xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision d2cd83ff)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_polling.h"
68 #include "opt_serializer.h"
69 #include "opt_rss.h"
70 #include "opt_emx.h"
71 
72 #include <sys/param.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/interrupt.h>
76 #include <sys/kernel.h>
77 #include <sys/ktr.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/proc.h>
81 #include <sys/rman.h>
82 #include <sys/serialize.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #ifdef EMX_RSS_DEBUG
114 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115 do { \
116 	if (sc->rss_debug >= lvl) \
117 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118 } while (0)
119 #else	/* !EMX_RSS_DEBUG */
120 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
121 #endif	/* EMX_RSS_DEBUG */
122 
123 #define EMX_NAME	"Intel(R) PRO/1000 "
124 
125 #define EMX_DEVICE(id)	\
126 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
127 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
128 
129 static const struct emx_device {
130 	uint16_t	vid;
131 	uint16_t	did;
132 	const char	*desc;
133 } emx_devices[] = {
134 	EMX_DEVICE(82571EB_COPPER),
135 	EMX_DEVICE(82571EB_FIBER),
136 	EMX_DEVICE(82571EB_SERDES),
137 	EMX_DEVICE(82571EB_SERDES_DUAL),
138 	EMX_DEVICE(82571EB_SERDES_QUAD),
139 	EMX_DEVICE(82571EB_QUAD_COPPER),
140 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
141 	EMX_DEVICE(82571EB_QUAD_FIBER),
142 	EMX_DEVICE(82571PT_QUAD_COPPER),
143 
144 	EMX_DEVICE(82572EI_COPPER),
145 	EMX_DEVICE(82572EI_FIBER),
146 	EMX_DEVICE(82572EI_SERDES),
147 	EMX_DEVICE(82572EI),
148 
149 	EMX_DEVICE(82573E),
150 	EMX_DEVICE(82573E_IAMT),
151 	EMX_DEVICE(82573L),
152 
153 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
154 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
155 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
156 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
157 
158 	EMX_DEVICE(82574L),
159 
160 	/* required last entry */
161 	EMX_DEVICE_NULL
162 };
163 
164 static int	emx_probe(device_t);
165 static int	emx_attach(device_t);
166 static int	emx_detach(device_t);
167 static int	emx_shutdown(device_t);
168 static int	emx_suspend(device_t);
169 static int	emx_resume(device_t);
170 
171 static void	emx_init(void *);
172 static void	emx_stop(struct emx_softc *);
173 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
174 static void	emx_start(struct ifnet *);
175 #ifdef DEVICE_POLLING
176 static void	emx_poll(struct ifnet *, enum poll_cmd, int);
177 #endif
178 static void	emx_watchdog(struct ifnet *);
179 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
180 static int	emx_media_change(struct ifnet *);
181 static void	emx_timer(void *);
182 
183 static void	emx_intr(void *);
184 static void	emx_rxeof(struct emx_softc *, int, int);
185 static void	emx_txeof(struct emx_softc *);
186 static void	emx_tx_collect(struct emx_softc *);
187 static void	emx_tx_purge(struct emx_softc *);
188 static void	emx_enable_intr(struct emx_softc *);
189 static void	emx_disable_intr(struct emx_softc *);
190 
191 static int	emx_dma_alloc(struct emx_softc *);
192 static void	emx_dma_free(struct emx_softc *);
193 static void	emx_init_tx_ring(struct emx_softc *);
194 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
195 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
196 static int	emx_create_tx_ring(struct emx_softc *);
197 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
198 static void	emx_destroy_tx_ring(struct emx_softc *, int);
199 static void	emx_destroy_rx_ring(struct emx_softc *,
200 		    struct emx_rxdata *, int);
201 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
202 static int	emx_encap(struct emx_softc *, struct mbuf **);
203 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
204 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
205 		    uint32_t *, uint32_t *);
206 
207 static int 	emx_is_valid_eaddr(const uint8_t *);
208 static int	emx_hw_init(struct emx_softc *);
209 static void	emx_setup_ifp(struct emx_softc *);
210 static void	emx_init_tx_unit(struct emx_softc *);
211 static void	emx_init_rx_unit(struct emx_softc *);
212 static void	emx_update_stats(struct emx_softc *);
213 static void	emx_set_promisc(struct emx_softc *);
214 static void	emx_disable_promisc(struct emx_softc *);
215 static void	emx_set_multi(struct emx_softc *);
216 static void	emx_update_link_status(struct emx_softc *);
217 static void	emx_smartspeed(struct emx_softc *);
218 
219 static void	emx_print_debug_info(struct emx_softc *);
220 static void	emx_print_nvm_info(struct emx_softc *);
221 static void	emx_print_hw_stats(struct emx_softc *);
222 
223 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
224 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
225 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
226 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
227 static void	emx_add_sysctl(struct emx_softc *);
228 
229 /* Management and WOL Support */
230 static void	emx_get_mgmt(struct emx_softc *);
231 static void	emx_rel_mgmt(struct emx_softc *);
232 static void	emx_get_hw_control(struct emx_softc *);
233 static void	emx_rel_hw_control(struct emx_softc *);
234 static void	emx_enable_wol(device_t);
235 
236 static device_method_t emx_methods[] = {
237 	/* Device interface */
238 	DEVMETHOD(device_probe,		emx_probe),
239 	DEVMETHOD(device_attach,	emx_attach),
240 	DEVMETHOD(device_detach,	emx_detach),
241 	DEVMETHOD(device_shutdown,	emx_shutdown),
242 	DEVMETHOD(device_suspend,	emx_suspend),
243 	DEVMETHOD(device_resume,	emx_resume),
244 	{ 0, 0 }
245 };
246 
247 static driver_t emx_driver = {
248 	"emx",
249 	emx_methods,
250 	sizeof(struct emx_softc),
251 };
252 
253 static devclass_t emx_devclass;
254 
255 DECLARE_DUMMY_MODULE(if_emx);
256 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
257 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, 0, 0);
258 
259 /*
260  * Tunables
261  */
262 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
263 static int	emx_rxd = EMX_DEFAULT_RXD;
264 static int	emx_txd = EMX_DEFAULT_TXD;
265 static int	emx_smart_pwr_down = FALSE;
266 
267 /* Controls whether promiscuous also shows bad packets */
268 static int	emx_debug_sbp = FALSE;
269 
270 static int	emx_82573_workaround = TRUE;
271 
272 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
273 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
274 TUNABLE_INT("hw.emx.txd", &emx_txd);
275 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
276 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
277 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
278 
279 /* Global used in WOL setup with multiport cards */
280 static int	emx_global_quad_port_a = 0;
281 
282 /* Set this to one to display debug statistics */
283 static int	emx_display_debug_stats = 0;
284 
285 #if !defined(KTR_IF_EMX)
286 #define KTR_IF_EMX	KTR_ALL
287 #endif
288 KTR_INFO_MASTER(if_emx);
289 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
290 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
291 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
292 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
293 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
294 #define logif(name)	KTR_LOG(if_emx_ ## name)
295 
296 static __inline void
297 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
298 {
299 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
300 	/* DD bit must be cleared */
301 	rxd->rxd_staterr = 0;
302 }
303 
304 static __inline void
305 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
306 {
307 	/* Ignore Checksum bit is set */
308 	if (staterr & E1000_RXD_STAT_IXSM)
309 		return;
310 
311 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
312 	    E1000_RXD_STAT_IPCS)
313 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
314 
315 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
316 	    E1000_RXD_STAT_TCPCS) {
317 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
318 					   CSUM_PSEUDO_HDR |
319 					   CSUM_FRAG_NOT_CHECKED;
320 		mp->m_pkthdr.csum_data = htons(0xffff);
321 	}
322 }
323 
324 static __inline struct pktinfo *
325 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
326 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
327 {
328 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
329 	case EMX_RXDMRQ_IPV4_TCP:
330 		pi->pi_netisr = NETISR_IP;
331 		pi->pi_flags = 0;
332 		pi->pi_l3proto = IPPROTO_TCP;
333 		break;
334 
335 	case EMX_RXDMRQ_IPV6_TCP:
336 		pi->pi_netisr = NETISR_IPV6;
337 		pi->pi_flags = 0;
338 		pi->pi_l3proto = IPPROTO_TCP;
339 		break;
340 
341 	case EMX_RXDMRQ_IPV4:
342 		if (staterr & E1000_RXD_STAT_IXSM)
343 			return NULL;
344 
345 		if ((staterr &
346 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
347 		    E1000_RXD_STAT_TCPCS) {
348 			pi->pi_netisr = NETISR_IP;
349 			pi->pi_flags = 0;
350 			pi->pi_l3proto = IPPROTO_UDP;
351 			break;
352 		}
353 		/* FALL THROUGH */
354 	default:
355 		return NULL;
356 	}
357 
358 	m->m_flags |= M_HASH;
359 	m->m_pkthdr.hash = toeplitz_hash(hash);
360 	return pi;
361 }
362 
363 static int
364 emx_probe(device_t dev)
365 {
366 	const struct emx_device *d;
367 	uint16_t vid, did;
368 
369 	vid = pci_get_vendor(dev);
370 	did = pci_get_device(dev);
371 
372 	for (d = emx_devices; d->desc != NULL; ++d) {
373 		if (vid == d->vid && did == d->did) {
374 			device_set_desc(dev, d->desc);
375 			device_set_async_attach(dev, TRUE);
376 			return 0;
377 		}
378 	}
379 	return ENXIO;
380 }
381 
382 static int
383 emx_attach(device_t dev)
384 {
385 	struct emx_softc *sc = device_get_softc(dev);
386 	struct ifnet *ifp = &sc->arpcom.ac_if;
387 	int error = 0;
388 	uint16_t eeprom_data, device_id;
389 
390 	callout_init(&sc->timer);
391 
392 	sc->dev = sc->osdep.dev = dev;
393 
394 	/*
395 	 * Determine hardware and mac type
396 	 */
397 	sc->hw.vendor_id = pci_get_vendor(dev);
398 	sc->hw.device_id = pci_get_device(dev);
399 	sc->hw.revision_id = pci_get_revid(dev);
400 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
401 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
402 
403 	if (e1000_set_mac_type(&sc->hw))
404 		return ENXIO;
405 
406 	/* Enable bus mastering */
407 	pci_enable_busmaster(dev);
408 
409 	/*
410 	 * Allocate IO memory
411 	 */
412 	sc->memory_rid = EMX_BAR_MEM;
413 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
414 					    &sc->memory_rid, RF_ACTIVE);
415 	if (sc->memory == NULL) {
416 		device_printf(dev, "Unable to allocate bus resource: memory\n");
417 		error = ENXIO;
418 		goto fail;
419 	}
420 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
421 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
422 
423 	/* XXX This is quite goofy, it is not actually used */
424 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
425 
426 	/*
427 	 * Allocate interrupt
428 	 */
429 	sc->intr_rid = 0;
430 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
431 					      RF_SHAREABLE | RF_ACTIVE);
432 	if (sc->intr_res == NULL) {
433 		device_printf(dev, "Unable to allocate bus resource: "
434 		    "interrupt\n");
435 		error = ENXIO;
436 		goto fail;
437 	}
438 
439 	/* Save PCI command register for Shared Code */
440 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
441 	sc->hw.back = &sc->osdep;
442 
443 	/* Do Shared Code initialization */
444 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
445 		device_printf(dev, "Setup of Shared code failed\n");
446 		error = ENXIO;
447 		goto fail;
448 	}
449 	e1000_get_bus_info(&sc->hw);
450 
451 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
452 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
453 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
454 
455 	/*
456 	 * Interrupt throttle rate
457 	 */
458 	if (emx_int_throttle_ceil == 0) {
459 		sc->int_throttle_ceil = 0;
460 	} else {
461 		int throttle = emx_int_throttle_ceil;
462 
463 		if (throttle < 0)
464 			throttle = EMX_DEFAULT_ITR;
465 
466 		/* Recalculate the tunable value to get the exact frequency. */
467 		throttle = 1000000000 / 256 / throttle;
468 
469 		/* Upper 16bits of ITR is reserved and should be zero */
470 		if (throttle & 0xffff0000)
471 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
472 
473 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
474 	}
475 
476 	e1000_init_script_state_82541(&sc->hw, TRUE);
477 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
478 
479 	/* Copper options */
480 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
481 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
482 		sc->hw.phy.disable_polarity_correction = FALSE;
483 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
484 	}
485 
486 	/* Set the frame limits assuming standard ethernet sized frames. */
487 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
488 	sc->min_frame_size = ETHER_MIN_LEN;
489 
490 	/* This controls when hardware reports transmit completion status. */
491 	sc->hw.mac.report_tx_early = 1;
492 
493 #ifdef RSS
494 	/* Calculate # of RX rings */
495 	if (ncpus > 1)
496 		sc->rx_ring_cnt = EMX_NRX_RING;
497 	else
498 #endif
499 		sc->rx_ring_cnt = 1;
500 	sc->rx_ring_inuse = sc->rx_ring_cnt;
501 
502 	/* Allocate RX/TX rings' busdma(9) stuffs */
503 	error = emx_dma_alloc(sc);
504 	if (error)
505 		goto fail;
506 
507 	/* Make sure we have a good EEPROM before we read from it */
508 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
509 		/*
510 		 * Some PCI-E parts fail the first check due to
511 		 * the link being in sleep state, call it again,
512 		 * if it fails a second time its a real issue.
513 		 */
514 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
515 			device_printf(dev,
516 			    "The EEPROM Checksum Is Not Valid\n");
517 			error = EIO;
518 			goto fail;
519 		}
520 	}
521 
522 	/* Initialize the hardware */
523 	error = emx_hw_init(sc);
524 	if (error) {
525 		device_printf(dev, "Unable to initialize the hardware\n");
526 		goto fail;
527 	}
528 
529 	/* Copy the permanent MAC address out of the EEPROM */
530 	if (e1000_read_mac_addr(&sc->hw) < 0) {
531 		device_printf(dev, "EEPROM read error while reading MAC"
532 		    " address\n");
533 		error = EIO;
534 		goto fail;
535 	}
536 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
537 		device_printf(dev, "Invalid MAC address\n");
538 		error = EIO;
539 		goto fail;
540 	}
541 
542 	/* Manually turn off all interrupts */
543 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
544 
545 	/* Setup OS specific network interface */
546 	emx_setup_ifp(sc);
547 
548 	/* Add sysctl tree, must after emx_setup_ifp() */
549 	emx_add_sysctl(sc);
550 
551 	/* Initialize statistics */
552 	emx_update_stats(sc);
553 
554 	sc->hw.mac.get_link_status = 1;
555 	emx_update_link_status(sc);
556 
557 	/* Indicate SOL/IDER usage */
558 	if (e1000_check_reset_block(&sc->hw)) {
559 		device_printf(dev,
560 		    "PHY reset is blocked due to SOL/IDER session.\n");
561 	}
562 
563 	/* Determine if we have to control management hardware */
564 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
565 
566 	/*
567 	 * Setup Wake-on-Lan
568 	 */
569 	switch (sc->hw.mac.type) {
570 	case e1000_82571:
571 	case e1000_80003es2lan:
572 		if (sc->hw.bus.func == 1) {
573 			e1000_read_nvm(&sc->hw,
574 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
575 		} else {
576 			e1000_read_nvm(&sc->hw,
577 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
578 		}
579 		eeprom_data &= EMX_EEPROM_APME;
580 		break;
581 
582 	default:
583 		/* APME bit in EEPROM is mapped to WUC.APME */
584 		eeprom_data =
585 		    E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
586 		break;
587 	}
588 	if (eeprom_data)
589 		sc->wol = E1000_WUFC_MAG;
590 	/*
591          * We have the eeprom settings, now apply the special cases
592          * where the eeprom may be wrong or the board won't support
593          * wake on lan on a particular port
594 	 */
595 	device_id = pci_get_device(dev);
596         switch (device_id) {
597 	case E1000_DEV_ID_82571EB_FIBER:
598 		/*
599 		 * Wake events only supported on port A for dual fiber
600 		 * regardless of eeprom setting
601 		 */
602 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
603 		    E1000_STATUS_FUNC_1)
604 			sc->wol = 0;
605 		break;
606 
607 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
608 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
609 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
610                 /* if quad port sc, disable WoL on all but port A */
611 		if (emx_global_quad_port_a != 0)
612 			sc->wol = 0;
613 		/* Reset for multiple quad port adapters */
614 		if (++emx_global_quad_port_a == 4)
615 			emx_global_quad_port_a = 0;
616                 break;
617 	}
618 
619 	/* XXX disable wol */
620 	sc->wol = 0;
621 
622 	sc->spare_tx_desc = EMX_TX_SPARE;
623 
624 	/*
625 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
626 	 * and tx_int_nsegs:
627 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
628 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
629 	 */
630 	sc->oact_tx_desc = sc->num_tx_desc / 8;
631 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
632 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
633 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
634 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
635 
636 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
637 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
638 		sc->tx_int_nsegs = sc->oact_tx_desc;
639 
640 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
641 			       &sc->intr_tag, ifp->if_serializer);
642 	if (error) {
643 		device_printf(dev, "Failed to register interrupt handler");
644 		ether_ifdetach(&sc->arpcom.ac_if);
645 		goto fail;
646 	}
647 
648 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
649 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
650 	return (0);
651 fail:
652 	emx_detach(dev);
653 	return (error);
654 }
655 
656 static int
657 emx_detach(device_t dev)
658 {
659 	struct emx_softc *sc = device_get_softc(dev);
660 
661 	if (device_is_attached(dev)) {
662 		struct ifnet *ifp = &sc->arpcom.ac_if;
663 
664 		lwkt_serialize_enter(ifp->if_serializer);
665 
666 		emx_stop(sc);
667 
668 		e1000_phy_hw_reset(&sc->hw);
669 
670 		emx_rel_mgmt(sc);
671 
672 		if (sc->hw.mac.type == e1000_82573 &&
673 		    e1000_check_mng_mode(&sc->hw))
674 			emx_rel_hw_control(sc);
675 
676 		if (sc->wol) {
677 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
678 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
679 			emx_enable_wol(dev);
680 		}
681 
682 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
683 
684 		lwkt_serialize_exit(ifp->if_serializer);
685 
686 		ether_ifdetach(ifp);
687 	}
688 	bus_generic_detach(dev);
689 
690 	if (sc->intr_res != NULL) {
691 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
692 				     sc->intr_res);
693 	}
694 
695 	if (sc->memory != NULL) {
696 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
697 				     sc->memory);
698 	}
699 
700 	emx_dma_free(sc);
701 
702 	/* Free sysctl tree */
703 	if (sc->sysctl_tree != NULL)
704 		sysctl_ctx_free(&sc->sysctl_ctx);
705 
706 	return (0);
707 }
708 
709 static int
710 emx_shutdown(device_t dev)
711 {
712 	return emx_suspend(dev);
713 }
714 
715 static int
716 emx_suspend(device_t dev)
717 {
718 	struct emx_softc *sc = device_get_softc(dev);
719 	struct ifnet *ifp = &sc->arpcom.ac_if;
720 
721 	lwkt_serialize_enter(ifp->if_serializer);
722 
723 	emx_stop(sc);
724 
725 	emx_rel_mgmt(sc);
726 
727         if (sc->hw.mac.type == e1000_82573 &&
728             e1000_check_mng_mode(&sc->hw))
729                 emx_rel_hw_control(sc);
730 
731         if (sc->wol) {
732 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
733 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
734 		emx_enable_wol(dev);
735         }
736 
737 	lwkt_serialize_exit(ifp->if_serializer);
738 
739 	return bus_generic_suspend(dev);
740 }
741 
742 static int
743 emx_resume(device_t dev)
744 {
745 	struct emx_softc *sc = device_get_softc(dev);
746 	struct ifnet *ifp = &sc->arpcom.ac_if;
747 
748 	lwkt_serialize_enter(ifp->if_serializer);
749 
750 	emx_init(sc);
751 	emx_get_mgmt(sc);
752 	if_devstart(ifp);
753 
754 	lwkt_serialize_exit(ifp->if_serializer);
755 
756 	return bus_generic_resume(dev);
757 }
758 
759 static void
760 emx_start(struct ifnet *ifp)
761 {
762 	struct emx_softc *sc = ifp->if_softc;
763 	struct mbuf *m_head;
764 
765 	ASSERT_SERIALIZED(ifp->if_serializer);
766 
767 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
768 		return;
769 
770 	if (!sc->link_active) {
771 		ifq_purge(&ifp->if_snd);
772 		return;
773 	}
774 
775 	while (!ifq_is_empty(&ifp->if_snd)) {
776 		/* Now do we at least have a minimal? */
777 		if (EMX_IS_OACTIVE(sc)) {
778 			emx_tx_collect(sc);
779 			if (EMX_IS_OACTIVE(sc)) {
780 				ifp->if_flags |= IFF_OACTIVE;
781 				sc->no_tx_desc_avail1++;
782 				break;
783 			}
784 		}
785 
786 		logif(pkt_txqueue);
787 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
788 		if (m_head == NULL)
789 			break;
790 
791 		if (emx_encap(sc, &m_head)) {
792 			ifp->if_oerrors++;
793 			emx_tx_collect(sc);
794 			continue;
795 		}
796 
797 		/* Send a copy of the frame to the BPF listener */
798 		ETHER_BPF_MTAP(ifp, m_head);
799 
800 		/* Set timeout in case hardware has problems transmitting. */
801 		ifp->if_timer = EMX_TX_TIMEOUT;
802 	}
803 }
804 
805 static int
806 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
807 {
808 	struct emx_softc *sc = ifp->if_softc;
809 	struct ifreq *ifr = (struct ifreq *)data;
810 	uint16_t eeprom_data = 0;
811 	int max_frame_size, mask, reinit;
812 	int error = 0;
813 
814 	ASSERT_SERIALIZED(ifp->if_serializer);
815 
816 	switch (command) {
817 	case SIOCSIFMTU:
818 		switch (sc->hw.mac.type) {
819 		case e1000_82573:
820 			/*
821 			 * 82573 only supports jumbo frames
822 			 * if ASPM is disabled.
823 			 */
824 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
825 				       &eeprom_data);
826 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
827 				max_frame_size = ETHER_MAX_LEN;
828 				break;
829 			}
830 			/* FALL THROUGH */
831 
832 		/* Limit Jumbo Frame size */
833 		case e1000_82571:
834 		case e1000_82572:
835 		case e1000_82574:
836 		case e1000_80003es2lan:
837 			max_frame_size = 9234;
838 			break;
839 
840 		default:
841 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
842 			break;
843 		}
844 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
845 		    ETHER_CRC_LEN) {
846 			error = EINVAL;
847 			break;
848 		}
849 
850 		ifp->if_mtu = ifr->ifr_mtu;
851 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
852 				     ETHER_CRC_LEN;
853 
854 		if (ifp->if_flags & IFF_RUNNING)
855 			emx_init(sc);
856 		break;
857 
858 	case SIOCSIFFLAGS:
859 		if (ifp->if_flags & IFF_UP) {
860 			if ((ifp->if_flags & IFF_RUNNING)) {
861 				if ((ifp->if_flags ^ sc->if_flags) &
862 				    (IFF_PROMISC | IFF_ALLMULTI)) {
863 					emx_disable_promisc(sc);
864 					emx_set_promisc(sc);
865 				}
866 			} else {
867 				emx_init(sc);
868 			}
869 		} else if (ifp->if_flags & IFF_RUNNING) {
870 			emx_stop(sc);
871 		}
872 		sc->if_flags = ifp->if_flags;
873 		break;
874 
875 	case SIOCADDMULTI:
876 	case SIOCDELMULTI:
877 		if (ifp->if_flags & IFF_RUNNING) {
878 			emx_disable_intr(sc);
879 			emx_set_multi(sc);
880 #ifdef DEVICE_POLLING
881 			if (!(ifp->if_flags & IFF_POLLING))
882 #endif
883 				emx_enable_intr(sc);
884 		}
885 		break;
886 
887 	case SIOCSIFMEDIA:
888 		/* Check SOL/IDER usage */
889 		if (e1000_check_reset_block(&sc->hw)) {
890 			device_printf(sc->dev, "Media change is"
891 			    " blocked due to SOL/IDER session.\n");
892 			break;
893 		}
894 		/* FALL THROUGH */
895 
896 	case SIOCGIFMEDIA:
897 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
898 		break;
899 
900 	case SIOCSIFCAP:
901 		reinit = 0;
902 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
903 		if (mask & IFCAP_HWCSUM) {
904 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
905 			reinit = 1;
906 		}
907 		if (mask & IFCAP_VLAN_HWTAGGING) {
908 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
909 			reinit = 1;
910 		}
911 		if (mask & IFCAP_RSS) {
912 			ifp->if_capenable ^= IFCAP_RSS;
913 			reinit = 1;
914 		}
915 		if (reinit && (ifp->if_flags & IFF_RUNNING))
916 			emx_init(sc);
917 		break;
918 
919 	default:
920 		error = ether_ioctl(ifp, command, data);
921 		break;
922 	}
923 	return (error);
924 }
925 
926 static void
927 emx_watchdog(struct ifnet *ifp)
928 {
929 	struct emx_softc *sc = ifp->if_softc;
930 
931 	ASSERT_SERIALIZED(ifp->if_serializer);
932 
933 	/*
934 	 * The timer is set to 5 every time start queues a packet.
935 	 * Then txeof keeps resetting it as long as it cleans at
936 	 * least one descriptor.
937 	 * Finally, anytime all descriptors are clean the timer is
938 	 * set to 0.
939 	 */
940 
941 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
942 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
943 		/*
944 		 * If we reach here, all TX jobs are completed and
945 		 * the TX engine should have been idled for some time.
946 		 * We don't need to call if_devstart() here.
947 		 */
948 		ifp->if_flags &= ~IFF_OACTIVE;
949 		ifp->if_timer = 0;
950 		return;
951 	}
952 
953 	/*
954 	 * If we are in this routine because of pause frames, then
955 	 * don't reset the hardware.
956 	 */
957 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
958 		ifp->if_timer = EMX_TX_TIMEOUT;
959 		return;
960 	}
961 
962 	if (e1000_check_for_link(&sc->hw) == 0)
963 		if_printf(ifp, "watchdog timeout -- resetting\n");
964 
965 	ifp->if_oerrors++;
966 	sc->watchdog_events++;
967 
968 	emx_init(sc);
969 
970 	if (!ifq_is_empty(&ifp->if_snd))
971 		if_devstart(ifp);
972 }
973 
974 static void
975 emx_init(void *xsc)
976 {
977 	struct emx_softc *sc = xsc;
978 	struct ifnet *ifp = &sc->arpcom.ac_if;
979 	device_t dev = sc->dev;
980 	uint32_t pba;
981 	int i;
982 
983 	ASSERT_SERIALIZED(ifp->if_serializer);
984 
985 	emx_stop(sc);
986 
987 	/*
988 	 * Packet Buffer Allocation (PBA)
989 	 * Writing PBA sets the receive portion of the buffer
990 	 * the remainder is used for the transmit buffer.
991 	 */
992 	switch (sc->hw.mac.type) {
993 	/* Total Packet Buffer on these is 48K */
994 	case e1000_82571:
995 	case e1000_82572:
996 	case e1000_80003es2lan:
997 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
998 		break;
999 
1000 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1001 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1002 		break;
1003 
1004 	case e1000_82574:
1005 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1006 		break;
1007 
1008 	default:
1009 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1010 		if (sc->max_frame_size > 8192)
1011 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1012 		else
1013 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1014 	}
1015 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1016 
1017 	/* Get the latest mac address, User can use a LAA */
1018         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1019 
1020 	/* Put the address into the Receive Address Array */
1021 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1022 
1023 	/*
1024 	 * With the 82571 sc, RAR[0] may be overwritten
1025 	 * when the other port is reset, we make a duplicate
1026 	 * in RAR[14] for that eventuality, this assures
1027 	 * the interface continues to function.
1028 	 */
1029 	if (sc->hw.mac.type == e1000_82571) {
1030 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1031 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1032 		    E1000_RAR_ENTRIES - 1);
1033 	}
1034 
1035 	/* Initialize the hardware */
1036 	if (emx_hw_init(sc)) {
1037 		device_printf(dev, "Unable to initialize the hardware\n");
1038 		/* XXX emx_stop()? */
1039 		return;
1040 	}
1041 	emx_update_link_status(sc);
1042 
1043 	/* Setup VLAN support, basic and offload if available */
1044 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1045 
1046 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1047 		uint32_t ctrl;
1048 
1049 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1050 		ctrl |= E1000_CTRL_VME;
1051 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1052 	}
1053 
1054 	/* Set hardware offload abilities */
1055 	if (ifp->if_capenable & IFCAP_TXCSUM)
1056 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1057 	else
1058 		ifp->if_hwassist = 0;
1059 
1060 	/* Configure for OS presence */
1061 	emx_get_mgmt(sc);
1062 
1063 	/* Prepare transmit descriptors and buffers */
1064 	emx_init_tx_ring(sc);
1065 	emx_init_tx_unit(sc);
1066 
1067 	/* Setup Multicast table */
1068 	emx_set_multi(sc);
1069 
1070 	/*
1071 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1072 	 */
1073 	if (ifp->if_capenable & IFCAP_RSS)
1074 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1075 	else
1076 		sc->rx_ring_inuse = 1;
1077 
1078 	/* Prepare receive descriptors and buffers */
1079 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1080 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1081 			device_printf(dev,
1082 			    "Could not setup receive structures\n");
1083 			emx_stop(sc);
1084 			return;
1085 		}
1086 	}
1087 	emx_init_rx_unit(sc);
1088 
1089 	/* Don't lose promiscuous settings */
1090 	emx_set_promisc(sc);
1091 
1092 	ifp->if_flags |= IFF_RUNNING;
1093 	ifp->if_flags &= ~IFF_OACTIVE;
1094 
1095 	callout_reset(&sc->timer, hz, emx_timer, sc);
1096 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1097 
1098 	/* MSI/X configuration for 82574 */
1099 	if (sc->hw.mac.type == e1000_82574) {
1100 		int tmp;
1101 
1102 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1103 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1104 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1105 		/*
1106 		 * Set the IVAR - interrupt vector routing.
1107 		 * Each nibble represents a vector, high bit
1108 		 * is enable, other 3 bits are the MSIX table
1109 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1110 		 * Link (other) to 2, hence the magic number.
1111 		 */
1112 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1113 	}
1114 
1115 #ifdef DEVICE_POLLING
1116 	/*
1117 	 * Only enable interrupts if we are not polling, make sure
1118 	 * they are off otherwise.
1119 	 */
1120 	if (ifp->if_flags & IFF_POLLING)
1121 		emx_disable_intr(sc);
1122 	else
1123 #endif /* DEVICE_POLLING */
1124 		emx_enable_intr(sc);
1125 
1126 	/* Don't reset the phy next time init gets called */
1127 	sc->hw.phy.reset_disable = TRUE;
1128 }
1129 
1130 #ifdef DEVICE_POLLING
1131 
1132 static void
1133 emx_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1134 {
1135 	struct emx_softc *sc = ifp->if_softc;
1136 	uint32_t reg_icr;
1137 
1138 	ASSERT_SERIALIZED(ifp->if_serializer);
1139 
1140 	switch (cmd) {
1141 	case POLL_REGISTER:
1142 		emx_disable_intr(sc);
1143 		break;
1144 
1145 	case POLL_DEREGISTER:
1146 		emx_enable_intr(sc);
1147 		break;
1148 
1149 	case POLL_AND_CHECK_STATUS:
1150 		reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1151 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1152 			callout_stop(&sc->timer);
1153 			sc->hw.mac.get_link_status = 1;
1154 			emx_update_link_status(sc);
1155 			callout_reset(&sc->timer, hz, emx_timer, sc);
1156 		}
1157 		/* FALL THROUGH */
1158 	case POLL_ONLY:
1159 		if (ifp->if_flags & IFF_RUNNING) {
1160 			int i;
1161 
1162 			for (i = 0; i < sc->rx_ring_inuse; ++i)
1163 				emx_rxeof(sc, i, count);
1164 
1165 			emx_txeof(sc);
1166 			if (!ifq_is_empty(&ifp->if_snd))
1167 				if_devstart(ifp);
1168 		}
1169 		break;
1170 	}
1171 }
1172 
1173 #endif /* DEVICE_POLLING */
1174 
1175 static void
1176 emx_intr(void *xsc)
1177 {
1178 	struct emx_softc *sc = xsc;
1179 	struct ifnet *ifp = &sc->arpcom.ac_if;
1180 	uint32_t reg_icr;
1181 
1182 	logif(intr_beg);
1183 	ASSERT_SERIALIZED(ifp->if_serializer);
1184 
1185 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1186 
1187 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1188 		logif(intr_end);
1189 		return;
1190 	}
1191 
1192 	/*
1193 	 * XXX: some laptops trigger several spurious interrupts
1194 	 * on emx(4) when in the resume cycle. The ICR register
1195 	 * reports all-ones value in this case. Processing such
1196 	 * interrupts would lead to a freeze. I don't know why.
1197 	 */
1198 	if (reg_icr == 0xffffffff) {
1199 		logif(intr_end);
1200 		return;
1201 	}
1202 
1203 	if (ifp->if_flags & IFF_RUNNING) {
1204 		if (reg_icr &
1205 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1206 			int i;
1207 
1208 			for (i = 0; i < sc->rx_ring_inuse; ++i)
1209 				emx_rxeof(sc, i, -1);
1210 		}
1211 		if (reg_icr & E1000_ICR_TXDW) {
1212 			emx_txeof(sc);
1213 			if (!ifq_is_empty(&ifp->if_snd))
1214 				if_devstart(ifp);
1215 		}
1216 	}
1217 
1218 	/* Link status change */
1219 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1220 		callout_stop(&sc->timer);
1221 		sc->hw.mac.get_link_status = 1;
1222 		emx_update_link_status(sc);
1223 
1224 		/* Deal with TX cruft when link lost */
1225 		emx_tx_purge(sc);
1226 
1227 		callout_reset(&sc->timer, hz, emx_timer, sc);
1228 	}
1229 
1230 	if (reg_icr & E1000_ICR_RXO)
1231 		sc->rx_overruns++;
1232 
1233 	logif(intr_end);
1234 }
1235 
1236 static void
1237 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1238 {
1239 	struct emx_softc *sc = ifp->if_softc;
1240 
1241 	ASSERT_SERIALIZED(ifp->if_serializer);
1242 
1243 	emx_update_link_status(sc);
1244 
1245 	ifmr->ifm_status = IFM_AVALID;
1246 	ifmr->ifm_active = IFM_ETHER;
1247 
1248 	if (!sc->link_active)
1249 		return;
1250 
1251 	ifmr->ifm_status |= IFM_ACTIVE;
1252 
1253 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1254 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1255 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1256 	} else {
1257 		switch (sc->link_speed) {
1258 		case 10:
1259 			ifmr->ifm_active |= IFM_10_T;
1260 			break;
1261 		case 100:
1262 			ifmr->ifm_active |= IFM_100_TX;
1263 			break;
1264 
1265 		case 1000:
1266 			ifmr->ifm_active |= IFM_1000_T;
1267 			break;
1268 		}
1269 		if (sc->link_duplex == FULL_DUPLEX)
1270 			ifmr->ifm_active |= IFM_FDX;
1271 		else
1272 			ifmr->ifm_active |= IFM_HDX;
1273 	}
1274 }
1275 
1276 static int
1277 emx_media_change(struct ifnet *ifp)
1278 {
1279 	struct emx_softc *sc = ifp->if_softc;
1280 	struct ifmedia *ifm = &sc->media;
1281 
1282 	ASSERT_SERIALIZED(ifp->if_serializer);
1283 
1284 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1285 		return (EINVAL);
1286 
1287 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1288 	case IFM_AUTO:
1289 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1290 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1291 		break;
1292 
1293 	case IFM_1000_LX:
1294 	case IFM_1000_SX:
1295 	case IFM_1000_T:
1296 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1297 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1298 		break;
1299 
1300 	case IFM_100_TX:
1301 		sc->hw.mac.autoneg = FALSE;
1302 		sc->hw.phy.autoneg_advertised = 0;
1303 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1304 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1305 		else
1306 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1307 		break;
1308 
1309 	case IFM_10_T:
1310 		sc->hw.mac.autoneg = FALSE;
1311 		sc->hw.phy.autoneg_advertised = 0;
1312 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1313 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1314 		else
1315 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1316 		break;
1317 
1318 	default:
1319 		if_printf(ifp, "Unsupported media type\n");
1320 		break;
1321 	}
1322 
1323 	/*
1324 	 * As the speed/duplex settings my have changed we need to
1325 	 * reset the PHY.
1326 	 */
1327 	sc->hw.phy.reset_disable = FALSE;
1328 
1329 	emx_init(sc);
1330 
1331 	return (0);
1332 }
1333 
1334 static int
1335 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1336 {
1337 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1338 	bus_dmamap_t map;
1339 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1340 	struct e1000_tx_desc *ctxd = NULL;
1341 	struct mbuf *m_head = *m_headp;
1342 	uint32_t txd_upper, txd_lower, cmd = 0;
1343 	int maxsegs, nsegs, i, j, first, last = 0, error;
1344 
1345 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1346 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1347 		/*
1348 		 * Make sure that ethernet header and ip.ip_hl are in
1349 		 * contiguous memory, since if TXCSUM is enabled, later
1350 		 * TX context descriptor's setup need to access ip.ip_hl.
1351 		 */
1352 		error = emx_txcsum_pullup(sc, m_headp);
1353 		if (error) {
1354 			KKASSERT(*m_headp == NULL);
1355 			return error;
1356 		}
1357 		m_head = *m_headp;
1358 	}
1359 
1360 	txd_upper = txd_lower = 0;
1361 
1362 	/*
1363 	 * Capture the first descriptor index, this descriptor
1364 	 * will have the index of the EOP which is the only one
1365 	 * that now gets a DONE bit writeback.
1366 	 */
1367 	first = sc->next_avail_tx_desc;
1368 	tx_buffer = &sc->tx_buf[first];
1369 	tx_buffer_mapped = tx_buffer;
1370 	map = tx_buffer->map;
1371 
1372 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1373 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1374 	if (maxsegs > EMX_MAX_SCATTER)
1375 		maxsegs = EMX_MAX_SCATTER;
1376 
1377 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1378 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1379 	if (error) {
1380 		if (error == ENOBUFS)
1381 			sc->mbuf_alloc_failed++;
1382 		else
1383 			sc->no_tx_dma_setup++;
1384 
1385 		m_freem(*m_headp);
1386 		*m_headp = NULL;
1387 		return error;
1388 	}
1389         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1390 
1391 	m_head = *m_headp;
1392 	sc->tx_nsegs += nsegs;
1393 
1394 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1395 		/* TX csum offloading will consume one TX desc */
1396 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1397 	}
1398 	i = sc->next_avail_tx_desc;
1399 
1400 	/* Set up our transmit descriptors */
1401 	for (j = 0; j < nsegs; j++) {
1402 		tx_buffer = &sc->tx_buf[i];
1403 		ctxd = &sc->tx_desc_base[i];
1404 
1405 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1406 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1407 					   txd_lower | segs[j].ds_len);
1408 		ctxd->upper.data = htole32(txd_upper);
1409 
1410 		last = i;
1411 		if (++i == sc->num_tx_desc)
1412 			i = 0;
1413 	}
1414 
1415 	sc->next_avail_tx_desc = i;
1416 
1417 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1418 	sc->num_tx_desc_avail -= nsegs;
1419 
1420         /* Handle VLAN tag */
1421 	if (m_head->m_flags & M_VLANTAG) {
1422 		/* Set the vlan id. */
1423 		ctxd->upper.fields.special =
1424 		    htole16(m_head->m_pkthdr.ether_vlantag);
1425 
1426 		/* Tell hardware to add tag */
1427 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1428 	}
1429 
1430 	tx_buffer->m_head = m_head;
1431 	tx_buffer_mapped->map = tx_buffer->map;
1432 	tx_buffer->map = map;
1433 
1434 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1435 		sc->tx_nsegs = 0;
1436 
1437 		/*
1438 		 * Report Status (RS) is turned on
1439 		 * every tx_int_nsegs descriptors.
1440 		 */
1441 		cmd = E1000_TXD_CMD_RS;
1442 
1443 		/*
1444 		 * Keep track of the descriptor, which will
1445 		 * be written back by hardware.
1446 		 */
1447 		sc->tx_dd[sc->tx_dd_tail] = last;
1448 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1449 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1450 	}
1451 
1452 	/*
1453 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1454 	 */
1455 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1456 
1457 	/*
1458 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1459 	 * the E1000 that this frame is available to transmit.
1460 	 */
1461 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1462 
1463 	return (0);
1464 }
1465 
1466 static void
1467 emx_set_promisc(struct emx_softc *sc)
1468 {
1469 	struct ifnet *ifp = &sc->arpcom.ac_if;
1470 	uint32_t reg_rctl;
1471 
1472 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1473 
1474 	if (ifp->if_flags & IFF_PROMISC) {
1475 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1476 		/* Turn this on if you want to see bad packets */
1477 		if (emx_debug_sbp)
1478 			reg_rctl |= E1000_RCTL_SBP;
1479 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1480 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1481 		reg_rctl |= E1000_RCTL_MPE;
1482 		reg_rctl &= ~E1000_RCTL_UPE;
1483 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1484 	}
1485 }
1486 
1487 static void
1488 emx_disable_promisc(struct emx_softc *sc)
1489 {
1490 	uint32_t reg_rctl;
1491 
1492 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1493 
1494 	reg_rctl &= ~E1000_RCTL_UPE;
1495 	reg_rctl &= ~E1000_RCTL_MPE;
1496 	reg_rctl &= ~E1000_RCTL_SBP;
1497 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1498 }
1499 
1500 static void
1501 emx_set_multi(struct emx_softc *sc)
1502 {
1503 	struct ifnet *ifp = &sc->arpcom.ac_if;
1504 	struct ifmultiaddr *ifma;
1505 	uint32_t reg_rctl = 0;
1506 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1507 	int mcnt = 0;
1508 
1509 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1510 		if (ifma->ifma_addr->sa_family != AF_LINK)
1511 			continue;
1512 
1513 		if (mcnt == EMX_MCAST_ADDR_MAX)
1514 			break;
1515 
1516 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1517 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1518 		mcnt++;
1519 	}
1520 
1521 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1522 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1523 		reg_rctl |= E1000_RCTL_MPE;
1524 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1525 	} else {
1526 		e1000_update_mc_addr_list(&sc->hw, mta,
1527 		    mcnt, 1, sc->hw.mac.rar_entry_count);
1528 	}
1529 }
1530 
1531 /*
1532  * This routine checks for link status and updates statistics.
1533  */
1534 static void
1535 emx_timer(void *xsc)
1536 {
1537 	struct emx_softc *sc = xsc;
1538 	struct ifnet *ifp = &sc->arpcom.ac_if;
1539 
1540 	lwkt_serialize_enter(ifp->if_serializer);
1541 
1542 	emx_update_link_status(sc);
1543 	emx_update_stats(sc);
1544 
1545 	/* Reset LAA into RAR[0] on 82571 */
1546 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1547 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1548 
1549 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1550 		emx_print_hw_stats(sc);
1551 
1552 	emx_smartspeed(sc);
1553 
1554 	callout_reset(&sc->timer, hz, emx_timer, sc);
1555 
1556 	lwkt_serialize_exit(ifp->if_serializer);
1557 }
1558 
1559 static void
1560 emx_update_link_status(struct emx_softc *sc)
1561 {
1562 	struct e1000_hw *hw = &sc->hw;
1563 	struct ifnet *ifp = &sc->arpcom.ac_if;
1564 	device_t dev = sc->dev;
1565 	uint32_t link_check = 0;
1566 
1567 	/* Get the cached link value or read phy for real */
1568 	switch (hw->phy.media_type) {
1569 	case e1000_media_type_copper:
1570 		if (hw->mac.get_link_status) {
1571 			/* Do the work to read phy */
1572 			e1000_check_for_link(hw);
1573 			link_check = !hw->mac.get_link_status;
1574 			if (link_check) /* ESB2 fix */
1575 				e1000_cfg_on_link_up(hw);
1576 		} else {
1577 			link_check = TRUE;
1578 		}
1579 		break;
1580 
1581 	case e1000_media_type_fiber:
1582 		e1000_check_for_link(hw);
1583 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1584 		break;
1585 
1586 	case e1000_media_type_internal_serdes:
1587 		e1000_check_for_link(hw);
1588 		link_check = sc->hw.mac.serdes_has_link;
1589 		break;
1590 
1591 	case e1000_media_type_unknown:
1592 	default:
1593 		break;
1594 	}
1595 
1596 	/* Now check for a transition */
1597 	if (link_check && sc->link_active == 0) {
1598 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1599 		    &sc->link_duplex);
1600 
1601 		/*
1602 		 * Check if we should enable/disable SPEED_MODE bit on
1603 		 * 82571EB/82572EI
1604 		 */
1605 		if (hw->mac.type == e1000_82571 ||
1606 		    hw->mac.type == e1000_82572) {
1607 			int tarc0;
1608 
1609 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1610 			if (sc->link_speed != SPEED_1000)
1611 				tarc0 &= ~EMX_TARC_SPEED_MODE;
1612 			else
1613 				tarc0 |= EMX_TARC_SPEED_MODE;
1614 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1615 		}
1616 		if (bootverbose) {
1617 			device_printf(dev, "Link is up %d Mbps %s\n",
1618 			    sc->link_speed,
1619 			    ((sc->link_duplex == FULL_DUPLEX) ?
1620 			    "Full Duplex" : "Half Duplex"));
1621 		}
1622 		sc->link_active = 1;
1623 		sc->smartspeed = 0;
1624 		ifp->if_baudrate = sc->link_speed * 1000000;
1625 		ifp->if_link_state = LINK_STATE_UP;
1626 		if_link_state_change(ifp);
1627 	} else if (!link_check && sc->link_active == 1) {
1628 		ifp->if_baudrate = sc->link_speed = 0;
1629 		sc->link_duplex = 0;
1630 		if (bootverbose)
1631 			device_printf(dev, "Link is Down\n");
1632 		sc->link_active = 0;
1633 #if 0
1634 		/* Link down, disable watchdog */
1635 		if->if_timer = 0;
1636 #endif
1637 		ifp->if_link_state = LINK_STATE_DOWN;
1638 		if_link_state_change(ifp);
1639 	}
1640 }
1641 
1642 static void
1643 emx_stop(struct emx_softc *sc)
1644 {
1645 	struct ifnet *ifp = &sc->arpcom.ac_if;
1646 	int i;
1647 
1648 	ASSERT_SERIALIZED(ifp->if_serializer);
1649 
1650 	emx_disable_intr(sc);
1651 
1652 	callout_stop(&sc->timer);
1653 
1654 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1655 	ifp->if_timer = 0;
1656 
1657 	/*
1658 	 * Disable multiple receive queues.
1659 	 *
1660 	 * NOTE:
1661 	 * We should disable multiple receive queues before
1662 	 * resetting the hardware.
1663 	 */
1664 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1665 
1666 	e1000_reset_hw(&sc->hw);
1667 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1668 
1669 	for (i = 0; i < sc->num_tx_desc; i++) {
1670 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1671 
1672 		if (tx_buffer->m_head != NULL) {
1673 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1674 			m_freem(tx_buffer->m_head);
1675 			tx_buffer->m_head = NULL;
1676 		}
1677 	}
1678 
1679 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1680 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1681 
1682 	sc->csum_flags = 0;
1683 	sc->csum_ehlen = 0;
1684 	sc->csum_iphlen = 0;
1685 
1686 	sc->tx_dd_head = 0;
1687 	sc->tx_dd_tail = 0;
1688 	sc->tx_nsegs = 0;
1689 }
1690 
1691 static int
1692 emx_hw_init(struct emx_softc *sc)
1693 {
1694 	device_t dev = sc->dev;
1695 	uint16_t rx_buffer_size;
1696 
1697 	/* Issue a global reset */
1698 	e1000_reset_hw(&sc->hw);
1699 
1700 	/* Get control from any management/hw control */
1701 	if (sc->hw.mac.type == e1000_82573 &&
1702 	    e1000_check_mng_mode(&sc->hw))
1703 		emx_get_hw_control(sc);
1704 
1705 	/* Set up smart power down as default off on newer adapters. */
1706 	if (!emx_smart_pwr_down &&
1707 	    (sc->hw.mac.type == e1000_82571 ||
1708 	     sc->hw.mac.type == e1000_82572)) {
1709 		uint16_t phy_tmp = 0;
1710 
1711 		/* Speed up time to link by disabling smart power down. */
1712 		e1000_read_phy_reg(&sc->hw,
1713 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1714 		phy_tmp &= ~IGP02E1000_PM_SPD;
1715 		e1000_write_phy_reg(&sc->hw,
1716 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1717 	}
1718 
1719 	/*
1720 	 * These parameters control the automatic generation (Tx) and
1721 	 * response (Rx) to Ethernet PAUSE frames.
1722 	 * - High water mark should allow for at least two frames to be
1723 	 *   received after sending an XOFF.
1724 	 * - Low water mark works best when it is very near the high water mark.
1725 	 *   This allows the receiver to restart by sending XON when it has
1726 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1727 	 *   restart after one full frame is pulled from the buffer. There
1728 	 *   could be several smaller frames in the buffer and if so they will
1729 	 *   not trigger the XON until their total number reduces the buffer
1730 	 *   by 1500.
1731 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1732 	 */
1733 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1734 
1735 	sc->hw.fc.high_water = rx_buffer_size -
1736 			       roundup2(sc->max_frame_size, 1024);
1737 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1738 
1739 	if (sc->hw.mac.type == e1000_80003es2lan)
1740 		sc->hw.fc.pause_time = 0xFFFF;
1741 	else
1742 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1743 	sc->hw.fc.send_xon = TRUE;
1744 	sc->hw.fc.requested_mode = e1000_fc_full;
1745 
1746 	if (e1000_init_hw(&sc->hw) < 0) {
1747 		device_printf(dev, "Hardware Initialization Failed\n");
1748 		return (EIO);
1749 	}
1750 
1751 	e1000_check_for_link(&sc->hw);
1752 
1753 	return (0);
1754 }
1755 
1756 static void
1757 emx_setup_ifp(struct emx_softc *sc)
1758 {
1759 	struct ifnet *ifp = &sc->arpcom.ac_if;
1760 
1761 	if_initname(ifp, device_get_name(sc->dev),
1762 		    device_get_unit(sc->dev));
1763 	ifp->if_softc = sc;
1764 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1765 	ifp->if_init =  emx_init;
1766 	ifp->if_ioctl = emx_ioctl;
1767 	ifp->if_start = emx_start;
1768 #ifdef DEVICE_POLLING
1769 	ifp->if_poll = emx_poll;
1770 #endif
1771 	ifp->if_watchdog = emx_watchdog;
1772 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1773 	ifq_set_ready(&ifp->if_snd);
1774 
1775 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1776 
1777 	ifp->if_capabilities = IFCAP_HWCSUM |
1778 			       IFCAP_VLAN_HWTAGGING |
1779 			       IFCAP_VLAN_MTU;
1780 	if (sc->rx_ring_cnt > 1)
1781 		ifp->if_capabilities |= IFCAP_RSS;
1782 	ifp->if_capenable = ifp->if_capabilities;
1783 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1784 
1785 	/*
1786 	 * Tell the upper layer(s) we support long frames.
1787 	 */
1788 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1789 
1790 	/*
1791 	 * Specify the media types supported by this sc and register
1792 	 * callbacks to update media and link information
1793 	 */
1794 	ifmedia_init(&sc->media, IFM_IMASK,
1795 		     emx_media_change, emx_media_status);
1796 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1797 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1798 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1799 			    0, NULL);
1800 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1801 	} else {
1802 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1803 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1804 			    0, NULL);
1805 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1806 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1807 			    0, NULL);
1808 		if (sc->hw.phy.type != e1000_phy_ife) {
1809 			ifmedia_add(&sc->media,
1810 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1811 			ifmedia_add(&sc->media,
1812 				IFM_ETHER | IFM_1000_T, 0, NULL);
1813 		}
1814 	}
1815 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1816 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1817 }
1818 
1819 /*
1820  * Workaround for SmartSpeed on 82541 and 82547 controllers
1821  */
1822 static void
1823 emx_smartspeed(struct emx_softc *sc)
1824 {
1825 	uint16_t phy_tmp;
1826 
1827 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1828 	    sc->hw.mac.autoneg == 0 ||
1829 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1830 		return;
1831 
1832 	if (sc->smartspeed == 0) {
1833 		/*
1834 		 * If Master/Slave config fault is asserted twice,
1835 		 * we assume back-to-back
1836 		 */
1837 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1838 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1839 			return;
1840 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1841 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1842 			e1000_read_phy_reg(&sc->hw,
1843 			    PHY_1000T_CTRL, &phy_tmp);
1844 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1845 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1846 				e1000_write_phy_reg(&sc->hw,
1847 				    PHY_1000T_CTRL, phy_tmp);
1848 				sc->smartspeed++;
1849 				if (sc->hw.mac.autoneg &&
1850 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1851 				    !e1000_read_phy_reg(&sc->hw,
1852 				     PHY_CONTROL, &phy_tmp)) {
1853 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1854 						   MII_CR_RESTART_AUTO_NEG;
1855 					e1000_write_phy_reg(&sc->hw,
1856 					    PHY_CONTROL, phy_tmp);
1857 				}
1858 			}
1859 		}
1860 		return;
1861 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1862 		/* If still no link, perhaps using 2/3 pair cable */
1863 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1864 		phy_tmp |= CR_1000T_MS_ENABLE;
1865 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1866 		if (sc->hw.mac.autoneg &&
1867 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1868 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1869 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1870 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1871 		}
1872 	}
1873 
1874 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1875 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1876 		sc->smartspeed = 0;
1877 }
1878 
1879 static int
1880 emx_create_tx_ring(struct emx_softc *sc)
1881 {
1882 	device_t dev = sc->dev;
1883 	struct emx_txbuf *tx_buffer;
1884 	int error, i, tsize;
1885 
1886 	/*
1887 	 * Validate number of transmit descriptors.  It must not exceed
1888 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1889 	 */
1890 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1891 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1892 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1893 		    EMX_DEFAULT_TXD, emx_txd);
1894 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1895 	} else {
1896 		sc->num_tx_desc = emx_txd;
1897 	}
1898 
1899 	/*
1900 	 * Allocate Transmit Descriptor ring
1901 	 */
1902 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1903 			 EMX_DBA_ALIGN);
1904 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1905 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1906 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1907 				&sc->tx_desc_paddr);
1908 	if (sc->tx_desc_base == NULL) {
1909 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1910 		return ENOMEM;
1911 	}
1912 
1913 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1914 			     M_DEVBUF, M_WAITOK | M_ZERO);
1915 
1916 	/*
1917 	 * Create DMA tags for tx buffers
1918 	 */
1919 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1920 			1, 0,			/* alignment, bounds */
1921 			BUS_SPACE_MAXADDR,	/* lowaddr */
1922 			BUS_SPACE_MAXADDR,	/* highaddr */
1923 			NULL, NULL,		/* filter, filterarg */
1924 			EMX_TSO_SIZE,		/* maxsize */
1925 			EMX_MAX_SCATTER,	/* nsegments */
1926 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1927 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1928 			BUS_DMA_ONEBPAGE,	/* flags */
1929 			&sc->txtag);
1930 	if (error) {
1931 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1932 		kfree(sc->tx_buf, M_DEVBUF);
1933 		sc->tx_buf = NULL;
1934 		return error;
1935 	}
1936 
1937 	/*
1938 	 * Create DMA maps for tx buffers
1939 	 */
1940 	for (i = 0; i < sc->num_tx_desc; i++) {
1941 		tx_buffer = &sc->tx_buf[i];
1942 
1943 		error = bus_dmamap_create(sc->txtag,
1944 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1945 					  &tx_buffer->map);
1946 		if (error) {
1947 			device_printf(dev, "Unable to create TX DMA map\n");
1948 			emx_destroy_tx_ring(sc, i);
1949 			return error;
1950 		}
1951 	}
1952 	return (0);
1953 }
1954 
1955 static void
1956 emx_init_tx_ring(struct emx_softc *sc)
1957 {
1958 	/* Clear the old ring contents */
1959 	bzero(sc->tx_desc_base,
1960 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1961 
1962 	/* Reset state */
1963 	sc->next_avail_tx_desc = 0;
1964 	sc->next_tx_to_clean = 0;
1965 	sc->num_tx_desc_avail = sc->num_tx_desc;
1966 }
1967 
1968 static void
1969 emx_init_tx_unit(struct emx_softc *sc)
1970 {
1971 	uint32_t tctl, tarc, tipg = 0;
1972 	uint64_t bus_addr;
1973 
1974 	/* Setup the Base and Length of the Tx Descriptor Ring */
1975 	bus_addr = sc->tx_desc_paddr;
1976 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1977 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1978 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1979 	    (uint32_t)(bus_addr >> 32));
1980 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
1981 	    (uint32_t)bus_addr);
1982 	/* Setup the HW Tx Head and Tail descriptor pointers */
1983 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
1984 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
1985 
1986 	/* Set the default values for the Tx Inter Packet Gap timer */
1987 	switch (sc->hw.mac.type) {
1988 	case e1000_80003es2lan:
1989 		tipg = DEFAULT_82543_TIPG_IPGR1;
1990 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
1991 		    E1000_TIPG_IPGR2_SHIFT;
1992 		break;
1993 
1994 	default:
1995 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1996 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1997 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1998 		else
1999 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2000 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2001 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2002 		break;
2003 	}
2004 
2005 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2006 
2007 	/* NOTE: 0 is not allowed for TIDV */
2008 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2009 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2010 
2011 	if (sc->hw.mac.type == e1000_82571 ||
2012 	    sc->hw.mac.type == e1000_82572) {
2013 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2014 		tarc |= EMX_TARC_SPEED_MODE;
2015 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2016 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2017 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2018 		tarc |= 1;
2019 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2020 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2021 		tarc |= 1;
2022 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2023 	}
2024 
2025 	/* Program the Transmit Control Register */
2026 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2027 	tctl &= ~E1000_TCTL_CT;
2028 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2029 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2030 	tctl |= E1000_TCTL_MULR;
2031 
2032 	/* This write will effectively turn on the transmit unit. */
2033 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2034 }
2035 
2036 static void
2037 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2038 {
2039 	struct emx_txbuf *tx_buffer;
2040 	int i;
2041 
2042 	/* Free Transmit Descriptor ring */
2043 	if (sc->tx_desc_base) {
2044 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2045 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2046 				sc->tx_desc_dmap);
2047 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2048 
2049 		sc->tx_desc_base = NULL;
2050 	}
2051 
2052 	if (sc->tx_buf == NULL)
2053 		return;
2054 
2055 	for (i = 0; i < ndesc; i++) {
2056 		tx_buffer = &sc->tx_buf[i];
2057 
2058 		KKASSERT(tx_buffer->m_head == NULL);
2059 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2060 	}
2061 	bus_dma_tag_destroy(sc->txtag);
2062 
2063 	kfree(sc->tx_buf, M_DEVBUF);
2064 	sc->tx_buf = NULL;
2065 }
2066 
2067 /*
2068  * The offload context needs to be set when we transfer the first
2069  * packet of a particular protocol (TCP/UDP).  This routine has been
2070  * enhanced to deal with inserted VLAN headers.
2071  *
2072  * If the new packet's ether header length, ip header length and
2073  * csum offloading type are same as the previous packet, we should
2074  * avoid allocating a new csum context descriptor; mainly to take
2075  * advantage of the pipeline effect of the TX data read request.
2076  *
2077  * This function returns number of TX descrptors allocated for
2078  * csum context.
2079  */
2080 static int
2081 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2082 	   uint32_t *txd_upper, uint32_t *txd_lower)
2083 {
2084 	struct e1000_context_desc *TXD;
2085 	struct emx_txbuf *tx_buffer;
2086 	struct ether_vlan_header *eh;
2087 	struct ip *ip;
2088 	int curr_txd, ehdrlen, csum_flags;
2089 	uint32_t cmd, hdr_len, ip_hlen;
2090 	uint16_t etype;
2091 
2092 	/*
2093 	 * Determine where frame payload starts.
2094 	 * Jump over vlan headers if already present,
2095 	 * helpful for QinQ too.
2096 	 */
2097 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2098 		("emx_txcsum_pullup is not called (eh)?\n"));
2099 	eh = mtod(mp, struct ether_vlan_header *);
2100 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2101 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2102 			("emx_txcsum_pullup is not called (evh)?\n"));
2103 		etype = ntohs(eh->evl_proto);
2104 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2105 	} else {
2106 		etype = ntohs(eh->evl_encap_proto);
2107 		ehdrlen = ETHER_HDR_LEN;
2108 	}
2109 
2110 	/*
2111 	 * We only support TCP/UDP for IPv4 for the moment.
2112 	 * TODO: Support SCTP too when it hits the tree.
2113 	 */
2114 	if (etype != ETHERTYPE_IP)
2115 		return 0;
2116 
2117 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2118 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2119 
2120 	/* NOTE: We could only safely access ip.ip_vhl part */
2121 	ip = (struct ip *)(mp->m_data + ehdrlen);
2122 	ip_hlen = ip->ip_hl << 2;
2123 
2124 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2125 
2126 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2127 	    sc->csum_flags == csum_flags) {
2128 		/*
2129 		 * Same csum offload context as the previous packets;
2130 		 * just return.
2131 		 */
2132 		*txd_upper = sc->csum_txd_upper;
2133 		*txd_lower = sc->csum_txd_lower;
2134 		return 0;
2135 	}
2136 
2137 	/*
2138 	 * Setup a new csum offload context.
2139 	 */
2140 
2141 	curr_txd = sc->next_avail_tx_desc;
2142 	tx_buffer = &sc->tx_buf[curr_txd];
2143 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2144 
2145 	cmd = 0;
2146 
2147 	/* Setup of IP header checksum. */
2148 	if (csum_flags & CSUM_IP) {
2149 		/*
2150 		 * Start offset for header checksum calculation.
2151 		 * End offset for header checksum calculation.
2152 		 * Offset of place to put the checksum.
2153 		 */
2154 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2155 		TXD->lower_setup.ip_fields.ipcse =
2156 		    htole16(ehdrlen + ip_hlen - 1);
2157 		TXD->lower_setup.ip_fields.ipcso =
2158 		    ehdrlen + offsetof(struct ip, ip_sum);
2159 		cmd |= E1000_TXD_CMD_IP;
2160 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2161 	}
2162 	hdr_len = ehdrlen + ip_hlen;
2163 
2164 	if (csum_flags & CSUM_TCP) {
2165 		/*
2166 		 * Start offset for payload checksum calculation.
2167 		 * End offset for payload checksum calculation.
2168 		 * Offset of place to put the checksum.
2169 		 */
2170 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2171 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2172 		TXD->upper_setup.tcp_fields.tucso =
2173 		    hdr_len + offsetof(struct tcphdr, th_sum);
2174 		cmd |= E1000_TXD_CMD_TCP;
2175 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2176 	} else if (csum_flags & CSUM_UDP) {
2177 		/*
2178 		 * Start offset for header checksum calculation.
2179 		 * End offset for header checksum calculation.
2180 		 * Offset of place to put the checksum.
2181 		 */
2182 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2183 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2184 		TXD->upper_setup.tcp_fields.tucso =
2185 		    hdr_len + offsetof(struct udphdr, uh_sum);
2186 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2187 	}
2188 
2189 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2190 		     E1000_TXD_DTYP_D;		/* Data descr */
2191 
2192 	/* Save the information for this csum offloading context */
2193 	sc->csum_ehlen = ehdrlen;
2194 	sc->csum_iphlen = ip_hlen;
2195 	sc->csum_flags = csum_flags;
2196 	sc->csum_txd_upper = *txd_upper;
2197 	sc->csum_txd_lower = *txd_lower;
2198 
2199 	TXD->tcp_seg_setup.data = htole32(0);
2200 	TXD->cmd_and_length =
2201 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2202 
2203 	if (++curr_txd == sc->num_tx_desc)
2204 		curr_txd = 0;
2205 
2206 	KKASSERT(sc->num_tx_desc_avail > 0);
2207 	sc->num_tx_desc_avail--;
2208 
2209 	sc->next_avail_tx_desc = curr_txd;
2210 	return 1;
2211 }
2212 
2213 static int
2214 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2215 {
2216 	struct mbuf *m = *m0;
2217 	struct ether_header *eh;
2218 	int len;
2219 
2220 	sc->tx_csum_try_pullup++;
2221 
2222 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2223 
2224 	if (__predict_false(!M_WRITABLE(m))) {
2225 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2226 			sc->tx_csum_drop1++;
2227 			m_freem(m);
2228 			*m0 = NULL;
2229 			return ENOBUFS;
2230 		}
2231 		eh = mtod(m, struct ether_header *);
2232 
2233 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2234 			len += EVL_ENCAPLEN;
2235 
2236 		if (m->m_len < len) {
2237 			sc->tx_csum_drop2++;
2238 			m_freem(m);
2239 			*m0 = NULL;
2240 			return ENOBUFS;
2241 		}
2242 		return 0;
2243 	}
2244 
2245 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2246 		sc->tx_csum_pullup1++;
2247 		m = m_pullup(m, ETHER_HDR_LEN);
2248 		if (m == NULL) {
2249 			sc->tx_csum_pullup1_failed++;
2250 			*m0 = NULL;
2251 			return ENOBUFS;
2252 		}
2253 		*m0 = m;
2254 	}
2255 	eh = mtod(m, struct ether_header *);
2256 
2257 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2258 		len += EVL_ENCAPLEN;
2259 
2260 	if (m->m_len < len) {
2261 		sc->tx_csum_pullup2++;
2262 		m = m_pullup(m, len);
2263 		if (m == NULL) {
2264 			sc->tx_csum_pullup2_failed++;
2265 			*m0 = NULL;
2266 			return ENOBUFS;
2267 		}
2268 		*m0 = m;
2269 	}
2270 	return 0;
2271 }
2272 
2273 static void
2274 emx_txeof(struct emx_softc *sc)
2275 {
2276 	struct ifnet *ifp = &sc->arpcom.ac_if;
2277 	struct emx_txbuf *tx_buffer;
2278 	int first, num_avail;
2279 
2280 	if (sc->tx_dd_head == sc->tx_dd_tail)
2281 		return;
2282 
2283 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2284 		return;
2285 
2286 	num_avail = sc->num_tx_desc_avail;
2287 	first = sc->next_tx_to_clean;
2288 
2289 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2290 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2291 		struct e1000_tx_desc *tx_desc;
2292 
2293 		tx_desc = &sc->tx_desc_base[dd_idx];
2294 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2295 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2296 
2297 			if (++dd_idx == sc->num_tx_desc)
2298 				dd_idx = 0;
2299 
2300 			while (first != dd_idx) {
2301 				logif(pkt_txclean);
2302 
2303 				num_avail++;
2304 
2305 				tx_buffer = &sc->tx_buf[first];
2306 				if (tx_buffer->m_head) {
2307 					ifp->if_opackets++;
2308 					bus_dmamap_unload(sc->txtag,
2309 							  tx_buffer->map);
2310 					m_freem(tx_buffer->m_head);
2311 					tx_buffer->m_head = NULL;
2312 				}
2313 
2314 				if (++first == sc->num_tx_desc)
2315 					first = 0;
2316 			}
2317 		} else {
2318 			break;
2319 		}
2320 	}
2321 	sc->next_tx_to_clean = first;
2322 	sc->num_tx_desc_avail = num_avail;
2323 
2324 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2325 		sc->tx_dd_head = 0;
2326 		sc->tx_dd_tail = 0;
2327 	}
2328 
2329 	if (!EMX_IS_OACTIVE(sc)) {
2330 		ifp->if_flags &= ~IFF_OACTIVE;
2331 
2332 		/* All clean, turn off the timer */
2333 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2334 			ifp->if_timer = 0;
2335 	}
2336 }
2337 
2338 static void
2339 emx_tx_collect(struct emx_softc *sc)
2340 {
2341 	struct ifnet *ifp = &sc->arpcom.ac_if;
2342 	struct emx_txbuf *tx_buffer;
2343 	int tdh, first, num_avail, dd_idx = -1;
2344 
2345 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2346 		return;
2347 
2348 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2349 	if (tdh == sc->next_tx_to_clean)
2350 		return;
2351 
2352 	if (sc->tx_dd_head != sc->tx_dd_tail)
2353 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2354 
2355 	num_avail = sc->num_tx_desc_avail;
2356 	first = sc->next_tx_to_clean;
2357 
2358 	while (first != tdh) {
2359 		logif(pkt_txclean);
2360 
2361 		num_avail++;
2362 
2363 		tx_buffer = &sc->tx_buf[first];
2364 		if (tx_buffer->m_head) {
2365 			ifp->if_opackets++;
2366 			bus_dmamap_unload(sc->txtag,
2367 					  tx_buffer->map);
2368 			m_freem(tx_buffer->m_head);
2369 			tx_buffer->m_head = NULL;
2370 		}
2371 
2372 		if (first == dd_idx) {
2373 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2374 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2375 				sc->tx_dd_head = 0;
2376 				sc->tx_dd_tail = 0;
2377 				dd_idx = -1;
2378 			} else {
2379 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2380 			}
2381 		}
2382 
2383 		if (++first == sc->num_tx_desc)
2384 			first = 0;
2385 	}
2386 	sc->next_tx_to_clean = first;
2387 	sc->num_tx_desc_avail = num_avail;
2388 
2389 	if (!EMX_IS_OACTIVE(sc)) {
2390 		ifp->if_flags &= ~IFF_OACTIVE;
2391 
2392 		/* All clean, turn off the timer */
2393 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2394 			ifp->if_timer = 0;
2395 	}
2396 }
2397 
2398 /*
2399  * When Link is lost sometimes there is work still in the TX ring
2400  * which will result in a watchdog, rather than allow that do an
2401  * attempted cleanup and then reinit here.  Note that this has been
2402  * seens mostly with fiber adapters.
2403  */
2404 static void
2405 emx_tx_purge(struct emx_softc *sc)
2406 {
2407 	struct ifnet *ifp = &sc->arpcom.ac_if;
2408 
2409 	if (!sc->link_active && ifp->if_timer) {
2410 		emx_tx_collect(sc);
2411 		if (ifp->if_timer) {
2412 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2413 			ifp->if_timer = 0;
2414 			emx_init(sc);
2415 		}
2416 	}
2417 }
2418 
2419 static int
2420 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2421 {
2422 	struct mbuf *m;
2423 	bus_dma_segment_t seg;
2424 	bus_dmamap_t map;
2425 	struct emx_rxbuf *rx_buffer;
2426 	int error, nseg;
2427 
2428 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2429 	if (m == NULL) {
2430 		rdata->mbuf_cluster_failed++;
2431 		if (init) {
2432 			if_printf(&sc->arpcom.ac_if,
2433 				  "Unable to allocate RX mbuf\n");
2434 		}
2435 		return (ENOBUFS);
2436 	}
2437 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2438 
2439 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2440 		m_adj(m, ETHER_ALIGN);
2441 
2442 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2443 			rdata->rx_sparemap, m,
2444 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2445 	if (error) {
2446 		m_freem(m);
2447 		if (init) {
2448 			if_printf(&sc->arpcom.ac_if,
2449 				  "Unable to load RX mbuf\n");
2450 		}
2451 		return (error);
2452 	}
2453 
2454 	rx_buffer = &rdata->rx_buf[i];
2455 	if (rx_buffer->m_head != NULL)
2456 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2457 
2458 	map = rx_buffer->map;
2459 	rx_buffer->map = rdata->rx_sparemap;
2460 	rdata->rx_sparemap = map;
2461 
2462 	rx_buffer->m_head = m;
2463 	rx_buffer->paddr = seg.ds_addr;
2464 
2465 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2466 	return (0);
2467 }
2468 
2469 static int
2470 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2471 {
2472 	device_t dev = sc->dev;
2473 	struct emx_rxbuf *rx_buffer;
2474 	int i, error, rsize;
2475 
2476 	/*
2477 	 * Validate number of receive descriptors.  It must not exceed
2478 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2479 	 */
2480 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2481 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2482 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2483 		    EMX_DEFAULT_RXD, emx_rxd);
2484 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2485 	} else {
2486 		rdata->num_rx_desc = emx_rxd;
2487 	}
2488 
2489 	/*
2490 	 * Allocate Receive Descriptor ring
2491 	 */
2492 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2493 			 EMX_DBA_ALIGN);
2494 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2495 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2496 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2497 				&rdata->rx_desc_paddr);
2498 	if (rdata->rx_desc == NULL) {
2499 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2500 		return ENOMEM;
2501 	}
2502 
2503 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2504 				M_DEVBUF, M_WAITOK | M_ZERO);
2505 
2506 	/*
2507 	 * Create DMA tag for rx buffers
2508 	 */
2509 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2510 			1, 0,			/* alignment, bounds */
2511 			BUS_SPACE_MAXADDR,	/* lowaddr */
2512 			BUS_SPACE_MAXADDR,	/* highaddr */
2513 			NULL, NULL,		/* filter, filterarg */
2514 			MCLBYTES,		/* maxsize */
2515 			1,			/* nsegments */
2516 			MCLBYTES,		/* maxsegsize */
2517 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2518 			&rdata->rxtag);
2519 	if (error) {
2520 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2521 		kfree(rdata->rx_buf, M_DEVBUF);
2522 		rdata->rx_buf = NULL;
2523 		return error;
2524 	}
2525 
2526 	/*
2527 	 * Create spare DMA map for rx buffers
2528 	 */
2529 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2530 				  &rdata->rx_sparemap);
2531 	if (error) {
2532 		device_printf(dev, "Unable to create spare RX DMA map\n");
2533 		bus_dma_tag_destroy(rdata->rxtag);
2534 		kfree(rdata->rx_buf, M_DEVBUF);
2535 		rdata->rx_buf = NULL;
2536 		return error;
2537 	}
2538 
2539 	/*
2540 	 * Create DMA maps for rx buffers
2541 	 */
2542 	for (i = 0; i < rdata->num_rx_desc; i++) {
2543 		rx_buffer = &rdata->rx_buf[i];
2544 
2545 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2546 					  &rx_buffer->map);
2547 		if (error) {
2548 			device_printf(dev, "Unable to create RX DMA map\n");
2549 			emx_destroy_rx_ring(sc, rdata, i);
2550 			return error;
2551 		}
2552 	}
2553 	return (0);
2554 }
2555 
2556 static void
2557 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2558 {
2559 	int i;
2560 
2561 	for (i = 0; i < rdata->num_rx_desc; i++) {
2562 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2563 
2564 		if (rx_buffer->m_head != NULL) {
2565 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2566 			m_freem(rx_buffer->m_head);
2567 			rx_buffer->m_head = NULL;
2568 		}
2569 	}
2570 
2571 	if (rdata->fmp != NULL)
2572 		m_freem(rdata->fmp);
2573 	rdata->fmp = NULL;
2574 	rdata->lmp = NULL;
2575 }
2576 
2577 static int
2578 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2579 {
2580 	int i, error;
2581 
2582 	/* Reset descriptor ring */
2583 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2584 
2585 	/* Allocate new ones. */
2586 	for (i = 0; i < rdata->num_rx_desc; i++) {
2587 		error = emx_newbuf(sc, rdata, i, 1);
2588 		if (error)
2589 			return (error);
2590 	}
2591 
2592 	/* Setup our descriptor pointers */
2593 	rdata->next_rx_desc_to_check = 0;
2594 
2595 	return (0);
2596 }
2597 
2598 static void
2599 emx_init_rx_unit(struct emx_softc *sc)
2600 {
2601 	struct ifnet *ifp = &sc->arpcom.ac_if;
2602 	uint64_t bus_addr;
2603 	uint32_t rctl, rxcsum, rfctl;
2604 	int i;
2605 
2606 	/*
2607 	 * Make sure receives are disabled while setting
2608 	 * up the descriptor ring
2609 	 */
2610 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2611 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2612 
2613 	/*
2614 	 * Set the interrupt throttling rate. Value is calculated
2615 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2616 	 */
2617 	if (sc->int_throttle_ceil) {
2618 		E1000_WRITE_REG(&sc->hw, E1000_ITR,
2619 			1000000000 / 256 / sc->int_throttle_ceil);
2620 	} else {
2621 		E1000_WRITE_REG(&sc->hw, E1000_ITR, 0);
2622 	}
2623 
2624 	/* Use extended RX descriptor */
2625 	rfctl = E1000_RFCTL_EXTEN;
2626 
2627 	/* Disable accelerated ackknowledge */
2628 	if (sc->hw.mac.type == e1000_82574)
2629 		rfctl |= E1000_RFCTL_ACK_DIS;
2630 
2631 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2632 
2633 	/* Setup the Base and Length of the Rx Descriptor Ring */
2634 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2635 		struct emx_rxdata *rdata = &sc->rx_data[i];
2636 
2637 		bus_addr = rdata->rx_desc_paddr;
2638 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2639 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2640 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2641 		    (uint32_t)(bus_addr >> 32));
2642 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2643 		    (uint32_t)bus_addr);
2644 	}
2645 
2646 	/* Setup the Receive Control Register */
2647 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2648 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2649 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2650 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2651 
2652 	/* Make sure VLAN Filters are off */
2653 	rctl &= ~E1000_RCTL_VFE;
2654 
2655 	/* Don't store bad paket */
2656 	rctl &= ~E1000_RCTL_SBP;
2657 
2658 	/* MCLBYTES */
2659 	rctl |= E1000_RCTL_SZ_2048;
2660 
2661 	if (ifp->if_mtu > ETHERMTU)
2662 		rctl |= E1000_RCTL_LPE;
2663 	else
2664 		rctl &= ~E1000_RCTL_LPE;
2665 
2666 	/*
2667 	 * Receive Checksum Offload for TCP and UDP
2668 	 *
2669 	 * Checksum offloading is also enabled if multiple receive
2670 	 * queue is to be supported, since we need it to figure out
2671 	 * packet type.
2672 	 */
2673 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2674 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2675 
2676 		/*
2677 		 * NOTE:
2678 		 * PCSD must be enabled to enable multiple
2679 		 * receive queues.
2680 		 */
2681 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2682 			  E1000_RXCSUM_PCSD;
2683 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2684 	}
2685 
2686 	/*
2687 	 * Configure multiple receive queue (RSS)
2688 	 */
2689 	if (ifp->if_capenable & IFCAP_RSS) {
2690 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2691 		uint32_t reta;
2692 
2693 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2694 			("invalid number of RX ring (%d)",
2695 			 sc->rx_ring_inuse));
2696 
2697 		/*
2698 		 * NOTE:
2699 		 * When we reach here, RSS has already been disabled
2700 		 * in emx_stop(), so we could safely configure RSS key
2701 		 * and redirect table.
2702 		 */
2703 
2704 		/*
2705 		 * Configure RSS key
2706 		 */
2707 		toeplitz_get_key(key, sizeof(key));
2708 		for (i = 0; i < EMX_NRSSRK; ++i) {
2709 			uint32_t rssrk;
2710 
2711 			rssrk = EMX_RSSRK_VAL(key, i);
2712 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2713 
2714 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2715 		}
2716 
2717 		/*
2718 		 * Configure RSS redirect table in following fashion:
2719 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2720 		 */
2721 		reta = 0;
2722 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2723 			uint32_t q;
2724 
2725 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2726 			reta |= q << (8 * i);
2727 		}
2728 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2729 
2730 		for (i = 0; i < EMX_NRETA; ++i)
2731 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2732 
2733 		/*
2734 		 * Enable multiple receive queues.
2735 		 * Enable IPv4 RSS standard hash functions.
2736 		 * Disable RSS interrupt.
2737 		 */
2738 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2739 				E1000_MRQC_ENABLE_RSS_2Q |
2740 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2741 				E1000_MRQC_RSS_FIELD_IPV4);
2742 	}
2743 
2744 	/*
2745 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2746 	 * long latencies are observed, like Lenovo X60. This
2747 	 * change eliminates the problem, but since having positive
2748 	 * values in RDTR is a known source of problems on other
2749 	 * platforms another solution is being sought.
2750 	 */
2751 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2752 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2753 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2754 	}
2755 
2756 	/*
2757 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2758 	 */
2759 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2760 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2761 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2762 		    sc->rx_data[i].num_rx_desc - 1);
2763 	}
2764 
2765 	/* Enable Receives */
2766 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2767 }
2768 
2769 static void
2770 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2771 {
2772 	struct emx_rxbuf *rx_buffer;
2773 	int i;
2774 
2775 	/* Free Receive Descriptor ring */
2776 	if (rdata->rx_desc) {
2777 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2778 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2779 				rdata->rx_desc_dmap);
2780 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2781 
2782 		rdata->rx_desc = NULL;
2783 	}
2784 
2785 	if (rdata->rx_buf == NULL)
2786 		return;
2787 
2788 	for (i = 0; i < ndesc; i++) {
2789 		rx_buffer = &rdata->rx_buf[i];
2790 
2791 		KKASSERT(rx_buffer->m_head == NULL);
2792 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2793 	}
2794 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2795 	bus_dma_tag_destroy(rdata->rxtag);
2796 
2797 	kfree(rdata->rx_buf, M_DEVBUF);
2798 	rdata->rx_buf = NULL;
2799 }
2800 
2801 static void
2802 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2803 {
2804 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2805 	struct ifnet *ifp = &sc->arpcom.ac_if;
2806 	uint32_t staterr;
2807 	emx_rxdesc_t *current_desc;
2808 	struct mbuf *mp;
2809 	int i;
2810 	struct mbuf_chain chain[MAXCPU];
2811 
2812 	i = rdata->next_rx_desc_to_check;
2813 	current_desc = &rdata->rx_desc[i];
2814 	staterr = le32toh(current_desc->rxd_staterr);
2815 
2816 	if (!(staterr & E1000_RXD_STAT_DD))
2817 		return;
2818 
2819 	ether_input_chain_init(chain);
2820 
2821 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2822 		struct pktinfo *pi = NULL, pi0;
2823 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2824 		struct mbuf *m = NULL;
2825 		int eop, len;
2826 
2827 		logif(pkt_receive);
2828 
2829 		mp = rx_buf->m_head;
2830 
2831 		/*
2832 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2833 		 * needs to access the last received byte in the mbuf.
2834 		 */
2835 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2836 				BUS_DMASYNC_POSTREAD);
2837 
2838 		len = le16toh(current_desc->rxd_length);
2839 		if (staterr & E1000_RXD_STAT_EOP) {
2840 			count--;
2841 			eop = 1;
2842 		} else {
2843 			eop = 0;
2844 		}
2845 
2846 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2847 			uint16_t vlan = 0;
2848 			uint32_t mrq, rss_hash;
2849 
2850 			/*
2851 			 * Save several necessary information,
2852 			 * before emx_newbuf() destroy it.
2853 			 */
2854 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2855 				vlan = le16toh(current_desc->rxd_vlan);
2856 
2857 			mrq = le32toh(current_desc->rxd_mrq);
2858 			rss_hash = le32toh(current_desc->rxd_rss);
2859 
2860 			EMX_RSS_DPRINTF(sc, 10,
2861 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2862 			    ring_idx, mrq, rss_hash);
2863 
2864 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2865 				ifp->if_iqdrops++;
2866 				goto discard;
2867 			}
2868 
2869 			/* Assign correct length to the current fragment */
2870 			mp->m_len = len;
2871 
2872 			if (rdata->fmp == NULL) {
2873 				mp->m_pkthdr.len = len;
2874 				rdata->fmp = mp; /* Store the first mbuf */
2875 				rdata->lmp = mp;
2876 			} else {
2877 				/*
2878 				 * Chain mbuf's together
2879 				 */
2880 				rdata->lmp->m_next = mp;
2881 				rdata->lmp = rdata->lmp->m_next;
2882 				rdata->fmp->m_pkthdr.len += len;
2883 			}
2884 
2885 			if (eop) {
2886 				rdata->fmp->m_pkthdr.rcvif = ifp;
2887 				ifp->if_ipackets++;
2888 
2889 				if (ifp->if_capenable & IFCAP_RXCSUM)
2890 					emx_rxcsum(staterr, rdata->fmp);
2891 
2892 				if (staterr & E1000_RXD_STAT_VP) {
2893 					rdata->fmp->m_pkthdr.ether_vlantag =
2894 					    vlan;
2895 					rdata->fmp->m_flags |= M_VLANTAG;
2896 				}
2897 				m = rdata->fmp;
2898 				rdata->fmp = NULL;
2899 				rdata->lmp = NULL;
2900 
2901 				if (ifp->if_capenable & IFCAP_RSS) {
2902 					pi = emx_rssinfo(m, &pi0, mrq,
2903 							 rss_hash, staterr);
2904 				}
2905 #ifdef EMX_RSS_DEBUG
2906 				rdata->rx_pkts++;
2907 #endif
2908 			}
2909 		} else {
2910 			ifp->if_ierrors++;
2911 discard:
2912 			emx_setup_rxdesc(current_desc, rx_buf);
2913 			if (rdata->fmp != NULL) {
2914 				m_freem(rdata->fmp);
2915 				rdata->fmp = NULL;
2916 				rdata->lmp = NULL;
2917 			}
2918 			m = NULL;
2919 		}
2920 
2921 		if (m != NULL)
2922 			ether_input_chain(ifp, m, pi, chain);
2923 
2924 		/* Advance our pointers to the next descriptor. */
2925 		if (++i == rdata->num_rx_desc)
2926 			i = 0;
2927 
2928 		current_desc = &rdata->rx_desc[i];
2929 		staterr = le32toh(current_desc->rxd_staterr);
2930 	}
2931 	rdata->next_rx_desc_to_check = i;
2932 
2933 	ether_input_dispatch(chain);
2934 
2935 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2936 	if (--i < 0)
2937 		i = rdata->num_rx_desc - 1;
2938 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2939 }
2940 
2941 static void
2942 emx_enable_intr(struct emx_softc *sc)
2943 {
2944 	lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
2945 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2946 }
2947 
2948 static void
2949 emx_disable_intr(struct emx_softc *sc)
2950 {
2951 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2952 	lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
2953 }
2954 
2955 /*
2956  * Bit of a misnomer, what this really means is
2957  * to enable OS management of the system... aka
2958  * to disable special hardware management features
2959  */
2960 static void
2961 emx_get_mgmt(struct emx_softc *sc)
2962 {
2963 	/* A shared code workaround */
2964 	if (sc->has_manage) {
2965 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2966 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2967 
2968 		/* disable hardware interception of ARP */
2969 		manc &= ~(E1000_MANC_ARP_EN);
2970 
2971                 /* enable receiving management packets to the host */
2972 		manc |= E1000_MANC_EN_MNG2HOST;
2973 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2974 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2975 		manc2h |= E1000_MNG2HOST_PORT_623;
2976 		manc2h |= E1000_MNG2HOST_PORT_664;
2977 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2978 
2979 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2980 	}
2981 }
2982 
2983 /*
2984  * Give control back to hardware management
2985  * controller if there is one.
2986  */
2987 static void
2988 emx_rel_mgmt(struct emx_softc *sc)
2989 {
2990 	if (sc->has_manage) {
2991 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2992 
2993 		/* re-enable hardware interception of ARP */
2994 		manc |= E1000_MANC_ARP_EN;
2995 		manc &= ~E1000_MANC_EN_MNG2HOST;
2996 
2997 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2998 	}
2999 }
3000 
3001 /*
3002  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3003  * For ASF and Pass Through versions of f/w this means that
3004  * the driver is loaded.  For AMT version (only with 82573)
3005  * of the f/w this means that the network i/f is open.
3006  */
3007 static void
3008 emx_get_hw_control(struct emx_softc *sc)
3009 {
3010 	uint32_t ctrl_ext, swsm;
3011 
3012 	/* Let firmware know the driver has taken over */
3013 	switch (sc->hw.mac.type) {
3014 	case e1000_82573:
3015 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3016 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3017 		    swsm | E1000_SWSM_DRV_LOAD);
3018 		break;
3019 
3020 	case e1000_82571:
3021 	case e1000_82572:
3022 	case e1000_80003es2lan:
3023 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3024 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3025 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3026 		break;
3027 
3028 	default:
3029 		break;
3030 	}
3031 }
3032 
3033 /*
3034  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3035  * For ASF and Pass Through versions of f/w this means that the
3036  * driver is no longer loaded.  For AMT version (only with 82573)
3037  * of the f/w this means that the network i/f is closed.
3038  */
3039 static void
3040 emx_rel_hw_control(struct emx_softc *sc)
3041 {
3042 	uint32_t ctrl_ext, swsm;
3043 
3044 	/* Let firmware taken over control of h/w */
3045 	switch (sc->hw.mac.type) {
3046 	case e1000_82573:
3047 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3048 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3049 		    swsm & ~E1000_SWSM_DRV_LOAD);
3050 		break;
3051 
3052 	case e1000_82571:
3053 	case e1000_82572:
3054 	case e1000_80003es2lan:
3055 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3056 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3057 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3058 		break;
3059 
3060 	default:
3061 		break;
3062 	}
3063 }
3064 
3065 static int
3066 emx_is_valid_eaddr(const uint8_t *addr)
3067 {
3068 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3069 
3070 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3071 		return (FALSE);
3072 
3073 	return (TRUE);
3074 }
3075 
3076 /*
3077  * Enable PCI Wake On Lan capability
3078  */
3079 void
3080 emx_enable_wol(device_t dev)
3081 {
3082 	uint16_t cap, status;
3083 	uint8_t id;
3084 
3085 	/* First find the capabilities pointer*/
3086 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3087 
3088 	/* Read the PM Capabilities */
3089 	id = pci_read_config(dev, cap, 1);
3090 	if (id != PCIY_PMG)     /* Something wrong */
3091 		return;
3092 
3093 	/*
3094 	 * OK, we have the power capabilities,
3095 	 * so now get the status register
3096 	 */
3097 	cap += PCIR_POWER_STATUS;
3098 	status = pci_read_config(dev, cap, 2);
3099 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3100 	pci_write_config(dev, cap, status, 2);
3101 }
3102 
3103 static void
3104 emx_update_stats(struct emx_softc *sc)
3105 {
3106 	struct ifnet *ifp = &sc->arpcom.ac_if;
3107 
3108 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3109 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3110 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3111 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3112 	}
3113 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3114 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3115 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3116 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3117 
3118 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3119 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3120 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3121 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3122 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3123 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3124 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3125 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3126 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3127 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3128 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3129 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3130 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3131 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3132 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3133 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3134 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3135 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3136 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3137 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3138 
3139 	/* For the 64-bit byte counters the low dword must be read first. */
3140 	/* Both registers clear on the read of the high dword */
3141 
3142 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3143 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3144 
3145 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3146 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3147 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3148 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3149 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3150 
3151 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3152 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3153 
3154 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3155 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3156 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3157 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3158 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3159 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3160 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3161 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3162 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3163 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3164 
3165 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3166 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3167 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3168 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3169 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3170 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3171 
3172 	ifp->if_collisions = sc->stats.colc;
3173 
3174 	/* Rx Errors */
3175 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3176 			  sc->stats.crcerrs + sc->stats.algnerrc +
3177 			  sc->stats.ruc + sc->stats.roc +
3178 			  sc->stats.mpc + sc->stats.cexterr;
3179 
3180 	/* Tx Errors */
3181 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3182 			  sc->watchdog_events;
3183 }
3184 
3185 static void
3186 emx_print_debug_info(struct emx_softc *sc)
3187 {
3188 	device_t dev = sc->dev;
3189 	uint8_t *hw_addr = sc->hw.hw_addr;
3190 
3191 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3192 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3193 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3194 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3195 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3196 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3197 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3198 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3199 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3200 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3201 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3202 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3203 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3204 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3205 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3206 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3207 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3208 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3209 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3210 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3211 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3212 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3213 	    sc->num_tx_desc_avail);
3214 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3215 	    sc->no_tx_desc_avail1);
3216 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3217 	    sc->no_tx_desc_avail2);
3218 	device_printf(dev, "Std mbuf failed = %ld\n",
3219 	    sc->mbuf_alloc_failed);
3220 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3221 	    sc->rx_data[0].mbuf_cluster_failed);
3222 	device_printf(dev, "Driver dropped packets = %ld\n",
3223 	    sc->dropped_pkts);
3224 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3225 	    sc->no_tx_dma_setup);
3226 
3227 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3228 	    sc->tx_csum_try_pullup);
3229 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3230 	    sc->tx_csum_pullup1);
3231 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3232 	    sc->tx_csum_pullup1_failed);
3233 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3234 	    sc->tx_csum_pullup2);
3235 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3236 	    sc->tx_csum_pullup2_failed);
3237 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3238 	    sc->tx_csum_drop1);
3239 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3240 	    sc->tx_csum_drop2);
3241 }
3242 
3243 static void
3244 emx_print_hw_stats(struct emx_softc *sc)
3245 {
3246 	device_t dev = sc->dev;
3247 
3248 	device_printf(dev, "Excessive collisions = %lld\n",
3249 	    (long long)sc->stats.ecol);
3250 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3251 	device_printf(dev, "Symbol errors = %lld\n",
3252 	    (long long)sc->stats.symerrs);
3253 #endif
3254 	device_printf(dev, "Sequence errors = %lld\n",
3255 	    (long long)sc->stats.sec);
3256 	device_printf(dev, "Defer count = %lld\n",
3257 	    (long long)sc->stats.dc);
3258 	device_printf(dev, "Missed Packets = %lld\n",
3259 	    (long long)sc->stats.mpc);
3260 	device_printf(dev, "Receive No Buffers = %lld\n",
3261 	    (long long)sc->stats.rnbc);
3262 	/* RLEC is inaccurate on some hardware, calculate our own. */
3263 	device_printf(dev, "Receive Length Errors = %lld\n",
3264 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3265 	device_printf(dev, "Receive errors = %lld\n",
3266 	    (long long)sc->stats.rxerrc);
3267 	device_printf(dev, "Crc errors = %lld\n",
3268 	    (long long)sc->stats.crcerrs);
3269 	device_printf(dev, "Alignment errors = %lld\n",
3270 	    (long long)sc->stats.algnerrc);
3271 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3272 	    (long long)sc->stats.cexterr);
3273 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3274 	device_printf(dev, "watchdog timeouts = %ld\n",
3275 	    sc->watchdog_events);
3276 	device_printf(dev, "XON Rcvd = %lld\n",
3277 	    (long long)sc->stats.xonrxc);
3278 	device_printf(dev, "XON Xmtd = %lld\n",
3279 	    (long long)sc->stats.xontxc);
3280 	device_printf(dev, "XOFF Rcvd = %lld\n",
3281 	    (long long)sc->stats.xoffrxc);
3282 	device_printf(dev, "XOFF Xmtd = %lld\n",
3283 	    (long long)sc->stats.xofftxc);
3284 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3285 	    (long long)sc->stats.gprc);
3286 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3287 	    (long long)sc->stats.gptc);
3288 }
3289 
3290 static void
3291 emx_print_nvm_info(struct emx_softc *sc)
3292 {
3293 	uint16_t eeprom_data;
3294 	int i, j, row = 0;
3295 
3296 	/* Its a bit crude, but it gets the job done */
3297 	kprintf("\nInterface EEPROM Dump:\n");
3298 	kprintf("Offset\n0x0000  ");
3299 	for (i = 0, j = 0; i < 32; i++, j++) {
3300 		if (j == 8) { /* Make the offset block */
3301 			j = 0; ++row;
3302 			kprintf("\n0x00%x0  ",row);
3303 		}
3304 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3305 		kprintf("%04x ", eeprom_data);
3306 	}
3307 	kprintf("\n");
3308 }
3309 
3310 static int
3311 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3312 {
3313 	struct emx_softc *sc;
3314 	struct ifnet *ifp;
3315 	int error, result;
3316 
3317 	result = -1;
3318 	error = sysctl_handle_int(oidp, &result, 0, req);
3319 	if (error || !req->newptr)
3320 		return (error);
3321 
3322 	sc = (struct emx_softc *)arg1;
3323 	ifp = &sc->arpcom.ac_if;
3324 
3325 	lwkt_serialize_enter(ifp->if_serializer);
3326 
3327 	if (result == 1)
3328 		emx_print_debug_info(sc);
3329 
3330 	/*
3331 	 * This value will cause a hex dump of the
3332 	 * first 32 16-bit words of the EEPROM to
3333 	 * the screen.
3334 	 */
3335 	if (result == 2)
3336 		emx_print_nvm_info(sc);
3337 
3338 	lwkt_serialize_exit(ifp->if_serializer);
3339 
3340 	return (error);
3341 }
3342 
3343 static int
3344 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3345 {
3346 	int error, result;
3347 
3348 	result = -1;
3349 	error = sysctl_handle_int(oidp, &result, 0, req);
3350 	if (error || !req->newptr)
3351 		return (error);
3352 
3353 	if (result == 1) {
3354 		struct emx_softc *sc = (struct emx_softc *)arg1;
3355 		struct ifnet *ifp = &sc->arpcom.ac_if;
3356 
3357 		lwkt_serialize_enter(ifp->if_serializer);
3358 		emx_print_hw_stats(sc);
3359 		lwkt_serialize_exit(ifp->if_serializer);
3360 	}
3361 	return (error);
3362 }
3363 
3364 static void
3365 emx_add_sysctl(struct emx_softc *sc)
3366 {
3367 #ifdef PROFILE_SERIALIZER
3368 	struct ifnet *ifp = &sc->arpcom.ac_if;
3369 #endif
3370 #ifdef EMX_RSS_DEBUG
3371 	char rx_pkt[32];
3372 	int i;
3373 #endif
3374 
3375 	sysctl_ctx_init(&sc->sysctl_ctx);
3376 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3377 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3378 				device_get_nameunit(sc->dev),
3379 				CTLFLAG_RD, 0, "");
3380 	if (sc->sysctl_tree == NULL) {
3381 		device_printf(sc->dev, "can't add sysctl node\n");
3382 		return;
3383 	}
3384 
3385 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3386 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3387 			emx_sysctl_debug_info, "I", "Debug Information");
3388 
3389 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3390 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3391 			emx_sysctl_stats, "I", "Statistics");
3392 
3393 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3394 		       OID_AUTO, "rxd", CTLFLAG_RD,
3395 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3396 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3397 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3398 
3399 #ifdef PROFILE_SERIALIZER
3400 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3401 			OID_AUTO, "serializer_sleep", CTLFLAG_RW,
3402 			&ifp->if_serializer->sleep_cnt, 0, NULL);
3403 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3404 			OID_AUTO, "serializer_tryfail", CTLFLAG_RW,
3405 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
3406 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3407 			OID_AUTO, "serializer_enter", CTLFLAG_RW,
3408 			&ifp->if_serializer->enter_cnt, 0, NULL);
3409 	SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3410 			OID_AUTO, "serializer_try", CTLFLAG_RW,
3411 			&ifp->if_serializer->try_cnt, 0, NULL);
3412 #endif
3413 
3414 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3415 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3416 			sc, 0, emx_sysctl_int_throttle, "I",
3417 			"interrupt throttling rate");
3418 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3419 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3420 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3421 			"# segments per TX interrupt");
3422 
3423 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3424 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3425 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3426 
3427 #ifdef EMX_RSS_DEBUG
3428 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3429 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3430 		       0, "RSS debug level");
3431 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3432 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3433 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3434 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3435 				rx_pkt, CTLFLAG_RW,
3436 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3437 	}
3438 #endif
3439 }
3440 
3441 static int
3442 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3443 {
3444 	struct emx_softc *sc = (void *)arg1;
3445 	struct ifnet *ifp = &sc->arpcom.ac_if;
3446 	int error, throttle;
3447 
3448 	throttle = sc->int_throttle_ceil;
3449 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3450 	if (error || req->newptr == NULL)
3451 		return error;
3452 	if (throttle < 0 || throttle > 1000000000 / 256)
3453 		return EINVAL;
3454 
3455 	if (throttle) {
3456 		/*
3457 		 * Set the interrupt throttling rate in 256ns increments,
3458 		 * recalculate sysctl value assignment to get exact frequency.
3459 		 */
3460 		throttle = 1000000000 / 256 / throttle;
3461 
3462 		/* Upper 16bits of ITR is reserved and should be zero */
3463 		if (throttle & 0xffff0000)
3464 			return EINVAL;
3465 	}
3466 
3467 	lwkt_serialize_enter(ifp->if_serializer);
3468 
3469 	if (throttle)
3470 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3471 	else
3472 		sc->int_throttle_ceil = 0;
3473 
3474 	if (ifp->if_flags & IFF_RUNNING)
3475 		E1000_WRITE_REG(&sc->hw, E1000_ITR, throttle);
3476 
3477 	lwkt_serialize_exit(ifp->if_serializer);
3478 
3479 	if (bootverbose) {
3480 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3481 			  sc->int_throttle_ceil);
3482 	}
3483 	return 0;
3484 }
3485 
3486 static int
3487 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3488 {
3489 	struct emx_softc *sc = (void *)arg1;
3490 	struct ifnet *ifp = &sc->arpcom.ac_if;
3491 	int error, segs;
3492 
3493 	segs = sc->tx_int_nsegs;
3494 	error = sysctl_handle_int(oidp, &segs, 0, req);
3495 	if (error || req->newptr == NULL)
3496 		return error;
3497 	if (segs <= 0)
3498 		return EINVAL;
3499 
3500 	lwkt_serialize_enter(ifp->if_serializer);
3501 
3502 	/*
3503 	 * Don't allow int_tx_nsegs to become:
3504 	 * o  Less the oact_tx_desc
3505 	 * o  Too large that no TX desc will cause TX interrupt to
3506 	 *    be generated (OACTIVE will never recover)
3507 	 * o  Too small that will cause tx_dd[] overflow
3508 	 */
3509 	if (segs < sc->oact_tx_desc ||
3510 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3511 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3512 		error = EINVAL;
3513 	} else {
3514 		error = 0;
3515 		sc->tx_int_nsegs = segs;
3516 	}
3517 
3518 	lwkt_serialize_exit(ifp->if_serializer);
3519 
3520 	return error;
3521 }
3522 
3523 static int
3524 emx_dma_alloc(struct emx_softc *sc)
3525 {
3526 	int error, i;
3527 
3528 	/*
3529 	 * Create top level busdma tag
3530 	 */
3531 	error = bus_dma_tag_create(NULL, 1, 0,
3532 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3533 			NULL, NULL,
3534 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3535 			0, &sc->parent_dtag);
3536 	if (error) {
3537 		device_printf(sc->dev, "could not create top level DMA tag\n");
3538 		return error;
3539 	}
3540 
3541 	/*
3542 	 * Allocate transmit descriptors ring and buffers
3543 	 */
3544 	error = emx_create_tx_ring(sc);
3545 	if (error) {
3546 		device_printf(sc->dev, "Could not setup transmit structures\n");
3547 		return error;
3548 	}
3549 
3550 	/*
3551 	 * Allocate receive descriptors ring and buffers
3552 	 */
3553 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3554 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3555 		if (error) {
3556 			device_printf(sc->dev,
3557 			    "Could not setup receive structures\n");
3558 			return error;
3559 		}
3560 	}
3561 	return 0;
3562 }
3563 
3564 static void
3565 emx_dma_free(struct emx_softc *sc)
3566 {
3567 	int i;
3568 
3569 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3570 
3571 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3572 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3573 				    sc->rx_data[i].num_rx_desc);
3574 	}
3575 
3576 	/* Free top level busdma tag */
3577 	if (sc->parent_dtag != NULL)
3578 		bus_dma_tag_destroy(sc->parent_dtag);
3579 }
3580