 		return (error);
3639 
3640 	if (result == 1) {
3641 		struct emx_softc *sc = (struct emx_softc *)arg1;
3642 		struct ifnet *ifp = &sc->arpcom.ac_if;
3643 
3644 		ifnet_serialize_all(ifp);
3645 		emx_print_hw_stats(sc);
3646 		ifnet_deserialize_all(ifp);
3647 	}
3648 	return (error);
3649 }
3650 
3651 static void
3652 emx_add_sysctl(struct emx_softc *sc)
3653 {
3654 	struct sysctl_ctx_list *ctx;
3655 	struct sysctl_oid *tree;
3656 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3657 	char pkt_desc[32];
3658 	int i;
3659 #endif
3660 
3661 	ctx = device_get_sysctl_ctx(sc->dev);
3662 	tree = device_get_sysctl_tree(sc->dev);
3663 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3664 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3665 			emx_sysctl_debug_info, "I", "Debug Information");
3666 
3667 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3668 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3669 			emx_sysctl_stats, "I", "Statistics");
3670 
3671 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3672 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3673 	    "# of RX descs");
3674 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3675 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3676 	    "# of TX descs");
3677 
3678 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3679 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3680 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3681 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3682 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3683 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3684 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3685 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3686 	    emx_sysctl_tx_wreg_nsegs, "I",
3687 	    "# segments sent before write to hardware register");
3688 
3689 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3690 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3691 	    "# of RX rings");
3692 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3693 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3694 	    "# of TX rings");
3695 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3696 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3697 	    "# of TX rings used");
3698 
3699 #ifdef IFPOLL_ENABLE
3700 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3701 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3702 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3703 			"NPOLLING RX cpu offset");
3704 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3705 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3706 			sc, 0, emx_sysctl_npoll_txoff, "I",
3707 			"NPOLLING TX cpu offset");
3708 #endif
3709 
3710 #ifdef EMX_RSS_DEBUG
3711 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3712 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3713 		       0, "RSS debug level");
3714 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3715 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3716 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3717 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3718 		    "RXed packets");
3719 	}
3720 #endif
3721 #ifdef EMX_TSS_DEBUG
3722 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3723 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3724 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3725 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3726 		    "TXed packets");
3727 	}
3728 #endif
3729 }
3730 
3731 static int
3732 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3733 {
3734 	struct emx_softc *sc = (void *)arg1;
3735 	struct ifnet *ifp = &sc->arpcom.ac_if;
3736 	int error, throttle;
3737 
3738 	throttle = sc->int_throttle_ceil;
3739 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3740 	if (error || req->newptr == NULL)
3741 		return error;
3742 	if (throttle < 0 || throttle > 1000000000 / 256)
3743 		return EINVAL;
3744 
3745 	if (throttle) {
3746 		/*
3747 		 * Set the interrupt throttling rate in 256ns increments,
3748 		 * recalculate sysctl value assignment to get exact frequency.
3749 		 */
3750 		throttle = 1000000000 / 256 / throttle;
3751 
3752 		/* Upper 16bits of ITR is reserved and should be zero */
3753 		if (throttle & 0xffff0000)
3754 			return EINVAL;
3755 	}
3756 
3757 	ifnet_serialize_all(ifp);
3758 
3759 	if (throttle)
3760 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3761 	else
3762 		sc->int_throttle_ceil = 0;
3763 
3764 	if (ifp->if_flags & IFF_RUNNING)
3765 		emx_set_itr(sc, throttle);
3766 
3767 	ifnet_deserialize_all(ifp);
3768 
3769 	if (bootverbose) {
3770 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3771 			  sc->int_throttle_ceil);
3772 	}
3773 	return 0;
3774 }
3775 
3776 static int
3777 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3778 {
3779 	struct emx_softc *sc = (void *)arg1;
3780 	struct ifnet *ifp = &sc->arpcom.ac_if;
3781 	struct emx_txdata *tdata = &sc->tx_data[0];
3782 	int error, segs;
3783 
3784 	segs = tdata->tx_intr_nsegs;
3785 	error = sysctl_handle_int(oidp, &segs, 0, req);
3786 	if (error || req->newptr == NULL)
3787 		return error;
3788 	if (segs <= 0)
3789 		return EINVAL;
3790 
3791 	ifnet_serialize_all(ifp);
3792 
3793 	/*
3794 	 * Don't allow tx_intr_nsegs to become:
3795 	 * o  Less the oact_tx_desc
3796 	 * o  Too large that no TX desc will cause TX interrupt to
3797 	 *    be generated (OACTIVE will never recover)
3798 	 * o  Too small that will cause tx_dd[] overflow
3799 	 */
3800 	if (segs < tdata->oact_tx_desc ||
3801 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3802 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3803 		error = EINVAL;
3804 	} else {
3805 		int i;
3806 
3807 		error = 0;
3808 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3809 			sc->tx_data[i].tx_intr_nsegs = segs;
3810 	}
3811 
3812 	ifnet_deserialize_all(ifp);
3813 
3814 	return error;
3815 }
3816 
3817 static int
3818 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3819 {
3820 	struct emx_softc *sc = (void *)arg1;
3821 	struct ifnet *ifp = &sc->arpcom.ac_if;
3822 	int error, nsegs, i;
3823 
3824 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3825 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3826 	if (error || req->newptr == NULL)
3827 		return error;
3828 
3829 	ifnet_serialize_all(ifp);
3830 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3831 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3832 	ifnet_deserialize_all(ifp);
3833 
3834 	return 0;
3835 }
3836 
3837 #ifdef IFPOLL_ENABLE
3838 
3839 static int
3840 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3841 {
3842 	struct emx_softc *sc = (void *)arg1;
3843 	struct ifnet *ifp = &sc->arpcom.ac_if;
3844 	int error, off;
3845 
3846 	off = sc->rx_npoll_off;
3847 	error = sysctl_handle_int(oidp, &off, 0, req);
3848 	if (error || req->newptr == NULL)
3849 		return error;
3850 	if (off < 0)
3851 		return EINVAL;
3852 
3853 	ifnet_serialize_all(ifp);
3854 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3855 		error = EINVAL;
3856 	} else {
3857 		error = 0;
3858 		sc->rx_npoll_off = off;
3859 	}
3860 	ifnet_deserialize_all(ifp);
3861 
3862 	return error;
3863 }
3864 
3865 static int
3866 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3867 {
3868 	struct emx_softc *sc = (void *)arg1;
3869 	struct ifnet *ifp = &sc->arpcom.ac_if;
3870 	int error, off;
3871 
3872 	off = sc->tx_npoll_off;
3873 	error = sysctl_handle_int(oidp, &off, 0, req);
3874 	if (error || req->newptr == NULL)
3875 		return error;
3876 	if (off < 0)
3877 		return EINVAL;
3878 
3879 	ifnet_serialize_all(ifp);
3880 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3881 		error = EINVAL;
3882 	} else {
3883 		error = 0;
3884 		sc->tx_npoll_off = off;
3885 	}
3886 	ifnet_deserialize_all(ifp);
3887 
3888 	return error;
3889 }
3890 
3891 #endif	/* IFPOLL_ENABLE */
3892 
3893 static int
3894 emx_dma_alloc(struct emx_softc *sc)
3895 {
3896 	int error, i;
3897 
3898 	/*
3899 	 * Create top level busdma tag
3900 	 */
3901 	error = bus_dma_tag_create(NULL, 1, 0,
3902 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3903 			NULL, NULL,
3904 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3905 			0, &sc->parent_dtag);
3906 	if (error) {
3907 		device_printf(sc->dev, "could not create top level DMA tag\n");
3908 		return error;
3909 	}
3910 
3911 	/*
3912 	 * Allocate transmit descriptors ring and buffers
3913 	 */
3914 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3915 		error = emx_create_tx_ring(&sc->tx_data[i]);
3916 		if (error) {
3917 			device_printf(sc->dev,
3918 			    "Could not setup transmit structures\n");
3919 			return error;
3920 		}
3921 	}
3922 
3923 	/*
3924 	 * Allocate receive descriptors ring and buffers
3925 	 */
3926 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3927 		error = emx_create_rx_ring(&sc->rx_data[i]);
3928 		if (error) {
3929 			device_printf(sc->dev,
3930 			    "Could not setup receive structures\n");
3931 			return error;
3932 		}
3933 	}
3934 	return 0;
3935 }
3936 
3937 static void
3938 emx_dma_free(struct emx_softc *sc)
3939 {
3940 	int i;
3941 
3942 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3943 		emx_destroy_tx_ring(&sc->tx_data[i],
3944 		    sc->tx_data[i].num_tx_desc);
3945 	}
3946 
3947 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3948 		emx_destroy_rx_ring(&sc->rx_data[i],
3949 		    sc->rx_data[i].num_rx_desc);
3950 	}
3951 
3952 	/* Free top level busdma tag */
3953 	if (sc->parent_dtag != NULL)
3954 		bus_dma_tag_destroy(sc->parent_dtag);
3955 }
3956 
3957 static void
3958 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3959 {
3960 	struct emx_softc *sc = ifp->if_softc;
3961 
3962 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3963 }
3964 
3965 static void
3966 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3967 {
3968 	struct emx_softc *sc = ifp->if_softc;
3969 
3970 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3971 }
3972 
3973 static int
3974 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3975 {
3976 	struct emx_softc *sc = ifp->if_softc;
3977 
3978 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3979 }
3980 
3981 static void
3982 emx_serialize_skipmain(struct emx_softc *sc)
3983 {
3984 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3985 }
3986 
3987 static void
3988 emx_deserialize_skipmain(struct emx_softc *sc)
3989 {
3990 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3991 }
3992 
3993 #ifdef INVARIANTS
3994 
3995 static void
3996 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3997     boolean_t serialized)
3998 {
3999 	struct emx_softc *sc = ifp->if_softc;
4000 
4001 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4002 	    slz, serialized);
4003 }
4004 
4005 #endif	/* INVARIANTS */
4006 
4007 #ifdef IFPOLL_ENABLE
4008 
4009 static void
4010 emx_npoll_status(struct ifnet *ifp)
4011 {
4012 	struct emx_softc *sc = ifp->if_softc;
4013 	uint32_t reg_icr;
4014 
4015 	ASSERT_SERIALIZED(&sc->main_serialize);
4016 
4017 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4018 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4019 		callout_stop(&sc->timer);
4020 		sc->hw.mac.get_link_status = 1;
4021 		emx_update_link_status(sc);
4022 		callout_reset(&sc->timer, hz, emx_timer, sc);
4023 	}
4024 }
4025 
4026 static void
4027 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4028 {
4029 	struct emx_txdata *tdata = arg;
4030 
4031 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4032 
4033 	emx_txeof(tdata);
4034 	if (!ifsq_is_empty(tdata->ifsq))
4035 		ifsq_devstart(tdata->ifsq);
4036 }
4037 
4038 static void
4039 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4040 {
4041 	struct emx_rxdata *rdata = arg;
4042 
4043 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4044 
4045 	emx_rxeof(rdata, cycle);
4046 }
4047 
4048 static void
4049 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4050 {
4051 	struct emx_softc *sc = ifp->if_softc;
4052 	int i, txr_cnt;
4053 
4054 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4055 
4056 	if (info) {
4057 		int off;
4058 
4059 		info->ifpi_status.status_func = emx_npoll_status;
4060 		info->ifpi_status.serializer = &sc->main_serialize;
4061 
4062 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4063 		off = sc->tx_npoll_off;
4064 		for (i = 0; i < txr_cnt; ++i) {
4065 			struct emx_txdata *tdata = &sc->tx_data[i];
4066 			int idx = i + off;
4067 
4068 			KKASSERT(idx < ncpus2);
4069 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4070 			info->ifpi_tx[idx].arg = tdata;
4071 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4072 			ifsq_set_cpuid(tdata->ifsq, idx);
4073 		}
4074 
4075 		off = sc->rx_npoll_off;
4076 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4077 			struct emx_rxdata *rdata = &sc->rx_data[i];
4078 			int idx = i + off;
4079 
4080 			KKASSERT(idx < ncpus2);
4081 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4082 			info->ifpi_rx[idx].arg = rdata;
4083 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4084 		}
4085 
4086 		if (ifp->if_flags & IFF_RUNNING) {
4087 			if (txr_cnt == sc->tx_ring_inuse)
4088 				emx_disable_intr(sc);
4089 			else
4090 				emx_init(sc);
4091 		}
4092 	} else {
4093 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4094 			struct emx_txdata *tdata = &sc->tx_data[i];
4095 
4096 			ifsq_set_cpuid(tdata->ifsq,
4097 			    rman_get_cpuid(sc->intr_res));
4098 		}
4099 
4100 		if (ifp->if_flags & IFF_RUNNING) {
4101 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4102 			if (txr_cnt == sc->tx_ring_inuse)
4103 				emx_enable_intr(sc);
4104 			else
4105 				emx_init(sc);
4106 		}
4107 	}
4108 }
4109 
4110 #endif	/* IFPOLL_ENABLE */
4111 
4112 static void
4113 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4114 {
4115 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4116 	if (sc->hw.mac.type == e1000_82574) {
4117 		int i;
4118 
4119 		/*
4120 		 * When using MSIX interrupts we need to
4121 		 * throttle using the EITR register
4122 		 */
4123 		for (i = 0; i < 4; ++i)
4124 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4125 	}
4126 }
4127 
4128 /*
4129  * Disable the L0s, 82574L Errata #20
4130  */
4131 static void
4132 emx_disable_aspm(struct emx_softc *sc)
4133 {
4134 	uint16_t link_cap, link_ctrl, disable;
4135 	uint8_t pcie_ptr, reg;
4136 	device_t dev = sc->dev;
4137 
4138 	switch (sc->hw.mac.type) {
4139 	case e1000_82571:
4140 	case e1000_82572:
4141 	case e1000_82573:
4142 		/*
4143 		 * 82573 specification update
4144 		 * errata #8 disable L0s
4145 		 * errata #41 disable L1
4146 		 *
4147 		 * 82571/82572 specification update
4148 		 # errata #13 disable L1
4149 		 * errata #68 disable L0s
4150 		 */
4151 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4152 		break;
4153 
4154 	case e1000_82574:
4155 		/*
4156 		 * 82574 specification update errata #20
4157 		 *
4158 		 * There is no need to disable L1
4159 		 */
4160 		disable = PCIEM_LNKCTL_ASPM_L0S;
4161 		break;
4162 
4163 	default:
4164 		return;
4165 	}
4166 
4167 	pcie_ptr = pci_get_pciecap_ptr(dev);
4168 	if (pcie_ptr == 0)
4169 		return;
4170 
4171 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4172 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4173 		return;
4174 
4175 	if (bootverbose)
4176 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4177 
4178 	reg = pcie_ptr + PCIER_LINKCTRL;
4179 	link_ctrl = pci_read_config(dev, reg, 2);
4180 	link_ctrl &= ~disable;
4181 	pci_write_config(dev, reg, link_ctrl, 2);
4182 }
4183 
4184 static int
4185 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4186 {
4187 	int iphlen, hoff, thoff, ex = 0;
4188 	struct mbuf *m;
4189 	struct ip *ip;
4190 
4191 	m = *mp;
4192 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4193 
4194 	iphlen = m->m_pkthdr.csum_iphlen;
4195 	thoff = m->m_pkthdr.csum_thlen;
4196 	hoff = m->m_pkthdr.csum_lhlen;
4197 
4198 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4199 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4200 	KASSERT(hoff > 0, ("invalid ether hlen"));
4201 
4202 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4203 		ex = 4;
4204 
4205 	if (m->m_len < hoff + iphlen + thoff + ex) {
4206 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4207 		if (m == NULL) {
4208 			*mp = NULL;
4209 			return ENOBUFS;
4210 		}
4211 		*mp = m;
4212 	}
4213 	ip = mtodoff(m, struct ip *, hoff);
4214 	ip->ip_len = 0;
4215 
4216 	return 0;
4217 }
4218 
4219 static int
4220 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4221     uint32_t *txd_upper, uint32_t *txd_lower)
4222 {
4223 	struct e1000_context_desc *TXD;
4224 	int hoff, iphlen, thoff, hlen;
4225 	int mss, pktlen, curr_txd;
4226 
4227 #ifdef EMX_TSO_DEBUG
4228 	tdata->tso_segments++;
4229 #endif
4230 
4231 	iphlen = mp->m_pkthdr.csum_iphlen;
4232 	thoff = mp->m_pkthdr.csum_thlen;
4233 	hoff = mp->m_pkthdr.csum_lhlen;
4234 	mss = mp->m_pkthdr.tso_segsz;
4235 	pktlen = mp->m_pkthdr.len;
4236 
4237 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4238 	    tdata->csum_flags == CSUM_TSO &&
4239 	    tdata->csum_iphlen == iphlen &&
4240 	    tdata->csum_lhlen == hoff &&
4241 	    tdata->csum_thlen == thoff &&
4242 	    tdata->csum_mss == mss &&
4243 	    tdata->csum_pktlen == pktlen) {
4244 		*txd_upper = tdata->csum_txd_upper;
4245 		*txd_lower = tdata->csum_txd_lower;
4246 #ifdef EMX_TSO_DEBUG
4247 		tdata->tso_ctx_reused++;
4248 #endif
4249 		return 0;
4250 	}
4251 	hlen = hoff + iphlen + thoff;
4252 
4253 	/*
4254 	 * Setup a new TSO context.
4255 	 */
4256 
4257 	curr_txd = tdata->next_avail_tx_desc;
4258 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4259 
4260 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4261 		     E1000_TXD_DTYP_D |		/* Data descr type */
4262 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4263 
4264 	/* IP and/or TCP header checksum calculation and insertion. */
4265 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4266 
4267 	/*
4268 	 * Start offset for header checksum calculation.
4269 	 * End offset for header checksum calculation.
4270 	 * Offset of place put the checksum.
4271 	 */
4272 	TXD->lower_setup.ip_fields.ipcss = hoff;
4273 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4274 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4275 
4276 	/*
4277 	 * Start offset for payload checksum calculation.
4278 	 * End offset for payload checksum calculation.
4279 	 * Offset of place to put the checksum.
4280 	 */
4281 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4282 	TXD->upper_setup.tcp_fields.tucse = 0;
4283 	TXD->upper_setup.tcp_fields.tucso =
4284 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4285 
4286 	/*
4287 	 * Payload size per packet w/o any headers.
4288 	 * Length of all headers up to payload.
4289 	 */
4290 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4291 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4292 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4293 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4294 				E1000_TXD_CMD_TSE |	/* TSE context */
4295 				E1000_TXD_CMD_IP |	/* Do IP csum */
4296 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4297 				(pktlen - hlen));	/* Total len */
4298 
4299 	/* Save the information for this TSO context */
4300 	tdata->csum_flags = CSUM_TSO;
4301 	tdata->csum_lhlen = hoff;
4302 	tdata->csum_iphlen = iphlen;
4303 	tdata->csum_thlen = thoff;
4304 	tdata->csum_mss = mss;
4305 	tdata->csum_pktlen = pktlen;
4306 	tdata->csum_txd_upper = *txd_upper;
4307 	tdata->csum_txd_lower = *txd_lower;
4308 
4309 	if (++curr_txd == tdata->num_tx_desc)
4310 		curr_txd = 0;
4311 
4312 	KKASSERT(tdata->num_tx_desc_avail > 0);
4313 	tdata->num_tx_desc_avail--;
4314 
4315 	tdata->next_avail_tx_desc = curr_txd;
4316 	return 1;
4317 }
4318 
4319 static int
4320 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4321 {
4322 	if (polling)
4323 		return sc->tx_ring_cnt;
4324 	else
4325 		return 1;
4326 }
4327