xref: /dragonfly/sys/dev/netif/et/if_et.c (revision 63ab6604)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.17 2008/09/17 08:51:29 sephe Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/bitops.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/interrupt.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/rman.h>
46 #include <sys/serialize.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/bpf.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/vlan/if_vlan_var.h>
59 
60 #include <dev/netif/mii_layer/miivar.h>
61 
62 #include <bus/pci/pcireg.h>
63 #include <bus/pci/pcivar.h>
64 #include <bus/pci/pcidevs.h>
65 
66 #include <dev/netif/et/if_etreg.h>
67 #include <dev/netif/et/if_etvar.h>
68 
69 #include "miibus_if.h"
70 
71 static int	et_probe(device_t);
72 static int	et_attach(device_t);
73 static int	et_detach(device_t);
74 static int	et_shutdown(device_t);
75 
76 static int	et_miibus_readreg(device_t, int, int);
77 static int	et_miibus_writereg(device_t, int, int, int);
78 static void	et_miibus_statchg(device_t);
79 
80 static void	et_init(void *);
81 static int	et_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
82 static void	et_start(struct ifnet *);
83 static void	et_watchdog(struct ifnet *);
84 static int	et_ifmedia_upd(struct ifnet *);
85 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
86 
87 static int	et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
88 static int	et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
89 
90 static void	et_intr(void *);
91 static void	et_enable_intrs(struct et_softc *, uint32_t);
92 static void	et_disable_intrs(struct et_softc *);
93 static void	et_rxeof(struct et_softc *);
94 static void	et_txeof(struct et_softc *, int);
95 
96 static int	et_dma_alloc(device_t);
97 static void	et_dma_free(device_t);
98 static void	et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
99 static int	et_dma_mbuf_create(device_t);
100 static void	et_dma_mbuf_destroy(device_t, int, const int[]);
101 static int	et_jumbo_mem_alloc(device_t);
102 static void	et_jumbo_mem_free(device_t);
103 static int	et_init_tx_ring(struct et_softc *);
104 static int	et_init_rx_ring(struct et_softc *);
105 static void	et_free_tx_ring(struct et_softc *);
106 static void	et_free_rx_ring(struct et_softc *);
107 static int	et_encap(struct et_softc *, struct mbuf **);
108 static struct et_jslot *
109 		et_jalloc(struct et_jumbo_data *);
110 static void	et_jfree(void *);
111 static void	et_jref(void *);
112 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
113 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
114 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
115 static int	et_newbuf_jumbo(struct et_rxbuf_data *, int, int);
116 
117 static void	et_stop(struct et_softc *);
118 static int	et_chip_init(struct et_softc *);
119 static void	et_chip_attach(struct et_softc *);
120 static void	et_init_mac(struct et_softc *);
121 static void	et_init_rxmac(struct et_softc *);
122 static void	et_init_txmac(struct et_softc *);
123 static int	et_init_rxdma(struct et_softc *);
124 static int	et_init_txdma(struct et_softc *);
125 static int	et_start_rxdma(struct et_softc *);
126 static int	et_start_txdma(struct et_softc *);
127 static int	et_stop_rxdma(struct et_softc *);
128 static int	et_stop_txdma(struct et_softc *);
129 static int	et_enable_txrx(struct et_softc *, int);
130 static void	et_reset(struct et_softc *);
131 static int	et_bus_config(device_t);
132 static void	et_get_eaddr(device_t, uint8_t[]);
133 static void	et_setmulti(struct et_softc *);
134 static void	et_tick(void *);
135 static void	et_setmedia(struct et_softc *);
136 static void	et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t);
137 
138 static const struct et_dev {
139 	uint16_t	vid;
140 	uint16_t	did;
141 	const char	*desc;
142 } et_devices[] = {
143 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
144 	  "Agere ET1310 Gigabit Ethernet" },
145 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
146 	  "Agere ET1310 Fast Ethernet" },
147 	{ 0, 0, NULL }
148 };
149 
150 static device_method_t et_methods[] = {
151 	DEVMETHOD(device_probe,		et_probe),
152 	DEVMETHOD(device_attach,	et_attach),
153 	DEVMETHOD(device_detach,	et_detach),
154 	DEVMETHOD(device_shutdown,	et_shutdown),
155 #if 0
156 	DEVMETHOD(device_suspend,	et_suspend),
157 	DEVMETHOD(device_resume,	et_resume),
158 #endif
159 
160 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
161 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
162 
163 	DEVMETHOD(miibus_readreg,	et_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	et_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	et_miibus_statchg),
166 
167 	{ 0, 0 }
168 };
169 
170 static driver_t et_driver = {
171 	"et",
172 	et_methods,
173 	sizeof(struct et_softc)
174 };
175 
176 static devclass_t et_devclass;
177 
178 DECLARE_DUMMY_MODULE(if_et);
179 MODULE_DEPEND(if_et, miibus, 1, 1, 1);
180 DRIVER_MODULE(if_et, pci, et_driver, et_devclass, 0, 0);
181 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
182 
183 static int	et_rx_intr_npkts = 129;
184 static int	et_rx_intr_delay = 25;		/* x4 usec */
185 static int	et_tx_intr_nsegs = 256;
186 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
187 
188 TUNABLE_INT("hw.et.timer", &et_timer);
189 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
190 TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
191 TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
192 
193 struct et_bsize {
194 	int		bufsize;
195 	int		jumbo;
196 	et_newbuf_t	newbuf;
197 };
198 
199 static const struct et_bsize	et_bufsize_std[ET_RX_NRING] = {
200 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
201 	  .newbuf = et_newbuf_hdr },
202 	{ .bufsize = ET_RXDMA_CTRL_RING1_2048,	.jumbo = 0,
203 	  .newbuf = et_newbuf_cluster },
204 };
205 
206 static const struct et_bsize	et_bufsize_jumbo[ET_RX_NRING] = {
207 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
208 	  .newbuf = et_newbuf_hdr },
209 	{ .bufsize = ET_RXDMA_CTRL_RING1_16384,	.jumbo = 1,
210 	  .newbuf = et_newbuf_jumbo },
211 };
212 
213 static int
214 et_probe(device_t dev)
215 {
216 	const struct et_dev *d;
217 	uint16_t did, vid;
218 
219 	vid = pci_get_vendor(dev);
220 	did = pci_get_device(dev);
221 
222 	for (d = et_devices; d->desc != NULL; ++d) {
223 		if (vid == d->vid && did == d->did) {
224 			device_set_desc(dev, d->desc);
225 			return 0;
226 		}
227 	}
228 	return ENXIO;
229 }
230 
231 static int
232 et_attach(device_t dev)
233 {
234 	struct et_softc *sc = device_get_softc(dev);
235 	struct ifnet *ifp = &sc->arpcom.ac_if;
236 	uint8_t eaddr[ETHER_ADDR_LEN];
237 	int error;
238 
239 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
240 	callout_init(&sc->sc_tick);
241 
242 	/*
243 	 * Initialize tunables
244 	 */
245 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
246 	sc->sc_rx_intr_delay = et_rx_intr_delay;
247 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
248 	sc->sc_timer = et_timer;
249 
250 #ifndef BURN_BRIDGES
251 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
252 		uint32_t irq, mem;
253 
254 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
255 		mem = pci_read_config(dev, ET_PCIR_BAR, 4);
256 
257 		device_printf(dev, "chip is in D%d power mode "
258 		    "-- setting to D0\n", pci_get_powerstate(dev));
259 
260 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
261 
262 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
263 		pci_write_config(dev, ET_PCIR_BAR, mem, 4);
264 	}
265 #endif	/* !BURN_BRIDGE */
266 
267 	/* Enable bus mastering */
268 	pci_enable_busmaster(dev);
269 
270 	/*
271 	 * Allocate IO memory
272 	 */
273 	sc->sc_mem_rid = ET_PCIR_BAR;
274 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
275 						&sc->sc_mem_rid, RF_ACTIVE);
276 	if (sc->sc_mem_res == NULL) {
277 		device_printf(dev, "can't allocate IO memory\n");
278 		return ENXIO;
279 	}
280 	sc->sc_mem_bt = rman_get_bustag(sc->sc_mem_res);
281 	sc->sc_mem_bh = rman_get_bushandle(sc->sc_mem_res);
282 
283 	/*
284 	 * Allocate IRQ
285 	 */
286 	sc->sc_irq_rid = 0;
287 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
288 						&sc->sc_irq_rid,
289 						RF_SHAREABLE | RF_ACTIVE);
290 	if (sc->sc_irq_res == NULL) {
291 		device_printf(dev, "can't allocate irq\n");
292 		error = ENXIO;
293 		goto fail;
294 	}
295 
296 	/*
297 	 * Create sysctl tree
298 	 */
299 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
300 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
301 					     SYSCTL_STATIC_CHILDREN(_hw),
302 					     OID_AUTO,
303 					     device_get_nameunit(dev),
304 					     CTLFLAG_RD, 0, "");
305 	if (sc->sc_sysctl_tree == NULL) {
306 		device_printf(dev, "can't add sysctl node\n");
307 		error = ENXIO;
308 		goto fail;
309 	}
310 
311 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
312 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
313 			OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW,
314 			sc, 0, et_sysctl_rx_intr_npkts, "I",
315 			"RX IM, # packets per RX interrupt");
316 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
317 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
318 			OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW,
319 			sc, 0, et_sysctl_rx_intr_delay, "I",
320 			"RX IM, RX interrupt delay (x10 usec)");
321 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
322 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
323 		       "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
324 		       "TX IM, # segments per TX interrupt");
325 	SYSCTL_ADD_UINT(&sc->sc_sysctl_ctx,
326 			SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
327 			"timer", CTLFLAG_RW, &sc->sc_timer, 0,
328 			"TX timer");
329 
330 	error = et_bus_config(dev);
331 	if (error)
332 		goto fail;
333 
334 	et_get_eaddr(dev, eaddr);
335 
336 	CSR_WRITE_4(sc, ET_PM,
337 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
338 
339 	et_reset(sc);
340 
341 	et_disable_intrs(sc);
342 
343 	error = et_dma_alloc(dev);
344 	if (error)
345 		goto fail;
346 
347 	ifp->if_softc = sc;
348 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
349 	ifp->if_init = et_init;
350 	ifp->if_ioctl = et_ioctl;
351 	ifp->if_start = et_start;
352 	ifp->if_watchdog = et_watchdog;
353 	ifp->if_mtu = ETHERMTU;
354 	ifp->if_capabilities = IFCAP_VLAN_MTU;
355 	ifp->if_capenable = ifp->if_capabilities;
356 	ifq_set_maxlen(&ifp->if_snd, ET_TX_NDESC);
357 	ifq_set_ready(&ifp->if_snd);
358 
359 	et_chip_attach(sc);
360 
361 	error = mii_phy_probe(dev, &sc->sc_miibus,
362 			      et_ifmedia_upd, et_ifmedia_sts);
363 	if (error) {
364 		device_printf(dev, "can't probe any PHY\n");
365 		goto fail;
366 	}
367 
368 	ether_ifattach(ifp, eaddr, NULL);
369 
370 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, et_intr, sc,
371 			       &sc->sc_irq_handle, ifp->if_serializer);
372 	if (error) {
373 		ether_ifdetach(ifp);
374 		device_printf(dev, "can't setup intr\n");
375 		goto fail;
376 	}
377 
378 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sc_irq_res));
379 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
380 
381 	return 0;
382 fail:
383 	et_detach(dev);
384 	return error;
385 }
386 
387 static int
388 et_detach(device_t dev)
389 {
390 	struct et_softc *sc = device_get_softc(dev);
391 
392 	if (device_is_attached(dev)) {
393 		struct ifnet *ifp = &sc->arpcom.ac_if;
394 
395 		lwkt_serialize_enter(ifp->if_serializer);
396 		et_stop(sc);
397 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
398 		lwkt_serialize_exit(ifp->if_serializer);
399 
400 		ether_ifdetach(ifp);
401 	}
402 
403 	if (sc->sc_sysctl_tree != NULL)
404 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
405 
406 	if (sc->sc_miibus != NULL)
407 		device_delete_child(dev, sc->sc_miibus);
408 	bus_generic_detach(dev);
409 
410 	if (sc->sc_irq_res != NULL) {
411 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
412 				     sc->sc_irq_res);
413 	}
414 
415 	if (sc->sc_mem_res != NULL) {
416 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
417 				     sc->sc_mem_res);
418 	}
419 
420 	et_dma_free(dev);
421 
422 	return 0;
423 }
424 
425 static int
426 et_shutdown(device_t dev)
427 {
428 	struct et_softc *sc = device_get_softc(dev);
429 	struct ifnet *ifp = &sc->arpcom.ac_if;
430 
431 	lwkt_serialize_enter(ifp->if_serializer);
432 	et_stop(sc);
433 	lwkt_serialize_exit(ifp->if_serializer);
434 	return 0;
435 }
436 
437 static int
438 et_miibus_readreg(device_t dev, int phy, int reg)
439 {
440 	struct et_softc *sc = device_get_softc(dev);
441 	uint32_t val;
442 	int i, ret;
443 
444 	/* Stop any pending operations */
445 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
446 
447 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
448 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
449 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
450 
451 	/* Start reading */
452 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
453 
454 #define NRETRY	50
455 
456 	for (i = 0; i < NRETRY; ++i) {
457 		val = CSR_READ_4(sc, ET_MII_IND);
458 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
459 			break;
460 		DELAY(50);
461 	}
462 	if (i == NRETRY) {
463 		if_printf(&sc->arpcom.ac_if,
464 			  "read phy %d, reg %d timed out\n", phy, reg);
465 		ret = 0;
466 		goto back;
467 	}
468 
469 #undef NRETRY
470 
471 	val = CSR_READ_4(sc, ET_MII_STAT);
472 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
473 
474 back:
475 	/* Make sure that the current operation is stopped */
476 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
477 	return ret;
478 }
479 
480 static int
481 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
482 {
483 	struct et_softc *sc = device_get_softc(dev);
484 	uint32_t val;
485 	int i;
486 
487 	/* Stop any pending operations */
488 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
489 
490 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
491 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
492 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
493 
494 	/* Start writing */
495 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
496 
497 #define NRETRY 100
498 
499 	for (i = 0; i < NRETRY; ++i) {
500 		val = CSR_READ_4(sc, ET_MII_IND);
501 		if ((val & ET_MII_IND_BUSY) == 0)
502 			break;
503 		DELAY(50);
504 	}
505 	if (i == NRETRY) {
506 		if_printf(&sc->arpcom.ac_if,
507 			  "write phy %d, reg %d timed out\n", phy, reg);
508 		et_miibus_readreg(dev, phy, reg);
509 	}
510 
511 #undef NRETRY
512 
513 	/* Make sure that the current operation is stopped */
514 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
515 	return 0;
516 }
517 
518 static void
519 et_miibus_statchg(device_t dev)
520 {
521 	et_setmedia(device_get_softc(dev));
522 }
523 
524 static int
525 et_ifmedia_upd(struct ifnet *ifp)
526 {
527 	struct et_softc *sc = ifp->if_softc;
528 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
529 
530 	if (mii->mii_instance != 0) {
531 		struct mii_softc *miisc;
532 
533 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
534 			mii_phy_reset(miisc);
535 	}
536 	mii_mediachg(mii);
537 
538 	return 0;
539 }
540 
541 static void
542 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
543 {
544 	struct et_softc *sc = ifp->if_softc;
545 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
546 
547 	mii_pollstat(mii);
548 	ifmr->ifm_active = mii->mii_media_active;
549 	ifmr->ifm_status = mii->mii_media_status;
550 }
551 
552 static void
553 et_stop(struct et_softc *sc)
554 {
555 	struct ifnet *ifp = &sc->arpcom.ac_if;
556 
557 	ASSERT_SERIALIZED(ifp->if_serializer);
558 
559 	callout_stop(&sc->sc_tick);
560 
561 	et_stop_rxdma(sc);
562 	et_stop_txdma(sc);
563 
564 	et_disable_intrs(sc);
565 
566 	et_free_tx_ring(sc);
567 	et_free_rx_ring(sc);
568 
569 	et_reset(sc);
570 
571 	sc->sc_tx = 0;
572 	sc->sc_tx_intr = 0;
573 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
574 
575 	ifp->if_timer = 0;
576 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
577 }
578 
579 static int
580 et_bus_config(device_t dev)
581 {
582 	uint32_t val, max_plsz;
583 	uint16_t ack_latency, replay_timer;
584 
585 	/*
586 	 * Test whether EEPROM is valid
587 	 * NOTE: Read twice to get the correct value
588 	 */
589 	pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
590 	val = pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
591 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
592 		device_printf(dev, "EEPROM status error 0x%02x\n", val);
593 		return ENXIO;
594 	}
595 
596 	/* TODO: LED */
597 
598 	/*
599 	 * Configure ACK latency and replay timer according to
600 	 * max playload size
601 	 */
602 	val = pci_read_config(dev, ET_PCIR_DEVICE_CAPS, 4);
603 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
604 
605 	switch (max_plsz) {
606 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
607 		ack_latency = ET_PCIV_ACK_LATENCY_128;
608 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
609 		break;
610 
611 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
612 		ack_latency = ET_PCIV_ACK_LATENCY_256;
613 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
614 		break;
615 
616 	default:
617 		ack_latency = pci_read_config(dev, ET_PCIR_ACK_LATENCY, 2);
618 		replay_timer = pci_read_config(dev, ET_PCIR_REPLAY_TIMER, 2);
619 		device_printf(dev, "ack latency %u, replay timer %u\n",
620 			      ack_latency, replay_timer);
621 		break;
622 	}
623 	if (ack_latency != 0) {
624 		pci_write_config(dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
625 		pci_write_config(dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2);
626 	}
627 
628 	/*
629 	 * Set L0s and L1 latency timer to 2us
630 	 */
631 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
632 	pci_write_config(dev, ET_PCIR_L0S_L1_LATENCY, val, 1);
633 
634 	/*
635 	 * Set max read request size to 2048 bytes
636 	 */
637 	val = pci_read_config(dev, ET_PCIR_DEVICE_CTRL, 2);
638 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
639 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
640 	pci_write_config(dev, ET_PCIR_DEVICE_CTRL, val, 2);
641 
642 	return 0;
643 }
644 
645 static void
646 et_get_eaddr(device_t dev, uint8_t eaddr[])
647 {
648 	uint32_t val;
649 	int i;
650 
651 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
652 	for (i = 0; i < 4; ++i)
653 		eaddr[i] = (val >> (8 * i)) & 0xff;
654 
655 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
656 	for (; i < ETHER_ADDR_LEN; ++i)
657 		eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
658 }
659 
660 static void
661 et_reset(struct et_softc *sc)
662 {
663 	CSR_WRITE_4(sc, ET_MAC_CFG1,
664 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
665 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
666 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
667 
668 	CSR_WRITE_4(sc, ET_SWRST,
669 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
670 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
671 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
672 
673 	CSR_WRITE_4(sc, ET_MAC_CFG1,
674 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
675 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
676 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
677 }
678 
679 static void
680 et_disable_intrs(struct et_softc *sc)
681 {
682 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
683 }
684 
685 static void
686 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
687 {
688 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
689 }
690 
691 static int
692 et_dma_alloc(device_t dev)
693 {
694 	struct et_softc *sc = device_get_softc(dev);
695 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
696 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
697 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
698 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
699 	int i, error;
700 
701 	/*
702 	 * Create top level DMA tag
703 	 */
704 	error = bus_dma_tag_create(NULL, 1, 0,
705 				   BUS_SPACE_MAXADDR,
706 				   BUS_SPACE_MAXADDR,
707 				   NULL, NULL,
708 				   BUS_SPACE_MAXSIZE_32BIT,
709 				   0,
710 				   BUS_SPACE_MAXSIZE_32BIT,
711 				   0, &sc->sc_dtag);
712 	if (error) {
713 		device_printf(dev, "can't create DMA tag\n");
714 		return error;
715 	}
716 
717 	/*
718 	 * Create TX ring DMA stuffs
719 	 */
720 	tx_ring->tr_desc = bus_dmamem_coherent_any(sc->sc_dtag,
721 				ET_ALIGN, ET_TX_RING_SIZE,
722 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
723 				&tx_ring->tr_dtag, &tx_ring->tr_dmap,
724 				&tx_ring->tr_paddr);
725 	if (tx_ring->tr_desc == NULL) {
726 		device_printf(dev, "can't create TX ring DMA stuffs\n");
727 		return ENOMEM;
728 	}
729 
730 	/*
731 	 * Create TX status DMA stuffs
732 	 */
733 	txsd->txsd_status = bus_dmamem_coherent_any(sc->sc_dtag,
734 				ET_ALIGN, sizeof(uint32_t),
735 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
736 				&txsd->txsd_dtag, &txsd->txsd_dmap,
737 				&txsd->txsd_paddr);
738 	if (txsd->txsd_status == NULL) {
739 		device_printf(dev, "can't create TX status DMA stuffs\n");
740 		return ENOMEM;
741 	}
742 
743 	/*
744 	 * Create DMA stuffs for RX rings
745 	 */
746 	for (i = 0; i < ET_RX_NRING; ++i) {
747 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
748 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
749 
750 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
751 
752 		rx_ring->rr_desc = bus_dmamem_coherent_any(sc->sc_dtag,
753 					ET_ALIGN, ET_RX_RING_SIZE,
754 					BUS_DMA_WAITOK | BUS_DMA_ZERO,
755 					&rx_ring->rr_dtag, &rx_ring->rr_dmap,
756 					&rx_ring->rr_paddr);
757 		if (rx_ring->rr_desc == NULL) {
758 			device_printf(dev, "can't create DMA stuffs for "
759 				      "the %d RX ring\n", i);
760 			return ENOMEM;
761 		}
762 		rx_ring->rr_posreg = rx_ring_posreg[i];
763 	}
764 
765 	/*
766 	 * Create RX stat ring DMA stuffs
767 	 */
768 	rxst_ring->rsr_stat = bus_dmamem_coherent_any(sc->sc_dtag,
769 				ET_ALIGN, ET_RXSTAT_RING_SIZE,
770 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
771 				&rxst_ring->rsr_dtag, &rxst_ring->rsr_dmap,
772 				&rxst_ring->rsr_paddr);
773 	if (rxst_ring->rsr_stat == NULL) {
774 		device_printf(dev, "can't create RX stat ring DMA stuffs\n");
775 		return ENOMEM;
776 	}
777 
778 	/*
779 	 * Create RX status DMA stuffs
780 	 */
781 	rxsd->rxsd_status = bus_dmamem_coherent_any(sc->sc_dtag,
782 				ET_ALIGN, sizeof(struct et_rxstatus),
783 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
784 				&rxsd->rxsd_dtag, &rxsd->rxsd_dmap,
785 				&rxsd->rxsd_paddr);
786 	if (rxsd->rxsd_status == NULL) {
787 		device_printf(dev, "can't create RX status DMA stuffs\n");
788 		return ENOMEM;
789 	}
790 
791 	/*
792 	 * Create mbuf DMA stuffs
793 	 */
794 	error = et_dma_mbuf_create(dev);
795 	if (error)
796 		return error;
797 
798 	/*
799 	 * Create jumbo buffer DMA stuffs
800 	 * NOTE: Allow it to fail
801 	 */
802 	if (et_jumbo_mem_alloc(dev) == 0)
803 		sc->sc_flags |= ET_FLAG_JUMBO;
804 
805 	return 0;
806 }
807 
808 static void
809 et_dma_free(device_t dev)
810 {
811 	struct et_softc *sc = device_get_softc(dev);
812 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
813 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
814 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
815 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
816 	int i, rx_done[ET_RX_NRING];
817 
818 	/*
819 	 * Destroy TX ring DMA stuffs
820 	 */
821 	et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
822 			   tx_ring->tr_dmap);
823 
824 	/*
825 	 * Destroy TX status DMA stuffs
826 	 */
827 	et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
828 			   txsd->txsd_dmap);
829 
830 	/*
831 	 * Destroy DMA stuffs for RX rings
832 	 */
833 	for (i = 0; i < ET_RX_NRING; ++i) {
834 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
835 
836 		et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
837 				   rx_ring->rr_dmap);
838 	}
839 
840 	/*
841 	 * Destroy RX stat ring DMA stuffs
842 	 */
843 	et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
844 			   rxst_ring->rsr_dmap);
845 
846 	/*
847 	 * Destroy RX status DMA stuffs
848 	 */
849 	et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
850 			   rxsd->rxsd_dmap);
851 
852 	/*
853 	 * Destroy mbuf DMA stuffs
854 	 */
855 	for (i = 0; i < ET_RX_NRING; ++i)
856 		rx_done[i] = ET_RX_NDESC;
857 	et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
858 
859 	/*
860 	 * Destroy jumbo buffer DMA stuffs
861 	 */
862 	if (sc->sc_flags & ET_FLAG_JUMBO)
863 		et_jumbo_mem_free(dev);
864 
865 	/*
866 	 * Destroy top level DMA tag
867 	 */
868 	if (sc->sc_dtag != NULL)
869 		bus_dma_tag_destroy(sc->sc_dtag);
870 }
871 
872 static int
873 et_dma_mbuf_create(device_t dev)
874 {
875 	struct et_softc *sc = device_get_softc(dev);
876 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
877 	int i, error, rx_done[ET_RX_NRING];
878 
879 	/*
880 	 * Create RX mbuf DMA tag
881 	 */
882 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
883 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
884 				   NULL, NULL,
885 				   MCLBYTES, 1, MCLBYTES,
886 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
887 				   &sc->sc_rxbuf_dtag);
888 	if (error) {
889 		device_printf(dev, "can't create RX mbuf DMA tag\n");
890 		return error;
891 	}
892 
893 	/*
894 	 * Create spare DMA map for RX mbufs
895 	 */
896 	error = bus_dmamap_create(sc->sc_rxbuf_dtag, BUS_DMA_WAITOK,
897 				  &sc->sc_rxbuf_tmp_dmap);
898 	if (error) {
899 		device_printf(dev, "can't create spare mbuf DMA map\n");
900 		bus_dma_tag_destroy(sc->sc_rxbuf_dtag);
901 		sc->sc_rxbuf_dtag = NULL;
902 		return error;
903 	}
904 
905 	/*
906 	 * Create DMA maps for RX mbufs
907 	 */
908 	bzero(rx_done, sizeof(rx_done));
909 	for (i = 0; i < ET_RX_NRING; ++i) {
910 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
911 		int j;
912 
913 		for (j = 0; j < ET_RX_NDESC; ++j) {
914 			error = bus_dmamap_create(sc->sc_rxbuf_dtag,
915 						  BUS_DMA_WAITOK,
916 						  &rbd->rbd_buf[j].rb_dmap);
917 			if (error) {
918 				device_printf(dev, "can't create %d RX mbuf "
919 					      "for %d RX ring\n", j, i);
920 				rx_done[i] = j;
921 				et_dma_mbuf_destroy(dev, 0, rx_done);
922 				return error;
923 			}
924 		}
925 		rx_done[i] = ET_RX_NDESC;
926 
927 		rbd->rbd_softc = sc;
928 		rbd->rbd_ring = &sc->sc_rx_ring[i];
929 	}
930 
931 	/*
932 	 * Create TX mbuf DMA tag
933 	 */
934 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
935 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
936 				   NULL, NULL,
937 				   ET_JUMBO_FRAMELEN, ET_NSEG_MAX, MCLBYTES,
938 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
939 				   BUS_DMA_ONEBPAGE,
940 				   &sc->sc_txbuf_dtag);
941 	if (error) {
942 		device_printf(dev, "can't create TX mbuf DMA tag\n");
943 		return error;
944 	}
945 
946 	/*
947 	 * Create DMA maps for TX mbufs
948 	 */
949 	for (i = 0; i < ET_TX_NDESC; ++i) {
950 		error = bus_dmamap_create(sc->sc_txbuf_dtag,
951 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
952 					  &tbd->tbd_buf[i].tb_dmap);
953 		if (error) {
954 			device_printf(dev, "can't create %d TX mbuf "
955 				      "DMA map\n", i);
956 			et_dma_mbuf_destroy(dev, i, rx_done);
957 			return error;
958 		}
959 	}
960 
961 	return 0;
962 }
963 
964 static void
965 et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
966 {
967 	struct et_softc *sc = device_get_softc(dev);
968 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
969 	int i;
970 
971 	/*
972 	 * Destroy DMA tag and maps for RX mbufs
973 	 */
974 	if (sc->sc_rxbuf_dtag) {
975 		for (i = 0; i < ET_RX_NRING; ++i) {
976 			struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
977 			int j;
978 
979 			for (j = 0; j < rx_done[i]; ++j) {
980 				struct et_rxbuf *rb = &rbd->rbd_buf[j];
981 
982 				KASSERT(rb->rb_mbuf == NULL,
983 					("RX mbuf in %d RX ring is "
984 					 "not freed yet\n", i));
985 				bus_dmamap_destroy(sc->sc_rxbuf_dtag,
986 						   rb->rb_dmap);
987 			}
988 		}
989 		bus_dmamap_destroy(sc->sc_rxbuf_dtag, sc->sc_rxbuf_tmp_dmap);
990 		bus_dma_tag_destroy(sc->sc_rxbuf_dtag);
991 		sc->sc_rxbuf_dtag = NULL;
992 	}
993 
994 	/*
995 	 * Destroy DMA tag and maps for TX mbufs
996 	 */
997 	if (sc->sc_txbuf_dtag) {
998 		for (i = 0; i < tx_done; ++i) {
999 			struct et_txbuf *tb = &tbd->tbd_buf[i];
1000 
1001 			KASSERT(tb->tb_mbuf == NULL,
1002 				("TX mbuf is not freed yet\n"));
1003 			bus_dmamap_destroy(sc->sc_txbuf_dtag, tb->tb_dmap);
1004 		}
1005 		bus_dma_tag_destroy(sc->sc_txbuf_dtag);
1006 		sc->sc_txbuf_dtag = NULL;
1007 	}
1008 }
1009 
1010 static void
1011 et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
1012 {
1013 	if (dtag != NULL) {
1014 		bus_dmamap_unload(dtag, dmap);
1015 		bus_dmamem_free(dtag, addr, dmap);
1016 		bus_dma_tag_destroy(dtag);
1017 	}
1018 }
1019 
1020 static void
1021 et_chip_attach(struct et_softc *sc)
1022 {
1023 	uint32_t val;
1024 
1025 	/*
1026 	 * Perform minimal initialization
1027 	 */
1028 
1029 	/* Disable loopback */
1030 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1031 
1032 	/* Reset MAC */
1033 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1034 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1035 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1036 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1037 
1038 	/*
1039 	 * Setup half duplex mode
1040 	 */
1041 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1042 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1043 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1044 	      ET_MAC_HDX_EXC_DEFER;
1045 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1046 
1047 	/* Clear MAC control */
1048 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1049 
1050 	/* Reset MII */
1051 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1052 
1053 	/* Bring MAC out of reset state */
1054 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1055 
1056 	/* Enable memory controllers */
1057 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1058 }
1059 
1060 static void
1061 et_intr(void *xsc)
1062 {
1063 	struct et_softc *sc = xsc;
1064 	struct ifnet *ifp = &sc->arpcom.ac_if;
1065 	uint32_t intrs;
1066 
1067 	ASSERT_SERIALIZED(ifp->if_serializer);
1068 
1069 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1070 		return;
1071 
1072 	et_disable_intrs(sc);
1073 
1074 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1075 	intrs &= ET_INTRS;
1076 	if (intrs == 0)	/* Not interested */
1077 		goto back;
1078 
1079 	if (intrs & ET_INTR_RXEOF)
1080 		et_rxeof(sc);
1081 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1082 		et_txeof(sc, 1);
1083 	if (intrs & ET_INTR_TIMER)
1084 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1085 back:
1086 	et_enable_intrs(sc, ET_INTRS);
1087 }
1088 
1089 static void
1090 et_init(void *xsc)
1091 {
1092 	struct et_softc *sc = xsc;
1093 	struct ifnet *ifp = &sc->arpcom.ac_if;
1094 	const struct et_bsize *arr;
1095 	int error, i;
1096 
1097 	ASSERT_SERIALIZED(ifp->if_serializer);
1098 
1099 	et_stop(sc);
1100 
1101 	arr = ET_FRAMELEN(ifp->if_mtu) < MCLBYTES ?
1102 	      et_bufsize_std : et_bufsize_jumbo;
1103 	for (i = 0; i < ET_RX_NRING; ++i) {
1104 		sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
1105 		sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
1106 		sc->sc_rx_data[i].rbd_jumbo = arr[i].jumbo;
1107 	}
1108 
1109 	error = et_init_tx_ring(sc);
1110 	if (error)
1111 		goto back;
1112 
1113 	error = et_init_rx_ring(sc);
1114 	if (error)
1115 		goto back;
1116 
1117 	error = et_chip_init(sc);
1118 	if (error)
1119 		goto back;
1120 
1121 	error = et_enable_txrx(sc, 1);
1122 	if (error)
1123 		goto back;
1124 
1125 	et_enable_intrs(sc, ET_INTRS);
1126 
1127 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
1128 
1129 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1130 
1131 	ifp->if_flags |= IFF_RUNNING;
1132 	ifp->if_flags &= ~IFF_OACTIVE;
1133 back:
1134 	if (error)
1135 		et_stop(sc);
1136 }
1137 
1138 static int
1139 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1140 {
1141 	struct et_softc *sc = ifp->if_softc;
1142 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1143 	struct ifreq *ifr = (struct ifreq *)data;
1144 	int error = 0, max_framelen;
1145 
1146 	ASSERT_SERIALIZED(ifp->if_serializer);
1147 
1148 	switch (cmd) {
1149 	case SIOCSIFFLAGS:
1150 		if (ifp->if_flags & IFF_UP) {
1151 			if (ifp->if_flags & IFF_RUNNING) {
1152 				if ((ifp->if_flags ^ sc->sc_if_flags) &
1153 				    (IFF_ALLMULTI | IFF_PROMISC))
1154 					et_setmulti(sc);
1155 			} else {
1156 				et_init(sc);
1157 			}
1158 		} else {
1159 			if (ifp->if_flags & IFF_RUNNING)
1160 				et_stop(sc);
1161 		}
1162 		sc->sc_if_flags = ifp->if_flags;
1163 		break;
1164 
1165 	case SIOCSIFMEDIA:
1166 	case SIOCGIFMEDIA:
1167 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1168 		break;
1169 
1170 	case SIOCADDMULTI:
1171 	case SIOCDELMULTI:
1172 		if (ifp->if_flags & IFF_RUNNING)
1173 			et_setmulti(sc);
1174 		break;
1175 
1176 	case SIOCSIFMTU:
1177 		if (sc->sc_flags & ET_FLAG_JUMBO)
1178 			max_framelen = ET_JUMBO_FRAMELEN;
1179 		else
1180 			max_framelen = MCLBYTES - 1;
1181 
1182 		if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
1183 			error = EOPNOTSUPP;
1184 			break;
1185 		}
1186 
1187 		ifp->if_mtu = ifr->ifr_mtu;
1188 		if (ifp->if_flags & IFF_RUNNING)
1189 			et_init(sc);
1190 		break;
1191 
1192 	default:
1193 		error = ether_ioctl(ifp, cmd, data);
1194 		break;
1195 	}
1196 	return error;
1197 }
1198 
1199 static void
1200 et_start(struct ifnet *ifp)
1201 {
1202 	struct et_softc *sc = ifp->if_softc;
1203 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1204 	int trans, oactive;
1205 
1206 	ASSERT_SERIALIZED(ifp->if_serializer);
1207 
1208 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) {
1209 		ifq_purge(&ifp->if_snd);
1210 		return;
1211 	}
1212 
1213 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1214 		return;
1215 
1216 	oactive = 0;
1217 	trans = 0;
1218 	for (;;) {
1219 		struct mbuf *m;
1220 		int error;
1221 
1222 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1223 			if (oactive) {
1224 				ifp->if_flags |= IFF_OACTIVE;
1225 				break;
1226 			}
1227 
1228 			et_txeof(sc, 0);
1229 			oactive = 1;
1230 			continue;
1231 		}
1232 
1233 		m = ifq_dequeue(&ifp->if_snd, NULL);
1234 		if (m == NULL)
1235 			break;
1236 
1237 		error = et_encap(sc, &m);
1238 		if (error) {
1239 			ifp->if_oerrors++;
1240 			KKASSERT(m == NULL);
1241 
1242 			if (error == EFBIG) {
1243 				/*
1244 				 * Excessive fragmented packets
1245 				 */
1246 				if (oactive) {
1247 					ifp->if_flags |= IFF_OACTIVE;
1248 					break;
1249 				}
1250 				et_txeof(sc, 0);
1251 				oactive = 1;
1252 			}
1253 			continue;
1254 		} else {
1255 			oactive = 0;
1256 		}
1257 		trans = 1;
1258 
1259 		BPF_MTAP(ifp, m);
1260 	}
1261 
1262 	if (trans)
1263 		ifp->if_timer = 5;
1264 }
1265 
1266 static void
1267 et_watchdog(struct ifnet *ifp)
1268 {
1269 	ASSERT_SERIALIZED(ifp->if_serializer);
1270 
1271 	if_printf(ifp, "watchdog timed out\n");
1272 
1273 	ifp->if_init(ifp->if_softc);
1274 	if_devstart(ifp);
1275 }
1276 
1277 static int
1278 et_stop_rxdma(struct et_softc *sc)
1279 {
1280 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1281 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1282 
1283 	DELAY(5);
1284 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1285 		if_printf(&sc->arpcom.ac_if, "can't stop RX DMA engine\n");
1286 		return ETIMEDOUT;
1287 	}
1288 	return 0;
1289 }
1290 
1291 static int
1292 et_stop_txdma(struct et_softc *sc)
1293 {
1294 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1295 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1296 	return 0;
1297 }
1298 
1299 static void
1300 et_free_tx_ring(struct et_softc *sc)
1301 {
1302 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1303 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1304 	int i;
1305 
1306 	for (i = 0; i < ET_TX_NDESC; ++i) {
1307 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1308 
1309 		if (tb->tb_mbuf != NULL) {
1310 			bus_dmamap_unload(sc->sc_txbuf_dtag, tb->tb_dmap);
1311 			m_freem(tb->tb_mbuf);
1312 			tb->tb_mbuf = NULL;
1313 		}
1314 	}
1315 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1316 }
1317 
1318 static void
1319 et_free_rx_ring(struct et_softc *sc)
1320 {
1321 	int n;
1322 
1323 	for (n = 0; n < ET_RX_NRING; ++n) {
1324 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1325 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1326 		int i;
1327 
1328 		for (i = 0; i < ET_RX_NDESC; ++i) {
1329 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1330 
1331 			if (rb->rb_mbuf != NULL) {
1332 				if (!rbd->rbd_jumbo) {
1333 					bus_dmamap_unload(sc->sc_rxbuf_dtag,
1334 							  rb->rb_dmap);
1335 				}
1336 				m_freem(rb->rb_mbuf);
1337 				rb->rb_mbuf = NULL;
1338 			}
1339 		}
1340 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1341 	}
1342 }
1343 
1344 static void
1345 et_setmulti(struct et_softc *sc)
1346 {
1347 	struct ifnet *ifp = &sc->arpcom.ac_if;
1348 	uint32_t hash[4] = { 0, 0, 0, 0 };
1349 	uint32_t rxmac_ctrl, pktfilt;
1350 	struct ifmultiaddr *ifma;
1351 	int i, count;
1352 
1353 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1354 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1355 
1356 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1357 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1358 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1359 		goto back;
1360 	}
1361 
1362 	count = 0;
1363 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1364 		uint32_t *hp, h;
1365 
1366 		if (ifma->ifma_addr->sa_family != AF_LINK)
1367 			continue;
1368 
1369 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1370 				   ifma->ifma_addr), ETHER_ADDR_LEN);
1371 		h = (h & 0x3f800000) >> 23;
1372 
1373 		hp = &hash[0];
1374 		if (h >= 32 && h < 64) {
1375 			h -= 32;
1376 			hp = &hash[1];
1377 		} else if (h >= 64 && h < 96) {
1378 			h -= 64;
1379 			hp = &hash[2];
1380 		} else if (h >= 96) {
1381 			h -= 96;
1382 			hp = &hash[3];
1383 		}
1384 		*hp |= (1 << h);
1385 
1386 		++count;
1387 	}
1388 
1389 	for (i = 0; i < 4; ++i)
1390 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1391 
1392 	if (count > 0)
1393 		pktfilt |= ET_PKTFILT_MCAST;
1394 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1395 back:
1396 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1397 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1398 }
1399 
1400 static int
1401 et_chip_init(struct et_softc *sc)
1402 {
1403 	struct ifnet *ifp = &sc->arpcom.ac_if;
1404 	uint32_t rxq_end;
1405 	int error, frame_len, rxmem_size;
1406 
1407 	/*
1408 	 * Split 16Kbytes internal memory between TX and RX
1409 	 * according to frame length.
1410 	 */
1411 	frame_len = ET_FRAMELEN(ifp->if_mtu);
1412 	if (frame_len < 2048) {
1413 		rxmem_size = ET_MEM_RXSIZE_DEFAULT;
1414 	} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
1415 		rxmem_size = ET_MEM_SIZE / 2;
1416 	} else {
1417 		rxmem_size = ET_MEM_SIZE -
1418 		roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
1419 	}
1420 	rxq_end = ET_QUEUE_ADDR(rxmem_size);
1421 
1422 	CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
1423 	CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
1424 	CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
1425 	CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
1426 
1427 	/* No loopback */
1428 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1429 
1430 	/* Clear MSI configure */
1431 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1432 
1433 	/* Disable timer */
1434 	CSR_WRITE_4(sc, ET_TIMER, 0);
1435 
1436 	/* Initialize MAC */
1437 	et_init_mac(sc);
1438 
1439 	/* Enable memory controllers */
1440 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1441 
1442 	/* Initialize RX MAC */
1443 	et_init_rxmac(sc);
1444 
1445 	/* Initialize TX MAC */
1446 	et_init_txmac(sc);
1447 
1448 	/* Initialize RX DMA engine */
1449 	error = et_init_rxdma(sc);
1450 	if (error)
1451 		return error;
1452 
1453 	/* Initialize TX DMA engine */
1454 	error = et_init_txdma(sc);
1455 	if (error)
1456 		return error;
1457 
1458 	return 0;
1459 }
1460 
1461 static int
1462 et_init_tx_ring(struct et_softc *sc)
1463 {
1464 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1465 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1466 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1467 
1468 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1469 
1470 	tbd->tbd_start_index = 0;
1471 	tbd->tbd_start_wrap = 0;
1472 	tbd->tbd_used = 0;
1473 
1474 	bzero(txsd->txsd_status, sizeof(uint32_t));
1475 
1476 	return 0;
1477 }
1478 
1479 static int
1480 et_init_rx_ring(struct et_softc *sc)
1481 {
1482 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1483 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1484 	int n;
1485 
1486 	for (n = 0; n < ET_RX_NRING; ++n) {
1487 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1488 		int i, error;
1489 
1490 		for (i = 0; i < ET_RX_NDESC; ++i) {
1491 			error = rbd->rbd_newbuf(rbd, i, 1);
1492 			if (error) {
1493 				if_printf(&sc->arpcom.ac_if, "%d ring %d buf, "
1494 					  "newbuf failed: %d\n", n, i, error);
1495 				return error;
1496 			}
1497 		}
1498 	}
1499 
1500 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1501 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1502 
1503 	return 0;
1504 }
1505 
1506 static int
1507 et_init_rxdma(struct et_softc *sc)
1508 {
1509 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1510 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1511 	struct et_rxdesc_ring *rx_ring;
1512 	int error;
1513 
1514 	error = et_stop_rxdma(sc);
1515 	if (error) {
1516 		if_printf(&sc->arpcom.ac_if, "can't init RX DMA engine\n");
1517 		return error;
1518 	}
1519 
1520 	/*
1521 	 * Install RX status
1522 	 */
1523 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1524 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1525 
1526 	/*
1527 	 * Install RX stat ring
1528 	 */
1529 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1530 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1531 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1532 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1533 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1534 
1535 	/* Match ET_RXSTAT_POS */
1536 	rxst_ring->rsr_index = 0;
1537 	rxst_ring->rsr_wrap = 0;
1538 
1539 	/*
1540 	 * Install the 2nd RX descriptor ring
1541 	 */
1542 	rx_ring = &sc->sc_rx_ring[1];
1543 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1544 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1545 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1546 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1547 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1548 
1549 	/* Match ET_RX_RING1_POS */
1550 	rx_ring->rr_index = 0;
1551 	rx_ring->rr_wrap = 1;
1552 
1553 	/*
1554 	 * Install the 1st RX descriptor ring
1555 	 */
1556 	rx_ring = &sc->sc_rx_ring[0];
1557 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1558 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1559 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1560 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1561 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1562 
1563 	/* Match ET_RX_RING0_POS */
1564 	rx_ring->rr_index = 0;
1565 	rx_ring->rr_wrap = 1;
1566 
1567 	/*
1568 	 * RX intr moderation
1569 	 */
1570 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1571 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 et_init_txdma(struct et_softc *sc)
1578 {
1579 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1580 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1581 	int error;
1582 
1583 	error = et_stop_txdma(sc);
1584 	if (error) {
1585 		if_printf(&sc->arpcom.ac_if, "can't init TX DMA engine\n");
1586 		return error;
1587 	}
1588 
1589 	/*
1590 	 * Install TX descriptor ring
1591 	 */
1592 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1593 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1594 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1595 
1596 	/*
1597 	 * Install TX status
1598 	 */
1599 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1600 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1601 
1602 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1603 
1604 	/* Match ET_TX_READY_POS */
1605 	tx_ring->tr_ready_index = 0;
1606 	tx_ring->tr_ready_wrap = 0;
1607 
1608 	return 0;
1609 }
1610 
1611 static void
1612 et_init_mac(struct et_softc *sc)
1613 {
1614 	struct ifnet *ifp = &sc->arpcom.ac_if;
1615 	const uint8_t *eaddr = IF_LLADDR(ifp);
1616 	uint32_t val;
1617 
1618 	/* Reset MAC */
1619 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1620 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1621 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1622 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1623 
1624 	/*
1625 	 * Setup inter packet gap
1626 	 */
1627 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1628 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1629 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1630 	      __SHIFTIN(96, ET_IPG_B2B);
1631 	CSR_WRITE_4(sc, ET_IPG, val);
1632 
1633 	/*
1634 	 * Setup half duplex mode
1635 	 */
1636 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1637 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1638 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1639 	      ET_MAC_HDX_EXC_DEFER;
1640 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1641 
1642 	/* Clear MAC control */
1643 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1644 
1645 	/* Reset MII */
1646 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1647 
1648 	/*
1649 	 * Set MAC address
1650 	 */
1651 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1652 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1653 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1654 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1655 
1656 	/* Set max frame length */
1657 	CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
1658 
1659 	/* Bring MAC out of reset state */
1660 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1661 }
1662 
1663 static void
1664 et_init_rxmac(struct et_softc *sc)
1665 {
1666 	struct ifnet *ifp = &sc->arpcom.ac_if;
1667 	const uint8_t *eaddr = IF_LLADDR(ifp);
1668 	uint32_t val;
1669 	int i;
1670 
1671 	/* Disable RX MAC and WOL */
1672 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1673 
1674 	/*
1675 	 * Clear all WOL related registers
1676 	 */
1677 	for (i = 0; i < 3; ++i)
1678 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1679 	for (i = 0; i < 20; ++i)
1680 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1681 
1682 	/*
1683 	 * Set WOL source address.  XXX is this necessary?
1684 	 */
1685 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1686 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1687 	val = (eaddr[0] << 8) | eaddr[1];
1688 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1689 
1690 	/* Clear packet filters */
1691 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1692 
1693 	/* No ucast filtering */
1694 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1695 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1696 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1697 
1698 	if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
1699 		/*
1700 		 * In order to transmit jumbo packets greater than
1701 		 * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
1702 		 * RX MAC and RX DMA needs to be reduced in size to
1703 		 * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen).  In
1704 		 * order to implement this, we must use "cut through"
1705 		 * mode in the RX MAC, which chops packets down into
1706 		 * segments.  In this case we selected 256 bytes,
1707 		 * since this is the size of the PCI-Express TLP's
1708 		 * that the ET1310 uses.
1709 		 */
1710 		val = __SHIFTIN(ET_RXMAC_SEGSZ(256), ET_RXMAC_MC_SEGSZ_MAX) |
1711 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1712 	} else {
1713 		val = 0;
1714 	}
1715 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1716 
1717 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1718 
1719 	/* Initialize RX MAC management register */
1720 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1721 
1722 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1723 
1724 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1725 		    ET_RXMAC_MGT_PASS_ECRC |
1726 		    ET_RXMAC_MGT_PASS_ELEN |
1727 		    ET_RXMAC_MGT_PASS_ETRUNC |
1728 		    ET_RXMAC_MGT_CHECK_PKT);
1729 
1730 	/*
1731 	 * Configure runt filtering (may not work on certain chip generation)
1732 	 */
1733 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1734 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1735 
1736 	/* Enable RX MAC but leave WOL disabled */
1737 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1738 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1739 
1740 	/*
1741 	 * Setup multicast hash and allmulti/promisc mode
1742 	 */
1743 	et_setmulti(sc);
1744 }
1745 
1746 static void
1747 et_init_txmac(struct et_softc *sc)
1748 {
1749 	/* Disable TX MAC and FC(?) */
1750 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1751 
1752 	/* No flow control yet */
1753 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1754 
1755 	/* Enable TX MAC but leave FC(?) diabled */
1756 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1757 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1758 }
1759 
1760 static int
1761 et_start_rxdma(struct et_softc *sc)
1762 {
1763 	uint32_t val = 0;
1764 
1765 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1766 			 ET_RXDMA_CTRL_RING0_SIZE) |
1767 	       ET_RXDMA_CTRL_RING0_ENABLE;
1768 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1769 			 ET_RXDMA_CTRL_RING1_SIZE) |
1770 	       ET_RXDMA_CTRL_RING1_ENABLE;
1771 
1772 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1773 
1774 	DELAY(5);
1775 
1776 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1777 		if_printf(&sc->arpcom.ac_if, "can't start RX DMA engine\n");
1778 		return ETIMEDOUT;
1779 	}
1780 	return 0;
1781 }
1782 
1783 static int
1784 et_start_txdma(struct et_softc *sc)
1785 {
1786 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1787 	return 0;
1788 }
1789 
1790 static int
1791 et_enable_txrx(struct et_softc *sc, int media_upd)
1792 {
1793 	struct ifnet *ifp = &sc->arpcom.ac_if;
1794 	uint32_t val;
1795 	int i, error;
1796 
1797 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1798 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1799 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1800 		 ET_MAC_CFG1_LOOPBACK);
1801 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1802 
1803 	if (media_upd)
1804 		et_ifmedia_upd(ifp);
1805 	else
1806 		et_setmedia(sc);
1807 
1808 #define NRETRY	100
1809 
1810 	for (i = 0; i < NRETRY; ++i) {
1811 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1812 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1813 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1814 			break;
1815 
1816 		DELAY(10);
1817 	}
1818 	if (i == NRETRY) {
1819 		if_printf(ifp, "can't enable RX/TX\n");
1820 		return 0;
1821 	}
1822 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
1823 
1824 #undef NRETRY
1825 
1826 	/*
1827 	 * Start TX/RX DMA engine
1828 	 */
1829 	error = et_start_rxdma(sc);
1830 	if (error)
1831 		return error;
1832 
1833 	error = et_start_txdma(sc);
1834 	if (error)
1835 		return error;
1836 
1837 	return 0;
1838 }
1839 
1840 static void
1841 et_rxeof(struct et_softc *sc)
1842 {
1843 	struct ifnet *ifp = &sc->arpcom.ac_if;
1844 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1845 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1846 	uint32_t rxs_stat_ring;
1847 	int rxst_wrap, rxst_index;
1848 	struct mbuf_chain chain[MAXCPU];
1849 
1850 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1851 		return;
1852 
1853 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1854 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1855 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1856 
1857 	ether_input_chain_init(chain);
1858 
1859 	while (rxst_index != rxst_ring->rsr_index ||
1860 	       rxst_wrap != rxst_ring->rsr_wrap) {
1861 		struct et_rxbuf_data *rbd;
1862 		struct et_rxdesc_ring *rx_ring;
1863 		struct et_rxstat *st;
1864 		struct mbuf *m;
1865 		int buflen, buf_idx, ring_idx;
1866 		uint32_t rxstat_pos, rxring_pos;
1867 
1868 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1869 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1870 
1871 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1872 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1873 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1874 
1875 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1876 			rxst_ring->rsr_index = 0;
1877 			rxst_ring->rsr_wrap ^= 1;
1878 		}
1879 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1880 				       ET_RXSTAT_POS_INDEX);
1881 		if (rxst_ring->rsr_wrap)
1882 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1883 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1884 
1885 		if (ring_idx >= ET_RX_NRING) {
1886 			ifp->if_ierrors++;
1887 			if_printf(ifp, "invalid ring index %d\n", ring_idx);
1888 			continue;
1889 		}
1890 		if (buf_idx >= ET_RX_NDESC) {
1891 			ifp->if_ierrors++;
1892 			if_printf(ifp, "invalid buf index %d\n", buf_idx);
1893 			continue;
1894 		}
1895 
1896 		rbd = &sc->sc_rx_data[ring_idx];
1897 		m = rbd->rbd_buf[buf_idx].rb_mbuf;
1898 
1899 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1900 			if (buflen < ETHER_CRC_LEN) {
1901 				m_freem(m);
1902 				ifp->if_ierrors++;
1903 			} else {
1904 				m->m_pkthdr.len = m->m_len = buflen;
1905 				m->m_pkthdr.rcvif = ifp;
1906 
1907 				m_adj(m, -ETHER_CRC_LEN);
1908 
1909 				ifp->if_ipackets++;
1910 				ether_input_chain(ifp, m, NULL, chain);
1911 			}
1912 		} else {
1913 			ifp->if_ierrors++;
1914 		}
1915 		m = NULL;	/* Catch invalid reference */
1916 
1917 		rx_ring = &sc->sc_rx_ring[ring_idx];
1918 
1919 		if (buf_idx != rx_ring->rr_index) {
1920 			if_printf(ifp, "WARNING!! ring %d, "
1921 				  "buf_idx %d, rr_idx %d\n",
1922 				  ring_idx, buf_idx, rx_ring->rr_index);
1923 		}
1924 
1925 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1926 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1927 			rx_ring->rr_index = 0;
1928 			rx_ring->rr_wrap ^= 1;
1929 		}
1930 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1931 		if (rx_ring->rr_wrap)
1932 			rxring_pos |= ET_RX_RING_POS_WRAP;
1933 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1934 	}
1935 
1936 	ether_input_dispatch(chain);
1937 }
1938 
1939 static int
1940 et_encap(struct et_softc *sc, struct mbuf **m0)
1941 {
1942 	bus_dma_segment_t segs[ET_NSEG_MAX];
1943 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1944 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1945 	struct et_txdesc *td;
1946 	bus_dmamap_t map;
1947 	int error, maxsegs, nsegs, first_idx, last_idx, i;
1948 	uint32_t tx_ready_pos, last_td_ctrl2;
1949 
1950 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1951 	if (maxsegs > ET_NSEG_MAX)
1952 		maxsegs = ET_NSEG_MAX;
1953 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1954 		("not enough spare TX desc (%d)\n", maxsegs));
1955 
1956 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1957 	first_idx = tx_ring->tr_ready_index;
1958 	map = tbd->tbd_buf[first_idx].tb_dmap;
1959 
1960 	error = bus_dmamap_load_mbuf_defrag(sc->sc_txbuf_dtag, map, m0,
1961 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1962 	if (error)
1963 		goto back;
1964 	bus_dmamap_sync(sc->sc_txbuf_dtag, map, BUS_DMASYNC_PREWRITE);
1965 
1966 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1967 	sc->sc_tx += nsegs;
1968 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1969 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1970 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1971 	}
1972 
1973 	last_idx = -1;
1974 	for (i = 0; i < nsegs; ++i) {
1975 		int idx;
1976 
1977 		idx = (first_idx + i) % ET_TX_NDESC;
1978 		td = &tx_ring->tr_desc[idx];
1979 		td->td_addr_hi = ET_ADDR_HI(segs[i].ds_addr);
1980 		td->td_addr_lo = ET_ADDR_LO(segs[i].ds_addr);
1981 		td->td_ctrl1 = __SHIFTIN(segs[i].ds_len, ET_TDCTRL1_LEN);
1982 
1983 		if (i == nsegs - 1) {	/* Last frag */
1984 			td->td_ctrl2 = last_td_ctrl2;
1985 			last_idx = idx;
1986 		}
1987 
1988 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1989 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1990 			tx_ring->tr_ready_index = 0;
1991 			tx_ring->tr_ready_wrap ^= 1;
1992 		}
1993 	}
1994 	td = &tx_ring->tr_desc[first_idx];
1995 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1996 
1997 	KKASSERT(last_idx >= 0);
1998 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1999 	tbd->tbd_buf[last_idx].tb_dmap = map;
2000 	tbd->tbd_buf[last_idx].tb_mbuf = *m0;
2001 
2002 	tbd->tbd_used += nsegs;
2003 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
2004 
2005 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
2006 		       ET_TX_READY_POS_INDEX);
2007 	if (tx_ring->tr_ready_wrap)
2008 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
2009 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
2010 
2011 	error = 0;
2012 back:
2013 	if (error) {
2014 		m_freem(*m0);
2015 		*m0 = NULL;
2016 	}
2017 	return error;
2018 }
2019 
2020 static void
2021 et_txeof(struct et_softc *sc, int start)
2022 {
2023 	struct ifnet *ifp = &sc->arpcom.ac_if;
2024 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2025 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
2026 	uint32_t tx_done;
2027 	int end, wrap;
2028 
2029 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
2030 		return;
2031 
2032 	if (tbd->tbd_used == 0)
2033 		return;
2034 
2035 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2036 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2037 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2038 
2039 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2040 		struct et_txbuf *tb;
2041 
2042 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2043 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
2044 
2045 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2046 		      sizeof(struct et_txdesc));
2047 
2048 		if (tb->tb_mbuf != NULL) {
2049 			bus_dmamap_unload(sc->sc_txbuf_dtag, tb->tb_dmap);
2050 			m_freem(tb->tb_mbuf);
2051 			tb->tb_mbuf = NULL;
2052 			ifp->if_opackets++;
2053 		}
2054 
2055 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2056 			tbd->tbd_start_index = 0;
2057 			tbd->tbd_start_wrap ^= 1;
2058 		}
2059 
2060 		KKASSERT(tbd->tbd_used > 0);
2061 		tbd->tbd_used--;
2062 	}
2063 
2064 	if (tbd->tbd_used == 0)
2065 		ifp->if_timer = 0;
2066 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2067 		ifp->if_flags &= ~IFF_OACTIVE;
2068 
2069 	if (start)
2070 		if_devstart(ifp);
2071 }
2072 
2073 static void
2074 et_tick(void *xsc)
2075 {
2076 	struct et_softc *sc = xsc;
2077 	struct ifnet *ifp = &sc->arpcom.ac_if;
2078 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2079 
2080 	lwkt_serialize_enter(ifp->if_serializer);
2081 
2082 	mii_tick(mii);
2083 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
2084 	    (mii->mii_media_status & IFM_ACTIVE) &&
2085 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2086 		if_printf(ifp, "Link up, enable TX/RX\n");
2087 		if (et_enable_txrx(sc, 0) == 0)
2088 			if_devstart(ifp);
2089 	}
2090 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
2091 
2092 	lwkt_serialize_exit(ifp->if_serializer);
2093 }
2094 
2095 static int
2096 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2097 {
2098 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2099 }
2100 
2101 static int
2102 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2103 {
2104 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2105 }
2106 
2107 static int
2108 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2109 {
2110 	struct et_softc *sc = rbd->rbd_softc;
2111 	struct et_rxbuf *rb;
2112 	struct mbuf *m;
2113 	bus_dma_segment_t seg;
2114 	bus_dmamap_t dmap;
2115 	int error, len, nseg;
2116 
2117 	KASSERT(!rbd->rbd_jumbo, ("calling %s with jumbo ring\n", __func__));
2118 
2119 	KKASSERT(buf_idx < ET_RX_NDESC);
2120 	rb = &rbd->rbd_buf[buf_idx];
2121 
2122 	m = m_getl(len0, init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR, &len);
2123 	if (m == NULL) {
2124 		error = ENOBUFS;
2125 
2126 		if (init) {
2127 			if_printf(&sc->arpcom.ac_if,
2128 				  "m_getl failed, size %d\n", len0);
2129 			return error;
2130 		} else {
2131 			goto back;
2132 		}
2133 	}
2134 	m->m_len = m->m_pkthdr.len = len;
2135 
2136 	/*
2137 	 * Try load RX mbuf into temporary DMA tag
2138 	 */
2139 	error = bus_dmamap_load_mbuf_segment(sc->sc_rxbuf_dtag,
2140 			sc->sc_rxbuf_tmp_dmap, m, &seg, 1, &nseg,
2141 			BUS_DMA_NOWAIT);
2142 	if (error) {
2143 		m_freem(m);
2144 		if (init) {
2145 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2146 			return error;
2147 		} else {
2148 			goto back;
2149 		}
2150 	}
2151 
2152 	if (!init) {
2153 		bus_dmamap_sync(sc->sc_rxbuf_dtag, rb->rb_dmap,
2154 				BUS_DMASYNC_POSTREAD);
2155 		bus_dmamap_unload(sc->sc_rxbuf_dtag, rb->rb_dmap);
2156 	}
2157 	rb->rb_mbuf = m;
2158 	rb->rb_paddr = seg.ds_addr;
2159 
2160 	/*
2161 	 * Swap RX buf's DMA map with the loaded temporary one
2162 	 */
2163 	dmap = rb->rb_dmap;
2164 	rb->rb_dmap = sc->sc_rxbuf_tmp_dmap;
2165 	sc->sc_rxbuf_tmp_dmap = dmap;
2166 
2167 	error = 0;
2168 back:
2169 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2170 	return error;
2171 }
2172 
2173 static int
2174 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
2175 {
2176 	struct et_softc *sc = arg1;
2177 	struct ifnet *ifp = &sc->arpcom.ac_if;
2178 	int error = 0, v;
2179 
2180 	lwkt_serialize_enter(ifp->if_serializer);
2181 
2182 	v = sc->sc_rx_intr_npkts;
2183 	error = sysctl_handle_int(oidp, &v, 0, req);
2184 	if (error || req->newptr == NULL)
2185 		goto back;
2186 	if (v <= 0) {
2187 		error = EINVAL;
2188 		goto back;
2189 	}
2190 
2191 	if (sc->sc_rx_intr_npkts != v) {
2192 		if (ifp->if_flags & IFF_RUNNING)
2193 			CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
2194 		sc->sc_rx_intr_npkts = v;
2195 	}
2196 back:
2197 	lwkt_serialize_exit(ifp->if_serializer);
2198 	return error;
2199 }
2200 
2201 static int
2202 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
2203 {
2204 	struct et_softc *sc = arg1;
2205 	struct ifnet *ifp = &sc->arpcom.ac_if;
2206 	int error = 0, v;
2207 
2208 	lwkt_serialize_enter(ifp->if_serializer);
2209 
2210 	v = sc->sc_rx_intr_delay;
2211 	error = sysctl_handle_int(oidp, &v, 0, req);
2212 	if (error || req->newptr == NULL)
2213 		goto back;
2214 	if (v <= 0) {
2215 		error = EINVAL;
2216 		goto back;
2217 	}
2218 
2219 	if (sc->sc_rx_intr_delay != v) {
2220 		if (ifp->if_flags & IFF_RUNNING)
2221 			CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
2222 		sc->sc_rx_intr_delay = v;
2223 	}
2224 back:
2225 	lwkt_serialize_exit(ifp->if_serializer);
2226 	return error;
2227 }
2228 
2229 static void
2230 et_setmedia(struct et_softc *sc)
2231 {
2232 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2233 	uint32_t cfg2, ctrl;
2234 
2235 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
2236 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
2237 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
2238 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
2239 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
2240 
2241 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
2242 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
2243 
2244 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
2245 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
2246 	} else {
2247 		cfg2 |= ET_MAC_CFG2_MODE_MII;
2248 		ctrl |= ET_MAC_CTRL_MODE_MII;
2249 	}
2250 
2251 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
2252 		cfg2 |= ET_MAC_CFG2_FDX;
2253 	else
2254 		ctrl |= ET_MAC_CTRL_GHDX;
2255 
2256 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
2257 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
2258 }
2259 
2260 static int
2261 et_jumbo_mem_alloc(device_t dev)
2262 {
2263 	struct et_softc *sc = device_get_softc(dev);
2264 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2265 	bus_addr_t paddr;
2266 	uint8_t *buf;
2267 	int i;
2268 
2269 	jd->jd_buf = bus_dmamem_coherent_any(sc->sc_dtag,
2270 			ET_JUMBO_ALIGN, ET_JUMBO_MEM_SIZE, BUS_DMA_WAITOK,
2271 			&jd->jd_dtag, &jd->jd_dmap, &paddr);
2272 	if (jd->jd_buf == NULL) {
2273 		device_printf(dev, "can't create jumbo DMA stuffs\n");
2274 		return ENOMEM;
2275 	}
2276 
2277 	jd->jd_slots = kmalloc(sizeof(*jd->jd_slots) * ET_JSLOTS, M_DEVBUF,
2278 			       M_WAITOK | M_ZERO);
2279 	lwkt_serialize_init(&jd->jd_serializer);
2280 	SLIST_INIT(&jd->jd_free_slots);
2281 
2282 	buf = jd->jd_buf;
2283 	for (i = 0; i < ET_JSLOTS; ++i) {
2284 		struct et_jslot *jslot = &jd->jd_slots[i];
2285 
2286 		jslot->jslot_data = jd;
2287 		jslot->jslot_buf = buf;
2288 		jslot->jslot_paddr = paddr;
2289 		jslot->jslot_inuse = 0;
2290 		jslot->jslot_index = i;
2291 		SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot, jslot_link);
2292 
2293 		buf += ET_JLEN;
2294 		paddr += ET_JLEN;
2295 	}
2296 	return 0;
2297 }
2298 
2299 static void
2300 et_jumbo_mem_free(device_t dev)
2301 {
2302 	struct et_softc *sc = device_get_softc(dev);
2303 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2304 
2305 	KKASSERT(sc->sc_flags & ET_FLAG_JUMBO);
2306 
2307 	kfree(jd->jd_slots, M_DEVBUF);
2308 	et_dma_mem_destroy(jd->jd_dtag, jd->jd_buf, jd->jd_dmap);
2309 }
2310 
2311 static struct et_jslot *
2312 et_jalloc(struct et_jumbo_data *jd)
2313 {
2314 	struct et_jslot *jslot;
2315 
2316 	lwkt_serialize_enter(&jd->jd_serializer);
2317 
2318 	jslot = SLIST_FIRST(&jd->jd_free_slots);
2319 	if (jslot) {
2320 		SLIST_REMOVE_HEAD(&jd->jd_free_slots, jslot_link);
2321 		jslot->jslot_inuse = 1;
2322 	}
2323 
2324 	lwkt_serialize_exit(&jd->jd_serializer);
2325 	return jslot;
2326 }
2327 
2328 static void
2329 et_jfree(void *xjslot)
2330 {
2331 	struct et_jslot *jslot = xjslot;
2332 	struct et_jumbo_data *jd = jslot->jslot_data;
2333 
2334 	if (&jd->jd_slots[jslot->jslot_index] != jslot) {
2335 		panic("%s wrong jslot!?\n", __func__);
2336 	} else if (jslot->jslot_inuse == 0) {
2337 		panic("%s jslot already freed\n", __func__);
2338 	} else {
2339 		lwkt_serialize_enter(&jd->jd_serializer);
2340 
2341 		atomic_subtract_int(&jslot->jslot_inuse, 1);
2342 		if (jslot->jslot_inuse == 0) {
2343 			SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot,
2344 					  jslot_link);
2345 		}
2346 
2347 		lwkt_serialize_exit(&jd->jd_serializer);
2348 	}
2349 }
2350 
2351 static void
2352 et_jref(void *xjslot)
2353 {
2354 	struct et_jslot *jslot = xjslot;
2355 	struct et_jumbo_data *jd = jslot->jslot_data;
2356 
2357 	if (&jd->jd_slots[jslot->jslot_index] != jslot)
2358 		panic("%s wrong jslot!?\n", __func__);
2359 	else if (jslot->jslot_inuse == 0)
2360 		panic("%s jslot already freed\n", __func__);
2361 	else
2362 		atomic_add_int(&jslot->jslot_inuse, 1);
2363 }
2364 
2365 static int
2366 et_newbuf_jumbo(struct et_rxbuf_data *rbd, int buf_idx, int init)
2367 {
2368 	struct et_softc *sc = rbd->rbd_softc;
2369 	struct et_rxbuf *rb;
2370 	struct mbuf *m;
2371 	struct et_jslot *jslot;
2372 	int error;
2373 
2374 	KASSERT(rbd->rbd_jumbo, ("calling %s with non-jumbo ring\n", __func__));
2375 
2376 	KKASSERT(buf_idx < ET_RX_NDESC);
2377 	rb = &rbd->rbd_buf[buf_idx];
2378 
2379 	error = ENOBUFS;
2380 
2381 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2382 	if (m == NULL) {
2383 		if (init) {
2384 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
2385 			return error;
2386 		} else {
2387 			goto back;
2388 		}
2389 	}
2390 
2391 	jslot = et_jalloc(&sc->sc_jumbo_data);
2392 	if (jslot == NULL) {
2393 		m_freem(m);
2394 
2395 		if (init) {
2396 			if_printf(&sc->arpcom.ac_if,
2397 				  "jslot allocation failed\n");
2398 			return error;
2399 		} else {
2400 			goto back;
2401 		}
2402 	}
2403 
2404 	m->m_ext.ext_arg = jslot;
2405 	m->m_ext.ext_buf = jslot->jslot_buf;
2406 	m->m_ext.ext_free = et_jfree;
2407 	m->m_ext.ext_ref = et_jref;
2408 	m->m_ext.ext_size = ET_JUMBO_FRAMELEN;
2409 	m->m_flags |= M_EXT;
2410 	m->m_data = m->m_ext.ext_buf;
2411 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2412 
2413 	rb->rb_mbuf = m;
2414 	rb->rb_paddr = jslot->jslot_paddr;
2415 
2416 	error = 0;
2417 back:
2418 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2419 	return error;
2420 }
2421 
2422 static void
2423 et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr)
2424 {
2425 	struct et_rxdesc_ring *rx_ring = rbd->rbd_ring;
2426 	struct et_rxdesc *desc;
2427 
2428 	KKASSERT(buf_idx < ET_RX_NDESC);
2429 	desc = &rx_ring->rr_desc[buf_idx];
2430 
2431 	desc->rd_addr_hi = ET_ADDR_HI(paddr);
2432 	desc->rd_addr_lo = ET_ADDR_LO(paddr);
2433 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2434 }
2435