xref: /dragonfly/sys/dev/netif/emx/if_emx.c (revision fb151170)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include "opt_ifpoll.h"
68 #include "opt_rss.h"
69 #include "opt_emx.h"
70 
71 #include <sys/param.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/interrupt.h>
75 #include <sys/kernel.h>
76 #include <sys/ktr.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/proc.h>
80 #include <sys/rman.h>
81 #include <sys/serialize.h>
82 #include <sys/serialize2.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86 #include <sys/systm.h>
87 
88 #include <net/bpf.h>
89 #include <net/ethernet.h>
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/ifq_var.h>
95 #include <net/toeplitz.h>
96 #include <net/toeplitz2.h>
97 #include <net/vlan/if_vlan_var.h>
98 #include <net/vlan/if_vlan_ether.h>
99 #include <net/if_poll.h>
100 
101 #include <netinet/in_systm.h>
102 #include <netinet/in.h>
103 #include <netinet/ip.h>
104 #include <netinet/tcp.h>
105 #include <netinet/udp.h>
106 
107 #include <bus/pci/pcivar.h>
108 #include <bus/pci/pcireg.h>
109 
110 #include <dev/netif/ig_hal/e1000_api.h>
111 #include <dev/netif/ig_hal/e1000_82571.h>
112 #include <dev/netif/emx/if_emx.h>
113 
114 #ifdef EMX_RSS_DEBUG
115 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
116 do { \
117 	if (sc->rss_debug >= lvl) \
118 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
119 } while (0)
120 #else	/* !EMX_RSS_DEBUG */
121 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
122 #endif	/* EMX_RSS_DEBUG */
123 
124 #define EMX_NAME	"Intel(R) PRO/1000 "
125 
126 #define EMX_DEVICE(id)	\
127 	{ EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
128 #define EMX_DEVICE_NULL	{ 0, 0, NULL }
129 
130 static const struct emx_device {
131 	uint16_t	vid;
132 	uint16_t	did;
133 	const char	*desc;
134 } emx_devices[] = {
135 	EMX_DEVICE(82571EB_COPPER),
136 	EMX_DEVICE(82571EB_FIBER),
137 	EMX_DEVICE(82571EB_SERDES),
138 	EMX_DEVICE(82571EB_SERDES_DUAL),
139 	EMX_DEVICE(82571EB_SERDES_QUAD),
140 	EMX_DEVICE(82571EB_QUAD_COPPER),
141 	EMX_DEVICE(82571EB_QUAD_COPPER_BP),
142 	EMX_DEVICE(82571EB_QUAD_COPPER_LP),
143 	EMX_DEVICE(82571EB_QUAD_FIBER),
144 	EMX_DEVICE(82571PT_QUAD_COPPER),
145 
146 	EMX_DEVICE(82572EI_COPPER),
147 	EMX_DEVICE(82572EI_FIBER),
148 	EMX_DEVICE(82572EI_SERDES),
149 	EMX_DEVICE(82572EI),
150 
151 	EMX_DEVICE(82573E),
152 	EMX_DEVICE(82573E_IAMT),
153 	EMX_DEVICE(82573L),
154 
155 	EMX_DEVICE(80003ES2LAN_COPPER_SPT),
156 	EMX_DEVICE(80003ES2LAN_SERDES_SPT),
157 	EMX_DEVICE(80003ES2LAN_COPPER_DPT),
158 	EMX_DEVICE(80003ES2LAN_SERDES_DPT),
159 
160 	EMX_DEVICE(82574L),
161 	EMX_DEVICE(82574LA),
162 
163 	/* required last entry */
164 	EMX_DEVICE_NULL
165 };
166 
167 static int	emx_probe(device_t);
168 static int	emx_attach(device_t);
169 static int	emx_detach(device_t);
170 static int	emx_shutdown(device_t);
171 static int	emx_suspend(device_t);
172 static int	emx_resume(device_t);
173 
174 static void	emx_init(void *);
175 static void	emx_stop(struct emx_softc *);
176 static int	emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
177 static void	emx_start(struct ifnet *);
178 #ifdef IFPOLL_ENABLE
179 static void	emx_qpoll(struct ifnet *, struct ifpoll_info *);
180 #endif
181 static void	emx_watchdog(struct ifnet *);
182 static void	emx_media_status(struct ifnet *, struct ifmediareq *);
183 static int	emx_media_change(struct ifnet *);
184 static void	emx_timer(void *);
185 static void	emx_serialize(struct ifnet *, enum ifnet_serialize);
186 static void	emx_deserialize(struct ifnet *, enum ifnet_serialize);
187 static int	emx_tryserialize(struct ifnet *, enum ifnet_serialize);
188 #ifdef INVARIANTS
189 static void	emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
190 		    boolean_t);
191 #endif
192 
193 static void	emx_intr(void *);
194 static void	emx_rxeof(struct emx_softc *, int, int);
195 static void	emx_txeof(struct emx_softc *);
196 static void	emx_tx_collect(struct emx_softc *);
197 static void	emx_tx_purge(struct emx_softc *);
198 static void	emx_enable_intr(struct emx_softc *);
199 static void	emx_disable_intr(struct emx_softc *);
200 
201 static int	emx_dma_alloc(struct emx_softc *);
202 static void	emx_dma_free(struct emx_softc *);
203 static void	emx_init_tx_ring(struct emx_softc *);
204 static int	emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
205 static void	emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
206 static int	emx_create_tx_ring(struct emx_softc *);
207 static int	emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
208 static void	emx_destroy_tx_ring(struct emx_softc *, int);
209 static void	emx_destroy_rx_ring(struct emx_softc *,
210 		    struct emx_rxdata *, int);
211 static int	emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
212 static int	emx_encap(struct emx_softc *, struct mbuf **);
213 static int	emx_txcsum_pullup(struct emx_softc *, struct mbuf **);
214 static int	emx_txcsum(struct emx_softc *, struct mbuf *,
215 		    uint32_t *, uint32_t *);
216 
217 static int 	emx_is_valid_eaddr(const uint8_t *);
218 static int	emx_reset(struct emx_softc *);
219 static void	emx_setup_ifp(struct emx_softc *);
220 static void	emx_init_tx_unit(struct emx_softc *);
221 static void	emx_init_rx_unit(struct emx_softc *);
222 static void	emx_update_stats(struct emx_softc *);
223 static void	emx_set_promisc(struct emx_softc *);
224 static void	emx_disable_promisc(struct emx_softc *);
225 static void	emx_set_multi(struct emx_softc *);
226 static void	emx_update_link_status(struct emx_softc *);
227 static void	emx_smartspeed(struct emx_softc *);
228 static void	emx_set_itr(struct emx_softc *, uint32_t);
229 
230 static void	emx_print_debug_info(struct emx_softc *);
231 static void	emx_print_nvm_info(struct emx_softc *);
232 static void	emx_print_hw_stats(struct emx_softc *);
233 
234 static int	emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
235 static int	emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
236 static int	emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
237 static int	emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
238 static void	emx_add_sysctl(struct emx_softc *);
239 
240 static void	emx_serialize_skipmain(struct emx_softc *);
241 static void	emx_deserialize_skipmain(struct emx_softc *);
242 
243 /* Management and WOL Support */
244 static void	emx_get_mgmt(struct emx_softc *);
245 static void	emx_rel_mgmt(struct emx_softc *);
246 static void	emx_get_hw_control(struct emx_softc *);
247 static void	emx_rel_hw_control(struct emx_softc *);
248 static void	emx_enable_wol(device_t);
249 
250 static device_method_t emx_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		emx_probe),
253 	DEVMETHOD(device_attach,	emx_attach),
254 	DEVMETHOD(device_detach,	emx_detach),
255 	DEVMETHOD(device_shutdown,	emx_shutdown),
256 	DEVMETHOD(device_suspend,	emx_suspend),
257 	DEVMETHOD(device_resume,	emx_resume),
258 	{ 0, 0 }
259 };
260 
261 static driver_t emx_driver = {
262 	"emx",
263 	emx_methods,
264 	sizeof(struct emx_softc),
265 };
266 
267 static devclass_t emx_devclass;
268 
269 DECLARE_DUMMY_MODULE(if_emx);
270 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
271 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
272 
273 /*
274  * Tunables
275  */
276 static int	emx_int_throttle_ceil = EMX_DEFAULT_ITR;
277 static int	emx_rxd = EMX_DEFAULT_RXD;
278 static int	emx_txd = EMX_DEFAULT_TXD;
279 static int	emx_smart_pwr_down = 0;
280 
281 /* Controls whether promiscuous also shows bad packets */
282 static int	emx_debug_sbp = FALSE;
283 
284 static int	emx_82573_workaround = 1;
285 static int	emx_msi_enable = 1;
286 
287 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
288 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
289 TUNABLE_INT("hw.emx.txd", &emx_txd);
290 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
291 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
292 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
293 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
294 
295 /* Global used in WOL setup with multiport cards */
296 static int	emx_global_quad_port_a = 0;
297 
298 /* Set this to one to display debug statistics */
299 static int	emx_display_debug_stats = 0;
300 
301 #if !defined(KTR_IF_EMX)
302 #define KTR_IF_EMX	KTR_ALL
303 #endif
304 KTR_INFO_MASTER(if_emx);
305 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
306 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
307 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
308 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
309 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
310 #define logif(name)	KTR_LOG(if_emx_ ## name)
311 
312 static __inline void
313 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
314 {
315 	rxd->rxd_bufaddr = htole64(rxbuf->paddr);
316 	/* DD bit must be cleared */
317 	rxd->rxd_staterr = 0;
318 }
319 
320 static __inline void
321 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
322 {
323 	/* Ignore Checksum bit is set */
324 	if (staterr & E1000_RXD_STAT_IXSM)
325 		return;
326 
327 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
328 	    E1000_RXD_STAT_IPCS)
329 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
330 
331 	if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
332 	    E1000_RXD_STAT_TCPCS) {
333 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
334 					   CSUM_PSEUDO_HDR |
335 					   CSUM_FRAG_NOT_CHECKED;
336 		mp->m_pkthdr.csum_data = htons(0xffff);
337 	}
338 }
339 
340 static __inline struct pktinfo *
341 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
342 	    uint32_t mrq, uint32_t hash, uint32_t staterr)
343 {
344 	switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
345 	case EMX_RXDMRQ_IPV4_TCP:
346 		pi->pi_netisr = NETISR_IP;
347 		pi->pi_flags = 0;
348 		pi->pi_l3proto = IPPROTO_TCP;
349 		break;
350 
351 	case EMX_RXDMRQ_IPV6_TCP:
352 		pi->pi_netisr = NETISR_IPV6;
353 		pi->pi_flags = 0;
354 		pi->pi_l3proto = IPPROTO_TCP;
355 		break;
356 
357 	case EMX_RXDMRQ_IPV4:
358 		if (staterr & E1000_RXD_STAT_IXSM)
359 			return NULL;
360 
361 		if ((staterr &
362 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
363 		    E1000_RXD_STAT_TCPCS) {
364 			pi->pi_netisr = NETISR_IP;
365 			pi->pi_flags = 0;
366 			pi->pi_l3proto = IPPROTO_UDP;
367 			break;
368 		}
369 		/* FALL THROUGH */
370 	default:
371 		return NULL;
372 	}
373 
374 	m->m_flags |= M_HASH;
375 	m->m_pkthdr.hash = toeplitz_hash(hash);
376 	return pi;
377 }
378 
379 static int
380 emx_probe(device_t dev)
381 {
382 	const struct emx_device *d;
383 	uint16_t vid, did;
384 
385 	vid = pci_get_vendor(dev);
386 	did = pci_get_device(dev);
387 
388 	for (d = emx_devices; d->desc != NULL; ++d) {
389 		if (vid == d->vid && did == d->did) {
390 			device_set_desc(dev, d->desc);
391 			device_set_async_attach(dev, TRUE);
392 			return 0;
393 		}
394 	}
395 	return ENXIO;
396 }
397 
398 static int
399 emx_attach(device_t dev)
400 {
401 	struct emx_softc *sc = device_get_softc(dev);
402 	struct ifnet *ifp = &sc->arpcom.ac_if;
403 	int error = 0, i;
404 	u_int intr_flags;
405 	uint16_t eeprom_data, device_id, apme_mask;
406 
407 	lwkt_serialize_init(&sc->main_serialize);
408 	lwkt_serialize_init(&sc->tx_serialize);
409 	for (i = 0; i < EMX_NRX_RING; ++i)
410 		lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
411 
412 	i = 0;
413 	sc->serializes[i++] = &sc->main_serialize;
414 	sc->serializes[i++] = &sc->tx_serialize;
415 	sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
416 	sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
417 	KKASSERT(i == EMX_NSERIALIZE);
418 
419 	callout_init_mp(&sc->timer);
420 
421 	sc->dev = sc->osdep.dev = dev;
422 
423 	/*
424 	 * Determine hardware and mac type
425 	 */
426 	sc->hw.vendor_id = pci_get_vendor(dev);
427 	sc->hw.device_id = pci_get_device(dev);
428 	sc->hw.revision_id = pci_get_revid(dev);
429 	sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
430 	sc->hw.subsystem_device_id = pci_get_subdevice(dev);
431 
432 	if (e1000_set_mac_type(&sc->hw))
433 		return ENXIO;
434 
435 	/* Enable bus mastering */
436 	pci_enable_busmaster(dev);
437 
438 	/*
439 	 * Allocate IO memory
440 	 */
441 	sc->memory_rid = EMX_BAR_MEM;
442 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
443 					    &sc->memory_rid, RF_ACTIVE);
444 	if (sc->memory == NULL) {
445 		device_printf(dev, "Unable to allocate bus resource: memory\n");
446 		error = ENXIO;
447 		goto fail;
448 	}
449 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
450 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
451 
452 	/* XXX This is quite goofy, it is not actually used */
453 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
454 
455 	/*
456 	 * Allocate interrupt
457 	 */
458 	sc->intr_type = pci_alloc_1intr(dev, emx_msi_enable,
459 	    &sc->intr_rid, &intr_flags);
460 
461 	sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
462 	    intr_flags);
463 	if (sc->intr_res == NULL) {
464 		device_printf(dev, "Unable to allocate bus resource: "
465 		    "interrupt\n");
466 		error = ENXIO;
467 		goto fail;
468 	}
469 
470 	/* Save PCI command register for Shared Code */
471 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
472 	sc->hw.back = &sc->osdep;
473 
474 	/* Do Shared Code initialization */
475 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
476 		device_printf(dev, "Setup of Shared code failed\n");
477 		error = ENXIO;
478 		goto fail;
479 	}
480 	e1000_get_bus_info(&sc->hw);
481 
482 	sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
483 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
484 	sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
485 
486 	/*
487 	 * Interrupt throttle rate
488 	 */
489 	if (emx_int_throttle_ceil == 0) {
490 		sc->int_throttle_ceil = 0;
491 	} else {
492 		int throttle = emx_int_throttle_ceil;
493 
494 		if (throttle < 0)
495 			throttle = EMX_DEFAULT_ITR;
496 
497 		/* Recalculate the tunable value to get the exact frequency. */
498 		throttle = 1000000000 / 256 / throttle;
499 
500 		/* Upper 16bits of ITR is reserved and should be zero */
501 		if (throttle & 0xffff0000)
502 			throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
503 
504 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
505 	}
506 
507 	e1000_init_script_state_82541(&sc->hw, TRUE);
508 	e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
509 
510 	/* Copper options */
511 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
512 		sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
513 		sc->hw.phy.disable_polarity_correction = FALSE;
514 		sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
515 	}
516 
517 	/* Set the frame limits assuming standard ethernet sized frames. */
518 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
519 	sc->min_frame_size = ETHER_MIN_LEN;
520 
521 	/* This controls when hardware reports transmit completion status. */
522 	sc->hw.mac.report_tx_early = 1;
523 
524 	/* Calculate # of RX rings */
525 	if (ncpus > 1)
526 		sc->rx_ring_cnt = EMX_NRX_RING;
527 	else
528 		sc->rx_ring_cnt = 1;
529 	sc->rx_ring_inuse = sc->rx_ring_cnt;
530 
531 	/* Allocate RX/TX rings' busdma(9) stuffs */
532 	error = emx_dma_alloc(sc);
533 	if (error)
534 		goto fail;
535 
536 	/* Allocate multicast array memory. */
537 	sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
538 	    M_DEVBUF, M_WAITOK);
539 
540 	/* Indicate SOL/IDER usage */
541 	if (e1000_check_reset_block(&sc->hw)) {
542 		device_printf(dev,
543 		    "PHY reset is blocked due to SOL/IDER session.\n");
544 	}
545 
546 	/*
547 	 * Start from a known state, this is important in reading the
548 	 * nvm and mac from that.
549 	 */
550 	e1000_reset_hw(&sc->hw);
551 
552 	/* Make sure we have a good EEPROM before we read from it */
553 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
554 		/*
555 		 * Some PCI-E parts fail the first check due to
556 		 * the link being in sleep state, call it again,
557 		 * if it fails a second time its a real issue.
558 		 */
559 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
560 			device_printf(dev,
561 			    "The EEPROM Checksum Is Not Valid\n");
562 			error = EIO;
563 			goto fail;
564 		}
565 	}
566 
567 	/* Copy the permanent MAC address out of the EEPROM */
568 	if (e1000_read_mac_addr(&sc->hw) < 0) {
569 		device_printf(dev, "EEPROM read error while reading MAC"
570 		    " address\n");
571 		error = EIO;
572 		goto fail;
573 	}
574 	if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
575 		device_printf(dev, "Invalid MAC address\n");
576 		error = EIO;
577 		goto fail;
578 	}
579 
580 	/* Determine if we have to control management hardware */
581 	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
582 
583 	/*
584 	 * Setup Wake-on-Lan
585 	 */
586 	apme_mask = EMX_EEPROM_APME;
587 	eeprom_data = 0;
588 	switch (sc->hw.mac.type) {
589 	case e1000_82573:
590 		sc->has_amt = 1;
591 		/* FALL THROUGH */
592 
593 	case e1000_82571:
594 	case e1000_82572:
595 	case e1000_80003es2lan:
596 		if (sc->hw.bus.func == 1) {
597 			e1000_read_nvm(&sc->hw,
598 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
599 		} else {
600 			e1000_read_nvm(&sc->hw,
601 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
602 		}
603 		break;
604 
605 	default:
606 		e1000_read_nvm(&sc->hw,
607 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
608 		break;
609 	}
610 	if (eeprom_data & apme_mask)
611 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
612 
613 	/*
614          * We have the eeprom settings, now apply the special cases
615          * where the eeprom may be wrong or the board won't support
616          * wake on lan on a particular port
617 	 */
618 	device_id = pci_get_device(dev);
619         switch (device_id) {
620 	case E1000_DEV_ID_82571EB_FIBER:
621 		/*
622 		 * Wake events only supported on port A for dual fiber
623 		 * regardless of eeprom setting
624 		 */
625 		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
626 		    E1000_STATUS_FUNC_1)
627 			sc->wol = 0;
628 		break;
629 
630 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
631 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
632 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
633                 /* if quad port sc, disable WoL on all but port A */
634 		if (emx_global_quad_port_a != 0)
635 			sc->wol = 0;
636 		/* Reset for multiple quad port adapters */
637 		if (++emx_global_quad_port_a == 4)
638 			emx_global_quad_port_a = 0;
639                 break;
640 	}
641 
642 	/* XXX disable wol */
643 	sc->wol = 0;
644 
645 	/* Setup OS specific network interface */
646 	emx_setup_ifp(sc);
647 
648 	/* Add sysctl tree, must after em_setup_ifp() */
649 	emx_add_sysctl(sc);
650 
651 	/* Reset the hardware */
652 	error = emx_reset(sc);
653 	if (error) {
654 		device_printf(dev, "Unable to reset the hardware\n");
655 		goto fail;
656 	}
657 
658 	/* Initialize statistics */
659 	emx_update_stats(sc);
660 
661 	sc->hw.mac.get_link_status = 1;
662 	emx_update_link_status(sc);
663 
664 	sc->spare_tx_desc = EMX_TX_SPARE;
665 
666 	/*
667 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
668 	 * and tx_int_nsegs:
669 	 * (spare_tx_desc + EMX_TX_RESERVED) <=
670 	 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
671 	 */
672 	sc->oact_tx_desc = sc->num_tx_desc / 8;
673 	if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
674 		sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
675 	if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
676 		sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
677 
678 	sc->tx_int_nsegs = sc->num_tx_desc / 16;
679 	if (sc->tx_int_nsegs < sc->oact_tx_desc)
680 		sc->tx_int_nsegs = sc->oact_tx_desc;
681 
682 	/* Non-AMT based hardware can now take control from firmware */
683 	if (sc->has_manage && !sc->has_amt)
684 		emx_get_hw_control(sc);
685 
686 	error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, emx_intr, sc,
687 			       &sc->intr_tag, &sc->main_serialize);
688 	if (error) {
689 		device_printf(dev, "Failed to register interrupt handler");
690 		ether_ifdetach(&sc->arpcom.ac_if);
691 		goto fail;
692 	}
693 
694 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
695 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
696 	return (0);
697 fail:
698 	emx_detach(dev);
699 	return (error);
700 }
701 
702 static int
703 emx_detach(device_t dev)
704 {
705 	struct emx_softc *sc = device_get_softc(dev);
706 
707 	if (device_is_attached(dev)) {
708 		struct ifnet *ifp = &sc->arpcom.ac_if;
709 
710 		ifnet_serialize_all(ifp);
711 
712 		emx_stop(sc);
713 
714 		e1000_phy_hw_reset(&sc->hw);
715 
716 		emx_rel_mgmt(sc);
717 		emx_rel_hw_control(sc);
718 
719 		if (sc->wol) {
720 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
721 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
722 			emx_enable_wol(dev);
723 		}
724 
725 		bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
726 
727 		ifnet_deserialize_all(ifp);
728 
729 		ether_ifdetach(ifp);
730 	} else {
731 		emx_rel_hw_control(sc);
732 	}
733 	bus_generic_detach(dev);
734 
735 	if (sc->intr_res != NULL) {
736 		bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
737 				     sc->intr_res);
738 	}
739 
740 	if (sc->intr_type == PCI_INTR_TYPE_MSI)
741 		pci_release_msi(dev);
742 
743 	if (sc->memory != NULL) {
744 		bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
745 				     sc->memory);
746 	}
747 
748 	emx_dma_free(sc);
749 
750 	/* Free sysctl tree */
751 	if (sc->sysctl_tree != NULL)
752 		sysctl_ctx_free(&sc->sysctl_ctx);
753 
754 	return (0);
755 }
756 
757 static int
758 emx_shutdown(device_t dev)
759 {
760 	return emx_suspend(dev);
761 }
762 
763 static int
764 emx_suspend(device_t dev)
765 {
766 	struct emx_softc *sc = device_get_softc(dev);
767 	struct ifnet *ifp = &sc->arpcom.ac_if;
768 
769 	ifnet_serialize_all(ifp);
770 
771 	emx_stop(sc);
772 
773 	emx_rel_mgmt(sc);
774 	emx_rel_hw_control(sc);
775 
776 	if (sc->wol) {
777 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
778 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
779 		emx_enable_wol(dev);
780 	}
781 
782 	ifnet_deserialize_all(ifp);
783 
784 	return bus_generic_suspend(dev);
785 }
786 
787 static int
788 emx_resume(device_t dev)
789 {
790 	struct emx_softc *sc = device_get_softc(dev);
791 	struct ifnet *ifp = &sc->arpcom.ac_if;
792 
793 	ifnet_serialize_all(ifp);
794 
795 	emx_init(sc);
796 	emx_get_mgmt(sc);
797 	if_devstart(ifp);
798 
799 	ifnet_deserialize_all(ifp);
800 
801 	return bus_generic_resume(dev);
802 }
803 
804 static void
805 emx_start(struct ifnet *ifp)
806 {
807 	struct emx_softc *sc = ifp->if_softc;
808 	struct mbuf *m_head;
809 
810 	ASSERT_SERIALIZED(&sc->tx_serialize);
811 
812 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
813 		return;
814 
815 	if (!sc->link_active) {
816 		ifq_purge(&ifp->if_snd);
817 		return;
818 	}
819 
820 	while (!ifq_is_empty(&ifp->if_snd)) {
821 		/* Now do we at least have a minimal? */
822 		if (EMX_IS_OACTIVE(sc)) {
823 			emx_tx_collect(sc);
824 			if (EMX_IS_OACTIVE(sc)) {
825 				ifp->if_flags |= IFF_OACTIVE;
826 				sc->no_tx_desc_avail1++;
827 				break;
828 			}
829 		}
830 
831 		logif(pkt_txqueue);
832 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
833 		if (m_head == NULL)
834 			break;
835 
836 		if (emx_encap(sc, &m_head)) {
837 			ifp->if_oerrors++;
838 			emx_tx_collect(sc);
839 			continue;
840 		}
841 
842 		/* Send a copy of the frame to the BPF listener */
843 		ETHER_BPF_MTAP(ifp, m_head);
844 
845 		/* Set timeout in case hardware has problems transmitting. */
846 		ifp->if_timer = EMX_TX_TIMEOUT;
847 	}
848 }
849 
850 static int
851 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
852 {
853 	struct emx_softc *sc = ifp->if_softc;
854 	struct ifreq *ifr = (struct ifreq *)data;
855 	uint16_t eeprom_data = 0;
856 	int max_frame_size, mask, reinit;
857 	int error = 0;
858 
859 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
860 
861 	switch (command) {
862 	case SIOCSIFMTU:
863 		switch (sc->hw.mac.type) {
864 		case e1000_82573:
865 			/*
866 			 * 82573 only supports jumbo frames
867 			 * if ASPM is disabled.
868 			 */
869 			e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
870 				       &eeprom_data);
871 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
872 				max_frame_size = ETHER_MAX_LEN;
873 				break;
874 			}
875 			/* FALL THROUGH */
876 
877 		/* Limit Jumbo Frame size */
878 		case e1000_82571:
879 		case e1000_82572:
880 		case e1000_82574:
881 		case e1000_80003es2lan:
882 			max_frame_size = 9234;
883 			break;
884 
885 		default:
886 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
887 			break;
888 		}
889 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
890 		    ETHER_CRC_LEN) {
891 			error = EINVAL;
892 			break;
893 		}
894 
895 		ifp->if_mtu = ifr->ifr_mtu;
896 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
897 				     ETHER_CRC_LEN;
898 
899 		if (ifp->if_flags & IFF_RUNNING)
900 			emx_init(sc);
901 		break;
902 
903 	case SIOCSIFFLAGS:
904 		if (ifp->if_flags & IFF_UP) {
905 			if ((ifp->if_flags & IFF_RUNNING)) {
906 				if ((ifp->if_flags ^ sc->if_flags) &
907 				    (IFF_PROMISC | IFF_ALLMULTI)) {
908 					emx_disable_promisc(sc);
909 					emx_set_promisc(sc);
910 				}
911 			} else {
912 				emx_init(sc);
913 			}
914 		} else if (ifp->if_flags & IFF_RUNNING) {
915 			emx_stop(sc);
916 		}
917 		sc->if_flags = ifp->if_flags;
918 		break;
919 
920 	case SIOCADDMULTI:
921 	case SIOCDELMULTI:
922 		if (ifp->if_flags & IFF_RUNNING) {
923 			emx_disable_intr(sc);
924 			emx_set_multi(sc);
925 #ifdef IFPOLL_ENABLE
926 			if (!(ifp->if_flags & IFF_NPOLLING))
927 #endif
928 				emx_enable_intr(sc);
929 		}
930 		break;
931 
932 	case SIOCSIFMEDIA:
933 		/* Check SOL/IDER usage */
934 		if (e1000_check_reset_block(&sc->hw)) {
935 			device_printf(sc->dev, "Media change is"
936 			    " blocked due to SOL/IDER session.\n");
937 			break;
938 		}
939 		/* FALL THROUGH */
940 
941 	case SIOCGIFMEDIA:
942 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
943 		break;
944 
945 	case SIOCSIFCAP:
946 		reinit = 0;
947 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
948 		if (mask & IFCAP_HWCSUM) {
949 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
950 			reinit = 1;
951 		}
952 		if (mask & IFCAP_VLAN_HWTAGGING) {
953 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
954 			reinit = 1;
955 		}
956 		if (mask & IFCAP_RSS) {
957 			ifp->if_capenable ^= IFCAP_RSS;
958 			reinit = 1;
959 		}
960 		if (reinit && (ifp->if_flags & IFF_RUNNING))
961 			emx_init(sc);
962 		break;
963 
964 	default:
965 		error = ether_ioctl(ifp, command, data);
966 		break;
967 	}
968 	return (error);
969 }
970 
971 static void
972 emx_watchdog(struct ifnet *ifp)
973 {
974 	struct emx_softc *sc = ifp->if_softc;
975 
976 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
977 
978 	/*
979 	 * The timer is set to 5 every time start queues a packet.
980 	 * Then txeof keeps resetting it as long as it cleans at
981 	 * least one descriptor.
982 	 * Finally, anytime all descriptors are clean the timer is
983 	 * set to 0.
984 	 */
985 
986 	if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
987 	    E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
988 		/*
989 		 * If we reach here, all TX jobs are completed and
990 		 * the TX engine should have been idled for some time.
991 		 * We don't need to call if_devstart() here.
992 		 */
993 		ifp->if_flags &= ~IFF_OACTIVE;
994 		ifp->if_timer = 0;
995 		return;
996 	}
997 
998 	/*
999 	 * If we are in this routine because of pause frames, then
1000 	 * don't reset the hardware.
1001 	 */
1002 	if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1003 		ifp->if_timer = EMX_TX_TIMEOUT;
1004 		return;
1005 	}
1006 
1007 	if (e1000_check_for_link(&sc->hw) == 0)
1008 		if_printf(ifp, "watchdog timeout -- resetting\n");
1009 
1010 	ifp->if_oerrors++;
1011 	sc->watchdog_events++;
1012 
1013 	emx_init(sc);
1014 
1015 	if (!ifq_is_empty(&ifp->if_snd))
1016 		if_devstart(ifp);
1017 }
1018 
1019 static void
1020 emx_init(void *xsc)
1021 {
1022 	struct emx_softc *sc = xsc;
1023 	struct ifnet *ifp = &sc->arpcom.ac_if;
1024 	device_t dev = sc->dev;
1025 	uint32_t pba;
1026 	int i;
1027 
1028 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1029 
1030 	emx_stop(sc);
1031 
1032 	/*
1033 	 * Packet Buffer Allocation (PBA)
1034 	 * Writing PBA sets the receive portion of the buffer
1035 	 * the remainder is used for the transmit buffer.
1036 	 */
1037 	switch (sc->hw.mac.type) {
1038 	/* Total Packet Buffer on these is 48K */
1039 	case e1000_82571:
1040 	case e1000_82572:
1041 	case e1000_80003es2lan:
1042 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1043 		break;
1044 
1045 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1046 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1047 		break;
1048 
1049 	case e1000_82574:
1050 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1051 		break;
1052 
1053 	default:
1054 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1055 		if (sc->max_frame_size > 8192)
1056 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1057 		else
1058 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1059 	}
1060 	E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1061 
1062 	/* Get the latest mac address, User can use a LAA */
1063         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1064 
1065 	/* Put the address into the Receive Address Array */
1066 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1067 
1068 	/*
1069 	 * With the 82571 sc, RAR[0] may be overwritten
1070 	 * when the other port is reset, we make a duplicate
1071 	 * in RAR[14] for that eventuality, this assures
1072 	 * the interface continues to function.
1073 	 */
1074 	if (sc->hw.mac.type == e1000_82571) {
1075 		e1000_set_laa_state_82571(&sc->hw, TRUE);
1076 		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1077 		    E1000_RAR_ENTRIES - 1);
1078 	}
1079 
1080 	/* Initialize the hardware */
1081 	if (emx_reset(sc)) {
1082 		device_printf(dev, "Unable to reset the hardware\n");
1083 		/* XXX emx_stop()? */
1084 		return;
1085 	}
1086 	emx_update_link_status(sc);
1087 
1088 	/* Setup VLAN support, basic and offload if available */
1089 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1090 
1091 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1092 		uint32_t ctrl;
1093 
1094 		ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1095 		ctrl |= E1000_CTRL_VME;
1096 		E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1097 	}
1098 
1099 	/* Set hardware offload abilities */
1100 	if (ifp->if_capenable & IFCAP_TXCSUM)
1101 		ifp->if_hwassist = EMX_CSUM_FEATURES;
1102 	else
1103 		ifp->if_hwassist = 0;
1104 
1105 	/* Configure for OS presence */
1106 	emx_get_mgmt(sc);
1107 
1108 	/* Prepare transmit descriptors and buffers */
1109 	emx_init_tx_ring(sc);
1110 	emx_init_tx_unit(sc);
1111 
1112 	/* Setup Multicast table */
1113 	emx_set_multi(sc);
1114 
1115 	/*
1116 	 * Adjust # of RX ring to be used based on IFCAP_RSS
1117 	 */
1118 	if (ifp->if_capenable & IFCAP_RSS)
1119 		sc->rx_ring_inuse = sc->rx_ring_cnt;
1120 	else
1121 		sc->rx_ring_inuse = 1;
1122 
1123 	/* Prepare receive descriptors and buffers */
1124 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1125 		if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1126 			device_printf(dev,
1127 			    "Could not setup receive structures\n");
1128 			emx_stop(sc);
1129 			return;
1130 		}
1131 	}
1132 	emx_init_rx_unit(sc);
1133 
1134 	/* Don't lose promiscuous settings */
1135 	emx_set_promisc(sc);
1136 
1137 	ifp->if_flags |= IFF_RUNNING;
1138 	ifp->if_flags &= ~IFF_OACTIVE;
1139 
1140 	callout_reset(&sc->timer, hz, emx_timer, sc);
1141 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1142 
1143 	/* MSI/X configuration for 82574 */
1144 	if (sc->hw.mac.type == e1000_82574) {
1145 		int tmp;
1146 
1147 		tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1148 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1149 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1150 		/*
1151 		 * XXX MSIX
1152 		 * Set the IVAR - interrupt vector routing.
1153 		 * Each nibble represents a vector, high bit
1154 		 * is enable, other 3 bits are the MSIX table
1155 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1156 		 * Link (other) to 2, hence the magic number.
1157 		 */
1158 		E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1159 	}
1160 
1161 #ifdef IFPOLL_ENABLE
1162 	/*
1163 	 * Only enable interrupts if we are not polling, make sure
1164 	 * they are off otherwise.
1165 	 */
1166 	if (ifp->if_flags & IFF_NPOLLING)
1167 		emx_disable_intr(sc);
1168 	else
1169 #endif /* IFPOLL_ENABLE */
1170 		emx_enable_intr(sc);
1171 
1172 	/* AMT based hardware can now take control from firmware */
1173 	if (sc->has_manage && sc->has_amt)
1174 		emx_get_hw_control(sc);
1175 
1176 	/* Don't reset the phy next time init gets called */
1177 	sc->hw.phy.reset_disable = TRUE;
1178 }
1179 
1180 static void
1181 emx_intr(void *xsc)
1182 {
1183 	struct emx_softc *sc = xsc;
1184 	struct ifnet *ifp = &sc->arpcom.ac_if;
1185 	uint32_t reg_icr;
1186 
1187 	logif(intr_beg);
1188 	ASSERT_SERIALIZED(&sc->main_serialize);
1189 
1190 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1191 
1192 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1193 		logif(intr_end);
1194 		return;
1195 	}
1196 
1197 	/*
1198 	 * XXX: some laptops trigger several spurious interrupts
1199 	 * on emx(4) when in the resume cycle. The ICR register
1200 	 * reports all-ones value in this case. Processing such
1201 	 * interrupts would lead to a freeze. I don't know why.
1202 	 */
1203 	if (reg_icr == 0xffffffff) {
1204 		logif(intr_end);
1205 		return;
1206 	}
1207 
1208 	if (ifp->if_flags & IFF_RUNNING) {
1209 		if (reg_icr &
1210 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1211 			int i;
1212 
1213 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
1214 				lwkt_serialize_enter(
1215 				&sc->rx_data[i].rx_serialize);
1216 				emx_rxeof(sc, i, -1);
1217 				lwkt_serialize_exit(
1218 				&sc->rx_data[i].rx_serialize);
1219 			}
1220 		}
1221 		if (reg_icr & E1000_ICR_TXDW) {
1222 			lwkt_serialize_enter(&sc->tx_serialize);
1223 			emx_txeof(sc);
1224 			if (!ifq_is_empty(&ifp->if_snd))
1225 				if_devstart(ifp);
1226 			lwkt_serialize_exit(&sc->tx_serialize);
1227 		}
1228 	}
1229 
1230 	/* Link status change */
1231 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1232 		emx_serialize_skipmain(sc);
1233 
1234 		callout_stop(&sc->timer);
1235 		sc->hw.mac.get_link_status = 1;
1236 		emx_update_link_status(sc);
1237 
1238 		/* Deal with TX cruft when link lost */
1239 		emx_tx_purge(sc);
1240 
1241 		callout_reset(&sc->timer, hz, emx_timer, sc);
1242 
1243 		emx_deserialize_skipmain(sc);
1244 	}
1245 
1246 	if (reg_icr & E1000_ICR_RXO)
1247 		sc->rx_overruns++;
1248 
1249 	logif(intr_end);
1250 }
1251 
1252 static void
1253 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1254 {
1255 	struct emx_softc *sc = ifp->if_softc;
1256 
1257 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1258 
1259 	emx_update_link_status(sc);
1260 
1261 	ifmr->ifm_status = IFM_AVALID;
1262 	ifmr->ifm_active = IFM_ETHER;
1263 
1264 	if (!sc->link_active)
1265 		return;
1266 
1267 	ifmr->ifm_status |= IFM_ACTIVE;
1268 
1269 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1270 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1271 		ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1272 	} else {
1273 		switch (sc->link_speed) {
1274 		case 10:
1275 			ifmr->ifm_active |= IFM_10_T;
1276 			break;
1277 		case 100:
1278 			ifmr->ifm_active |= IFM_100_TX;
1279 			break;
1280 
1281 		case 1000:
1282 			ifmr->ifm_active |= IFM_1000_T;
1283 			break;
1284 		}
1285 		if (sc->link_duplex == FULL_DUPLEX)
1286 			ifmr->ifm_active |= IFM_FDX;
1287 		else
1288 			ifmr->ifm_active |= IFM_HDX;
1289 	}
1290 }
1291 
1292 static int
1293 emx_media_change(struct ifnet *ifp)
1294 {
1295 	struct emx_softc *sc = ifp->if_softc;
1296 	struct ifmedia *ifm = &sc->media;
1297 
1298 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1299 
1300 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1301 		return (EINVAL);
1302 
1303 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1304 	case IFM_AUTO:
1305 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1306 		sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1307 		break;
1308 
1309 	case IFM_1000_LX:
1310 	case IFM_1000_SX:
1311 	case IFM_1000_T:
1312 		sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1313 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1314 		break;
1315 
1316 	case IFM_100_TX:
1317 		sc->hw.mac.autoneg = FALSE;
1318 		sc->hw.phy.autoneg_advertised = 0;
1319 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1320 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1321 		else
1322 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1323 		break;
1324 
1325 	case IFM_10_T:
1326 		sc->hw.mac.autoneg = FALSE;
1327 		sc->hw.phy.autoneg_advertised = 0;
1328 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1329 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1330 		else
1331 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1332 		break;
1333 
1334 	default:
1335 		if_printf(ifp, "Unsupported media type\n");
1336 		break;
1337 	}
1338 
1339 	/*
1340 	 * As the speed/duplex settings my have changed we need to
1341 	 * reset the PHY.
1342 	 */
1343 	sc->hw.phy.reset_disable = FALSE;
1344 
1345 	emx_init(sc);
1346 
1347 	return (0);
1348 }
1349 
1350 static int
1351 emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1352 {
1353 	bus_dma_segment_t segs[EMX_MAX_SCATTER];
1354 	bus_dmamap_t map;
1355 	struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1356 	struct e1000_tx_desc *ctxd = NULL;
1357 	struct mbuf *m_head = *m_headp;
1358 	uint32_t txd_upper, txd_lower, cmd = 0;
1359 	int maxsegs, nsegs, i, j, first, last = 0, error;
1360 
1361 	if (m_head->m_len < EMX_TXCSUM_MINHL &&
1362 	    (m_head->m_flags & EMX_CSUM_FEATURES)) {
1363 		/*
1364 		 * Make sure that ethernet header and ip.ip_hl are in
1365 		 * contiguous memory, since if TXCSUM is enabled, later
1366 		 * TX context descriptor's setup need to access ip.ip_hl.
1367 		 */
1368 		error = emx_txcsum_pullup(sc, m_headp);
1369 		if (error) {
1370 			KKASSERT(*m_headp == NULL);
1371 			return error;
1372 		}
1373 		m_head = *m_headp;
1374 	}
1375 
1376 	txd_upper = txd_lower = 0;
1377 
1378 	/*
1379 	 * Capture the first descriptor index, this descriptor
1380 	 * will have the index of the EOP which is the only one
1381 	 * that now gets a DONE bit writeback.
1382 	 */
1383 	first = sc->next_avail_tx_desc;
1384 	tx_buffer = &sc->tx_buf[first];
1385 	tx_buffer_mapped = tx_buffer;
1386 	map = tx_buffer->map;
1387 
1388 	maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1389 	KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc\n"));
1390 	if (maxsegs > EMX_MAX_SCATTER)
1391 		maxsegs = EMX_MAX_SCATTER;
1392 
1393 	error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1394 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1395 	if (error) {
1396 		if (error == ENOBUFS)
1397 			sc->mbuf_alloc_failed++;
1398 		else
1399 			sc->no_tx_dma_setup++;
1400 
1401 		m_freem(*m_headp);
1402 		*m_headp = NULL;
1403 		return error;
1404 	}
1405         bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1406 
1407 	m_head = *m_headp;
1408 	sc->tx_nsegs += nsegs;
1409 
1410 	if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1411 		/* TX csum offloading will consume one TX desc */
1412 		sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1413 	}
1414 	i = sc->next_avail_tx_desc;
1415 
1416 	/* Set up our transmit descriptors */
1417 	for (j = 0; j < nsegs; j++) {
1418 		tx_buffer = &sc->tx_buf[i];
1419 		ctxd = &sc->tx_desc_base[i];
1420 
1421 		ctxd->buffer_addr = htole64(segs[j].ds_addr);
1422 		ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1423 					   txd_lower | segs[j].ds_len);
1424 		ctxd->upper.data = htole32(txd_upper);
1425 
1426 		last = i;
1427 		if (++i == sc->num_tx_desc)
1428 			i = 0;
1429 	}
1430 
1431 	sc->next_avail_tx_desc = i;
1432 
1433 	KKASSERT(sc->num_tx_desc_avail > nsegs);
1434 	sc->num_tx_desc_avail -= nsegs;
1435 
1436         /* Handle VLAN tag */
1437 	if (m_head->m_flags & M_VLANTAG) {
1438 		/* Set the vlan id. */
1439 		ctxd->upper.fields.special =
1440 		    htole16(m_head->m_pkthdr.ether_vlantag);
1441 
1442 		/* Tell hardware to add tag */
1443 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1444 	}
1445 
1446 	tx_buffer->m_head = m_head;
1447 	tx_buffer_mapped->map = tx_buffer->map;
1448 	tx_buffer->map = map;
1449 
1450 	if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1451 		sc->tx_nsegs = 0;
1452 
1453 		/*
1454 		 * Report Status (RS) is turned on
1455 		 * every tx_int_nsegs descriptors.
1456 		 */
1457 		cmd = E1000_TXD_CMD_RS;
1458 
1459 		/*
1460 		 * Keep track of the descriptor, which will
1461 		 * be written back by hardware.
1462 		 */
1463 		sc->tx_dd[sc->tx_dd_tail] = last;
1464 		EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1465 		KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1466 	}
1467 
1468 	/*
1469 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1470 	 */
1471 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1472 
1473 	/*
1474 	 * Advance the Transmit Descriptor Tail (TDT), this tells
1475 	 * the E1000 that this frame is available to transmit.
1476 	 */
1477 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1478 
1479 	return (0);
1480 }
1481 
1482 static void
1483 emx_set_promisc(struct emx_softc *sc)
1484 {
1485 	struct ifnet *ifp = &sc->arpcom.ac_if;
1486 	uint32_t reg_rctl;
1487 
1488 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1489 
1490 	if (ifp->if_flags & IFF_PROMISC) {
1491 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1492 		/* Turn this on if you want to see bad packets */
1493 		if (emx_debug_sbp)
1494 			reg_rctl |= E1000_RCTL_SBP;
1495 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1496 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1497 		reg_rctl |= E1000_RCTL_MPE;
1498 		reg_rctl &= ~E1000_RCTL_UPE;
1499 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1500 	}
1501 }
1502 
1503 static void
1504 emx_disable_promisc(struct emx_softc *sc)
1505 {
1506 	uint32_t reg_rctl;
1507 
1508 	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1509 
1510 	reg_rctl &= ~E1000_RCTL_UPE;
1511 	reg_rctl &= ~E1000_RCTL_MPE;
1512 	reg_rctl &= ~E1000_RCTL_SBP;
1513 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1514 }
1515 
1516 static void
1517 emx_set_multi(struct emx_softc *sc)
1518 {
1519 	struct ifnet *ifp = &sc->arpcom.ac_if;
1520 	struct ifmultiaddr *ifma;
1521 	uint32_t reg_rctl = 0;
1522 	uint8_t *mta;
1523 	int mcnt = 0;
1524 
1525 	mta = sc->mta;
1526 	bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1527 
1528 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1529 		if (ifma->ifma_addr->sa_family != AF_LINK)
1530 			continue;
1531 
1532 		if (mcnt == EMX_MCAST_ADDR_MAX)
1533 			break;
1534 
1535 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1536 		      &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1537 		mcnt++;
1538 	}
1539 
1540 	if (mcnt >= EMX_MCAST_ADDR_MAX) {
1541 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1542 		reg_rctl |= E1000_RCTL_MPE;
1543 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1544 	} else {
1545 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1546 	}
1547 }
1548 
1549 /*
1550  * This routine checks for link status and updates statistics.
1551  */
1552 static void
1553 emx_timer(void *xsc)
1554 {
1555 	struct emx_softc *sc = xsc;
1556 	struct ifnet *ifp = &sc->arpcom.ac_if;
1557 
1558 	ifnet_serialize_all(ifp);
1559 
1560 	emx_update_link_status(sc);
1561 	emx_update_stats(sc);
1562 
1563 	/* Reset LAA into RAR[0] on 82571 */
1564 	if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1565 		e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1566 
1567 	if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1568 		emx_print_hw_stats(sc);
1569 
1570 	emx_smartspeed(sc);
1571 
1572 	callout_reset(&sc->timer, hz, emx_timer, sc);
1573 
1574 	ifnet_deserialize_all(ifp);
1575 }
1576 
1577 static void
1578 emx_update_link_status(struct emx_softc *sc)
1579 {
1580 	struct e1000_hw *hw = &sc->hw;
1581 	struct ifnet *ifp = &sc->arpcom.ac_if;
1582 	device_t dev = sc->dev;
1583 	uint32_t link_check = 0;
1584 
1585 	/* Get the cached link value or read phy for real */
1586 	switch (hw->phy.media_type) {
1587 	case e1000_media_type_copper:
1588 		if (hw->mac.get_link_status) {
1589 			/* Do the work to read phy */
1590 			e1000_check_for_link(hw);
1591 			link_check = !hw->mac.get_link_status;
1592 			if (link_check) /* ESB2 fix */
1593 				e1000_cfg_on_link_up(hw);
1594 		} else {
1595 			link_check = TRUE;
1596 		}
1597 		break;
1598 
1599 	case e1000_media_type_fiber:
1600 		e1000_check_for_link(hw);
1601 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1602 		break;
1603 
1604 	case e1000_media_type_internal_serdes:
1605 		e1000_check_for_link(hw);
1606 		link_check = sc->hw.mac.serdes_has_link;
1607 		break;
1608 
1609 	case e1000_media_type_unknown:
1610 	default:
1611 		break;
1612 	}
1613 
1614 	/* Now check for a transition */
1615 	if (link_check && sc->link_active == 0) {
1616 		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1617 		    &sc->link_duplex);
1618 
1619 		/*
1620 		 * Check if we should enable/disable SPEED_MODE bit on
1621 		 * 82571EB/82572EI
1622 		 */
1623 		if (sc->link_speed != SPEED_1000 &&
1624 		    (hw->mac.type == e1000_82571 ||
1625 		     hw->mac.type == e1000_82572)) {
1626 			int tarc0;
1627 
1628 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1629 			tarc0 &= ~EMX_TARC_SPEED_MODE;
1630 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1631 		}
1632 		if (bootverbose) {
1633 			device_printf(dev, "Link is up %d Mbps %s\n",
1634 			    sc->link_speed,
1635 			    ((sc->link_duplex == FULL_DUPLEX) ?
1636 			    "Full Duplex" : "Half Duplex"));
1637 		}
1638 		sc->link_active = 1;
1639 		sc->smartspeed = 0;
1640 		ifp->if_baudrate = sc->link_speed * 1000000;
1641 		ifp->if_link_state = LINK_STATE_UP;
1642 		if_link_state_change(ifp);
1643 	} else if (!link_check && sc->link_active == 1) {
1644 		ifp->if_baudrate = sc->link_speed = 0;
1645 		sc->link_duplex = 0;
1646 		if (bootverbose)
1647 			device_printf(dev, "Link is Down\n");
1648 		sc->link_active = 0;
1649 #if 0
1650 		/* Link down, disable watchdog */
1651 		if->if_timer = 0;
1652 #endif
1653 		ifp->if_link_state = LINK_STATE_DOWN;
1654 		if_link_state_change(ifp);
1655 	}
1656 }
1657 
1658 static void
1659 emx_stop(struct emx_softc *sc)
1660 {
1661 	struct ifnet *ifp = &sc->arpcom.ac_if;
1662 	int i;
1663 
1664 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1665 
1666 	emx_disable_intr(sc);
1667 
1668 	callout_stop(&sc->timer);
1669 
1670 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1671 	ifp->if_timer = 0;
1672 
1673 	/*
1674 	 * Disable multiple receive queues.
1675 	 *
1676 	 * NOTE:
1677 	 * We should disable multiple receive queues before
1678 	 * resetting the hardware.
1679 	 */
1680 	E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1681 
1682 	e1000_reset_hw(&sc->hw);
1683 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1684 
1685 	for (i = 0; i < sc->num_tx_desc; i++) {
1686 		struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1687 
1688 		if (tx_buffer->m_head != NULL) {
1689 			bus_dmamap_unload(sc->txtag, tx_buffer->map);
1690 			m_freem(tx_buffer->m_head);
1691 			tx_buffer->m_head = NULL;
1692 		}
1693 	}
1694 
1695 	for (i = 0; i < sc->rx_ring_inuse; ++i)
1696 		emx_free_rx_ring(sc, &sc->rx_data[i]);
1697 
1698 	sc->csum_flags = 0;
1699 	sc->csum_ehlen = 0;
1700 	sc->csum_iphlen = 0;
1701 
1702 	sc->tx_dd_head = 0;
1703 	sc->tx_dd_tail = 0;
1704 	sc->tx_nsegs = 0;
1705 }
1706 
1707 static int
1708 emx_reset(struct emx_softc *sc)
1709 {
1710 	device_t dev = sc->dev;
1711 	uint16_t rx_buffer_size;
1712 
1713 	/* Set up smart power down as default off on newer adapters. */
1714 	if (!emx_smart_pwr_down &&
1715 	    (sc->hw.mac.type == e1000_82571 ||
1716 	     sc->hw.mac.type == e1000_82572)) {
1717 		uint16_t phy_tmp = 0;
1718 
1719 		/* Speed up time to link by disabling smart power down. */
1720 		e1000_read_phy_reg(&sc->hw,
1721 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1722 		phy_tmp &= ~IGP02E1000_PM_SPD;
1723 		e1000_write_phy_reg(&sc->hw,
1724 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1725 	}
1726 
1727 	/*
1728 	 * These parameters control the automatic generation (Tx) and
1729 	 * response (Rx) to Ethernet PAUSE frames.
1730 	 * - High water mark should allow for at least two frames to be
1731 	 *   received after sending an XOFF.
1732 	 * - Low water mark works best when it is very near the high water mark.
1733 	 *   This allows the receiver to restart by sending XON when it has
1734 	 *   drained a bit. Here we use an arbitary value of 1500 which will
1735 	 *   restart after one full frame is pulled from the buffer. There
1736 	 *   could be several smaller frames in the buffer and if so they will
1737 	 *   not trigger the XON until their total number reduces the buffer
1738 	 *   by 1500.
1739 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1740 	 */
1741 	rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1742 
1743 	sc->hw.fc.high_water = rx_buffer_size -
1744 			       roundup2(sc->max_frame_size, 1024);
1745 	sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1746 
1747 	if (sc->hw.mac.type == e1000_80003es2lan)
1748 		sc->hw.fc.pause_time = 0xFFFF;
1749 	else
1750 		sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1751 	sc->hw.fc.send_xon = TRUE;
1752 	sc->hw.fc.requested_mode = e1000_fc_full;
1753 
1754 	/* Issue a global reset */
1755 	e1000_reset_hw(&sc->hw);
1756 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1757 
1758 	if (e1000_init_hw(&sc->hw) < 0) {
1759 		device_printf(dev, "Hardware Initialization Failed\n");
1760 		return (EIO);
1761 	}
1762 
1763 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1764 	e1000_get_phy_info(&sc->hw);
1765 	e1000_check_for_link(&sc->hw);
1766 
1767 	return (0);
1768 }
1769 
1770 static void
1771 emx_setup_ifp(struct emx_softc *sc)
1772 {
1773 	struct ifnet *ifp = &sc->arpcom.ac_if;
1774 
1775 	if_initname(ifp, device_get_name(sc->dev),
1776 		    device_get_unit(sc->dev));
1777 	ifp->if_softc = sc;
1778 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1779 	ifp->if_init =  emx_init;
1780 	ifp->if_ioctl = emx_ioctl;
1781 	ifp->if_start = emx_start;
1782 #ifdef IFPOLL_ENABLE
1783 	ifp->if_qpoll = emx_qpoll;
1784 #endif
1785 	ifp->if_watchdog = emx_watchdog;
1786 	ifp->if_serialize = emx_serialize;
1787 	ifp->if_deserialize = emx_deserialize;
1788 	ifp->if_tryserialize = emx_tryserialize;
1789 #ifdef INVARIANTS
1790 	ifp->if_serialize_assert = emx_serialize_assert;
1791 #endif
1792 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1793 	ifq_set_ready(&ifp->if_snd);
1794 
1795 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1796 
1797 	ifp->if_capabilities = IFCAP_HWCSUM |
1798 			       IFCAP_VLAN_HWTAGGING |
1799 			       IFCAP_VLAN_MTU;
1800 	if (sc->rx_ring_cnt > 1)
1801 		ifp->if_capabilities |= IFCAP_RSS;
1802 	ifp->if_capenable = ifp->if_capabilities;
1803 	ifp->if_hwassist = EMX_CSUM_FEATURES;
1804 
1805 	/*
1806 	 * Tell the upper layer(s) we support long frames.
1807 	 */
1808 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1809 
1810 	/*
1811 	 * Specify the media types supported by this sc and register
1812 	 * callbacks to update media and link information
1813 	 */
1814 	ifmedia_init(&sc->media, IFM_IMASK,
1815 		     emx_media_change, emx_media_status);
1816 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1817 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1818 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1819 			    0, NULL);
1820 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1821 	} else {
1822 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1823 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1824 			    0, NULL);
1825 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1826 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1827 			    0, NULL);
1828 		if (sc->hw.phy.type != e1000_phy_ife) {
1829 			ifmedia_add(&sc->media,
1830 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1831 			ifmedia_add(&sc->media,
1832 				IFM_ETHER | IFM_1000_T, 0, NULL);
1833 		}
1834 	}
1835 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1836 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1837 }
1838 
1839 /*
1840  * Workaround for SmartSpeed on 82541 and 82547 controllers
1841  */
1842 static void
1843 emx_smartspeed(struct emx_softc *sc)
1844 {
1845 	uint16_t phy_tmp;
1846 
1847 	if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1848 	    sc->hw.mac.autoneg == 0 ||
1849 	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1850 		return;
1851 
1852 	if (sc->smartspeed == 0) {
1853 		/*
1854 		 * If Master/Slave config fault is asserted twice,
1855 		 * we assume back-to-back
1856 		 */
1857 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1858 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1859 			return;
1860 		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1861 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1862 			e1000_read_phy_reg(&sc->hw,
1863 			    PHY_1000T_CTRL, &phy_tmp);
1864 			if (phy_tmp & CR_1000T_MS_ENABLE) {
1865 				phy_tmp &= ~CR_1000T_MS_ENABLE;
1866 				e1000_write_phy_reg(&sc->hw,
1867 				    PHY_1000T_CTRL, phy_tmp);
1868 				sc->smartspeed++;
1869 				if (sc->hw.mac.autoneg &&
1870 				    !e1000_phy_setup_autoneg(&sc->hw) &&
1871 				    !e1000_read_phy_reg(&sc->hw,
1872 				     PHY_CONTROL, &phy_tmp)) {
1873 					phy_tmp |= MII_CR_AUTO_NEG_EN |
1874 						   MII_CR_RESTART_AUTO_NEG;
1875 					e1000_write_phy_reg(&sc->hw,
1876 					    PHY_CONTROL, phy_tmp);
1877 				}
1878 			}
1879 		}
1880 		return;
1881 	} else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1882 		/* If still no link, perhaps using 2/3 pair cable */
1883 		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1884 		phy_tmp |= CR_1000T_MS_ENABLE;
1885 		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1886 		if (sc->hw.mac.autoneg &&
1887 		    !e1000_phy_setup_autoneg(&sc->hw) &&
1888 		    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1889 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1890 			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1891 		}
1892 	}
1893 
1894 	/* Restart process after EMX_SMARTSPEED_MAX iterations */
1895 	if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1896 		sc->smartspeed = 0;
1897 }
1898 
1899 static int
1900 emx_create_tx_ring(struct emx_softc *sc)
1901 {
1902 	device_t dev = sc->dev;
1903 	struct emx_txbuf *tx_buffer;
1904 	int error, i, tsize;
1905 
1906 	/*
1907 	 * Validate number of transmit descriptors.  It must not exceed
1908 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1909 	 */
1910 	if ((emx_txd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1911 	    emx_txd > EMX_MAX_TXD || emx_txd < EMX_MIN_TXD) {
1912 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
1913 		    EMX_DEFAULT_TXD, emx_txd);
1914 		sc->num_tx_desc = EMX_DEFAULT_TXD;
1915 	} else {
1916 		sc->num_tx_desc = emx_txd;
1917 	}
1918 
1919 	/*
1920 	 * Allocate Transmit Descriptor ring
1921 	 */
1922 	tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
1923 			 EMX_DBA_ALIGN);
1924 	sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
1925 				EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1926 				&sc->tx_desc_dtag, &sc->tx_desc_dmap,
1927 				&sc->tx_desc_paddr);
1928 	if (sc->tx_desc_base == NULL) {
1929 		device_printf(dev, "Unable to allocate tx_desc memory\n");
1930 		return ENOMEM;
1931 	}
1932 
1933 	sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
1934 			     M_DEVBUF, M_WAITOK | M_ZERO);
1935 
1936 	/*
1937 	 * Create DMA tags for tx buffers
1938 	 */
1939 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
1940 			1, 0,			/* alignment, bounds */
1941 			BUS_SPACE_MAXADDR,	/* lowaddr */
1942 			BUS_SPACE_MAXADDR,	/* highaddr */
1943 			NULL, NULL,		/* filter, filterarg */
1944 			EMX_TSO_SIZE,		/* maxsize */
1945 			EMX_MAX_SCATTER,	/* nsegments */
1946 			EMX_MAX_SEGSIZE,	/* maxsegsize */
1947 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1948 			BUS_DMA_ONEBPAGE,	/* flags */
1949 			&sc->txtag);
1950 	if (error) {
1951 		device_printf(dev, "Unable to allocate TX DMA tag\n");
1952 		kfree(sc->tx_buf, M_DEVBUF);
1953 		sc->tx_buf = NULL;
1954 		return error;
1955 	}
1956 
1957 	/*
1958 	 * Create DMA maps for tx buffers
1959 	 */
1960 	for (i = 0; i < sc->num_tx_desc; i++) {
1961 		tx_buffer = &sc->tx_buf[i];
1962 
1963 		error = bus_dmamap_create(sc->txtag,
1964 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1965 					  &tx_buffer->map);
1966 		if (error) {
1967 			device_printf(dev, "Unable to create TX DMA map\n");
1968 			emx_destroy_tx_ring(sc, i);
1969 			return error;
1970 		}
1971 	}
1972 	return (0);
1973 }
1974 
1975 static void
1976 emx_init_tx_ring(struct emx_softc *sc)
1977 {
1978 	/* Clear the old ring contents */
1979 	bzero(sc->tx_desc_base,
1980 	      sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
1981 
1982 	/* Reset state */
1983 	sc->next_avail_tx_desc = 0;
1984 	sc->next_tx_to_clean = 0;
1985 	sc->num_tx_desc_avail = sc->num_tx_desc;
1986 }
1987 
1988 static void
1989 emx_init_tx_unit(struct emx_softc *sc)
1990 {
1991 	uint32_t tctl, tarc, tipg = 0;
1992 	uint64_t bus_addr;
1993 
1994 	/* Setup the Base and Length of the Tx Descriptor Ring */
1995 	bus_addr = sc->tx_desc_paddr;
1996 	E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
1997 	    sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1998 	E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
1999 	    (uint32_t)(bus_addr >> 32));
2000 	E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2001 	    (uint32_t)bus_addr);
2002 	/* Setup the HW Tx Head and Tail descriptor pointers */
2003 	E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2004 	E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2005 
2006 	/* Set the default values for the Tx Inter Packet Gap timer */
2007 	switch (sc->hw.mac.type) {
2008 	case e1000_80003es2lan:
2009 		tipg = DEFAULT_82543_TIPG_IPGR1;
2010 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2011 		    E1000_TIPG_IPGR2_SHIFT;
2012 		break;
2013 
2014 	default:
2015 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2016 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2017 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2018 		else
2019 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2020 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2021 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2022 		break;
2023 	}
2024 
2025 	E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2026 
2027 	/* NOTE: 0 is not allowed for TIDV */
2028 	E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2029 	E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2030 
2031 	if (sc->hw.mac.type == e1000_82571 ||
2032 	    sc->hw.mac.type == e1000_82572) {
2033 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2034 		tarc |= EMX_TARC_SPEED_MODE;
2035 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2036 	} else if (sc->hw.mac.type == e1000_80003es2lan) {
2037 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2038 		tarc |= 1;
2039 		E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2040 		tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2041 		tarc |= 1;
2042 		E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2043 	}
2044 
2045 	/* Program the Transmit Control Register */
2046 	tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2047 	tctl &= ~E1000_TCTL_CT;
2048 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2049 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2050 	tctl |= E1000_TCTL_MULR;
2051 
2052 	/* This write will effectively turn on the transmit unit. */
2053 	E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2054 }
2055 
2056 static void
2057 emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2058 {
2059 	struct emx_txbuf *tx_buffer;
2060 	int i;
2061 
2062 	/* Free Transmit Descriptor ring */
2063 	if (sc->tx_desc_base) {
2064 		bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2065 		bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2066 				sc->tx_desc_dmap);
2067 		bus_dma_tag_destroy(sc->tx_desc_dtag);
2068 
2069 		sc->tx_desc_base = NULL;
2070 	}
2071 
2072 	if (sc->tx_buf == NULL)
2073 		return;
2074 
2075 	for (i = 0; i < ndesc; i++) {
2076 		tx_buffer = &sc->tx_buf[i];
2077 
2078 		KKASSERT(tx_buffer->m_head == NULL);
2079 		bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2080 	}
2081 	bus_dma_tag_destroy(sc->txtag);
2082 
2083 	kfree(sc->tx_buf, M_DEVBUF);
2084 	sc->tx_buf = NULL;
2085 }
2086 
2087 /*
2088  * The offload context needs to be set when we transfer the first
2089  * packet of a particular protocol (TCP/UDP).  This routine has been
2090  * enhanced to deal with inserted VLAN headers.
2091  *
2092  * If the new packet's ether header length, ip header length and
2093  * csum offloading type are same as the previous packet, we should
2094  * avoid allocating a new csum context descriptor; mainly to take
2095  * advantage of the pipeline effect of the TX data read request.
2096  *
2097  * This function returns number of TX descrptors allocated for
2098  * csum context.
2099  */
2100 static int
2101 emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2102 	   uint32_t *txd_upper, uint32_t *txd_lower)
2103 {
2104 	struct e1000_context_desc *TXD;
2105 	struct emx_txbuf *tx_buffer;
2106 	struct ether_vlan_header *eh;
2107 	struct ip *ip;
2108 	int curr_txd, ehdrlen, csum_flags;
2109 	uint32_t cmd, hdr_len, ip_hlen;
2110 	uint16_t etype;
2111 
2112 	/*
2113 	 * Determine where frame payload starts.
2114 	 * Jump over vlan headers if already present,
2115 	 * helpful for QinQ too.
2116 	 */
2117 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2118 		("emx_txcsum_pullup is not called (eh)?\n"));
2119 	eh = mtod(mp, struct ether_vlan_header *);
2120 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2121 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2122 			("emx_txcsum_pullup is not called (evh)?\n"));
2123 		etype = ntohs(eh->evl_proto);
2124 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2125 	} else {
2126 		etype = ntohs(eh->evl_encap_proto);
2127 		ehdrlen = ETHER_HDR_LEN;
2128 	}
2129 
2130 	/*
2131 	 * We only support TCP/UDP for IPv4 for the moment.
2132 	 * TODO: Support SCTP too when it hits the tree.
2133 	 */
2134 	if (etype != ETHERTYPE_IP)
2135 		return 0;
2136 
2137 	KASSERT(mp->m_len >= ehdrlen + EMX_IPVHL_SIZE,
2138 		("emx_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2139 
2140 	/* NOTE: We could only safely access ip.ip_vhl part */
2141 	ip = (struct ip *)(mp->m_data + ehdrlen);
2142 	ip_hlen = ip->ip_hl << 2;
2143 
2144 	csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2145 
2146 	if (sc->csum_ehlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2147 	    sc->csum_flags == csum_flags) {
2148 		/*
2149 		 * Same csum offload context as the previous packets;
2150 		 * just return.
2151 		 */
2152 		*txd_upper = sc->csum_txd_upper;
2153 		*txd_lower = sc->csum_txd_lower;
2154 		return 0;
2155 	}
2156 
2157 	/*
2158 	 * Setup a new csum offload context.
2159 	 */
2160 
2161 	curr_txd = sc->next_avail_tx_desc;
2162 	tx_buffer = &sc->tx_buf[curr_txd];
2163 	TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2164 
2165 	cmd = 0;
2166 
2167 	/* Setup of IP header checksum. */
2168 	if (csum_flags & CSUM_IP) {
2169 		/*
2170 		 * Start offset for header checksum calculation.
2171 		 * End offset for header checksum calculation.
2172 		 * Offset of place to put the checksum.
2173 		 */
2174 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2175 		TXD->lower_setup.ip_fields.ipcse =
2176 		    htole16(ehdrlen + ip_hlen - 1);
2177 		TXD->lower_setup.ip_fields.ipcso =
2178 		    ehdrlen + offsetof(struct ip, ip_sum);
2179 		cmd |= E1000_TXD_CMD_IP;
2180 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2181 	}
2182 	hdr_len = ehdrlen + ip_hlen;
2183 
2184 	if (csum_flags & CSUM_TCP) {
2185 		/*
2186 		 * Start offset for payload checksum calculation.
2187 		 * End offset for payload checksum calculation.
2188 		 * Offset of place to put the checksum.
2189 		 */
2190 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2191 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2192 		TXD->upper_setup.tcp_fields.tucso =
2193 		    hdr_len + offsetof(struct tcphdr, th_sum);
2194 		cmd |= E1000_TXD_CMD_TCP;
2195 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2196 	} else if (csum_flags & CSUM_UDP) {
2197 		/*
2198 		 * Start offset for header checksum calculation.
2199 		 * End offset for header checksum calculation.
2200 		 * Offset of place to put the checksum.
2201 		 */
2202 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2203 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2204 		TXD->upper_setup.tcp_fields.tucso =
2205 		    hdr_len + offsetof(struct udphdr, uh_sum);
2206 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2207 	}
2208 
2209 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2210 		     E1000_TXD_DTYP_D;		/* Data descr */
2211 
2212 	/* Save the information for this csum offloading context */
2213 	sc->csum_ehlen = ehdrlen;
2214 	sc->csum_iphlen = ip_hlen;
2215 	sc->csum_flags = csum_flags;
2216 	sc->csum_txd_upper = *txd_upper;
2217 	sc->csum_txd_lower = *txd_lower;
2218 
2219 	TXD->tcp_seg_setup.data = htole32(0);
2220 	TXD->cmd_and_length =
2221 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2222 
2223 	if (++curr_txd == sc->num_tx_desc)
2224 		curr_txd = 0;
2225 
2226 	KKASSERT(sc->num_tx_desc_avail > 0);
2227 	sc->num_tx_desc_avail--;
2228 
2229 	sc->next_avail_tx_desc = curr_txd;
2230 	return 1;
2231 }
2232 
2233 static int
2234 emx_txcsum_pullup(struct emx_softc *sc, struct mbuf **m0)
2235 {
2236 	struct mbuf *m = *m0;
2237 	struct ether_header *eh;
2238 	int len;
2239 
2240 	sc->tx_csum_try_pullup++;
2241 
2242 	len = ETHER_HDR_LEN + EMX_IPVHL_SIZE;
2243 
2244 	if (__predict_false(!M_WRITABLE(m))) {
2245 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2246 			sc->tx_csum_drop1++;
2247 			m_freem(m);
2248 			*m0 = NULL;
2249 			return ENOBUFS;
2250 		}
2251 		eh = mtod(m, struct ether_header *);
2252 
2253 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2254 			len += EVL_ENCAPLEN;
2255 
2256 		if (m->m_len < len) {
2257 			sc->tx_csum_drop2++;
2258 			m_freem(m);
2259 			*m0 = NULL;
2260 			return ENOBUFS;
2261 		}
2262 		return 0;
2263 	}
2264 
2265 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2266 		sc->tx_csum_pullup1++;
2267 		m = m_pullup(m, ETHER_HDR_LEN);
2268 		if (m == NULL) {
2269 			sc->tx_csum_pullup1_failed++;
2270 			*m0 = NULL;
2271 			return ENOBUFS;
2272 		}
2273 		*m0 = m;
2274 	}
2275 	eh = mtod(m, struct ether_header *);
2276 
2277 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2278 		len += EVL_ENCAPLEN;
2279 
2280 	if (m->m_len < len) {
2281 		sc->tx_csum_pullup2++;
2282 		m = m_pullup(m, len);
2283 		if (m == NULL) {
2284 			sc->tx_csum_pullup2_failed++;
2285 			*m0 = NULL;
2286 			return ENOBUFS;
2287 		}
2288 		*m0 = m;
2289 	}
2290 	return 0;
2291 }
2292 
2293 static void
2294 emx_txeof(struct emx_softc *sc)
2295 {
2296 	struct ifnet *ifp = &sc->arpcom.ac_if;
2297 	struct emx_txbuf *tx_buffer;
2298 	int first, num_avail;
2299 
2300 	if (sc->tx_dd_head == sc->tx_dd_tail)
2301 		return;
2302 
2303 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2304 		return;
2305 
2306 	num_avail = sc->num_tx_desc_avail;
2307 	first = sc->next_tx_to_clean;
2308 
2309 	while (sc->tx_dd_head != sc->tx_dd_tail) {
2310 		int dd_idx = sc->tx_dd[sc->tx_dd_head];
2311 		struct e1000_tx_desc *tx_desc;
2312 
2313 		tx_desc = &sc->tx_desc_base[dd_idx];
2314 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2315 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2316 
2317 			if (++dd_idx == sc->num_tx_desc)
2318 				dd_idx = 0;
2319 
2320 			while (first != dd_idx) {
2321 				logif(pkt_txclean);
2322 
2323 				num_avail++;
2324 
2325 				tx_buffer = &sc->tx_buf[first];
2326 				if (tx_buffer->m_head) {
2327 					ifp->if_opackets++;
2328 					bus_dmamap_unload(sc->txtag,
2329 							  tx_buffer->map);
2330 					m_freem(tx_buffer->m_head);
2331 					tx_buffer->m_head = NULL;
2332 				}
2333 
2334 				if (++first == sc->num_tx_desc)
2335 					first = 0;
2336 			}
2337 		} else {
2338 			break;
2339 		}
2340 	}
2341 	sc->next_tx_to_clean = first;
2342 	sc->num_tx_desc_avail = num_avail;
2343 
2344 	if (sc->tx_dd_head == sc->tx_dd_tail) {
2345 		sc->tx_dd_head = 0;
2346 		sc->tx_dd_tail = 0;
2347 	}
2348 
2349 	if (!EMX_IS_OACTIVE(sc)) {
2350 		ifp->if_flags &= ~IFF_OACTIVE;
2351 
2352 		/* All clean, turn off the timer */
2353 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2354 			ifp->if_timer = 0;
2355 	}
2356 }
2357 
2358 static void
2359 emx_tx_collect(struct emx_softc *sc)
2360 {
2361 	struct ifnet *ifp = &sc->arpcom.ac_if;
2362 	struct emx_txbuf *tx_buffer;
2363 	int tdh, first, num_avail, dd_idx = -1;
2364 
2365 	if (sc->num_tx_desc_avail == sc->num_tx_desc)
2366 		return;
2367 
2368 	tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2369 	if (tdh == sc->next_tx_to_clean)
2370 		return;
2371 
2372 	if (sc->tx_dd_head != sc->tx_dd_tail)
2373 		dd_idx = sc->tx_dd[sc->tx_dd_head];
2374 
2375 	num_avail = sc->num_tx_desc_avail;
2376 	first = sc->next_tx_to_clean;
2377 
2378 	while (first != tdh) {
2379 		logif(pkt_txclean);
2380 
2381 		num_avail++;
2382 
2383 		tx_buffer = &sc->tx_buf[first];
2384 		if (tx_buffer->m_head) {
2385 			ifp->if_opackets++;
2386 			bus_dmamap_unload(sc->txtag,
2387 					  tx_buffer->map);
2388 			m_freem(tx_buffer->m_head);
2389 			tx_buffer->m_head = NULL;
2390 		}
2391 
2392 		if (first == dd_idx) {
2393 			EMX_INC_TXDD_IDX(sc->tx_dd_head);
2394 			if (sc->tx_dd_head == sc->tx_dd_tail) {
2395 				sc->tx_dd_head = 0;
2396 				sc->tx_dd_tail = 0;
2397 				dd_idx = -1;
2398 			} else {
2399 				dd_idx = sc->tx_dd[sc->tx_dd_head];
2400 			}
2401 		}
2402 
2403 		if (++first == sc->num_tx_desc)
2404 			first = 0;
2405 	}
2406 	sc->next_tx_to_clean = first;
2407 	sc->num_tx_desc_avail = num_avail;
2408 
2409 	if (!EMX_IS_OACTIVE(sc)) {
2410 		ifp->if_flags &= ~IFF_OACTIVE;
2411 
2412 		/* All clean, turn off the timer */
2413 		if (sc->num_tx_desc_avail == sc->num_tx_desc)
2414 			ifp->if_timer = 0;
2415 	}
2416 }
2417 
2418 /*
2419  * When Link is lost sometimes there is work still in the TX ring
2420  * which will result in a watchdog, rather than allow that do an
2421  * attempted cleanup and then reinit here.  Note that this has been
2422  * seens mostly with fiber adapters.
2423  */
2424 static void
2425 emx_tx_purge(struct emx_softc *sc)
2426 {
2427 	struct ifnet *ifp = &sc->arpcom.ac_if;
2428 
2429 	if (!sc->link_active && ifp->if_timer) {
2430 		emx_tx_collect(sc);
2431 		if (ifp->if_timer) {
2432 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2433 			ifp->if_timer = 0;
2434 			emx_init(sc);
2435 		}
2436 	}
2437 }
2438 
2439 static int
2440 emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2441 {
2442 	struct mbuf *m;
2443 	bus_dma_segment_t seg;
2444 	bus_dmamap_t map;
2445 	struct emx_rxbuf *rx_buffer;
2446 	int error, nseg;
2447 
2448 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2449 	if (m == NULL) {
2450 		rdata->mbuf_cluster_failed++;
2451 		if (init) {
2452 			if_printf(&sc->arpcom.ac_if,
2453 				  "Unable to allocate RX mbuf\n");
2454 		}
2455 		return (ENOBUFS);
2456 	}
2457 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2458 
2459 	if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2460 		m_adj(m, ETHER_ALIGN);
2461 
2462 	error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2463 			rdata->rx_sparemap, m,
2464 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2465 	if (error) {
2466 		m_freem(m);
2467 		if (init) {
2468 			if_printf(&sc->arpcom.ac_if,
2469 				  "Unable to load RX mbuf\n");
2470 		}
2471 		return (error);
2472 	}
2473 
2474 	rx_buffer = &rdata->rx_buf[i];
2475 	if (rx_buffer->m_head != NULL)
2476 		bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2477 
2478 	map = rx_buffer->map;
2479 	rx_buffer->map = rdata->rx_sparemap;
2480 	rdata->rx_sparemap = map;
2481 
2482 	rx_buffer->m_head = m;
2483 	rx_buffer->paddr = seg.ds_addr;
2484 
2485 	emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2486 	return (0);
2487 }
2488 
2489 static int
2490 emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2491 {
2492 	device_t dev = sc->dev;
2493 	struct emx_rxbuf *rx_buffer;
2494 	int i, error, rsize;
2495 
2496 	/*
2497 	 * Validate number of receive descriptors.  It must not exceed
2498 	 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2499 	 */
2500 	if ((emx_rxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2501 	    emx_rxd > EMX_MAX_RXD || emx_rxd < EMX_MIN_RXD) {
2502 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2503 		    EMX_DEFAULT_RXD, emx_rxd);
2504 		rdata->num_rx_desc = EMX_DEFAULT_RXD;
2505 	} else {
2506 		rdata->num_rx_desc = emx_rxd;
2507 	}
2508 
2509 	/*
2510 	 * Allocate Receive Descriptor ring
2511 	 */
2512 	rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2513 			 EMX_DBA_ALIGN);
2514 	rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2515 				EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2516 				&rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2517 				&rdata->rx_desc_paddr);
2518 	if (rdata->rx_desc == NULL) {
2519 		device_printf(dev, "Unable to allocate rx_desc memory\n");
2520 		return ENOMEM;
2521 	}
2522 
2523 	rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2524 				M_DEVBUF, M_WAITOK | M_ZERO);
2525 
2526 	/*
2527 	 * Create DMA tag for rx buffers
2528 	 */
2529 	error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2530 			1, 0,			/* alignment, bounds */
2531 			BUS_SPACE_MAXADDR,	/* lowaddr */
2532 			BUS_SPACE_MAXADDR,	/* highaddr */
2533 			NULL, NULL,		/* filter, filterarg */
2534 			MCLBYTES,		/* maxsize */
2535 			1,			/* nsegments */
2536 			MCLBYTES,		/* maxsegsize */
2537 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2538 			&rdata->rxtag);
2539 	if (error) {
2540 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2541 		kfree(rdata->rx_buf, M_DEVBUF);
2542 		rdata->rx_buf = NULL;
2543 		return error;
2544 	}
2545 
2546 	/*
2547 	 * Create spare DMA map for rx buffers
2548 	 */
2549 	error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2550 				  &rdata->rx_sparemap);
2551 	if (error) {
2552 		device_printf(dev, "Unable to create spare RX DMA map\n");
2553 		bus_dma_tag_destroy(rdata->rxtag);
2554 		kfree(rdata->rx_buf, M_DEVBUF);
2555 		rdata->rx_buf = NULL;
2556 		return error;
2557 	}
2558 
2559 	/*
2560 	 * Create DMA maps for rx buffers
2561 	 */
2562 	for (i = 0; i < rdata->num_rx_desc; i++) {
2563 		rx_buffer = &rdata->rx_buf[i];
2564 
2565 		error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2566 					  &rx_buffer->map);
2567 		if (error) {
2568 			device_printf(dev, "Unable to create RX DMA map\n");
2569 			emx_destroy_rx_ring(sc, rdata, i);
2570 			return error;
2571 		}
2572 	}
2573 	return (0);
2574 }
2575 
2576 static void
2577 emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2578 {
2579 	int i;
2580 
2581 	for (i = 0; i < rdata->num_rx_desc; i++) {
2582 		struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2583 
2584 		if (rx_buffer->m_head != NULL) {
2585 			bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2586 			m_freem(rx_buffer->m_head);
2587 			rx_buffer->m_head = NULL;
2588 		}
2589 	}
2590 
2591 	if (rdata->fmp != NULL)
2592 		m_freem(rdata->fmp);
2593 	rdata->fmp = NULL;
2594 	rdata->lmp = NULL;
2595 }
2596 
2597 static int
2598 emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2599 {
2600 	int i, error;
2601 
2602 	/* Reset descriptor ring */
2603 	bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2604 
2605 	/* Allocate new ones. */
2606 	for (i = 0; i < rdata->num_rx_desc; i++) {
2607 		error = emx_newbuf(sc, rdata, i, 1);
2608 		if (error)
2609 			return (error);
2610 	}
2611 
2612 	/* Setup our descriptor pointers */
2613 	rdata->next_rx_desc_to_check = 0;
2614 
2615 	return (0);
2616 }
2617 
2618 static void
2619 emx_init_rx_unit(struct emx_softc *sc)
2620 {
2621 	struct ifnet *ifp = &sc->arpcom.ac_if;
2622 	uint64_t bus_addr;
2623 	uint32_t rctl, itr, rfctl;
2624 	int i;
2625 
2626 	/*
2627 	 * Make sure receives are disabled while setting
2628 	 * up the descriptor ring
2629 	 */
2630 	rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2631 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2632 
2633 	/*
2634 	 * Set the interrupt throttling rate. Value is calculated
2635 	 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2636 	 */
2637 	if (sc->int_throttle_ceil)
2638 		itr = 1000000000 / 256 / sc->int_throttle_ceil;
2639 	else
2640 		itr = 0;
2641 	emx_set_itr(sc, itr);
2642 
2643 	/* Use extended RX descriptor */
2644 	rfctl = E1000_RFCTL_EXTEN;
2645 
2646 	/* Disable accelerated ackknowledge */
2647 	if (sc->hw.mac.type == e1000_82574)
2648 		rfctl |= E1000_RFCTL_ACK_DIS;
2649 
2650 	E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2651 
2652 	/*
2653 	 * Receive Checksum Offload for TCP and UDP
2654 	 *
2655 	 * Checksum offloading is also enabled if multiple receive
2656 	 * queue is to be supported, since we need it to figure out
2657 	 * packet type.
2658 	 */
2659 	if (ifp->if_capenable & (IFCAP_RSS | IFCAP_RXCSUM)) {
2660 		uint32_t rxcsum;
2661 
2662 		rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2663 
2664 		/*
2665 		 * NOTE:
2666 		 * PCSD must be enabled to enable multiple
2667 		 * receive queues.
2668 		 */
2669 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2670 			  E1000_RXCSUM_PCSD;
2671 		E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2672 	}
2673 
2674 	/*
2675 	 * Configure multiple receive queue (RSS)
2676 	 */
2677 	if (ifp->if_capenable & IFCAP_RSS) {
2678 		uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2679 		uint32_t reta;
2680 
2681 		KASSERT(sc->rx_ring_inuse == EMX_NRX_RING,
2682 			("invalid number of RX ring (%d)",
2683 			 sc->rx_ring_inuse));
2684 
2685 		/*
2686 		 * NOTE:
2687 		 * When we reach here, RSS has already been disabled
2688 		 * in emx_stop(), so we could safely configure RSS key
2689 		 * and redirect table.
2690 		 */
2691 
2692 		/*
2693 		 * Configure RSS key
2694 		 */
2695 		toeplitz_get_key(key, sizeof(key));
2696 		for (i = 0; i < EMX_NRSSRK; ++i) {
2697 			uint32_t rssrk;
2698 
2699 			rssrk = EMX_RSSRK_VAL(key, i);
2700 			EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2701 
2702 			E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2703 		}
2704 
2705 		/*
2706 		 * Configure RSS redirect table in following fashion:
2707 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2708 		 */
2709 		reta = 0;
2710 		for (i = 0; i < EMX_RETA_SIZE; ++i) {
2711 			uint32_t q;
2712 
2713 			q = (i % sc->rx_ring_inuse) << EMX_RETA_RINGIDX_SHIFT;
2714 			reta |= q << (8 * i);
2715 		}
2716 		EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2717 
2718 		for (i = 0; i < EMX_NRETA; ++i)
2719 			E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2720 
2721 		/*
2722 		 * Enable multiple receive queues.
2723 		 * Enable IPv4 RSS standard hash functions.
2724 		 * Disable RSS interrupt.
2725 		 */
2726 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2727 				E1000_MRQC_ENABLE_RSS_2Q |
2728 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2729 				E1000_MRQC_RSS_FIELD_IPV4);
2730 	}
2731 
2732 	/*
2733 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2734 	 * long latencies are observed, like Lenovo X60. This
2735 	 * change eliminates the problem, but since having positive
2736 	 * values in RDTR is a known source of problems on other
2737 	 * platforms another solution is being sought.
2738 	 */
2739 	if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2740 		E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2741 		E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2742 	}
2743 
2744 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2745 		struct emx_rxdata *rdata = &sc->rx_data[i];
2746 
2747 		/*
2748 		 * Setup the Base and Length of the Rx Descriptor Ring
2749 		 */
2750 		bus_addr = rdata->rx_desc_paddr;
2751 		E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2752 		    rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2753 		E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2754 		    (uint32_t)(bus_addr >> 32));
2755 		E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2756 		    (uint32_t)bus_addr);
2757 
2758 		/*
2759 		 * Setup the HW Rx Head and Tail Descriptor Pointers
2760 		 */
2761 		E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2762 		E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2763 		    sc->rx_data[i].num_rx_desc - 1);
2764 	}
2765 
2766 	/* Setup the Receive Control Register */
2767 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2768 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2769 		E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2770 		(sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2771 
2772 	/* Make sure VLAN Filters are off */
2773 	rctl &= ~E1000_RCTL_VFE;
2774 
2775 	/* Don't store bad paket */
2776 	rctl &= ~E1000_RCTL_SBP;
2777 
2778 	/* MCLBYTES */
2779 	rctl |= E1000_RCTL_SZ_2048;
2780 
2781 	if (ifp->if_mtu > ETHERMTU)
2782 		rctl |= E1000_RCTL_LPE;
2783 	else
2784 		rctl &= ~E1000_RCTL_LPE;
2785 
2786 	/* Enable Receives */
2787 	E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2788 }
2789 
2790 static void
2791 emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2792 {
2793 	struct emx_rxbuf *rx_buffer;
2794 	int i;
2795 
2796 	/* Free Receive Descriptor ring */
2797 	if (rdata->rx_desc) {
2798 		bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2799 		bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2800 				rdata->rx_desc_dmap);
2801 		bus_dma_tag_destroy(rdata->rx_desc_dtag);
2802 
2803 		rdata->rx_desc = NULL;
2804 	}
2805 
2806 	if (rdata->rx_buf == NULL)
2807 		return;
2808 
2809 	for (i = 0; i < ndesc; i++) {
2810 		rx_buffer = &rdata->rx_buf[i];
2811 
2812 		KKASSERT(rx_buffer->m_head == NULL);
2813 		bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2814 	}
2815 	bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2816 	bus_dma_tag_destroy(rdata->rxtag);
2817 
2818 	kfree(rdata->rx_buf, M_DEVBUF);
2819 	rdata->rx_buf = NULL;
2820 }
2821 
2822 static void
2823 emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2824 {
2825 	struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2826 	struct ifnet *ifp = &sc->arpcom.ac_if;
2827 	uint32_t staterr;
2828 	emx_rxdesc_t *current_desc;
2829 	struct mbuf *mp;
2830 	int i;
2831 	struct mbuf_chain chain[MAXCPU];
2832 
2833 	i = rdata->next_rx_desc_to_check;
2834 	current_desc = &rdata->rx_desc[i];
2835 	staterr = le32toh(current_desc->rxd_staterr);
2836 
2837 	if (!(staterr & E1000_RXD_STAT_DD))
2838 		return;
2839 
2840 	ether_input_chain_init(chain);
2841 
2842 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2843 		struct pktinfo *pi = NULL, pi0;
2844 		struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2845 		struct mbuf *m = NULL;
2846 		int eop, len;
2847 
2848 		logif(pkt_receive);
2849 
2850 		mp = rx_buf->m_head;
2851 
2852 		/*
2853 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2854 		 * needs to access the last received byte in the mbuf.
2855 		 */
2856 		bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2857 				BUS_DMASYNC_POSTREAD);
2858 
2859 		len = le16toh(current_desc->rxd_length);
2860 		if (staterr & E1000_RXD_STAT_EOP) {
2861 			count--;
2862 			eop = 1;
2863 		} else {
2864 			eop = 0;
2865 		}
2866 
2867 		if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2868 			uint16_t vlan = 0;
2869 			uint32_t mrq, rss_hash;
2870 
2871 			/*
2872 			 * Save several necessary information,
2873 			 * before emx_newbuf() destroy it.
2874 			 */
2875 			if ((staterr & E1000_RXD_STAT_VP) && eop)
2876 				vlan = le16toh(current_desc->rxd_vlan);
2877 
2878 			mrq = le32toh(current_desc->rxd_mrq);
2879 			rss_hash = le32toh(current_desc->rxd_rss);
2880 
2881 			EMX_RSS_DPRINTF(sc, 10,
2882 			    "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2883 			    ring_idx, mrq, rss_hash);
2884 
2885 			if (emx_newbuf(sc, rdata, i, 0) != 0) {
2886 				ifp->if_iqdrops++;
2887 				goto discard;
2888 			}
2889 
2890 			/* Assign correct length to the current fragment */
2891 			mp->m_len = len;
2892 
2893 			if (rdata->fmp == NULL) {
2894 				mp->m_pkthdr.len = len;
2895 				rdata->fmp = mp; /* Store the first mbuf */
2896 				rdata->lmp = mp;
2897 			} else {
2898 				/*
2899 				 * Chain mbuf's together
2900 				 */
2901 				rdata->lmp->m_next = mp;
2902 				rdata->lmp = rdata->lmp->m_next;
2903 				rdata->fmp->m_pkthdr.len += len;
2904 			}
2905 
2906 			if (eop) {
2907 				rdata->fmp->m_pkthdr.rcvif = ifp;
2908 				ifp->if_ipackets++;
2909 
2910 				if (ifp->if_capenable & IFCAP_RXCSUM)
2911 					emx_rxcsum(staterr, rdata->fmp);
2912 
2913 				if (staterr & E1000_RXD_STAT_VP) {
2914 					rdata->fmp->m_pkthdr.ether_vlantag =
2915 					    vlan;
2916 					rdata->fmp->m_flags |= M_VLANTAG;
2917 				}
2918 				m = rdata->fmp;
2919 				rdata->fmp = NULL;
2920 				rdata->lmp = NULL;
2921 
2922 				if (ifp->if_capenable & IFCAP_RSS) {
2923 					pi = emx_rssinfo(m, &pi0, mrq,
2924 							 rss_hash, staterr);
2925 				}
2926 #ifdef EMX_RSS_DEBUG
2927 				rdata->rx_pkts++;
2928 #endif
2929 			}
2930 		} else {
2931 			ifp->if_ierrors++;
2932 discard:
2933 			emx_setup_rxdesc(current_desc, rx_buf);
2934 			if (rdata->fmp != NULL) {
2935 				m_freem(rdata->fmp);
2936 				rdata->fmp = NULL;
2937 				rdata->lmp = NULL;
2938 			}
2939 			m = NULL;
2940 		}
2941 
2942 		if (m != NULL)
2943 			ether_input_chain(ifp, m, pi, chain);
2944 
2945 		/* Advance our pointers to the next descriptor. */
2946 		if (++i == rdata->num_rx_desc)
2947 			i = 0;
2948 
2949 		current_desc = &rdata->rx_desc[i];
2950 		staterr = le32toh(current_desc->rxd_staterr);
2951 	}
2952 	rdata->next_rx_desc_to_check = i;
2953 
2954 	ether_input_dispatch(chain);
2955 
2956 	/* Advance the E1000's Receive Queue "Tail Pointer". */
2957 	if (--i < 0)
2958 		i = rdata->num_rx_desc - 1;
2959 	E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2960 }
2961 
2962 static void
2963 emx_enable_intr(struct emx_softc *sc)
2964 {
2965 	uint32_t ims_mask = IMS_ENABLE_MASK;
2966 
2967 	lwkt_serialize_handler_enable(&sc->main_serialize);
2968 
2969 #if 0
2970 	if (sc->hw.mac.type == e1000_82574) {
2971 		E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2972 		ims_mask |= EM_MSIX_MASK;
2973 	}
2974 #endif
2975 	E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2976 }
2977 
2978 static void
2979 emx_disable_intr(struct emx_softc *sc)
2980 {
2981 	if (sc->hw.mac.type == e1000_82574)
2982 		E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2983 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2984 
2985 	lwkt_serialize_handler_disable(&sc->main_serialize);
2986 }
2987 
2988 /*
2989  * Bit of a misnomer, what this really means is
2990  * to enable OS management of the system... aka
2991  * to disable special hardware management features
2992  */
2993 static void
2994 emx_get_mgmt(struct emx_softc *sc)
2995 {
2996 	/* A shared code workaround */
2997 	if (sc->has_manage) {
2998 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2999 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3000 
3001 		/* disable hardware interception of ARP */
3002 		manc &= ~(E1000_MANC_ARP_EN);
3003 
3004                 /* enable receiving management packets to the host */
3005 		manc |= E1000_MANC_EN_MNG2HOST;
3006 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3007 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3008 		manc2h |= E1000_MNG2HOST_PORT_623;
3009 		manc2h |= E1000_MNG2HOST_PORT_664;
3010 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3011 
3012 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3013 	}
3014 }
3015 
3016 /*
3017  * Give control back to hardware management
3018  * controller if there is one.
3019  */
3020 static void
3021 emx_rel_mgmt(struct emx_softc *sc)
3022 {
3023 	if (sc->has_manage) {
3024 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3025 
3026 		/* re-enable hardware interception of ARP */
3027 		manc |= E1000_MANC_ARP_EN;
3028 		manc &= ~E1000_MANC_EN_MNG2HOST;
3029 
3030 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3031 	}
3032 }
3033 
3034 /*
3035  * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3036  * For ASF and Pass Through versions of f/w this means that
3037  * the driver is loaded.  For AMT version (only with 82573)
3038  * of the f/w this means that the network i/f is open.
3039  */
3040 static void
3041 emx_get_hw_control(struct emx_softc *sc)
3042 {
3043 	/* Let firmware know the driver has taken over */
3044 	if (sc->hw.mac.type == e1000_82573) {
3045 		uint32_t swsm;
3046 
3047 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3048 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3049 		    swsm | E1000_SWSM_DRV_LOAD);
3050 	} else {
3051 		uint32_t ctrl_ext;
3052 
3053 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3054 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3055 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3056 	}
3057 	sc->control_hw = 1;
3058 }
3059 
3060 /*
3061  * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3062  * For ASF and Pass Through versions of f/w this means that the
3063  * driver is no longer loaded.  For AMT version (only with 82573)
3064  * of the f/w this means that the network i/f is closed.
3065  */
3066 static void
3067 emx_rel_hw_control(struct emx_softc *sc)
3068 {
3069 	if (!sc->control_hw)
3070 		return;
3071 	sc->control_hw = 0;
3072 
3073 	/* Let firmware taken over control of h/w */
3074 	if (sc->hw.mac.type == e1000_82573) {
3075 		uint32_t swsm;
3076 
3077 		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3078 		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3079 		    swsm & ~E1000_SWSM_DRV_LOAD);
3080 	} else {
3081 		uint32_t ctrl_ext;
3082 
3083 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3084 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3085 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3086 	}
3087 }
3088 
3089 static int
3090 emx_is_valid_eaddr(const uint8_t *addr)
3091 {
3092 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3093 
3094 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3095 		return (FALSE);
3096 
3097 	return (TRUE);
3098 }
3099 
3100 /*
3101  * Enable PCI Wake On Lan capability
3102  */
3103 void
3104 emx_enable_wol(device_t dev)
3105 {
3106 	uint16_t cap, status;
3107 	uint8_t id;
3108 
3109 	/* First find the capabilities pointer*/
3110 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3111 
3112 	/* Read the PM Capabilities */
3113 	id = pci_read_config(dev, cap, 1);
3114 	if (id != PCIY_PMG)     /* Something wrong */
3115 		return;
3116 
3117 	/*
3118 	 * OK, we have the power capabilities,
3119 	 * so now get the status register
3120 	 */
3121 	cap += PCIR_POWER_STATUS;
3122 	status = pci_read_config(dev, cap, 2);
3123 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3124 	pci_write_config(dev, cap, status, 2);
3125 }
3126 
3127 static void
3128 emx_update_stats(struct emx_softc *sc)
3129 {
3130 	struct ifnet *ifp = &sc->arpcom.ac_if;
3131 
3132 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3133 	    (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3134 		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3135 		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3136 	}
3137 	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3138 	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3139 	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3140 	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3141 
3142 	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3143 	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3144 	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3145 	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3146 	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3147 	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3148 	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3149 	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3150 	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3151 	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3152 	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3153 	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3154 	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3155 	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3156 	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3157 	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3158 	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3159 	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3160 	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3161 	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3162 
3163 	/* For the 64-bit byte counters the low dword must be read first. */
3164 	/* Both registers clear on the read of the high dword */
3165 
3166 	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3167 	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3168 
3169 	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3170 	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3171 	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3172 	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3173 	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3174 
3175 	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3176 	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3177 
3178 	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3179 	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3180 	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3181 	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3182 	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3183 	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3184 	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3185 	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3186 	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3187 	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3188 
3189 	sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3190 	sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3191 	sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3192 	sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3193 	sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3194 	sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3195 
3196 	ifp->if_collisions = sc->stats.colc;
3197 
3198 	/* Rx Errors */
3199 	ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3200 			  sc->stats.crcerrs + sc->stats.algnerrc +
3201 			  sc->stats.ruc + sc->stats.roc +
3202 			  sc->stats.mpc + sc->stats.cexterr;
3203 
3204 	/* Tx Errors */
3205 	ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3206 			  sc->watchdog_events;
3207 }
3208 
3209 static void
3210 emx_print_debug_info(struct emx_softc *sc)
3211 {
3212 	device_t dev = sc->dev;
3213 	uint8_t *hw_addr = sc->hw.hw_addr;
3214 
3215 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3216 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3217 	    E1000_READ_REG(&sc->hw, E1000_CTRL),
3218 	    E1000_READ_REG(&sc->hw, E1000_RCTL));
3219 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3220 	    ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3221 	    (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3222 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3223 	    sc->hw.fc.high_water, sc->hw.fc.low_water);
3224 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3225 	    E1000_READ_REG(&sc->hw, E1000_TIDV),
3226 	    E1000_READ_REG(&sc->hw, E1000_TADV));
3227 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3228 	    E1000_READ_REG(&sc->hw, E1000_RDTR),
3229 	    E1000_READ_REG(&sc->hw, E1000_RADV));
3230 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3231 	    E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3232 	    E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3233 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3234 	    E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3235 	    E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3236 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3237 	    sc->num_tx_desc_avail);
3238 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3239 	    sc->no_tx_desc_avail1);
3240 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3241 	    sc->no_tx_desc_avail2);
3242 	device_printf(dev, "Std mbuf failed = %ld\n",
3243 	    sc->mbuf_alloc_failed);
3244 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3245 	    sc->rx_data[0].mbuf_cluster_failed);
3246 	device_printf(dev, "Driver dropped packets = %ld\n",
3247 	    sc->dropped_pkts);
3248 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3249 	    sc->no_tx_dma_setup);
3250 
3251 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3252 	    sc->tx_csum_try_pullup);
3253 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3254 	    sc->tx_csum_pullup1);
3255 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3256 	    sc->tx_csum_pullup1_failed);
3257 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3258 	    sc->tx_csum_pullup2);
3259 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3260 	    sc->tx_csum_pullup2_failed);
3261 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3262 	    sc->tx_csum_drop1);
3263 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3264 	    sc->tx_csum_drop2);
3265 }
3266 
3267 static void
3268 emx_print_hw_stats(struct emx_softc *sc)
3269 {
3270 	device_t dev = sc->dev;
3271 
3272 	device_printf(dev, "Excessive collisions = %lld\n",
3273 	    (long long)sc->stats.ecol);
3274 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3275 	device_printf(dev, "Symbol errors = %lld\n",
3276 	    (long long)sc->stats.symerrs);
3277 #endif
3278 	device_printf(dev, "Sequence errors = %lld\n",
3279 	    (long long)sc->stats.sec);
3280 	device_printf(dev, "Defer count = %lld\n",
3281 	    (long long)sc->stats.dc);
3282 	device_printf(dev, "Missed Packets = %lld\n",
3283 	    (long long)sc->stats.mpc);
3284 	device_printf(dev, "Receive No Buffers = %lld\n",
3285 	    (long long)sc->stats.rnbc);
3286 	/* RLEC is inaccurate on some hardware, calculate our own. */
3287 	device_printf(dev, "Receive Length Errors = %lld\n",
3288 	    ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3289 	device_printf(dev, "Receive errors = %lld\n",
3290 	    (long long)sc->stats.rxerrc);
3291 	device_printf(dev, "Crc errors = %lld\n",
3292 	    (long long)sc->stats.crcerrs);
3293 	device_printf(dev, "Alignment errors = %lld\n",
3294 	    (long long)sc->stats.algnerrc);
3295 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3296 	    (long long)sc->stats.cexterr);
3297 	device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3298 	device_printf(dev, "watchdog timeouts = %ld\n",
3299 	    sc->watchdog_events);
3300 	device_printf(dev, "XON Rcvd = %lld\n",
3301 	    (long long)sc->stats.xonrxc);
3302 	device_printf(dev, "XON Xmtd = %lld\n",
3303 	    (long long)sc->stats.xontxc);
3304 	device_printf(dev, "XOFF Rcvd = %lld\n",
3305 	    (long long)sc->stats.xoffrxc);
3306 	device_printf(dev, "XOFF Xmtd = %lld\n",
3307 	    (long long)sc->stats.xofftxc);
3308 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3309 	    (long long)sc->stats.gprc);
3310 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3311 	    (long long)sc->stats.gptc);
3312 }
3313 
3314 static void
3315 emx_print_nvm_info(struct emx_softc *sc)
3316 {
3317 	uint16_t eeprom_data;
3318 	int i, j, row = 0;
3319 
3320 	/* Its a bit crude, but it gets the job done */
3321 	kprintf("\nInterface EEPROM Dump:\n");
3322 	kprintf("Offset\n0x0000  ");
3323 	for (i = 0, j = 0; i < 32; i++, j++) {
3324 		if (j == 8) { /* Make the offset block */
3325 			j = 0; ++row;
3326 			kprintf("\n0x00%x0  ",row);
3327 		}
3328 		e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3329 		kprintf("%04x ", eeprom_data);
3330 	}
3331 	kprintf("\n");
3332 }
3333 
3334 static int
3335 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3336 {
3337 	struct emx_softc *sc;
3338 	struct ifnet *ifp;
3339 	int error, result;
3340 
3341 	result = -1;
3342 	error = sysctl_handle_int(oidp, &result, 0, req);
3343 	if (error || !req->newptr)
3344 		return (error);
3345 
3346 	sc = (struct emx_softc *)arg1;
3347 	ifp = &sc->arpcom.ac_if;
3348 
3349 	ifnet_serialize_all(ifp);
3350 
3351 	if (result == 1)
3352 		emx_print_debug_info(sc);
3353 
3354 	/*
3355 	 * This value will cause a hex dump of the
3356 	 * first 32 16-bit words of the EEPROM to
3357 	 * the screen.
3358 	 */
3359 	if (result == 2)
3360 		emx_print_nvm_info(sc);
3361 
3362 	ifnet_deserialize_all(ifp);
3363 
3364 	return (error);
3365 }
3366 
3367 static int
3368 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3369 {
3370 	int error, result;
3371 
3372 	result = -1;
3373 	error = sysctl_handle_int(oidp, &result, 0, req);
3374 	if (error || !req->newptr)
3375 		return (error);
3376 
3377 	if (result == 1) {
3378 		struct emx_softc *sc = (struct emx_softc *)arg1;
3379 		struct ifnet *ifp = &sc->arpcom.ac_if;
3380 
3381 		ifnet_serialize_all(ifp);
3382 		emx_print_hw_stats(sc);
3383 		ifnet_deserialize_all(ifp);
3384 	}
3385 	return (error);
3386 }
3387 
3388 static void
3389 emx_add_sysctl(struct emx_softc *sc)
3390 {
3391 #ifdef EMX_RSS_DEBUG
3392 	char rx_pkt[32];
3393 	int i;
3394 #endif
3395 
3396 	sysctl_ctx_init(&sc->sysctl_ctx);
3397 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3398 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3399 				device_get_nameunit(sc->dev),
3400 				CTLFLAG_RD, 0, "");
3401 	if (sc->sysctl_tree == NULL) {
3402 		device_printf(sc->dev, "can't add sysctl node\n");
3403 		return;
3404 	}
3405 
3406 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3407 			OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3408 			emx_sysctl_debug_info, "I", "Debug Information");
3409 
3410 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3411 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3412 			emx_sysctl_stats, "I", "Statistics");
3413 
3414 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3415 		       OID_AUTO, "rxd", CTLFLAG_RD,
3416 		       &sc->rx_data[0].num_rx_desc, 0, NULL);
3417 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3418 		       OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3419 
3420 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3421 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3422 			sc, 0, emx_sysctl_int_throttle, "I",
3423 			"interrupt throttling rate");
3424 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3425 			OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3426 			sc, 0, emx_sysctl_int_tx_nsegs, "I",
3427 			"# segments per TX interrupt");
3428 
3429 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3430 		       OID_AUTO, "rx_ring_inuse", CTLFLAG_RD,
3431 		       &sc->rx_ring_inuse, 0, "RX ring in use");
3432 
3433 #ifdef EMX_RSS_DEBUG
3434 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3435 		       OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3436 		       0, "RSS debug level");
3437 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3438 		ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3439 		SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3440 				SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3441 				rx_pkt, CTLFLAG_RW,
3442 				&sc->rx_data[i].rx_pkts, 0, "RXed packets");
3443 	}
3444 #endif
3445 }
3446 
3447 static int
3448 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3449 {
3450 	struct emx_softc *sc = (void *)arg1;
3451 	struct ifnet *ifp = &sc->arpcom.ac_if;
3452 	int error, throttle;
3453 
3454 	throttle = sc->int_throttle_ceil;
3455 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3456 	if (error || req->newptr == NULL)
3457 		return error;
3458 	if (throttle < 0 || throttle > 1000000000 / 256)
3459 		return EINVAL;
3460 
3461 	if (throttle) {
3462 		/*
3463 		 * Set the interrupt throttling rate in 256ns increments,
3464 		 * recalculate sysctl value assignment to get exact frequency.
3465 		 */
3466 		throttle = 1000000000 / 256 / throttle;
3467 
3468 		/* Upper 16bits of ITR is reserved and should be zero */
3469 		if (throttle & 0xffff0000)
3470 			return EINVAL;
3471 	}
3472 
3473 	ifnet_serialize_all(ifp);
3474 
3475 	if (throttle)
3476 		sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3477 	else
3478 		sc->int_throttle_ceil = 0;
3479 
3480 	if (ifp->if_flags & IFF_RUNNING)
3481 		emx_set_itr(sc, throttle);
3482 
3483 	ifnet_deserialize_all(ifp);
3484 
3485 	if (bootverbose) {
3486 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3487 			  sc->int_throttle_ceil);
3488 	}
3489 	return 0;
3490 }
3491 
3492 static int
3493 emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3494 {
3495 	struct emx_softc *sc = (void *)arg1;
3496 	struct ifnet *ifp = &sc->arpcom.ac_if;
3497 	int error, segs;
3498 
3499 	segs = sc->tx_int_nsegs;
3500 	error = sysctl_handle_int(oidp, &segs, 0, req);
3501 	if (error || req->newptr == NULL)
3502 		return error;
3503 	if (segs <= 0)
3504 		return EINVAL;
3505 
3506 	ifnet_serialize_all(ifp);
3507 
3508 	/*
3509 	 * Don't allow int_tx_nsegs to become:
3510 	 * o  Less the oact_tx_desc
3511 	 * o  Too large that no TX desc will cause TX interrupt to
3512 	 *    be generated (OACTIVE will never recover)
3513 	 * o  Too small that will cause tx_dd[] overflow
3514 	 */
3515 	if (segs < sc->oact_tx_desc ||
3516 	    segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3517 	    segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3518 		error = EINVAL;
3519 	} else {
3520 		error = 0;
3521 		sc->tx_int_nsegs = segs;
3522 	}
3523 
3524 	ifnet_deserialize_all(ifp);
3525 
3526 	return error;
3527 }
3528 
3529 static int
3530 emx_dma_alloc(struct emx_softc *sc)
3531 {
3532 	int error, i;
3533 
3534 	/*
3535 	 * Create top level busdma tag
3536 	 */
3537 	error = bus_dma_tag_create(NULL, 1, 0,
3538 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3539 			NULL, NULL,
3540 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3541 			0, &sc->parent_dtag);
3542 	if (error) {
3543 		device_printf(sc->dev, "could not create top level DMA tag\n");
3544 		return error;
3545 	}
3546 
3547 	/*
3548 	 * Allocate transmit descriptors ring and buffers
3549 	 */
3550 	error = emx_create_tx_ring(sc);
3551 	if (error) {
3552 		device_printf(sc->dev, "Could not setup transmit structures\n");
3553 		return error;
3554 	}
3555 
3556 	/*
3557 	 * Allocate receive descriptors ring and buffers
3558 	 */
3559 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3560 		error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3561 		if (error) {
3562 			device_printf(sc->dev,
3563 			    "Could not setup receive structures\n");
3564 			return error;
3565 		}
3566 	}
3567 	return 0;
3568 }
3569 
3570 static void
3571 emx_dma_free(struct emx_softc *sc)
3572 {
3573 	int i;
3574 
3575 	emx_destroy_tx_ring(sc, sc->num_tx_desc);
3576 
3577 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
3578 		emx_destroy_rx_ring(sc, &sc->rx_data[i],
3579 				    sc->rx_data[i].num_rx_desc);
3580 	}
3581 
3582 	/* Free top level busdma tag */
3583 	if (sc->parent_dtag != NULL)
3584 		bus_dma_tag_destroy(sc->parent_dtag);
3585 }
3586 
3587 static void
3588 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3589 {
3590 	struct emx_softc *sc = ifp->if_softc;
3591 
3592 	switch (slz) {
3593 	case IFNET_SERIALIZE_ALL:
3594 		lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 0);
3595 		break;
3596 
3597 	case IFNET_SERIALIZE_MAIN:
3598 		lwkt_serialize_enter(&sc->main_serialize);
3599 		break;
3600 
3601 	case IFNET_SERIALIZE_TX:
3602 		lwkt_serialize_enter(&sc->tx_serialize);
3603 		break;
3604 
3605 	case IFNET_SERIALIZE_RX(0):
3606 		lwkt_serialize_enter(&sc->rx_data[0].rx_serialize);
3607 		break;
3608 
3609 	case IFNET_SERIALIZE_RX(1):
3610 		lwkt_serialize_enter(&sc->rx_data[1].rx_serialize);
3611 		break;
3612 
3613 	default:
3614 		panic("%s unsupported serialize type\n", ifp->if_xname);
3615 	}
3616 }
3617 
3618 static void
3619 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3620 {
3621 	struct emx_softc *sc = ifp->if_softc;
3622 
3623 	switch (slz) {
3624 	case IFNET_SERIALIZE_ALL:
3625 		lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 0);
3626 		break;
3627 
3628 	case IFNET_SERIALIZE_MAIN:
3629 		lwkt_serialize_exit(&sc->main_serialize);
3630 		break;
3631 
3632 	case IFNET_SERIALIZE_TX:
3633 		lwkt_serialize_exit(&sc->tx_serialize);
3634 		break;
3635 
3636 	case IFNET_SERIALIZE_RX(0):
3637 		lwkt_serialize_exit(&sc->rx_data[0].rx_serialize);
3638 		break;
3639 
3640 	case IFNET_SERIALIZE_RX(1):
3641 		lwkt_serialize_exit(&sc->rx_data[1].rx_serialize);
3642 		break;
3643 
3644 	default:
3645 		panic("%s unsupported serialize type\n", ifp->if_xname);
3646 	}
3647 }
3648 
3649 static int
3650 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3651 {
3652 	struct emx_softc *sc = ifp->if_softc;
3653 
3654 	switch (slz) {
3655 	case IFNET_SERIALIZE_ALL:
3656 		return lwkt_serialize_array_try(sc->serializes,
3657 						EMX_NSERIALIZE, 0);
3658 
3659 	case IFNET_SERIALIZE_MAIN:
3660 		return lwkt_serialize_try(&sc->main_serialize);
3661 
3662 	case IFNET_SERIALIZE_TX:
3663 		return lwkt_serialize_try(&sc->tx_serialize);
3664 
3665 	case IFNET_SERIALIZE_RX(0):
3666 		return lwkt_serialize_try(&sc->rx_data[0].rx_serialize);
3667 
3668 	case IFNET_SERIALIZE_RX(1):
3669 		return lwkt_serialize_try(&sc->rx_data[1].rx_serialize);
3670 
3671 	default:
3672 		panic("%s unsupported serialize type\n", ifp->if_xname);
3673 	}
3674 }
3675 
3676 static void
3677 emx_serialize_skipmain(struct emx_softc *sc)
3678 {
3679 	lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3680 }
3681 
3682 static void
3683 emx_deserialize_skipmain(struct emx_softc *sc)
3684 {
3685 	lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3686 }
3687 
3688 #ifdef INVARIANTS
3689 
3690 static void
3691 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3692 		     boolean_t serialized)
3693 {
3694 	struct emx_softc *sc = ifp->if_softc;
3695 	int i;
3696 
3697 	switch (slz) {
3698 	case IFNET_SERIALIZE_ALL:
3699 		if (serialized) {
3700 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3701 				ASSERT_SERIALIZED(sc->serializes[i]);
3702 		} else {
3703 			for (i = 0; i < EMX_NSERIALIZE; ++i)
3704 				ASSERT_NOT_SERIALIZED(sc->serializes[i]);
3705 		}
3706 		break;
3707 
3708 	case IFNET_SERIALIZE_MAIN:
3709 		if (serialized)
3710 			ASSERT_SERIALIZED(&sc->main_serialize);
3711 		else
3712 			ASSERT_NOT_SERIALIZED(&sc->main_serialize);
3713 		break;
3714 
3715 	case IFNET_SERIALIZE_TX:
3716 		if (serialized)
3717 			ASSERT_SERIALIZED(&sc->tx_serialize);
3718 		else
3719 			ASSERT_NOT_SERIALIZED(&sc->tx_serialize);
3720 		break;
3721 
3722 	case IFNET_SERIALIZE_RX(0):
3723 		if (serialized)
3724 			ASSERT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3725 		else
3726 			ASSERT_NOT_SERIALIZED(&sc->rx_data[0].rx_serialize);
3727 		break;
3728 
3729 	case IFNET_SERIALIZE_RX(1):
3730 		if (serialized)
3731 			ASSERT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3732 		else
3733 			ASSERT_NOT_SERIALIZED(&sc->rx_data[1].rx_serialize);
3734 		break;
3735 
3736 	default:
3737 		panic("%s unsupported serialize type\n", ifp->if_xname);
3738 	}
3739 }
3740 
3741 #endif	/* INVARIANTS */
3742 
3743 #ifdef IFPOLL_ENABLE
3744 
3745 static void
3746 emx_qpoll_status(struct ifnet *ifp, int pollhz __unused)
3747 {
3748 	struct emx_softc *sc = ifp->if_softc;
3749 	uint32_t reg_icr;
3750 
3751 	ASSERT_SERIALIZED(&sc->main_serialize);
3752 
3753 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3754 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3755 		emx_serialize_skipmain(sc);
3756 
3757 		callout_stop(&sc->timer);
3758 		sc->hw.mac.get_link_status = 1;
3759 		emx_update_link_status(sc);
3760 		callout_reset(&sc->timer, hz, emx_timer, sc);
3761 
3762 		emx_deserialize_skipmain(sc);
3763 	}
3764 }
3765 
3766 static void
3767 emx_qpoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3768 {
3769 	struct emx_softc *sc = ifp->if_softc;
3770 
3771 	ASSERT_SERIALIZED(&sc->tx_serialize);
3772 
3773 	emx_txeof(sc);
3774 	if (!ifq_is_empty(&ifp->if_snd))
3775 		if_devstart(ifp);
3776 }
3777 
3778 static void
3779 emx_qpoll_rx(struct ifnet *ifp, void *arg, int cycle)
3780 {
3781 	struct emx_softc *sc = ifp->if_softc;
3782 	struct emx_rxdata *rdata = arg;
3783 
3784 	ASSERT_SERIALIZED(&rdata->rx_serialize);
3785 
3786 	emx_rxeof(sc, rdata - sc->rx_data, cycle);
3787 }
3788 
3789 static void
3790 emx_qpoll(struct ifnet *ifp, struct ifpoll_info *info)
3791 {
3792 	struct emx_softc *sc = ifp->if_softc;
3793 
3794 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3795 
3796 	if (info) {
3797 		int i;
3798 
3799 		info->ifpi_status.status_func = emx_qpoll_status;
3800 		info->ifpi_status.serializer = &sc->main_serialize;
3801 
3802 		info->ifpi_tx[0].poll_func = emx_qpoll_tx;
3803 		info->ifpi_tx[0].arg = NULL;
3804 		info->ifpi_tx[0].serializer = &sc->tx_serialize;
3805 
3806 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3807 			info->ifpi_rx[i].poll_func = emx_qpoll_rx;
3808 			info->ifpi_rx[i].arg = &sc->rx_data[i];
3809 			info->ifpi_rx[i].serializer =
3810 				&sc->rx_data[i].rx_serialize;
3811 		}
3812 
3813 		if (ifp->if_flags & IFF_RUNNING)
3814 			emx_disable_intr(sc);
3815 	} else if (ifp->if_flags & IFF_RUNNING) {
3816 		emx_enable_intr(sc);
3817 	}
3818 }
3819 
3820 #endif	/* IFPOLL_ENABLE */
3821 
3822 static void
3823 emx_set_itr(struct emx_softc *sc, uint32_t itr)
3824 {
3825 	E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3826 	if (sc->hw.mac.type == e1000_82574) {
3827 		int i;
3828 
3829 		/*
3830 		 * When using MSIX interrupts we need to
3831 		 * throttle using the EITR register
3832 		 */
3833 		for (i = 0; i < 4; ++i)
3834 			E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3835 	}
3836 }
3837