xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_rss.h"
69 #include "opt_emx.h"
70 
71 #include <sys/param.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/interrupt.h>
75 #include <sys/kernel.h>
76 #include <sys/ktr.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/proc.h>
80 #include <sys/rman.h>
81 #include <sys/serialize.h>
82 #include <sys/serialize2.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #ifdef EMX_RSS_DEBUG
115 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
116 do { \
117 	if (sc->rss_debug >= lvl) \
118 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
119 } while (0)
120 #else	/* !EMX_RSS_DEBUG */
121 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
122 #endif	/* EMX_RSS_DEBUG */
123 
124 #define EMX_NAME	"Intel(R) PRO/1000 "
125 
126 #define EMX_DEVICE(id)	\
127 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
128 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
129 
130 static const struct emx_device {
131 	uint16_t	vid;
132 	uint16_t	did;
133 	const char	*desc;
134 } emx_devices[] = {
135 	EMX_DEVICE(82571EB_COPPER),
136 	EMX_DEVICE(82571EB_FIBER),
137 	EMX_DEVICE(82571EB_SERDES),
138 	EMX_DEVICE(82571EB_SERDES_DUAL),
139 	EMX_DEVICE(82571EB_SERDES_QUAD),
140 	EMX_DEVICE(82571EB_QUAD_COPPER),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
143 	EMX_DEVICE(82571EB_QUAD_FIBER),
144 	EMX_DEVICE(82571PT_QUAD_COPPER),
145 
146 	EMX_DEVICE(82572EI_COPPER),
147 	EMX_DEVICE(82572EI_FIBER),
148 	EMX_DEVICE(82572EI_SERDES),
149 	EMX_DEVICE(82572EI),
150 
151 	EMX_DEVICE(82573E),
152 	EMX_DEVICE(82573E_IAMT),
153 	EMX_DEVICE(82573L),
154 
155 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
156 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
157 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
159 
160 	EMX_DEVICE(82574L),
161 
162 	/* required last entry */
163 	EMX_DEVICE_NULL
164 };
165 
166 static int	emx_probe(device_t);
167 static int	emx_attach(device_t);
168 static int	emx_detach(device_t);
169 static int	emx_shutdown(device_t);
170 static int	emx_suspend(device_t);
171 static int	emx_resume(device_t);
172 
173 static void	emx_init(void *);
174 static void	emx_stop(struct emx_softc *);
175 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
176 static void	emx_start(struct ifnet *);
177 #ifdef IFPOLL_ENABLE
178 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
179 #endif
180 static void	emx_watchdog(struct ifnet *);
181 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
182 static int	emx_media_change(struct ifnet *);
183 static void	emx_timer(void *);
184 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
185 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
186 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
187 #ifdef INVARIANTS
188 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
189 		    boolean_t);
190 #endif
191 
192 static void	emx_intr(void *);
193 static void	emx_rxeof(struct emx_softc *, int, int);
194 static void	emx_txeof(struct emx_softc *);
195 static void	emx_tx_collect(struct emx_softc *);
196 static void	emx_tx_purge(struct emx_softc *);
197 static void	emx_enable_intr(struct emx_softc *);
198 static void	emx_disable_intr(struct emx_softc *);
199 
200 static int	emx_dma_alloc(struct emx_softc *);
201 static void	emx_dma_free(struct emx_softc *);
202 static void	emx_init_tx_ring(struct emx_softc *);
203 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
204 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
205 static int	emx_create_tx_ring(struct emx_softc *);
206 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
207 static void	emx_destroy_tx_ring(struct emx_softc *, int);
208 static void	emx_destroy_rx_ring(struct emx_softc *,
209 		    struct emx_rxdata *, int);
210 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
211 static int	emx_encap(struct emx_softc *, struct mbuf **);
212 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
213 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
214 		    uint32_t *, uint32_t *);
215 
216 static int 	emx_is_valid_eaddr(const uint8_t *);
217 static int	emx_hw_init(struct emx_softc *);
218 static void	emx_setup_ifp(struct emx_softc *);
219 static void	emx_init_tx_unit(struct emx_softc *);
220 static void	emx_init_rx_unit(struct emx_softc *);
221 static void	emx_update_stats(struct emx_softc *);
222 static void	emx_set_promisc(struct emx_softc *);
223 static void	emx_disable_promisc(struct emx_softc *);
224 static void	emx_set_multi(struct emx_softc *);
225 static void	emx_update_link_status(struct emx_softc *);
226 static void	emx_smartspeed(struct emx_softc *);
227 
228 static void	emx_print_debug_info(struct emx_softc *);
229 static void	emx_print_nvm_info(struct emx_softc *);
230 static void	emx_print_hw_stats(struct emx_softc *);
231 
232 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
233 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
234 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
235 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
236 static void	emx_add_sysctl(struct emx_softc *);
237 
238 static void	emx_serialize_skipmain(struct emx_softc *);
239 static void	emx_deserialize_skipmain(struct emx_softc *);
240 
241 /* Management and WOL Support */
242 static void	emx_get_mgmt(struct emx_softc *);
243 static void	emx_rel_mgmt(struct emx_softc *);
244 static void	emx_get_hw_control(struct emx_softc *);
245 static void	emx_rel_hw_control(struct emx_softc *);
246 static void	emx_enable_wol(device_t);
247 
248 static device_method_t emx_methods[] = {
249 	/* Device interface */
250 	DEVMETHOD(device_probe,		emx_probe),
251 	DEVMETHOD(device_attach,	emx_attach),
252 	DEVMETHOD(device_detach,	emx_detach),
253 	DEVMETHOD(device_shutdown,	emx_shutdown),
254 	DEVMETHOD(device_suspend,	emx_suspend),
255 	DEVMETHOD(device_resume,	emx_resume),
256 	{ 0, 0 }
257 };
258 
259 static driver_t emx_driver = {
260 	"emx",
261 	emx_methods,
262 	sizeof(struct emx_softc),
263 };
264 
265 static devclass_t emx_devclass;
266 
267 DECLARE_DUMMY_MODULE(if_emx);
268 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
269 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, 0, 0);
270 
271 /*
272  * Tunables
273  */
274 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
275 static int	emx_rxd = EMX_DEFAULT_RXD;
276 static int	emx_txd = EMX_DEFAULT_TXD;
277 static int	emx_smart_pwr_down = FALSE;
278 
279 /* Controls whether promiscuous also shows bad packets */
280 static int	emx_debug_sbp = FALSE;
281 
282 static int	emx_82573_workaround = TRUE;
283 
284 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
285 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
286 TUNABLE_INT("hw.emx.txd", &emx_txd);
287 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
288 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
289 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
290 
291 /* Global used in WOL setup with multiport cards */
292 static int	emx_global_quad_port_a = 0;
293 
294 /* Set this to one to display debug statistics */
295 static int	emx_display_debug_stats = 0;
296 
297 #if !defined(KTR_IF_EMX)
298 #define KTR_IF_EMX	KTR_ALL
299 #endif
300 KTR_INFO_MASTER(if_emx);
301 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin", 0);
302 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end", 0);
303 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet", 0);
304 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet", 0);
305 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean", 0);
306 #define logif(name)	KTR_LOG(if_emx_ ## name)
307 
308 static __inline void
309 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
310 {
311 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
312 	/* DD bit must be cleared */
313 	rxd->rxd_staterr = 0;
314 }
315 
316 static __inline void
317 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
318 {
319 	/* Ignore Checksum bit is set */
320 	if (staterr & E1000_RXD_STAT_IXSM)
321 		return;
322 
323 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
324 	    E1000_RXD_STAT_IPCS)
325 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
326 
327 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
328 	    E1000_RXD_STAT_TCPCS) {
329 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
330 					   CSUM_PSEUDO_HDR |
331 					   CSUM_FRAG_NOT_CHECKED;
332 		mp->m_pkthdr.csum_data = htons(0xffff);
333 	}
334 }
335 
336 static __inline struct pktinfo *
337 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
338 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
339 {
340 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
341 	case EMX_RXDMRQ_IPV4_TCP:
342 		pi->pi_netisr = NETISR_IP;
343 		pi->pi_flags = 0;
344 		pi->pi_l3proto = IPPROTO_TCP;
345 		break;
346 
347 	case EMX_RXDMRQ_IPV6_TCP:
348 		pi->pi_netisr = NETISR_IPV6;
349 		pi->pi_flags = 0;
350 		pi->pi_l3proto = IPPROTO_TCP;
351 		break;
352 
353 	case EMX_RXDMRQ_IPV4:
354 		if (staterr & E1000_RXD_STAT_IXSM)
355 			return NULL;
356 
357 		if ((staterr &
358 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
359 		    E1000_RXD_STAT_TCPCS) {
360 			pi->pi_netisr = NETISR_IP;
361 			pi->pi_flags = 0;
362 			pi->pi_l3proto = IPPROTO_UDP;
363 			break;
364 		}
365 		/* FALL THROUGH */
366 	default:
367 		return NULL;
368 	}
369 
370 	m->m_flags |= M_HASH;
371 	m->m_pkthdr.hash = toeplitz_hash(hash);
372 	return pi;
373 }
374 
375 static int
376 emx_probe(device_t dev)
377 {
378 	const struct emx_device *d;
379 	uint16_t vid, did;
380 
381 	vid = pci_get_vendor(dev);
382 	did = pci_get_device(dev);
383 
384 	for (d = emx_devices; d->desc != NULL; ++d) {
385 		if (vid == d->vid && did == d->did) {
386 			device_set_desc(dev, d->desc);
387 			device_set_async_attach(dev, TRUE);
388 			return 0;
389 		}
390 	}
391 	return ENXIO;
392 }
393 
394 static int
395 emx_attach(device_t dev)
396 {
397 	struct emx_softc *sc = device_get_softc(dev);
398 	struct ifnet *ifp = &sc->arpcom.ac_if;
399 	int error = 0, i;
400 	uint16_t eeprom_data, device_id;
401 
402 	lwkt_serialize_init(&sc->main_serialize);
403 	lwkt_serialize_init(&sc->tx_serialize);
404 	for (i = 0; i < EMX_NRX_RING; ++i)
405 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
406 
407 	i = 0;
408 	sc->serializes[i++] = &sc->main_serialize;
409 	sc->serializes[i++] = &sc->tx_serialize;
410 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
411 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
412 	KKASSERT(i == EMX_NSERIALIZE);
413 
414 	callout_init(&sc->timer);
415 
416 	sc->dev = sc->osdep.dev = dev;
417 
418 	/*
419 	 * Determine hardware and mac type
420 	 */
421 	sc->hw.vendor_id = pci_get_vendor(dev);
422 	sc->hw.device_id = pci_get_device(dev);
423 	sc->hw.revision_id = pci_get_revid(dev);
424 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
425 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
426 
427 	if (e1000_set_mac_type(&sc->hw))
428 		return ENXIO;
429 
430 	/* Enable bus mastering */
431 	pci_enable_busmaster(dev);
432 
433 	/*
434 	 * Allocate IO memory
435 	 */
436 	sc->memory_rid = EMX_BAR_MEM;
437 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
438 					    &sc->memory_rid, RF_ACTIVE);
439 	if (sc->memory == NULL) {
440 		device_printf(dev, "Unable to allocate bus resource: memory\n");
441 		error = ENXIO;
442 		goto fail;
443 	}
444 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
445 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
446 
447 	/* XXX This is quite goofy, it is not actually used */
448 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
449 
450 	/*
451 	 * Allocate interrupt
452 	 */
453 	sc->intr_rid = 0;
454 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
455 					      RF_SHAREABLE | RF_ACTIVE);
456 	if (sc->intr_res == NULL) {
457 		device_printf(dev, "Unable to allocate bus resource: "
458 		    "interrupt\n");
459 		error = ENXIO;
460 		goto fail;
461 	}
462 
463 	/* Save PCI command register for Shared Code */
464 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
465 	sc->hw.back = &sc->osdep;
466 
467 	/* Do Shared Code initialization */
468 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
469 		device_printf(dev, "Setup of Shared code failed\n");
470 		error = ENXIO;
471 		goto fail;
472 	}
473 	e1000_get_bus_info(&sc->hw);
474 
475 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
476 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
477 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
478 
479 	/*
480 	 * Interrupt throttle rate
481 	 */
482 	if (emx_int_throttle_ceil == 0) {
483 		sc->int_throttle_ceil = 0;
484 	} else {
485 		int throttle = emx_int_throttle_ceil;
486 
487 		if (throttle < 0)
488 			throttle = EMX_DEFAULT_ITR;
489 
490 		/* Recalculate the tunable value to get the exact frequency. */
491 		throttle = 1000000000 / 256 / throttle;
492 
493 		/* Upper 16bits of ITR is reserved and should be zero */
494 		if (throttle & 0xffff0000)
495 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
496 
497 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
498 	}
499 
500 	e1000_init_script_state_82541(&sc->hw, TRUE);
501 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
502 
503 	/* Copper options */
504 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
505 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
506 		sc->hw.phy.disable_polarity_correction = FALSE;
507 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
508 	}
509 
510 	/* Set the frame limits assuming standard ethernet sized frames. */
511 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
512 	sc->min_frame_size = ETHER_MIN_LEN;
513 
514 	/* This controls when hardware reports transmit completion status. */
515 	sc->hw.mac.report_tx_early = 1;
516 
517 #ifdef RSS
518 	/* Calculate # of RX rings */
519 	if (ncpus > 1)
520 		sc->rx_ring_cnt = EMX_NRX_RING;
521 	else
522 #endif
523 		sc->rx_ring_cnt = 1;
524 	sc->rx_ring_inuse = sc->rx_ring_cnt;
525 
526 	/* Allocate RX/TX rings' busdma(9) stuffs */
527 	error = emx_dma_alloc(sc);
528 	if (error)
529 		goto fail;
530 
531 	/* Make sure we have a good EEPROM before we read from it */
532 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
533 		/*
534 		 * Some PCI-E parts fail the first check due to
535 		 * the link being in sleep state, call it again,
536 		 * if it fails a second time its a real issue.
537 		 */
538 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
539 			device_printf(dev,
540 			    "The EEPROM Checksum Is Not Valid\n");
541 			error = EIO;
542 			goto fail;
543 		}
544 	}
545 
546 	/* Initialize the hardware */
547 	error = emx_hw_init(sc);
548 	if (error) {
549 		device_printf(dev, "Unable to initialize the hardware\n");
550 		goto fail;
551 	}
552 
553 	/* Copy the permanent MAC address out of the EEPROM */
554 	if (e1000_read_mac_addr(&sc->hw) < 0) {
555 		device_printf(dev, "EEPROM read error while reading MAC"
556 		    " address\n");
557 		error = EIO;
558 		goto fail;
559 	}
560 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
561 		device_printf(dev, "Invalid MAC address\n");
562 		error = EIO;
563 		goto fail;
564 	}
565 
566 	/* Manually turn off all interrupts */
567 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
568 
569 	/* Setup OS specific network interface */
570 	emx_setup_ifp(sc);
571 
572 	/* Add sysctl tree, must after emx_setup_ifp() */
573 	emx_add_sysctl(sc);
574 
575 	/* Initialize statistics */
576 	emx_update_stats(sc);
577 
578 	sc->hw.mac.get_link_status = 1;
579 	emx_update_link_status(sc);
580 
581 	/* Indicate SOL/IDER usage */
582 	if (e1000_check_reset_block(&sc->hw)) {
583 		device_printf(dev,
584 		    "PHY reset is blocked due to SOL/IDER session.\n");
585 	}
586 
587 	/* Determine if we have to control management hardware */
588 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
589 
590 	/*
591 	 * Setup Wake-on-Lan
592 	 */
593 	switch (sc->hw.mac.type) {
594 	case e1000_82571:
595 	case e1000_80003es2lan:
596 		if (sc->hw.bus.func == 1) {
597 			e1000_read_nvm(&sc->hw,
598 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
599 		} else {
600 			e1000_read_nvm(&sc->hw,
601 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
602 		}
603 		eeprom_data &= EMX_EEPROM_APME;
604 		break;
605 
606 	default:
607 		/* APME bit in EEPROM is mapped to WUC.APME */
608 		eeprom_data =
609 		    E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
610 		break;
611 	}
612 	if (eeprom_data)
613 		sc->wol = E1000_WUFC_MAG;
614 	/*
615          * We have the eeprom settings, now apply the special cases
616          * where the eeprom may be wrong or the board won't support
617          * wake on lan on a particular port
618 	 */
619 	device_id = pci_get_device(dev);
620         switch (device_id) {
621 	case E1000_DEV_ID_82571EB_FIBER:
622 		/*
623 		 * Wake events only supported on port A for dual fiber
624 		 * regardless of eeprom setting
625 		 */
626 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
627 		    E1000_STATUS_FUNC_1)
628 			sc->wol = 0;
629 		break;
630 
631 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
632 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
633 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
634                 /* if quad port sc, disable WoL on all but port A */
635 		if (emx_global_quad_port_a != 0)
636 			sc->wol = 0;
637 		/* Reset for multiple quad port adapters */
638 		if (++emx_global_quad_port_a == 4)
639 			emx_global_quad_port_a = 0;
640                 break;
641 	}
642 
643 	/* XXX disable wol */
644 	sc->wol = 0;
645 
646 	sc->spare_tx_desc = EMX_TX_SPARE;
647 
648 	/*
649 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
650 	 * and tx_int_nsegs:
651 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
652 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
653 	 */
654 	sc->oact_tx_desc = sc->num_tx_desc / 8;
655 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
656 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
657 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
658 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
659 
660 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
661 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
662 		sc->tx_int_nsegs = sc->oact_tx_desc;
663 
664 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
665 			       &sc->intr_tag, &sc->main_serialize);
666 	if (error) {
667 		device_printf(dev, "Failed to register interrupt handler");
668 		ether_ifdetach(&sc->arpcom.ac_if);
669 		goto fail;
670 	}
671 
672 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->intr_res));
673 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
674 	return (0);
675 fail:
676 	emx_detach(dev);
677 	return (error);
678 }
679 
680 static int
681 emx_detach(device_t dev)
682 {
683 	struct emx_softc *sc = device_get_softc(dev);
684 
685 	if (device_is_attached(dev)) {
686 		struct ifnet *ifp = &sc->arpcom.ac_if;
687 
688 		ifnet_serialize_all(ifp);
689 
690 		emx_stop(sc);
691 
692 		e1000_phy_hw_reset(&sc->hw);
693 
694 		emx_rel_mgmt(sc);
695 
696 		if (sc->hw.mac.type == e1000_82573 &&
697 		    e1000_check_mng_mode(&sc->hw))
698 			emx_rel_hw_control(sc);
699 
700 		if (sc->wol) {
701 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
702 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
703 			emx_enable_wol(dev);
704 		}
705 
706 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
707 
708 		ifnet_deserialize_all(ifp);
709 
710 		ether_ifdetach(ifp);
711 	}
712 	bus_generic_detach(dev);
713 
714 	if (sc->intr_res != NULL) {
715 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
716 				     sc->intr_res);
717 	}
718 
719 	if (sc->memory != NULL) {
720 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
721 				     sc->memory);
722 	}
723 
724 	emx_dma_free(sc);
725 
726 	/* Free sysctl tree */
727 	if (sc->sysctl_tree != NULL)
728 		sysctl_ctx_free(&sc->sysctl_ctx);
729 
730 	return (0);
731 }
732 
733 static int
734 emx_shutdown(device_t dev)
735 {
736 	return emx_suspend(dev);
737 }
738 
739 static int
740 emx_suspend(device_t dev)
741 {
742 	struct emx_softc *sc = device_get_softc(dev);
743 	struct ifnet *ifp = &sc->arpcom.ac_if;
744 
745 	ifnet_serialize_all(ifp);
746 
747 	emx_stop(sc);
748 
749 	emx_rel_mgmt(sc);
750 
751         if (sc->hw.mac.type == e1000_82573 &&
752             e1000_check_mng_mode(&sc->hw))
753                 emx_rel_hw_control(sc);
754 
755         if (sc->wol) {
756 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
757 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
758 		emx_enable_wol(dev);
759         }
760 
761 	ifnet_deserialize_all(ifp);
762 
763 	return bus_generic_suspend(dev);
764 }
765 
766 static int
767 emx_resume(device_t dev)
768 {
769 	struct emx_softc *sc = device_get_softc(dev);
770 	struct ifnet *ifp = &sc->arpcom.ac_if;
771 
772 	ifnet_serialize_all(ifp);
773 
774 	emx_init(sc);
775 	emx_get_mgmt(sc);
776 	if_devstart(ifp);
777 
778 	ifnet_deserialize_all(ifp);
779 
780 	return bus_generic_resume(dev);
781 }
782 
783 static void
784 emx_start(struct ifnet *ifp)
785 {
786 	struct emx_softc *sc = ifp->if_softc;
787 	struct mbuf *m_head;
788 
789 	ASSERT_SERIALIZED(&sc->tx_serialize);
790 
791 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
792 		return;
793 
794 	if (!sc->link_active) {
795 		ifq_purge(&ifp->if_snd);
796 		return;
797 	}
798 
799 	while (!ifq_is_empty(&ifp->if_snd)) {
800 		/* Now do we at least have a minimal? */
801 		if (EMX_IS_OACTIVE(sc)) {
802 			emx_tx_collect(sc);
803 			if (EMX_IS_OACTIVE(sc)) {
804 				ifp->if_flags |= IFF_OACTIVE;
805 				sc->no_tx_desc_avail1++;
806 				break;
807 			}
808 		}
809 
810 		logif(pkt_txqueue);
811 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
812 		if (m_head == NULL)
813 			break;
814 
815 		if (emx_encap(sc, &m_head)) {
816 			ifp->if_oerrors++;
817 			emx_tx_collect(sc);
818 			continue;
819 		}
820 
821 		/* Send a copy of the frame to the BPF listener */
822 		ETHER_BPF_MTAP(ifp, m_head);
823 
824 		/* Set timeout in case hardware has problems transmitting. */
825 		ifp->if_timer = EMX_TX_TIMEOUT;
826 	}
827 }
828 
829 static int
830 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
831 {
832 	struct emx_softc *sc = ifp->if_softc;
833 	struct ifreq *ifr = (struct ifreq *)data;
834 	uint16_t eeprom_data = 0;
835 	int max_frame_size, mask, reinit;
836 	int error = 0;
837 
838 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
839 
840 	switch (command) {
841 	case SIOCSIFMTU:
842 		switch (sc->hw.mac.type) {
843 		case e1000_82573:
844 			/*
845 			 * 82573 only supports jumbo frames
846 			 * if ASPM is disabled.
847 			 */
848 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
849 				       &eeprom_data);
850 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
851 				max_frame_size = ETHER_MAX_LEN;
852 				break;
853 			}
854 			/* FALL THROUGH */
855 
856 		/* Limit Jumbo Frame size */
857 		case e1000_82571:
858 		case e1000_82572:
859 		case e1000_82574:
860 		case e1000_80003es2lan:
861 			max_frame_size = 9234;
862 			break;
863 
864 		default:
865 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
866 			break;
867 		}
868 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
869 		    ETHER_CRC_LEN) {
870 			error = EINVAL;
871 			break;
872 		}
873 
874 		ifp->if_mtu = ifr->ifr_mtu;
875 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
876 				     ETHER_CRC_LEN;
877 
878 		if (ifp->if_flags & IFF_RUNNING)
879 			emx_init(sc);
880 		break;
881 
882 	case SIOCSIFFLAGS:
883 		if (ifp->if_flags & IFF_UP) {
884 			if ((ifp->if_flags & IFF_RUNNING)) {
885 				if ((ifp->if_flags ^ sc->if_flags) &
886 				    (IFF_PROMISC | IFF_ALLMULTI)) {
887 					emx_disable_promisc(sc);
888 					emx_set_promisc(sc);
889 				}
890 			} else {
891 				emx_init(sc);
892 			}
893 		} else if (ifp->if_flags & IFF_RUNNING) {
894 			emx_stop(sc);
895 		}
896 		sc->if_flags = ifp->if_flags;
897 		break;
898 
899 	case SIOCADDMULTI:
900 	case SIOCDELMULTI:
901 		if (ifp->if_flags & IFF_RUNNING) {
902 			emx_disable_intr(sc);
903 			emx_set_multi(sc);
904 #ifdef IFPOLL_ENABLE
905 			if (!(ifp->if_flags & IFF_NPOLLING))
906 #endif
907 				emx_enable_intr(sc);
908 		}
909 		break;
910 
911 	case SIOCSIFMEDIA:
912 		/* Check SOL/IDER usage */
913 		if (e1000_check_reset_block(&sc->hw)) {
914 			device_printf(sc->dev, "Media change is"
915 			    " blocked due to SOL/IDER session.\n");
916 			break;
917 		}
918 		/* FALL THROUGH */
919 
920 	case SIOCGIFMEDIA:
921 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
922 		break;
923 
924 	case SIOCSIFCAP:
925 		reinit = 0;
926 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
927 		if (mask & IFCAP_HWCSUM) {
928 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
929 			reinit = 1;
930 		}
931 		if (mask & IFCAP_VLAN_HWTAGGING) {
932 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
933 			reinit = 1;
934 		}
935 		if (mask & IFCAP_RSS) {
936 			ifp->if_capenable ^= IFCAP_RSS;
937 			reinit = 1;
938 		}
939 		if (reinit && (ifp->if_flags & IFF_RUNNING))
940 			emx_init(sc);
941 		break;
942 
943 	default:
944 		error = ether_ioctl(ifp, command, data);
945 		break;
946 	}
947 	return (error);
948 }
949 
950 static void
951 emx_watchdog(struct ifnet *ifp)
952 {
953 	struct emx_softc *sc = ifp->if_softc;
954 
955 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
956 
957 	/*
958 	 * The timer is set to 5 every time start queues a packet.
959 	 * Then txeof keeps resetting it as long as it cleans at
960 	 * least one descriptor.
961 	 * Finally, anytime all descriptors are clean the timer is
962 	 * set to 0.
963 	 */
964 
965 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
966 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
967 		/*
968 		 * If we reach here, all TX jobs are completed and
969 		 * the TX engine should have been idled for some time.
970 		 * We don't need to call if_devstart() here.
971 		 */
972 		ifp->if_flags &= ~IFF_OACTIVE;
973 		ifp->if_timer = 0;
974 		return;
975 	}
976 
977 	/*
978 	 * If we are in this routine because of pause frames, then
979 	 * don't reset the hardware.
980 	 */
981 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
982 		ifp->if_timer = EMX_TX_TIMEOUT;
983 		return;
984 	}
985 
986 	if (e1000_check_for_link(&sc->hw) == 0)
987 		if_printf(ifp, "watchdog timeout -- resetting\n");
988 
989 	ifp->if_oerrors++;
990 	sc->watchdog_events++;
991 
992 	emx_init(sc);
993 
994 	if (!ifq_is_empty(&ifp->if_snd))
995 		if_devstart(ifp);
996 }
997 
998 static void
999 emx_init(void *xsc)
1000 {
1001 	struct emx_softc *sc = xsc;
1002 	struct ifnet *ifp = &sc->arpcom.ac_if;
1003 	device_t dev = sc->dev;
1004 	uint32_t pba;
1005 	int i;
1006 
1007 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1008 
1009 	emx_stop(sc);
1010 
1011 	/*
1012 	 * Packet Buffer Allocation (PBA)
1013 	 * Writing PBA sets the receive portion of the buffer
1014 	 * the remainder is used for the transmit buffer.
1015 	 */
1016 	switch (sc->hw.mac.type) {
1017 	/* Total Packet Buffer on these is 48K */
1018 	case e1000_82571:
1019 	case e1000_82572:
1020 	case e1000_80003es2lan:
1021 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1022 		break;
1023 
1024 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1025 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1026 		break;
1027 
1028 	case e1000_82574:
1029 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1030 		break;
1031 
1032 	default:
1033 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1034 		if (sc->max_frame_size > 8192)
1035 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1036 		else
1037 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1038 	}
1039 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1040 
1041 	/* Get the latest mac address, User can use a LAA */
1042         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1043 
1044 	/* Put the address into the Receive Address Array */
1045 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1046 
1047 	/*
1048 	 * With the 82571 sc, RAR[0] may be overwritten
1049 	 * when the other port is reset, we make a duplicate
1050 	 * in RAR[14] for that eventuality, this assures
1051 	 * the interface continues to function.
1052 	 */
1053 	if (sc->hw.mac.type == e1000_82571) {
1054 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1055 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1056 		    E1000_RAR_ENTRIES - 1);
1057 	}
1058 
1059 	/* Initialize the hardware */
1060 	if (emx_hw_init(sc)) {
1061 		device_printf(dev, "Unable to initialize the hardware\n");
1062 		/* XXX emx_stop()? */
1063 		return;
1064 	}
1065 	emx_update_link_status(sc);
1066 
1067 	/* Setup VLAN support, basic and offload if available */
1068 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1069 
1070 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1071 		uint32_t ctrl;
1072 
1073 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1074 		ctrl |= E1000_CTRL_VME;
1075 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1076 	}
1077 
1078 	/* Set hardware offload abilities */
1079 	if (ifp->if_capenable & IFCAP_TXCSUM)
1080 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1081 	else
1082 		ifp->if_hwassist = 0;
1083 
1084 	/* Configure for OS presence */
1085 	emx_get_mgmt(sc);
1086 
1087 	/* Prepare transmit descriptors and buffers */
1088 	emx_init_tx_ring(sc);
1089 	emx_init_tx_unit(sc);
1090 
1091 	/* Setup Multicast table */
1092 	emx_set_multi(sc);
1093 
1094 	/*
1095 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1096 	 */
1097 	if (ifp->if_capenable & IFCAP_RSS)
1098 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1099 	else
1100 		sc->rx_ring_inuse = 1;
1101 
1102 	/* Prepare receive descriptors and buffers */
1103 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1104 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1105 			device_printf(dev,
1106 			    "Could not setup receive structures\n");
1107 			emx_stop(sc);
1108 			return;
1109 		}
1110 	}
1111 	emx_init_rx_unit(sc);
1112 
1113 	/* Don't lose promiscuous settings */
1114 	emx_set_promisc(sc);
1115 
1116 	ifp->if_flags |= IFF_RUNNING;
1117 	ifp->if_flags &= ~IFF_OACTIVE;
1118 
1119 	callout_reset(&sc->timer, hz, emx_timer, sc);
1120 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1121 
1122 	/* MSI/X configuration for 82574 */
1123 	if (sc->hw.mac.type == e1000_82574) {
1124 		int tmp;
1125 
1126 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1127 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1128 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1129 		/*
1130 		 * Set the IVAR - interrupt vector routing.
1131 		 * Each nibble represents a vector, high bit
1132 		 * is enable, other 3 bits are the MSIX table
1133 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1134 		 * Link (other) to 2, hence the magic number.
1135 		 */
1136 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1137 	}
1138 
1139 #ifdef IFPOLL_ENABLE
1140 	/*
1141 	 * Only enable interrupts if we are not polling, make sure
1142 	 * they are off otherwise.
1143 	 */
1144 	if (ifp->if_flags & IFF_NPOLLING)
1145 		emx_disable_intr(sc);
1146 	else
1147 #endif /* IFPOLL_ENABLE */
1148 		emx_enable_intr(sc);
1149 
1150 	/* Don't reset the phy next time init gets called */
1151 	sc->hw.phy.reset_disable = TRUE;
1152 }
1153 
1154 static void
1155 emx_intr(void *xsc)
1156 {
1157 	struct emx_softc *sc = xsc;
1158 	struct ifnet *ifp = &sc->arpcom.ac_if;
1159 	uint32_t reg_icr;
1160 
1161 	logif(intr_beg);
1162 	ASSERT_SERIALIZED(&sc->main_serialize);
1163 
1164 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1165 
1166 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1167 		logif(intr_end);
1168 		return;
1169 	}
1170 
1171 	/*
1172 	 * XXX: some laptops trigger several spurious interrupts
1173 	 * on emx(4) when in the resume cycle. The ICR register
1174 	 * reports all-ones value in this case. Processing such
1175 	 * interrupts would lead to a freeze. I don't know why.
1176 	 */
1177 	if (reg_icr == 0xffffffff) {
1178 		logif(intr_end);
1179 		return;
1180 	}
1181 
1182 	if (ifp->if_flags & IFF_RUNNING) {
1183 		if (reg_icr &
1184 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1185 			int i;
1186 
1187 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
1188 				lwkt_serialize_enter(
1189 				&sc->rx_data[i].rx_serialize);
1190 				emx_rxeof(sc, i, -1);
1191 				lwkt_serialize_exit(
1192 				&sc->rx_data[i].rx_serialize);
1193 			}
1194 		}
1195 		if (reg_icr & E1000_ICR_TXDW) {
1196 			lwkt_serialize_enter(&sc->tx_serialize);
1197 			emx_txeof(sc);
1198 			if (!ifq_is_empty(&ifp->if_snd))
1199 				if_devstart(ifp);
1200 			lwkt_serialize_exit(&sc->tx_serialize);
1201 		}
1202 	}
1203 
1204 	/* Link status change */
1205 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1206 		emx_serialize_skipmain(sc);
1207 
1208 		callout_stop(&sc->timer);
1209 		sc->hw.mac.get_link_status = 1;
1210 		emx_update_link_status(sc);
1211 
1212 		/* Deal with TX cruft when link lost */
1213 		emx_tx_purge(sc);
1214 
1215 		callout_reset(&sc->timer, hz, emx_timer, sc);
1216 
1217 		emx_deserialize_skipmain(sc);
1218 	}
1219 
1220 	if (reg_icr & E1000_ICR_RXO)
1221 		sc->rx_overruns++;
1222 
1223 	logif(intr_end);
1224 }
1225 
1226 static void
1227 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1228 {
1229 	struct emx_softc *sc = ifp->if_softc;
1230 
1231 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1232 
1233 	emx_update_link_status(sc);
1234 
1235 	ifmr->ifm_status = IFM_AVALID;
1236 	ifmr->ifm_active = IFM_ETHER;
1237 
1238 	if (!sc->link_active)
1239 		return;
1240 
1241 	ifmr->ifm_status |= IFM_ACTIVE;
1242 
1243 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1244 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1245 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1246 	} else {
1247 		switch (sc->link_speed) {
1248 		case 10:
1249 			ifmr->ifm_active |= IFM_10_T;
1250 			break;
1251 		case 100:
1252 			ifmr->ifm_active |= IFM_100_TX;
1253 			break;
1254 
1255 		case 1000:
1256 			ifmr->ifm_active |= IFM_1000_T;
1257 			break;
1258 		}
1259 		if (sc->link_duplex == FULL_DUPLEX)
1260 			ifmr->ifm_active |= IFM_FDX;
1261 		else
1262 			ifmr->ifm_active |= IFM_HDX;
1263 	}
1264 }
1265 
1266 static int
1267 emx_media_change(struct ifnet *ifp)
1268 {
1269 	struct emx_softc *sc = ifp->if_softc;
1270 	struct ifmedia *ifm = &sc->media;
1271 
1272 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1273 
1274 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1275 		return (EINVAL);
1276 
1277 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1278 	case IFM_AUTO:
1279 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1280 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1281 		break;
1282 
1283 	case IFM_1000_LX:
1284 	case IFM_1000_SX:
1285 	case IFM_1000_T:
1286 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1287 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1288 		break;
1289 
1290 	case IFM_100_TX:
1291 		sc->hw.mac.autoneg = FALSE;
1292 		sc->hw.phy.autoneg_advertised = 0;
1293 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1294 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1295 		else
1296 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1297 		break;
1298 
1299 	case IFM_10_T:
1300 		sc->hw.mac.autoneg = FALSE;
1301 		sc->hw.phy.autoneg_advertised = 0;
1302 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1303 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1304 		else
1305 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1306 		break;
1307 
1308 	default:
1309 		if_printf(ifp, "Unsupported media type\n");
1310 		break;
1311 	}
1312 
1313 	/*
1314 	 * As the speed/duplex settings my have changed we need to
1315 	 * reset the PHY.
1316 	 */
1317 	sc->hw.phy.reset_disable = FALSE;
1318 
1319 	emx_init(sc);
1320 
1321 	return (0);
1322 }
1323 
1324 static int
1325 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1326 {
1327 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1328 	bus_dmamap_t map;
1329 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1330 	struct e1000_tx_desc *ctxd = NULL;
1331 	struct mbuf *m_head = *m_headp;
1332 	uint32_t txd_upper, txd_lower, cmd = 0;
1333 	int maxsegs, nsegs, i, j, first, last = 0, error;
1334 
1335 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1336 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1337 		/*
1338 		 * Make sure that ethernet header and ip.ip_hl are in
1339 		 * contiguous memory, since if TXCSUM is enabled, later
1340 		 * TX context descriptor's setup need to access ip.ip_hl.
1341 		 */
1342 		error = emx_txcsum_pullup(sc, m_headp);
1343 		if (error) {
1344 			KKASSERT(*m_headp == NULL);
1345 			return error;
1346 		}
1347 		m_head = *m_headp;
1348 	}
1349 
1350 	txd_upper = txd_lower = 0;
1351 
1352 	/*
1353 	 * Capture the first descriptor index, this descriptor
1354 	 * will have the index of the EOP which is the only one
1355 	 * that now gets a DONE bit writeback.
1356 	 */
1357 	first = sc->next_avail_tx_desc;
1358 	tx_buffer = &sc->tx_buf[first];
1359 	tx_buffer_mapped = tx_buffer;
1360 	map = tx_buffer->map;
1361 
1362 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1363 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1364 	if (maxsegs > EMX_MAX_SCATTER)
1365 		maxsegs = EMX_MAX_SCATTER;
1366 
1367 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1368 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1369 	if (error) {
1370 		if (error == ENOBUFS)
1371 			sc->mbuf_alloc_failed++;
1372 		else
1373 			sc->no_tx_dma_setup++;
1374 
1375 		m_freem(*m_headp);
1376 		*m_headp = NULL;
1377 		return error;
1378 	}
1379         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1380 
1381 	m_head = *m_headp;
1382 	sc->tx_nsegs += nsegs;
1383 
1384 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1385 		/* TX csum offloading will consume one TX desc */
1386 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1387 	}
1388 	i = sc->next_avail_tx_desc;
1389 
1390 	/* Set up our transmit descriptors */
1391 	for (j = 0; j < nsegs; j++) {
1392 		tx_buffer = &sc->tx_buf[i];
1393 		ctxd = &sc->tx_desc_base[i];
1394 
1395 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1396 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1397 					   txd_lower | segs[j].ds_len);
1398 		ctxd->upper.data = htole32(txd_upper);
1399 
1400 		last = i;
1401 		if (++i == sc->num_tx_desc)
1402 			i = 0;
1403 	}
1404 
1405 	sc->next_avail_tx_desc = i;
1406 
1407 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1408 	sc->num_tx_desc_avail -= nsegs;
1409 
1410         /* Handle VLAN tag */
1411 	if (m_head->m_flags & M_VLANTAG) {
1412 		/* Set the vlan id. */
1413 		ctxd->upper.fields.special =
1414 		    htole16(m_head->m_pkthdr.ether_vlantag);
1415 
1416 		/* Tell hardware to add tag */
1417 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1418 	}
1419 
1420 	tx_buffer->m_head = m_head;
1421 	tx_buffer_mapped->map = tx_buffer->map;
1422 	tx_buffer->map = map;
1423 
1424 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1425 		sc->tx_nsegs = 0;
1426 
1427 		/*
1428 		 * Report Status (RS) is turned on
1429 		 * every tx_int_nsegs descriptors.
1430 		 */
1431 		cmd = E1000_TXD_CMD_RS;
1432 
1433 		/*
1434 		 * Keep track of the descriptor, which will
1435 		 * be written back by hardware.
1436 		 */
1437 		sc->tx_dd[sc->tx_dd_tail] = last;
1438 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1439 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1440 	}
1441 
1442 	/*
1443 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1444 	 */
1445 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1446 
1447 	/*
1448 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1449 	 * the E1000 that this frame is available to transmit.
1450 	 */
1451 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1452 
1453 	return (0);
1454 }
1455 
1456 static void
1457 emx_set_promisc(struct emx_softc *sc)
1458 {
1459 	struct ifnet *ifp = &sc->arpcom.ac_if;
1460 	uint32_t reg_rctl;
1461 
1462 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1463 
1464 	if (ifp->if_flags & IFF_PROMISC) {
1465 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1466 		/* Turn this on if you want to see bad packets */
1467 		if (emx_debug_sbp)
1468 			reg_rctl |= E1000_RCTL_SBP;
1469 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1470 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1471 		reg_rctl |= E1000_RCTL_MPE;
1472 		reg_rctl &= ~E1000_RCTL_UPE;
1473 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1474 	}
1475 }
1476 
1477 static void
1478 emx_disable_promisc(struct emx_softc *sc)
1479 {
1480 	uint32_t reg_rctl;
1481 
1482 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1483 
1484 	reg_rctl &= ~E1000_RCTL_UPE;
1485 	reg_rctl &= ~E1000_RCTL_MPE;
1486 	reg_rctl &= ~E1000_RCTL_SBP;
1487 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1488 }
1489 
1490 static void
1491 emx_set_multi(struct emx_softc *sc)
1492 {
1493 	struct ifnet *ifp = &sc->arpcom.ac_if;
1494 	struct ifmultiaddr *ifma;
1495 	uint32_t reg_rctl = 0;
1496 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1497 	int mcnt = 0;
1498 
1499 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1500 		if (ifma->ifma_addr->sa_family != AF_LINK)
1501 			continue;
1502 
1503 		if (mcnt == EMX_MCAST_ADDR_MAX)
1504 			break;
1505 
1506 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1507 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1508 		mcnt++;
1509 	}
1510 
1511 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1512 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1513 		reg_rctl |= E1000_RCTL_MPE;
1514 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1515 	} else {
1516 		e1000_update_mc_addr_list(&sc->hw, mta,
1517 		    mcnt, 1, sc->hw.mac.rar_entry_count);
1518 	}
1519 }
1520 
1521 /*
1522  * This routine checks for link status and updates statistics.
1523  */
1524 static void
1525 emx_timer(void *xsc)
1526 {
1527 	struct emx_softc *sc = xsc;
1528 	struct ifnet *ifp = &sc->arpcom.ac_if;
1529 
1530 	ifnet_serialize_all(ifp);
1531 
1532 	emx_update_link_status(sc);
1533 	emx_update_stats(sc);
1534 
1535 	/* Reset LAA into RAR[0] on 82571 */
1536 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1537 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1538 
1539 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1540 		emx_print_hw_stats(sc);
1541 
1542 	emx_smartspeed(sc);
1543 
1544 	callout_reset(&sc->timer, hz, emx_timer, sc);
1545 
1546 	ifnet_deserialize_all(ifp);
1547 }
1548 
1549 static void
1550 emx_update_link_status(struct emx_softc *sc)
1551 {
1552 	struct e1000_hw *hw = &sc->hw;
1553 	struct ifnet *ifp = &sc->arpcom.ac_if;
1554 	device_t dev = sc->dev;
1555 	uint32_t link_check = 0;
1556 
1557 	/* Get the cached link value or read phy for real */
1558 	switch (hw->phy.media_type) {
1559 	case e1000_media_type_copper:
1560 		if (hw->mac.get_link_status) {
1561 			/* Do the work to read phy */
1562 			e1000_check_for_link(hw);
1563 			link_check = !hw->mac.get_link_status;
1564 			if (link_check) /* ESB2 fix */
1565 				e1000_cfg_on_link_up(hw);
1566 		} else {
1567 			link_check = TRUE;
1568 		}
1569 		break;
1570 
1571 	case e1000_media_type_fiber:
1572 		e1000_check_for_link(hw);
1573 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1574 		break;
1575 
1576 	case e1000_media_type_internal_serdes:
1577 		e1000_check_for_link(hw);
1578 		link_check = sc->hw.mac.serdes_has_link;
1579 		break;
1580 
1581 	case e1000_media_type_unknown:
1582 	default:
1583 		break;
1584 	}
1585 
1586 	/* Now check for a transition */
1587 	if (link_check && sc->link_active == 0) {
1588 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1589 		    &sc->link_duplex);
1590 
1591 		/*
1592 		 * Check if we should enable/disable SPEED_MODE bit on
1593 		 * 82571EB/82572EI
1594 		 */
1595 		if (hw->mac.type == e1000_82571 ||
1596 		    hw->mac.type == e1000_82572) {
1597 			int tarc0;
1598 
1599 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1600 			if (sc->link_speed != SPEED_1000)
1601 				tarc0 &= ~EMX_TARC_SPEED_MODE;
1602 			else
1603 				tarc0 |= EMX_TARC_SPEED_MODE;
1604 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1605 		}
1606 		if (bootverbose) {
1607 			device_printf(dev, "Link is up %d Mbps %s\n",
1608 			    sc->link_speed,
1609 			    ((sc->link_duplex == FULL_DUPLEX) ?
1610 			    "Full Duplex" : "Half Duplex"));
1611 		}
1612 		sc->link_active = 1;
1613 		sc->smartspeed = 0;
1614 		ifp->if_baudrate = sc->link_speed * 1000000;
1615 		ifp->if_link_state = LINK_STATE_UP;
1616 		if_link_state_change(ifp);
1617 	} else if (!link_check && sc->link_active == 1) {
1618 		ifp->if_baudrate = sc->link_speed = 0;
1619 		sc->link_duplex = 0;
1620 		if (bootverbose)
1621 			device_printf(dev, "Link is Down\n");
1622 		sc->link_active = 0;
1623 #if 0
1624 		/* Link down, disable watchdog */
1625 		if->if_timer = 0;
1626 #endif
1627 		ifp->if_link_state = LINK_STATE_DOWN;
1628 		if_link_state_change(ifp);
1629 	}
1630 }
1631 
1632 static void
1633 emx_stop(struct emx_softc *sc)
1634 {
1635 	struct ifnet *ifp = &sc->arpcom.ac_if;
1636 	int i;
1637 
1638 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1639 
1640 	emx_disable_intr(sc);
1641 
1642 	callout_stop(&sc->timer);
1643 
1644 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1645 	ifp->if_timer = 0;
1646 
1647 	/*
1648 	 * Disable multiple receive queues.
1649 	 *
1650 	 * NOTE:
1651 	 * We should disable multiple receive queues before
1652 	 * resetting the hardware.
1653 	 */
1654 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1655 
1656 	e1000_reset_hw(&sc->hw);
1657 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1658 
1659 	for (i = 0; i < sc->num_tx_desc; i++) {
1660 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1661 
1662 		if (tx_buffer->m_head != NULL) {
1663 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1664 			m_freem(tx_buffer->m_head);
1665 			tx_buffer->m_head = NULL;
1666 		}
1667 	}
1668 
1669 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1670 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1671 
1672 	sc->csum_flags = 0;
1673 	sc->csum_ehlen = 0;
1674 	sc->csum_iphlen = 0;
1675 
1676 	sc->tx_dd_head = 0;
1677 	sc->tx_dd_tail = 0;
1678 	sc->tx_nsegs = 0;
1679 }
1680 
1681 static int
1682 emx_hw_init(struct emx_softc *sc)
1683 {
1684 	device_t dev = sc->dev;
1685 	uint16_t rx_buffer_size;
1686 
1687 	/* Issue a global reset */
1688 	e1000_reset_hw(&sc->hw);
1689 
1690 	/* Get control from any management/hw control */
1691 	if (sc->hw.mac.type == e1000_82573 &&
1692 	    e1000_check_mng_mode(&sc->hw))
1693 		emx_get_hw_control(sc);
1694 
1695 	/* Set up smart power down as default off on newer adapters. */
1696 	if (!emx_smart_pwr_down &&
1697 	    (sc->hw.mac.type == e1000_82571 ||
1698 	     sc->hw.mac.type == e1000_82572)) {
1699 		uint16_t phy_tmp = 0;
1700 
1701 		/* Speed up time to link by disabling smart power down. */
1702 		e1000_read_phy_reg(&sc->hw,
1703 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1704 		phy_tmp &= ~IGP02E1000_PM_SPD;
1705 		e1000_write_phy_reg(&sc->hw,
1706 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1707 	}
1708 
1709 	/*
1710 	 * These parameters control the automatic generation (Tx) and
1711 	 * response (Rx) to Ethernet PAUSE frames.
1712 	 * - High water mark should allow for at least two frames to be
1713 	 *   received after sending an XOFF.
1714 	 * - Low water mark works best when it is very near the high water mark.
1715 	 *   This allows the receiver to restart by sending XON when it has
1716 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1717 	 *   restart after one full frame is pulled from the buffer. There
1718 	 *   could be several smaller frames in the buffer and if so they will
1719 	 *   not trigger the XON until their total number reduces the buffer
1720 	 *   by 1500.
1721 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1722 	 */
1723 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1724 
1725 	sc->hw.fc.high_water = rx_buffer_size -
1726 			       roundup2(sc->max_frame_size, 1024);
1727 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1728 
1729 	if (sc->hw.mac.type == e1000_80003es2lan)
1730 		sc->hw.fc.pause_time = 0xFFFF;
1731 	else
1732 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1733 	sc->hw.fc.send_xon = TRUE;
1734 	sc->hw.fc.requested_mode = e1000_fc_full;
1735 
1736 	if (e1000_init_hw(&sc->hw) < 0) {
1737 		device_printf(dev, "Hardware Initialization Failed\n");
1738 		return (EIO);
1739 	}
1740 
1741 	e1000_check_for_link(&sc->hw);
1742 
1743 	return (0);
1744 }
1745 
1746 static void
1747 emx_setup_ifp(struct emx_softc *sc)
1748 {
1749 	struct ifnet *ifp = &sc->arpcom.ac_if;
1750 
1751 	if_initname(ifp, device_get_name(sc->dev),
1752 		    device_get_unit(sc->dev));
1753 	ifp->if_softc = sc;
1754 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1755 	ifp->if_init =  emx_init;
1756 	ifp->if_ioctl = emx_ioctl;
1757 	ifp->if_start = emx_start;
1758 #ifdef IFPOLL_ENABLE
1759 	ifp->if_qpoll = emx_qpoll;
1760 #endif
1761 	ifp->if_watchdog = emx_watchdog;
1762 	ifp->if_serialize = emx_serialize;
1763 	ifp->if_deserialize = emx_deserialize;
1764 	ifp->if_tryserialize = emx_tryserialize;
1765 #ifdef INVARIANTS
1766 	ifp->if_serialize_assert = emx_serialize_assert;
1767 #endif
1768 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1769 	ifq_set_ready(&ifp->if_snd);
1770 
1771 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1772 
1773 	ifp->if_capabilities = IFCAP_HWCSUM |
1774 			       IFCAP_VLAN_HWTAGGING |
1775 			       IFCAP_VLAN_MTU;
1776 	if (sc->rx_ring_cnt > 1)
1777 		ifp->if_capabilities |= IFCAP_RSS;
1778 	ifp->if_capenable = ifp->if_capabilities;
1779 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1780 
1781 	/*
1782 	 * Tell the upper layer(s) we support long frames.
1783 	 */
1784 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1785 
1786 	/*
1787 	 * Specify the media types supported by this sc and register
1788 	 * callbacks to update media and link information
1789 	 */
1790 	ifmedia_init(&sc->media, IFM_IMASK,
1791 		     emx_media_change, emx_media_status);
1792 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1793 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1794 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1795 			    0, NULL);
1796 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1797 	} else {
1798 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1799 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1800 			    0, NULL);
1801 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1802 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1803 			    0, NULL);
1804 		if (sc->hw.phy.type != e1000_phy_ife) {
1805 			ifmedia_add(&sc->media,
1806 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1807 			ifmedia_add(&sc->media,
1808 				IFM_ETHER | IFM_1000_T, 0, NULL);
1809 		}
1810 	}
1811 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1812 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1813 }
1814 
1815 /*
1816  * Workaround for SmartSpeed on 82541 and 82547 controllers
1817  */
1818 static void
1819 emx_smartspeed(struct emx_softc *sc)
1820 {
1821 	uint16_t phy_tmp;
1822 
1823 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1824 	    sc->hw.mac.autoneg == 0 ||
1825 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1826 		return;
1827 
1828 	if (sc->smartspeed == 0) {
1829 		/*
1830 		 * If Master/Slave config fault is asserted twice,
1831 		 * we assume back-to-back
1832 		 */
1833 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1834 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1835 			return;
1836 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1837 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1838 			e1000_read_phy_reg(&sc->hw,
1839 			    PHY_1000T_CTRL, &phy_tmp);
1840 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1841 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1842 				e1000_write_phy_reg(&sc->hw,
1843 				    PHY_1000T_CTRL, phy_tmp);
1844 				sc->smartspeed++;
1845 				if (sc->hw.mac.autoneg &&
1846 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1847 				    !e1000_read_phy_reg(&sc->hw,
1848 				     PHY_CONTROL, &phy_tmp)) {
1849 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1850 						   MII_CR_RESTART_AUTO_NEG;
1851 					e1000_write_phy_reg(&sc->hw,
1852 					    PHY_CONTROL, phy_tmp);
1853 				}
1854 			}
1855 		}
1856 		return;
1857 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1858 		/* If still no link, perhaps using 2/3 pair cable */
1859 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1860 		phy_tmp |= CR_1000T_MS_ENABLE;
1861 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1862 		if (sc->hw.mac.autoneg &&
1863 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1864 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1865 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1866 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1867 		}
1868 	}
1869 
1870 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1871 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1872 		sc->smartspeed = 0;
1873 }
1874 
1875 static int
1876 emx_create_tx_ring(struct emx_softc *sc)
1877 {
1878 	device_t dev = sc->dev;
1879 	struct emx_txbuf *tx_buffer;
1880 	int error, i, tsize;
1881 
1882 	/*
1883 	 * Validate number of transmit descriptors.  It must not exceed
1884 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1885 	 */
1886 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1887 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1888 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1889 		    EMX_DEFAULT_TXD, emx_txd);
1890 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1891 	} else {
1892 		sc->num_tx_desc = emx_txd;
1893 	}
1894 
1895 	/*
1896 	 * Allocate Transmit Descriptor ring
1897 	 */
1898 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1899 			 EMX_DBA_ALIGN);
1900 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1901 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1902 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1903 				&sc->tx_desc_paddr);
1904 	if (sc->tx_desc_base == NULL) {
1905 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1906 		return ENOMEM;
1907 	}
1908 
1909 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1910 			     M_DEVBUF, M_WAITOK | M_ZERO);
1911 
1912 	/*
1913 	 * Create DMA tags for tx buffers
1914 	 */
1915 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1916 			1, 0,			/* alignment, bounds */
1917 			BUS_SPACE_MAXADDR,	/* lowaddr */
1918 			BUS_SPACE_MAXADDR,	/* highaddr */
1919 			NULL, NULL,		/* filter, filterarg */
1920 			EMX_TSO_SIZE,		/* maxsize */
1921 			EMX_MAX_SCATTER,	/* nsegments */
1922 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1923 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1924 			BUS_DMA_ONEBPAGE,	/* flags */
1925 			&sc->txtag);
1926 	if (error) {
1927 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1928 		kfree(sc->tx_buf, M_DEVBUF);
1929 		sc->tx_buf = NULL;
1930 		return error;
1931 	}
1932 
1933 	/*
1934 	 * Create DMA maps for tx buffers
1935 	 */
1936 	for (i = 0; i < sc->num_tx_desc; i++) {
1937 		tx_buffer = &sc->tx_buf[i];
1938 
1939 		error = bus_dmamap_create(sc->txtag,
1940 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1941 					  &tx_buffer->map);
1942 		if (error) {
1943 			device_printf(dev, "Unable to create TX DMA map\n");
1944 			emx_destroy_tx_ring(sc, i);
1945 			return error;
1946 		}
1947 	}
1948 	return (0);
1949 }
1950 
1951 static void
1952 emx_init_tx_ring(struct emx_softc *sc)
1953 {
1954 	/* Clear the old ring contents */
1955 	bzero(sc->tx_desc_base,
1956 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1957 
1958 	/* Reset state */
1959 	sc->next_avail_tx_desc = 0;
1960 	sc->next_tx_to_clean = 0;
1961 	sc->num_tx_desc_avail = sc->num_tx_desc;
1962 }
1963 
1964 static void
1965 emx_init_tx_unit(struct emx_softc *sc)
1966 {
1967 	uint32_t tctl, tarc, tipg = 0;
1968 	uint64_t bus_addr;
1969 
1970 	/* Setup the Base and Length of the Tx Descriptor Ring */
1971 	bus_addr = sc->tx_desc_paddr;
1972 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1973 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1974 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1975 	    (uint32_t)(bus_addr >> 32));
1976 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
1977 	    (uint32_t)bus_addr);
1978 	/* Setup the HW Tx Head and Tail descriptor pointers */
1979 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
1980 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
1981 
1982 	/* Set the default values for the Tx Inter Packet Gap timer */
1983 	switch (sc->hw.mac.type) {
1984 	case e1000_80003es2lan:
1985 		tipg = DEFAULT_82543_TIPG_IPGR1;
1986 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
1987 		    E1000_TIPG_IPGR2_SHIFT;
1988 		break;
1989 
1990 	default:
1991 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1992 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1993 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1994 		else
1995 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1996 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1997 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1998 		break;
1999 	}
2000 
2001 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2002 
2003 	/* NOTE: 0 is not allowed for TIDV */
2004 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2005 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2006 
2007 	if (sc->hw.mac.type == e1000_82571 ||
2008 	    sc->hw.mac.type == e1000_82572) {
2009 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2010 		tarc |= EMX_TARC_SPEED_MODE;
2011 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2012 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2013 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2014 		tarc |= 1;
2015 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2016 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2017 		tarc |= 1;
2018 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2019 	}
2020 
2021 	/* Program the Transmit Control Register */
2022 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2023 	tctl &= ~E1000_TCTL_CT;
2024 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2025 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2026 	tctl |= E1000_TCTL_MULR;
2027 
2028 	/* This write will effectively turn on the transmit unit. */
2029 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2030 }
2031 
2032 static void
2033 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2034 {
2035 	struct emx_txbuf *tx_buffer;
2036 	int i;
2037 
2038 	/* Free Transmit Descriptor ring */
2039 	if (sc->tx_desc_base) {
2040 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2041 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2042 				sc->tx_desc_dmap);
2043 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2044 
2045 		sc->tx_desc_base = NULL;
2046 	}
2047 
2048 	if (sc->tx_buf == NULL)
2049 		return;
2050 
2051 	for (i = 0; i < ndesc; i++) {
2052 		tx_buffer = &sc->tx_buf[i];
2053 
2054 		KKASSERT(tx_buffer->m_head == NULL);
2055 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2056 	}
2057 	bus_dma_tag_destroy(sc->txtag);
2058 
2059 	kfree(sc->tx_buf, M_DEVBUF);
2060 	sc->tx_buf = NULL;
2061 }
2062 
2063 /*
2064  * The offload context needs to be set when we transfer the first
2065  * packet of a particular protocol (TCP/UDP).  This routine has been
2066  * enhanced to deal with inserted VLAN headers.
2067  *
2068  * If the new packet's ether header length, ip header length and
2069  * csum offloading type are same as the previous packet, we should
2070  * avoid allocating a new csum context descriptor; mainly to take
2071  * advantage of the pipeline effect of the TX data read request.
2072  *
2073  * This function returns number of TX descrptors allocated for
2074  * csum context.
2075  */
2076 static int
2077 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2078 	   uint32_t *txd_upper, uint32_t *txd_lower)
2079 {
2080 	struct e1000_context_desc *TXD;
2081 	struct emx_txbuf *tx_buffer;
2082 	struct ether_vlan_header *eh;
2083 	struct ip *ip;
2084 	int curr_txd, ehdrlen, csum_flags;
2085 	uint32_t cmd, hdr_len, ip_hlen;
2086 	uint16_t etype;
2087 
2088 	/*
2089 	 * Determine where frame payload starts.
2090 	 * Jump over vlan headers if already present,
2091 	 * helpful for QinQ too.
2092 	 */
2093 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2094 		("emx_txcsum_pullup is not called (eh)?\n"));
2095 	eh = mtod(mp, struct ether_vlan_header *);
2096 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2097 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2098 			("emx_txcsum_pullup is not called (evh)?\n"));
2099 		etype = ntohs(eh->evl_proto);
2100 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2101 	} else {
2102 		etype = ntohs(eh->evl_encap_proto);
2103 		ehdrlen = ETHER_HDR_LEN;
2104 	}
2105 
2106 	/*
2107 	 * We only support TCP/UDP for IPv4 for the moment.
2108 	 * TODO: Support SCTP too when it hits the tree.
2109 	 */
2110 	if (etype != ETHERTYPE_IP)
2111 		return 0;
2112 
2113 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2114 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2115 
2116 	/* NOTE: We could only safely access ip.ip_vhl part */
2117 	ip = (struct ip *)(mp->m_data + ehdrlen);
2118 	ip_hlen = ip->ip_hl << 2;
2119 
2120 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2121 
2122 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2123 	    sc->csum_flags == csum_flags) {
2124 		/*
2125 		 * Same csum offload context as the previous packets;
2126 		 * just return.
2127 		 */
2128 		*txd_upper = sc->csum_txd_upper;
2129 		*txd_lower = sc->csum_txd_lower;
2130 		return 0;
2131 	}
2132 
2133 	/*
2134 	 * Setup a new csum offload context.
2135 	 */
2136 
2137 	curr_txd = sc->next_avail_tx_desc;
2138 	tx_buffer = &sc->tx_buf[curr_txd];
2139 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2140 
2141 	cmd = 0;
2142 
2143 	/* Setup of IP header checksum. */
2144 	if (csum_flags & CSUM_IP) {
2145 		/*
2146 		 * Start offset for header checksum calculation.
2147 		 * End offset for header checksum calculation.
2148 		 * Offset of place to put the checksum.
2149 		 */
2150 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2151 		TXD->lower_setup.ip_fields.ipcse =
2152 		    htole16(ehdrlen + ip_hlen - 1);
2153 		TXD->lower_setup.ip_fields.ipcso =
2154 		    ehdrlen + offsetof(struct ip, ip_sum);
2155 		cmd |= E1000_TXD_CMD_IP;
2156 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2157 	}
2158 	hdr_len = ehdrlen + ip_hlen;
2159 
2160 	if (csum_flags & CSUM_TCP) {
2161 		/*
2162 		 * Start offset for payload checksum calculation.
2163 		 * End offset for payload checksum calculation.
2164 		 * Offset of place to put the checksum.
2165 		 */
2166 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2167 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2168 		TXD->upper_setup.tcp_fields.tucso =
2169 		    hdr_len + offsetof(struct tcphdr, th_sum);
2170 		cmd |= E1000_TXD_CMD_TCP;
2171 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2172 	} else if (csum_flags & CSUM_UDP) {
2173 		/*
2174 		 * Start offset for header checksum calculation.
2175 		 * End offset for header checksum calculation.
2176 		 * Offset of place to put the checksum.
2177 		 */
2178 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2179 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2180 		TXD->upper_setup.tcp_fields.tucso =
2181 		    hdr_len + offsetof(struct udphdr, uh_sum);
2182 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2183 	}
2184 
2185 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2186 		     E1000_TXD_DTYP_D;		/* Data descr */
2187 
2188 	/* Save the information for this csum offloading context */
2189 	sc->csum_ehlen = ehdrlen;
2190 	sc->csum_iphlen = ip_hlen;
2191 	sc->csum_flags = csum_flags;
2192 	sc->csum_txd_upper = *txd_upper;
2193 	sc->csum_txd_lower = *txd_lower;
2194 
2195 	TXD->tcp_seg_setup.data = htole32(0);
2196 	TXD->cmd_and_length =
2197 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2198 
2199 	if (++curr_txd == sc->num_tx_desc)
2200 		curr_txd = 0;
2201 
2202 	KKASSERT(sc->num_tx_desc_avail > 0);
2203 	sc->num_tx_desc_avail--;
2204 
2205 	sc->next_avail_tx_desc = curr_txd;
2206 	return 1;
2207 }
2208 
2209 static int
2210 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2211 {
2212 	struct mbuf *m = *m0;
2213 	struct ether_header *eh;
2214 	int len;
2215 
2216 	sc->tx_csum_try_pullup++;
2217 
2218 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2219 
2220 	if (__predict_false(!M_WRITABLE(m))) {
2221 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2222 			sc->tx_csum_drop1++;
2223 			m_freem(m);
2224 			*m0 = NULL;
2225 			return ENOBUFS;
2226 		}
2227 		eh = mtod(m, struct ether_header *);
2228 
2229 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2230 			len += EVL_ENCAPLEN;
2231 
2232 		if (m->m_len < len) {
2233 			sc->tx_csum_drop2++;
2234 			m_freem(m);
2235 			*m0 = NULL;
2236 			return ENOBUFS;
2237 		}
2238 		return 0;
2239 	}
2240 
2241 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2242 		sc->tx_csum_pullup1++;
2243 		m = m_pullup(m, ETHER_HDR_LEN);
2244 		if (m == NULL) {
2245 			sc->tx_csum_pullup1_failed++;
2246 			*m0 = NULL;
2247 			return ENOBUFS;
2248 		}
2249 		*m0 = m;
2250 	}
2251 	eh = mtod(m, struct ether_header *);
2252 
2253 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2254 		len += EVL_ENCAPLEN;
2255 
2256 	if (m->m_len < len) {
2257 		sc->tx_csum_pullup2++;
2258 		m = m_pullup(m, len);
2259 		if (m == NULL) {
2260 			sc->tx_csum_pullup2_failed++;
2261 			*m0 = NULL;
2262 			return ENOBUFS;
2263 		}
2264 		*m0 = m;
2265 	}
2266 	return 0;
2267 }
2268 
2269 static void
2270 emx_txeof(struct emx_softc *sc)
2271 {
2272 	struct ifnet *ifp = &sc->arpcom.ac_if;
2273 	struct emx_txbuf *tx_buffer;
2274 	int first, num_avail;
2275 
2276 	if (sc->tx_dd_head == sc->tx_dd_tail)
2277 		return;
2278 
2279 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2280 		return;
2281 
2282 	num_avail = sc->num_tx_desc_avail;
2283 	first = sc->next_tx_to_clean;
2284 
2285 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2286 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2287 		struct e1000_tx_desc *tx_desc;
2288 
2289 		tx_desc = &sc->tx_desc_base[dd_idx];
2290 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2291 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2292 
2293 			if (++dd_idx == sc->num_tx_desc)
2294 				dd_idx = 0;
2295 
2296 			while (first != dd_idx) {
2297 				logif(pkt_txclean);
2298 
2299 				num_avail++;
2300 
2301 				tx_buffer = &sc->tx_buf[first];
2302 				if (tx_buffer->m_head) {
2303 					ifp->if_opackets++;
2304 					bus_dmamap_unload(sc->txtag,
2305 							  tx_buffer->map);
2306 					m_freem(tx_buffer->m_head);
2307 					tx_buffer->m_head = NULL;
2308 				}
2309 
2310 				if (++first == sc->num_tx_desc)
2311 					first = 0;
2312 			}
2313 		} else {
2314 			break;
2315 		}
2316 	}
2317 	sc->next_tx_to_clean = first;
2318 	sc->num_tx_desc_avail = num_avail;
2319 
2320 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2321 		sc->tx_dd_head = 0;
2322 		sc->tx_dd_tail = 0;
2323 	}
2324 
2325 	if (!EMX_IS_OACTIVE(sc)) {
2326 		ifp->if_flags &= ~IFF_OACTIVE;
2327 
2328 		/* All clean, turn off the timer */
2329 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2330 			ifp->if_timer = 0;
2331 	}
2332 }
2333 
2334 static void
2335 emx_tx_collect(struct emx_softc *sc)
2336 {
2337 	struct ifnet *ifp = &sc->arpcom.ac_if;
2338 	struct emx_txbuf *tx_buffer;
2339 	int tdh, first, num_avail, dd_idx = -1;
2340 
2341 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2342 		return;
2343 
2344 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2345 	if (tdh == sc->next_tx_to_clean)
2346 		return;
2347 
2348 	if (sc->tx_dd_head != sc->tx_dd_tail)
2349 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2350 
2351 	num_avail = sc->num_tx_desc_avail;
2352 	first = sc->next_tx_to_clean;
2353 
2354 	while (first != tdh) {
2355 		logif(pkt_txclean);
2356 
2357 		num_avail++;
2358 
2359 		tx_buffer = &sc->tx_buf[first];
2360 		if (tx_buffer->m_head) {
2361 			ifp->if_opackets++;
2362 			bus_dmamap_unload(sc->txtag,
2363 					  tx_buffer->map);
2364 			m_freem(tx_buffer->m_head);
2365 			tx_buffer->m_head = NULL;
2366 		}
2367 
2368 		if (first == dd_idx) {
2369 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2370 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2371 				sc->tx_dd_head = 0;
2372 				sc->tx_dd_tail = 0;
2373 				dd_idx = -1;
2374 			} else {
2375 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2376 			}
2377 		}
2378 
2379 		if (++first == sc->num_tx_desc)
2380 			first = 0;
2381 	}
2382 	sc->next_tx_to_clean = first;
2383 	sc->num_tx_desc_avail = num_avail;
2384 
2385 	if (!EMX_IS_OACTIVE(sc)) {
2386 		ifp->if_flags &= ~IFF_OACTIVE;
2387 
2388 		/* All clean, turn off the timer */
2389 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2390 			ifp->if_timer = 0;
2391 	}
2392 }
2393 
2394 /*
2395  * When Link is lost sometimes there is work still in the TX ring
2396  * which will result in a watchdog, rather than allow that do an
2397  * attempted cleanup and then reinit here.  Note that this has been
2398  * seens mostly with fiber adapters.
2399  */
2400 static void
2401 emx_tx_purge(struct emx_softc *sc)
2402 {
2403 	struct ifnet *ifp = &sc->arpcom.ac_if;
2404 
2405 	if (!sc->link_active && ifp->if_timer) {
2406 		emx_tx_collect(sc);
2407 		if (ifp->if_timer) {
2408 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2409 			ifp->if_timer = 0;
2410 			emx_init(sc);
2411 		}
2412 	}
2413 }
2414 
2415 static int
2416 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2417 {
2418 	struct mbuf *m;
2419 	bus_dma_segment_t seg;
2420 	bus_dmamap_t map;
2421 	struct emx_rxbuf *rx_buffer;
2422 	int error, nseg;
2423 
2424 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2425 	if (m == NULL) {
2426 		rdata->mbuf_cluster_failed++;
2427 		if (init) {
2428 			if_printf(&sc->arpcom.ac_if,
2429 				  "Unable to allocate RX mbuf\n");
2430 		}
2431 		return (ENOBUFS);
2432 	}
2433 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2434 
2435 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2436 		m_adj(m, ETHER_ALIGN);
2437 
2438 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2439 			rdata->rx_sparemap, m,
2440 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2441 	if (error) {
2442 		m_freem(m);
2443 		if (init) {
2444 			if_printf(&sc->arpcom.ac_if,
2445 				  "Unable to load RX mbuf\n");
2446 		}
2447 		return (error);
2448 	}
2449 
2450 	rx_buffer = &rdata->rx_buf[i];
2451 	if (rx_buffer->m_head != NULL)
2452 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2453 
2454 	map = rx_buffer->map;
2455 	rx_buffer->map = rdata->rx_sparemap;
2456 	rdata->rx_sparemap = map;
2457 
2458 	rx_buffer->m_head = m;
2459 	rx_buffer->paddr = seg.ds_addr;
2460 
2461 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2462 	return (0);
2463 }
2464 
2465 static int
2466 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2467 {
2468 	device_t dev = sc->dev;
2469 	struct emx_rxbuf *rx_buffer;
2470 	int i, error, rsize;
2471 
2472 	/*
2473 	 * Validate number of receive descriptors.  It must not exceed
2474 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2475 	 */
2476 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2477 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2478 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2479 		    EMX_DEFAULT_RXD, emx_rxd);
2480 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2481 	} else {
2482 		rdata->num_rx_desc = emx_rxd;
2483 	}
2484 
2485 	/*
2486 	 * Allocate Receive Descriptor ring
2487 	 */
2488 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2489 			 EMX_DBA_ALIGN);
2490 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2491 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2492 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2493 				&rdata->rx_desc_paddr);
2494 	if (rdata->rx_desc == NULL) {
2495 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2496 		return ENOMEM;
2497 	}
2498 
2499 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2500 				M_DEVBUF, M_WAITOK | M_ZERO);
2501 
2502 	/*
2503 	 * Create DMA tag for rx buffers
2504 	 */
2505 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2506 			1, 0,			/* alignment, bounds */
2507 			BUS_SPACE_MAXADDR,	/* lowaddr */
2508 			BUS_SPACE_MAXADDR,	/* highaddr */
2509 			NULL, NULL,		/* filter, filterarg */
2510 			MCLBYTES,		/* maxsize */
2511 			1,			/* nsegments */
2512 			MCLBYTES,		/* maxsegsize */
2513 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2514 			&rdata->rxtag);
2515 	if (error) {
2516 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2517 		kfree(rdata->rx_buf, M_DEVBUF);
2518 		rdata->rx_buf = NULL;
2519 		return error;
2520 	}
2521 
2522 	/*
2523 	 * Create spare DMA map for rx buffers
2524 	 */
2525 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2526 				  &rdata->rx_sparemap);
2527 	if (error) {
2528 		device_printf(dev, "Unable to create spare RX DMA map\n");
2529 		bus_dma_tag_destroy(rdata->rxtag);
2530 		kfree(rdata->rx_buf, M_DEVBUF);
2531 		rdata->rx_buf = NULL;
2532 		return error;
2533 	}
2534 
2535 	/*
2536 	 * Create DMA maps for rx buffers
2537 	 */
2538 	for (i = 0; i < rdata->num_rx_desc; i++) {
2539 		rx_buffer = &rdata->rx_buf[i];
2540 
2541 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2542 					  &rx_buffer->map);
2543 		if (error) {
2544 			device_printf(dev, "Unable to create RX DMA map\n");
2545 			emx_destroy_rx_ring(sc, rdata, i);
2546 			return error;
2547 		}
2548 	}
2549 	return (0);
2550 }
2551 
2552 static void
2553 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2554 {
2555 	int i;
2556 
2557 	for (i = 0; i < rdata->num_rx_desc; i++) {
2558 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2559 
2560 		if (rx_buffer->m_head != NULL) {
2561 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2562 			m_freem(rx_buffer->m_head);
2563 			rx_buffer->m_head = NULL;
2564 		}
2565 	}
2566 
2567 	if (rdata->fmp != NULL)
2568 		m_freem(rdata->fmp);
2569 	rdata->fmp = NULL;
2570 	rdata->lmp = NULL;
2571 }
2572 
2573 static int
2574 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2575 {
2576 	int i, error;
2577 
2578 	/* Reset descriptor ring */
2579 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2580 
2581 	/* Allocate new ones. */
2582 	for (i = 0; i < rdata->num_rx_desc; i++) {
2583 		error = emx_newbuf(sc, rdata, i, 1);
2584 		if (error)
2585 			return (error);
2586 	}
2587 
2588 	/* Setup our descriptor pointers */
2589 	rdata->next_rx_desc_to_check = 0;
2590 
2591 	return (0);
2592 }
2593 
2594 static void
2595 emx_init_rx_unit(struct emx_softc *sc)
2596 {
2597 	struct ifnet *ifp = &sc->arpcom.ac_if;
2598 	uint64_t bus_addr;
2599 	uint32_t rctl, rxcsum, rfctl;
2600 	int i;
2601 
2602 	/*
2603 	 * Make sure receives are disabled while setting
2604 	 * up the descriptor ring
2605 	 */
2606 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2607 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2608 
2609 	/*
2610 	 * Set the interrupt throttling rate. Value is calculated
2611 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2612 	 */
2613 	if (sc->int_throttle_ceil) {
2614 		E1000_WRITE_REG(&sc->hw, E1000_ITR,
2615 			1000000000 / 256 / sc->int_throttle_ceil);
2616 	} else {
2617 		E1000_WRITE_REG(&sc->hw, E1000_ITR, 0);
2618 	}
2619 
2620 	/* Use extended RX descriptor */
2621 	rfctl = E1000_RFCTL_EXTEN;
2622 
2623 	/* Disable accelerated ackknowledge */
2624 	if (sc->hw.mac.type == e1000_82574)
2625 		rfctl |= E1000_RFCTL_ACK_DIS;
2626 
2627 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2628 
2629 	/* Setup the Base and Length of the Rx Descriptor Ring */
2630 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2631 		struct emx_rxdata *rdata = &sc->rx_data[i];
2632 
2633 		bus_addr = rdata->rx_desc_paddr;
2634 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2635 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2636 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2637 		    (uint32_t)(bus_addr >> 32));
2638 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2639 		    (uint32_t)bus_addr);
2640 	}
2641 
2642 	/* Setup the Receive Control Register */
2643 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2644 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2645 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2646 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2647 
2648 	/* Make sure VLAN Filters are off */
2649 	rctl &= ~E1000_RCTL_VFE;
2650 
2651 	/* Don't store bad paket */
2652 	rctl &= ~E1000_RCTL_SBP;
2653 
2654 	/* MCLBYTES */
2655 	rctl |= E1000_RCTL_SZ_2048;
2656 
2657 	if (ifp->if_mtu > ETHERMTU)
2658 		rctl |= E1000_RCTL_LPE;
2659 	else
2660 		rctl &= ~E1000_RCTL_LPE;
2661 
2662 	/*
2663 	 * Receive Checksum Offload for TCP and UDP
2664 	 *
2665 	 * Checksum offloading is also enabled if multiple receive
2666 	 * queue is to be supported, since we need it to figure out
2667 	 * packet type.
2668 	 */
2669 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2670 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2671 
2672 		/*
2673 		 * NOTE:
2674 		 * PCSD must be enabled to enable multiple
2675 		 * receive queues.
2676 		 */
2677 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2678 			  E1000_RXCSUM_PCSD;
2679 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2680 	}
2681 
2682 	/*
2683 	 * Configure multiple receive queue (RSS)
2684 	 */
2685 	if (ifp->if_capenable & IFCAP_RSS) {
2686 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2687 		uint32_t reta;
2688 
2689 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2690 			("invalid number of RX ring (%d)",
2691 			 sc->rx_ring_inuse));
2692 
2693 		/*
2694 		 * NOTE:
2695 		 * When we reach here, RSS has already been disabled
2696 		 * in emx_stop(), so we could safely configure RSS key
2697 		 * and redirect table.
2698 		 */
2699 
2700 		/*
2701 		 * Configure RSS key
2702 		 */
2703 		toeplitz_get_key(key, sizeof(key));
2704 		for (i = 0; i < EMX_NRSSRK; ++i) {
2705 			uint32_t rssrk;
2706 
2707 			rssrk = EMX_RSSRK_VAL(key, i);
2708 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2709 
2710 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2711 		}
2712 
2713 		/*
2714 		 * Configure RSS redirect table in following fashion:
2715 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2716 		 */
2717 		reta = 0;
2718 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2719 			uint32_t q;
2720 
2721 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2722 			reta |= q << (8 * i);
2723 		}
2724 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2725 
2726 		for (i = 0; i < EMX_NRETA; ++i)
2727 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2728 
2729 		/*
2730 		 * Enable multiple receive queues.
2731 		 * Enable IPv4 RSS standard hash functions.
2732 		 * Disable RSS interrupt.
2733 		 */
2734 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2735 				E1000_MRQC_ENABLE_RSS_2Q |
2736 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2737 				E1000_MRQC_RSS_FIELD_IPV4);
2738 	}
2739 
2740 	/*
2741 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2742 	 * long latencies are observed, like Lenovo X60. This
2743 	 * change eliminates the problem, but since having positive
2744 	 * values in RDTR is a known source of problems on other
2745 	 * platforms another solution is being sought.
2746 	 */
2747 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2748 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2749 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2750 	}
2751 
2752 	/*
2753 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2754 	 */
2755 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2756 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2757 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2758 		    sc->rx_data[i].num_rx_desc - 1);
2759 	}
2760 
2761 	/* Enable Receives */
2762 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2763 }
2764 
2765 static void
2766 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2767 {
2768 	struct emx_rxbuf *rx_buffer;
2769 	int i;
2770 
2771 	/* Free Receive Descriptor ring */
2772 	if (rdata->rx_desc) {
2773 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2774 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2775 				rdata->rx_desc_dmap);
2776 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2777 
2778 		rdata->rx_desc = NULL;
2779 	}
2780 
2781 	if (rdata->rx_buf == NULL)
2782 		return;
2783 
2784 	for (i = 0; i < ndesc; i++) {
2785 		rx_buffer = &rdata->rx_buf[i];
2786 
2787 		KKASSERT(rx_buffer->m_head == NULL);
2788 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2789 	}
2790 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2791 	bus_dma_tag_destroy(rdata->rxtag);
2792 
2793 	kfree(rdata->rx_buf, M_DEVBUF);
2794 	rdata->rx_buf = NULL;
2795 }
2796 
2797 static void
2798 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2799 {
2800 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2801 	struct ifnet *ifp = &sc->arpcom.ac_if;
2802 	uint32_t staterr;
2803 	emx_rxdesc_t *current_desc;
2804 	struct mbuf *mp;
2805 	int i;
2806 	struct mbuf_chain chain[MAXCPU];
2807 
2808 	i = rdata->next_rx_desc_to_check;
2809 	current_desc = &rdata->rx_desc[i];
2810 	staterr = le32toh(current_desc->rxd_staterr);
2811 
2812 	if (!(staterr & E1000_RXD_STAT_DD))
2813 		return;
2814 
2815 	ether_input_chain_init(chain);
2816 
2817 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2818 		struct pktinfo *pi = NULL, pi0;
2819 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2820 		struct mbuf *m = NULL;
2821 		int eop, len;
2822 
2823 		logif(pkt_receive);
2824 
2825 		mp = rx_buf->m_head;
2826 
2827 		/*
2828 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2829 		 * needs to access the last received byte in the mbuf.
2830 		 */
2831 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2832 				BUS_DMASYNC_POSTREAD);
2833 
2834 		len = le16toh(current_desc->rxd_length);
2835 		if (staterr & E1000_RXD_STAT_EOP) {
2836 			count--;
2837 			eop = 1;
2838 		} else {
2839 			eop = 0;
2840 		}
2841 
2842 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2843 			uint16_t vlan = 0;
2844 			uint32_t mrq, rss_hash;
2845 
2846 			/*
2847 			 * Save several necessary information,
2848 			 * before emx_newbuf() destroy it.
2849 			 */
2850 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2851 				vlan = le16toh(current_desc->rxd_vlan);
2852 
2853 			mrq = le32toh(current_desc->rxd_mrq);
2854 			rss_hash = le32toh(current_desc->rxd_rss);
2855 
2856 			EMX_RSS_DPRINTF(sc, 10,
2857 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2858 			    ring_idx, mrq, rss_hash);
2859 
2860 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2861 				ifp->if_iqdrops++;
2862 				goto discard;
2863 			}
2864 
2865 			/* Assign correct length to the current fragment */
2866 			mp->m_len = len;
2867 
2868 			if (rdata->fmp == NULL) {
2869 				mp->m_pkthdr.len = len;
2870 				rdata->fmp = mp; /* Store the first mbuf */
2871 				rdata->lmp = mp;
2872 			} else {
2873 				/*
2874 				 * Chain mbuf's together
2875 				 */
2876 				rdata->lmp->m_next = mp;
2877 				rdata->lmp = rdata->lmp->m_next;
2878 				rdata->fmp->m_pkthdr.len += len;
2879 			}
2880 
2881 			if (eop) {
2882 				rdata->fmp->m_pkthdr.rcvif = ifp;
2883 				ifp->if_ipackets++;
2884 
2885 				if (ifp->if_capenable & IFCAP_RXCSUM)
2886 					emx_rxcsum(staterr, rdata->fmp);
2887 
2888 				if (staterr & E1000_RXD_STAT_VP) {
2889 					rdata->fmp->m_pkthdr.ether_vlantag =
2890 					    vlan;
2891 					rdata->fmp->m_flags |= M_VLANTAG;
2892 				}
2893 				m = rdata->fmp;
2894 				rdata->fmp = NULL;
2895 				rdata->lmp = NULL;
2896 
2897 				if (ifp->if_capenable & IFCAP_RSS) {
2898 					pi = emx_rssinfo(m, &pi0, mrq,
2899 							 rss_hash, staterr);
2900 				}
2901 #ifdef EMX_RSS_DEBUG
2902 				rdata->rx_pkts++;
2903 #endif
2904 			}
2905 		} else {
2906 			ifp->if_ierrors++;
2907 discard:
2908 			emx_setup_rxdesc(current_desc, rx_buf);
2909 			if (rdata->fmp != NULL) {
2910 				m_freem(rdata->fmp);
2911 				rdata->fmp = NULL;
2912 				rdata->lmp = NULL;
2913 			}
2914 			m = NULL;
2915 		}
2916 
2917 		if (m != NULL)
2918 			ether_input_chain(ifp, m, pi, chain);
2919 
2920 		/* Advance our pointers to the next descriptor. */
2921 		if (++i == rdata->num_rx_desc)
2922 			i = 0;
2923 
2924 		current_desc = &rdata->rx_desc[i];
2925 		staterr = le32toh(current_desc->rxd_staterr);
2926 	}
2927 	rdata->next_rx_desc_to_check = i;
2928 
2929 	ether_input_dispatch(chain);
2930 
2931 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2932 	if (--i < 0)
2933 		i = rdata->num_rx_desc - 1;
2934 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2935 }
2936 
2937 static void
2938 emx_enable_intr(struct emx_softc *sc)
2939 {
2940 	lwkt_serialize_handler_enable(&sc->main_serialize);
2941 	E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2942 }
2943 
2944 static void
2945 emx_disable_intr(struct emx_softc *sc)
2946 {
2947 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2948 	lwkt_serialize_handler_disable(&sc->main_serialize);
2949 }
2950 
2951 /*
2952  * Bit of a misnomer, what this really means is
2953  * to enable OS management of the system... aka
2954  * to disable special hardware management features
2955  */
2956 static void
2957 emx_get_mgmt(struct emx_softc *sc)
2958 {
2959 	/* A shared code workaround */
2960 	if (sc->has_manage) {
2961 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2962 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2963 
2964 		/* disable hardware interception of ARP */
2965 		manc &= ~(E1000_MANC_ARP_EN);
2966 
2967                 /* enable receiving management packets to the host */
2968 		manc |= E1000_MANC_EN_MNG2HOST;
2969 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2970 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2971 		manc2h |= E1000_MNG2HOST_PORT_623;
2972 		manc2h |= E1000_MNG2HOST_PORT_664;
2973 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2974 
2975 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2976 	}
2977 }
2978 
2979 /*
2980  * Give control back to hardware management
2981  * controller if there is one.
2982  */
2983 static void
2984 emx_rel_mgmt(struct emx_softc *sc)
2985 {
2986 	if (sc->has_manage) {
2987 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2988 
2989 		/* re-enable hardware interception of ARP */
2990 		manc |= E1000_MANC_ARP_EN;
2991 		manc &= ~E1000_MANC_EN_MNG2HOST;
2992 
2993 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2994 	}
2995 }
2996 
2997 /*
2998  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2999  * For ASF and Pass Through versions of f/w this means that
3000  * the driver is loaded.  For AMT version (only with 82573)
3001  * of the f/w this means that the network i/f is open.
3002  */
3003 static void
3004 emx_get_hw_control(struct emx_softc *sc)
3005 {
3006 	uint32_t ctrl_ext, swsm;
3007 
3008 	/* Let firmware know the driver has taken over */
3009 	switch (sc->hw.mac.type) {
3010 	case e1000_82573:
3011 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3012 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3013 		    swsm | E1000_SWSM_DRV_LOAD);
3014 		break;
3015 
3016 	case e1000_82571:
3017 	case e1000_82572:
3018 	case e1000_80003es2lan:
3019 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3020 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3021 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3022 		break;
3023 
3024 	default:
3025 		break;
3026 	}
3027 }
3028 
3029 /*
3030  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3031  * For ASF and Pass Through versions of f/w this means that the
3032  * driver is no longer loaded.  For AMT version (only with 82573)
3033  * of the f/w this means that the network i/f is closed.
3034  */
3035 static void
3036 emx_rel_hw_control(struct emx_softc *sc)
3037 {
3038 	uint32_t ctrl_ext, swsm;
3039 
3040 	/* Let firmware taken over control of h/w */
3041 	switch (sc->hw.mac.type) {
3042 	case e1000_82573:
3043 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3044 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3045 		    swsm & ~E1000_SWSM_DRV_LOAD);
3046 		break;
3047 
3048 	case e1000_82571:
3049 	case e1000_82572:
3050 	case e1000_80003es2lan:
3051 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3052 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3053 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3054 		break;
3055 
3056 	default:
3057 		break;
3058 	}
3059 }
3060 
3061 static int
3062 emx_is_valid_eaddr(const uint8_t *addr)
3063 {
3064 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3065 
3066 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3067 		return (FALSE);
3068 
3069 	return (TRUE);
3070 }
3071 
3072 /*
3073  * Enable PCI Wake On Lan capability
3074  */
3075 void
3076 emx_enable_wol(device_t dev)
3077 {
3078 	uint16_t cap, status;
3079 	uint8_t id;
3080 
3081 	/* First find the capabilities pointer*/
3082 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3083 
3084 	/* Read the PM Capabilities */
3085 	id = pci_read_config(dev, cap, 1);
3086 	if (id != PCIY_PMG)     /* Something wrong */
3087 		return;
3088 
3089 	/*
3090 	 * OK, we have the power capabilities,
3091 	 * so now get the status register
3092 	 */
3093 	cap += PCIR_POWER_STATUS;
3094 	status = pci_read_config(dev, cap, 2);
3095 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3096 	pci_write_config(dev, cap, status, 2);
3097 }
3098 
3099 static void
3100 emx_update_stats(struct emx_softc *sc)
3101 {
3102 	struct ifnet *ifp = &sc->arpcom.ac_if;
3103 
3104 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3105 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3106 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3107 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3108 	}
3109 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3110 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3111 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3112 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3113 
3114 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3115 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3116 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3117 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3118 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3119 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3120 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3121 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3122 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3123 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3124 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3125 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3126 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3127 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3128 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3129 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3130 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3131 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3132 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3133 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3134 
3135 	/* For the 64-bit byte counters the low dword must be read first. */
3136 	/* Both registers clear on the read of the high dword */
3137 
3138 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3139 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3140 
3141 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3142 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3143 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3144 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3145 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3146 
3147 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3148 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3149 
3150 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3151 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3152 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3153 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3154 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3155 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3156 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3157 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3158 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3159 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3160 
3161 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3162 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3163 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3164 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3165 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3166 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3167 
3168 	ifp->if_collisions = sc->stats.colc;
3169 
3170 	/* Rx Errors */
3171 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3172 			  sc->stats.crcerrs + sc->stats.algnerrc +
3173 			  sc->stats.ruc + sc->stats.roc +
3174 			  sc->stats.mpc + sc->stats.cexterr;
3175 
3176 	/* Tx Errors */
3177 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3178 			  sc->watchdog_events;
3179 }
3180 
3181 static void
3182 emx_print_debug_info(struct emx_softc *sc)
3183 {
3184 	device_t dev = sc->dev;
3185 	uint8_t *hw_addr = sc->hw.hw_addr;
3186 
3187 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3188 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3189 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3190 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3191 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3192 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3193 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3194 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3195 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3196 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3197 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3198 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3199 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3200 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3201 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3202 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3203 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3204 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3205 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3206 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3207 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3208 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3209 	    sc->num_tx_desc_avail);
3210 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3211 	    sc->no_tx_desc_avail1);
3212 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3213 	    sc->no_tx_desc_avail2);
3214 	device_printf(dev, "Std mbuf failed = %ld\n",
3215 	    sc->mbuf_alloc_failed);
3216 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3217 	    sc->rx_data[0].mbuf_cluster_failed);
3218 	device_printf(dev, "Driver dropped packets = %ld\n",
3219 	    sc->dropped_pkts);
3220 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3221 	    sc->no_tx_dma_setup);
3222 
3223 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3224 	    sc->tx_csum_try_pullup);
3225 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3226 	    sc->tx_csum_pullup1);
3227 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3228 	    sc->tx_csum_pullup1_failed);
3229 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3230 	    sc->tx_csum_pullup2);
3231 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3232 	    sc->tx_csum_pullup2_failed);
3233 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3234 	    sc->tx_csum_drop1);
3235 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3236 	    sc->tx_csum_drop2);
3237 }
3238 
3239 static void
3240 emx_print_hw_stats(struct emx_softc *sc)
3241 {
3242 	device_t dev = sc->dev;
3243 
3244 	device_printf(dev, "Excessive collisions = %lld\n",
3245 	    (long long)sc->stats.ecol);
3246 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3247 	device_printf(dev, "Symbol errors = %lld\n",
3248 	    (long long)sc->stats.symerrs);
3249 #endif
3250 	device_printf(dev, "Sequence errors = %lld\n",
3251 	    (long long)sc->stats.sec);
3252 	device_printf(dev, "Defer count = %lld\n",
3253 	    (long long)sc->stats.dc);
3254 	device_printf(dev, "Missed Packets = %lld\n",
3255 	    (long long)sc->stats.mpc);
3256 	device_printf(dev, "Receive No Buffers = %lld\n",
3257 	    (long long)sc->stats.rnbc);
3258 	/* RLEC is inaccurate on some hardware, calculate our own. */
3259 	device_printf(dev, "Receive Length Errors = %lld\n",
3260 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3261 	device_printf(dev, "Receive errors = %lld\n",
3262 	    (long long)sc->stats.rxerrc);
3263 	device_printf(dev, "Crc errors = %lld\n",
3264 	    (long long)sc->stats.crcerrs);
3265 	device_printf(dev, "Alignment errors = %lld\n",
3266 	    (long long)sc->stats.algnerrc);
3267 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3268 	    (long long)sc->stats.cexterr);
3269 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3270 	device_printf(dev, "watchdog timeouts = %ld\n",
3271 	    sc->watchdog_events);
3272 	device_printf(dev, "XON Rcvd = %lld\n",
3273 	    (long long)sc->stats.xonrxc);
3274 	device_printf(dev, "XON Xmtd = %lld\n",
3275 	    (long long)sc->stats.xontxc);
3276 	device_printf(dev, "XOFF Rcvd = %lld\n",
3277 	    (long long)sc->stats.xoffrxc);
3278 	device_printf(dev, "XOFF Xmtd = %lld\n",
3279 	    (long long)sc->stats.xofftxc);
3280 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3281 	    (long long)sc->stats.gprc);
3282 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3283 	    (long long)sc->stats.gptc);
3284 }
3285 
3286 static void
3287 emx_print_nvm_info(struct emx_softc *sc)
3288 {
3289 	uint16_t eeprom_data;
3290 	int i, j, row = 0;
3291 
3292 	/* Its a bit crude, but it gets the job done */
3293 	kprintf("\nInterface EEPROM Dump:\n");
3294 	kprintf("Offset\n0x0000  ");
3295 	for (i = 0, j = 0; i < 32; i++, j++) {
3296 		if (j == 8) { /* Make the offset block */
3297 			j = 0; ++row;
3298 			kprintf("\n0x00%x0  ",row);
3299 		}
3300 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3301 		kprintf("%04x ", eeprom_data);
3302 	}
3303 	kprintf("\n");
3304 }
3305 
3306 static int
3307 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3308 {
3309 	struct emx_softc *sc;
3310 	struct ifnet *ifp;
3311 	int error, result;
3312 
3313 	result = -1;
3314 	error = sysctl_handle_int(oidp, &result, 0, req);
3315 	if (error || !req->newptr)
3316 		return (error);
3317 
3318 	sc = (struct emx_softc *)arg1;
3319 	ifp = &sc->arpcom.ac_if;
3320 
3321 	ifnet_serialize_all(ifp);
3322 
3323 	if (result == 1)
3324 		emx_print_debug_info(sc);
3325 
3326 	/*
3327 	 * This value will cause a hex dump of the
3328 	 * first 32 16-bit words of the EEPROM to
3329 	 * the screen.
3330 	 */
3331 	if (result == 2)
3332 		emx_print_nvm_info(sc);
3333 
3334 	ifnet_deserialize_all(ifp);
3335 
3336 	return (error);
3337 }
3338 
3339 static int
3340 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3341 {
3342 	int error, result;
3343 
3344 	result = -1;
3345 	error = sysctl_handle_int(oidp, &result, 0, req);
3346 	if (error || !req->newptr)
3347 		return (error);
3348 
3349 	if (result == 1) {
3350 		struct emx_softc *sc = (struct emx_softc *)arg1;
3351 		struct ifnet *ifp = &sc->arpcom.ac_if;
3352 
3353 		ifnet_serialize_all(ifp);
3354 		emx_print_hw_stats(sc);
3355 		ifnet_deserialize_all(ifp);
3356 	}
3357 	return (error);
3358 }
3359 
3360 static void
3361 emx_add_sysctl(struct emx_softc *sc)
3362 {
3363 #ifdef EMX_RSS_DEBUG
3364 	char rx_pkt[32];
3365 	int i;
3366 #endif
3367 
3368 	sysctl_ctx_init(&sc->sysctl_ctx);
3369 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3370 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3371 				device_get_nameunit(sc->dev),
3372 				CTLFLAG_RD, 0, "");
3373 	if (sc->sysctl_tree == NULL) {
3374 		device_printf(sc->dev, "can't add sysctl node\n");
3375 		return;
3376 	}
3377 
3378 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3379 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3380 			emx_sysctl_debug_info, "I", "Debug Information");
3381 
3382 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3383 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3384 			emx_sysctl_stats, "I", "Statistics");
3385 
3386 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3387 		       OID_AUTO, "rxd", CTLFLAG_RD,
3388 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3389 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3390 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3391 
3392 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3393 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3394 			sc, 0, emx_sysctl_int_throttle, "I",
3395 			"interrupt throttling rate");
3396 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3397 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3398 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3399 			"# segments per TX interrupt");
3400 
3401 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3402 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3403 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3404 
3405 #ifdef EMX_RSS_DEBUG
3406 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3407 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3408 		       0, "RSS debug level");
3409 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3410 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3411 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3412 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3413 				rx_pkt, CTLFLAG_RW,
3414 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3415 	}
3416 #endif
3417 }
3418 
3419 static int
3420 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3421 {
3422 	struct emx_softc *sc = (void *)arg1;
3423 	struct ifnet *ifp = &sc->arpcom.ac_if;
3424 	int error, throttle;
3425 
3426 	throttle = sc->int_throttle_ceil;
3427 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3428 	if (error || req->newptr == NULL)
3429 		return error;
3430 	if (throttle < 0 || throttle > 1000000000 / 256)
3431 		return EINVAL;
3432 
3433 	if (throttle) {
3434 		/*
3435 		 * Set the interrupt throttling rate in 256ns increments,
3436 		 * recalculate sysctl value assignment to get exact frequency.
3437 		 */
3438 		throttle = 1000000000 / 256 / throttle;
3439 
3440 		/* Upper 16bits of ITR is reserved and should be zero */
3441 		if (throttle & 0xffff0000)
3442 			return EINVAL;
3443 	}
3444 
3445 	ifnet_serialize_all(ifp);
3446 
3447 	if (throttle)
3448 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3449 	else
3450 		sc->int_throttle_ceil = 0;
3451 
3452 	if (ifp->if_flags & IFF_RUNNING)
3453 		E1000_WRITE_REG(&sc->hw, E1000_ITR, throttle);
3454 
3455 	ifnet_deserialize_all(ifp);
3456 
3457 	if (bootverbose) {
3458 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3459 			  sc->int_throttle_ceil);
3460 	}
3461 	return 0;
3462 }
3463 
3464 static int
3465 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3466 {
3467 	struct emx_softc *sc = (void *)arg1;
3468 	struct ifnet *ifp = &sc->arpcom.ac_if;
3469 	int error, segs;
3470 
3471 	segs = sc->tx_int_nsegs;
3472 	error = sysctl_handle_int(oidp, &segs, 0, req);
3473 	if (error || req->newptr == NULL)
3474 		return error;
3475 	if (segs <= 0)
3476 		return EINVAL;
3477 
3478 	ifnet_serialize_all(ifp);
3479 
3480 	/*
3481 	 * Don't allow int_tx_nsegs to become:
3482 	 * o  Less the oact_tx_desc
3483 	 * o  Too large that no TX desc will cause TX interrupt to
3484 	 *    be generated (OACTIVE will never recover)
3485 	 * o  Too small that will cause tx_dd[] overflow
3486 	 */
3487 	if (segs < sc->oact_tx_desc ||
3488 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3489 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3490 		error = EINVAL;
3491 	} else {
3492 		error = 0;
3493 		sc->tx_int_nsegs = segs;
3494 	}
3495 
3496 	ifnet_deserialize_all(ifp);
3497 
3498 	return error;
3499 }
3500 
3501 static int
3502 emx_dma_alloc(struct emx_softc *sc)
3503 {
3504 	int error, i;
3505 
3506 	/*
3507 	 * Create top level busdma tag
3508 	 */
3509 	error = bus_dma_tag_create(NULL, 1, 0,
3510 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3511 			NULL, NULL,
3512 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3513 			0, &sc->parent_dtag);
3514 	if (error) {
3515 		device_printf(sc->dev, "could not create top level DMA tag\n");
3516 		return error;
3517 	}
3518 
3519 	/*
3520 	 * Allocate transmit descriptors ring and buffers
3521 	 */
3522 	error = emx_create_tx_ring(sc);
3523 	if (error) {
3524 		device_printf(sc->dev, "Could not setup transmit structures\n");
3525 		return error;
3526 	}
3527 
3528 	/*
3529 	 * Allocate receive descriptors ring and buffers
3530 	 */
3531 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3532 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3533 		if (error) {
3534 			device_printf(sc->dev,
3535 			    "Could not setup receive structures\n");
3536 			return error;
3537 		}
3538 	}
3539 	return 0;
3540 }
3541 
3542 static void
3543 emx_dma_free(struct emx_softc *sc)
3544 {
3545 	int i;
3546 
3547 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3548 
3549 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3550 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3551 				    sc->rx_data[i].num_rx_desc);
3552 	}
3553 
3554 	/* Free top level busdma tag */
3555 	if (sc->parent_dtag != NULL)
3556 		bus_dma_tag_destroy(sc->parent_dtag);
3557 }
3558 
3559 static void
3560 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3561 {
3562 	struct emx_softc *sc = ifp->if_softc;
3563 
3564 	switch (slz) {
3565 	case IFNET_SERIALIZE_ALL:
3566 		lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 0);
3567 		break;
3568 
3569 	case IFNET_SERIALIZE_MAIN:
3570 		lwkt_serialize_enter(&sc->main_serialize);
3571 		break;
3572 
3573 	case IFNET_SERIALIZE_TX:
3574 		lwkt_serialize_enter(&sc->tx_serialize);
3575 		break;
3576 
3577 	case IFNET_SERIALIZE_RX(0):
3578 		lwkt_serialize_enter(&sc->rx_data[0].rx_serialize);
3579 		break;
3580 
3581 	case IFNET_SERIALIZE_RX(1):
3582 		lwkt_serialize_enter(&sc->rx_data[1].rx_serialize);
3583 		break;
3584 
3585 	default:
3586 		panic("%s unsupported serialize type\n", ifp->if_xname);
3587 	}
3588 }
3589 
3590 static void
3591 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3592 {
3593 	struct emx_softc *sc = ifp->if_softc;
3594 
3595 	switch (slz) {
3596 	case IFNET_SERIALIZE_ALL:
3597 		lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 0);
3598 		break;
3599 
3600 	case IFNET_SERIALIZE_MAIN:
3601 		lwkt_serialize_exit(&sc->main_serialize);
3602 		break;
3603 
3604 	case IFNET_SERIALIZE_TX:
3605 		lwkt_serialize_exit(&sc->tx_serialize);
3606 		break;
3607 
3608 	case IFNET_SERIALIZE_RX(0):
3609 		lwkt_serialize_exit(&sc->rx_data[0].rx_serialize);
3610 		break;
3611 
3612 	case IFNET_SERIALIZE_RX(1):
3613 		lwkt_serialize_exit(&sc->rx_data[1].rx_serialize);
3614 		break;
3615 
3616 	default:
3617 		panic("%s unsupported serialize type\n", ifp->if_xname);
3618 	}
3619 }
3620 
3621 static int
3622 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3623 {
3624 	struct emx_softc *sc = ifp->if_softc;
3625 
3626 	switch (slz) {
3627 	case IFNET_SERIALIZE_ALL:
3628 		return lwkt_serialize_array_try(sc->serializes,
3629 						EMX_NSERIALIZE, 0);
3630 
3631 	case IFNET_SERIALIZE_MAIN:
3632 		return lwkt_serialize_try(&sc->main_serialize);
3633 
3634 	case IFNET_SERIALIZE_TX:
3635 		return lwkt_serialize_try(&sc->tx_serialize);
3636 
3637 	case IFNET_SERIALIZE_RX(0):
3638 		return lwkt_serialize_try(&sc->rx_data[0].rx_serialize);
3639 
3640 	case IFNET_SERIALIZE_RX(1):
3641 		return lwkt_serialize_try(&sc->rx_data[1].rx_serialize);
3642 
3643 	default:
3644 		panic("%s unsupported serialize type\n", ifp->if_xname);
3645 	}
3646 }
3647 
3648 static void
3649 emx_serialize_skipmain(struct emx_softc *sc)
3650 {
3651 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3652 }
3653 
3654 static void
3655 emx_deserialize_skipmain(struct emx_softc *sc)
3656 {
3657 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3658 }
3659 
3660 #ifdef INVARIANTS
3661 
3662 static void
3663 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3664 		     boolean_t serialized)
3665 {
3666 	struct emx_softc *sc = ifp->if_softc;
3667 	int i;
3668 
3669 	switch (slz) {
3670 	case IFNET_SERIALIZE_ALL:
3671 		if (serialized) {
3672 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3673 				ASSERT_SERIALIZED(sc->serializes[i]);
3674 		} else {
3675 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3676 				ASSERT_NOT_SERIALIZED(sc->serializes[i]);
3677 		}
3678 		break;
3679 
3680 	case IFNET_SERIALIZE_MAIN:
3681 		if (serialized)
3682 			ASSERT_SERIALIZED(&sc->main_serialize);
3683 		else
3684 			ASSERT_NOT_SERIALIZED(&sc->main_serialize);
3685 		break;
3686 
3687 	case IFNET_SERIALIZE_TX:
3688 		if (serialized)
3689 			ASSERT_SERIALIZED(&sc->tx_serialize);
3690 		else
3691 			ASSERT_NOT_SERIALIZED(&sc->tx_serialize);
3692 		break;
3693 
3694 	case IFNET_SERIALIZE_RX(0):
3695 		if (serialized)
3696 			ASSERT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3697 		else
3698 			ASSERT_NOT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3699 		break;
3700 
3701 	case IFNET_SERIALIZE_RX(1):
3702 		if (serialized)
3703 			ASSERT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3704 		else
3705 			ASSERT_NOT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3706 		break;
3707 
3708 	default:
3709 		panic("%s unsupported serialize type\n", ifp->if_xname);
3710 	}
3711 }
3712 
3713 #endif	/* INVARIANTS */
3714 
3715 #ifdef IFPOLL_ENABLE
3716 
3717 static void
3718 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3719 {
3720 	struct emx_softc *sc = ifp->if_softc;
3721 	uint32_t reg_icr;
3722 
3723 	ASSERT_SERIALIZED(&sc->main_serialize);
3724 
3725 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3726 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3727 		emx_serialize_skipmain(sc);
3728 
3729 		callout_stop(&sc->timer);
3730 		sc->hw.mac.get_link_status = 1;
3731 		emx_update_link_status(sc);
3732 		callout_reset(&sc->timer, hz, emx_timer, sc);
3733 
3734 		emx_deserialize_skipmain(sc);
3735 	}
3736 }
3737 
3738 static void
3739 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3740 {
3741 	struct emx_softc *sc = ifp->if_softc;
3742 
3743 	ASSERT_SERIALIZED(&sc->tx_serialize);
3744 
3745 	emx_txeof(sc);
3746 	if (!ifq_is_empty(&ifp->if_snd))
3747 		if_devstart(ifp);
3748 }
3749 
3750 static void
3751 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3752 {
3753 	struct emx_softc *sc = ifp->if_softc;
3754 	struct emx_rxdata *rdata = arg;
3755 
3756 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3757 
3758 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3759 }
3760 
3761 static void
3762 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3763 {
3764 	struct emx_softc *sc = ifp->if_softc;
3765 
3766 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3767 
3768 	if (info) {
3769 		int i;
3770 
3771 		info->ifpi_status.status_func = emx_qpoll_status;
3772 		info->ifpi_status.serializer = &sc->main_serialize;
3773 
3774 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3775 		info->ifpi_tx[0].arg = NULL;
3776 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3777 
3778 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3779 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3780 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3781 			info->ifpi_rx[i].serializer =
3782 				&sc->rx_data[i].rx_serialize;
3783 		}
3784 
3785 		if (ifp->if_flags & IFF_RUNNING)
3786 			emx_disable_intr(sc);
3787 	} else if (ifp->if_flags & IFF_RUNNING) {
3788 		emx_enable_intr(sc);
3789 	}
3790 }
3791 
3792 #endif	/* IFPOLL_ENABLE */
3793