xref: /dragonfly/sys/dev/netif/et/if_et.c (revision bc3d4063)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.15 2008/07/27 10:06:56 sephe Exp $
35  */
36 
37 #include "opt_ethernet.h"
38 
39 #include <sys/param.h>
40 #include <sys/bitops.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/bus.h>
44 #include <sys/interrupt.h>
45 #include <sys/malloc.h>
46 #include <sys/proc.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/bpf.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/ifq_var.h>
60 #include <net/vlan/if_vlan_var.h>
61 
62 #include <dev/netif/mii_layer/miivar.h>
63 
64 #include <bus/pci/pcireg.h>
65 #include <bus/pci/pcivar.h>
66 #include <bus/pci/pcidevs.h>
67 
68 #include <dev/netif/et/if_etreg.h>
69 #include <dev/netif/et/if_etvar.h>
70 
71 #include "miibus_if.h"
72 
73 static int	et_probe(device_t);
74 static int	et_attach(device_t);
75 static int	et_detach(device_t);
76 static int	et_shutdown(device_t);
77 
78 static int	et_miibus_readreg(device_t, int, int);
79 static int	et_miibus_writereg(device_t, int, int, int);
80 static void	et_miibus_statchg(device_t);
81 
82 static void	et_init(void *);
83 static int	et_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
84 static void	et_start(struct ifnet *);
85 static void	et_watchdog(struct ifnet *);
86 static int	et_ifmedia_upd(struct ifnet *);
87 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
88 
89 static int	et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
90 static int	et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
91 
92 static void	et_intr(void *);
93 static void	et_enable_intrs(struct et_softc *, uint32_t);
94 static void	et_disable_intrs(struct et_softc *);
95 static void	et_rxeof(struct et_softc *);
96 static void	et_txeof(struct et_softc *, int);
97 
98 static int	et_dma_alloc(device_t);
99 static void	et_dma_free(device_t);
100 static int	et_dma_mem_create(device_t, bus_size_t, bus_dma_tag_t *,
101 				  void **, bus_addr_t *, bus_dmamap_t *);
102 static void	et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
103 static int	et_dma_mbuf_create(device_t);
104 static void	et_dma_mbuf_destroy(device_t, int, const int[]);
105 static int	et_jumbo_mem_alloc(device_t);
106 static void	et_jumbo_mem_free(device_t);
107 static void	et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
108 static void	et_dma_buf_addr(void *, bus_dma_segment_t *, int,
109 				bus_size_t, int);
110 static int	et_init_tx_ring(struct et_softc *);
111 static int	et_init_rx_ring(struct et_softc *);
112 static void	et_free_tx_ring(struct et_softc *);
113 static void	et_free_rx_ring(struct et_softc *);
114 static int	et_encap(struct et_softc *, struct mbuf **);
115 static struct et_jslot *
116 		et_jalloc(struct et_jumbo_data *);
117 static void	et_jfree(void *);
118 static void	et_jref(void *);
119 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
120 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
121 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
122 static int	et_newbuf_jumbo(struct et_rxbuf_data *, int, int);
123 
124 static void	et_stop(struct et_softc *);
125 static int	et_chip_init(struct et_softc *);
126 static void	et_chip_attach(struct et_softc *);
127 static void	et_init_mac(struct et_softc *);
128 static void	et_init_rxmac(struct et_softc *);
129 static void	et_init_txmac(struct et_softc *);
130 static int	et_init_rxdma(struct et_softc *);
131 static int	et_init_txdma(struct et_softc *);
132 static int	et_start_rxdma(struct et_softc *);
133 static int	et_start_txdma(struct et_softc *);
134 static int	et_stop_rxdma(struct et_softc *);
135 static int	et_stop_txdma(struct et_softc *);
136 static int	et_enable_txrx(struct et_softc *, int);
137 static void	et_reset(struct et_softc *);
138 static int	et_bus_config(device_t);
139 static void	et_get_eaddr(device_t, uint8_t[]);
140 static void	et_setmulti(struct et_softc *);
141 static void	et_tick(void *);
142 static void	et_setmedia(struct et_softc *);
143 static void	et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t);
144 
145 static const struct et_dev {
146 	uint16_t	vid;
147 	uint16_t	did;
148 	const char	*desc;
149 } et_devices[] = {
150 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
151 	  "Agere ET1310 Gigabit Ethernet" },
152 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
153 	  "Agere ET1310 Fast Ethernet" },
154 	{ 0, 0, NULL }
155 };
156 
157 static device_method_t et_methods[] = {
158 	DEVMETHOD(device_probe,		et_probe),
159 	DEVMETHOD(device_attach,	et_attach),
160 	DEVMETHOD(device_detach,	et_detach),
161 	DEVMETHOD(device_shutdown,	et_shutdown),
162 #if 0
163 	DEVMETHOD(device_suspend,	et_suspend),
164 	DEVMETHOD(device_resume,	et_resume),
165 #endif
166 
167 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
168 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
169 
170 	DEVMETHOD(miibus_readreg,	et_miibus_readreg),
171 	DEVMETHOD(miibus_writereg,	et_miibus_writereg),
172 	DEVMETHOD(miibus_statchg,	et_miibus_statchg),
173 
174 	{ 0, 0 }
175 };
176 
177 static driver_t et_driver = {
178 	"et",
179 	et_methods,
180 	sizeof(struct et_softc)
181 };
182 
183 static devclass_t et_devclass;
184 
185 DECLARE_DUMMY_MODULE(if_et);
186 MODULE_DEPEND(if_et, miibus, 1, 1, 1);
187 DRIVER_MODULE(if_et, pci, et_driver, et_devclass, 0, 0);
188 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0);
189 
190 static int	et_rx_intr_npkts = 129;
191 static int	et_rx_intr_delay = 25;		/* x4 usec */
192 static int	et_tx_intr_nsegs = 256;
193 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
194 
195 TUNABLE_INT("hw.et.timer", &et_timer);
196 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
197 TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
198 TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
199 
200 struct et_bsize {
201 	int		bufsize;
202 	int		jumbo;
203 	et_newbuf_t	newbuf;
204 };
205 
206 static const struct et_bsize	et_bufsize_std[ET_RX_NRING] = {
207 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
208 	  .newbuf = et_newbuf_hdr },
209 	{ .bufsize = ET_RXDMA_CTRL_RING1_2048,	.jumbo = 0,
210 	  .newbuf = et_newbuf_cluster },
211 };
212 
213 static const struct et_bsize	et_bufsize_jumbo[ET_RX_NRING] = {
214 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
215 	  .newbuf = et_newbuf_hdr },
216 	{ .bufsize = ET_RXDMA_CTRL_RING1_16384,	.jumbo = 1,
217 	  .newbuf = et_newbuf_jumbo },
218 };
219 
220 static int
221 et_probe(device_t dev)
222 {
223 	const struct et_dev *d;
224 	uint16_t did, vid;
225 
226 	vid = pci_get_vendor(dev);
227 	did = pci_get_device(dev);
228 
229 	for (d = et_devices; d->desc != NULL; ++d) {
230 		if (vid == d->vid && did == d->did) {
231 			device_set_desc(dev, d->desc);
232 			return 0;
233 		}
234 	}
235 	return ENXIO;
236 }
237 
238 static int
239 et_attach(device_t dev)
240 {
241 	struct et_softc *sc = device_get_softc(dev);
242 	struct ifnet *ifp = &sc->arpcom.ac_if;
243 	uint8_t eaddr[ETHER_ADDR_LEN];
244 	int error;
245 
246 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
247 	callout_init(&sc->sc_tick);
248 
249 	/*
250 	 * Initialize tunables
251 	 */
252 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
253 	sc->sc_rx_intr_delay = et_rx_intr_delay;
254 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
255 	sc->sc_timer = et_timer;
256 
257 #ifndef BURN_BRIDGES
258 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
259 		uint32_t irq, mem;
260 
261 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
262 		mem = pci_read_config(dev, ET_PCIR_BAR, 4);
263 
264 		device_printf(dev, "chip is in D%d power mode "
265 		    "-- setting to D0\n", pci_get_powerstate(dev));
266 
267 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
268 
269 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
270 		pci_write_config(dev, ET_PCIR_BAR, mem, 4);
271 	}
272 #endif	/* !BURN_BRIDGE */
273 
274 	/* Enable bus mastering */
275 	pci_enable_busmaster(dev);
276 
277 	/*
278 	 * Allocate IO memory
279 	 */
280 	sc->sc_mem_rid = ET_PCIR_BAR;
281 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
282 						&sc->sc_mem_rid, RF_ACTIVE);
283 	if (sc->sc_mem_res == NULL) {
284 		device_printf(dev, "can't allocate IO memory\n");
285 		return ENXIO;
286 	}
287 	sc->sc_mem_bt = rman_get_bustag(sc->sc_mem_res);
288 	sc->sc_mem_bh = rman_get_bushandle(sc->sc_mem_res);
289 
290 	/*
291 	 * Allocate IRQ
292 	 */
293 	sc->sc_irq_rid = 0;
294 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
295 						&sc->sc_irq_rid,
296 						RF_SHAREABLE | RF_ACTIVE);
297 	if (sc->sc_irq_res == NULL) {
298 		device_printf(dev, "can't allocate irq\n");
299 		error = ENXIO;
300 		goto fail;
301 	}
302 
303 	/*
304 	 * Create sysctl tree
305 	 */
306 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
307 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
308 					     SYSCTL_STATIC_CHILDREN(_hw),
309 					     OID_AUTO,
310 					     device_get_nameunit(dev),
311 					     CTLFLAG_RD, 0, "");
312 	if (sc->sc_sysctl_tree == NULL) {
313 		device_printf(dev, "can't add sysctl node\n");
314 		error = ENXIO;
315 		goto fail;
316 	}
317 
318 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
319 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
320 			OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW,
321 			sc, 0, et_sysctl_rx_intr_npkts, "I",
322 			"RX IM, # packets per RX interrupt");
323 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
324 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
325 			OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW,
326 			sc, 0, et_sysctl_rx_intr_delay, "I",
327 			"RX IM, RX interrupt delay (x10 usec)");
328 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
329 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
330 		       "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
331 		       "TX IM, # segments per TX interrupt");
332 	SYSCTL_ADD_UINT(&sc->sc_sysctl_ctx,
333 			SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
334 			"timer", CTLFLAG_RW, &sc->sc_timer, 0,
335 			"TX timer");
336 
337 	error = et_bus_config(dev);
338 	if (error)
339 		goto fail;
340 
341 	et_get_eaddr(dev, eaddr);
342 
343 	CSR_WRITE_4(sc, ET_PM,
344 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
345 
346 	et_reset(sc);
347 
348 	et_disable_intrs(sc);
349 
350 	error = et_dma_alloc(dev);
351 	if (error)
352 		goto fail;
353 
354 	ifp->if_softc = sc;
355 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
356 	ifp->if_init = et_init;
357 	ifp->if_ioctl = et_ioctl;
358 	ifp->if_start = et_start;
359 	ifp->if_watchdog = et_watchdog;
360 	ifp->if_mtu = ETHERMTU;
361 	ifp->if_capabilities = IFCAP_VLAN_MTU;
362 	ifp->if_capenable = ifp->if_capabilities;
363 	ifq_set_maxlen(&ifp->if_snd, ET_TX_NDESC);
364 	ifq_set_ready(&ifp->if_snd);
365 
366 	et_chip_attach(sc);
367 
368 	error = mii_phy_probe(dev, &sc->sc_miibus,
369 			      et_ifmedia_upd, et_ifmedia_sts);
370 	if (error) {
371 		device_printf(dev, "can't probe any PHY\n");
372 		goto fail;
373 	}
374 
375 	ether_ifattach(ifp, eaddr, NULL);
376 
377 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, et_intr, sc,
378 			       &sc->sc_irq_handle, ifp->if_serializer);
379 	if (error) {
380 		ether_ifdetach(ifp);
381 		device_printf(dev, "can't setup intr\n");
382 		goto fail;
383 	}
384 
385 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sc_irq_res));
386 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
387 
388 	return 0;
389 fail:
390 	et_detach(dev);
391 	return error;
392 }
393 
394 static int
395 et_detach(device_t dev)
396 {
397 	struct et_softc *sc = device_get_softc(dev);
398 
399 	if (device_is_attached(dev)) {
400 		struct ifnet *ifp = &sc->arpcom.ac_if;
401 
402 		lwkt_serialize_enter(ifp->if_serializer);
403 		et_stop(sc);
404 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
405 		lwkt_serialize_exit(ifp->if_serializer);
406 
407 		ether_ifdetach(ifp);
408 	}
409 
410 	if (sc->sc_sysctl_tree != NULL)
411 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
412 
413 	if (sc->sc_miibus != NULL)
414 		device_delete_child(dev, sc->sc_miibus);
415 	bus_generic_detach(dev);
416 
417 	if (sc->sc_irq_res != NULL) {
418 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
419 				     sc->sc_irq_res);
420 	}
421 
422 	if (sc->sc_mem_res != NULL) {
423 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
424 				     sc->sc_mem_res);
425 	}
426 
427 	et_dma_free(dev);
428 
429 	return 0;
430 }
431 
432 static int
433 et_shutdown(device_t dev)
434 {
435 	struct et_softc *sc = device_get_softc(dev);
436 	struct ifnet *ifp = &sc->arpcom.ac_if;
437 
438 	lwkt_serialize_enter(ifp->if_serializer);
439 	et_stop(sc);
440 	lwkt_serialize_exit(ifp->if_serializer);
441 	return 0;
442 }
443 
444 static int
445 et_miibus_readreg(device_t dev, int phy, int reg)
446 {
447 	struct et_softc *sc = device_get_softc(dev);
448 	uint32_t val;
449 	int i, ret;
450 
451 	/* Stop any pending operations */
452 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
453 
454 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
455 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
456 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
457 
458 	/* Start reading */
459 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
460 
461 #define NRETRY	50
462 
463 	for (i = 0; i < NRETRY; ++i) {
464 		val = CSR_READ_4(sc, ET_MII_IND);
465 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
466 			break;
467 		DELAY(50);
468 	}
469 	if (i == NRETRY) {
470 		if_printf(&sc->arpcom.ac_if,
471 			  "read phy %d, reg %d timed out\n", phy, reg);
472 		ret = 0;
473 		goto back;
474 	}
475 
476 #undef NRETRY
477 
478 	val = CSR_READ_4(sc, ET_MII_STAT);
479 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
480 
481 back:
482 	/* Make sure that the current operation is stopped */
483 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
484 	return ret;
485 }
486 
487 static int
488 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
489 {
490 	struct et_softc *sc = device_get_softc(dev);
491 	uint32_t val;
492 	int i;
493 
494 	/* Stop any pending operations */
495 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
496 
497 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
498 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
499 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
500 
501 	/* Start writing */
502 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
503 
504 #define NRETRY 100
505 
506 	for (i = 0; i < NRETRY; ++i) {
507 		val = CSR_READ_4(sc, ET_MII_IND);
508 		if ((val & ET_MII_IND_BUSY) == 0)
509 			break;
510 		DELAY(50);
511 	}
512 	if (i == NRETRY) {
513 		if_printf(&sc->arpcom.ac_if,
514 			  "write phy %d, reg %d timed out\n", phy, reg);
515 		et_miibus_readreg(dev, phy, reg);
516 	}
517 
518 #undef NRETRY
519 
520 	/* Make sure that the current operation is stopped */
521 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
522 	return 0;
523 }
524 
525 static void
526 et_miibus_statchg(device_t dev)
527 {
528 	et_setmedia(device_get_softc(dev));
529 }
530 
531 static int
532 et_ifmedia_upd(struct ifnet *ifp)
533 {
534 	struct et_softc *sc = ifp->if_softc;
535 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
536 
537 	if (mii->mii_instance != 0) {
538 		struct mii_softc *miisc;
539 
540 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
541 			mii_phy_reset(miisc);
542 	}
543 	mii_mediachg(mii);
544 
545 	return 0;
546 }
547 
548 static void
549 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
550 {
551 	struct et_softc *sc = ifp->if_softc;
552 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
553 
554 	mii_pollstat(mii);
555 	ifmr->ifm_active = mii->mii_media_active;
556 	ifmr->ifm_status = mii->mii_media_status;
557 }
558 
559 static void
560 et_stop(struct et_softc *sc)
561 {
562 	struct ifnet *ifp = &sc->arpcom.ac_if;
563 
564 	ASSERT_SERIALIZED(ifp->if_serializer);
565 
566 	callout_stop(&sc->sc_tick);
567 
568 	et_stop_rxdma(sc);
569 	et_stop_txdma(sc);
570 
571 	et_disable_intrs(sc);
572 
573 	et_free_tx_ring(sc);
574 	et_free_rx_ring(sc);
575 
576 	et_reset(sc);
577 
578 	sc->sc_tx = 0;
579 	sc->sc_tx_intr = 0;
580 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
581 
582 	ifp->if_timer = 0;
583 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
584 }
585 
586 static int
587 et_bus_config(device_t dev)
588 {
589 	uint32_t val, max_plsz;
590 	uint16_t ack_latency, replay_timer;
591 
592 	/*
593 	 * Test whether EEPROM is valid
594 	 * NOTE: Read twice to get the correct value
595 	 */
596 	pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
597 	val = pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
598 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
599 		device_printf(dev, "EEPROM status error 0x%02x\n", val);
600 		return ENXIO;
601 	}
602 
603 	/* TODO: LED */
604 
605 	/*
606 	 * Configure ACK latency and replay timer according to
607 	 * max playload size
608 	 */
609 	val = pci_read_config(dev, ET_PCIR_DEVICE_CAPS, 4);
610 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
611 
612 	switch (max_plsz) {
613 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
614 		ack_latency = ET_PCIV_ACK_LATENCY_128;
615 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
616 		break;
617 
618 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
619 		ack_latency = ET_PCIV_ACK_LATENCY_256;
620 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
621 		break;
622 
623 	default:
624 		ack_latency = pci_read_config(dev, ET_PCIR_ACK_LATENCY, 2);
625 		replay_timer = pci_read_config(dev, ET_PCIR_REPLAY_TIMER, 2);
626 		device_printf(dev, "ack latency %u, replay timer %u\n",
627 			      ack_latency, replay_timer);
628 		break;
629 	}
630 	if (ack_latency != 0) {
631 		pci_write_config(dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
632 		pci_write_config(dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2);
633 	}
634 
635 	/*
636 	 * Set L0s and L1 latency timer to 2us
637 	 */
638 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
639 	pci_write_config(dev, ET_PCIR_L0S_L1_LATENCY, val, 1);
640 
641 	/*
642 	 * Set max read request size to 2048 bytes
643 	 */
644 	val = pci_read_config(dev, ET_PCIR_DEVICE_CTRL, 2);
645 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
646 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
647 	pci_write_config(dev, ET_PCIR_DEVICE_CTRL, val, 2);
648 
649 	return 0;
650 }
651 
652 static void
653 et_get_eaddr(device_t dev, uint8_t eaddr[])
654 {
655 	uint32_t val;
656 	int i;
657 
658 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
659 	for (i = 0; i < 4; ++i)
660 		eaddr[i] = (val >> (8 * i)) & 0xff;
661 
662 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
663 	for (; i < ETHER_ADDR_LEN; ++i)
664 		eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
665 }
666 
667 static void
668 et_reset(struct et_softc *sc)
669 {
670 	CSR_WRITE_4(sc, ET_MAC_CFG1,
671 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
672 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
673 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
674 
675 	CSR_WRITE_4(sc, ET_SWRST,
676 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
677 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
678 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
679 
680 	CSR_WRITE_4(sc, ET_MAC_CFG1,
681 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
682 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
683 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
684 }
685 
686 static void
687 et_disable_intrs(struct et_softc *sc)
688 {
689 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
690 }
691 
692 static void
693 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
694 {
695 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
696 }
697 
698 static int
699 et_dma_alloc(device_t dev)
700 {
701 	struct et_softc *sc = device_get_softc(dev);
702 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
703 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
704 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
705 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
706 	int i, error;
707 
708 	/*
709 	 * Create top level DMA tag
710 	 */
711 	error = bus_dma_tag_create(NULL, 1, 0,
712 				   BUS_SPACE_MAXADDR_32BIT,
713 				   BUS_SPACE_MAXADDR,
714 				   NULL, NULL,
715 				   MAXBSIZE,
716 				   BUS_SPACE_UNRESTRICTED,
717 				   BUS_SPACE_MAXSIZE_32BIT,
718 				   0, &sc->sc_dtag);
719 	if (error) {
720 		device_printf(dev, "can't create DMA tag\n");
721 		return error;
722 	}
723 
724 	/*
725 	 * Create TX ring DMA stuffs
726 	 */
727 	error = et_dma_mem_create(dev, ET_TX_RING_SIZE, &tx_ring->tr_dtag,
728 				  (void **)&tx_ring->tr_desc,
729 				  &tx_ring->tr_paddr, &tx_ring->tr_dmap);
730 	if (error) {
731 		device_printf(dev, "can't create TX ring DMA stuffs\n");
732 		return error;
733 	}
734 
735 	/*
736 	 * Create TX status DMA stuffs
737 	 */
738 	error = et_dma_mem_create(dev, sizeof(uint32_t), &txsd->txsd_dtag,
739 				  (void **)&txsd->txsd_status,
740 				  &txsd->txsd_paddr, &txsd->txsd_dmap);
741 	if (error) {
742 		device_printf(dev, "can't create TX status DMA stuffs\n");
743 		return error;
744 	}
745 
746 	/*
747 	 * Create DMA stuffs for RX rings
748 	 */
749 	for (i = 0; i < ET_RX_NRING; ++i) {
750 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
751 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
752 
753 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
754 
755 		error = et_dma_mem_create(dev, ET_RX_RING_SIZE,
756 					  &rx_ring->rr_dtag,
757 					  (void **)&rx_ring->rr_desc,
758 					  &rx_ring->rr_paddr,
759 					  &rx_ring->rr_dmap);
760 		if (error) {
761 			device_printf(dev, "can't create DMA stuffs for "
762 				      "the %d RX ring\n", i);
763 			return error;
764 		}
765 		rx_ring->rr_posreg = rx_ring_posreg[i];
766 	}
767 
768 	/*
769 	 * Create RX stat ring DMA stuffs
770 	 */
771 	error = et_dma_mem_create(dev, ET_RXSTAT_RING_SIZE,
772 				  &rxst_ring->rsr_dtag,
773 				  (void **)&rxst_ring->rsr_stat,
774 				  &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap);
775 	if (error) {
776 		device_printf(dev, "can't create RX stat ring DMA stuffs\n");
777 		return error;
778 	}
779 
780 	/*
781 	 * Create RX status DMA stuffs
782 	 */
783 	error = et_dma_mem_create(dev, sizeof(struct et_rxstatus),
784 				  &rxsd->rxsd_dtag,
785 				  (void **)&rxsd->rxsd_status,
786 				  &rxsd->rxsd_paddr, &rxsd->rxsd_dmap);
787 	if (error) {
788 		device_printf(dev, "can't create RX status DMA stuffs\n");
789 		return error;
790 	}
791 
792 	/*
793 	 * Create mbuf DMA stuffs
794 	 */
795 	error = et_dma_mbuf_create(dev);
796 	if (error)
797 		return error;
798 
799 	/*
800 	 * Create jumbo buffer DMA stuffs
801 	 * NOTE: Allow it to fail
802 	 */
803 	if (et_jumbo_mem_alloc(dev) == 0)
804 		sc->sc_flags |= ET_FLAG_JUMBO;
805 
806 	return 0;
807 }
808 
809 static void
810 et_dma_free(device_t dev)
811 {
812 	struct et_softc *sc = device_get_softc(dev);
813 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
814 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
815 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
816 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
817 	int i, rx_done[ET_RX_NRING];
818 
819 	/*
820 	 * Destroy TX ring DMA stuffs
821 	 */
822 	et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
823 			   tx_ring->tr_dmap);
824 
825 	/*
826 	 * Destroy TX status DMA stuffs
827 	 */
828 	et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
829 			   txsd->txsd_dmap);
830 
831 	/*
832 	 * Destroy DMA stuffs for RX rings
833 	 */
834 	for (i = 0; i < ET_RX_NRING; ++i) {
835 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
836 
837 		et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
838 				   rx_ring->rr_dmap);
839 	}
840 
841 	/*
842 	 * Destroy RX stat ring DMA stuffs
843 	 */
844 	et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
845 			   rxst_ring->rsr_dmap);
846 
847 	/*
848 	 * Destroy RX status DMA stuffs
849 	 */
850 	et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
851 			   rxsd->rxsd_dmap);
852 
853 	/*
854 	 * Destroy mbuf DMA stuffs
855 	 */
856 	for (i = 0; i < ET_RX_NRING; ++i)
857 		rx_done[i] = ET_RX_NDESC;
858 	et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
859 
860 	/*
861 	 * Destroy jumbo buffer DMA stuffs
862 	 */
863 	if (sc->sc_flags & ET_FLAG_JUMBO)
864 		et_jumbo_mem_free(dev);
865 
866 	/*
867 	 * Destroy top level DMA tag
868 	 */
869 	if (sc->sc_dtag != NULL)
870 		bus_dma_tag_destroy(sc->sc_dtag);
871 }
872 
873 static int
874 et_dma_mbuf_create(device_t dev)
875 {
876 	struct et_softc *sc = device_get_softc(dev);
877 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
878 	int i, error, rx_done[ET_RX_NRING];
879 
880 	/*
881 	 * Create mbuf DMA tag
882 	 */
883 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
884 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
885 				   NULL, NULL,
886 				   ET_JUMBO_FRAMELEN, ET_NSEG_MAX,
887 				   BUS_SPACE_MAXSIZE_32BIT,
888 				   BUS_DMA_ALLOCNOW, &sc->sc_mbuf_dtag);
889 	if (error) {
890 		device_printf(dev, "can't create mbuf DMA tag\n");
891 		return error;
892 	}
893 
894 	/*
895 	 * Create spare DMA map for RX mbufs
896 	 */
897 	error = bus_dmamap_create(sc->sc_mbuf_dtag, 0, &sc->sc_mbuf_tmp_dmap);
898 	if (error) {
899 		device_printf(dev, "can't create spare mbuf DMA map\n");
900 		bus_dma_tag_destroy(sc->sc_mbuf_dtag);
901 		sc->sc_mbuf_dtag = NULL;
902 		return error;
903 	}
904 
905 	/*
906 	 * Create DMA maps for RX mbufs
907 	 */
908 	bzero(rx_done, sizeof(rx_done));
909 	for (i = 0; i < ET_RX_NRING; ++i) {
910 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
911 		int j;
912 
913 		for (j = 0; j < ET_RX_NDESC; ++j) {
914 			error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
915 				&rbd->rbd_buf[j].rb_dmap);
916 			if (error) {
917 				device_printf(dev, "can't create %d RX mbuf "
918 					      "for %d RX ring\n", j, i);
919 				rx_done[i] = j;
920 				et_dma_mbuf_destroy(dev, 0, rx_done);
921 				return error;
922 			}
923 		}
924 		rx_done[i] = ET_RX_NDESC;
925 
926 		rbd->rbd_softc = sc;
927 		rbd->rbd_ring = &sc->sc_rx_ring[i];
928 	}
929 
930 	/*
931 	 * Create DMA maps for TX mbufs
932 	 */
933 	for (i = 0; i < ET_TX_NDESC; ++i) {
934 		error = bus_dmamap_create(sc->sc_mbuf_dtag, 0,
935 					  &tbd->tbd_buf[i].tb_dmap);
936 		if (error) {
937 			device_printf(dev, "can't create %d TX mbuf "
938 				      "DMA map\n", i);
939 			et_dma_mbuf_destroy(dev, i, rx_done);
940 			return error;
941 		}
942 	}
943 
944 	return 0;
945 }
946 
947 static void
948 et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
949 {
950 	struct et_softc *sc = device_get_softc(dev);
951 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
952 	int i;
953 
954 	if (sc->sc_mbuf_dtag == NULL)
955 		return;
956 
957 	/*
958 	 * Destroy DMA maps for RX mbufs
959 	 */
960 	for (i = 0; i < ET_RX_NRING; ++i) {
961 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
962 		int j;
963 
964 		for (j = 0; j < rx_done[i]; ++j) {
965 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
966 
967 			KASSERT(rb->rb_mbuf == NULL,
968 			    ("RX mbuf in %d RX ring is not freed yet\n", i));
969 			bus_dmamap_destroy(sc->sc_mbuf_dtag, rb->rb_dmap);
970 		}
971 	}
972 
973 	/*
974 	 * Destroy DMA maps for TX mbufs
975 	 */
976 	for (i = 0; i < tx_done; ++i) {
977 		struct et_txbuf *tb = &tbd->tbd_buf[i];
978 
979 		KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
980 		bus_dmamap_destroy(sc->sc_mbuf_dtag, tb->tb_dmap);
981 	}
982 
983 	/*
984 	 * Destroy spare mbuf DMA map
985 	 */
986 	bus_dmamap_destroy(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap);
987 
988 	/*
989 	 * Destroy mbuf DMA tag
990 	 */
991 	bus_dma_tag_destroy(sc->sc_mbuf_dtag);
992 	sc->sc_mbuf_dtag = NULL;
993 }
994 
995 static int
996 et_dma_mem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
997 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
998 {
999 	struct et_softc *sc = device_get_softc(dev);
1000 	int error;
1001 
1002 	error = bus_dma_tag_create(sc->sc_dtag, ET_ALIGN, 0,
1003 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1004 				   NULL, NULL,
1005 				   size, 1, BUS_SPACE_MAXSIZE_32BIT,
1006 				   0, dtag);
1007 	if (error) {
1008 		device_printf(dev, "can't create DMA tag\n");
1009 		return error;
1010 	}
1011 
1012 	error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1013 				 dmap);
1014 	if (error) {
1015 		device_printf(dev, "can't allocate DMA mem\n");
1016 		bus_dma_tag_destroy(*dtag);
1017 		*dtag = NULL;
1018 		return error;
1019 	}
1020 
1021 	error = bus_dmamap_load(*dtag, *dmap, *addr, size,
1022 				et_dma_ring_addr, paddr, BUS_DMA_WAITOK);
1023 	if (error) {
1024 		device_printf(dev, "can't load DMA mem\n");
1025 		bus_dmamem_free(*dtag, *addr, *dmap);
1026 		bus_dma_tag_destroy(*dtag);
1027 		*dtag = NULL;
1028 		return error;
1029 	}
1030 	return 0;
1031 }
1032 
1033 static void
1034 et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
1035 {
1036 	if (dtag != NULL) {
1037 		bus_dmamap_unload(dtag, dmap);
1038 		bus_dmamem_free(dtag, addr, dmap);
1039 		bus_dma_tag_destroy(dtag);
1040 	}
1041 }
1042 
1043 static void
1044 et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1045 {
1046 	KASSERT(nseg == 1, ("too many segments\n"));
1047 	*((bus_addr_t *)arg) = seg->ds_addr;
1048 }
1049 
1050 static void
1051 et_chip_attach(struct et_softc *sc)
1052 {
1053 	uint32_t val;
1054 
1055 	/*
1056 	 * Perform minimal initialization
1057 	 */
1058 
1059 	/* Disable loopback */
1060 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1061 
1062 	/* Reset MAC */
1063 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1064 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1065 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1066 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1067 
1068 	/*
1069 	 * Setup half duplex mode
1070 	 */
1071 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1072 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1073 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1074 	      ET_MAC_HDX_EXC_DEFER;
1075 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1076 
1077 	/* Clear MAC control */
1078 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1079 
1080 	/* Reset MII */
1081 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1082 
1083 	/* Bring MAC out of reset state */
1084 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1085 
1086 	/* Enable memory controllers */
1087 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1088 }
1089 
1090 static void
1091 et_intr(void *xsc)
1092 {
1093 	struct et_softc *sc = xsc;
1094 	struct ifnet *ifp = &sc->arpcom.ac_if;
1095 	uint32_t intrs;
1096 
1097 	ASSERT_SERIALIZED(ifp->if_serializer);
1098 
1099 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1100 		return;
1101 
1102 	et_disable_intrs(sc);
1103 
1104 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1105 	intrs &= ET_INTRS;
1106 	if (intrs == 0)	/* Not interested */
1107 		goto back;
1108 
1109 	if (intrs & ET_INTR_RXEOF)
1110 		et_rxeof(sc);
1111 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1112 		et_txeof(sc, 1);
1113 	if (intrs & ET_INTR_TIMER)
1114 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1115 back:
1116 	et_enable_intrs(sc, ET_INTRS);
1117 }
1118 
1119 static void
1120 et_init(void *xsc)
1121 {
1122 	struct et_softc *sc = xsc;
1123 	struct ifnet *ifp = &sc->arpcom.ac_if;
1124 	const struct et_bsize *arr;
1125 	int error, i;
1126 
1127 	ASSERT_SERIALIZED(ifp->if_serializer);
1128 
1129 	et_stop(sc);
1130 
1131 	arr = ET_FRAMELEN(ifp->if_mtu) < MCLBYTES ?
1132 	      et_bufsize_std : et_bufsize_jumbo;
1133 	for (i = 0; i < ET_RX_NRING; ++i) {
1134 		sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
1135 		sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
1136 		sc->sc_rx_data[i].rbd_jumbo = arr[i].jumbo;
1137 	}
1138 
1139 	error = et_init_tx_ring(sc);
1140 	if (error)
1141 		goto back;
1142 
1143 	error = et_init_rx_ring(sc);
1144 	if (error)
1145 		goto back;
1146 
1147 	error = et_chip_init(sc);
1148 	if (error)
1149 		goto back;
1150 
1151 	error = et_enable_txrx(sc, 1);
1152 	if (error)
1153 		goto back;
1154 
1155 	et_enable_intrs(sc, ET_INTRS);
1156 
1157 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
1158 
1159 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1160 
1161 	ifp->if_flags |= IFF_RUNNING;
1162 	ifp->if_flags &= ~IFF_OACTIVE;
1163 back:
1164 	if (error)
1165 		et_stop(sc);
1166 }
1167 
1168 static int
1169 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1170 {
1171 	struct et_softc *sc = ifp->if_softc;
1172 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1173 	struct ifreq *ifr = (struct ifreq *)data;
1174 	int error = 0, max_framelen;
1175 
1176 	ASSERT_SERIALIZED(ifp->if_serializer);
1177 
1178 	switch (cmd) {
1179 	case SIOCSIFFLAGS:
1180 		if (ifp->if_flags & IFF_UP) {
1181 			if (ifp->if_flags & IFF_RUNNING) {
1182 				if ((ifp->if_flags ^ sc->sc_if_flags) &
1183 				    (IFF_ALLMULTI | IFF_PROMISC))
1184 					et_setmulti(sc);
1185 			} else {
1186 				et_init(sc);
1187 			}
1188 		} else {
1189 			if (ifp->if_flags & IFF_RUNNING)
1190 				et_stop(sc);
1191 		}
1192 		sc->sc_if_flags = ifp->if_flags;
1193 		break;
1194 
1195 	case SIOCSIFMEDIA:
1196 	case SIOCGIFMEDIA:
1197 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1198 		break;
1199 
1200 	case SIOCADDMULTI:
1201 	case SIOCDELMULTI:
1202 		if (ifp->if_flags & IFF_RUNNING)
1203 			et_setmulti(sc);
1204 		break;
1205 
1206 	case SIOCSIFMTU:
1207 		if (sc->sc_flags & ET_FLAG_JUMBO)
1208 			max_framelen = ET_JUMBO_FRAMELEN;
1209 		else
1210 			max_framelen = MCLBYTES - 1;
1211 
1212 		if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
1213 			error = EOPNOTSUPP;
1214 			break;
1215 		}
1216 
1217 		ifp->if_mtu = ifr->ifr_mtu;
1218 		if (ifp->if_flags & IFF_RUNNING)
1219 			et_init(sc);
1220 		break;
1221 
1222 	default:
1223 		error = ether_ioctl(ifp, cmd, data);
1224 		break;
1225 	}
1226 	return error;
1227 }
1228 
1229 static void
1230 et_start(struct ifnet *ifp)
1231 {
1232 	struct et_softc *sc = ifp->if_softc;
1233 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1234 	int trans, oactive;
1235 
1236 	ASSERT_SERIALIZED(ifp->if_serializer);
1237 
1238 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) {
1239 		ifq_purge(&ifp->if_snd);
1240 		return;
1241 	}
1242 
1243 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1244 		return;
1245 
1246 	oactive = 0;
1247 	trans = 0;
1248 	for (;;) {
1249 		struct mbuf *m;
1250 		int error;
1251 
1252 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1253 			if (oactive) {
1254 				ifp->if_flags |= IFF_OACTIVE;
1255 				break;
1256 			}
1257 
1258 			et_txeof(sc, 0);
1259 			oactive = 1;
1260 			continue;
1261 		}
1262 
1263 		m = ifq_dequeue(&ifp->if_snd, NULL);
1264 		if (m == NULL)
1265 			break;
1266 
1267 		error = et_encap(sc, &m);
1268 		if (error) {
1269 			ifp->if_oerrors++;
1270 			KKASSERT(m == NULL);
1271 
1272 			if (error == EFBIG) {
1273 				/*
1274 				 * Excessive fragmented packets
1275 				 */
1276 				if (oactive) {
1277 					ifp->if_flags |= IFF_OACTIVE;
1278 					break;
1279 				}
1280 				et_txeof(sc, 0);
1281 				oactive = 1;
1282 			}
1283 			continue;
1284 		} else {
1285 			oactive = 0;
1286 		}
1287 		trans = 1;
1288 
1289 		BPF_MTAP(ifp, m);
1290 	}
1291 
1292 	if (trans)
1293 		ifp->if_timer = 5;
1294 }
1295 
1296 static void
1297 et_watchdog(struct ifnet *ifp)
1298 {
1299 	ASSERT_SERIALIZED(ifp->if_serializer);
1300 
1301 	if_printf(ifp, "watchdog timed out\n");
1302 
1303 	ifp->if_init(ifp->if_softc);
1304 	if_devstart(ifp);
1305 }
1306 
1307 static int
1308 et_stop_rxdma(struct et_softc *sc)
1309 {
1310 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1311 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1312 
1313 	DELAY(5);
1314 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1315 		if_printf(&sc->arpcom.ac_if, "can't stop RX DMA engine\n");
1316 		return ETIMEDOUT;
1317 	}
1318 	return 0;
1319 }
1320 
1321 static int
1322 et_stop_txdma(struct et_softc *sc)
1323 {
1324 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1325 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1326 	return 0;
1327 }
1328 
1329 static void
1330 et_free_tx_ring(struct et_softc *sc)
1331 {
1332 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1333 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1334 	int i;
1335 
1336 	for (i = 0; i < ET_TX_NDESC; ++i) {
1337 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1338 
1339 		if (tb->tb_mbuf != NULL) {
1340 			bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
1341 			m_freem(tb->tb_mbuf);
1342 			tb->tb_mbuf = NULL;
1343 		}
1344 	}
1345 
1346 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1347 	bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
1348 			BUS_DMASYNC_PREWRITE);
1349 }
1350 
1351 static void
1352 et_free_rx_ring(struct et_softc *sc)
1353 {
1354 	int n;
1355 
1356 	for (n = 0; n < ET_RX_NRING; ++n) {
1357 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1358 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1359 		int i;
1360 
1361 		for (i = 0; i < ET_RX_NDESC; ++i) {
1362 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1363 
1364 			if (rb->rb_mbuf != NULL) {
1365 				if (!rbd->rbd_jumbo) {
1366 					bus_dmamap_unload(sc->sc_mbuf_dtag,
1367 							  rb->rb_dmap);
1368 				}
1369 				m_freem(rb->rb_mbuf);
1370 				rb->rb_mbuf = NULL;
1371 			}
1372 		}
1373 
1374 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1375 		bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
1376 				BUS_DMASYNC_PREWRITE);
1377 	}
1378 }
1379 
1380 static void
1381 et_setmulti(struct et_softc *sc)
1382 {
1383 	struct ifnet *ifp = &sc->arpcom.ac_if;
1384 	uint32_t hash[4] = { 0, 0, 0, 0 };
1385 	uint32_t rxmac_ctrl, pktfilt;
1386 	struct ifmultiaddr *ifma;
1387 	int i, count;
1388 
1389 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1390 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1391 
1392 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1393 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1394 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1395 		goto back;
1396 	}
1397 
1398 	count = 0;
1399 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1400 		uint32_t *hp, h;
1401 
1402 		if (ifma->ifma_addr->sa_family != AF_LINK)
1403 			continue;
1404 
1405 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1406 				   ifma->ifma_addr), ETHER_ADDR_LEN);
1407 		h = (h & 0x3f800000) >> 23;
1408 
1409 		hp = &hash[0];
1410 		if (h >= 32 && h < 64) {
1411 			h -= 32;
1412 			hp = &hash[1];
1413 		} else if (h >= 64 && h < 96) {
1414 			h -= 64;
1415 			hp = &hash[2];
1416 		} else if (h >= 96) {
1417 			h -= 96;
1418 			hp = &hash[3];
1419 		}
1420 		*hp |= (1 << h);
1421 
1422 		++count;
1423 	}
1424 
1425 	for (i = 0; i < 4; ++i)
1426 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1427 
1428 	if (count > 0)
1429 		pktfilt |= ET_PKTFILT_MCAST;
1430 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1431 back:
1432 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1433 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1434 }
1435 
1436 static int
1437 et_chip_init(struct et_softc *sc)
1438 {
1439 	struct ifnet *ifp = &sc->arpcom.ac_if;
1440 	uint32_t rxq_end;
1441 	int error, frame_len, rxmem_size;
1442 
1443 	/*
1444 	 * Split 16Kbytes internal memory between TX and RX
1445 	 * according to frame length.
1446 	 */
1447 	frame_len = ET_FRAMELEN(ifp->if_mtu);
1448 	if (frame_len < 2048) {
1449 		rxmem_size = ET_MEM_RXSIZE_DEFAULT;
1450 	} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
1451 		rxmem_size = ET_MEM_SIZE / 2;
1452 	} else {
1453 		rxmem_size = ET_MEM_SIZE -
1454 		roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
1455 	}
1456 	rxq_end = ET_QUEUE_ADDR(rxmem_size);
1457 
1458 	CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
1459 	CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
1460 	CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
1461 	CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
1462 
1463 	/* No loopback */
1464 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1465 
1466 	/* Clear MSI configure */
1467 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1468 
1469 	/* Disable timer */
1470 	CSR_WRITE_4(sc, ET_TIMER, 0);
1471 
1472 	/* Initialize MAC */
1473 	et_init_mac(sc);
1474 
1475 	/* Enable memory controllers */
1476 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1477 
1478 	/* Initialize RX MAC */
1479 	et_init_rxmac(sc);
1480 
1481 	/* Initialize TX MAC */
1482 	et_init_txmac(sc);
1483 
1484 	/* Initialize RX DMA engine */
1485 	error = et_init_rxdma(sc);
1486 	if (error)
1487 		return error;
1488 
1489 	/* Initialize TX DMA engine */
1490 	error = et_init_txdma(sc);
1491 	if (error)
1492 		return error;
1493 
1494 	return 0;
1495 }
1496 
1497 static int
1498 et_init_tx_ring(struct et_softc *sc)
1499 {
1500 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1501 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1502 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1503 
1504 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1505 	bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
1506 			BUS_DMASYNC_PREWRITE);
1507 
1508 	tbd->tbd_start_index = 0;
1509 	tbd->tbd_start_wrap = 0;
1510 	tbd->tbd_used = 0;
1511 
1512 	bzero(txsd->txsd_status, sizeof(uint32_t));
1513 	bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap,
1514 			BUS_DMASYNC_PREWRITE);
1515 	return 0;
1516 }
1517 
1518 static int
1519 et_init_rx_ring(struct et_softc *sc)
1520 {
1521 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1522 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1523 	int n;
1524 
1525 	for (n = 0; n < ET_RX_NRING; ++n) {
1526 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1527 		int i, error;
1528 
1529 		for (i = 0; i < ET_RX_NDESC; ++i) {
1530 			error = rbd->rbd_newbuf(rbd, i, 1);
1531 			if (error) {
1532 				if_printf(&sc->arpcom.ac_if, "%d ring %d buf, "
1533 					  "newbuf failed: %d\n", n, i, error);
1534 				return error;
1535 			}
1536 		}
1537 	}
1538 
1539 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1540 	bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
1541 			BUS_DMASYNC_PREWRITE);
1542 
1543 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1544 	bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
1545 			BUS_DMASYNC_PREWRITE);
1546 
1547 	return 0;
1548 }
1549 
1550 static void
1551 et_dma_buf_addr(void *xctx, bus_dma_segment_t *segs, int nsegs,
1552 		bus_size_t mapsz __unused, int error)
1553 {
1554 	struct et_dmamap_ctx *ctx = xctx;
1555 	int i;
1556 
1557 	if (error)
1558 		return;
1559 
1560 	if (nsegs > ctx->nsegs) {
1561 		ctx->nsegs = 0;
1562 		return;
1563 	}
1564 
1565 	ctx->nsegs = nsegs;
1566 	for (i = 0; i < nsegs; ++i)
1567 		ctx->segs[i] = segs[i];
1568 }
1569 
1570 static int
1571 et_init_rxdma(struct et_softc *sc)
1572 {
1573 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1574 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1575 	struct et_rxdesc_ring *rx_ring;
1576 	int error;
1577 
1578 	error = et_stop_rxdma(sc);
1579 	if (error) {
1580 		if_printf(&sc->arpcom.ac_if, "can't init RX DMA engine\n");
1581 		return error;
1582 	}
1583 
1584 	/*
1585 	 * Install RX status
1586 	 */
1587 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1588 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1589 
1590 	/*
1591 	 * Install RX stat ring
1592 	 */
1593 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1594 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1595 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1596 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1597 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1598 
1599 	/* Match ET_RXSTAT_POS */
1600 	rxst_ring->rsr_index = 0;
1601 	rxst_ring->rsr_wrap = 0;
1602 
1603 	/*
1604 	 * Install the 2nd RX descriptor ring
1605 	 */
1606 	rx_ring = &sc->sc_rx_ring[1];
1607 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1608 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1609 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1610 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1611 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1612 
1613 	/* Match ET_RX_RING1_POS */
1614 	rx_ring->rr_index = 0;
1615 	rx_ring->rr_wrap = 1;
1616 
1617 	/*
1618 	 * Install the 1st RX descriptor ring
1619 	 */
1620 	rx_ring = &sc->sc_rx_ring[0];
1621 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1622 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1623 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1624 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1625 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1626 
1627 	/* Match ET_RX_RING0_POS */
1628 	rx_ring->rr_index = 0;
1629 	rx_ring->rr_wrap = 1;
1630 
1631 	/*
1632 	 * RX intr moderation
1633 	 */
1634 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1635 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1636 
1637 	return 0;
1638 }
1639 
1640 static int
1641 et_init_txdma(struct et_softc *sc)
1642 {
1643 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1644 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1645 	int error;
1646 
1647 	error = et_stop_txdma(sc);
1648 	if (error) {
1649 		if_printf(&sc->arpcom.ac_if, "can't init TX DMA engine\n");
1650 		return error;
1651 	}
1652 
1653 	/*
1654 	 * Install TX descriptor ring
1655 	 */
1656 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1657 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1658 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1659 
1660 	/*
1661 	 * Install TX status
1662 	 */
1663 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1664 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1665 
1666 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1667 
1668 	/* Match ET_TX_READY_POS */
1669 	tx_ring->tr_ready_index = 0;
1670 	tx_ring->tr_ready_wrap = 0;
1671 
1672 	return 0;
1673 }
1674 
1675 static void
1676 et_init_mac(struct et_softc *sc)
1677 {
1678 	struct ifnet *ifp = &sc->arpcom.ac_if;
1679 	const uint8_t *eaddr = IF_LLADDR(ifp);
1680 	uint32_t val;
1681 
1682 	/* Reset MAC */
1683 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1684 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1685 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1686 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1687 
1688 	/*
1689 	 * Setup inter packet gap
1690 	 */
1691 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1692 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1693 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1694 	      __SHIFTIN(96, ET_IPG_B2B);
1695 	CSR_WRITE_4(sc, ET_IPG, val);
1696 
1697 	/*
1698 	 * Setup half duplex mode
1699 	 */
1700 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1701 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1702 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1703 	      ET_MAC_HDX_EXC_DEFER;
1704 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1705 
1706 	/* Clear MAC control */
1707 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1708 
1709 	/* Reset MII */
1710 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1711 
1712 	/*
1713 	 * Set MAC address
1714 	 */
1715 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1716 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1717 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1718 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1719 
1720 	/* Set max frame length */
1721 	CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
1722 
1723 	/* Bring MAC out of reset state */
1724 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1725 }
1726 
1727 static void
1728 et_init_rxmac(struct et_softc *sc)
1729 {
1730 	struct ifnet *ifp = &sc->arpcom.ac_if;
1731 	const uint8_t *eaddr = IF_LLADDR(ifp);
1732 	uint32_t val;
1733 	int i;
1734 
1735 	/* Disable RX MAC and WOL */
1736 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1737 
1738 	/*
1739 	 * Clear all WOL related registers
1740 	 */
1741 	for (i = 0; i < 3; ++i)
1742 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1743 	for (i = 0; i < 20; ++i)
1744 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1745 
1746 	/*
1747 	 * Set WOL source address.  XXX is this necessary?
1748 	 */
1749 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1750 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1751 	val = (eaddr[0] << 8) | eaddr[1];
1752 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1753 
1754 	/* Clear packet filters */
1755 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1756 
1757 	/* No ucast filtering */
1758 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1759 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1760 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1761 
1762 	if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
1763 		/*
1764 		 * In order to transmit jumbo packets greater than
1765 		 * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
1766 		 * RX MAC and RX DMA needs to be reduced in size to
1767 		 * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen).  In
1768 		 * order to implement this, we must use "cut through"
1769 		 * mode in the RX MAC, which chops packets down into
1770 		 * segments.  In this case we selected 256 bytes,
1771 		 * since this is the size of the PCI-Express TLP's
1772 		 * that the ET1310 uses.
1773 		 */
1774 		val = __SHIFTIN(ET_RXMAC_SEGSZ(256), ET_RXMAC_MC_SEGSZ_MAX) |
1775 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1776 	} else {
1777 		val = 0;
1778 	}
1779 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1780 
1781 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1782 
1783 	/* Initialize RX MAC management register */
1784 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1785 
1786 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1787 
1788 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1789 		    ET_RXMAC_MGT_PASS_ECRC |
1790 		    ET_RXMAC_MGT_PASS_ELEN |
1791 		    ET_RXMAC_MGT_PASS_ETRUNC |
1792 		    ET_RXMAC_MGT_CHECK_PKT);
1793 
1794 	/*
1795 	 * Configure runt filtering (may not work on certain chip generation)
1796 	 */
1797 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1798 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1799 
1800 	/* Enable RX MAC but leave WOL disabled */
1801 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1802 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1803 
1804 	/*
1805 	 * Setup multicast hash and allmulti/promisc mode
1806 	 */
1807 	et_setmulti(sc);
1808 }
1809 
1810 static void
1811 et_init_txmac(struct et_softc *sc)
1812 {
1813 	/* Disable TX MAC and FC(?) */
1814 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1815 
1816 	/* No flow control yet */
1817 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1818 
1819 	/* Enable TX MAC but leave FC(?) diabled */
1820 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1821 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1822 }
1823 
1824 static int
1825 et_start_rxdma(struct et_softc *sc)
1826 {
1827 	uint32_t val = 0;
1828 
1829 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1830 			 ET_RXDMA_CTRL_RING0_SIZE) |
1831 	       ET_RXDMA_CTRL_RING0_ENABLE;
1832 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1833 			 ET_RXDMA_CTRL_RING1_SIZE) |
1834 	       ET_RXDMA_CTRL_RING1_ENABLE;
1835 
1836 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1837 
1838 	DELAY(5);
1839 
1840 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1841 		if_printf(&sc->arpcom.ac_if, "can't start RX DMA engine\n");
1842 		return ETIMEDOUT;
1843 	}
1844 	return 0;
1845 }
1846 
1847 static int
1848 et_start_txdma(struct et_softc *sc)
1849 {
1850 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1851 	return 0;
1852 }
1853 
1854 static int
1855 et_enable_txrx(struct et_softc *sc, int media_upd)
1856 {
1857 	struct ifnet *ifp = &sc->arpcom.ac_if;
1858 	uint32_t val;
1859 	int i, error;
1860 
1861 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1862 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1863 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1864 		 ET_MAC_CFG1_LOOPBACK);
1865 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1866 
1867 	if (media_upd)
1868 		et_ifmedia_upd(ifp);
1869 	else
1870 		et_setmedia(sc);
1871 
1872 #define NRETRY	100
1873 
1874 	for (i = 0; i < NRETRY; ++i) {
1875 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1876 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1877 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1878 			break;
1879 
1880 		DELAY(10);
1881 	}
1882 	if (i == NRETRY) {
1883 		if_printf(ifp, "can't enable RX/TX\n");
1884 		return 0;
1885 	}
1886 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
1887 
1888 #undef NRETRY
1889 
1890 	/*
1891 	 * Start TX/RX DMA engine
1892 	 */
1893 	error = et_start_rxdma(sc);
1894 	if (error)
1895 		return error;
1896 
1897 	error = et_start_txdma(sc);
1898 	if (error)
1899 		return error;
1900 
1901 	return 0;
1902 }
1903 
1904 static void
1905 et_rxeof(struct et_softc *sc)
1906 {
1907 	struct ifnet *ifp = &sc->arpcom.ac_if;
1908 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1909 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1910 	uint32_t rxs_stat_ring;
1911 	int rxst_wrap, rxst_index;
1912 #ifdef ETHER_INPUT_CHAIN
1913 	struct mbuf_chain chain[MAXCPU];
1914 #endif
1915 
1916 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1917 		return;
1918 
1919 	bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap,
1920 			BUS_DMASYNC_POSTREAD);
1921 	bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap,
1922 			BUS_DMASYNC_POSTREAD);
1923 
1924 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1925 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1926 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1927 
1928 #ifdef ETHER_INPUT_CHAIN
1929 	ether_input_chain_init(chain);
1930 #endif
1931 
1932 	while (rxst_index != rxst_ring->rsr_index ||
1933 	       rxst_wrap != rxst_ring->rsr_wrap) {
1934 		struct et_rxbuf_data *rbd;
1935 		struct et_rxdesc_ring *rx_ring;
1936 		struct et_rxstat *st;
1937 		struct mbuf *m;
1938 		int buflen, buf_idx, ring_idx;
1939 		uint32_t rxstat_pos, rxring_pos;
1940 
1941 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1942 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1943 
1944 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1945 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1946 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1947 
1948 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1949 			rxst_ring->rsr_index = 0;
1950 			rxst_ring->rsr_wrap ^= 1;
1951 		}
1952 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1953 				       ET_RXSTAT_POS_INDEX);
1954 		if (rxst_ring->rsr_wrap)
1955 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1956 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1957 
1958 		if (ring_idx >= ET_RX_NRING) {
1959 			ifp->if_ierrors++;
1960 			if_printf(ifp, "invalid ring index %d\n", ring_idx);
1961 			continue;
1962 		}
1963 		if (buf_idx >= ET_RX_NDESC) {
1964 			ifp->if_ierrors++;
1965 			if_printf(ifp, "invalid buf index %d\n", buf_idx);
1966 			continue;
1967 		}
1968 
1969 		rbd = &sc->sc_rx_data[ring_idx];
1970 		m = rbd->rbd_buf[buf_idx].rb_mbuf;
1971 
1972 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1973 			if (buflen < ETHER_CRC_LEN) {
1974 				m_freem(m);
1975 				ifp->if_ierrors++;
1976 			} else {
1977 				m->m_pkthdr.len = m->m_len = buflen;
1978 				m->m_pkthdr.rcvif = ifp;
1979 
1980 				m_adj(m, -ETHER_CRC_LEN);
1981 
1982 				ifp->if_ipackets++;
1983 #ifdef ETHER_INPUT_CHAIN
1984 				ether_input_chain2(ifp, m, chain);
1985 #else
1986 				ifp->if_input(ifp, m);
1987 #endif
1988 			}
1989 		} else {
1990 			ifp->if_ierrors++;
1991 		}
1992 		m = NULL;	/* Catch invalid reference */
1993 
1994 		rx_ring = &sc->sc_rx_ring[ring_idx];
1995 
1996 		if (buf_idx != rx_ring->rr_index) {
1997 			if_printf(ifp, "WARNING!! ring %d, "
1998 				  "buf_idx %d, rr_idx %d\n",
1999 				  ring_idx, buf_idx, rx_ring->rr_index);
2000 		}
2001 
2002 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
2003 		if (++rx_ring->rr_index == ET_RX_NDESC) {
2004 			rx_ring->rr_index = 0;
2005 			rx_ring->rr_wrap ^= 1;
2006 		}
2007 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
2008 		if (rx_ring->rr_wrap)
2009 			rxring_pos |= ET_RX_RING_POS_WRAP;
2010 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
2011 	}
2012 
2013 #ifdef ETHER_INPUT_CHAIN
2014 	ether_input_dispatch(chain);
2015 #endif
2016 }
2017 
2018 static int
2019 et_encap(struct et_softc *sc, struct mbuf **m0)
2020 {
2021 	struct mbuf *m = *m0;
2022 	bus_dma_segment_t segs[ET_NSEG_MAX];
2023 	struct et_dmamap_ctx ctx;
2024 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2025 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
2026 	struct et_txdesc *td;
2027 	bus_dmamap_t map;
2028 	int error, maxsegs, first_idx, last_idx, i;
2029 	uint32_t tx_ready_pos, last_td_ctrl2;
2030 
2031 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
2032 	if (maxsegs > ET_NSEG_MAX)
2033 		maxsegs = ET_NSEG_MAX;
2034 	KASSERT(maxsegs >= ET_NSEG_SPARE,
2035 		("not enough spare TX desc (%d)\n", maxsegs));
2036 
2037 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
2038 	first_idx = tx_ring->tr_ready_index;
2039 	map = tbd->tbd_buf[first_idx].tb_dmap;
2040 
2041 	ctx.nsegs = maxsegs;
2042 	ctx.segs = segs;
2043 	error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
2044 				     et_dma_buf_addr, &ctx, BUS_DMA_NOWAIT);
2045 	if (!error && ctx.nsegs == 0) {
2046 		bus_dmamap_unload(sc->sc_mbuf_dtag, map);
2047 		error = EFBIG;
2048 	}
2049 	if (error && error != EFBIG) {
2050 		if_printf(&sc->arpcom.ac_if, "can't load TX mbuf, error %d\n",
2051 			  error);
2052 		goto back;
2053 	}
2054 	if (error) {	/* error == EFBIG */
2055 		struct mbuf *m_new;
2056 
2057 		m_new = m_defrag(m, MB_DONTWAIT);
2058 		if (m_new == NULL) {
2059 			if_printf(&sc->arpcom.ac_if, "can't defrag TX mbuf\n");
2060 			error = ENOBUFS;
2061 			goto back;
2062 		} else {
2063 			*m0 = m = m_new;
2064 		}
2065 
2066 		ctx.nsegs = maxsegs;
2067 		ctx.segs = segs;
2068 		error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, map, m,
2069 					     et_dma_buf_addr, &ctx,
2070 					     BUS_DMA_NOWAIT);
2071 		if (error || ctx.nsegs == 0) {
2072 			if (ctx.nsegs == 0) {
2073 				bus_dmamap_unload(sc->sc_mbuf_dtag, map);
2074 				error = EFBIG;
2075 			}
2076 			if_printf(&sc->arpcom.ac_if,
2077 				  "can't load defraged TX mbuf\n");
2078 			goto back;
2079 		}
2080 	}
2081 
2082 	bus_dmamap_sync(sc->sc_mbuf_dtag, map, BUS_DMASYNC_PREWRITE);
2083 
2084 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
2085 	sc->sc_tx += ctx.nsegs;
2086 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
2087 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
2088 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
2089 	}
2090 
2091 	last_idx = -1;
2092 	for (i = 0; i < ctx.nsegs; ++i) {
2093 		int idx;
2094 
2095 		idx = (first_idx + i) % ET_TX_NDESC;
2096 		td = &tx_ring->tr_desc[idx];
2097 		td->td_addr_hi = ET_ADDR_HI(segs[i].ds_addr);
2098 		td->td_addr_lo = ET_ADDR_LO(segs[i].ds_addr);
2099 		td->td_ctrl1 = __SHIFTIN(segs[i].ds_len, ET_TDCTRL1_LEN);
2100 
2101 		if (i == ctx.nsegs - 1) {	/* Last frag */
2102 			td->td_ctrl2 = last_td_ctrl2;
2103 			last_idx = idx;
2104 		}
2105 
2106 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
2107 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
2108 			tx_ring->tr_ready_index = 0;
2109 			tx_ring->tr_ready_wrap ^= 1;
2110 		}
2111 	}
2112 	td = &tx_ring->tr_desc[first_idx];
2113 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
2114 
2115 	KKASSERT(last_idx >= 0);
2116 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
2117 	tbd->tbd_buf[last_idx].tb_dmap = map;
2118 	tbd->tbd_buf[last_idx].tb_mbuf = m;
2119 
2120 	tbd->tbd_used += ctx.nsegs;
2121 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
2122 
2123 	bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
2124 			BUS_DMASYNC_PREWRITE);
2125 
2126 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
2127 		       ET_TX_READY_POS_INDEX);
2128 	if (tx_ring->tr_ready_wrap)
2129 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
2130 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
2131 
2132 	error = 0;
2133 back:
2134 	if (error) {
2135 		m_freem(m);
2136 		*m0 = NULL;
2137 	}
2138 	return error;
2139 }
2140 
2141 static void
2142 et_txeof(struct et_softc *sc, int start)
2143 {
2144 	struct ifnet *ifp = &sc->arpcom.ac_if;
2145 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2146 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
2147 	uint32_t tx_done;
2148 	int end, wrap;
2149 
2150 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
2151 		return;
2152 
2153 	if (tbd->tbd_used == 0)
2154 		return;
2155 
2156 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2157 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2158 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2159 
2160 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2161 		struct et_txbuf *tb;
2162 
2163 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2164 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
2165 
2166 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2167 		      sizeof(struct et_txdesc));
2168 		bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap,
2169 				BUS_DMASYNC_PREWRITE);
2170 
2171 		if (tb->tb_mbuf != NULL) {
2172 			bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap);
2173 			m_freem(tb->tb_mbuf);
2174 			tb->tb_mbuf = NULL;
2175 			ifp->if_opackets++;
2176 		}
2177 
2178 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2179 			tbd->tbd_start_index = 0;
2180 			tbd->tbd_start_wrap ^= 1;
2181 		}
2182 
2183 		KKASSERT(tbd->tbd_used > 0);
2184 		tbd->tbd_used--;
2185 	}
2186 
2187 	if (tbd->tbd_used == 0)
2188 		ifp->if_timer = 0;
2189 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2190 		ifp->if_flags &= ~IFF_OACTIVE;
2191 
2192 	if (start)
2193 		if_devstart(ifp);
2194 }
2195 
2196 static void
2197 et_tick(void *xsc)
2198 {
2199 	struct et_softc *sc = xsc;
2200 	struct ifnet *ifp = &sc->arpcom.ac_if;
2201 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2202 
2203 	lwkt_serialize_enter(ifp->if_serializer);
2204 
2205 	mii_tick(mii);
2206 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
2207 	    (mii->mii_media_status & IFM_ACTIVE) &&
2208 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2209 		if_printf(ifp, "Link up, enable TX/RX\n");
2210 		if (et_enable_txrx(sc, 0) == 0)
2211 			if_devstart(ifp);
2212 	}
2213 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
2214 
2215 	lwkt_serialize_exit(ifp->if_serializer);
2216 }
2217 
2218 static int
2219 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2220 {
2221 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2222 }
2223 
2224 static int
2225 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2226 {
2227 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2228 }
2229 
2230 static int
2231 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2232 {
2233 	struct et_softc *sc = rbd->rbd_softc;
2234 	struct et_rxbuf *rb;
2235 	struct mbuf *m;
2236 	struct et_dmamap_ctx ctx;
2237 	bus_dma_segment_t seg;
2238 	bus_dmamap_t dmap;
2239 	int error, len;
2240 
2241 	KASSERT(!rbd->rbd_jumbo, ("calling %s with jumbo ring\n", __func__));
2242 
2243 	KKASSERT(buf_idx < ET_RX_NDESC);
2244 	rb = &rbd->rbd_buf[buf_idx];
2245 
2246 	m = m_getl(len0, init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR, &len);
2247 	if (m == NULL) {
2248 		error = ENOBUFS;
2249 
2250 		if (init) {
2251 			if_printf(&sc->arpcom.ac_if,
2252 				  "m_getl failed, size %d\n", len0);
2253 			return error;
2254 		} else {
2255 			goto back;
2256 		}
2257 	}
2258 	m->m_len = m->m_pkthdr.len = len;
2259 
2260 	/*
2261 	 * Try load RX mbuf into temporary DMA tag
2262 	 */
2263 	ctx.nsegs = 1;
2264 	ctx.segs = &seg;
2265 	error = bus_dmamap_load_mbuf(sc->sc_mbuf_dtag, sc->sc_mbuf_tmp_dmap, m,
2266 				     et_dma_buf_addr, &ctx,
2267 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2268 	if (error || ctx.nsegs == 0) {
2269 		if (!error) {
2270 			bus_dmamap_unload(sc->sc_mbuf_dtag,
2271 					  sc->sc_mbuf_tmp_dmap);
2272 			error = EFBIG;
2273 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2274 		}
2275 		m_freem(m);
2276 
2277 		if (init) {
2278 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2279 			return error;
2280 		} else {
2281 			goto back;
2282 		}
2283 	}
2284 
2285 	if (!init) {
2286 		bus_dmamap_sync(sc->sc_mbuf_dtag, rb->rb_dmap,
2287 				BUS_DMASYNC_POSTREAD);
2288 		bus_dmamap_unload(sc->sc_mbuf_dtag, rb->rb_dmap);
2289 	}
2290 	rb->rb_mbuf = m;
2291 	rb->rb_paddr = seg.ds_addr;
2292 
2293 	/*
2294 	 * Swap RX buf's DMA map with the loaded temporary one
2295 	 */
2296 	dmap = rb->rb_dmap;
2297 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2298 	sc->sc_mbuf_tmp_dmap = dmap;
2299 
2300 	error = 0;
2301 back:
2302 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2303 	return error;
2304 }
2305 
2306 static int
2307 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
2308 {
2309 	struct et_softc *sc = arg1;
2310 	struct ifnet *ifp = &sc->arpcom.ac_if;
2311 	int error = 0, v;
2312 
2313 	lwkt_serialize_enter(ifp->if_serializer);
2314 
2315 	v = sc->sc_rx_intr_npkts;
2316 	error = sysctl_handle_int(oidp, &v, 0, req);
2317 	if (error || req->newptr == NULL)
2318 		goto back;
2319 	if (v <= 0) {
2320 		error = EINVAL;
2321 		goto back;
2322 	}
2323 
2324 	if (sc->sc_rx_intr_npkts != v) {
2325 		if (ifp->if_flags & IFF_RUNNING)
2326 			CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
2327 		sc->sc_rx_intr_npkts = v;
2328 	}
2329 back:
2330 	lwkt_serialize_exit(ifp->if_serializer);
2331 	return error;
2332 }
2333 
2334 static int
2335 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
2336 {
2337 	struct et_softc *sc = arg1;
2338 	struct ifnet *ifp = &sc->arpcom.ac_if;
2339 	int error = 0, v;
2340 
2341 	lwkt_serialize_enter(ifp->if_serializer);
2342 
2343 	v = sc->sc_rx_intr_delay;
2344 	error = sysctl_handle_int(oidp, &v, 0, req);
2345 	if (error || req->newptr == NULL)
2346 		goto back;
2347 	if (v <= 0) {
2348 		error = EINVAL;
2349 		goto back;
2350 	}
2351 
2352 	if (sc->sc_rx_intr_delay != v) {
2353 		if (ifp->if_flags & IFF_RUNNING)
2354 			CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
2355 		sc->sc_rx_intr_delay = v;
2356 	}
2357 back:
2358 	lwkt_serialize_exit(ifp->if_serializer);
2359 	return error;
2360 }
2361 
2362 static void
2363 et_setmedia(struct et_softc *sc)
2364 {
2365 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2366 	uint32_t cfg2, ctrl;
2367 
2368 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
2369 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
2370 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
2371 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
2372 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
2373 
2374 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
2375 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
2376 
2377 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
2378 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
2379 	} else {
2380 		cfg2 |= ET_MAC_CFG2_MODE_MII;
2381 		ctrl |= ET_MAC_CTRL_MODE_MII;
2382 	}
2383 
2384 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
2385 		cfg2 |= ET_MAC_CFG2_FDX;
2386 	else
2387 		ctrl |= ET_MAC_CTRL_GHDX;
2388 
2389 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
2390 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
2391 }
2392 
2393 static int
2394 et_jumbo_mem_alloc(device_t dev)
2395 {
2396 	struct et_softc *sc = device_get_softc(dev);
2397 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2398 	bus_addr_t paddr;
2399 	uint8_t *buf;
2400 	int error, i;
2401 
2402 	error = et_dma_mem_create(dev, ET_JUMBO_MEM_SIZE, &jd->jd_dtag,
2403 				  &jd->jd_buf, &paddr, &jd->jd_dmap);
2404 	if (error) {
2405 		device_printf(dev, "can't create jumbo DMA stuffs\n");
2406 		return error;
2407 	}
2408 
2409 	jd->jd_slots = kmalloc(sizeof(*jd->jd_slots) * ET_JSLOTS, M_DEVBUF,
2410 			       M_WAITOK | M_ZERO);
2411 	lwkt_serialize_init(&jd->jd_serializer);
2412 	SLIST_INIT(&jd->jd_free_slots);
2413 
2414 	buf = jd->jd_buf;
2415 	for (i = 0; i < ET_JSLOTS; ++i) {
2416 		struct et_jslot *jslot = &jd->jd_slots[i];
2417 
2418 		jslot->jslot_data = jd;
2419 		jslot->jslot_buf = buf;
2420 		jslot->jslot_paddr = paddr;
2421 		jslot->jslot_inuse = 0;
2422 		jslot->jslot_index = i;
2423 		SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot, jslot_link);
2424 
2425 		buf += ET_JLEN;
2426 		paddr += ET_JLEN;
2427 	}
2428 	return 0;
2429 }
2430 
2431 static void
2432 et_jumbo_mem_free(device_t dev)
2433 {
2434 	struct et_softc *sc = device_get_softc(dev);
2435 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2436 
2437 	KKASSERT(sc->sc_flags & ET_FLAG_JUMBO);
2438 
2439 	kfree(jd->jd_slots, M_DEVBUF);
2440 	et_dma_mem_destroy(jd->jd_dtag, jd->jd_buf, jd->jd_dmap);
2441 }
2442 
2443 static struct et_jslot *
2444 et_jalloc(struct et_jumbo_data *jd)
2445 {
2446 	struct et_jslot *jslot;
2447 
2448 	lwkt_serialize_enter(&jd->jd_serializer);
2449 
2450 	jslot = SLIST_FIRST(&jd->jd_free_slots);
2451 	if (jslot) {
2452 		SLIST_REMOVE_HEAD(&jd->jd_free_slots, jslot_link);
2453 		jslot->jslot_inuse = 1;
2454 	}
2455 
2456 	lwkt_serialize_exit(&jd->jd_serializer);
2457 	return jslot;
2458 }
2459 
2460 static void
2461 et_jfree(void *xjslot)
2462 {
2463 	struct et_jslot *jslot = xjslot;
2464 	struct et_jumbo_data *jd = jslot->jslot_data;
2465 
2466 	if (&jd->jd_slots[jslot->jslot_index] != jslot) {
2467 		panic("%s wrong jslot!?\n", __func__);
2468 	} else if (jslot->jslot_inuse == 0) {
2469 		panic("%s jslot already freed\n", __func__);
2470 	} else {
2471 		lwkt_serialize_enter(&jd->jd_serializer);
2472 
2473 		atomic_subtract_int(&jslot->jslot_inuse, 1);
2474 		if (jslot->jslot_inuse == 0) {
2475 			SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot,
2476 					  jslot_link);
2477 		}
2478 
2479 		lwkt_serialize_exit(&jd->jd_serializer);
2480 	}
2481 }
2482 
2483 static void
2484 et_jref(void *xjslot)
2485 {
2486 	struct et_jslot *jslot = xjslot;
2487 	struct et_jumbo_data *jd = jslot->jslot_data;
2488 
2489 	if (&jd->jd_slots[jslot->jslot_index] != jslot)
2490 		panic("%s wrong jslot!?\n", __func__);
2491 	else if (jslot->jslot_inuse == 0)
2492 		panic("%s jslot already freed\n", __func__);
2493 	else
2494 		atomic_add_int(&jslot->jslot_inuse, 1);
2495 }
2496 
2497 static int
2498 et_newbuf_jumbo(struct et_rxbuf_data *rbd, int buf_idx, int init)
2499 {
2500 	struct et_softc *sc = rbd->rbd_softc;
2501 	struct et_rxbuf *rb;
2502 	struct mbuf *m;
2503 	struct et_jslot *jslot;
2504 	int error;
2505 
2506 	KASSERT(rbd->rbd_jumbo, ("calling %s with non-jumbo ring\n", __func__));
2507 
2508 	KKASSERT(buf_idx < ET_RX_NDESC);
2509 	rb = &rbd->rbd_buf[buf_idx];
2510 
2511 	error = ENOBUFS;
2512 
2513 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2514 	if (m == NULL) {
2515 		if (init) {
2516 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
2517 			return error;
2518 		} else {
2519 			goto back;
2520 		}
2521 	}
2522 
2523 	jslot = et_jalloc(&sc->sc_jumbo_data);
2524 	if (jslot == NULL) {
2525 		m_freem(m);
2526 
2527 		if (init) {
2528 			if_printf(&sc->arpcom.ac_if,
2529 				  "jslot allocation failed\n");
2530 			return error;
2531 		} else {
2532 			goto back;
2533 		}
2534 	}
2535 
2536 	m->m_ext.ext_arg = jslot;
2537 	m->m_ext.ext_buf = jslot->jslot_buf;
2538 	m->m_ext.ext_free = et_jfree;
2539 	m->m_ext.ext_ref = et_jref;
2540 	m->m_ext.ext_size = ET_JUMBO_FRAMELEN;
2541 	m->m_flags |= M_EXT;
2542 	m->m_data = m->m_ext.ext_buf;
2543 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2544 
2545 	rb->rb_mbuf = m;
2546 	rb->rb_paddr = jslot->jslot_paddr;
2547 
2548 	error = 0;
2549 back:
2550 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2551 	return error;
2552 }
2553 
2554 static void
2555 et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr)
2556 {
2557 	struct et_rxdesc_ring *rx_ring = rbd->rbd_ring;
2558 	struct et_rxdesc *desc;
2559 
2560 	KKASSERT(buf_idx < ET_RX_NDESC);
2561 	desc = &rx_ring->rr_desc[buf_idx];
2562 
2563 	desc->rd_addr_hi = ET_ADDR_HI(paddr);
2564 	desc->rd_addr_lo = ET_ADDR_LO(paddr);
2565 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2566 
2567 	bus_dmamap_sync(rx_ring->rr_dtag, rx_ring->rr_dmap,
2568 			BUS_DMASYNC_PREWRITE);
2569 }
2570