xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision cfd1aba3)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	EMX_DEVICE(PCH_LPT_I217_LM),
165 	EMX_DEVICE(PCH_LPT_I217_V),
166 	EMX_DEVICE(PCH_LPTLP_I218_LM),
167 	EMX_DEVICE(PCH_LPTLP_I218_V),
168 
169 	/* required last entry */
170 	EMX_DEVICE_NULL
171 };
172 
173 static int	emx_probe(device_t);
174 static int	emx_attach(device_t);
175 static int	emx_detach(device_t);
176 static int	emx_shutdown(device_t);
177 static int	emx_suspend(device_t);
178 static int	emx_resume(device_t);
179 
180 static void	emx_init(void *);
181 static void	emx_stop(struct emx_softc *);
182 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
183 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
184 #ifdef IFPOLL_ENABLE
185 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
186 static void	emx_npoll_status(struct ifnet *);
187 static void	emx_npoll_tx(struct ifnet *, void *, int);
188 static void	emx_npoll_rx(struct ifnet *, void *, int);
189 #endif
190 static void	emx_watchdog(struct ifaltq_subque *);
191 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
192 static int	emx_media_change(struct ifnet *);
193 static void	emx_timer(void *);
194 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
195 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
196 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
197 #ifdef INVARIANTS
198 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
199 		    boolean_t);
200 #endif
201 
202 static void	emx_intr(void *);
203 static void	emx_intr_mask(void *);
204 static void	emx_intr_body(struct emx_softc *, boolean_t);
205 static void	emx_rxeof(struct emx_rxdata *, int);
206 static void	emx_txeof(struct emx_txdata *);
207 static void	emx_tx_collect(struct emx_txdata *);
208 static void	emx_tx_purge(struct emx_softc *);
209 static void	emx_enable_intr(struct emx_softc *);
210 static void	emx_disable_intr(struct emx_softc *);
211 
212 static int	emx_dma_alloc(struct emx_softc *);
213 static void	emx_dma_free(struct emx_softc *);
214 static void	emx_init_tx_ring(struct emx_txdata *);
215 static int	emx_init_rx_ring(struct emx_rxdata *);
216 static void	emx_free_tx_ring(struct emx_txdata *);
217 static void	emx_free_rx_ring(struct emx_rxdata *);
218 static int	emx_create_tx_ring(struct emx_txdata *);
219 static int	emx_create_rx_ring(struct emx_rxdata *);
220 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
221 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
222 static int	emx_newbuf(struct emx_rxdata *, int, int);
223 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
224 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
225 		    uint32_t *, uint32_t *);
226 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
227 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
228 		    uint32_t *, uint32_t *);
229 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
230 
231 static int 	emx_is_valid_eaddr(const uint8_t *);
232 static int	emx_reset(struct emx_softc *);
233 static void	emx_setup_ifp(struct emx_softc *);
234 static void	emx_init_tx_unit(struct emx_softc *);
235 static void	emx_init_rx_unit(struct emx_softc *);
236 static void	emx_update_stats(struct emx_softc *);
237 static void	emx_set_promisc(struct emx_softc *);
238 static void	emx_disable_promisc(struct emx_softc *);
239 static void	emx_set_multi(struct emx_softc *);
240 static void	emx_update_link_status(struct emx_softc *);
241 static void	emx_smartspeed(struct emx_softc *);
242 static void	emx_set_itr(struct emx_softc *, uint32_t);
243 static void	emx_disable_aspm(struct emx_softc *);
244 
245 static void	emx_print_debug_info(struct emx_softc *);
246 static void	emx_print_nvm_info(struct emx_softc *);
247 static void	emx_print_hw_stats(struct emx_softc *);
248 
249 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
250 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
251 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
252 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
253 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
254 #ifdef IFPOLL_ENABLE
255 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
256 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
257 #endif
258 static void	emx_add_sysctl(struct emx_softc *);
259 
260 static void	emx_serialize_skipmain(struct emx_softc *);
261 static void	emx_deserialize_skipmain(struct emx_softc *);
262 
263 /* Management and WOL Support */
264 static void	emx_get_mgmt(struct emx_softc *);
265 static void	emx_rel_mgmt(struct emx_softc *);
266 static void	emx_get_hw_control(struct emx_softc *);
267 static void	emx_rel_hw_control(struct emx_softc *);
268 static void	emx_enable_wol(device_t);
269 
270 static device_method_t emx_methods[] = {
271 	/* Device interface */
272 	DEVMETHOD(device_probe,		emx_probe),
273 	DEVMETHOD(device_attach,	emx_attach),
274 	DEVMETHOD(device_detach,	emx_detach),
275 	DEVMETHOD(device_shutdown,	emx_shutdown),
276 	DEVMETHOD(device_suspend,	emx_suspend),
277 	DEVMETHOD(device_resume,	emx_resume),
278 	DEVMETHOD_END
279 };
280 
281 static driver_t emx_driver = {
282 	"emx",
283 	emx_methods,
284 	sizeof(struct emx_softc),
285 };
286 
287 static devclass_t emx_devclass;
288 
289 DECLARE_DUMMY_MODULE(if_emx);
290 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
291 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
292 
293 /*
294  * Tunables
295  */
296 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
297 static int	emx_rxd = EMX_DEFAULT_RXD;
298 static int	emx_txd = EMX_DEFAULT_TXD;
299 static int	emx_smart_pwr_down = 0;
300 static int	emx_rxr = 0;
301 static int	emx_txr = 1;
302 
303 /* Controls whether promiscuous also shows bad packets */
304 static int	emx_debug_sbp = 0;
305 
306 static int	emx_82573_workaround = 1;
307 static int	emx_msi_enable = 1;
308 
309 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
310 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
311 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
312 TUNABLE_INT("hw.emx.txd", &emx_txd);
313 TUNABLE_INT("hw.emx.txr", &emx_txr);
314 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
315 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
316 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
317 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
318 
319 /* Global used in WOL setup with multiport cards */
320 static int	emx_global_quad_port_a = 0;
321 
322 /* Set this to one to display debug statistics */
323 static int	emx_display_debug_stats = 0;
324 
325 #if !defined(KTR_IF_EMX)
326 #define KTR_IF_EMX	KTR_ALL
327 #endif
328 KTR_INFO_MASTER(if_emx);
329 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
330 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
331 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
332 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
333 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
334 #define logif(name)	KTR_LOG(if_emx_ ## name)
335 
336 static __inline void
337 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
338 {
339 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
340 	/* DD bit must be cleared */
341 	rxd->rxd_staterr = 0;
342 }
343 
344 static __inline void
345 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
346 {
347 	/* Ignore Checksum bit is set */
348 	if (staterr & E1000_RXD_STAT_IXSM)
349 		return;
350 
351 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
352 	    E1000_RXD_STAT_IPCS)
353 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
354 
355 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
356 	    E1000_RXD_STAT_TCPCS) {
357 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
358 					   CSUM_PSEUDO_HDR |
359 					   CSUM_FRAG_NOT_CHECKED;
360 		mp->m_pkthdr.csum_data = htons(0xffff);
361 	}
362 }
363 
364 static __inline struct pktinfo *
365 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
366 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
367 {
368 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
369 	case EMX_RXDMRQ_IPV4_TCP:
370 		pi->pi_netisr = NETISR_IP;
371 		pi->pi_flags = 0;
372 		pi->pi_l3proto = IPPROTO_TCP;
373 		break;
374 
375 	case EMX_RXDMRQ_IPV6_TCP:
376 		pi->pi_netisr = NETISR_IPV6;
377 		pi->pi_flags = 0;
378 		pi->pi_l3proto = IPPROTO_TCP;
379 		break;
380 
381 	case EMX_RXDMRQ_IPV4:
382 		if (staterr & E1000_RXD_STAT_IXSM)
383 			return NULL;
384 
385 		if ((staterr &
386 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
387 		    E1000_RXD_STAT_TCPCS) {
388 			pi->pi_netisr = NETISR_IP;
389 			pi->pi_flags = 0;
390 			pi->pi_l3proto = IPPROTO_UDP;
391 			break;
392 		}
393 		/* FALL THROUGH */
394 	default:
395 		return NULL;
396 	}
397 
398 	m->m_flags |= M_HASH;
399 	m->m_pkthdr.hash = toeplitz_hash(hash);
400 	return pi;
401 }
402 
403 static int
404 emx_probe(device_t dev)
405 {
406 	const struct emx_device *d;
407 	uint16_t vid, did;
408 
409 	vid = pci_get_vendor(dev);
410 	did = pci_get_device(dev);
411 
412 	for (d = emx_devices; d->desc != NULL; ++d) {
413 		if (vid == d->vid && did == d->did) {
414 			device_set_desc(dev, d->desc);
415 			device_set_async_attach(dev, TRUE);
416 			return 0;
417 		}
418 	}
419 	return ENXIO;
420 }
421 
422 static int
423 emx_attach(device_t dev)
424 {
425 	struct emx_softc *sc = device_get_softc(dev);
426 	int error = 0, i, throttle, msi_enable, tx_ring_max;
427 	u_int intr_flags;
428 	uint16_t eeprom_data, device_id, apme_mask;
429 	driver_intr_t *intr_func;
430 #ifdef IFPOLL_ENABLE
431 	int offset, offset_def;
432 #endif
433 
434 	/*
435 	 * Setup RX rings
436 	 */
437 	for (i = 0; i < EMX_NRX_RING; ++i) {
438 		sc->rx_data[i].sc = sc;
439 		sc->rx_data[i].idx = i;
440 	}
441 
442 	/*
443 	 * Setup TX ring
444 	 */
445 	for (i = 0; i < EMX_NTX_RING; ++i) {
446 		sc->tx_data[i].sc = sc;
447 		sc->tx_data[i].idx = i;
448 	}
449 
450 	/*
451 	 * Initialize serializers
452 	 */
453 	lwkt_serialize_init(&sc->main_serialize);
454 	for (i = 0; i < EMX_NTX_RING; ++i)
455 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
456 	for (i = 0; i < EMX_NRX_RING; ++i)
457 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
458 
459 	/*
460 	 * Initialize serializer array
461 	 */
462 	i = 0;
463 
464 	KKASSERT(i < EMX_NSERIALIZE);
465 	sc->serializes[i++] = &sc->main_serialize;
466 
467 	KKASSERT(i < EMX_NSERIALIZE);
468 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
469 	KKASSERT(i < EMX_NSERIALIZE);
470 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
471 
472 	KKASSERT(i < EMX_NSERIALIZE);
473 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
474 	KKASSERT(i < EMX_NSERIALIZE);
475 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
476 
477 	KKASSERT(i == EMX_NSERIALIZE);
478 
479 	ifmedia_init(&sc->media, IFM_IMASK, emx_media_change, emx_media_status);
480 	callout_init_mp(&sc->timer);
481 
482 	sc->dev = sc->osdep.dev = dev;
483 
484 	/*
485 	 * Determine hardware and mac type
486 	 */
487 	sc->hw.vendor_id = pci_get_vendor(dev);
488 	sc->hw.device_id = pci_get_device(dev);
489 	sc->hw.revision_id = pci_get_revid(dev);
490 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
491 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
492 
493 	if (e1000_set_mac_type(&sc->hw))
494 		return ENXIO;
495 
496 	/* Enable bus mastering */
497 	pci_enable_busmaster(dev);
498 
499 	/*
500 	 * Allocate IO memory
501 	 */
502 	sc->memory_rid = EMX_BAR_MEM;
503 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
504 					    &sc->memory_rid, RF_ACTIVE);
505 	if (sc->memory == NULL) {
506 		device_printf(dev, "Unable to allocate bus resource: memory\n");
507 		error = ENXIO;
508 		goto fail;
509 	}
510 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
511 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
512 
513 	/* XXX This is quite goofy, it is not actually used */
514 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
515 
516 	/*
517 	 * Don't enable MSI-X on 82574, see:
518 	 * 82574 specification update errata #15
519 	 *
520 	 * Don't enable MSI on 82571/82572, see:
521 	 * 82571/82572 specification update errata #63
522 	 */
523 	msi_enable = emx_msi_enable;
524 	if (msi_enable &&
525 	    (sc->hw.mac.type == e1000_82571 ||
526 	     sc->hw.mac.type == e1000_82572))
527 		msi_enable = 0;
528 
529 	/*
530 	 * Allocate interrupt
531 	 */
532 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
533 	    &sc->intr_rid, &intr_flags);
534 
535 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
536 		int unshared;
537 
538 		unshared = device_getenv_int(dev, "irq.unshared", 0);
539 		if (!unshared) {
540 			sc->flags |= EMX_FLAG_SHARED_INTR;
541 			if (bootverbose)
542 				device_printf(dev, "IRQ shared\n");
543 		} else {
544 			intr_flags &= ~RF_SHAREABLE;
545 			if (bootverbose)
546 				device_printf(dev, "IRQ unshared\n");
547 		}
548 	}
549 
550 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
551 	    intr_flags);
552 	if (sc->intr_res == NULL) {
553 		device_printf(dev, "Unable to allocate bus resource: "
554 		    "interrupt\n");
555 		error = ENXIO;
556 		goto fail;
557 	}
558 
559 	/* Save PCI command register for Shared Code */
560 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
561 	sc->hw.back = &sc->osdep;
562 
563 	/*
564 	 * For I217/I218, we need to map the flash memory and this
565 	 * must happen after the MAC is identified.
566 	 */
567 	if (sc->hw.mac.type == e1000_pch_lpt) {
568 		sc->flash_rid = EMX_BAR_FLASH;
569 
570 		sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
571 		    &sc->flash_rid, RF_ACTIVE);
572 		if (sc->flash == NULL) {
573 			device_printf(dev, "Mapping of Flash failed\n");
574 			error = ENXIO;
575 			goto fail;
576 		}
577 		sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
578 		sc->osdep.flash_bus_space_handle =
579 		    rman_get_bushandle(sc->flash);
580 
581 		/*
582 		 * This is used in the shared code
583 		 * XXX this goof is actually not used.
584 		 */
585 		sc->hw.flash_address = (uint8_t *)sc->flash;
586 	}
587 
588 	/* Do Shared Code initialization */
589 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
590 		device_printf(dev, "Setup of Shared code failed\n");
591 		error = ENXIO;
592 		goto fail;
593 	}
594 	e1000_get_bus_info(&sc->hw);
595 
596 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
597 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
598 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
599 
600 	/*
601 	 * Interrupt throttle rate
602 	 */
603 	throttle = device_getenv_int(dev, "int_throttle_ceil",
604 	    emx_int_throttle_ceil);
605 	if (throttle == 0) {
606 		sc->int_throttle_ceil = 0;
607 	} else {
608 		if (throttle < 0)
609 			throttle = EMX_DEFAULT_ITR;
610 
611 		/* Recalculate the tunable value to get the exact frequency. */
612 		throttle = 1000000000 / 256 / throttle;
613 
614 		/* Upper 16bits of ITR is reserved and should be zero */
615 		if (throttle & 0xffff0000)
616 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
617 
618 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
619 	}
620 
621 	e1000_init_script_state_82541(&sc->hw, TRUE);
622 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
623 
624 	/* Copper options */
625 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
626 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
627 		sc->hw.phy.disable_polarity_correction = FALSE;
628 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
629 	}
630 
631 	/* Set the frame limits assuming standard ethernet sized frames. */
632 	sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
633 
634 	/* This controls when hardware reports transmit completion status. */
635 	sc->hw.mac.report_tx_early = 1;
636 
637 	/* Calculate # of RX rings */
638 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
639 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
640 
641 	/*
642 	 * Calculate # of TX rings
643 	 *
644 	 * XXX
645 	 * I217/I218 claims to have 2 TX queues
646 	 *
647 	 * NOTE:
648 	 * Don't enable multiple TX queues on 82574; it always gives
649 	 * watchdog timeout on TX queue0, when multiple TCP streams are
650 	 * received.  It was originally suspected that the hardware TX
651 	 * checksum offloading caused this watchdog timeout, since only
652 	 * TCP ACKs are sent during TCP receiving tests.  However, even
653 	 * if the hardware TX checksum offloading is disable, TX queue0
654 	 * still will give watchdog.
655 	 */
656 	tx_ring_max = 1;
657 	if (sc->hw.mac.type == e1000_82571 ||
658 	    sc->hw.mac.type == e1000_82572 ||
659 	    sc->hw.mac.type == e1000_80003es2lan)
660 		tx_ring_max = EMX_NTX_RING;
661 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
662 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
663 
664 	/* Allocate RX/TX rings' busdma(9) stuffs */
665 	error = emx_dma_alloc(sc);
666 	if (error)
667 		goto fail;
668 
669 	/* Allocate multicast array memory. */
670 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
671 	    M_DEVBUF, M_WAITOK);
672 
673 	/* Indicate SOL/IDER usage */
674 	if (e1000_check_reset_block(&sc->hw)) {
675 		device_printf(dev,
676 		    "PHY reset is blocked due to SOL/IDER session.\n");
677 	}
678 
679 	/* Disable EEE on I217/I218 */
680 	sc->hw.dev_spec.ich8lan.eee_disable = 1;
681 
682 	/*
683 	 * Start from a known state, this is important in reading the
684 	 * nvm and mac from that.
685 	 */
686 	e1000_reset_hw(&sc->hw);
687 
688 	/* Make sure we have a good EEPROM before we read from it */
689 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
690 		/*
691 		 * Some PCI-E parts fail the first check due to
692 		 * the link being in sleep state, call it again,
693 		 * if it fails a second time its a real issue.
694 		 */
695 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
696 			device_printf(dev,
697 			    "The EEPROM Checksum Is Not Valid\n");
698 			error = EIO;
699 			goto fail;
700 		}
701 	}
702 
703 	/* Copy the permanent MAC address out of the EEPROM */
704 	if (e1000_read_mac_addr(&sc->hw) < 0) {
705 		device_printf(dev, "EEPROM read error while reading MAC"
706 		    " address\n");
707 		error = EIO;
708 		goto fail;
709 	}
710 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
711 		device_printf(dev, "Invalid MAC address\n");
712 		error = EIO;
713 		goto fail;
714 	}
715 
716 	/* Determine if we have to control management hardware */
717 	if (e1000_enable_mng_pass_thru(&sc->hw))
718 		sc->flags |= EMX_FLAG_HAS_MGMT;
719 
720 	/*
721 	 * Setup Wake-on-Lan
722 	 */
723 	apme_mask = EMX_EEPROM_APME;
724 	eeprom_data = 0;
725 	switch (sc->hw.mac.type) {
726 	case e1000_82573:
727 		sc->flags |= EMX_FLAG_HAS_AMT;
728 		/* FALL THROUGH */
729 
730 	case e1000_82571:
731 	case e1000_82572:
732 	case e1000_80003es2lan:
733 		if (sc->hw.bus.func == 1) {
734 			e1000_read_nvm(&sc->hw,
735 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
736 		} else {
737 			e1000_read_nvm(&sc->hw,
738 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
739 		}
740 		break;
741 
742 	default:
743 		e1000_read_nvm(&sc->hw,
744 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
745 		break;
746 	}
747 	if (eeprom_data & apme_mask)
748 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
749 
750 	/*
751          * We have the eeprom settings, now apply the special cases
752          * where the eeprom may be wrong or the board won't support
753          * wake on lan on a particular port
754 	 */
755 	device_id = pci_get_device(dev);
756         switch (device_id) {
757 	case E1000_DEV_ID_82571EB_FIBER:
758 		/*
759 		 * Wake events only supported on port A for dual fiber
760 		 * regardless of eeprom setting
761 		 */
762 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
763 		    E1000_STATUS_FUNC_1)
764 			sc->wol = 0;
765 		break;
766 
767 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
768 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
769 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
770                 /* if quad port sc, disable WoL on all but port A */
771 		if (emx_global_quad_port_a != 0)
772 			sc->wol = 0;
773 		/* Reset for multiple quad port adapters */
774 		if (++emx_global_quad_port_a == 4)
775 			emx_global_quad_port_a = 0;
776                 break;
777 	}
778 
779 	/* XXX disable wol */
780 	sc->wol = 0;
781 
782 #ifdef IFPOLL_ENABLE
783 	/*
784 	 * NPOLLING RX CPU offset
785 	 */
786 	if (sc->rx_ring_cnt == ncpus2) {
787 		offset = 0;
788 	} else {
789 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
790 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
791 		if (offset >= ncpus2 ||
792 		    offset % sc->rx_ring_cnt != 0) {
793 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
794 			    offset, offset_def);
795 			offset = offset_def;
796 		}
797 	}
798 	sc->rx_npoll_off = offset;
799 
800 	/*
801 	 * NPOLLING TX CPU offset
802 	 */
803 	if (sc->tx_ring_cnt == ncpus2) {
804 		offset = 0;
805 	} else {
806 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
807 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
808 		if (offset >= ncpus2 ||
809 		    offset % sc->tx_ring_cnt != 0) {
810 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
811 			    offset, offset_def);
812 			offset = offset_def;
813 		}
814 	}
815 	sc->tx_npoll_off = offset;
816 #endif
817 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
818 
819 	/* Setup OS specific network interface */
820 	emx_setup_ifp(sc);
821 
822 	/* Add sysctl tree, must after em_setup_ifp() */
823 	emx_add_sysctl(sc);
824 
825 	/* Reset the hardware */
826 	error = emx_reset(sc);
827 	if (error) {
828 		/*
829 		 * Some 82573 parts fail the first reset, call it again,
830 		 * if it fails a second time its a real issue.
831 		 */
832 		error = emx_reset(sc);
833 		if (error) {
834 			device_printf(dev, "Unable to reset the hardware\n");
835 			ether_ifdetach(&sc->arpcom.ac_if);
836 			goto fail;
837 		}
838 	}
839 
840 	/* Initialize statistics */
841 	emx_update_stats(sc);
842 
843 	sc->hw.mac.get_link_status = 1;
844 	emx_update_link_status(sc);
845 
846 	/* Non-AMT based hardware can now take control from firmware */
847 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
848 	    EMX_FLAG_HAS_MGMT)
849 		emx_get_hw_control(sc);
850 
851 	/*
852 	 * Missing Interrupt Following ICR read:
853 	 *
854 	 * 82571/82572 specification update errata #76
855 	 * 82573 specification update errata #31
856 	 * 82574 specification update errata #12
857 	 */
858 	intr_func = emx_intr;
859 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
860 	    (sc->hw.mac.type == e1000_82571 ||
861 	     sc->hw.mac.type == e1000_82572 ||
862 	     sc->hw.mac.type == e1000_82573 ||
863 	     sc->hw.mac.type == e1000_82574))
864 		intr_func = emx_intr_mask;
865 
866 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
867 			       &sc->intr_tag, &sc->main_serialize);
868 	if (error) {
869 		device_printf(dev, "Failed to register interrupt handler");
870 		ether_ifdetach(&sc->arpcom.ac_if);
871 		goto fail;
872 	}
873 	return (0);
874 fail:
875 	emx_detach(dev);
876 	return (error);
877 }
878 
879 static int
880 emx_detach(device_t dev)
881 {
882 	struct emx_softc *sc = device_get_softc(dev);
883 
884 	if (device_is_attached(dev)) {
885 		struct ifnet *ifp = &sc->arpcom.ac_if;
886 
887 		ifnet_serialize_all(ifp);
888 
889 		emx_stop(sc);
890 
891 		e1000_phy_hw_reset(&sc->hw);
892 
893 		emx_rel_mgmt(sc);
894 		emx_rel_hw_control(sc);
895 
896 		if (sc->wol) {
897 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
898 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
899 			emx_enable_wol(dev);
900 		}
901 
902 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
903 
904 		ifnet_deserialize_all(ifp);
905 
906 		ether_ifdetach(ifp);
907 	} else if (sc->memory != NULL) {
908 		emx_rel_hw_control(sc);
909 	}
910 
911 	ifmedia_removeall(&sc->media);
912 	bus_generic_detach(dev);
913 
914 	if (sc->intr_res != NULL) {
915 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
916 				     sc->intr_res);
917 	}
918 
919 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
920 		pci_release_msi(dev);
921 
922 	if (sc->memory != NULL) {
923 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
924 				     sc->memory);
925 	}
926 
927 	if (sc->flash != NULL) {
928 		bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
929 		    sc->flash);
930 	}
931 
932 	emx_dma_free(sc);
933 
934 	/* Free sysctl tree */
935 	if (sc->sysctl_tree != NULL)
936 		sysctl_ctx_free(&sc->sysctl_ctx);
937 
938 	if (sc->mta != NULL)
939 		kfree(sc->mta, M_DEVBUF);
940 
941 	return (0);
942 }
943 
944 static int
945 emx_shutdown(device_t dev)
946 {
947 	return emx_suspend(dev);
948 }
949 
950 static int
951 emx_suspend(device_t dev)
952 {
953 	struct emx_softc *sc = device_get_softc(dev);
954 	struct ifnet *ifp = &sc->arpcom.ac_if;
955 
956 	ifnet_serialize_all(ifp);
957 
958 	emx_stop(sc);
959 
960 	emx_rel_mgmt(sc);
961 	emx_rel_hw_control(sc);
962 
963 	if (sc->wol) {
964 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
965 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
966 		emx_enable_wol(dev);
967 	}
968 
969 	ifnet_deserialize_all(ifp);
970 
971 	return bus_generic_suspend(dev);
972 }
973 
974 static int
975 emx_resume(device_t dev)
976 {
977 	struct emx_softc *sc = device_get_softc(dev);
978 	struct ifnet *ifp = &sc->arpcom.ac_if;
979 	int i;
980 
981 	ifnet_serialize_all(ifp);
982 
983 	emx_init(sc);
984 	emx_get_mgmt(sc);
985 	for (i = 0; i < sc->tx_ring_inuse; ++i)
986 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
987 
988 	ifnet_deserialize_all(ifp);
989 
990 	return bus_generic_resume(dev);
991 }
992 
993 static void
994 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
995 {
996 	struct emx_softc *sc = ifp->if_softc;
997 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
998 	struct mbuf *m_head;
999 	int idx = -1, nsegs = 0;
1000 
1001 	KKASSERT(tdata->ifsq == ifsq);
1002 	ASSERT_SERIALIZED(&tdata->tx_serialize);
1003 
1004 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1005 		return;
1006 
1007 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1008 		ifsq_purge(ifsq);
1009 		return;
1010 	}
1011 
1012 	while (!ifsq_is_empty(ifsq)) {
1013 		/* Now do we at least have a minimal? */
1014 		if (EMX_IS_OACTIVE(tdata)) {
1015 			emx_tx_collect(tdata);
1016 			if (EMX_IS_OACTIVE(tdata)) {
1017 				ifsq_set_oactive(ifsq);
1018 				break;
1019 			}
1020 		}
1021 
1022 		logif(pkt_txqueue);
1023 		m_head = ifsq_dequeue(ifsq);
1024 		if (m_head == NULL)
1025 			break;
1026 
1027 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1028 			IFNET_STAT_INC(ifp, oerrors, 1);
1029 			emx_tx_collect(tdata);
1030 			continue;
1031 		}
1032 
1033 		if (nsegs >= tdata->tx_wreg_nsegs) {
1034 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1035 			nsegs = 0;
1036 			idx = -1;
1037 		}
1038 
1039 		/* Send a copy of the frame to the BPF listener */
1040 		ETHER_BPF_MTAP(ifp, m_head);
1041 
1042 		/* Set timeout in case hardware has problems transmitting. */
1043 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1044 	}
1045 	if (idx >= 0)
1046 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1047 }
1048 
1049 static int
1050 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1051 {
1052 	struct emx_softc *sc = ifp->if_softc;
1053 	struct ifreq *ifr = (struct ifreq *)data;
1054 	uint16_t eeprom_data = 0;
1055 	int max_frame_size, mask, reinit;
1056 	int error = 0;
1057 
1058 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1059 
1060 	switch (command) {
1061 	case SIOCSIFMTU:
1062 		switch (sc->hw.mac.type) {
1063 		case e1000_82573:
1064 			/*
1065 			 * 82573 only supports jumbo frames
1066 			 * if ASPM is disabled.
1067 			 */
1068 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1069 				       &eeprom_data);
1070 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1071 				max_frame_size = ETHER_MAX_LEN;
1072 				break;
1073 			}
1074 			/* FALL THROUGH */
1075 
1076 		/* Limit Jumbo Frame size */
1077 		case e1000_82571:
1078 		case e1000_82572:
1079 		case e1000_82574:
1080 		case e1000_pch_lpt:
1081 		case e1000_80003es2lan:
1082 			max_frame_size = 9234;
1083 			break;
1084 
1085 		default:
1086 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1087 			break;
1088 		}
1089 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1090 		    ETHER_CRC_LEN) {
1091 			error = EINVAL;
1092 			break;
1093 		}
1094 
1095 		ifp->if_mtu = ifr->ifr_mtu;
1096 		sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1097 		    ETHER_CRC_LEN;
1098 
1099 		if (ifp->if_flags & IFF_RUNNING)
1100 			emx_init(sc);
1101 		break;
1102 
1103 	case SIOCSIFFLAGS:
1104 		if (ifp->if_flags & IFF_UP) {
1105 			if ((ifp->if_flags & IFF_RUNNING)) {
1106 				if ((ifp->if_flags ^ sc->if_flags) &
1107 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1108 					emx_disable_promisc(sc);
1109 					emx_set_promisc(sc);
1110 				}
1111 			} else {
1112 				emx_init(sc);
1113 			}
1114 		} else if (ifp->if_flags & IFF_RUNNING) {
1115 			emx_stop(sc);
1116 		}
1117 		sc->if_flags = ifp->if_flags;
1118 		break;
1119 
1120 	case SIOCADDMULTI:
1121 	case SIOCDELMULTI:
1122 		if (ifp->if_flags & IFF_RUNNING) {
1123 			emx_disable_intr(sc);
1124 			emx_set_multi(sc);
1125 #ifdef IFPOLL_ENABLE
1126 			if (!(ifp->if_flags & IFF_NPOLLING))
1127 #endif
1128 				emx_enable_intr(sc);
1129 		}
1130 		break;
1131 
1132 	case SIOCSIFMEDIA:
1133 		/* Check SOL/IDER usage */
1134 		if (e1000_check_reset_block(&sc->hw)) {
1135 			device_printf(sc->dev, "Media change is"
1136 			    " blocked due to SOL/IDER session.\n");
1137 			break;
1138 		}
1139 		/* FALL THROUGH */
1140 
1141 	case SIOCGIFMEDIA:
1142 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1143 		break;
1144 
1145 	case SIOCSIFCAP:
1146 		reinit = 0;
1147 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1148 		if (mask & IFCAP_RXCSUM) {
1149 			ifp->if_capenable ^= IFCAP_RXCSUM;
1150 			reinit = 1;
1151 		}
1152 		if (mask & IFCAP_VLAN_HWTAGGING) {
1153 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1154 			reinit = 1;
1155 		}
1156 		if (mask & IFCAP_TXCSUM) {
1157 			ifp->if_capenable ^= IFCAP_TXCSUM;
1158 			if (ifp->if_capenable & IFCAP_TXCSUM)
1159 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1160 			else
1161 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1162 		}
1163 		if (mask & IFCAP_TSO) {
1164 			ifp->if_capenable ^= IFCAP_TSO;
1165 			if (ifp->if_capenable & IFCAP_TSO)
1166 				ifp->if_hwassist |= CSUM_TSO;
1167 			else
1168 				ifp->if_hwassist &= ~CSUM_TSO;
1169 		}
1170 		if (mask & IFCAP_RSS)
1171 			ifp->if_capenable ^= IFCAP_RSS;
1172 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1173 			emx_init(sc);
1174 		break;
1175 
1176 	default:
1177 		error = ether_ioctl(ifp, command, data);
1178 		break;
1179 	}
1180 	return (error);
1181 }
1182 
1183 static void
1184 emx_watchdog(struct ifaltq_subque *ifsq)
1185 {
1186 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1187 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1188 	struct emx_softc *sc = ifp->if_softc;
1189 	int i;
1190 
1191 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1192 
1193 	/*
1194 	 * The timer is set to 5 every time start queues a packet.
1195 	 * Then txeof keeps resetting it as long as it cleans at
1196 	 * least one descriptor.
1197 	 * Finally, anytime all descriptors are clean the timer is
1198 	 * set to 0.
1199 	 */
1200 
1201 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1202 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1203 		/*
1204 		 * If we reach here, all TX jobs are completed and
1205 		 * the TX engine should have been idled for some time.
1206 		 * We don't need to call ifsq_devstart_sched() here.
1207 		 */
1208 		ifsq_clr_oactive(ifsq);
1209 		tdata->tx_watchdog.wd_timer = 0;
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * If we are in this routine because of pause frames, then
1215 	 * don't reset the hardware.
1216 	 */
1217 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1218 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1219 		return;
1220 	}
1221 
1222 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1223 
1224 	IFNET_STAT_INC(ifp, oerrors, 1);
1225 
1226 	emx_init(sc);
1227 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1228 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1229 }
1230 
1231 static void
1232 emx_init(void *xsc)
1233 {
1234 	struct emx_softc *sc = xsc;
1235 	struct ifnet *ifp = &sc->arpcom.ac_if;
1236 	device_t dev = sc->dev;
1237 	boolean_t polling;
1238 	int i;
1239 
1240 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1241 
1242 	emx_stop(sc);
1243 
1244 	/* Get the latest mac address, User can use a LAA */
1245         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1246 
1247 	/* Put the address into the Receive Address Array */
1248 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1249 
1250 	/*
1251 	 * With the 82571 sc, RAR[0] may be overwritten
1252 	 * when the other port is reset, we make a duplicate
1253 	 * in RAR[14] for that eventuality, this assures
1254 	 * the interface continues to function.
1255 	 */
1256 	if (sc->hw.mac.type == e1000_82571) {
1257 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1258 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1259 		    E1000_RAR_ENTRIES - 1);
1260 	}
1261 
1262 	/* Initialize the hardware */
1263 	if (emx_reset(sc)) {
1264 		device_printf(dev, "Unable to reset the hardware\n");
1265 		/* XXX emx_stop()? */
1266 		return;
1267 	}
1268 	emx_update_link_status(sc);
1269 
1270 	/* Setup VLAN support, basic and offload if available */
1271 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1272 
1273 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1274 		uint32_t ctrl;
1275 
1276 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1277 		ctrl |= E1000_CTRL_VME;
1278 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1279 	}
1280 
1281 	/* Configure for OS presence */
1282 	emx_get_mgmt(sc);
1283 
1284 	polling = FALSE;
1285 #ifdef IFPOLL_ENABLE
1286 	if (ifp->if_flags & IFF_NPOLLING)
1287 		polling = TRUE;
1288 #endif
1289 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1290 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1291 
1292 	/* Prepare transmit descriptors and buffers */
1293 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1294 		emx_init_tx_ring(&sc->tx_data[i]);
1295 	emx_init_tx_unit(sc);
1296 
1297 	/* Setup Multicast table */
1298 	emx_set_multi(sc);
1299 
1300 	/* Prepare receive descriptors and buffers */
1301 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1302 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1303 			device_printf(dev,
1304 			    "Could not setup receive structures\n");
1305 			emx_stop(sc);
1306 			return;
1307 		}
1308 	}
1309 	emx_init_rx_unit(sc);
1310 
1311 	/* Don't lose promiscuous settings */
1312 	emx_set_promisc(sc);
1313 
1314 	ifp->if_flags |= IFF_RUNNING;
1315 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1316 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1317 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1318 	}
1319 
1320 	callout_reset(&sc->timer, hz, emx_timer, sc);
1321 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1322 
1323 	/* MSI/X configuration for 82574 */
1324 	if (sc->hw.mac.type == e1000_82574) {
1325 		int tmp;
1326 
1327 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1328 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1329 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1330 		/*
1331 		 * XXX MSIX
1332 		 * Set the IVAR - interrupt vector routing.
1333 		 * Each nibble represents a vector, high bit
1334 		 * is enable, other 3 bits are the MSIX table
1335 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1336 		 * Link (other) to 2, hence the magic number.
1337 		 */
1338 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1339 	}
1340 
1341 	/*
1342 	 * Only enable interrupts if we are not polling, make sure
1343 	 * they are off otherwise.
1344 	 */
1345 	if (polling)
1346 		emx_disable_intr(sc);
1347 	else
1348 		emx_enable_intr(sc);
1349 
1350 	/* AMT based hardware can now take control from firmware */
1351 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1352 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1353 		emx_get_hw_control(sc);
1354 }
1355 
1356 static void
1357 emx_intr(void *xsc)
1358 {
1359 	emx_intr_body(xsc, TRUE);
1360 }
1361 
1362 static void
1363 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1364 {
1365 	struct ifnet *ifp = &sc->arpcom.ac_if;
1366 	uint32_t reg_icr;
1367 
1368 	logif(intr_beg);
1369 	ASSERT_SERIALIZED(&sc->main_serialize);
1370 
1371 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1372 
1373 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1374 		logif(intr_end);
1375 		return;
1376 	}
1377 
1378 	/*
1379 	 * XXX: some laptops trigger several spurious interrupts
1380 	 * on emx(4) when in the resume cycle. The ICR register
1381 	 * reports all-ones value in this case. Processing such
1382 	 * interrupts would lead to a freeze. I don't know why.
1383 	 */
1384 	if (reg_icr == 0xffffffff) {
1385 		logif(intr_end);
1386 		return;
1387 	}
1388 
1389 	if (ifp->if_flags & IFF_RUNNING) {
1390 		if (reg_icr &
1391 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1392 			int i;
1393 
1394 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1395 				lwkt_serialize_enter(
1396 				&sc->rx_data[i].rx_serialize);
1397 				emx_rxeof(&sc->rx_data[i], -1);
1398 				lwkt_serialize_exit(
1399 				&sc->rx_data[i].rx_serialize);
1400 			}
1401 		}
1402 		if (reg_icr & E1000_ICR_TXDW) {
1403 			struct emx_txdata *tdata = &sc->tx_data[0];
1404 
1405 			lwkt_serialize_enter(&tdata->tx_serialize);
1406 			emx_txeof(tdata);
1407 			if (!ifsq_is_empty(tdata->ifsq))
1408 				ifsq_devstart(tdata->ifsq);
1409 			lwkt_serialize_exit(&tdata->tx_serialize);
1410 		}
1411 	}
1412 
1413 	/* Link status change */
1414 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1415 		emx_serialize_skipmain(sc);
1416 
1417 		callout_stop(&sc->timer);
1418 		sc->hw.mac.get_link_status = 1;
1419 		emx_update_link_status(sc);
1420 
1421 		/* Deal with TX cruft when link lost */
1422 		emx_tx_purge(sc);
1423 
1424 		callout_reset(&sc->timer, hz, emx_timer, sc);
1425 
1426 		emx_deserialize_skipmain(sc);
1427 	}
1428 
1429 	if (reg_icr & E1000_ICR_RXO)
1430 		sc->rx_overruns++;
1431 
1432 	logif(intr_end);
1433 }
1434 
1435 static void
1436 emx_intr_mask(void *xsc)
1437 {
1438 	struct emx_softc *sc = xsc;
1439 
1440 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1441 	/*
1442 	 * NOTE:
1443 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1444 	 * so don't check it.
1445 	 */
1446 	emx_intr_body(sc, FALSE);
1447 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1448 }
1449 
1450 static void
1451 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1452 {
1453 	struct emx_softc *sc = ifp->if_softc;
1454 
1455 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1456 
1457 	emx_update_link_status(sc);
1458 
1459 	ifmr->ifm_status = IFM_AVALID;
1460 	ifmr->ifm_active = IFM_ETHER;
1461 
1462 	if (!sc->link_active)
1463 		return;
1464 
1465 	ifmr->ifm_status |= IFM_ACTIVE;
1466 
1467 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1468 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1469 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1470 	} else {
1471 		switch (sc->link_speed) {
1472 		case 10:
1473 			ifmr->ifm_active |= IFM_10_T;
1474 			break;
1475 		case 100:
1476 			ifmr->ifm_active |= IFM_100_TX;
1477 			break;
1478 
1479 		case 1000:
1480 			ifmr->ifm_active |= IFM_1000_T;
1481 			break;
1482 		}
1483 		if (sc->link_duplex == FULL_DUPLEX)
1484 			ifmr->ifm_active |= IFM_FDX;
1485 		else
1486 			ifmr->ifm_active |= IFM_HDX;
1487 	}
1488 }
1489 
1490 static int
1491 emx_media_change(struct ifnet *ifp)
1492 {
1493 	struct emx_softc *sc = ifp->if_softc;
1494 	struct ifmedia *ifm = &sc->media;
1495 
1496 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1497 
1498 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1499 		return (EINVAL);
1500 
1501 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1502 	case IFM_AUTO:
1503 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1504 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1505 		break;
1506 
1507 	case IFM_1000_LX:
1508 	case IFM_1000_SX:
1509 	case IFM_1000_T:
1510 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1511 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1512 		break;
1513 
1514 	case IFM_100_TX:
1515 		sc->hw.mac.autoneg = FALSE;
1516 		sc->hw.phy.autoneg_advertised = 0;
1517 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1518 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1519 		else
1520 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1521 		break;
1522 
1523 	case IFM_10_T:
1524 		sc->hw.mac.autoneg = FALSE;
1525 		sc->hw.phy.autoneg_advertised = 0;
1526 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1527 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1528 		else
1529 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1530 		break;
1531 
1532 	default:
1533 		if_printf(ifp, "Unsupported media type\n");
1534 		break;
1535 	}
1536 
1537 	emx_init(sc);
1538 
1539 	return (0);
1540 }
1541 
1542 static int
1543 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1544     int *segs_used, int *idx)
1545 {
1546 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1547 	bus_dmamap_t map;
1548 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1549 	struct e1000_tx_desc *ctxd = NULL;
1550 	struct mbuf *m_head = *m_headp;
1551 	uint32_t txd_upper, txd_lower, cmd = 0;
1552 	int maxsegs, nsegs, i, j, first, last = 0, error;
1553 
1554 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1555 		error = emx_tso_pullup(tdata, m_headp);
1556 		if (error)
1557 			return error;
1558 		m_head = *m_headp;
1559 	}
1560 
1561 	txd_upper = txd_lower = 0;
1562 
1563 	/*
1564 	 * Capture the first descriptor index, this descriptor
1565 	 * will have the index of the EOP which is the only one
1566 	 * that now gets a DONE bit writeback.
1567 	 */
1568 	first = tdata->next_avail_tx_desc;
1569 	tx_buffer = &tdata->tx_buf[first];
1570 	tx_buffer_mapped = tx_buffer;
1571 	map = tx_buffer->map;
1572 
1573 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1574 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1575 	if (maxsegs > EMX_MAX_SCATTER)
1576 		maxsegs = EMX_MAX_SCATTER;
1577 
1578 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1579 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1580 	if (error) {
1581 		m_freem(*m_headp);
1582 		*m_headp = NULL;
1583 		return error;
1584 	}
1585         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1586 
1587 	m_head = *m_headp;
1588 	tdata->tx_nsegs += nsegs;
1589 	*segs_used += nsegs;
1590 
1591 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1592 		/* TSO will consume one TX desc */
1593 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1594 		tdata->tx_nsegs += i;
1595 		*segs_used += i;
1596 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1597 		/* TX csum offloading will consume one TX desc */
1598 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1599 		tdata->tx_nsegs += i;
1600 		*segs_used += i;
1601 	}
1602 
1603         /* Handle VLAN tag */
1604 	if (m_head->m_flags & M_VLANTAG) {
1605 		/* Set the vlan id. */
1606 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1607 		/* Tell hardware to add tag */
1608 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1609 	}
1610 
1611 	i = tdata->next_avail_tx_desc;
1612 
1613 	/* Set up our transmit descriptors */
1614 	for (j = 0; j < nsegs; j++) {
1615 		tx_buffer = &tdata->tx_buf[i];
1616 		ctxd = &tdata->tx_desc_base[i];
1617 
1618 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1619 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1620 					   txd_lower | segs[j].ds_len);
1621 		ctxd->upper.data = htole32(txd_upper);
1622 
1623 		last = i;
1624 		if (++i == tdata->num_tx_desc)
1625 			i = 0;
1626 	}
1627 
1628 	tdata->next_avail_tx_desc = i;
1629 
1630 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1631 	tdata->num_tx_desc_avail -= nsegs;
1632 
1633 	tx_buffer->m_head = m_head;
1634 	tx_buffer_mapped->map = tx_buffer->map;
1635 	tx_buffer->map = map;
1636 
1637 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1638 		tdata->tx_nsegs = 0;
1639 
1640 		/*
1641 		 * Report Status (RS) is turned on
1642 		 * every tx_intr_nsegs descriptors.
1643 		 */
1644 		cmd = E1000_TXD_CMD_RS;
1645 
1646 		/*
1647 		 * Keep track of the descriptor, which will
1648 		 * be written back by hardware.
1649 		 */
1650 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1651 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1652 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1653 	}
1654 
1655 	/*
1656 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1657 	 */
1658 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1659 
1660 	/*
1661 	 * Defer TDT updating, until enough descriptors are setup
1662 	 */
1663 	*idx = i;
1664 
1665 #ifdef EMX_TSS_DEBUG
1666 	tdata->tx_pkts++;
1667 #endif
1668 
1669 	return (0);
1670 }
1671 
1672 static void
1673 emx_set_promisc(struct emx_softc *sc)
1674 {
1675 	struct ifnet *ifp = &sc->arpcom.ac_if;
1676 	uint32_t reg_rctl;
1677 
1678 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1679 
1680 	if (ifp->if_flags & IFF_PROMISC) {
1681 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1682 		/* Turn this on if you want to see bad packets */
1683 		if (emx_debug_sbp)
1684 			reg_rctl |= E1000_RCTL_SBP;
1685 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1686 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1687 		reg_rctl |= E1000_RCTL_MPE;
1688 		reg_rctl &= ~E1000_RCTL_UPE;
1689 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1690 	}
1691 }
1692 
1693 static void
1694 emx_disable_promisc(struct emx_softc *sc)
1695 {
1696 	uint32_t reg_rctl;
1697 
1698 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1699 
1700 	reg_rctl &= ~E1000_RCTL_UPE;
1701 	reg_rctl &= ~E1000_RCTL_MPE;
1702 	reg_rctl &= ~E1000_RCTL_SBP;
1703 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1704 }
1705 
1706 static void
1707 emx_set_multi(struct emx_softc *sc)
1708 {
1709 	struct ifnet *ifp = &sc->arpcom.ac_if;
1710 	struct ifmultiaddr *ifma;
1711 	uint32_t reg_rctl = 0;
1712 	uint8_t *mta;
1713 	int mcnt = 0;
1714 
1715 	mta = sc->mta;
1716 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1717 
1718 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1719 		if (ifma->ifma_addr->sa_family != AF_LINK)
1720 			continue;
1721 
1722 		if (mcnt == EMX_MCAST_ADDR_MAX)
1723 			break;
1724 
1725 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1726 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1727 		mcnt++;
1728 	}
1729 
1730 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1731 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1732 		reg_rctl |= E1000_RCTL_MPE;
1733 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1734 	} else {
1735 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1736 	}
1737 }
1738 
1739 /*
1740  * This routine checks for link status and updates statistics.
1741  */
1742 static void
1743 emx_timer(void *xsc)
1744 {
1745 	struct emx_softc *sc = xsc;
1746 	struct ifnet *ifp = &sc->arpcom.ac_if;
1747 
1748 	lwkt_serialize_enter(&sc->main_serialize);
1749 
1750 	emx_update_link_status(sc);
1751 	emx_update_stats(sc);
1752 
1753 	/* Reset LAA into RAR[0] on 82571 */
1754 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1755 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1756 
1757 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1758 		emx_print_hw_stats(sc);
1759 
1760 	emx_smartspeed(sc);
1761 
1762 	callout_reset(&sc->timer, hz, emx_timer, sc);
1763 
1764 	lwkt_serialize_exit(&sc->main_serialize);
1765 }
1766 
1767 static void
1768 emx_update_link_status(struct emx_softc *sc)
1769 {
1770 	struct e1000_hw *hw = &sc->hw;
1771 	struct ifnet *ifp = &sc->arpcom.ac_if;
1772 	device_t dev = sc->dev;
1773 	uint32_t link_check = 0;
1774 
1775 	/* Get the cached link value or read phy for real */
1776 	switch (hw->phy.media_type) {
1777 	case e1000_media_type_copper:
1778 		if (hw->mac.get_link_status) {
1779 			/* Do the work to read phy */
1780 			e1000_check_for_link(hw);
1781 			link_check = !hw->mac.get_link_status;
1782 			if (link_check) /* ESB2 fix */
1783 				e1000_cfg_on_link_up(hw);
1784 		} else {
1785 			link_check = TRUE;
1786 		}
1787 		break;
1788 
1789 	case e1000_media_type_fiber:
1790 		e1000_check_for_link(hw);
1791 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1792 		break;
1793 
1794 	case e1000_media_type_internal_serdes:
1795 		e1000_check_for_link(hw);
1796 		link_check = sc->hw.mac.serdes_has_link;
1797 		break;
1798 
1799 	case e1000_media_type_unknown:
1800 	default:
1801 		break;
1802 	}
1803 
1804 	/* Now check for a transition */
1805 	if (link_check && sc->link_active == 0) {
1806 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1807 		    &sc->link_duplex);
1808 
1809 		/*
1810 		 * Check if we should enable/disable SPEED_MODE bit on
1811 		 * 82571EB/82572EI
1812 		 */
1813 		if (sc->link_speed != SPEED_1000 &&
1814 		    (hw->mac.type == e1000_82571 ||
1815 		     hw->mac.type == e1000_82572)) {
1816 			int tarc0;
1817 
1818 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1819 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1820 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1821 		}
1822 		if (bootverbose) {
1823 			device_printf(dev, "Link is up %d Mbps %s\n",
1824 			    sc->link_speed,
1825 			    ((sc->link_duplex == FULL_DUPLEX) ?
1826 			    "Full Duplex" : "Half Duplex"));
1827 		}
1828 		sc->link_active = 1;
1829 		sc->smartspeed = 0;
1830 		ifp->if_baudrate = sc->link_speed * 1000000;
1831 		ifp->if_link_state = LINK_STATE_UP;
1832 		if_link_state_change(ifp);
1833 	} else if (!link_check && sc->link_active == 1) {
1834 		ifp->if_baudrate = sc->link_speed = 0;
1835 		sc->link_duplex = 0;
1836 		if (bootverbose)
1837 			device_printf(dev, "Link is Down\n");
1838 		sc->link_active = 0;
1839 		ifp->if_link_state = LINK_STATE_DOWN;
1840 		if_link_state_change(ifp);
1841 	}
1842 }
1843 
1844 static void
1845 emx_stop(struct emx_softc *sc)
1846 {
1847 	struct ifnet *ifp = &sc->arpcom.ac_if;
1848 	int i;
1849 
1850 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1851 
1852 	emx_disable_intr(sc);
1853 
1854 	callout_stop(&sc->timer);
1855 
1856 	ifp->if_flags &= ~IFF_RUNNING;
1857 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1858 		struct emx_txdata *tdata = &sc->tx_data[i];
1859 
1860 		ifsq_clr_oactive(tdata->ifsq);
1861 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1862 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1863 	}
1864 
1865 	/*
1866 	 * Disable multiple receive queues.
1867 	 *
1868 	 * NOTE:
1869 	 * We should disable multiple receive queues before
1870 	 * resetting the hardware.
1871 	 */
1872 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1873 
1874 	e1000_reset_hw(&sc->hw);
1875 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1876 
1877 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1878 		emx_free_tx_ring(&sc->tx_data[i]);
1879 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1880 		emx_free_rx_ring(&sc->rx_data[i]);
1881 }
1882 
1883 static int
1884 emx_reset(struct emx_softc *sc)
1885 {
1886 	device_t dev = sc->dev;
1887 	uint16_t rx_buffer_size;
1888 	uint32_t pba;
1889 
1890 	/* Set up smart power down as default off on newer adapters. */
1891 	if (!emx_smart_pwr_down &&
1892 	    (sc->hw.mac.type == e1000_82571 ||
1893 	     sc->hw.mac.type == e1000_82572)) {
1894 		uint16_t phy_tmp = 0;
1895 
1896 		/* Speed up time to link by disabling smart power down. */
1897 		e1000_read_phy_reg(&sc->hw,
1898 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1899 		phy_tmp &= ~IGP02E1000_PM_SPD;
1900 		e1000_write_phy_reg(&sc->hw,
1901 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1902 	}
1903 
1904 	/*
1905 	 * Packet Buffer Allocation (PBA)
1906 	 * Writing PBA sets the receive portion of the buffer
1907 	 * the remainder is used for the transmit buffer.
1908 	 */
1909 	switch (sc->hw.mac.type) {
1910 	/* Total Packet Buffer on these is 48K */
1911 	case e1000_82571:
1912 	case e1000_82572:
1913 	case e1000_80003es2lan:
1914 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1915 		break;
1916 
1917 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1918 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1919 		break;
1920 
1921 	case e1000_82574:
1922 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1923 		break;
1924 
1925 	case e1000_pch_lpt:
1926  		pba = E1000_PBA_26K;
1927  		break;
1928 
1929 	default:
1930 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1931 		if (sc->hw.mac.max_frame_size > 8192)
1932 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1933 		else
1934 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1935 	}
1936 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1937 
1938 	/*
1939 	 * These parameters control the automatic generation (Tx) and
1940 	 * response (Rx) to Ethernet PAUSE frames.
1941 	 * - High water mark should allow for at least two frames to be
1942 	 *   received after sending an XOFF.
1943 	 * - Low water mark works best when it is very near the high water mark.
1944 	 *   This allows the receiver to restart by sending XON when it has
1945 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1946 	 *   restart after one full frame is pulled from the buffer. There
1947 	 *   could be several smaller frames in the buffer and if so they will
1948 	 *   not trigger the XON until their total number reduces the buffer
1949 	 *   by 1500.
1950 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1951 	 */
1952 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1953 
1954 	sc->hw.fc.high_water = rx_buffer_size -
1955 	    roundup2(sc->hw.mac.max_frame_size, 1024);
1956 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1957 
1958 	sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1959 	sc->hw.fc.send_xon = TRUE;
1960 	sc->hw.fc.requested_mode = e1000_fc_full;
1961 
1962 	/*
1963 	 * Device specific overrides/settings
1964 	 */
1965 	if (sc->hw.mac.type == e1000_pch_lpt) {
1966 		sc->hw.fc.high_water = 0x5C20;
1967 		sc->hw.fc.low_water = 0x5048;
1968 		sc->hw.fc.pause_time = 0x0650;
1969 		sc->hw.fc.refresh_time = 0x0400;
1970 		/* Jumbos need adjusted PBA */
1971 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
1972 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
1973 		else
1974 			E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
1975 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
1976 		sc->hw.fc.pause_time = 0xFFFF;
1977 	}
1978 
1979 	/* Issue a global reset */
1980 	e1000_reset_hw(&sc->hw);
1981 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1982 	emx_disable_aspm(sc);
1983 
1984 	if (e1000_init_hw(&sc->hw) < 0) {
1985 		device_printf(dev, "Hardware Initialization Failed\n");
1986 		return (EIO);
1987 	}
1988 
1989 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1990 	e1000_get_phy_info(&sc->hw);
1991 	e1000_check_for_link(&sc->hw);
1992 
1993 	return (0);
1994 }
1995 
1996 static void
1997 emx_setup_ifp(struct emx_softc *sc)
1998 {
1999 	struct ifnet *ifp = &sc->arpcom.ac_if;
2000 	int i;
2001 
2002 	if_initname(ifp, device_get_name(sc->dev),
2003 		    device_get_unit(sc->dev));
2004 	ifp->if_softc = sc;
2005 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2006 	ifp->if_init =  emx_init;
2007 	ifp->if_ioctl = emx_ioctl;
2008 	ifp->if_start = emx_start;
2009 #ifdef IFPOLL_ENABLE
2010 	ifp->if_npoll = emx_npoll;
2011 #endif
2012 	ifp->if_serialize = emx_serialize;
2013 	ifp->if_deserialize = emx_deserialize;
2014 	ifp->if_tryserialize = emx_tryserialize;
2015 #ifdef INVARIANTS
2016 	ifp->if_serialize_assert = emx_serialize_assert;
2017 #endif
2018 
2019 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2020 	ifq_set_ready(&ifp->if_snd);
2021 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2022 
2023 	ifp->if_mapsubq = ifq_mapsubq_mask;
2024 	ifq_set_subq_mask(&ifp->if_snd, 0);
2025 
2026 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2027 
2028 	ifp->if_capabilities = IFCAP_HWCSUM |
2029 			       IFCAP_VLAN_HWTAGGING |
2030 			       IFCAP_VLAN_MTU |
2031 			       IFCAP_TSO;
2032 	if (sc->rx_ring_cnt > 1)
2033 		ifp->if_capabilities |= IFCAP_RSS;
2034 	ifp->if_capenable = ifp->if_capabilities;
2035 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2036 
2037 	/*
2038 	 * Tell the upper layer(s) we support long frames.
2039 	 */
2040 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2041 
2042 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2043 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2044 		struct emx_txdata *tdata = &sc->tx_data[i];
2045 
2046 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2047 		ifsq_set_priv(ifsq, tdata);
2048 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2049 		tdata->ifsq = ifsq;
2050 
2051 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2052 	}
2053 
2054 	/*
2055 	 * Specify the media types supported by this sc and register
2056 	 * callbacks to update media and link information
2057 	 */
2058 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2059 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2060 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2061 			    0, NULL);
2062 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
2063 	} else {
2064 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2065 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2066 			    0, NULL);
2067 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2068 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2069 			    0, NULL);
2070 		if (sc->hw.phy.type != e1000_phy_ife) {
2071 			ifmedia_add(&sc->media,
2072 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2073 			ifmedia_add(&sc->media,
2074 				IFM_ETHER | IFM_1000_T, 0, NULL);
2075 		}
2076 	}
2077 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2078 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2079 }
2080 
2081 /*
2082  * Workaround for SmartSpeed on 82541 and 82547 controllers
2083  */
2084 static void
2085 emx_smartspeed(struct emx_softc *sc)
2086 {
2087 	uint16_t phy_tmp;
2088 
2089 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2090 	    sc->hw.mac.autoneg == 0 ||
2091 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2092 		return;
2093 
2094 	if (sc->smartspeed == 0) {
2095 		/*
2096 		 * If Master/Slave config fault is asserted twice,
2097 		 * we assume back-to-back
2098 		 */
2099 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2100 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2101 			return;
2102 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2103 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2104 			e1000_read_phy_reg(&sc->hw,
2105 			    PHY_1000T_CTRL, &phy_tmp);
2106 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2107 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2108 				e1000_write_phy_reg(&sc->hw,
2109 				    PHY_1000T_CTRL, phy_tmp);
2110 				sc->smartspeed++;
2111 				if (sc->hw.mac.autoneg &&
2112 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2113 				    !e1000_read_phy_reg(&sc->hw,
2114 				     PHY_CONTROL, &phy_tmp)) {
2115 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2116 						   MII_CR_RESTART_AUTO_NEG;
2117 					e1000_write_phy_reg(&sc->hw,
2118 					    PHY_CONTROL, phy_tmp);
2119 				}
2120 			}
2121 		}
2122 		return;
2123 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2124 		/* If still no link, perhaps using 2/3 pair cable */
2125 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2126 		phy_tmp |= CR_1000T_MS_ENABLE;
2127 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2128 		if (sc->hw.mac.autoneg &&
2129 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2130 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2131 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2132 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2133 		}
2134 	}
2135 
2136 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2137 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2138 		sc->smartspeed = 0;
2139 }
2140 
2141 static int
2142 emx_create_tx_ring(struct emx_txdata *tdata)
2143 {
2144 	device_t dev = tdata->sc->dev;
2145 	struct emx_txbuf *tx_buffer;
2146 	int error, i, tsize, ntxd;
2147 
2148 	/*
2149 	 * Validate number of transmit descriptors.  It must not exceed
2150 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2151 	 */
2152 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2153 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2154 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2155 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2156 		    EMX_DEFAULT_TXD, ntxd);
2157 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2158 	} else {
2159 		tdata->num_tx_desc = ntxd;
2160 	}
2161 
2162 	/*
2163 	 * Allocate Transmit Descriptor ring
2164 	 */
2165 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2166 			 EMX_DBA_ALIGN);
2167 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2168 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2169 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2170 				&tdata->tx_desc_paddr);
2171 	if (tdata->tx_desc_base == NULL) {
2172 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2173 		return ENOMEM;
2174 	}
2175 
2176 	tsize = __VM_CACHELINE_ALIGN(
2177 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2178 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2179 
2180 	/*
2181 	 * Create DMA tags for tx buffers
2182 	 */
2183 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2184 			1, 0,			/* alignment, bounds */
2185 			BUS_SPACE_MAXADDR,	/* lowaddr */
2186 			BUS_SPACE_MAXADDR,	/* highaddr */
2187 			NULL, NULL,		/* filter, filterarg */
2188 			EMX_TSO_SIZE,		/* maxsize */
2189 			EMX_MAX_SCATTER,	/* nsegments */
2190 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2191 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2192 			BUS_DMA_ONEBPAGE,	/* flags */
2193 			&tdata->txtag);
2194 	if (error) {
2195 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2196 		kfree(tdata->tx_buf, M_DEVBUF);
2197 		tdata->tx_buf = NULL;
2198 		return error;
2199 	}
2200 
2201 	/*
2202 	 * Create DMA maps for tx buffers
2203 	 */
2204 	for (i = 0; i < tdata->num_tx_desc; i++) {
2205 		tx_buffer = &tdata->tx_buf[i];
2206 
2207 		error = bus_dmamap_create(tdata->txtag,
2208 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2209 					  &tx_buffer->map);
2210 		if (error) {
2211 			device_printf(dev, "Unable to create TX DMA map\n");
2212 			emx_destroy_tx_ring(tdata, i);
2213 			return error;
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * Setup TX parameters
2219 	 */
2220 	tdata->spare_tx_desc = EMX_TX_SPARE;
2221 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2222 
2223 	/*
2224 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2225 	 * and tx_intr_nsegs:
2226 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2227 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2228 	 */
2229 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2230 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2231 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2232 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2233 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2234 
2235 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2236 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2237 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2238 
2239 	/*
2240 	 * Pullup extra 4bytes into the first data segment, see:
2241 	 * 82571/82572 specification update errata #7
2242 	 *
2243 	 * NOTE:
2244 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2245 	 * are pulled; mainly to keep rest of the data properly aligned.
2246 	 */
2247 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2248 	    tdata->sc->hw.mac.type == e1000_82572)
2249 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2250 
2251 	return (0);
2252 }
2253 
2254 static void
2255 emx_init_tx_ring(struct emx_txdata *tdata)
2256 {
2257 	/* Clear the old ring contents */
2258 	bzero(tdata->tx_desc_base,
2259 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2260 
2261 	/* Reset state */
2262 	tdata->next_avail_tx_desc = 0;
2263 	tdata->next_tx_to_clean = 0;
2264 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2265 
2266 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2267 	if (tdata->sc->tx_ring_inuse > 1) {
2268 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2269 		if (bootverbose) {
2270 			if_printf(&tdata->sc->arpcom.ac_if,
2271 			    "TX %d force ctx setup\n", tdata->idx);
2272 		}
2273 	}
2274 }
2275 
2276 static void
2277 emx_init_tx_unit(struct emx_softc *sc)
2278 {
2279 	uint32_t tctl, tarc, tipg = 0;
2280 	int i;
2281 
2282 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2283 		struct emx_txdata *tdata = &sc->tx_data[i];
2284 		uint64_t bus_addr;
2285 
2286 		/* Setup the Base and Length of the Tx Descriptor Ring */
2287 		bus_addr = tdata->tx_desc_paddr;
2288 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2289 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2290 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2291 		    (uint32_t)(bus_addr >> 32));
2292 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2293 		    (uint32_t)bus_addr);
2294 		/* Setup the HW Tx Head and Tail descriptor pointers */
2295 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2296 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2297 	}
2298 
2299 	/* Set the default values for the Tx Inter Packet Gap timer */
2300 	switch (sc->hw.mac.type) {
2301 	case e1000_80003es2lan:
2302 		tipg = DEFAULT_82543_TIPG_IPGR1;
2303 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2304 		    E1000_TIPG_IPGR2_SHIFT;
2305 		break;
2306 
2307 	default:
2308 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2309 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2310 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2311 		else
2312 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2313 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2314 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2315 		break;
2316 	}
2317 
2318 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2319 
2320 	/* NOTE: 0 is not allowed for TIDV */
2321 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2322 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2323 
2324 	if (sc->hw.mac.type == e1000_82571 ||
2325 	    sc->hw.mac.type == e1000_82572) {
2326 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2327 		tarc |= EMX_TARC_SPEED_MODE;
2328 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2329 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2330 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2331 		tarc |= 1;
2332 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2333 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2334 		tarc |= 1;
2335 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2336 	}
2337 
2338 	/* Program the Transmit Control Register */
2339 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2340 	tctl &= ~E1000_TCTL_CT;
2341 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2342 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2343 	tctl |= E1000_TCTL_MULR;
2344 
2345 	/* This write will effectively turn on the transmit unit. */
2346 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2347 
2348 	if (sc->hw.mac.type == e1000_82571 ||
2349 	    sc->hw.mac.type == e1000_82572 ||
2350 	    sc->hw.mac.type == e1000_80003es2lan) {
2351 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2352 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2353 		tarc &= ~(1 << 28);
2354 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2355 	}
2356 
2357 	if (sc->tx_ring_inuse > 1) {
2358 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2359 		tarc &= ~EMX_TARC_COUNT_MASK;
2360 		tarc |= 1;
2361 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2362 
2363 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2364 		tarc &= ~EMX_TARC_COUNT_MASK;
2365 		tarc |= 1;
2366 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2367 	}
2368 }
2369 
2370 static void
2371 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2372 {
2373 	struct emx_txbuf *tx_buffer;
2374 	int i;
2375 
2376 	/* Free Transmit Descriptor ring */
2377 	if (tdata->tx_desc_base) {
2378 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2379 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2380 				tdata->tx_desc_dmap);
2381 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2382 
2383 		tdata->tx_desc_base = NULL;
2384 	}
2385 
2386 	if (tdata->tx_buf == NULL)
2387 		return;
2388 
2389 	for (i = 0; i < ndesc; i++) {
2390 		tx_buffer = &tdata->tx_buf[i];
2391 
2392 		KKASSERT(tx_buffer->m_head == NULL);
2393 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2394 	}
2395 	bus_dma_tag_destroy(tdata->txtag);
2396 
2397 	kfree(tdata->tx_buf, M_DEVBUF);
2398 	tdata->tx_buf = NULL;
2399 }
2400 
2401 /*
2402  * The offload context needs to be set when we transfer the first
2403  * packet of a particular protocol (TCP/UDP).  This routine has been
2404  * enhanced to deal with inserted VLAN headers.
2405  *
2406  * If the new packet's ether header length, ip header length and
2407  * csum offloading type are same as the previous packet, we should
2408  * avoid allocating a new csum context descriptor; mainly to take
2409  * advantage of the pipeline effect of the TX data read request.
2410  *
2411  * This function returns number of TX descrptors allocated for
2412  * csum context.
2413  */
2414 static int
2415 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2416 	   uint32_t *txd_upper, uint32_t *txd_lower)
2417 {
2418 	struct e1000_context_desc *TXD;
2419 	int curr_txd, ehdrlen, csum_flags;
2420 	uint32_t cmd, hdr_len, ip_hlen;
2421 
2422 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2423 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2424 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2425 
2426 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2427 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2428 	    tdata->csum_flags == csum_flags) {
2429 		/*
2430 		 * Same csum offload context as the previous packets;
2431 		 * just return.
2432 		 */
2433 		*txd_upper = tdata->csum_txd_upper;
2434 		*txd_lower = tdata->csum_txd_lower;
2435 		return 0;
2436 	}
2437 
2438 	/*
2439 	 * Setup a new csum offload context.
2440 	 */
2441 
2442 	curr_txd = tdata->next_avail_tx_desc;
2443 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2444 
2445 	cmd = 0;
2446 
2447 	/* Setup of IP header checksum. */
2448 	if (csum_flags & CSUM_IP) {
2449 		/*
2450 		 * Start offset for header checksum calculation.
2451 		 * End offset for header checksum calculation.
2452 		 * Offset of place to put the checksum.
2453 		 */
2454 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2455 		TXD->lower_setup.ip_fields.ipcse =
2456 		    htole16(ehdrlen + ip_hlen - 1);
2457 		TXD->lower_setup.ip_fields.ipcso =
2458 		    ehdrlen + offsetof(struct ip, ip_sum);
2459 		cmd |= E1000_TXD_CMD_IP;
2460 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2461 	}
2462 	hdr_len = ehdrlen + ip_hlen;
2463 
2464 	if (csum_flags & CSUM_TCP) {
2465 		/*
2466 		 * Start offset for payload checksum calculation.
2467 		 * End offset for payload checksum calculation.
2468 		 * Offset of place to put the checksum.
2469 		 */
2470 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2471 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2472 		TXD->upper_setup.tcp_fields.tucso =
2473 		    hdr_len + offsetof(struct tcphdr, th_sum);
2474 		cmd |= E1000_TXD_CMD_TCP;
2475 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2476 	} else if (csum_flags & CSUM_UDP) {
2477 		/*
2478 		 * Start offset for header checksum calculation.
2479 		 * End offset for header checksum calculation.
2480 		 * Offset of place to put the checksum.
2481 		 */
2482 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2483 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2484 		TXD->upper_setup.tcp_fields.tucso =
2485 		    hdr_len + offsetof(struct udphdr, uh_sum);
2486 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2487 	}
2488 
2489 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2490 		     E1000_TXD_DTYP_D;		/* Data descr */
2491 
2492 	/* Save the information for this csum offloading context */
2493 	tdata->csum_lhlen = ehdrlen;
2494 	tdata->csum_iphlen = ip_hlen;
2495 	tdata->csum_flags = csum_flags;
2496 	tdata->csum_txd_upper = *txd_upper;
2497 	tdata->csum_txd_lower = *txd_lower;
2498 
2499 	TXD->tcp_seg_setup.data = htole32(0);
2500 	TXD->cmd_and_length =
2501 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2502 
2503 	if (++curr_txd == tdata->num_tx_desc)
2504 		curr_txd = 0;
2505 
2506 	KKASSERT(tdata->num_tx_desc_avail > 0);
2507 	tdata->num_tx_desc_avail--;
2508 
2509 	tdata->next_avail_tx_desc = curr_txd;
2510 	return 1;
2511 }
2512 
2513 static void
2514 emx_txeof(struct emx_txdata *tdata)
2515 {
2516 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2517 	struct emx_txbuf *tx_buffer;
2518 	int first, num_avail;
2519 
2520 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2521 		return;
2522 
2523 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2524 		return;
2525 
2526 	num_avail = tdata->num_tx_desc_avail;
2527 	first = tdata->next_tx_to_clean;
2528 
2529 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2530 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2531 		struct e1000_tx_desc *tx_desc;
2532 
2533 		tx_desc = &tdata->tx_desc_base[dd_idx];
2534 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2535 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2536 
2537 			if (++dd_idx == tdata->num_tx_desc)
2538 				dd_idx = 0;
2539 
2540 			while (first != dd_idx) {
2541 				logif(pkt_txclean);
2542 
2543 				num_avail++;
2544 
2545 				tx_buffer = &tdata->tx_buf[first];
2546 				if (tx_buffer->m_head) {
2547 					IFNET_STAT_INC(ifp, opackets, 1);
2548 					bus_dmamap_unload(tdata->txtag,
2549 							  tx_buffer->map);
2550 					m_freem(tx_buffer->m_head);
2551 					tx_buffer->m_head = NULL;
2552 				}
2553 
2554 				if (++first == tdata->num_tx_desc)
2555 					first = 0;
2556 			}
2557 		} else {
2558 			break;
2559 		}
2560 	}
2561 	tdata->next_tx_to_clean = first;
2562 	tdata->num_tx_desc_avail = num_avail;
2563 
2564 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2565 		tdata->tx_dd_head = 0;
2566 		tdata->tx_dd_tail = 0;
2567 	}
2568 
2569 	if (!EMX_IS_OACTIVE(tdata)) {
2570 		ifsq_clr_oactive(tdata->ifsq);
2571 
2572 		/* All clean, turn off the timer */
2573 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2574 			tdata->tx_watchdog.wd_timer = 0;
2575 	}
2576 }
2577 
2578 static void
2579 emx_tx_collect(struct emx_txdata *tdata)
2580 {
2581 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2582 	struct emx_txbuf *tx_buffer;
2583 	int tdh, first, num_avail, dd_idx = -1;
2584 
2585 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2586 		return;
2587 
2588 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2589 	if (tdh == tdata->next_tx_to_clean)
2590 		return;
2591 
2592 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2593 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2594 
2595 	num_avail = tdata->num_tx_desc_avail;
2596 	first = tdata->next_tx_to_clean;
2597 
2598 	while (first != tdh) {
2599 		logif(pkt_txclean);
2600 
2601 		num_avail++;
2602 
2603 		tx_buffer = &tdata->tx_buf[first];
2604 		if (tx_buffer->m_head) {
2605 			IFNET_STAT_INC(ifp, opackets, 1);
2606 			bus_dmamap_unload(tdata->txtag,
2607 					  tx_buffer->map);
2608 			m_freem(tx_buffer->m_head);
2609 			tx_buffer->m_head = NULL;
2610 		}
2611 
2612 		if (first == dd_idx) {
2613 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2614 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2615 				tdata->tx_dd_head = 0;
2616 				tdata->tx_dd_tail = 0;
2617 				dd_idx = -1;
2618 			} else {
2619 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2620 			}
2621 		}
2622 
2623 		if (++first == tdata->num_tx_desc)
2624 			first = 0;
2625 	}
2626 	tdata->next_tx_to_clean = first;
2627 	tdata->num_tx_desc_avail = num_avail;
2628 
2629 	if (!EMX_IS_OACTIVE(tdata)) {
2630 		ifsq_clr_oactive(tdata->ifsq);
2631 
2632 		/* All clean, turn off the timer */
2633 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2634 			tdata->tx_watchdog.wd_timer = 0;
2635 	}
2636 }
2637 
2638 /*
2639  * When Link is lost sometimes there is work still in the TX ring
2640  * which will result in a watchdog, rather than allow that do an
2641  * attempted cleanup and then reinit here.  Note that this has been
2642  * seens mostly with fiber adapters.
2643  */
2644 static void
2645 emx_tx_purge(struct emx_softc *sc)
2646 {
2647 	int i;
2648 
2649 	if (sc->link_active)
2650 		return;
2651 
2652 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2653 		struct emx_txdata *tdata = &sc->tx_data[i];
2654 
2655 		if (tdata->tx_watchdog.wd_timer) {
2656 			emx_tx_collect(tdata);
2657 			if (tdata->tx_watchdog.wd_timer) {
2658 				if_printf(&sc->arpcom.ac_if,
2659 				    "Link lost, TX pending, reinit\n");
2660 				emx_init(sc);
2661 				return;
2662 			}
2663 		}
2664 	}
2665 }
2666 
2667 static int
2668 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2669 {
2670 	struct mbuf *m;
2671 	bus_dma_segment_t seg;
2672 	bus_dmamap_t map;
2673 	struct emx_rxbuf *rx_buffer;
2674 	int error, nseg;
2675 
2676 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2677 	if (m == NULL) {
2678 		if (init) {
2679 			if_printf(&rdata->sc->arpcom.ac_if,
2680 				  "Unable to allocate RX mbuf\n");
2681 		}
2682 		return (ENOBUFS);
2683 	}
2684 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2685 
2686 	if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2687 		m_adj(m, ETHER_ALIGN);
2688 
2689 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2690 			rdata->rx_sparemap, m,
2691 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2692 	if (error) {
2693 		m_freem(m);
2694 		if (init) {
2695 			if_printf(&rdata->sc->arpcom.ac_if,
2696 				  "Unable to load RX mbuf\n");
2697 		}
2698 		return (error);
2699 	}
2700 
2701 	rx_buffer = &rdata->rx_buf[i];
2702 	if (rx_buffer->m_head != NULL)
2703 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2704 
2705 	map = rx_buffer->map;
2706 	rx_buffer->map = rdata->rx_sparemap;
2707 	rdata->rx_sparemap = map;
2708 
2709 	rx_buffer->m_head = m;
2710 	rx_buffer->paddr = seg.ds_addr;
2711 
2712 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2713 	return (0);
2714 }
2715 
2716 static int
2717 emx_create_rx_ring(struct emx_rxdata *rdata)
2718 {
2719 	device_t dev = rdata->sc->dev;
2720 	struct emx_rxbuf *rx_buffer;
2721 	int i, error, rsize, nrxd;
2722 
2723 	/*
2724 	 * Validate number of receive descriptors.  It must not exceed
2725 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2726 	 */
2727 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2728 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2729 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2730 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2731 		    EMX_DEFAULT_RXD, nrxd);
2732 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2733 	} else {
2734 		rdata->num_rx_desc = nrxd;
2735 	}
2736 
2737 	/*
2738 	 * Allocate Receive Descriptor ring
2739 	 */
2740 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2741 			 EMX_DBA_ALIGN);
2742 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2743 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2744 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2745 				&rdata->rx_desc_paddr);
2746 	if (rdata->rx_desc == NULL) {
2747 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2748 		return ENOMEM;
2749 	}
2750 
2751 	rsize = __VM_CACHELINE_ALIGN(
2752 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2753 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2754 
2755 	/*
2756 	 * Create DMA tag for rx buffers
2757 	 */
2758 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2759 			1, 0,			/* alignment, bounds */
2760 			BUS_SPACE_MAXADDR,	/* lowaddr */
2761 			BUS_SPACE_MAXADDR,	/* highaddr */
2762 			NULL, NULL,		/* filter, filterarg */
2763 			MCLBYTES,		/* maxsize */
2764 			1,			/* nsegments */
2765 			MCLBYTES,		/* maxsegsize */
2766 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2767 			&rdata->rxtag);
2768 	if (error) {
2769 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2770 		kfree(rdata->rx_buf, M_DEVBUF);
2771 		rdata->rx_buf = NULL;
2772 		return error;
2773 	}
2774 
2775 	/*
2776 	 * Create spare DMA map for rx buffers
2777 	 */
2778 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2779 				  &rdata->rx_sparemap);
2780 	if (error) {
2781 		device_printf(dev, "Unable to create spare RX DMA map\n");
2782 		bus_dma_tag_destroy(rdata->rxtag);
2783 		kfree(rdata->rx_buf, M_DEVBUF);
2784 		rdata->rx_buf = NULL;
2785 		return error;
2786 	}
2787 
2788 	/*
2789 	 * Create DMA maps for rx buffers
2790 	 */
2791 	for (i = 0; i < rdata->num_rx_desc; i++) {
2792 		rx_buffer = &rdata->rx_buf[i];
2793 
2794 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2795 					  &rx_buffer->map);
2796 		if (error) {
2797 			device_printf(dev, "Unable to create RX DMA map\n");
2798 			emx_destroy_rx_ring(rdata, i);
2799 			return error;
2800 		}
2801 	}
2802 	return (0);
2803 }
2804 
2805 static void
2806 emx_free_rx_ring(struct emx_rxdata *rdata)
2807 {
2808 	int i;
2809 
2810 	for (i = 0; i < rdata->num_rx_desc; i++) {
2811 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2812 
2813 		if (rx_buffer->m_head != NULL) {
2814 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2815 			m_freem(rx_buffer->m_head);
2816 			rx_buffer->m_head = NULL;
2817 		}
2818 	}
2819 
2820 	if (rdata->fmp != NULL)
2821 		m_freem(rdata->fmp);
2822 	rdata->fmp = NULL;
2823 	rdata->lmp = NULL;
2824 }
2825 
2826 static void
2827 emx_free_tx_ring(struct emx_txdata *tdata)
2828 {
2829 	int i;
2830 
2831 	for (i = 0; i < tdata->num_tx_desc; i++) {
2832 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2833 
2834 		if (tx_buffer->m_head != NULL) {
2835 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2836 			m_freem(tx_buffer->m_head);
2837 			tx_buffer->m_head = NULL;
2838 		}
2839 	}
2840 
2841 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2842 
2843 	tdata->csum_flags = 0;
2844 	tdata->csum_lhlen = 0;
2845 	tdata->csum_iphlen = 0;
2846 	tdata->csum_thlen = 0;
2847 	tdata->csum_mss = 0;
2848 	tdata->csum_pktlen = 0;
2849 
2850 	tdata->tx_dd_head = 0;
2851 	tdata->tx_dd_tail = 0;
2852 	tdata->tx_nsegs = 0;
2853 }
2854 
2855 static int
2856 emx_init_rx_ring(struct emx_rxdata *rdata)
2857 {
2858 	int i, error;
2859 
2860 	/* Reset descriptor ring */
2861 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2862 
2863 	/* Allocate new ones. */
2864 	for (i = 0; i < rdata->num_rx_desc; i++) {
2865 		error = emx_newbuf(rdata, i, 1);
2866 		if (error)
2867 			return (error);
2868 	}
2869 
2870 	/* Setup our descriptor pointers */
2871 	rdata->next_rx_desc_to_check = 0;
2872 
2873 	return (0);
2874 }
2875 
2876 static void
2877 emx_init_rx_unit(struct emx_softc *sc)
2878 {
2879 	struct ifnet *ifp = &sc->arpcom.ac_if;
2880 	uint64_t bus_addr;
2881 	uint32_t rctl, itr, rfctl;
2882 	int i;
2883 
2884 	/*
2885 	 * Make sure receives are disabled while setting
2886 	 * up the descriptor ring
2887 	 */
2888 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2889 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2890 
2891 	/*
2892 	 * Set the interrupt throttling rate. Value is calculated
2893 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2894 	 */
2895 	if (sc->int_throttle_ceil)
2896 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2897 	else
2898 		itr = 0;
2899 	emx_set_itr(sc, itr);
2900 
2901 	/* Use extended RX descriptor */
2902 	rfctl = E1000_RFCTL_EXTEN;
2903 
2904 	/* Disable accelerated ackknowledge */
2905 	if (sc->hw.mac.type == e1000_82574)
2906 		rfctl |= E1000_RFCTL_ACK_DIS;
2907 
2908 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2909 
2910 	/*
2911 	 * Receive Checksum Offload for TCP and UDP
2912 	 *
2913 	 * Checksum offloading is also enabled if multiple receive
2914 	 * queue is to be supported, since we need it to figure out
2915 	 * packet type.
2916 	 */
2917 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2918 	    sc->rx_ring_cnt > 1) {
2919 		uint32_t rxcsum;
2920 
2921 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2922 
2923 		/*
2924 		 * NOTE:
2925 		 * PCSD must be enabled to enable multiple
2926 		 * receive queues.
2927 		 */
2928 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2929 			  E1000_RXCSUM_PCSD;
2930 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2931 	}
2932 
2933 	/*
2934 	 * Configure multiple receive queue (RSS)
2935 	 */
2936 	if (sc->rx_ring_cnt > 1) {
2937 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2938 		uint32_t reta;
2939 
2940 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2941 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2942 
2943 		/*
2944 		 * NOTE:
2945 		 * When we reach here, RSS has already been disabled
2946 		 * in emx_stop(), so we could safely configure RSS key
2947 		 * and redirect table.
2948 		 */
2949 
2950 		/*
2951 		 * Configure RSS key
2952 		 */
2953 		toeplitz_get_key(key, sizeof(key));
2954 		for (i = 0; i < EMX_NRSSRK; ++i) {
2955 			uint32_t rssrk;
2956 
2957 			rssrk = EMX_RSSRK_VAL(key, i);
2958 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2959 
2960 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2961 		}
2962 
2963 		/*
2964 		 * Configure RSS redirect table in following fashion:
2965 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2966 		 */
2967 		reta = 0;
2968 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2969 			uint32_t q;
2970 
2971 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2972 			reta |= q << (8 * i);
2973 		}
2974 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2975 
2976 		for (i = 0; i < EMX_NRETA; ++i)
2977 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2978 
2979 		/*
2980 		 * Enable multiple receive queues.
2981 		 * Enable IPv4 RSS standard hash functions.
2982 		 * Disable RSS interrupt.
2983 		 */
2984 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2985 				E1000_MRQC_ENABLE_RSS_2Q |
2986 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2987 				E1000_MRQC_RSS_FIELD_IPV4);
2988 	}
2989 
2990 	/*
2991 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2992 	 * long latencies are observed, like Lenovo X60. This
2993 	 * change eliminates the problem, but since having positive
2994 	 * values in RDTR is a known source of problems on other
2995 	 * platforms another solution is being sought.
2996 	 */
2997 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2998 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2999 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3000 	}
3001 
3002 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3003 		struct emx_rxdata *rdata = &sc->rx_data[i];
3004 
3005 		/*
3006 		 * Setup the Base and Length of the Rx Descriptor Ring
3007 		 */
3008 		bus_addr = rdata->rx_desc_paddr;
3009 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3010 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3011 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3012 		    (uint32_t)(bus_addr >> 32));
3013 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3014 		    (uint32_t)bus_addr);
3015 
3016 		/*
3017 		 * Setup the HW Rx Head and Tail Descriptor Pointers
3018 		 */
3019 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3020 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3021 		    sc->rx_data[i].num_rx_desc - 1);
3022 	}
3023 
3024 	if (sc->hw.mac.type >= e1000_pch2lan) {
3025 		if (ifp->if_mtu > ETHERMTU)
3026 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3027 		else
3028 			e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3029 	}
3030 
3031 	/* Setup the Receive Control Register */
3032 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3033 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3034 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3035 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3036 
3037 	/* Make sure VLAN Filters are off */
3038 	rctl &= ~E1000_RCTL_VFE;
3039 
3040 	/* Don't store bad paket */
3041 	rctl &= ~E1000_RCTL_SBP;
3042 
3043 	/* MCLBYTES */
3044 	rctl |= E1000_RCTL_SZ_2048;
3045 
3046 	if (ifp->if_mtu > ETHERMTU)
3047 		rctl |= E1000_RCTL_LPE;
3048 	else
3049 		rctl &= ~E1000_RCTL_LPE;
3050 
3051 	/* Enable Receives */
3052 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3053 }
3054 
3055 static void
3056 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3057 {
3058 	struct emx_rxbuf *rx_buffer;
3059 	int i;
3060 
3061 	/* Free Receive Descriptor ring */
3062 	if (rdata->rx_desc) {
3063 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3064 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3065 				rdata->rx_desc_dmap);
3066 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
3067 
3068 		rdata->rx_desc = NULL;
3069 	}
3070 
3071 	if (rdata->rx_buf == NULL)
3072 		return;
3073 
3074 	for (i = 0; i < ndesc; i++) {
3075 		rx_buffer = &rdata->rx_buf[i];
3076 
3077 		KKASSERT(rx_buffer->m_head == NULL);
3078 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3079 	}
3080 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3081 	bus_dma_tag_destroy(rdata->rxtag);
3082 
3083 	kfree(rdata->rx_buf, M_DEVBUF);
3084 	rdata->rx_buf = NULL;
3085 }
3086 
3087 static void
3088 emx_rxeof(struct emx_rxdata *rdata, int count)
3089 {
3090 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3091 	uint32_t staterr;
3092 	emx_rxdesc_t *current_desc;
3093 	struct mbuf *mp;
3094 	int i, cpuid = mycpuid;
3095 
3096 	i = rdata->next_rx_desc_to_check;
3097 	current_desc = &rdata->rx_desc[i];
3098 	staterr = le32toh(current_desc->rxd_staterr);
3099 
3100 	if (!(staterr & E1000_RXD_STAT_DD))
3101 		return;
3102 
3103 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3104 		struct pktinfo *pi = NULL, pi0;
3105 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3106 		struct mbuf *m = NULL;
3107 		int eop, len;
3108 
3109 		logif(pkt_receive);
3110 
3111 		mp = rx_buf->m_head;
3112 
3113 		/*
3114 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3115 		 * needs to access the last received byte in the mbuf.
3116 		 */
3117 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3118 				BUS_DMASYNC_POSTREAD);
3119 
3120 		len = le16toh(current_desc->rxd_length);
3121 		if (staterr & E1000_RXD_STAT_EOP) {
3122 			count--;
3123 			eop = 1;
3124 		} else {
3125 			eop = 0;
3126 		}
3127 
3128 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3129 			uint16_t vlan = 0;
3130 			uint32_t mrq, rss_hash;
3131 
3132 			/*
3133 			 * Save several necessary information,
3134 			 * before emx_newbuf() destroy it.
3135 			 */
3136 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3137 				vlan = le16toh(current_desc->rxd_vlan);
3138 
3139 			mrq = le32toh(current_desc->rxd_mrq);
3140 			rss_hash = le32toh(current_desc->rxd_rss);
3141 
3142 			EMX_RSS_DPRINTF(rdata->sc, 10,
3143 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3144 			    rdata->idx, mrq, rss_hash);
3145 
3146 			if (emx_newbuf(rdata, i, 0) != 0) {
3147 				IFNET_STAT_INC(ifp, iqdrops, 1);
3148 				goto discard;
3149 			}
3150 
3151 			/* Assign correct length to the current fragment */
3152 			mp->m_len = len;
3153 
3154 			if (rdata->fmp == NULL) {
3155 				mp->m_pkthdr.len = len;
3156 				rdata->fmp = mp; /* Store the first mbuf */
3157 				rdata->lmp = mp;
3158 			} else {
3159 				/*
3160 				 * Chain mbuf's together
3161 				 */
3162 				rdata->lmp->m_next = mp;
3163 				rdata->lmp = rdata->lmp->m_next;
3164 				rdata->fmp->m_pkthdr.len += len;
3165 			}
3166 
3167 			if (eop) {
3168 				rdata->fmp->m_pkthdr.rcvif = ifp;
3169 				IFNET_STAT_INC(ifp, ipackets, 1);
3170 
3171 				if (ifp->if_capenable & IFCAP_RXCSUM)
3172 					emx_rxcsum(staterr, rdata->fmp);
3173 
3174 				if (staterr & E1000_RXD_STAT_VP) {
3175 					rdata->fmp->m_pkthdr.ether_vlantag =
3176 					    vlan;
3177 					rdata->fmp->m_flags |= M_VLANTAG;
3178 				}
3179 				m = rdata->fmp;
3180 				rdata->fmp = NULL;
3181 				rdata->lmp = NULL;
3182 
3183 				if (ifp->if_capenable & IFCAP_RSS) {
3184 					pi = emx_rssinfo(m, &pi0, mrq,
3185 							 rss_hash, staterr);
3186 				}
3187 #ifdef EMX_RSS_DEBUG
3188 				rdata->rx_pkts++;
3189 #endif
3190 			}
3191 		} else {
3192 			IFNET_STAT_INC(ifp, ierrors, 1);
3193 discard:
3194 			emx_setup_rxdesc(current_desc, rx_buf);
3195 			if (rdata->fmp != NULL) {
3196 				m_freem(rdata->fmp);
3197 				rdata->fmp = NULL;
3198 				rdata->lmp = NULL;
3199 			}
3200 			m = NULL;
3201 		}
3202 
3203 		if (m != NULL)
3204 			ether_input_pkt(ifp, m, pi, cpuid);
3205 
3206 		/* Advance our pointers to the next descriptor. */
3207 		if (++i == rdata->num_rx_desc)
3208 			i = 0;
3209 
3210 		current_desc = &rdata->rx_desc[i];
3211 		staterr = le32toh(current_desc->rxd_staterr);
3212 	}
3213 	rdata->next_rx_desc_to_check = i;
3214 
3215 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3216 	if (--i < 0)
3217 		i = rdata->num_rx_desc - 1;
3218 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3219 }
3220 
3221 static void
3222 emx_enable_intr(struct emx_softc *sc)
3223 {
3224 	uint32_t ims_mask = IMS_ENABLE_MASK;
3225 
3226 	lwkt_serialize_handler_enable(&sc->main_serialize);
3227 
3228 #if 0
3229 	if (sc->hw.mac.type == e1000_82574) {
3230 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3231 		ims_mask |= EM_MSIX_MASK;
3232 	}
3233 #endif
3234 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3235 }
3236 
3237 static void
3238 emx_disable_intr(struct emx_softc *sc)
3239 {
3240 	if (sc->hw.mac.type == e1000_82574)
3241 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3242 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3243 
3244 	lwkt_serialize_handler_disable(&sc->main_serialize);
3245 }
3246 
3247 /*
3248  * Bit of a misnomer, what this really means is
3249  * to enable OS management of the system... aka
3250  * to disable special hardware management features
3251  */
3252 static void
3253 emx_get_mgmt(struct emx_softc *sc)
3254 {
3255 	/* A shared code workaround */
3256 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3257 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3258 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3259 
3260 		/* disable hardware interception of ARP */
3261 		manc &= ~(E1000_MANC_ARP_EN);
3262 
3263                 /* enable receiving management packets to the host */
3264 		manc |= E1000_MANC_EN_MNG2HOST;
3265 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3266 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3267 		manc2h |= E1000_MNG2HOST_PORT_623;
3268 		manc2h |= E1000_MNG2HOST_PORT_664;
3269 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3270 
3271 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3272 	}
3273 }
3274 
3275 /*
3276  * Give control back to hardware management
3277  * controller if there is one.
3278  */
3279 static void
3280 emx_rel_mgmt(struct emx_softc *sc)
3281 {
3282 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3283 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3284 
3285 		/* re-enable hardware interception of ARP */
3286 		manc |= E1000_MANC_ARP_EN;
3287 		manc &= ~E1000_MANC_EN_MNG2HOST;
3288 
3289 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3290 	}
3291 }
3292 
3293 /*
3294  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3295  * For ASF and Pass Through versions of f/w this means that
3296  * the driver is loaded.  For AMT version (only with 82573)
3297  * of the f/w this means that the network i/f is open.
3298  */
3299 static void
3300 emx_get_hw_control(struct emx_softc *sc)
3301 {
3302 	/* Let firmware know the driver has taken over */
3303 	if (sc->hw.mac.type == e1000_82573) {
3304 		uint32_t swsm;
3305 
3306 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3307 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3308 		    swsm | E1000_SWSM_DRV_LOAD);
3309 	} else {
3310 		uint32_t ctrl_ext;
3311 
3312 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3313 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3314 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3315 	}
3316 	sc->flags |= EMX_FLAG_HW_CTRL;
3317 }
3318 
3319 /*
3320  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3321  * For ASF and Pass Through versions of f/w this means that the
3322  * driver is no longer loaded.  For AMT version (only with 82573)
3323  * of the f/w this means that the network i/f is closed.
3324  */
3325 static void
3326 emx_rel_hw_control(struct emx_softc *sc)
3327 {
3328 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3329 		return;
3330 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3331 
3332 	/* Let firmware taken over control of h/w */
3333 	if (sc->hw.mac.type == e1000_82573) {
3334 		uint32_t swsm;
3335 
3336 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3337 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3338 		    swsm & ~E1000_SWSM_DRV_LOAD);
3339 	} else {
3340 		uint32_t ctrl_ext;
3341 
3342 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3343 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3344 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3345 	}
3346 }
3347 
3348 static int
3349 emx_is_valid_eaddr(const uint8_t *addr)
3350 {
3351 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3352 
3353 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3354 		return (FALSE);
3355 
3356 	return (TRUE);
3357 }
3358 
3359 /*
3360  * Enable PCI Wake On Lan capability
3361  */
3362 void
3363 emx_enable_wol(device_t dev)
3364 {
3365 	uint16_t cap, status;
3366 	uint8_t id;
3367 
3368 	/* First find the capabilities pointer*/
3369 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3370 
3371 	/* Read the PM Capabilities */
3372 	id = pci_read_config(dev, cap, 1);
3373 	if (id != PCIY_PMG)     /* Something wrong */
3374 		return;
3375 
3376 	/*
3377 	 * OK, we have the power capabilities,
3378 	 * so now get the status register
3379 	 */
3380 	cap += PCIR_POWER_STATUS;
3381 	status = pci_read_config(dev, cap, 2);
3382 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3383 	pci_write_config(dev, cap, status, 2);
3384 }
3385 
3386 static void
3387 emx_update_stats(struct emx_softc *sc)
3388 {
3389 	struct ifnet *ifp = &sc->arpcom.ac_if;
3390 
3391 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3392 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3393 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3394 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3395 	}
3396 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3397 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3398 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3399 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3400 
3401 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3402 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3403 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3404 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3405 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3406 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3407 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3408 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3409 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3410 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3411 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3412 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3413 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3414 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3415 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3416 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3417 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3418 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3419 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3420 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3421 
3422 	/* For the 64-bit byte counters the low dword must be read first. */
3423 	/* Both registers clear on the read of the high dword */
3424 
3425 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3426 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3427 
3428 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3429 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3430 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3431 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3432 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3433 
3434 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3435 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3436 
3437 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3438 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3439 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3440 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3441 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3442 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3443 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3444 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3445 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3446 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3447 
3448 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3449 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3450 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3451 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3452 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3453 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3454 
3455 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3456 
3457 	/* Rx Errors */
3458 	IFNET_STAT_SET(ifp, ierrors,
3459 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3460 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3461 
3462 	/* Tx Errors */
3463 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3464 }
3465 
3466 static void
3467 emx_print_debug_info(struct emx_softc *sc)
3468 {
3469 	device_t dev = sc->dev;
3470 	uint8_t *hw_addr = sc->hw.hw_addr;
3471 	int i;
3472 
3473 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3474 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3475 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3476 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3477 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3478 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3479 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3480 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3481 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3482 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3483 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3484 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3485 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3486 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3487 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3488 
3489 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3490 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3491 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3492 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3493 	}
3494 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3495 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3496 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3497 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3498 	}
3499 
3500 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3501 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3502 		    sc->tx_data[i].num_tx_desc_avail);
3503 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3504 		    sc->tx_data[i].tso_segments);
3505 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3506 		    sc->tx_data[i].tso_ctx_reused);
3507 	}
3508 }
3509 
3510 static void
3511 emx_print_hw_stats(struct emx_softc *sc)
3512 {
3513 	device_t dev = sc->dev;
3514 
3515 	device_printf(dev, "Excessive collisions = %lld\n",
3516 	    (long long)sc->stats.ecol);
3517 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3518 	device_printf(dev, "Symbol errors = %lld\n",
3519 	    (long long)sc->stats.symerrs);
3520 #endif
3521 	device_printf(dev, "Sequence errors = %lld\n",
3522 	    (long long)sc->stats.sec);
3523 	device_printf(dev, "Defer count = %lld\n",
3524 	    (long long)sc->stats.dc);
3525 	device_printf(dev, "Missed Packets = %lld\n",
3526 	    (long long)sc->stats.mpc);
3527 	device_printf(dev, "Receive No Buffers = %lld\n",
3528 	    (long long)sc->stats.rnbc);
3529 	/* RLEC is inaccurate on some hardware, calculate our own. */
3530 	device_printf(dev, "Receive Length Errors = %lld\n",
3531 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3532 	device_printf(dev, "Receive errors = %lld\n",
3533 	    (long long)sc->stats.rxerrc);
3534 	device_printf(dev, "Crc errors = %lld\n",
3535 	    (long long)sc->stats.crcerrs);
3536 	device_printf(dev, "Alignment errors = %lld\n",
3537 	    (long long)sc->stats.algnerrc);
3538 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3539 	    (long long)sc->stats.cexterr);
3540 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3541 	device_printf(dev, "XON Rcvd = %lld\n",
3542 	    (long long)sc->stats.xonrxc);
3543 	device_printf(dev, "XON Xmtd = %lld\n",
3544 	    (long long)sc->stats.xontxc);
3545 	device_printf(dev, "XOFF Rcvd = %lld\n",
3546 	    (long long)sc->stats.xoffrxc);
3547 	device_printf(dev, "XOFF Xmtd = %lld\n",
3548 	    (long long)sc->stats.xofftxc);
3549 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3550 	    (long long)sc->stats.gprc);
3551 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3552 	    (long long)sc->stats.gptc);
3553 }
3554 
3555 static void
3556 emx_print_nvm_info(struct emx_softc *sc)
3557 {
3558 	uint16_t eeprom_data;
3559 	int i, j, row = 0;
3560 
3561 	/* Its a bit crude, but it gets the job done */
3562 	kprintf("\nInterface EEPROM Dump:\n");
3563 	kprintf("Offset\n0x0000  ");
3564 	for (i = 0, j = 0; i < 32; i++, j++) {
3565 		if (j == 8) { /* Make the offset block */
3566 			j = 0; ++row;
3567 			kprintf("\n0x00%x0  ",row);
3568 		}
3569 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3570 		kprintf("%04x ", eeprom_data);
3571 	}
3572 	kprintf("\n");
3573 }
3574 
3575 static int
3576 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3577 {
3578 	struct emx_softc *sc;
3579 	struct ifnet *ifp;
3580 	int error, result;
3581 
3582 	result = -1;
3583 	error = sysctl_handle_int(oidp, &result, 0, req);
3584 	if (error || !req->newptr)
3585 		return (error);
3586 
3587 	sc = (struct emx_softc *)arg1;
3588 	ifp = &sc->arpcom.ac_if;
3589 
3590 	ifnet_serialize_all(ifp);
3591 
3592 	if (result == 1)
3593 		emx_print_debug_info(sc);
3594 
3595 	/*
3596 	 * This value will cause a hex dump of the
3597 	 * first 32 16-bit words of the EEPROM to
3598 	 * the screen.
3599 	 */
3600 	if (result == 2)
3601 		emx_print_nvm_info(sc);
3602 
3603 	ifnet_deserialize_all(ifp);
3604 
3605 	return (error);
3606 }
3607 
3608 static int
3609 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3610 {
3611 	int error, result;
3612 
3613 	result = -1;
3614 	error = sysctl_handle_int(oidp, &result, 0, req);
3615 	if (error || !req->newptr)
3616 		return (error);
3617 
3618 	if (result == 1) {
3619 		struct emx_softc *sc = (struct emx_softc *)arg1;
3620 		struct ifnet *ifp = &sc->arpcom.ac_if;
3621 
3622 		ifnet_serialize_all(ifp);
3623 		emx_print_hw_stats(sc);
3624 		ifnet_deserialize_all(ifp);
3625 	}
3626 	return (error);
3627 }
3628 
3629 static void
3630 emx_add_sysctl(struct emx_softc *sc)
3631 {
3632 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3633 	char pkt_desc[32];
3634 	int i;
3635 #endif
3636 
3637 	sysctl_ctx_init(&sc->sysctl_ctx);
3638 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3639 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3640 				device_get_nameunit(sc->dev),
3641 				CTLFLAG_RD, 0, "");
3642 	if (sc->sysctl_tree == NULL) {
3643 		device_printf(sc->dev, "can't add sysctl node\n");
3644 		return;
3645 	}
3646 
3647 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3648 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3649 			emx_sysctl_debug_info, "I", "Debug Information");
3650 
3651 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3652 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3653 			emx_sysctl_stats, "I", "Statistics");
3654 
3655 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3656 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3657 	    "# of RX descs");
3658 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3659 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3660 	    "# of TX descs");
3661 
3662 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3663 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3664 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3665 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3666 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3667 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3668 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3669 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3670 	    emx_sysctl_tx_wreg_nsegs, "I",
3671 	    "# segments sent before write to hardware register");
3672 
3673 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3674 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3675 	    "# of RX rings");
3676 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3677 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3678 	    "# of TX rings");
3679 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3680 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3681 	    "# of TX rings used");
3682 
3683 #ifdef IFPOLL_ENABLE
3684 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3685 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3686 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3687 			"NPOLLING RX cpu offset");
3688 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3689 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3690 			sc, 0, emx_sysctl_npoll_txoff, "I",
3691 			"NPOLLING TX cpu offset");
3692 #endif
3693 
3694 #ifdef EMX_RSS_DEBUG
3695 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3696 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3697 		       0, "RSS debug level");
3698 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3699 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3700 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3701 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3702 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3703 		    "RXed packets");
3704 	}
3705 #endif
3706 #ifdef EMX_TSS_DEBUG
3707 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3708 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3709 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3710 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3711 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3712 		    "TXed packets");
3713 	}
3714 #endif
3715 }
3716 
3717 static int
3718 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3719 {
3720 	struct emx_softc *sc = (void *)arg1;
3721 	struct ifnet *ifp = &sc->arpcom.ac_if;
3722 	int error, throttle;
3723 
3724 	throttle = sc->int_throttle_ceil;
3725 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3726 	if (error || req->newptr == NULL)
3727 		return error;
3728 	if (throttle < 0 || throttle > 1000000000 / 256)
3729 		return EINVAL;
3730 
3731 	if (throttle) {
3732 		/*
3733 		 * Set the interrupt throttling rate in 256ns increments,
3734 		 * recalculate sysctl value assignment to get exact frequency.
3735 		 */
3736 		throttle = 1000000000 / 256 / throttle;
3737 
3738 		/* Upper 16bits of ITR is reserved and should be zero */
3739 		if (throttle & 0xffff0000)
3740 			return EINVAL;
3741 	}
3742 
3743 	ifnet_serialize_all(ifp);
3744 
3745 	if (throttle)
3746 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3747 	else
3748 		sc->int_throttle_ceil = 0;
3749 
3750 	if (ifp->if_flags & IFF_RUNNING)
3751 		emx_set_itr(sc, throttle);
3752 
3753 	ifnet_deserialize_all(ifp);
3754 
3755 	if (bootverbose) {
3756 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3757 			  sc->int_throttle_ceil);
3758 	}
3759 	return 0;
3760 }
3761 
3762 static int
3763 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3764 {
3765 	struct emx_softc *sc = (void *)arg1;
3766 	struct ifnet *ifp = &sc->arpcom.ac_if;
3767 	struct emx_txdata *tdata = &sc->tx_data[0];
3768 	int error, segs;
3769 
3770 	segs = tdata->tx_intr_nsegs;
3771 	error = sysctl_handle_int(oidp, &segs, 0, req);
3772 	if (error || req->newptr == NULL)
3773 		return error;
3774 	if (segs <= 0)
3775 		return EINVAL;
3776 
3777 	ifnet_serialize_all(ifp);
3778 
3779 	/*
3780 	 * Don't allow tx_intr_nsegs to become:
3781 	 * o  Less the oact_tx_desc
3782 	 * o  Too large that no TX desc will cause TX interrupt to
3783 	 *    be generated (OACTIVE will never recover)
3784 	 * o  Too small that will cause tx_dd[] overflow
3785 	 */
3786 	if (segs < tdata->oact_tx_desc ||
3787 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3788 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3789 		error = EINVAL;
3790 	} else {
3791 		int i;
3792 
3793 		error = 0;
3794 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3795 			sc->tx_data[i].tx_intr_nsegs = segs;
3796 	}
3797 
3798 	ifnet_deserialize_all(ifp);
3799 
3800 	return error;
3801 }
3802 
3803 static int
3804 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3805 {
3806 	struct emx_softc *sc = (void *)arg1;
3807 	struct ifnet *ifp = &sc->arpcom.ac_if;
3808 	int error, nsegs, i;
3809 
3810 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3811 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3812 	if (error || req->newptr == NULL)
3813 		return error;
3814 
3815 	ifnet_serialize_all(ifp);
3816 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3817 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3818 	ifnet_deserialize_all(ifp);
3819 
3820 	return 0;
3821 }
3822 
3823 #ifdef IFPOLL_ENABLE
3824 
3825 static int
3826 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3827 {
3828 	struct emx_softc *sc = (void *)arg1;
3829 	struct ifnet *ifp = &sc->arpcom.ac_if;
3830 	int error, off;
3831 
3832 	off = sc->rx_npoll_off;
3833 	error = sysctl_handle_int(oidp, &off, 0, req);
3834 	if (error || req->newptr == NULL)
3835 		return error;
3836 	if (off < 0)
3837 		return EINVAL;
3838 
3839 	ifnet_serialize_all(ifp);
3840 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3841 		error = EINVAL;
3842 	} else {
3843 		error = 0;
3844 		sc->rx_npoll_off = off;
3845 	}
3846 	ifnet_deserialize_all(ifp);
3847 
3848 	return error;
3849 }
3850 
3851 static int
3852 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3853 {
3854 	struct emx_softc *sc = (void *)arg1;
3855 	struct ifnet *ifp = &sc->arpcom.ac_if;
3856 	int error, off;
3857 
3858 	off = sc->tx_npoll_off;
3859 	error = sysctl_handle_int(oidp, &off, 0, req);
3860 	if (error || req->newptr == NULL)
3861 		return error;
3862 	if (off < 0)
3863 		return EINVAL;
3864 
3865 	ifnet_serialize_all(ifp);
3866 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3867 		error = EINVAL;
3868 	} else {
3869 		error = 0;
3870 		sc->tx_npoll_off = off;
3871 	}
3872 	ifnet_deserialize_all(ifp);
3873 
3874 	return error;
3875 }
3876 
3877 #endif	/* IFPOLL_ENABLE */
3878 
3879 static int
3880 emx_dma_alloc(struct emx_softc *sc)
3881 {
3882 	int error, i;
3883 
3884 	/*
3885 	 * Create top level busdma tag
3886 	 */
3887 	error = bus_dma_tag_create(NULL, 1, 0,
3888 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3889 			NULL, NULL,
3890 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3891 			0, &sc->parent_dtag);
3892 	if (error) {
3893 		device_printf(sc->dev, "could not create top level DMA tag\n");
3894 		return error;
3895 	}
3896 
3897 	/*
3898 	 * Allocate transmit descriptors ring and buffers
3899 	 */
3900 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3901 		error = emx_create_tx_ring(&sc->tx_data[i]);
3902 		if (error) {
3903 			device_printf(sc->dev,
3904 			    "Could not setup transmit structures\n");
3905 			return error;
3906 		}
3907 	}
3908 
3909 	/*
3910 	 * Allocate receive descriptors ring and buffers
3911 	 */
3912 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3913 		error = emx_create_rx_ring(&sc->rx_data[i]);
3914 		if (error) {
3915 			device_printf(sc->dev,
3916 			    "Could not setup receive structures\n");
3917 			return error;
3918 		}
3919 	}
3920 	return 0;
3921 }
3922 
3923 static void
3924 emx_dma_free(struct emx_softc *sc)
3925 {
3926 	int i;
3927 
3928 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3929 		emx_destroy_tx_ring(&sc->tx_data[i],
3930 		    sc->tx_data[i].num_tx_desc);
3931 	}
3932 
3933 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3934 		emx_destroy_rx_ring(&sc->rx_data[i],
3935 		    sc->rx_data[i].num_rx_desc);
3936 	}
3937 
3938 	/* Free top level busdma tag */
3939 	if (sc->parent_dtag != NULL)
3940 		bus_dma_tag_destroy(sc->parent_dtag);
3941 }
3942 
3943 static void
3944 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3945 {
3946 	struct emx_softc *sc = ifp->if_softc;
3947 
3948 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3949 }
3950 
3951 static void
3952 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3953 {
3954 	struct emx_softc *sc = ifp->if_softc;
3955 
3956 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3957 }
3958 
3959 static int
3960 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3961 {
3962 	struct emx_softc *sc = ifp->if_softc;
3963 
3964 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3965 }
3966 
3967 static void
3968 emx_serialize_skipmain(struct emx_softc *sc)
3969 {
3970 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3971 }
3972 
3973 static void
3974 emx_deserialize_skipmain(struct emx_softc *sc)
3975 {
3976 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3977 }
3978 
3979 #ifdef INVARIANTS
3980 
3981 static void
3982 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3983     boolean_t serialized)
3984 {
3985 	struct emx_softc *sc = ifp->if_softc;
3986 
3987 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3988 	    slz, serialized);
3989 }
3990 
3991 #endif	/* INVARIANTS */
3992 
3993 #ifdef IFPOLL_ENABLE
3994 
3995 static void
3996 emx_npoll_status(struct ifnet *ifp)
3997 {
3998 	struct emx_softc *sc = ifp->if_softc;
3999 	uint32_t reg_icr;
4000 
4001 	ASSERT_SERIALIZED(&sc->main_serialize);
4002 
4003 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4004 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4005 		callout_stop(&sc->timer);
4006 		sc->hw.mac.get_link_status = 1;
4007 		emx_update_link_status(sc);
4008 		callout_reset(&sc->timer, hz, emx_timer, sc);
4009 	}
4010 }
4011 
4012 static void
4013 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4014 {
4015 	struct emx_txdata *tdata = arg;
4016 
4017 	ASSERT_SERIALIZED(&tdata->tx_serialize);
4018 
4019 	emx_txeof(tdata);
4020 	if (!ifsq_is_empty(tdata->ifsq))
4021 		ifsq_devstart(tdata->ifsq);
4022 }
4023 
4024 static void
4025 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4026 {
4027 	struct emx_rxdata *rdata = arg;
4028 
4029 	ASSERT_SERIALIZED(&rdata->rx_serialize);
4030 
4031 	emx_rxeof(rdata, cycle);
4032 }
4033 
4034 static void
4035 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4036 {
4037 	struct emx_softc *sc = ifp->if_softc;
4038 	int i, txr_cnt;
4039 
4040 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4041 
4042 	if (info) {
4043 		int off;
4044 
4045 		info->ifpi_status.status_func = emx_npoll_status;
4046 		info->ifpi_status.serializer = &sc->main_serialize;
4047 
4048 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
4049 		off = sc->tx_npoll_off;
4050 		for (i = 0; i < txr_cnt; ++i) {
4051 			struct emx_txdata *tdata = &sc->tx_data[i];
4052 			int idx = i + off;
4053 
4054 			KKASSERT(idx < ncpus2);
4055 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4056 			info->ifpi_tx[idx].arg = tdata;
4057 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4058 			ifsq_set_cpuid(tdata->ifsq, idx);
4059 		}
4060 
4061 		off = sc->rx_npoll_off;
4062 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
4063 			struct emx_rxdata *rdata = &sc->rx_data[i];
4064 			int idx = i + off;
4065 
4066 			KKASSERT(idx < ncpus2);
4067 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4068 			info->ifpi_rx[idx].arg = rdata;
4069 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4070 		}
4071 
4072 		if (ifp->if_flags & IFF_RUNNING) {
4073 			if (txr_cnt == sc->tx_ring_inuse)
4074 				emx_disable_intr(sc);
4075 			else
4076 				emx_init(sc);
4077 		}
4078 	} else {
4079 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4080 			struct emx_txdata *tdata = &sc->tx_data[i];
4081 
4082 			ifsq_set_cpuid(tdata->ifsq,
4083 			    rman_get_cpuid(sc->intr_res));
4084 		}
4085 
4086 		if (ifp->if_flags & IFF_RUNNING) {
4087 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4088 			if (txr_cnt == sc->tx_ring_inuse)
4089 				emx_enable_intr(sc);
4090 			else
4091 				emx_init(sc);
4092 		}
4093 	}
4094 }
4095 
4096 #endif	/* IFPOLL_ENABLE */
4097 
4098 static void
4099 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4100 {
4101 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4102 	if (sc->hw.mac.type == e1000_82574) {
4103 		int i;
4104 
4105 		/*
4106 		 * When using MSIX interrupts we need to
4107 		 * throttle using the EITR register
4108 		 */
4109 		for (i = 0; i < 4; ++i)
4110 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4111 	}
4112 }
4113 
4114 /*
4115  * Disable the L0s, 82574L Errata #20
4116  */
4117 static void
4118 emx_disable_aspm(struct emx_softc *sc)
4119 {
4120 	uint16_t link_cap, link_ctrl, disable;
4121 	uint8_t pcie_ptr, reg;
4122 	device_t dev = sc->dev;
4123 
4124 	switch (sc->hw.mac.type) {
4125 	case e1000_82571:
4126 	case e1000_82572:
4127 	case e1000_82573:
4128 		/*
4129 		 * 82573 specification update
4130 		 * errata #8 disable L0s
4131 		 * errata #41 disable L1
4132 		 *
4133 		 * 82571/82572 specification update
4134 		 # errata #13 disable L1
4135 		 * errata #68 disable L0s
4136 		 */
4137 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4138 		break;
4139 
4140 	case e1000_82574:
4141 		/*
4142 		 * 82574 specification update errata #20
4143 		 *
4144 		 * There is no need to disable L1
4145 		 */
4146 		disable = PCIEM_LNKCTL_ASPM_L0S;
4147 		break;
4148 
4149 	default:
4150 		return;
4151 	}
4152 
4153 	pcie_ptr = pci_get_pciecap_ptr(dev);
4154 	if (pcie_ptr == 0)
4155 		return;
4156 
4157 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4158 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4159 		return;
4160 
4161 	if (bootverbose)
4162 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4163 
4164 	reg = pcie_ptr + PCIER_LINKCTRL;
4165 	link_ctrl = pci_read_config(dev, reg, 2);
4166 	link_ctrl &= ~disable;
4167 	pci_write_config(dev, reg, link_ctrl, 2);
4168 }
4169 
4170 static int
4171 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4172 {
4173 	int iphlen, hoff, thoff, ex = 0;
4174 	struct mbuf *m;
4175 	struct ip *ip;
4176 
4177 	m = *mp;
4178 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4179 
4180 	iphlen = m->m_pkthdr.csum_iphlen;
4181 	thoff = m->m_pkthdr.csum_thlen;
4182 	hoff = m->m_pkthdr.csum_lhlen;
4183 
4184 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4185 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4186 	KASSERT(hoff > 0, ("invalid ether hlen"));
4187 
4188 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4189 		ex = 4;
4190 
4191 	if (m->m_len < hoff + iphlen + thoff + ex) {
4192 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4193 		if (m == NULL) {
4194 			*mp = NULL;
4195 			return ENOBUFS;
4196 		}
4197 		*mp = m;
4198 	}
4199 	ip = mtodoff(m, struct ip *, hoff);
4200 	ip->ip_len = 0;
4201 
4202 	return 0;
4203 }
4204 
4205 static int
4206 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4207     uint32_t *txd_upper, uint32_t *txd_lower)
4208 {
4209 	struct e1000_context_desc *TXD;
4210 	int hoff, iphlen, thoff, hlen;
4211 	int mss, pktlen, curr_txd;
4212 
4213 #ifdef EMX_TSO_DEBUG
4214 	tdata->tso_segments++;
4215 #endif
4216 
4217 	iphlen = mp->m_pkthdr.csum_iphlen;
4218 	thoff = mp->m_pkthdr.csum_thlen;
4219 	hoff = mp->m_pkthdr.csum_lhlen;
4220 	mss = mp->m_pkthdr.tso_segsz;
4221 	pktlen = mp->m_pkthdr.len;
4222 
4223 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4224 	    tdata->csum_flags == CSUM_TSO &&
4225 	    tdata->csum_iphlen == iphlen &&
4226 	    tdata->csum_lhlen == hoff &&
4227 	    tdata->csum_thlen == thoff &&
4228 	    tdata->csum_mss == mss &&
4229 	    tdata->csum_pktlen == pktlen) {
4230 		*txd_upper = tdata->csum_txd_upper;
4231 		*txd_lower = tdata->csum_txd_lower;
4232 #ifdef EMX_TSO_DEBUG
4233 		tdata->tso_ctx_reused++;
4234 #endif
4235 		return 0;
4236 	}
4237 	hlen = hoff + iphlen + thoff;
4238 
4239 	/*
4240 	 * Setup a new TSO context.
4241 	 */
4242 
4243 	curr_txd = tdata->next_avail_tx_desc;
4244 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4245 
4246 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4247 		     E1000_TXD_DTYP_D |		/* Data descr type */
4248 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4249 
4250 	/* IP and/or TCP header checksum calculation and insertion. */
4251 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4252 
4253 	/*
4254 	 * Start offset for header checksum calculation.
4255 	 * End offset for header checksum calculation.
4256 	 * Offset of place put the checksum.
4257 	 */
4258 	TXD->lower_setup.ip_fields.ipcss = hoff;
4259 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4260 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4261 
4262 	/*
4263 	 * Start offset for payload checksum calculation.
4264 	 * End offset for payload checksum calculation.
4265 	 * Offset of place to put the checksum.
4266 	 */
4267 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4268 	TXD->upper_setup.tcp_fields.tucse = 0;
4269 	TXD->upper_setup.tcp_fields.tucso =
4270 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4271 
4272 	/*
4273 	 * Payload size per packet w/o any headers.
4274 	 * Length of all headers up to payload.
4275 	 */
4276 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4277 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4278 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4279 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4280 				E1000_TXD_CMD_TSE |	/* TSE context */
4281 				E1000_TXD_CMD_IP |	/* Do IP csum */
4282 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4283 				(pktlen - hlen));	/* Total len */
4284 
4285 	/* Save the information for this TSO context */
4286 	tdata->csum_flags = CSUM_TSO;
4287 	tdata->csum_lhlen = hoff;
4288 	tdata->csum_iphlen = iphlen;
4289 	tdata->csum_thlen = thoff;
4290 	tdata->csum_mss = mss;
4291 	tdata->csum_pktlen = pktlen;
4292 	tdata->csum_txd_upper = *txd_upper;
4293 	tdata->csum_txd_lower = *txd_lower;
4294 
4295 	if (++curr_txd == tdata->num_tx_desc)
4296 		curr_txd = 0;
4297 
4298 	KKASSERT(tdata->num_tx_desc_avail > 0);
4299 	tdata->num_tx_desc_avail--;
4300 
4301 	tdata->next_avail_tx_desc = curr_txd;
4302 	return 1;
4303 }
4304 
4305 static int
4306 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4307 {
4308 	if (polling)
4309 		return sc->tx_ring_cnt;
4310 	else
4311 		return 1;
4312 }
4313