xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision dc71b7ab)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
69 
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
86 
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
105 
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
108 
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/emx/if_emx.h>
112 
113 #define DEBUG_HW 0
114 
115 #ifdef EMX_RSS_DEBUG
116 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
117 do { \
118 	if (sc->rss_debug >= lvl) \
119 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
120 } while (0)
121 #else	/* !EMX_RSS_DEBUG */
122 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
123 #endif	/* EMX_RSS_DEBUG */
124 
125 #define EMX_NAME	"Intel(R) PRO/1000 "
126 
127 #define EMX_DEVICE(id)	\
128 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
129 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
130 
131 static const struct emx_device {
132 	uint16_t	vid;
133 	uint16_t	did;
134 	const char	*desc;
135 } emx_devices[] = {
136 	EMX_DEVICE(82571EB_COPPER),
137 	EMX_DEVICE(82571EB_FIBER),
138 	EMX_DEVICE(82571EB_SERDES),
139 	EMX_DEVICE(82571EB_SERDES_DUAL),
140 	EMX_DEVICE(82571EB_SERDES_QUAD),
141 	EMX_DEVICE(82571EB_QUAD_COPPER),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
143 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
144 	EMX_DEVICE(82571EB_QUAD_FIBER),
145 	EMX_DEVICE(82571PT_QUAD_COPPER),
146 
147 	EMX_DEVICE(82572EI_COPPER),
148 	EMX_DEVICE(82572EI_FIBER),
149 	EMX_DEVICE(82572EI_SERDES),
150 	EMX_DEVICE(82572EI),
151 
152 	EMX_DEVICE(82573E),
153 	EMX_DEVICE(82573E_IAMT),
154 	EMX_DEVICE(82573L),
155 
156 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
157 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
158 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
159 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
160 
161 	EMX_DEVICE(82574L),
162 	EMX_DEVICE(82574LA),
163 
164 	/* required last entry */
165 	EMX_DEVICE_NULL
166 };
167 
168 static int	emx_probe(device_t);
169 static int	emx_attach(device_t);
170 static int	emx_detach(device_t);
171 static int	emx_shutdown(device_t);
172 static int	emx_suspend(device_t);
173 static int	emx_resume(device_t);
174 
175 static void	emx_init(void *);
176 static void	emx_stop(struct emx_softc *);
177 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
178 static void	emx_start(struct ifnet *, struct ifaltq_subque *);
179 #ifdef IFPOLL_ENABLE
180 static void	emx_npoll(struct ifnet *, struct ifpoll_info *);
181 static void	emx_npoll_status(struct ifnet *);
182 static void	emx_npoll_tx(struct ifnet *, void *, int);
183 static void	emx_npoll_rx(struct ifnet *, void *, int);
184 #endif
185 static void	emx_watchdog(struct ifaltq_subque *);
186 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
187 static int	emx_media_change(struct ifnet *);
188 static void	emx_timer(void *);
189 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
190 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
191 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
192 #ifdef INVARIANTS
193 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
194 		    boolean_t);
195 #endif
196 
197 static void	emx_intr(void *);
198 static void	emx_intr_mask(void *);
199 static void	emx_intr_body(struct emx_softc *, boolean_t);
200 static void	emx_rxeof(struct emx_rxdata *, int);
201 static void	emx_txeof(struct emx_txdata *);
202 static void	emx_tx_collect(struct emx_txdata *);
203 static void	emx_tx_purge(struct emx_softc *);
204 static void	emx_enable_intr(struct emx_softc *);
205 static void	emx_disable_intr(struct emx_softc *);
206 
207 static int	emx_dma_alloc(struct emx_softc *);
208 static void	emx_dma_free(struct emx_softc *);
209 static void	emx_init_tx_ring(struct emx_txdata *);
210 static int	emx_init_rx_ring(struct emx_rxdata *);
211 static void	emx_free_tx_ring(struct emx_txdata *);
212 static void	emx_free_rx_ring(struct emx_rxdata *);
213 static int	emx_create_tx_ring(struct emx_txdata *);
214 static int	emx_create_rx_ring(struct emx_rxdata *);
215 static void	emx_destroy_tx_ring(struct emx_txdata *, int);
216 static void	emx_destroy_rx_ring(struct emx_rxdata *, int);
217 static int	emx_newbuf(struct emx_rxdata *, int, int);
218 static int	emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
219 static int	emx_txcsum(struct emx_txdata *, struct mbuf *,
220 		    uint32_t *, uint32_t *);
221 static int	emx_tso_pullup(struct emx_txdata *, struct mbuf **);
222 static int	emx_tso_setup(struct emx_txdata *, struct mbuf *,
223 		    uint32_t *, uint32_t *);
224 static int	emx_get_txring_inuse(const struct emx_softc *, boolean_t);
225 
226 static int 	emx_is_valid_eaddr(const uint8_t *);
227 static int	emx_reset(struct emx_softc *);
228 static void	emx_setup_ifp(struct emx_softc *);
229 static void	emx_init_tx_unit(struct emx_softc *);
230 static void	emx_init_rx_unit(struct emx_softc *);
231 static void	emx_update_stats(struct emx_softc *);
232 static void	emx_set_promisc(struct emx_softc *);
233 static void	emx_disable_promisc(struct emx_softc *);
234 static void	emx_set_multi(struct emx_softc *);
235 static void	emx_update_link_status(struct emx_softc *);
236 static void	emx_smartspeed(struct emx_softc *);
237 static void	emx_set_itr(struct emx_softc *, uint32_t);
238 static void	emx_disable_aspm(struct emx_softc *);
239 
240 static void	emx_print_debug_info(struct emx_softc *);
241 static void	emx_print_nvm_info(struct emx_softc *);
242 static void	emx_print_hw_stats(struct emx_softc *);
243 
244 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
245 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
246 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
247 static int	emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
248 static int	emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
249 #ifdef IFPOLL_ENABLE
250 static int	emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
251 static int	emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
252 #endif
253 static void	emx_add_sysctl(struct emx_softc *);
254 
255 static void	emx_serialize_skipmain(struct emx_softc *);
256 static void	emx_deserialize_skipmain(struct emx_softc *);
257 
258 /* Management and WOL Support */
259 static void	emx_get_mgmt(struct emx_softc *);
260 static void	emx_rel_mgmt(struct emx_softc *);
261 static void	emx_get_hw_control(struct emx_softc *);
262 static void	emx_rel_hw_control(struct emx_softc *);
263 static void	emx_enable_wol(device_t);
264 
265 static device_method_t emx_methods[] = {
266 	/* Device interface */
267 	DEVMETHOD(device_probe,		emx_probe),
268 	DEVMETHOD(device_attach,	emx_attach),
269 	DEVMETHOD(device_detach,	emx_detach),
270 	DEVMETHOD(device_shutdown,	emx_shutdown),
271 	DEVMETHOD(device_suspend,	emx_suspend),
272 	DEVMETHOD(device_resume,	emx_resume),
273 	DEVMETHOD_END
274 };
275 
276 static driver_t emx_driver = {
277 	"emx",
278 	emx_methods,
279 	sizeof(struct emx_softc),
280 };
281 
282 static devclass_t emx_devclass;
283 
284 DECLARE_DUMMY_MODULE(if_emx);
285 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
286 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
287 
288 /*
289  * Tunables
290  */
291 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
292 static int	emx_rxd = EMX_DEFAULT_RXD;
293 static int	emx_txd = EMX_DEFAULT_TXD;
294 static int	emx_smart_pwr_down = 0;
295 static int	emx_rxr = 0;
296 static int	emx_txr = 1;
297 
298 /* Controls whether promiscuous also shows bad packets */
299 static int	emx_debug_sbp = 0;
300 
301 static int	emx_82573_workaround = 1;
302 static int	emx_msi_enable = 1;
303 
304 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
305 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
306 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
307 TUNABLE_INT("hw.emx.txd", &emx_txd);
308 TUNABLE_INT("hw.emx.txr", &emx_txr);
309 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
310 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
311 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
312 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
313 
314 /* Global used in WOL setup with multiport cards */
315 static int	emx_global_quad_port_a = 0;
316 
317 /* Set this to one to display debug statistics */
318 static int	emx_display_debug_stats = 0;
319 
320 #if !defined(KTR_IF_EMX)
321 #define KTR_IF_EMX	KTR_ALL
322 #endif
323 KTR_INFO_MASTER(if_emx);
324 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
325 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
326 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
327 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
328 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
329 #define logif(name)	KTR_LOG(if_emx_ ## name)
330 
331 static __inline void
332 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
333 {
334 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
335 	/* DD bit must be cleared */
336 	rxd->rxd_staterr = 0;
337 }
338 
339 static __inline void
340 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
341 {
342 	/* Ignore Checksum bit is set */
343 	if (staterr & E1000_RXD_STAT_IXSM)
344 		return;
345 
346 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
347 	    E1000_RXD_STAT_IPCS)
348 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
349 
350 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
351 	    E1000_RXD_STAT_TCPCS) {
352 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
353 					   CSUM_PSEUDO_HDR |
354 					   CSUM_FRAG_NOT_CHECKED;
355 		mp->m_pkthdr.csum_data = htons(0xffff);
356 	}
357 }
358 
359 static __inline struct pktinfo *
360 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
361 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
362 {
363 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
364 	case EMX_RXDMRQ_IPV4_TCP:
365 		pi->pi_netisr = NETISR_IP;
366 		pi->pi_flags = 0;
367 		pi->pi_l3proto = IPPROTO_TCP;
368 		break;
369 
370 	case EMX_RXDMRQ_IPV6_TCP:
371 		pi->pi_netisr = NETISR_IPV6;
372 		pi->pi_flags = 0;
373 		pi->pi_l3proto = IPPROTO_TCP;
374 		break;
375 
376 	case EMX_RXDMRQ_IPV4:
377 		if (staterr & E1000_RXD_STAT_IXSM)
378 			return NULL;
379 
380 		if ((staterr &
381 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
382 		    E1000_RXD_STAT_TCPCS) {
383 			pi->pi_netisr = NETISR_IP;
384 			pi->pi_flags = 0;
385 			pi->pi_l3proto = IPPROTO_UDP;
386 			break;
387 		}
388 		/* FALL THROUGH */
389 	default:
390 		return NULL;
391 	}
392 
393 	m->m_flags |= M_HASH;
394 	m->m_pkthdr.hash = toeplitz_hash(hash);
395 	return pi;
396 }
397 
398 static int
399 emx_probe(device_t dev)
400 {
401 	const struct emx_device *d;
402 	uint16_t vid, did;
403 
404 	vid = pci_get_vendor(dev);
405 	did = pci_get_device(dev);
406 
407 	for (d = emx_devices; d->desc != NULL; ++d) {
408 		if (vid == d->vid && did == d->did) {
409 			device_set_desc(dev, d->desc);
410 			device_set_async_attach(dev, TRUE);
411 			return 0;
412 		}
413 	}
414 	return ENXIO;
415 }
416 
417 static int
418 emx_attach(device_t dev)
419 {
420 	struct emx_softc *sc = device_get_softc(dev);
421 	int error = 0, i, throttle, msi_enable, tx_ring_max;
422 	u_int intr_flags;
423 	uint16_t eeprom_data, device_id, apme_mask;
424 	driver_intr_t *intr_func;
425 #ifdef IFPOLL_ENABLE
426 	int offset, offset_def;
427 #endif
428 
429 	/*
430 	 * Setup RX rings
431 	 */
432 	for (i = 0; i < EMX_NRX_RING; ++i) {
433 		sc->rx_data[i].sc = sc;
434 		sc->rx_data[i].idx = i;
435 	}
436 
437 	/*
438 	 * Setup TX ring
439 	 */
440 	for (i = 0; i < EMX_NTX_RING; ++i) {
441 		sc->tx_data[i].sc = sc;
442 		sc->tx_data[i].idx = i;
443 	}
444 
445 	/*
446 	 * Initialize serializers
447 	 */
448 	lwkt_serialize_init(&sc->main_serialize);
449 	for (i = 0; i < EMX_NTX_RING; ++i)
450 		lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
451 	for (i = 0; i < EMX_NRX_RING; ++i)
452 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
453 
454 	/*
455 	 * Initialize serializer array
456 	 */
457 	i = 0;
458 
459 	KKASSERT(i < EMX_NSERIALIZE);
460 	sc->serializes[i++] = &sc->main_serialize;
461 
462 	KKASSERT(i < EMX_NSERIALIZE);
463 	sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
464 	KKASSERT(i < EMX_NSERIALIZE);
465 	sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
466 
467 	KKASSERT(i < EMX_NSERIALIZE);
468 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
469 	KKASSERT(i < EMX_NSERIALIZE);
470 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
471 
472 	KKASSERT(i == EMX_NSERIALIZE);
473 
474 	callout_init_mp(&sc->timer);
475 
476 	sc->dev = sc->osdep.dev = dev;
477 
478 	/*
479 	 * Determine hardware and mac type
480 	 */
481 	sc->hw.vendor_id = pci_get_vendor(dev);
482 	sc->hw.device_id = pci_get_device(dev);
483 	sc->hw.revision_id = pci_get_revid(dev);
484 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
485 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
486 
487 	if (e1000_set_mac_type(&sc->hw))
488 		return ENXIO;
489 
490 	/* Enable bus mastering */
491 	pci_enable_busmaster(dev);
492 
493 	/*
494 	 * Allocate IO memory
495 	 */
496 	sc->memory_rid = EMX_BAR_MEM;
497 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
498 					    &sc->memory_rid, RF_ACTIVE);
499 	if (sc->memory == NULL) {
500 		device_printf(dev, "Unable to allocate bus resource: memory\n");
501 		error = ENXIO;
502 		goto fail;
503 	}
504 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
505 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
506 
507 	/* XXX This is quite goofy, it is not actually used */
508 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
509 
510 	/*
511 	 * Don't enable MSI-X on 82574, see:
512 	 * 82574 specification update errata #15
513 	 *
514 	 * Don't enable MSI on 82571/82572, see:
515 	 * 82571/82572 specification update errata #63
516 	 */
517 	msi_enable = emx_msi_enable;
518 	if (msi_enable &&
519 	    (sc->hw.mac.type == e1000_82571 ||
520 	     sc->hw.mac.type == e1000_82572))
521 		msi_enable = 0;
522 
523 	/*
524 	 * Allocate interrupt
525 	 */
526 	sc->intr_type = pci_alloc_1intr(dev, msi_enable,
527 	    &sc->intr_rid, &intr_flags);
528 
529 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
530 		int unshared;
531 
532 		unshared = device_getenv_int(dev, "irq.unshared", 0);
533 		if (!unshared) {
534 			sc->flags |= EMX_FLAG_SHARED_INTR;
535 			if (bootverbose)
536 				device_printf(dev, "IRQ shared\n");
537 		} else {
538 			intr_flags &= ~RF_SHAREABLE;
539 			if (bootverbose)
540 				device_printf(dev, "IRQ unshared\n");
541 		}
542 	}
543 
544 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
545 	    intr_flags);
546 	if (sc->intr_res == NULL) {
547 		device_printf(dev, "Unable to allocate bus resource: "
548 		    "interrupt\n");
549 		error = ENXIO;
550 		goto fail;
551 	}
552 
553 	/* Save PCI command register for Shared Code */
554 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
555 	sc->hw.back = &sc->osdep;
556 
557 	/* Do Shared Code initialization */
558 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
559 		device_printf(dev, "Setup of Shared code failed\n");
560 		error = ENXIO;
561 		goto fail;
562 	}
563 	e1000_get_bus_info(&sc->hw);
564 
565 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
566 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
567 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
568 
569 	/*
570 	 * Interrupt throttle rate
571 	 */
572 	throttle = device_getenv_int(dev, "int_throttle_ceil",
573 	    emx_int_throttle_ceil);
574 	if (throttle == 0) {
575 		sc->int_throttle_ceil = 0;
576 	} else {
577 		if (throttle < 0)
578 			throttle = EMX_DEFAULT_ITR;
579 
580 		/* Recalculate the tunable value to get the exact frequency. */
581 		throttle = 1000000000 / 256 / throttle;
582 
583 		/* Upper 16bits of ITR is reserved and should be zero */
584 		if (throttle & 0xffff0000)
585 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
586 
587 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
588 	}
589 
590 	e1000_init_script_state_82541(&sc->hw, TRUE);
591 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
592 
593 	/* Copper options */
594 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
595 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
596 		sc->hw.phy.disable_polarity_correction = FALSE;
597 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
598 	}
599 
600 	/* Set the frame limits assuming standard ethernet sized frames. */
601 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
602 	sc->min_frame_size = ETHER_MIN_LEN;
603 
604 	/* This controls when hardware reports transmit completion status. */
605 	sc->hw.mac.report_tx_early = 1;
606 
607 	/* Calculate # of RX rings */
608 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
609 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
610 
611 	/*
612 	 * Calculate # of TX rings
613 	 *
614 	 * NOTE:
615 	 * Don't enable multiple TX queues on 82574; it always gives
616 	 * watchdog timeout on TX queue0, when multiple TCP streams are
617 	 * received.  It was originally suspected that the hardware TX
618 	 * checksum offloading caused this watchdog timeout, since only
619 	 * TCP ACKs are sent during TCP receiving tests.  However, even
620 	 * if the hardware TX checksum offloading is disable, TX queue0
621 	 * still will give watchdog.
622 	 */
623 	tx_ring_max = 1;
624 	if (sc->hw.mac.type == e1000_82571 ||
625 	    sc->hw.mac.type == e1000_82572 ||
626 	    sc->hw.mac.type == e1000_80003es2lan)
627 		tx_ring_max = EMX_NTX_RING;
628 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
629 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
630 
631 	/* Allocate RX/TX rings' busdma(9) stuffs */
632 	error = emx_dma_alloc(sc);
633 	if (error)
634 		goto fail;
635 
636 	/* Allocate multicast array memory. */
637 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
638 	    M_DEVBUF, M_WAITOK);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&sc->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/*
647 	 * Start from a known state, this is important in reading the
648 	 * nvm and mac from that.
649 	 */
650 	e1000_reset_hw(&sc->hw);
651 
652 	/* Make sure we have a good EEPROM before we read from it */
653 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
654 		/*
655 		 * Some PCI-E parts fail the first check due to
656 		 * the link being in sleep state, call it again,
657 		 * if it fails a second time its a real issue.
658 		 */
659 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
660 			device_printf(dev,
661 			    "The EEPROM Checksum Is Not Valid\n");
662 			error = EIO;
663 			goto fail;
664 		}
665 	}
666 
667 	/* Copy the permanent MAC address out of the EEPROM */
668 	if (e1000_read_mac_addr(&sc->hw) < 0) {
669 		device_printf(dev, "EEPROM read error while reading MAC"
670 		    " address\n");
671 		error = EIO;
672 		goto fail;
673 	}
674 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
675 		device_printf(dev, "Invalid MAC address\n");
676 		error = EIO;
677 		goto fail;
678 	}
679 
680 	/* Determine if we have to control management hardware */
681 	if (e1000_enable_mng_pass_thru(&sc->hw))
682 		sc->flags |= EMX_FLAG_HAS_MGMT;
683 
684 	/*
685 	 * Setup Wake-on-Lan
686 	 */
687 	apme_mask = EMX_EEPROM_APME;
688 	eeprom_data = 0;
689 	switch (sc->hw.mac.type) {
690 	case e1000_82573:
691 		sc->flags |= EMX_FLAG_HAS_AMT;
692 		/* FALL THROUGH */
693 
694 	case e1000_82571:
695 	case e1000_82572:
696 	case e1000_80003es2lan:
697 		if (sc->hw.bus.func == 1) {
698 			e1000_read_nvm(&sc->hw,
699 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
700 		} else {
701 			e1000_read_nvm(&sc->hw,
702 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
703 		}
704 		break;
705 
706 	default:
707 		e1000_read_nvm(&sc->hw,
708 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
709 		break;
710 	}
711 	if (eeprom_data & apme_mask)
712 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
713 
714 	/*
715          * We have the eeprom settings, now apply the special cases
716          * where the eeprom may be wrong or the board won't support
717          * wake on lan on a particular port
718 	 */
719 	device_id = pci_get_device(dev);
720         switch (device_id) {
721 	case E1000_DEV_ID_82571EB_FIBER:
722 		/*
723 		 * Wake events only supported on port A for dual fiber
724 		 * regardless of eeprom setting
725 		 */
726 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
727 		    E1000_STATUS_FUNC_1)
728 			sc->wol = 0;
729 		break;
730 
731 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
732 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
733 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
734                 /* if quad port sc, disable WoL on all but port A */
735 		if (emx_global_quad_port_a != 0)
736 			sc->wol = 0;
737 		/* Reset for multiple quad port adapters */
738 		if (++emx_global_quad_port_a == 4)
739 			emx_global_quad_port_a = 0;
740                 break;
741 	}
742 
743 	/* XXX disable wol */
744 	sc->wol = 0;
745 
746 #ifdef IFPOLL_ENABLE
747 	/*
748 	 * NPOLLING RX CPU offset
749 	 */
750 	if (sc->rx_ring_cnt == ncpus2) {
751 		offset = 0;
752 	} else {
753 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
754 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
755 		if (offset >= ncpus2 ||
756 		    offset % sc->rx_ring_cnt != 0) {
757 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
758 			    offset, offset_def);
759 			offset = offset_def;
760 		}
761 	}
762 	sc->rx_npoll_off = offset;
763 
764 	/*
765 	 * NPOLLING TX CPU offset
766 	 */
767 	if (sc->tx_ring_cnt == ncpus2) {
768 		offset = 0;
769 	} else {
770 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
771 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
772 		if (offset >= ncpus2 ||
773 		    offset % sc->tx_ring_cnt != 0) {
774 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
775 			    offset, offset_def);
776 			offset = offset_def;
777 		}
778 	}
779 	sc->tx_npoll_off = offset;
780 #endif
781 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
782 
783 	/* Setup OS specific network interface */
784 	emx_setup_ifp(sc);
785 
786 	/* Add sysctl tree, must after em_setup_ifp() */
787 	emx_add_sysctl(sc);
788 
789 	/* Reset the hardware */
790 	error = emx_reset(sc);
791 	if (error) {
792 		device_printf(dev, "Unable to reset the hardware\n");
793 		goto fail;
794 	}
795 
796 	/* Initialize statistics */
797 	emx_update_stats(sc);
798 
799 	sc->hw.mac.get_link_status = 1;
800 	emx_update_link_status(sc);
801 
802 	/* Non-AMT based hardware can now take control from firmware */
803 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
804 	    EMX_FLAG_HAS_MGMT)
805 		emx_get_hw_control(sc);
806 
807 	/*
808 	 * Missing Interrupt Following ICR read:
809 	 *
810 	 * 82571/82572 specification update errata #76
811 	 * 82573 specification update errata #31
812 	 * 82574 specification update errata #12
813 	 */
814 	intr_func = emx_intr;
815 	if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
816 	    (sc->hw.mac.type == e1000_82571 ||
817 	     sc->hw.mac.type == e1000_82572 ||
818 	     sc->hw.mac.type == e1000_82573 ||
819 	     sc->hw.mac.type == e1000_82574))
820 		intr_func = emx_intr_mask;
821 
822 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
823 			       &sc->intr_tag, &sc->main_serialize);
824 	if (error) {
825 		device_printf(dev, "Failed to register interrupt handler");
826 		ether_ifdetach(&sc->arpcom.ac_if);
827 		goto fail;
828 	}
829 	return (0);
830 fail:
831 	emx_detach(dev);
832 	return (error);
833 }
834 
835 static int
836 emx_detach(device_t dev)
837 {
838 	struct emx_softc *sc = device_get_softc(dev);
839 
840 	if (device_is_attached(dev)) {
841 		struct ifnet *ifp = &sc->arpcom.ac_if;
842 
843 		ifnet_serialize_all(ifp);
844 
845 		emx_stop(sc);
846 
847 		e1000_phy_hw_reset(&sc->hw);
848 
849 		emx_rel_mgmt(sc);
850 		emx_rel_hw_control(sc);
851 
852 		if (sc->wol) {
853 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
854 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
855 			emx_enable_wol(dev);
856 		}
857 
858 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
859 
860 		ifnet_deserialize_all(ifp);
861 
862 		ether_ifdetach(ifp);
863 	} else if (sc->memory != NULL) {
864 		emx_rel_hw_control(sc);
865 	}
866 	bus_generic_detach(dev);
867 
868 	if (sc->intr_res != NULL) {
869 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
870 				     sc->intr_res);
871 	}
872 
873 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
874 		pci_release_msi(dev);
875 
876 	if (sc->memory != NULL) {
877 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
878 				     sc->memory);
879 	}
880 
881 	emx_dma_free(sc);
882 
883 	/* Free sysctl tree */
884 	if (sc->sysctl_tree != NULL)
885 		sysctl_ctx_free(&sc->sysctl_ctx);
886 
887 	if (sc->mta != NULL)
888 		kfree(sc->mta, M_DEVBUF);
889 
890 	return (0);
891 }
892 
893 static int
894 emx_shutdown(device_t dev)
895 {
896 	return emx_suspend(dev);
897 }
898 
899 static int
900 emx_suspend(device_t dev)
901 {
902 	struct emx_softc *sc = device_get_softc(dev);
903 	struct ifnet *ifp = &sc->arpcom.ac_if;
904 
905 	ifnet_serialize_all(ifp);
906 
907 	emx_stop(sc);
908 
909 	emx_rel_mgmt(sc);
910 	emx_rel_hw_control(sc);
911 
912 	if (sc->wol) {
913 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
914 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
915 		emx_enable_wol(dev);
916 	}
917 
918 	ifnet_deserialize_all(ifp);
919 
920 	return bus_generic_suspend(dev);
921 }
922 
923 static int
924 emx_resume(device_t dev)
925 {
926 	struct emx_softc *sc = device_get_softc(dev);
927 	struct ifnet *ifp = &sc->arpcom.ac_if;
928 	int i;
929 
930 	ifnet_serialize_all(ifp);
931 
932 	emx_init(sc);
933 	emx_get_mgmt(sc);
934 	for (i = 0; i < sc->tx_ring_inuse; ++i)
935 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
936 
937 	ifnet_deserialize_all(ifp);
938 
939 	return bus_generic_resume(dev);
940 }
941 
942 static void
943 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
944 {
945 	struct emx_softc *sc = ifp->if_softc;
946 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
947 	struct mbuf *m_head;
948 	int idx = -1, nsegs = 0;
949 
950 	KKASSERT(tdata->ifsq == ifsq);
951 	ASSERT_SERIALIZED(&tdata->tx_serialize);
952 
953 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
954 		return;
955 
956 	if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
957 		ifsq_purge(ifsq);
958 		return;
959 	}
960 
961 	while (!ifsq_is_empty(ifsq)) {
962 		/* Now do we at least have a minimal? */
963 		if (EMX_IS_OACTIVE(tdata)) {
964 			emx_tx_collect(tdata);
965 			if (EMX_IS_OACTIVE(tdata)) {
966 				ifsq_set_oactive(ifsq);
967 				break;
968 			}
969 		}
970 
971 		logif(pkt_txqueue);
972 		m_head = ifsq_dequeue(ifsq, NULL);
973 		if (m_head == NULL)
974 			break;
975 
976 		if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
977 			IFNET_STAT_INC(ifp, oerrors, 1);
978 			emx_tx_collect(tdata);
979 			continue;
980 		}
981 
982 		if (nsegs >= tdata->tx_wreg_nsegs) {
983 			E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
984 			nsegs = 0;
985 			idx = -1;
986 		}
987 
988 		/* Send a copy of the frame to the BPF listener */
989 		ETHER_BPF_MTAP(ifp, m_head);
990 
991 		/* Set timeout in case hardware has problems transmitting. */
992 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
993 	}
994 	if (idx >= 0)
995 		E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
996 }
997 
998 static int
999 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1000 {
1001 	struct emx_softc *sc = ifp->if_softc;
1002 	struct ifreq *ifr = (struct ifreq *)data;
1003 	uint16_t eeprom_data = 0;
1004 	int max_frame_size, mask, reinit;
1005 	int error = 0;
1006 
1007 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1008 
1009 	switch (command) {
1010 	case SIOCSIFMTU:
1011 		switch (sc->hw.mac.type) {
1012 		case e1000_82573:
1013 			/*
1014 			 * 82573 only supports jumbo frames
1015 			 * if ASPM is disabled.
1016 			 */
1017 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1018 				       &eeprom_data);
1019 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1020 				max_frame_size = ETHER_MAX_LEN;
1021 				break;
1022 			}
1023 			/* FALL THROUGH */
1024 
1025 		/* Limit Jumbo Frame size */
1026 		case e1000_82571:
1027 		case e1000_82572:
1028 		case e1000_82574:
1029 		case e1000_80003es2lan:
1030 			max_frame_size = 9234;
1031 			break;
1032 
1033 		default:
1034 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1035 			break;
1036 		}
1037 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1038 		    ETHER_CRC_LEN) {
1039 			error = EINVAL;
1040 			break;
1041 		}
1042 
1043 		ifp->if_mtu = ifr->ifr_mtu;
1044 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1045 				     ETHER_CRC_LEN;
1046 
1047 		if (ifp->if_flags & IFF_RUNNING)
1048 			emx_init(sc);
1049 		break;
1050 
1051 	case SIOCSIFFLAGS:
1052 		if (ifp->if_flags & IFF_UP) {
1053 			if ((ifp->if_flags & IFF_RUNNING)) {
1054 				if ((ifp->if_flags ^ sc->if_flags) &
1055 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1056 					emx_disable_promisc(sc);
1057 					emx_set_promisc(sc);
1058 				}
1059 			} else {
1060 				emx_init(sc);
1061 			}
1062 		} else if (ifp->if_flags & IFF_RUNNING) {
1063 			emx_stop(sc);
1064 		}
1065 		sc->if_flags = ifp->if_flags;
1066 		break;
1067 
1068 	case SIOCADDMULTI:
1069 	case SIOCDELMULTI:
1070 		if (ifp->if_flags & IFF_RUNNING) {
1071 			emx_disable_intr(sc);
1072 			emx_set_multi(sc);
1073 #ifdef IFPOLL_ENABLE
1074 			if (!(ifp->if_flags & IFF_NPOLLING))
1075 #endif
1076 				emx_enable_intr(sc);
1077 		}
1078 		break;
1079 
1080 	case SIOCSIFMEDIA:
1081 		/* Check SOL/IDER usage */
1082 		if (e1000_check_reset_block(&sc->hw)) {
1083 			device_printf(sc->dev, "Media change is"
1084 			    " blocked due to SOL/IDER session.\n");
1085 			break;
1086 		}
1087 		/* FALL THROUGH */
1088 
1089 	case SIOCGIFMEDIA:
1090 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1091 		break;
1092 
1093 	case SIOCSIFCAP:
1094 		reinit = 0;
1095 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1096 		if (mask & IFCAP_RXCSUM) {
1097 			ifp->if_capenable ^= IFCAP_RXCSUM;
1098 			reinit = 1;
1099 		}
1100 		if (mask & IFCAP_VLAN_HWTAGGING) {
1101 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1102 			reinit = 1;
1103 		}
1104 		if (mask & IFCAP_TXCSUM) {
1105 			ifp->if_capenable ^= IFCAP_TXCSUM;
1106 			if (ifp->if_capenable & IFCAP_TXCSUM)
1107 				ifp->if_hwassist |= EMX_CSUM_FEATURES;
1108 			else
1109 				ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1110 		}
1111 		if (mask & IFCAP_TSO) {
1112 			ifp->if_capenable ^= IFCAP_TSO;
1113 			if (ifp->if_capenable & IFCAP_TSO)
1114 				ifp->if_hwassist |= CSUM_TSO;
1115 			else
1116 				ifp->if_hwassist &= ~CSUM_TSO;
1117 		}
1118 		if (mask & IFCAP_RSS)
1119 			ifp->if_capenable ^= IFCAP_RSS;
1120 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1121 			emx_init(sc);
1122 		break;
1123 
1124 	default:
1125 		error = ether_ioctl(ifp, command, data);
1126 		break;
1127 	}
1128 	return (error);
1129 }
1130 
1131 static void
1132 emx_watchdog(struct ifaltq_subque *ifsq)
1133 {
1134 	struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1135 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
1136 	struct emx_softc *sc = ifp->if_softc;
1137 	int i;
1138 
1139 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1140 
1141 	/*
1142 	 * The timer is set to 5 every time start queues a packet.
1143 	 * Then txeof keeps resetting it as long as it cleans at
1144 	 * least one descriptor.
1145 	 * Finally, anytime all descriptors are clean the timer is
1146 	 * set to 0.
1147 	 */
1148 
1149 	if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1150 	    E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1151 		/*
1152 		 * If we reach here, all TX jobs are completed and
1153 		 * the TX engine should have been idled for some time.
1154 		 * We don't need to call ifsq_devstart_sched() here.
1155 		 */
1156 		ifsq_clr_oactive(ifsq);
1157 		tdata->tx_watchdog.wd_timer = 0;
1158 		return;
1159 	}
1160 
1161 	/*
1162 	 * If we are in this routine because of pause frames, then
1163 	 * don't reset the hardware.
1164 	 */
1165 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1166 		tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1167 		return;
1168 	}
1169 
1170 	if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1171 
1172 	IFNET_STAT_INC(ifp, oerrors, 1);
1173 
1174 	emx_init(sc);
1175 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1176 		ifsq_devstart_sched(sc->tx_data[i].ifsq);
1177 }
1178 
1179 static void
1180 emx_init(void *xsc)
1181 {
1182 	struct emx_softc *sc = xsc;
1183 	struct ifnet *ifp = &sc->arpcom.ac_if;
1184 	device_t dev = sc->dev;
1185 	boolean_t polling;
1186 	int i;
1187 
1188 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1189 
1190 	emx_stop(sc);
1191 
1192 	/* Get the latest mac address, User can use a LAA */
1193         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1194 
1195 	/* Put the address into the Receive Address Array */
1196 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1197 
1198 	/*
1199 	 * With the 82571 sc, RAR[0] may be overwritten
1200 	 * when the other port is reset, we make a duplicate
1201 	 * in RAR[14] for that eventuality, this assures
1202 	 * the interface continues to function.
1203 	 */
1204 	if (sc->hw.mac.type == e1000_82571) {
1205 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1206 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1207 		    E1000_RAR_ENTRIES - 1);
1208 	}
1209 
1210 	/* Initialize the hardware */
1211 	if (emx_reset(sc)) {
1212 		device_printf(dev, "Unable to reset the hardware\n");
1213 		/* XXX emx_stop()? */
1214 		return;
1215 	}
1216 	emx_update_link_status(sc);
1217 
1218 	/* Setup VLAN support, basic and offload if available */
1219 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1220 
1221 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1222 		uint32_t ctrl;
1223 
1224 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1225 		ctrl |= E1000_CTRL_VME;
1226 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1227 	}
1228 
1229 	/* Configure for OS presence */
1230 	emx_get_mgmt(sc);
1231 
1232 	polling = FALSE;
1233 #ifdef IFPOLL_ENABLE
1234 	if (ifp->if_flags & IFF_NPOLLING)
1235 		polling = TRUE;
1236 #endif
1237 	sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1238 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1239 
1240 	/* Prepare transmit descriptors and buffers */
1241 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1242 		emx_init_tx_ring(&sc->tx_data[i]);
1243 	emx_init_tx_unit(sc);
1244 
1245 	/* Setup Multicast table */
1246 	emx_set_multi(sc);
1247 
1248 	/* Prepare receive descriptors and buffers */
1249 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1250 		if (emx_init_rx_ring(&sc->rx_data[i])) {
1251 			device_printf(dev,
1252 			    "Could not setup receive structures\n");
1253 			emx_stop(sc);
1254 			return;
1255 		}
1256 	}
1257 	emx_init_rx_unit(sc);
1258 
1259 	/* Don't lose promiscuous settings */
1260 	emx_set_promisc(sc);
1261 
1262 	ifp->if_flags |= IFF_RUNNING;
1263 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1264 		ifsq_clr_oactive(sc->tx_data[i].ifsq);
1265 		ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1266 	}
1267 
1268 	callout_reset(&sc->timer, hz, emx_timer, sc);
1269 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1270 
1271 	/* MSI/X configuration for 82574 */
1272 	if (sc->hw.mac.type == e1000_82574) {
1273 		int tmp;
1274 
1275 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1276 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1277 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1278 		/*
1279 		 * XXX MSIX
1280 		 * Set the IVAR - interrupt vector routing.
1281 		 * Each nibble represents a vector, high bit
1282 		 * is enable, other 3 bits are the MSIX table
1283 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1284 		 * Link (other) to 2, hence the magic number.
1285 		 */
1286 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1287 	}
1288 
1289 	/*
1290 	 * Only enable interrupts if we are not polling, make sure
1291 	 * they are off otherwise.
1292 	 */
1293 	if (polling)
1294 		emx_disable_intr(sc);
1295 	else
1296 		emx_enable_intr(sc);
1297 
1298 	/* AMT based hardware can now take control from firmware */
1299 	if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1300 	    (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1301 		emx_get_hw_control(sc);
1302 }
1303 
1304 static void
1305 emx_intr(void *xsc)
1306 {
1307 	emx_intr_body(xsc, TRUE);
1308 }
1309 
1310 static void
1311 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1312 {
1313 	struct ifnet *ifp = &sc->arpcom.ac_if;
1314 	uint32_t reg_icr;
1315 
1316 	logif(intr_beg);
1317 	ASSERT_SERIALIZED(&sc->main_serialize);
1318 
1319 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1320 
1321 	if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1322 		logif(intr_end);
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * XXX: some laptops trigger several spurious interrupts
1328 	 * on emx(4) when in the resume cycle. The ICR register
1329 	 * reports all-ones value in this case. Processing such
1330 	 * interrupts would lead to a freeze. I don't know why.
1331 	 */
1332 	if (reg_icr == 0xffffffff) {
1333 		logif(intr_end);
1334 		return;
1335 	}
1336 
1337 	if (ifp->if_flags & IFF_RUNNING) {
1338 		if (reg_icr &
1339 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1340 			int i;
1341 
1342 			for (i = 0; i < sc->rx_ring_cnt; ++i) {
1343 				lwkt_serialize_enter(
1344 				&sc->rx_data[i].rx_serialize);
1345 				emx_rxeof(&sc->rx_data[i], -1);
1346 				lwkt_serialize_exit(
1347 				&sc->rx_data[i].rx_serialize);
1348 			}
1349 		}
1350 		if (reg_icr & E1000_ICR_TXDW) {
1351 			struct emx_txdata *tdata = &sc->tx_data[0];
1352 
1353 			lwkt_serialize_enter(&tdata->tx_serialize);
1354 			emx_txeof(tdata);
1355 			if (!ifsq_is_empty(tdata->ifsq))
1356 				ifsq_devstart(tdata->ifsq);
1357 			lwkt_serialize_exit(&tdata->tx_serialize);
1358 		}
1359 	}
1360 
1361 	/* Link status change */
1362 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1363 		emx_serialize_skipmain(sc);
1364 
1365 		callout_stop(&sc->timer);
1366 		sc->hw.mac.get_link_status = 1;
1367 		emx_update_link_status(sc);
1368 
1369 		/* Deal with TX cruft when link lost */
1370 		emx_tx_purge(sc);
1371 
1372 		callout_reset(&sc->timer, hz, emx_timer, sc);
1373 
1374 		emx_deserialize_skipmain(sc);
1375 	}
1376 
1377 	if (reg_icr & E1000_ICR_RXO)
1378 		sc->rx_overruns++;
1379 
1380 	logif(intr_end);
1381 }
1382 
1383 static void
1384 emx_intr_mask(void *xsc)
1385 {
1386 	struct emx_softc *sc = xsc;
1387 
1388 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1389 	/*
1390 	 * NOTE:
1391 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1392 	 * so don't check it.
1393 	 */
1394 	emx_intr_body(sc, FALSE);
1395 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1396 }
1397 
1398 static void
1399 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1400 {
1401 	struct emx_softc *sc = ifp->if_softc;
1402 
1403 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1404 
1405 	emx_update_link_status(sc);
1406 
1407 	ifmr->ifm_status = IFM_AVALID;
1408 	ifmr->ifm_active = IFM_ETHER;
1409 
1410 	if (!sc->link_active)
1411 		return;
1412 
1413 	ifmr->ifm_status |= IFM_ACTIVE;
1414 
1415 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1416 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1417 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1418 	} else {
1419 		switch (sc->link_speed) {
1420 		case 10:
1421 			ifmr->ifm_active |= IFM_10_T;
1422 			break;
1423 		case 100:
1424 			ifmr->ifm_active |= IFM_100_TX;
1425 			break;
1426 
1427 		case 1000:
1428 			ifmr->ifm_active |= IFM_1000_T;
1429 			break;
1430 		}
1431 		if (sc->link_duplex == FULL_DUPLEX)
1432 			ifmr->ifm_active |= IFM_FDX;
1433 		else
1434 			ifmr->ifm_active |= IFM_HDX;
1435 	}
1436 }
1437 
1438 static int
1439 emx_media_change(struct ifnet *ifp)
1440 {
1441 	struct emx_softc *sc = ifp->if_softc;
1442 	struct ifmedia *ifm = &sc->media;
1443 
1444 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1445 
1446 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1447 		return (EINVAL);
1448 
1449 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1450 	case IFM_AUTO:
1451 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1452 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1453 		break;
1454 
1455 	case IFM_1000_LX:
1456 	case IFM_1000_SX:
1457 	case IFM_1000_T:
1458 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1459 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1460 		break;
1461 
1462 	case IFM_100_TX:
1463 		sc->hw.mac.autoneg = FALSE;
1464 		sc->hw.phy.autoneg_advertised = 0;
1465 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1466 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1467 		else
1468 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1469 		break;
1470 
1471 	case IFM_10_T:
1472 		sc->hw.mac.autoneg = FALSE;
1473 		sc->hw.phy.autoneg_advertised = 0;
1474 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1475 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1476 		else
1477 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1478 		break;
1479 
1480 	default:
1481 		if_printf(ifp, "Unsupported media type\n");
1482 		break;
1483 	}
1484 
1485 	emx_init(sc);
1486 
1487 	return (0);
1488 }
1489 
1490 static int
1491 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1492     int *segs_used, int *idx)
1493 {
1494 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1495 	bus_dmamap_t map;
1496 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1497 	struct e1000_tx_desc *ctxd = NULL;
1498 	struct mbuf *m_head = *m_headp;
1499 	uint32_t txd_upper, txd_lower, cmd = 0;
1500 	int maxsegs, nsegs, i, j, first, last = 0, error;
1501 
1502 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1503 		error = emx_tso_pullup(tdata, m_headp);
1504 		if (error)
1505 			return error;
1506 		m_head = *m_headp;
1507 	}
1508 
1509 	txd_upper = txd_lower = 0;
1510 
1511 	/*
1512 	 * Capture the first descriptor index, this descriptor
1513 	 * will have the index of the EOP which is the only one
1514 	 * that now gets a DONE bit writeback.
1515 	 */
1516 	first = tdata->next_avail_tx_desc;
1517 	tx_buffer = &tdata->tx_buf[first];
1518 	tx_buffer_mapped = tx_buffer;
1519 	map = tx_buffer->map;
1520 
1521 	maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1522 	KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1523 	if (maxsegs > EMX_MAX_SCATTER)
1524 		maxsegs = EMX_MAX_SCATTER;
1525 
1526 	error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1527 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1528 	if (error) {
1529 		m_freem(*m_headp);
1530 		*m_headp = NULL;
1531 		return error;
1532 	}
1533         bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1534 
1535 	m_head = *m_headp;
1536 	tdata->tx_nsegs += nsegs;
1537 	*segs_used += nsegs;
1538 
1539 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1540 		/* TSO will consume one TX desc */
1541 		i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1542 		tdata->tx_nsegs += i;
1543 		*segs_used += i;
1544 	} else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1545 		/* TX csum offloading will consume one TX desc */
1546 		i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1547 		tdata->tx_nsegs += i;
1548 		*segs_used += i;
1549 	}
1550 
1551         /* Handle VLAN tag */
1552 	if (m_head->m_flags & M_VLANTAG) {
1553 		/* Set the vlan id. */
1554 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1555 		/* Tell hardware to add tag */
1556 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1557 	}
1558 
1559 	i = tdata->next_avail_tx_desc;
1560 
1561 	/* Set up our transmit descriptors */
1562 	for (j = 0; j < nsegs; j++) {
1563 		tx_buffer = &tdata->tx_buf[i];
1564 		ctxd = &tdata->tx_desc_base[i];
1565 
1566 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1567 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1568 					   txd_lower | segs[j].ds_len);
1569 		ctxd->upper.data = htole32(txd_upper);
1570 
1571 		last = i;
1572 		if (++i == tdata->num_tx_desc)
1573 			i = 0;
1574 	}
1575 
1576 	tdata->next_avail_tx_desc = i;
1577 
1578 	KKASSERT(tdata->num_tx_desc_avail > nsegs);
1579 	tdata->num_tx_desc_avail -= nsegs;
1580 
1581 	tx_buffer->m_head = m_head;
1582 	tx_buffer_mapped->map = tx_buffer->map;
1583 	tx_buffer->map = map;
1584 
1585 	if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1586 		tdata->tx_nsegs = 0;
1587 
1588 		/*
1589 		 * Report Status (RS) is turned on
1590 		 * every tx_intr_nsegs descriptors.
1591 		 */
1592 		cmd = E1000_TXD_CMD_RS;
1593 
1594 		/*
1595 		 * Keep track of the descriptor, which will
1596 		 * be written back by hardware.
1597 		 */
1598 		tdata->tx_dd[tdata->tx_dd_tail] = last;
1599 		EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1600 		KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1601 	}
1602 
1603 	/*
1604 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1605 	 */
1606 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1607 
1608 	/*
1609 	 * Defer TDT updating, until enough descriptors are setup
1610 	 */
1611 	*idx = i;
1612 
1613 #ifdef EMX_TSS_DEBUG
1614 	tdata->tx_pkts++;
1615 #endif
1616 
1617 	return (0);
1618 }
1619 
1620 static void
1621 emx_set_promisc(struct emx_softc *sc)
1622 {
1623 	struct ifnet *ifp = &sc->arpcom.ac_if;
1624 	uint32_t reg_rctl;
1625 
1626 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1627 
1628 	if (ifp->if_flags & IFF_PROMISC) {
1629 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1630 		/* Turn this on if you want to see bad packets */
1631 		if (emx_debug_sbp)
1632 			reg_rctl |= E1000_RCTL_SBP;
1633 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1634 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1635 		reg_rctl |= E1000_RCTL_MPE;
1636 		reg_rctl &= ~E1000_RCTL_UPE;
1637 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1638 	}
1639 }
1640 
1641 static void
1642 emx_disable_promisc(struct emx_softc *sc)
1643 {
1644 	uint32_t reg_rctl;
1645 
1646 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1647 
1648 	reg_rctl &= ~E1000_RCTL_UPE;
1649 	reg_rctl &= ~E1000_RCTL_MPE;
1650 	reg_rctl &= ~E1000_RCTL_SBP;
1651 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1652 }
1653 
1654 static void
1655 emx_set_multi(struct emx_softc *sc)
1656 {
1657 	struct ifnet *ifp = &sc->arpcom.ac_if;
1658 	struct ifmultiaddr *ifma;
1659 	uint32_t reg_rctl = 0;
1660 	uint8_t *mta;
1661 	int mcnt = 0;
1662 
1663 	mta = sc->mta;
1664 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1665 
1666 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1667 		if (ifma->ifma_addr->sa_family != AF_LINK)
1668 			continue;
1669 
1670 		if (mcnt == EMX_MCAST_ADDR_MAX)
1671 			break;
1672 
1673 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1674 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1675 		mcnt++;
1676 	}
1677 
1678 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1679 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1680 		reg_rctl |= E1000_RCTL_MPE;
1681 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1682 	} else {
1683 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1684 	}
1685 }
1686 
1687 /*
1688  * This routine checks for link status and updates statistics.
1689  */
1690 static void
1691 emx_timer(void *xsc)
1692 {
1693 	struct emx_softc *sc = xsc;
1694 	struct ifnet *ifp = &sc->arpcom.ac_if;
1695 
1696 	lwkt_serialize_enter(&sc->main_serialize);
1697 
1698 	emx_update_link_status(sc);
1699 	emx_update_stats(sc);
1700 
1701 	/* Reset LAA into RAR[0] on 82571 */
1702 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1703 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1704 
1705 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1706 		emx_print_hw_stats(sc);
1707 
1708 	emx_smartspeed(sc);
1709 
1710 	callout_reset(&sc->timer, hz, emx_timer, sc);
1711 
1712 	lwkt_serialize_exit(&sc->main_serialize);
1713 }
1714 
1715 static void
1716 emx_update_link_status(struct emx_softc *sc)
1717 {
1718 	struct e1000_hw *hw = &sc->hw;
1719 	struct ifnet *ifp = &sc->arpcom.ac_if;
1720 	device_t dev = sc->dev;
1721 	uint32_t link_check = 0;
1722 
1723 	/* Get the cached link value or read phy for real */
1724 	switch (hw->phy.media_type) {
1725 	case e1000_media_type_copper:
1726 		if (hw->mac.get_link_status) {
1727 			/* Do the work to read phy */
1728 			e1000_check_for_link(hw);
1729 			link_check = !hw->mac.get_link_status;
1730 			if (link_check) /* ESB2 fix */
1731 				e1000_cfg_on_link_up(hw);
1732 		} else {
1733 			link_check = TRUE;
1734 		}
1735 		break;
1736 
1737 	case e1000_media_type_fiber:
1738 		e1000_check_for_link(hw);
1739 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1740 		break;
1741 
1742 	case e1000_media_type_internal_serdes:
1743 		e1000_check_for_link(hw);
1744 		link_check = sc->hw.mac.serdes_has_link;
1745 		break;
1746 
1747 	case e1000_media_type_unknown:
1748 	default:
1749 		break;
1750 	}
1751 
1752 	/* Now check for a transition */
1753 	if (link_check && sc->link_active == 0) {
1754 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1755 		    &sc->link_duplex);
1756 
1757 		/*
1758 		 * Check if we should enable/disable SPEED_MODE bit on
1759 		 * 82571EB/82572EI
1760 		 */
1761 		if (sc->link_speed != SPEED_1000 &&
1762 		    (hw->mac.type == e1000_82571 ||
1763 		     hw->mac.type == e1000_82572)) {
1764 			int tarc0;
1765 
1766 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1767 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1768 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1769 		}
1770 		if (bootverbose) {
1771 			device_printf(dev, "Link is up %d Mbps %s\n",
1772 			    sc->link_speed,
1773 			    ((sc->link_duplex == FULL_DUPLEX) ?
1774 			    "Full Duplex" : "Half Duplex"));
1775 		}
1776 		sc->link_active = 1;
1777 		sc->smartspeed = 0;
1778 		ifp->if_baudrate = sc->link_speed * 1000000;
1779 		ifp->if_link_state = LINK_STATE_UP;
1780 		if_link_state_change(ifp);
1781 	} else if (!link_check && sc->link_active == 1) {
1782 		ifp->if_baudrate = sc->link_speed = 0;
1783 		sc->link_duplex = 0;
1784 		if (bootverbose)
1785 			device_printf(dev, "Link is Down\n");
1786 		sc->link_active = 0;
1787 		ifp->if_link_state = LINK_STATE_DOWN;
1788 		if_link_state_change(ifp);
1789 	}
1790 }
1791 
1792 static void
1793 emx_stop(struct emx_softc *sc)
1794 {
1795 	struct ifnet *ifp = &sc->arpcom.ac_if;
1796 	int i;
1797 
1798 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1799 
1800 	emx_disable_intr(sc);
1801 
1802 	callout_stop(&sc->timer);
1803 
1804 	ifp->if_flags &= ~IFF_RUNNING;
1805 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1806 		struct emx_txdata *tdata = &sc->tx_data[i];
1807 
1808 		ifsq_clr_oactive(tdata->ifsq);
1809 		ifsq_watchdog_stop(&tdata->tx_watchdog);
1810 		tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1811 	}
1812 
1813 	/*
1814 	 * Disable multiple receive queues.
1815 	 *
1816 	 * NOTE:
1817 	 * We should disable multiple receive queues before
1818 	 * resetting the hardware.
1819 	 */
1820 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1821 
1822 	e1000_reset_hw(&sc->hw);
1823 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1824 
1825 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1826 		emx_free_tx_ring(&sc->tx_data[i]);
1827 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1828 		emx_free_rx_ring(&sc->rx_data[i]);
1829 }
1830 
1831 static int
1832 emx_reset(struct emx_softc *sc)
1833 {
1834 	device_t dev = sc->dev;
1835 	uint16_t rx_buffer_size;
1836 	uint32_t pba;
1837 
1838 	/* Set up smart power down as default off on newer adapters. */
1839 	if (!emx_smart_pwr_down &&
1840 	    (sc->hw.mac.type == e1000_82571 ||
1841 	     sc->hw.mac.type == e1000_82572)) {
1842 		uint16_t phy_tmp = 0;
1843 
1844 		/* Speed up time to link by disabling smart power down. */
1845 		e1000_read_phy_reg(&sc->hw,
1846 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1847 		phy_tmp &= ~IGP02E1000_PM_SPD;
1848 		e1000_write_phy_reg(&sc->hw,
1849 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1850 	}
1851 
1852 	/*
1853 	 * Packet Buffer Allocation (PBA)
1854 	 * Writing PBA sets the receive portion of the buffer
1855 	 * the remainder is used for the transmit buffer.
1856 	 */
1857 	switch (sc->hw.mac.type) {
1858 	/* Total Packet Buffer on these is 48K */
1859 	case e1000_82571:
1860 	case e1000_82572:
1861 	case e1000_80003es2lan:
1862 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1863 		break;
1864 
1865 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1866 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1867 		break;
1868 
1869 	case e1000_82574:
1870 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1871 		break;
1872 
1873 	default:
1874 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1875 		if (sc->max_frame_size > 8192)
1876 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1877 		else
1878 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1879 	}
1880 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1881 
1882 	/*
1883 	 * These parameters control the automatic generation (Tx) and
1884 	 * response (Rx) to Ethernet PAUSE frames.
1885 	 * - High water mark should allow for at least two frames to be
1886 	 *   received after sending an XOFF.
1887 	 * - Low water mark works best when it is very near the high water mark.
1888 	 *   This allows the receiver to restart by sending XON when it has
1889 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1890 	 *   restart after one full frame is pulled from the buffer. There
1891 	 *   could be several smaller frames in the buffer and if so they will
1892 	 *   not trigger the XON until their total number reduces the buffer
1893 	 *   by 1500.
1894 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1895 	 */
1896 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1897 
1898 	sc->hw.fc.high_water = rx_buffer_size -
1899 			       roundup2(sc->max_frame_size, 1024);
1900 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1901 
1902 	if (sc->hw.mac.type == e1000_80003es2lan)
1903 		sc->hw.fc.pause_time = 0xFFFF;
1904 	else
1905 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1906 	sc->hw.fc.send_xon = TRUE;
1907 	sc->hw.fc.requested_mode = e1000_fc_full;
1908 
1909 	/* Issue a global reset */
1910 	e1000_reset_hw(&sc->hw);
1911 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1912 	emx_disable_aspm(sc);
1913 
1914 	if (e1000_init_hw(&sc->hw) < 0) {
1915 		device_printf(dev, "Hardware Initialization Failed\n");
1916 		return (EIO);
1917 	}
1918 
1919 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1920 	e1000_get_phy_info(&sc->hw);
1921 	e1000_check_for_link(&sc->hw);
1922 
1923 	return (0);
1924 }
1925 
1926 static void
1927 emx_setup_ifp(struct emx_softc *sc)
1928 {
1929 	struct ifnet *ifp = &sc->arpcom.ac_if;
1930 	int i;
1931 
1932 	if_initname(ifp, device_get_name(sc->dev),
1933 		    device_get_unit(sc->dev));
1934 	ifp->if_softc = sc;
1935 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1936 	ifp->if_init =  emx_init;
1937 	ifp->if_ioctl = emx_ioctl;
1938 	ifp->if_start = emx_start;
1939 #ifdef IFPOLL_ENABLE
1940 	ifp->if_npoll = emx_npoll;
1941 #endif
1942 	ifp->if_serialize = emx_serialize;
1943 	ifp->if_deserialize = emx_deserialize;
1944 	ifp->if_tryserialize = emx_tryserialize;
1945 #ifdef INVARIANTS
1946 	ifp->if_serialize_assert = emx_serialize_assert;
1947 #endif
1948 
1949 	ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
1950 	ifq_set_ready(&ifp->if_snd);
1951 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1952 
1953 	ifp->if_mapsubq = ifq_mapsubq_mask;
1954 	ifq_set_subq_mask(&ifp->if_snd, 0);
1955 
1956 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1957 
1958 	ifp->if_capabilities = IFCAP_HWCSUM |
1959 			       IFCAP_VLAN_HWTAGGING |
1960 			       IFCAP_VLAN_MTU |
1961 			       IFCAP_TSO;
1962 	if (sc->rx_ring_cnt > 1)
1963 		ifp->if_capabilities |= IFCAP_RSS;
1964 	ifp->if_capenable = ifp->if_capabilities;
1965 	ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1966 
1967 	/*
1968 	 * Tell the upper layer(s) we support long frames.
1969 	 */
1970 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1971 
1972 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1973 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1974 		struct emx_txdata *tdata = &sc->tx_data[i];
1975 
1976 		ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
1977 		ifsq_set_priv(ifsq, tdata);
1978 		ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
1979 		tdata->ifsq = ifsq;
1980 
1981 		ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
1982 	}
1983 
1984 	/*
1985 	 * Specify the media types supported by this sc and register
1986 	 * callbacks to update media and link information
1987 	 */
1988 	ifmedia_init(&sc->media, IFM_IMASK,
1989 		     emx_media_change, emx_media_status);
1990 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1991 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1992 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1993 			    0, NULL);
1994 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1995 	} else {
1996 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1997 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1998 			    0, NULL);
1999 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2000 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2001 			    0, NULL);
2002 		if (sc->hw.phy.type != e1000_phy_ife) {
2003 			ifmedia_add(&sc->media,
2004 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2005 			ifmedia_add(&sc->media,
2006 				IFM_ETHER | IFM_1000_T, 0, NULL);
2007 		}
2008 	}
2009 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2010 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
2011 }
2012 
2013 /*
2014  * Workaround for SmartSpeed on 82541 and 82547 controllers
2015  */
2016 static void
2017 emx_smartspeed(struct emx_softc *sc)
2018 {
2019 	uint16_t phy_tmp;
2020 
2021 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2022 	    sc->hw.mac.autoneg == 0 ||
2023 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2024 		return;
2025 
2026 	if (sc->smartspeed == 0) {
2027 		/*
2028 		 * If Master/Slave config fault is asserted twice,
2029 		 * we assume back-to-back
2030 		 */
2031 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2032 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2033 			return;
2034 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2035 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2036 			e1000_read_phy_reg(&sc->hw,
2037 			    PHY_1000T_CTRL, &phy_tmp);
2038 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2039 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2040 				e1000_write_phy_reg(&sc->hw,
2041 				    PHY_1000T_CTRL, phy_tmp);
2042 				sc->smartspeed++;
2043 				if (sc->hw.mac.autoneg &&
2044 				    !e1000_phy_setup_autoneg(&sc->hw) &&
2045 				    !e1000_read_phy_reg(&sc->hw,
2046 				     PHY_CONTROL, &phy_tmp)) {
2047 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2048 						   MII_CR_RESTART_AUTO_NEG;
2049 					e1000_write_phy_reg(&sc->hw,
2050 					    PHY_CONTROL, phy_tmp);
2051 				}
2052 			}
2053 		}
2054 		return;
2055 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2056 		/* If still no link, perhaps using 2/3 pair cable */
2057 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2058 		phy_tmp |= CR_1000T_MS_ENABLE;
2059 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2060 		if (sc->hw.mac.autoneg &&
2061 		    !e1000_phy_setup_autoneg(&sc->hw) &&
2062 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2063 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2064 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2065 		}
2066 	}
2067 
2068 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
2069 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2070 		sc->smartspeed = 0;
2071 }
2072 
2073 static int
2074 emx_create_tx_ring(struct emx_txdata *tdata)
2075 {
2076 	device_t dev = tdata->sc->dev;
2077 	struct emx_txbuf *tx_buffer;
2078 	int error, i, tsize, ntxd;
2079 
2080 	/*
2081 	 * Validate number of transmit descriptors.  It must not exceed
2082 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2083 	 */
2084 	ntxd = device_getenv_int(dev, "txd", emx_txd);
2085 	if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2086 	    ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2087 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2088 		    EMX_DEFAULT_TXD, ntxd);
2089 		tdata->num_tx_desc = EMX_DEFAULT_TXD;
2090 	} else {
2091 		tdata->num_tx_desc = ntxd;
2092 	}
2093 
2094 	/*
2095 	 * Allocate Transmit Descriptor ring
2096 	 */
2097 	tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2098 			 EMX_DBA_ALIGN);
2099 	tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2100 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2101 				&tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2102 				&tdata->tx_desc_paddr);
2103 	if (tdata->tx_desc_base == NULL) {
2104 		device_printf(dev, "Unable to allocate tx_desc memory\n");
2105 		return ENOMEM;
2106 	}
2107 
2108 	tsize = __VM_CACHELINE_ALIGN(
2109 	    sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2110 	tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2111 
2112 	/*
2113 	 * Create DMA tags for tx buffers
2114 	 */
2115 	error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2116 			1, 0,			/* alignment, bounds */
2117 			BUS_SPACE_MAXADDR,	/* lowaddr */
2118 			BUS_SPACE_MAXADDR,	/* highaddr */
2119 			NULL, NULL,		/* filter, filterarg */
2120 			EMX_TSO_SIZE,		/* maxsize */
2121 			EMX_MAX_SCATTER,	/* nsegments */
2122 			EMX_MAX_SEGSIZE,	/* maxsegsize */
2123 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2124 			BUS_DMA_ONEBPAGE,	/* flags */
2125 			&tdata->txtag);
2126 	if (error) {
2127 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2128 		kfree(tdata->tx_buf, M_DEVBUF);
2129 		tdata->tx_buf = NULL;
2130 		return error;
2131 	}
2132 
2133 	/*
2134 	 * Create DMA maps for tx buffers
2135 	 */
2136 	for (i = 0; i < tdata->num_tx_desc; i++) {
2137 		tx_buffer = &tdata->tx_buf[i];
2138 
2139 		error = bus_dmamap_create(tdata->txtag,
2140 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2141 					  &tx_buffer->map);
2142 		if (error) {
2143 			device_printf(dev, "Unable to create TX DMA map\n");
2144 			emx_destroy_tx_ring(tdata, i);
2145 			return error;
2146 		}
2147 	}
2148 
2149 	/*
2150 	 * Setup TX parameters
2151 	 */
2152 	tdata->spare_tx_desc = EMX_TX_SPARE;
2153 	tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2154 
2155 	/*
2156 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
2157 	 * and tx_intr_nsegs:
2158 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
2159 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2160 	 */
2161 	tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2162 	if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2163 		tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2164 	if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2165 		tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2166 
2167 	tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2168 	if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2169 		tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2170 
2171 	/*
2172 	 * Pullup extra 4bytes into the first data segment, see:
2173 	 * 82571/82572 specification update errata #7
2174 	 *
2175 	 * NOTE:
2176 	 * 4bytes instead of 2bytes, which are mentioned in the errata,
2177 	 * are pulled; mainly to keep rest of the data properly aligned.
2178 	 */
2179 	if (tdata->sc->hw.mac.type == e1000_82571 ||
2180 	    tdata->sc->hw.mac.type == e1000_82572)
2181 		tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2182 
2183 	return (0);
2184 }
2185 
2186 static void
2187 emx_init_tx_ring(struct emx_txdata *tdata)
2188 {
2189 	/* Clear the old ring contents */
2190 	bzero(tdata->tx_desc_base,
2191 	      sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2192 
2193 	/* Reset state */
2194 	tdata->next_avail_tx_desc = 0;
2195 	tdata->next_tx_to_clean = 0;
2196 	tdata->num_tx_desc_avail = tdata->num_tx_desc;
2197 
2198 	tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2199 	if (tdata->sc->tx_ring_inuse > 1) {
2200 		tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2201 		if (bootverbose) {
2202 			if_printf(&tdata->sc->arpcom.ac_if,
2203 			    "TX %d force ctx setup\n", tdata->idx);
2204 		}
2205 	}
2206 }
2207 
2208 static void
2209 emx_init_tx_unit(struct emx_softc *sc)
2210 {
2211 	uint32_t tctl, tarc, tipg = 0;
2212 	int i;
2213 
2214 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2215 		struct emx_txdata *tdata = &sc->tx_data[i];
2216 		uint64_t bus_addr;
2217 
2218 		/* Setup the Base and Length of the Tx Descriptor Ring */
2219 		bus_addr = tdata->tx_desc_paddr;
2220 		E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2221 		    tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2222 		E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2223 		    (uint32_t)(bus_addr >> 32));
2224 		E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2225 		    (uint32_t)bus_addr);
2226 		/* Setup the HW Tx Head and Tail descriptor pointers */
2227 		E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2228 		E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2229 	}
2230 
2231 	/* Set the default values for the Tx Inter Packet Gap timer */
2232 	switch (sc->hw.mac.type) {
2233 	case e1000_80003es2lan:
2234 		tipg = DEFAULT_82543_TIPG_IPGR1;
2235 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2236 		    E1000_TIPG_IPGR2_SHIFT;
2237 		break;
2238 
2239 	default:
2240 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2241 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2242 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2243 		else
2244 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2245 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2246 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2247 		break;
2248 	}
2249 
2250 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2251 
2252 	/* NOTE: 0 is not allowed for TIDV */
2253 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2254 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2255 
2256 	if (sc->hw.mac.type == e1000_82571 ||
2257 	    sc->hw.mac.type == e1000_82572) {
2258 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2259 		tarc |= EMX_TARC_SPEED_MODE;
2260 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2261 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2262 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2263 		tarc |= 1;
2264 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2265 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2266 		tarc |= 1;
2267 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2268 	}
2269 
2270 	/* Program the Transmit Control Register */
2271 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2272 	tctl &= ~E1000_TCTL_CT;
2273 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2274 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2275 	tctl |= E1000_TCTL_MULR;
2276 
2277 	/* This write will effectively turn on the transmit unit. */
2278 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2279 
2280 	if (sc->hw.mac.type == e1000_82571 ||
2281 	    sc->hw.mac.type == e1000_82572 ||
2282 	    sc->hw.mac.type == e1000_80003es2lan) {
2283 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2284 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2285 		tarc &= ~(1 << 28);
2286 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2287 	}
2288 
2289 	if (sc->tx_ring_inuse > 1) {
2290 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2291 		tarc &= ~EMX_TARC_COUNT_MASK;
2292 		tarc |= 1;
2293 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2294 
2295 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2296 		tarc &= ~EMX_TARC_COUNT_MASK;
2297 		tarc |= 1;
2298 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2299 	}
2300 }
2301 
2302 static void
2303 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2304 {
2305 	struct emx_txbuf *tx_buffer;
2306 	int i;
2307 
2308 	/* Free Transmit Descriptor ring */
2309 	if (tdata->tx_desc_base) {
2310 		bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2311 		bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2312 				tdata->tx_desc_dmap);
2313 		bus_dma_tag_destroy(tdata->tx_desc_dtag);
2314 
2315 		tdata->tx_desc_base = NULL;
2316 	}
2317 
2318 	if (tdata->tx_buf == NULL)
2319 		return;
2320 
2321 	for (i = 0; i < ndesc; i++) {
2322 		tx_buffer = &tdata->tx_buf[i];
2323 
2324 		KKASSERT(tx_buffer->m_head == NULL);
2325 		bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2326 	}
2327 	bus_dma_tag_destroy(tdata->txtag);
2328 
2329 	kfree(tdata->tx_buf, M_DEVBUF);
2330 	tdata->tx_buf = NULL;
2331 }
2332 
2333 /*
2334  * The offload context needs to be set when we transfer the first
2335  * packet of a particular protocol (TCP/UDP).  This routine has been
2336  * enhanced to deal with inserted VLAN headers.
2337  *
2338  * If the new packet's ether header length, ip header length and
2339  * csum offloading type are same as the previous packet, we should
2340  * avoid allocating a new csum context descriptor; mainly to take
2341  * advantage of the pipeline effect of the TX data read request.
2342  *
2343  * This function returns number of TX descrptors allocated for
2344  * csum context.
2345  */
2346 static int
2347 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2348 	   uint32_t *txd_upper, uint32_t *txd_lower)
2349 {
2350 	struct e1000_context_desc *TXD;
2351 	int curr_txd, ehdrlen, csum_flags;
2352 	uint32_t cmd, hdr_len, ip_hlen;
2353 
2354 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2355 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2356 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2357 
2358 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2359 	    tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2360 	    tdata->csum_flags == csum_flags) {
2361 		/*
2362 		 * Same csum offload context as the previous packets;
2363 		 * just return.
2364 		 */
2365 		*txd_upper = tdata->csum_txd_upper;
2366 		*txd_lower = tdata->csum_txd_lower;
2367 		return 0;
2368 	}
2369 
2370 	/*
2371 	 * Setup a new csum offload context.
2372 	 */
2373 
2374 	curr_txd = tdata->next_avail_tx_desc;
2375 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2376 
2377 	cmd = 0;
2378 
2379 	/* Setup of IP header checksum. */
2380 	if (csum_flags & CSUM_IP) {
2381 		/*
2382 		 * Start offset for header checksum calculation.
2383 		 * End offset for header checksum calculation.
2384 		 * Offset of place to put the checksum.
2385 		 */
2386 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2387 		TXD->lower_setup.ip_fields.ipcse =
2388 		    htole16(ehdrlen + ip_hlen - 1);
2389 		TXD->lower_setup.ip_fields.ipcso =
2390 		    ehdrlen + offsetof(struct ip, ip_sum);
2391 		cmd |= E1000_TXD_CMD_IP;
2392 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2393 	}
2394 	hdr_len = ehdrlen + ip_hlen;
2395 
2396 	if (csum_flags & CSUM_TCP) {
2397 		/*
2398 		 * Start offset for payload checksum calculation.
2399 		 * End offset for payload checksum calculation.
2400 		 * Offset of place to put the checksum.
2401 		 */
2402 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2403 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2404 		TXD->upper_setup.tcp_fields.tucso =
2405 		    hdr_len + offsetof(struct tcphdr, th_sum);
2406 		cmd |= E1000_TXD_CMD_TCP;
2407 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2408 	} else if (csum_flags & CSUM_UDP) {
2409 		/*
2410 		 * Start offset for header checksum calculation.
2411 		 * End offset for header checksum calculation.
2412 		 * Offset of place to put the checksum.
2413 		 */
2414 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2415 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2416 		TXD->upper_setup.tcp_fields.tucso =
2417 		    hdr_len + offsetof(struct udphdr, uh_sum);
2418 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2419 	}
2420 
2421 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2422 		     E1000_TXD_DTYP_D;		/* Data descr */
2423 
2424 	/* Save the information for this csum offloading context */
2425 	tdata->csum_lhlen = ehdrlen;
2426 	tdata->csum_iphlen = ip_hlen;
2427 	tdata->csum_flags = csum_flags;
2428 	tdata->csum_txd_upper = *txd_upper;
2429 	tdata->csum_txd_lower = *txd_lower;
2430 
2431 	TXD->tcp_seg_setup.data = htole32(0);
2432 	TXD->cmd_and_length =
2433 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2434 
2435 	if (++curr_txd == tdata->num_tx_desc)
2436 		curr_txd = 0;
2437 
2438 	KKASSERT(tdata->num_tx_desc_avail > 0);
2439 	tdata->num_tx_desc_avail--;
2440 
2441 	tdata->next_avail_tx_desc = curr_txd;
2442 	return 1;
2443 }
2444 
2445 static void
2446 emx_txeof(struct emx_txdata *tdata)
2447 {
2448 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2449 	struct emx_txbuf *tx_buffer;
2450 	int first, num_avail;
2451 
2452 	if (tdata->tx_dd_head == tdata->tx_dd_tail)
2453 		return;
2454 
2455 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2456 		return;
2457 
2458 	num_avail = tdata->num_tx_desc_avail;
2459 	first = tdata->next_tx_to_clean;
2460 
2461 	while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2462 		int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2463 		struct e1000_tx_desc *tx_desc;
2464 
2465 		tx_desc = &tdata->tx_desc_base[dd_idx];
2466 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2467 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2468 
2469 			if (++dd_idx == tdata->num_tx_desc)
2470 				dd_idx = 0;
2471 
2472 			while (first != dd_idx) {
2473 				logif(pkt_txclean);
2474 
2475 				num_avail++;
2476 
2477 				tx_buffer = &tdata->tx_buf[first];
2478 				if (tx_buffer->m_head) {
2479 					IFNET_STAT_INC(ifp, opackets, 1);
2480 					bus_dmamap_unload(tdata->txtag,
2481 							  tx_buffer->map);
2482 					m_freem(tx_buffer->m_head);
2483 					tx_buffer->m_head = NULL;
2484 				}
2485 
2486 				if (++first == tdata->num_tx_desc)
2487 					first = 0;
2488 			}
2489 		} else {
2490 			break;
2491 		}
2492 	}
2493 	tdata->next_tx_to_clean = first;
2494 	tdata->num_tx_desc_avail = num_avail;
2495 
2496 	if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2497 		tdata->tx_dd_head = 0;
2498 		tdata->tx_dd_tail = 0;
2499 	}
2500 
2501 	if (!EMX_IS_OACTIVE(tdata)) {
2502 		ifsq_clr_oactive(tdata->ifsq);
2503 
2504 		/* All clean, turn off the timer */
2505 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2506 			tdata->tx_watchdog.wd_timer = 0;
2507 	}
2508 }
2509 
2510 static void
2511 emx_tx_collect(struct emx_txdata *tdata)
2512 {
2513 	struct ifnet *ifp = &tdata->sc->arpcom.ac_if;
2514 	struct emx_txbuf *tx_buffer;
2515 	int tdh, first, num_avail, dd_idx = -1;
2516 
2517 	if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2518 		return;
2519 
2520 	tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2521 	if (tdh == tdata->next_tx_to_clean)
2522 		return;
2523 
2524 	if (tdata->tx_dd_head != tdata->tx_dd_tail)
2525 		dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2526 
2527 	num_avail = tdata->num_tx_desc_avail;
2528 	first = tdata->next_tx_to_clean;
2529 
2530 	while (first != tdh) {
2531 		logif(pkt_txclean);
2532 
2533 		num_avail++;
2534 
2535 		tx_buffer = &tdata->tx_buf[first];
2536 		if (tx_buffer->m_head) {
2537 			IFNET_STAT_INC(ifp, opackets, 1);
2538 			bus_dmamap_unload(tdata->txtag,
2539 					  tx_buffer->map);
2540 			m_freem(tx_buffer->m_head);
2541 			tx_buffer->m_head = NULL;
2542 		}
2543 
2544 		if (first == dd_idx) {
2545 			EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2546 			if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2547 				tdata->tx_dd_head = 0;
2548 				tdata->tx_dd_tail = 0;
2549 				dd_idx = -1;
2550 			} else {
2551 				dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2552 			}
2553 		}
2554 
2555 		if (++first == tdata->num_tx_desc)
2556 			first = 0;
2557 	}
2558 	tdata->next_tx_to_clean = first;
2559 	tdata->num_tx_desc_avail = num_avail;
2560 
2561 	if (!EMX_IS_OACTIVE(tdata)) {
2562 		ifsq_clr_oactive(tdata->ifsq);
2563 
2564 		/* All clean, turn off the timer */
2565 		if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2566 			tdata->tx_watchdog.wd_timer = 0;
2567 	}
2568 }
2569 
2570 /*
2571  * When Link is lost sometimes there is work still in the TX ring
2572  * which will result in a watchdog, rather than allow that do an
2573  * attempted cleanup and then reinit here.  Note that this has been
2574  * seens mostly with fiber adapters.
2575  */
2576 static void
2577 emx_tx_purge(struct emx_softc *sc)
2578 {
2579 	int i;
2580 
2581 	if (sc->link_active)
2582 		return;
2583 
2584 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2585 		struct emx_txdata *tdata = &sc->tx_data[i];
2586 
2587 		if (tdata->tx_watchdog.wd_timer) {
2588 			emx_tx_collect(tdata);
2589 			if (tdata->tx_watchdog.wd_timer) {
2590 				if_printf(&sc->arpcom.ac_if,
2591 				    "Link lost, TX pending, reinit\n");
2592 				emx_init(sc);
2593 				return;
2594 			}
2595 		}
2596 	}
2597 }
2598 
2599 static int
2600 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2601 {
2602 	struct mbuf *m;
2603 	bus_dma_segment_t seg;
2604 	bus_dmamap_t map;
2605 	struct emx_rxbuf *rx_buffer;
2606 	int error, nseg;
2607 
2608 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2609 	if (m == NULL) {
2610 		if (init) {
2611 			if_printf(&rdata->sc->arpcom.ac_if,
2612 				  "Unable to allocate RX mbuf\n");
2613 		}
2614 		return (ENOBUFS);
2615 	}
2616 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2617 
2618 	if (rdata->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2619 		m_adj(m, ETHER_ALIGN);
2620 
2621 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2622 			rdata->rx_sparemap, m,
2623 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2624 	if (error) {
2625 		m_freem(m);
2626 		if (init) {
2627 			if_printf(&rdata->sc->arpcom.ac_if,
2628 				  "Unable to load RX mbuf\n");
2629 		}
2630 		return (error);
2631 	}
2632 
2633 	rx_buffer = &rdata->rx_buf[i];
2634 	if (rx_buffer->m_head != NULL)
2635 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2636 
2637 	map = rx_buffer->map;
2638 	rx_buffer->map = rdata->rx_sparemap;
2639 	rdata->rx_sparemap = map;
2640 
2641 	rx_buffer->m_head = m;
2642 	rx_buffer->paddr = seg.ds_addr;
2643 
2644 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2645 	return (0);
2646 }
2647 
2648 static int
2649 emx_create_rx_ring(struct emx_rxdata *rdata)
2650 {
2651 	device_t dev = rdata->sc->dev;
2652 	struct emx_rxbuf *rx_buffer;
2653 	int i, error, rsize, nrxd;
2654 
2655 	/*
2656 	 * Validate number of receive descriptors.  It must not exceed
2657 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2658 	 */
2659 	nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2660 	if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2661 	    nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2662 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2663 		    EMX_DEFAULT_RXD, nrxd);
2664 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2665 	} else {
2666 		rdata->num_rx_desc = nrxd;
2667 	}
2668 
2669 	/*
2670 	 * Allocate Receive Descriptor ring
2671 	 */
2672 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2673 			 EMX_DBA_ALIGN);
2674 	rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2675 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2676 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2677 				&rdata->rx_desc_paddr);
2678 	if (rdata->rx_desc == NULL) {
2679 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2680 		return ENOMEM;
2681 	}
2682 
2683 	rsize = __VM_CACHELINE_ALIGN(
2684 	    sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2685 	rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2686 
2687 	/*
2688 	 * Create DMA tag for rx buffers
2689 	 */
2690 	error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2691 			1, 0,			/* alignment, bounds */
2692 			BUS_SPACE_MAXADDR,	/* lowaddr */
2693 			BUS_SPACE_MAXADDR,	/* highaddr */
2694 			NULL, NULL,		/* filter, filterarg */
2695 			MCLBYTES,		/* maxsize */
2696 			1,			/* nsegments */
2697 			MCLBYTES,		/* maxsegsize */
2698 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2699 			&rdata->rxtag);
2700 	if (error) {
2701 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2702 		kfree(rdata->rx_buf, M_DEVBUF);
2703 		rdata->rx_buf = NULL;
2704 		return error;
2705 	}
2706 
2707 	/*
2708 	 * Create spare DMA map for rx buffers
2709 	 */
2710 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2711 				  &rdata->rx_sparemap);
2712 	if (error) {
2713 		device_printf(dev, "Unable to create spare RX DMA map\n");
2714 		bus_dma_tag_destroy(rdata->rxtag);
2715 		kfree(rdata->rx_buf, M_DEVBUF);
2716 		rdata->rx_buf = NULL;
2717 		return error;
2718 	}
2719 
2720 	/*
2721 	 * Create DMA maps for rx buffers
2722 	 */
2723 	for (i = 0; i < rdata->num_rx_desc; i++) {
2724 		rx_buffer = &rdata->rx_buf[i];
2725 
2726 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2727 					  &rx_buffer->map);
2728 		if (error) {
2729 			device_printf(dev, "Unable to create RX DMA map\n");
2730 			emx_destroy_rx_ring(rdata, i);
2731 			return error;
2732 		}
2733 	}
2734 	return (0);
2735 }
2736 
2737 static void
2738 emx_free_rx_ring(struct emx_rxdata *rdata)
2739 {
2740 	int i;
2741 
2742 	for (i = 0; i < rdata->num_rx_desc; i++) {
2743 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2744 
2745 		if (rx_buffer->m_head != NULL) {
2746 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2747 			m_freem(rx_buffer->m_head);
2748 			rx_buffer->m_head = NULL;
2749 		}
2750 	}
2751 
2752 	if (rdata->fmp != NULL)
2753 		m_freem(rdata->fmp);
2754 	rdata->fmp = NULL;
2755 	rdata->lmp = NULL;
2756 }
2757 
2758 static void
2759 emx_free_tx_ring(struct emx_txdata *tdata)
2760 {
2761 	int i;
2762 
2763 	for (i = 0; i < tdata->num_tx_desc; i++) {
2764 		struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2765 
2766 		if (tx_buffer->m_head != NULL) {
2767 			bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2768 			m_freem(tx_buffer->m_head);
2769 			tx_buffer->m_head = NULL;
2770 		}
2771 	}
2772 
2773 	tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2774 
2775 	tdata->csum_flags = 0;
2776 	tdata->csum_lhlen = 0;
2777 	tdata->csum_iphlen = 0;
2778 	tdata->csum_thlen = 0;
2779 	tdata->csum_mss = 0;
2780 	tdata->csum_pktlen = 0;
2781 
2782 	tdata->tx_dd_head = 0;
2783 	tdata->tx_dd_tail = 0;
2784 	tdata->tx_nsegs = 0;
2785 }
2786 
2787 static int
2788 emx_init_rx_ring(struct emx_rxdata *rdata)
2789 {
2790 	int i, error;
2791 
2792 	/* Reset descriptor ring */
2793 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2794 
2795 	/* Allocate new ones. */
2796 	for (i = 0; i < rdata->num_rx_desc; i++) {
2797 		error = emx_newbuf(rdata, i, 1);
2798 		if (error)
2799 			return (error);
2800 	}
2801 
2802 	/* Setup our descriptor pointers */
2803 	rdata->next_rx_desc_to_check = 0;
2804 
2805 	return (0);
2806 }
2807 
2808 static void
2809 emx_init_rx_unit(struct emx_softc *sc)
2810 {
2811 	struct ifnet *ifp = &sc->arpcom.ac_if;
2812 	uint64_t bus_addr;
2813 	uint32_t rctl, itr, rfctl;
2814 	int i;
2815 
2816 	/*
2817 	 * Make sure receives are disabled while setting
2818 	 * up the descriptor ring
2819 	 */
2820 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2821 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2822 
2823 	/*
2824 	 * Set the interrupt throttling rate. Value is calculated
2825 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2826 	 */
2827 	if (sc->int_throttle_ceil)
2828 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2829 	else
2830 		itr = 0;
2831 	emx_set_itr(sc, itr);
2832 
2833 	/* Use extended RX descriptor */
2834 	rfctl = E1000_RFCTL_EXTEN;
2835 
2836 	/* Disable accelerated ackknowledge */
2837 	if (sc->hw.mac.type == e1000_82574)
2838 		rfctl |= E1000_RFCTL_ACK_DIS;
2839 
2840 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2841 
2842 	/*
2843 	 * Receive Checksum Offload for TCP and UDP
2844 	 *
2845 	 * Checksum offloading is also enabled if multiple receive
2846 	 * queue is to be supported, since we need it to figure out
2847 	 * packet type.
2848 	 */
2849 	if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2850 	    sc->rx_ring_cnt > 1) {
2851 		uint32_t rxcsum;
2852 
2853 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2854 
2855 		/*
2856 		 * NOTE:
2857 		 * PCSD must be enabled to enable multiple
2858 		 * receive queues.
2859 		 */
2860 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2861 			  E1000_RXCSUM_PCSD;
2862 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2863 	}
2864 
2865 	/*
2866 	 * Configure multiple receive queue (RSS)
2867 	 */
2868 	if (sc->rx_ring_cnt > 1) {
2869 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2870 		uint32_t reta;
2871 
2872 		KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2873 		    ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2874 
2875 		/*
2876 		 * NOTE:
2877 		 * When we reach here, RSS has already been disabled
2878 		 * in emx_stop(), so we could safely configure RSS key
2879 		 * and redirect table.
2880 		 */
2881 
2882 		/*
2883 		 * Configure RSS key
2884 		 */
2885 		toeplitz_get_key(key, sizeof(key));
2886 		for (i = 0; i < EMX_NRSSRK; ++i) {
2887 			uint32_t rssrk;
2888 
2889 			rssrk = EMX_RSSRK_VAL(key, i);
2890 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2891 
2892 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2893 		}
2894 
2895 		/*
2896 		 * Configure RSS redirect table in following fashion:
2897 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2898 		 */
2899 		reta = 0;
2900 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2901 			uint32_t q;
2902 
2903 			q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2904 			reta |= q << (8 * i);
2905 		}
2906 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2907 
2908 		for (i = 0; i < EMX_NRETA; ++i)
2909 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2910 
2911 		/*
2912 		 * Enable multiple receive queues.
2913 		 * Enable IPv4 RSS standard hash functions.
2914 		 * Disable RSS interrupt.
2915 		 */
2916 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2917 				E1000_MRQC_ENABLE_RSS_2Q |
2918 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2919 				E1000_MRQC_RSS_FIELD_IPV4);
2920 	}
2921 
2922 	/*
2923 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2924 	 * long latencies are observed, like Lenovo X60. This
2925 	 * change eliminates the problem, but since having positive
2926 	 * values in RDTR is a known source of problems on other
2927 	 * platforms another solution is being sought.
2928 	 */
2929 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2930 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2931 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2932 	}
2933 
2934 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2935 		struct emx_rxdata *rdata = &sc->rx_data[i];
2936 
2937 		/*
2938 		 * Setup the Base and Length of the Rx Descriptor Ring
2939 		 */
2940 		bus_addr = rdata->rx_desc_paddr;
2941 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2942 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2943 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2944 		    (uint32_t)(bus_addr >> 32));
2945 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2946 		    (uint32_t)bus_addr);
2947 
2948 		/*
2949 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2950 		 */
2951 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2952 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2953 		    sc->rx_data[i].num_rx_desc - 1);
2954 	}
2955 
2956 	/* Setup the Receive Control Register */
2957 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2958 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2959 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2960 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2961 
2962 	/* Make sure VLAN Filters are off */
2963 	rctl &= ~E1000_RCTL_VFE;
2964 
2965 	/* Don't store bad paket */
2966 	rctl &= ~E1000_RCTL_SBP;
2967 
2968 	/* MCLBYTES */
2969 	rctl |= E1000_RCTL_SZ_2048;
2970 
2971 	if (ifp->if_mtu > ETHERMTU)
2972 		rctl |= E1000_RCTL_LPE;
2973 	else
2974 		rctl &= ~E1000_RCTL_LPE;
2975 
2976 	/* Enable Receives */
2977 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2978 }
2979 
2980 static void
2981 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
2982 {
2983 	struct emx_rxbuf *rx_buffer;
2984 	int i;
2985 
2986 	/* Free Receive Descriptor ring */
2987 	if (rdata->rx_desc) {
2988 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2989 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2990 				rdata->rx_desc_dmap);
2991 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2992 
2993 		rdata->rx_desc = NULL;
2994 	}
2995 
2996 	if (rdata->rx_buf == NULL)
2997 		return;
2998 
2999 	for (i = 0; i < ndesc; i++) {
3000 		rx_buffer = &rdata->rx_buf[i];
3001 
3002 		KKASSERT(rx_buffer->m_head == NULL);
3003 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3004 	}
3005 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3006 	bus_dma_tag_destroy(rdata->rxtag);
3007 
3008 	kfree(rdata->rx_buf, M_DEVBUF);
3009 	rdata->rx_buf = NULL;
3010 }
3011 
3012 static void
3013 emx_rxeof(struct emx_rxdata *rdata, int count)
3014 {
3015 	struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3016 	uint32_t staterr;
3017 	emx_rxdesc_t *current_desc;
3018 	struct mbuf *mp;
3019 	int i;
3020 
3021 	i = rdata->next_rx_desc_to_check;
3022 	current_desc = &rdata->rx_desc[i];
3023 	staterr = le32toh(current_desc->rxd_staterr);
3024 
3025 	if (!(staterr & E1000_RXD_STAT_DD))
3026 		return;
3027 
3028 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3029 		struct pktinfo *pi = NULL, pi0;
3030 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3031 		struct mbuf *m = NULL;
3032 		int eop, len;
3033 
3034 		logif(pkt_receive);
3035 
3036 		mp = rx_buf->m_head;
3037 
3038 		/*
3039 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3040 		 * needs to access the last received byte in the mbuf.
3041 		 */
3042 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3043 				BUS_DMASYNC_POSTREAD);
3044 
3045 		len = le16toh(current_desc->rxd_length);
3046 		if (staterr & E1000_RXD_STAT_EOP) {
3047 			count--;
3048 			eop = 1;
3049 		} else {
3050 			eop = 0;
3051 		}
3052 
3053 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3054 			uint16_t vlan = 0;
3055 			uint32_t mrq, rss_hash;
3056 
3057 			/*
3058 			 * Save several necessary information,
3059 			 * before emx_newbuf() destroy it.
3060 			 */
3061 			if ((staterr & E1000_RXD_STAT_VP) && eop)
3062 				vlan = le16toh(current_desc->rxd_vlan);
3063 
3064 			mrq = le32toh(current_desc->rxd_mrq);
3065 			rss_hash = le32toh(current_desc->rxd_rss);
3066 
3067 			EMX_RSS_DPRINTF(rdata->sc, 10,
3068 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3069 			    rdata->idx, mrq, rss_hash);
3070 
3071 			if (emx_newbuf(rdata, i, 0) != 0) {
3072 				IFNET_STAT_INC(ifp, iqdrops, 1);
3073 				goto discard;
3074 			}
3075 
3076 			/* Assign correct length to the current fragment */
3077 			mp->m_len = len;
3078 
3079 			if (rdata->fmp == NULL) {
3080 				mp->m_pkthdr.len = len;
3081 				rdata->fmp = mp; /* Store the first mbuf */
3082 				rdata->lmp = mp;
3083 			} else {
3084 				/*
3085 				 * Chain mbuf's together
3086 				 */
3087 				rdata->lmp->m_next = mp;
3088 				rdata->lmp = rdata->lmp->m_next;
3089 				rdata->fmp->m_pkthdr.len += len;
3090 			}
3091 
3092 			if (eop) {
3093 				rdata->fmp->m_pkthdr.rcvif = ifp;
3094 				IFNET_STAT_INC(ifp, ipackets, 1);
3095 
3096 				if (ifp->if_capenable & IFCAP_RXCSUM)
3097 					emx_rxcsum(staterr, rdata->fmp);
3098 
3099 				if (staterr & E1000_RXD_STAT_VP) {
3100 					rdata->fmp->m_pkthdr.ether_vlantag =
3101 					    vlan;
3102 					rdata->fmp->m_flags |= M_VLANTAG;
3103 				}
3104 				m = rdata->fmp;
3105 				rdata->fmp = NULL;
3106 				rdata->lmp = NULL;
3107 
3108 				if (ifp->if_capenable & IFCAP_RSS) {
3109 					pi = emx_rssinfo(m, &pi0, mrq,
3110 							 rss_hash, staterr);
3111 				}
3112 #ifdef EMX_RSS_DEBUG
3113 				rdata->rx_pkts++;
3114 #endif
3115 			}
3116 		} else {
3117 			IFNET_STAT_INC(ifp, ierrors, 1);
3118 discard:
3119 			emx_setup_rxdesc(current_desc, rx_buf);
3120 			if (rdata->fmp != NULL) {
3121 				m_freem(rdata->fmp);
3122 				rdata->fmp = NULL;
3123 				rdata->lmp = NULL;
3124 			}
3125 			m = NULL;
3126 		}
3127 
3128 		if (m != NULL)
3129 			ether_input_pkt(ifp, m, pi);
3130 
3131 		/* Advance our pointers to the next descriptor. */
3132 		if (++i == rdata->num_rx_desc)
3133 			i = 0;
3134 
3135 		current_desc = &rdata->rx_desc[i];
3136 		staterr = le32toh(current_desc->rxd_staterr);
3137 	}
3138 	rdata->next_rx_desc_to_check = i;
3139 
3140 	/* Advance the E1000's Receive Queue "Tail Pointer". */
3141 	if (--i < 0)
3142 		i = rdata->num_rx_desc - 1;
3143 	E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3144 }
3145 
3146 static void
3147 emx_enable_intr(struct emx_softc *sc)
3148 {
3149 	uint32_t ims_mask = IMS_ENABLE_MASK;
3150 
3151 	lwkt_serialize_handler_enable(&sc->main_serialize);
3152 
3153 #if 0
3154 	if (sc->hw.mac.type == e1000_82574) {
3155 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3156 		ims_mask |= EM_MSIX_MASK;
3157 	}
3158 #endif
3159 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3160 }
3161 
3162 static void
3163 emx_disable_intr(struct emx_softc *sc)
3164 {
3165 	if (sc->hw.mac.type == e1000_82574)
3166 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3167 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3168 
3169 	lwkt_serialize_handler_disable(&sc->main_serialize);
3170 }
3171 
3172 /*
3173  * Bit of a misnomer, what this really means is
3174  * to enable OS management of the system... aka
3175  * to disable special hardware management features
3176  */
3177 static void
3178 emx_get_mgmt(struct emx_softc *sc)
3179 {
3180 	/* A shared code workaround */
3181 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3182 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3183 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3184 
3185 		/* disable hardware interception of ARP */
3186 		manc &= ~(E1000_MANC_ARP_EN);
3187 
3188                 /* enable receiving management packets to the host */
3189 		manc |= E1000_MANC_EN_MNG2HOST;
3190 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3191 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3192 		manc2h |= E1000_MNG2HOST_PORT_623;
3193 		manc2h |= E1000_MNG2HOST_PORT_664;
3194 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3195 
3196 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3197 	}
3198 }
3199 
3200 /*
3201  * Give control back to hardware management
3202  * controller if there is one.
3203  */
3204 static void
3205 emx_rel_mgmt(struct emx_softc *sc)
3206 {
3207 	if (sc->flags & EMX_FLAG_HAS_MGMT) {
3208 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3209 
3210 		/* re-enable hardware interception of ARP */
3211 		manc |= E1000_MANC_ARP_EN;
3212 		manc &= ~E1000_MANC_EN_MNG2HOST;
3213 
3214 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3215 	}
3216 }
3217 
3218 /*
3219  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3220  * For ASF and Pass Through versions of f/w this means that
3221  * the driver is loaded.  For AMT version (only with 82573)
3222  * of the f/w this means that the network i/f is open.
3223  */
3224 static void
3225 emx_get_hw_control(struct emx_softc *sc)
3226 {
3227 	/* Let firmware know the driver has taken over */
3228 	if (sc->hw.mac.type == e1000_82573) {
3229 		uint32_t swsm;
3230 
3231 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3232 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3233 		    swsm | E1000_SWSM_DRV_LOAD);
3234 	} else {
3235 		uint32_t ctrl_ext;
3236 
3237 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3238 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3239 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3240 	}
3241 	sc->flags |= EMX_FLAG_HW_CTRL;
3242 }
3243 
3244 /*
3245  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3246  * For ASF and Pass Through versions of f/w this means that the
3247  * driver is no longer loaded.  For AMT version (only with 82573)
3248  * of the f/w this means that the network i/f is closed.
3249  */
3250 static void
3251 emx_rel_hw_control(struct emx_softc *sc)
3252 {
3253 	if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3254 		return;
3255 	sc->flags &= ~EMX_FLAG_HW_CTRL;
3256 
3257 	/* Let firmware taken over control of h/w */
3258 	if (sc->hw.mac.type == e1000_82573) {
3259 		uint32_t swsm;
3260 
3261 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3262 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3263 		    swsm & ~E1000_SWSM_DRV_LOAD);
3264 	} else {
3265 		uint32_t ctrl_ext;
3266 
3267 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3268 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3269 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3270 	}
3271 }
3272 
3273 static int
3274 emx_is_valid_eaddr(const uint8_t *addr)
3275 {
3276 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3277 
3278 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3279 		return (FALSE);
3280 
3281 	return (TRUE);
3282 }
3283 
3284 /*
3285  * Enable PCI Wake On Lan capability
3286  */
3287 void
3288 emx_enable_wol(device_t dev)
3289 {
3290 	uint16_t cap, status;
3291 	uint8_t id;
3292 
3293 	/* First find the capabilities pointer*/
3294 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3295 
3296 	/* Read the PM Capabilities */
3297 	id = pci_read_config(dev, cap, 1);
3298 	if (id != PCIY_PMG)     /* Something wrong */
3299 		return;
3300 
3301 	/*
3302 	 * OK, we have the power capabilities,
3303 	 * so now get the status register
3304 	 */
3305 	cap += PCIR_POWER_STATUS;
3306 	status = pci_read_config(dev, cap, 2);
3307 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3308 	pci_write_config(dev, cap, status, 2);
3309 }
3310 
3311 static void
3312 emx_update_stats(struct emx_softc *sc)
3313 {
3314 	struct ifnet *ifp = &sc->arpcom.ac_if;
3315 
3316 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3317 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3318 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3319 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3320 	}
3321 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3322 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3323 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3324 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3325 
3326 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3327 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3328 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3329 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3330 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3331 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3332 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3333 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3334 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3335 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3336 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3337 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3338 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3339 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3340 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3341 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3342 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3343 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3344 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3345 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3346 
3347 	/* For the 64-bit byte counters the low dword must be read first. */
3348 	/* Both registers clear on the read of the high dword */
3349 
3350 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3351 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3352 
3353 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3354 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3355 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3356 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3357 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3358 
3359 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3360 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3361 
3362 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3363 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3364 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3365 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3366 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3367 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3368 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3369 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3370 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3371 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3372 
3373 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3374 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3375 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3376 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3377 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3378 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3379 
3380 	IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3381 
3382 	/* Rx Errors */
3383 	IFNET_STAT_SET(ifp, ierrors,
3384 	    sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3385 	    sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3386 
3387 	/* Tx Errors */
3388 	IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3389 }
3390 
3391 static void
3392 emx_print_debug_info(struct emx_softc *sc)
3393 {
3394 	device_t dev = sc->dev;
3395 	uint8_t *hw_addr = sc->hw.hw_addr;
3396 	int i;
3397 
3398 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3399 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3400 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3401 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3402 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3403 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3404 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3405 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3406 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3407 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3408 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3409 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3410 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3411 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3412 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3413 
3414 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3415 		device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3416 		    E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3417 		    E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3418 	}
3419 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3420 		device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3421 		    E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3422 		    E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3423 	}
3424 
3425 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3426 		device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3427 		    sc->tx_data[i].num_tx_desc_avail);
3428 		device_printf(dev, "TX %d TSO segments = %lu\n", i,
3429 		    sc->tx_data[i].tso_segments);
3430 		device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3431 		    sc->tx_data[i].tso_ctx_reused);
3432 	}
3433 }
3434 
3435 static void
3436 emx_print_hw_stats(struct emx_softc *sc)
3437 {
3438 	device_t dev = sc->dev;
3439 
3440 	device_printf(dev, "Excessive collisions = %lld\n",
3441 	    (long long)sc->stats.ecol);
3442 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3443 	device_printf(dev, "Symbol errors = %lld\n",
3444 	    (long long)sc->stats.symerrs);
3445 #endif
3446 	device_printf(dev, "Sequence errors = %lld\n",
3447 	    (long long)sc->stats.sec);
3448 	device_printf(dev, "Defer count = %lld\n",
3449 	    (long long)sc->stats.dc);
3450 	device_printf(dev, "Missed Packets = %lld\n",
3451 	    (long long)sc->stats.mpc);
3452 	device_printf(dev, "Receive No Buffers = %lld\n",
3453 	    (long long)sc->stats.rnbc);
3454 	/* RLEC is inaccurate on some hardware, calculate our own. */
3455 	device_printf(dev, "Receive Length Errors = %lld\n",
3456 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3457 	device_printf(dev, "Receive errors = %lld\n",
3458 	    (long long)sc->stats.rxerrc);
3459 	device_printf(dev, "Crc errors = %lld\n",
3460 	    (long long)sc->stats.crcerrs);
3461 	device_printf(dev, "Alignment errors = %lld\n",
3462 	    (long long)sc->stats.algnerrc);
3463 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3464 	    (long long)sc->stats.cexterr);
3465 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3466 	device_printf(dev, "XON Rcvd = %lld\n",
3467 	    (long long)sc->stats.xonrxc);
3468 	device_printf(dev, "XON Xmtd = %lld\n",
3469 	    (long long)sc->stats.xontxc);
3470 	device_printf(dev, "XOFF Rcvd = %lld\n",
3471 	    (long long)sc->stats.xoffrxc);
3472 	device_printf(dev, "XOFF Xmtd = %lld\n",
3473 	    (long long)sc->stats.xofftxc);
3474 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3475 	    (long long)sc->stats.gprc);
3476 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3477 	    (long long)sc->stats.gptc);
3478 }
3479 
3480 static void
3481 emx_print_nvm_info(struct emx_softc *sc)
3482 {
3483 	uint16_t eeprom_data;
3484 	int i, j, row = 0;
3485 
3486 	/* Its a bit crude, but it gets the job done */
3487 	kprintf("\nInterface EEPROM Dump:\n");
3488 	kprintf("Offset\n0x0000  ");
3489 	for (i = 0, j = 0; i < 32; i++, j++) {
3490 		if (j == 8) { /* Make the offset block */
3491 			j = 0; ++row;
3492 			kprintf("\n0x00%x0  ",row);
3493 		}
3494 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3495 		kprintf("%04x ", eeprom_data);
3496 	}
3497 	kprintf("\n");
3498 }
3499 
3500 static int
3501 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3502 {
3503 	struct emx_softc *sc;
3504 	struct ifnet *ifp;
3505 	int error, result;
3506 
3507 	result = -1;
3508 	error = sysctl_handle_int(oidp, &result, 0, req);
3509 	if (error || !req->newptr)
3510 		return (error);
3511 
3512 	sc = (struct emx_softc *)arg1;
3513 	ifp = &sc->arpcom.ac_if;
3514 
3515 	ifnet_serialize_all(ifp);
3516 
3517 	if (result == 1)
3518 		emx_print_debug_info(sc);
3519 
3520 	/*
3521 	 * This value will cause a hex dump of the
3522 	 * first 32 16-bit words of the EEPROM to
3523 	 * the screen.
3524 	 */
3525 	if (result == 2)
3526 		emx_print_nvm_info(sc);
3527 
3528 	ifnet_deserialize_all(ifp);
3529 
3530 	return (error);
3531 }
3532 
3533 static int
3534 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3535 {
3536 	int error, result;
3537 
3538 	result = -1;
3539 	error = sysctl_handle_int(oidp, &result, 0, req);
3540 	if (error || !req->newptr)
3541 		return (error);
3542 
3543 	if (result == 1) {
3544 		struct emx_softc *sc = (struct emx_softc *)arg1;
3545 		struct ifnet *ifp = &sc->arpcom.ac_if;
3546 
3547 		ifnet_serialize_all(ifp);
3548 		emx_print_hw_stats(sc);
3549 		ifnet_deserialize_all(ifp);
3550 	}
3551 	return (error);
3552 }
3553 
3554 static void
3555 emx_add_sysctl(struct emx_softc *sc)
3556 {
3557 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3558 	char pkt_desc[32];
3559 	int i;
3560 #endif
3561 
3562 	sysctl_ctx_init(&sc->sysctl_ctx);
3563 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3564 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3565 				device_get_nameunit(sc->dev),
3566 				CTLFLAG_RD, 0, "");
3567 	if (sc->sysctl_tree == NULL) {
3568 		device_printf(sc->dev, "can't add sysctl node\n");
3569 		return;
3570 	}
3571 
3572 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3573 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3574 			emx_sysctl_debug_info, "I", "Debug Information");
3575 
3576 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3577 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3578 			emx_sysctl_stats, "I", "Statistics");
3579 
3580 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3581 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3582 	    "# of RX descs");
3583 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3584 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3585 	    "# of TX descs");
3586 
3587 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3588 	    OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3589 	    emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3590 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3591 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3592 	    emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3593 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3594 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3595 	    emx_sysctl_tx_wreg_nsegs, "I",
3596 	    "# segments sent before write to hardware register");
3597 
3598 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3599 	    OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3600 	    "# of RX rings");
3601 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3602 	    OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3603 	    "# of TX rings");
3604 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3605 	    OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3606 	    "# of TX rings used");
3607 
3608 #ifdef IFPOLL_ENABLE
3609 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3610 			OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3611 			sc, 0, emx_sysctl_npoll_rxoff, "I",
3612 			"NPOLLING RX cpu offset");
3613 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3614 			OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3615 			sc, 0, emx_sysctl_npoll_txoff, "I",
3616 			"NPOLLING TX cpu offset");
3617 #endif
3618 
3619 #ifdef EMX_RSS_DEBUG
3620 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3621 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3622 		       0, "RSS debug level");
3623 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3624 		ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3625 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3626 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3627 		    pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3628 		    "RXed packets");
3629 	}
3630 #endif
3631 #ifdef EMX_TSS_DEBUG
3632 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3633 		ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3634 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
3635 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3636 		    pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3637 		    "TXed packets");
3638 	}
3639 #endif
3640 }
3641 
3642 static int
3643 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3644 {
3645 	struct emx_softc *sc = (void *)arg1;
3646 	struct ifnet *ifp = &sc->arpcom.ac_if;
3647 	int error, throttle;
3648 
3649 	throttle = sc->int_throttle_ceil;
3650 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3651 	if (error || req->newptr == NULL)
3652 		return error;
3653 	if (throttle < 0 || throttle > 1000000000 / 256)
3654 		return EINVAL;
3655 
3656 	if (throttle) {
3657 		/*
3658 		 * Set the interrupt throttling rate in 256ns increments,
3659 		 * recalculate sysctl value assignment to get exact frequency.
3660 		 */
3661 		throttle = 1000000000 / 256 / throttle;
3662 
3663 		/* Upper 16bits of ITR is reserved and should be zero */
3664 		if (throttle & 0xffff0000)
3665 			return EINVAL;
3666 	}
3667 
3668 	ifnet_serialize_all(ifp);
3669 
3670 	if (throttle)
3671 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3672 	else
3673 		sc->int_throttle_ceil = 0;
3674 
3675 	if (ifp->if_flags & IFF_RUNNING)
3676 		emx_set_itr(sc, throttle);
3677 
3678 	ifnet_deserialize_all(ifp);
3679 
3680 	if (bootverbose) {
3681 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3682 			  sc->int_throttle_ceil);
3683 	}
3684 	return 0;
3685 }
3686 
3687 static int
3688 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3689 {
3690 	struct emx_softc *sc = (void *)arg1;
3691 	struct ifnet *ifp = &sc->arpcom.ac_if;
3692 	struct emx_txdata *tdata = &sc->tx_data[0];
3693 	int error, segs;
3694 
3695 	segs = tdata->tx_intr_nsegs;
3696 	error = sysctl_handle_int(oidp, &segs, 0, req);
3697 	if (error || req->newptr == NULL)
3698 		return error;
3699 	if (segs <= 0)
3700 		return EINVAL;
3701 
3702 	ifnet_serialize_all(ifp);
3703 
3704 	/*
3705 	 * Don't allow tx_intr_nsegs to become:
3706 	 * o  Less the oact_tx_desc
3707 	 * o  Too large that no TX desc will cause TX interrupt to
3708 	 *    be generated (OACTIVE will never recover)
3709 	 * o  Too small that will cause tx_dd[] overflow
3710 	 */
3711 	if (segs < tdata->oact_tx_desc ||
3712 	    segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3713 	    segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3714 		error = EINVAL;
3715 	} else {
3716 		int i;
3717 
3718 		error = 0;
3719 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3720 			sc->tx_data[i].tx_intr_nsegs = segs;
3721 	}
3722 
3723 	ifnet_deserialize_all(ifp);
3724 
3725 	return error;
3726 }
3727 
3728 static int
3729 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3730 {
3731 	struct emx_softc *sc = (void *)arg1;
3732 	struct ifnet *ifp = &sc->arpcom.ac_if;
3733 	int error, nsegs, i;
3734 
3735 	nsegs = sc->tx_data[0].tx_wreg_nsegs;
3736 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3737 	if (error || req->newptr == NULL)
3738 		return error;
3739 
3740 	ifnet_serialize_all(ifp);
3741 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3742 		sc->tx_data[i].tx_wreg_nsegs =nsegs;
3743 	ifnet_deserialize_all(ifp);
3744 
3745 	return 0;
3746 }
3747 
3748 #ifdef IFPOLL_ENABLE
3749 
3750 static int
3751 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3752 {
3753 	struct emx_softc *sc = (void *)arg1;
3754 	struct ifnet *ifp = &sc->arpcom.ac_if;
3755 	int error, off;
3756 
3757 	off = sc->rx_npoll_off;
3758 	error = sysctl_handle_int(oidp, &off, 0, req);
3759 	if (error || req->newptr == NULL)
3760 		return error;
3761 	if (off < 0)
3762 		return EINVAL;
3763 
3764 	ifnet_serialize_all(ifp);
3765 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3766 		error = EINVAL;
3767 	} else {
3768 		error = 0;
3769 		sc->rx_npoll_off = off;
3770 	}
3771 	ifnet_deserialize_all(ifp);
3772 
3773 	return error;
3774 }
3775 
3776 static int
3777 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3778 {
3779 	struct emx_softc *sc = (void *)arg1;
3780 	struct ifnet *ifp = &sc->arpcom.ac_if;
3781 	int error, off;
3782 
3783 	off = sc->tx_npoll_off;
3784 	error = sysctl_handle_int(oidp, &off, 0, req);
3785 	if (error || req->newptr == NULL)
3786 		return error;
3787 	if (off < 0)
3788 		return EINVAL;
3789 
3790 	ifnet_serialize_all(ifp);
3791 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3792 		error = EINVAL;
3793 	} else {
3794 		error = 0;
3795 		sc->tx_npoll_off = off;
3796 	}
3797 	ifnet_deserialize_all(ifp);
3798 
3799 	return error;
3800 }
3801 
3802 #endif	/* IFPOLL_ENABLE */
3803 
3804 static int
3805 emx_dma_alloc(struct emx_softc *sc)
3806 {
3807 	int error, i;
3808 
3809 	/*
3810 	 * Create top level busdma tag
3811 	 */
3812 	error = bus_dma_tag_create(NULL, 1, 0,
3813 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3814 			NULL, NULL,
3815 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3816 			0, &sc->parent_dtag);
3817 	if (error) {
3818 		device_printf(sc->dev, "could not create top level DMA tag\n");
3819 		return error;
3820 	}
3821 
3822 	/*
3823 	 * Allocate transmit descriptors ring and buffers
3824 	 */
3825 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3826 		error = emx_create_tx_ring(&sc->tx_data[i]);
3827 		if (error) {
3828 			device_printf(sc->dev,
3829 			    "Could not setup transmit structures\n");
3830 			return error;
3831 		}
3832 	}
3833 
3834 	/*
3835 	 * Allocate receive descriptors ring and buffers
3836 	 */
3837 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3838 		error = emx_create_rx_ring(&sc->rx_data[i]);
3839 		if (error) {
3840 			device_printf(sc->dev,
3841 			    "Could not setup receive structures\n");
3842 			return error;
3843 		}
3844 	}
3845 	return 0;
3846 }
3847 
3848 static void
3849 emx_dma_free(struct emx_softc *sc)
3850 {
3851 	int i;
3852 
3853 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3854 		emx_destroy_tx_ring(&sc->tx_data[i],
3855 		    sc->tx_data[i].num_tx_desc);
3856 	}
3857 
3858 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3859 		emx_destroy_rx_ring(&sc->rx_data[i],
3860 		    sc->rx_data[i].num_rx_desc);
3861 	}
3862 
3863 	/* Free top level busdma tag */
3864 	if (sc->parent_dtag != NULL)
3865 		bus_dma_tag_destroy(sc->parent_dtag);
3866 }
3867 
3868 static void
3869 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3870 {
3871 	struct emx_softc *sc = ifp->if_softc;
3872 
3873 	ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
3874 }
3875 
3876 static void
3877 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3878 {
3879 	struct emx_softc *sc = ifp->if_softc;
3880 
3881 	ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
3882 }
3883 
3884 static int
3885 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3886 {
3887 	struct emx_softc *sc = ifp->if_softc;
3888 
3889 	return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
3890 }
3891 
3892 static void
3893 emx_serialize_skipmain(struct emx_softc *sc)
3894 {
3895 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3896 }
3897 
3898 static void
3899 emx_deserialize_skipmain(struct emx_softc *sc)
3900 {
3901 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3902 }
3903 
3904 #ifdef INVARIANTS
3905 
3906 static void
3907 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3908     boolean_t serialized)
3909 {
3910 	struct emx_softc *sc = ifp->if_softc;
3911 
3912 	ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3913 	    slz, serialized);
3914 }
3915 
3916 #endif	/* INVARIANTS */
3917 
3918 #ifdef IFPOLL_ENABLE
3919 
3920 static void
3921 emx_npoll_status(struct ifnet *ifp)
3922 {
3923 	struct emx_softc *sc = ifp->if_softc;
3924 	uint32_t reg_icr;
3925 
3926 	ASSERT_SERIALIZED(&sc->main_serialize);
3927 
3928 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3929 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3930 		callout_stop(&sc->timer);
3931 		sc->hw.mac.get_link_status = 1;
3932 		emx_update_link_status(sc);
3933 		callout_reset(&sc->timer, hz, emx_timer, sc);
3934 	}
3935 }
3936 
3937 static void
3938 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3939 {
3940 	struct emx_txdata *tdata = arg;
3941 
3942 	ASSERT_SERIALIZED(&tdata->tx_serialize);
3943 
3944 	emx_txeof(tdata);
3945 	if (!ifsq_is_empty(tdata->ifsq))
3946 		ifsq_devstart(tdata->ifsq);
3947 }
3948 
3949 static void
3950 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3951 {
3952 	struct emx_rxdata *rdata = arg;
3953 
3954 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3955 
3956 	emx_rxeof(rdata, cycle);
3957 }
3958 
3959 static void
3960 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3961 {
3962 	struct emx_softc *sc = ifp->if_softc;
3963 	int i, txr_cnt;
3964 
3965 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3966 
3967 	if (info) {
3968 		int off;
3969 
3970 		info->ifpi_status.status_func = emx_npoll_status;
3971 		info->ifpi_status.serializer = &sc->main_serialize;
3972 
3973 		txr_cnt = emx_get_txring_inuse(sc, TRUE);
3974 		off = sc->tx_npoll_off;
3975 		for (i = 0; i < txr_cnt; ++i) {
3976 			struct emx_txdata *tdata = &sc->tx_data[i];
3977 			int idx = i + off;
3978 
3979 			KKASSERT(idx < ncpus2);
3980 			info->ifpi_tx[idx].poll_func = emx_npoll_tx;
3981 			info->ifpi_tx[idx].arg = tdata;
3982 			info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
3983 			ifsq_set_cpuid(tdata->ifsq, idx);
3984 		}
3985 
3986 		off = sc->rx_npoll_off;
3987 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3988 			struct emx_rxdata *rdata = &sc->rx_data[i];
3989 			int idx = i + off;
3990 
3991 			KKASSERT(idx < ncpus2);
3992 			info->ifpi_rx[idx].poll_func = emx_npoll_rx;
3993 			info->ifpi_rx[idx].arg = rdata;
3994 			info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
3995 		}
3996 
3997 		if (ifp->if_flags & IFF_RUNNING) {
3998 			if (txr_cnt == sc->tx_ring_inuse)
3999 				emx_disable_intr(sc);
4000 			else
4001 				emx_init(sc);
4002 		}
4003 	} else {
4004 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4005 			struct emx_txdata *tdata = &sc->tx_data[i];
4006 
4007 			ifsq_set_cpuid(tdata->ifsq,
4008 			    rman_get_cpuid(sc->intr_res));
4009 		}
4010 
4011 		if (ifp->if_flags & IFF_RUNNING) {
4012 			txr_cnt = emx_get_txring_inuse(sc, FALSE);
4013 			if (txr_cnt == sc->tx_ring_inuse)
4014 				emx_enable_intr(sc);
4015 			else
4016 				emx_init(sc);
4017 		}
4018 	}
4019 }
4020 
4021 #endif	/* IFPOLL_ENABLE */
4022 
4023 static void
4024 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4025 {
4026 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4027 	if (sc->hw.mac.type == e1000_82574) {
4028 		int i;
4029 
4030 		/*
4031 		 * When using MSIX interrupts we need to
4032 		 * throttle using the EITR register
4033 		 */
4034 		for (i = 0; i < 4; ++i)
4035 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4036 	}
4037 }
4038 
4039 /*
4040  * Disable the L0s, 82574L Errata #20
4041  */
4042 static void
4043 emx_disable_aspm(struct emx_softc *sc)
4044 {
4045 	uint16_t link_cap, link_ctrl, disable;
4046 	uint8_t pcie_ptr, reg;
4047 	device_t dev = sc->dev;
4048 
4049 	switch (sc->hw.mac.type) {
4050 	case e1000_82571:
4051 	case e1000_82572:
4052 	case e1000_82573:
4053 		/*
4054 		 * 82573 specification update
4055 		 * errata #8 disable L0s
4056 		 * errata #41 disable L1
4057 		 *
4058 		 * 82571/82572 specification update
4059 		 # errata #13 disable L1
4060 		 * errata #68 disable L0s
4061 		 */
4062 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4063 		break;
4064 
4065 	case e1000_82574:
4066 		/*
4067 		 * 82574 specification update errata #20
4068 		 *
4069 		 * There is no need to disable L1
4070 		 */
4071 		disable = PCIEM_LNKCTL_ASPM_L0S;
4072 		break;
4073 
4074 	default:
4075 		return;
4076 	}
4077 
4078 	pcie_ptr = pci_get_pciecap_ptr(dev);
4079 	if (pcie_ptr == 0)
4080 		return;
4081 
4082 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4083 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4084 		return;
4085 
4086 	if (bootverbose)
4087 		if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4088 
4089 	reg = pcie_ptr + PCIER_LINKCTRL;
4090 	link_ctrl = pci_read_config(dev, reg, 2);
4091 	link_ctrl &= ~disable;
4092 	pci_write_config(dev, reg, link_ctrl, 2);
4093 }
4094 
4095 static int
4096 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4097 {
4098 	int iphlen, hoff, thoff, ex = 0;
4099 	struct mbuf *m;
4100 	struct ip *ip;
4101 
4102 	m = *mp;
4103 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4104 
4105 	iphlen = m->m_pkthdr.csum_iphlen;
4106 	thoff = m->m_pkthdr.csum_thlen;
4107 	hoff = m->m_pkthdr.csum_lhlen;
4108 
4109 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4110 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4111 	KASSERT(hoff > 0, ("invalid ether hlen"));
4112 
4113 	if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4114 		ex = 4;
4115 
4116 	if (m->m_len < hoff + iphlen + thoff + ex) {
4117 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4118 		if (m == NULL) {
4119 			*mp = NULL;
4120 			return ENOBUFS;
4121 		}
4122 		*mp = m;
4123 	}
4124 	ip = mtodoff(m, struct ip *, hoff);
4125 	ip->ip_len = 0;
4126 
4127 	return 0;
4128 }
4129 
4130 static int
4131 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4132     uint32_t *txd_upper, uint32_t *txd_lower)
4133 {
4134 	struct e1000_context_desc *TXD;
4135 	int hoff, iphlen, thoff, hlen;
4136 	int mss, pktlen, curr_txd;
4137 
4138 #ifdef EMX_TSO_DEBUG
4139 	tdata->tso_segments++;
4140 #endif
4141 
4142 	iphlen = mp->m_pkthdr.csum_iphlen;
4143 	thoff = mp->m_pkthdr.csum_thlen;
4144 	hoff = mp->m_pkthdr.csum_lhlen;
4145 	mss = mp->m_pkthdr.tso_segsz;
4146 	pktlen = mp->m_pkthdr.len;
4147 
4148 	if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4149 	    tdata->csum_flags == CSUM_TSO &&
4150 	    tdata->csum_iphlen == iphlen &&
4151 	    tdata->csum_lhlen == hoff &&
4152 	    tdata->csum_thlen == thoff &&
4153 	    tdata->csum_mss == mss &&
4154 	    tdata->csum_pktlen == pktlen) {
4155 		*txd_upper = tdata->csum_txd_upper;
4156 		*txd_lower = tdata->csum_txd_lower;
4157 #ifdef EMX_TSO_DEBUG
4158 		tdata->tso_ctx_reused++;
4159 #endif
4160 		return 0;
4161 	}
4162 	hlen = hoff + iphlen + thoff;
4163 
4164 	/*
4165 	 * Setup a new TSO context.
4166 	 */
4167 
4168 	curr_txd = tdata->next_avail_tx_desc;
4169 	TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4170 
4171 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4172 		     E1000_TXD_DTYP_D |		/* Data descr type */
4173 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4174 
4175 	/* IP and/or TCP header checksum calculation and insertion. */
4176 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4177 
4178 	/*
4179 	 * Start offset for header checksum calculation.
4180 	 * End offset for header checksum calculation.
4181 	 * Offset of place put the checksum.
4182 	 */
4183 	TXD->lower_setup.ip_fields.ipcss = hoff;
4184 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4185 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4186 
4187 	/*
4188 	 * Start offset for payload checksum calculation.
4189 	 * End offset for payload checksum calculation.
4190 	 * Offset of place to put the checksum.
4191 	 */
4192 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4193 	TXD->upper_setup.tcp_fields.tucse = 0;
4194 	TXD->upper_setup.tcp_fields.tucso =
4195 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4196 
4197 	/*
4198 	 * Payload size per packet w/o any headers.
4199 	 * Length of all headers up to payload.
4200 	 */
4201 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4202 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4203 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4204 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4205 				E1000_TXD_CMD_TSE |	/* TSE context */
4206 				E1000_TXD_CMD_IP |	/* Do IP csum */
4207 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4208 				(pktlen - hlen));	/* Total len */
4209 
4210 	/* Save the information for this TSO context */
4211 	tdata->csum_flags = CSUM_TSO;
4212 	tdata->csum_lhlen = hoff;
4213 	tdata->csum_iphlen = iphlen;
4214 	tdata->csum_thlen = thoff;
4215 	tdata->csum_mss = mss;
4216 	tdata->csum_pktlen = pktlen;
4217 	tdata->csum_txd_upper = *txd_upper;
4218 	tdata->csum_txd_lower = *txd_lower;
4219 
4220 	if (++curr_txd == tdata->num_tx_desc)
4221 		curr_txd = 0;
4222 
4223 	KKASSERT(tdata->num_tx_desc_avail > 0);
4224 	tdata->num_tx_desc_avail--;
4225 
4226 	tdata->next_avail_tx_desc = curr_txd;
4227 	return 1;
4228 }
4229 
4230 static int
4231 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4232 {
4233 	if (polling)
4234 		return sc->tx_ring_cnt;
4235 	else
4236 		return 1;
4237 }
4238