xref: /dragonfly/sys/dev/netif/et/if_et.c (revision c4d6eff4)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/param.h>
36 #include <sys/bitops.h>
37 #include <sys/endian.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/interrupt.h>
41 #include <sys/malloc.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/bpf.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/ifq_var.h>
56 #include <net/vlan/if_vlan_var.h>
57 
58 #include <dev/netif/mii_layer/miivar.h>
59 
60 #include <bus/pci/pcireg.h>
61 #include <bus/pci/pcivar.h>
62 #include "pcidevs.h"
63 
64 #include <dev/netif/et/if_etreg.h>
65 #include <dev/netif/et/if_etvar.h>
66 
67 #include "miibus_if.h"
68 
69 static int	et_probe(device_t);
70 static int	et_attach(device_t);
71 static int	et_detach(device_t);
72 static int	et_shutdown(device_t);
73 
74 static int	et_miibus_readreg(device_t, int, int);
75 static int	et_miibus_writereg(device_t, int, int, int);
76 static void	et_miibus_statchg(device_t);
77 
78 static void	et_init(void *);
79 static int	et_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
80 static void	et_start(struct ifnet *, struct ifaltq_subque *);
81 static void	et_watchdog(struct ifnet *);
82 static int	et_ifmedia_upd(struct ifnet *);
83 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
84 
85 static int	et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
86 static int	et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
87 
88 static void	et_intr(void *);
89 static void	et_enable_intrs(struct et_softc *, uint32_t);
90 static void	et_disable_intrs(struct et_softc *);
91 static void	et_rxeof(struct et_softc *);
92 static void	et_txeof(struct et_softc *, int);
93 
94 static int	et_dma_alloc(device_t);
95 static void	et_dma_free(device_t);
96 static void	et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
97 static int	et_dma_mbuf_create(device_t);
98 static void	et_dma_mbuf_destroy(device_t, int, const int[]);
99 static int	et_jumbo_mem_alloc(device_t);
100 static void	et_jumbo_mem_free(device_t);
101 static int	et_init_tx_ring(struct et_softc *);
102 static int	et_init_rx_ring(struct et_softc *);
103 static void	et_free_tx_ring(struct et_softc *);
104 static void	et_free_rx_ring(struct et_softc *);
105 static int	et_encap(struct et_softc *, struct mbuf **);
106 static struct et_jslot *
107 		et_jalloc(struct et_jumbo_data *);
108 static void	et_jfree(void *);
109 static void	et_jref(void *);
110 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
111 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
112 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
113 static int	et_newbuf_jumbo(struct et_rxbuf_data *, int, int);
114 
115 static void	et_stop(struct et_softc *);
116 static int	et_chip_init(struct et_softc *);
117 static void	et_chip_attach(struct et_softc *);
118 static void	et_init_mac(struct et_softc *);
119 static void	et_init_rxmac(struct et_softc *);
120 static void	et_init_txmac(struct et_softc *);
121 static int	et_init_rxdma(struct et_softc *);
122 static int	et_init_txdma(struct et_softc *);
123 static int	et_start_rxdma(struct et_softc *);
124 static int	et_start_txdma(struct et_softc *);
125 static int	et_stop_rxdma(struct et_softc *);
126 static int	et_stop_txdma(struct et_softc *);
127 static int	et_enable_txrx(struct et_softc *, int);
128 static void	et_reset(struct et_softc *);
129 static int	et_bus_config(device_t);
130 static void	et_get_eaddr(device_t, uint8_t[]);
131 static void	et_setmulti(struct et_softc *);
132 static void	et_tick(void *);
133 static void	et_setmedia(struct et_softc *);
134 static void	et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t);
135 
136 static const struct et_dev {
137 	uint16_t	vid;
138 	uint16_t	did;
139 	const char	*desc;
140 } et_devices[] = {
141 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
142 	  "Agere ET1310 Gigabit Ethernet" },
143 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
144 	  "Agere ET1310 Fast Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static device_method_t et_methods[] = {
149 	DEVMETHOD(device_probe,		et_probe),
150 	DEVMETHOD(device_attach,	et_attach),
151 	DEVMETHOD(device_detach,	et_detach),
152 	DEVMETHOD(device_shutdown,	et_shutdown),
153 #if 0
154 	DEVMETHOD(device_suspend,	et_suspend),
155 	DEVMETHOD(device_resume,	et_resume),
156 #endif
157 
158 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
159 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
160 
161 	DEVMETHOD(miibus_readreg,	et_miibus_readreg),
162 	DEVMETHOD(miibus_writereg,	et_miibus_writereg),
163 	DEVMETHOD(miibus_statchg,	et_miibus_statchg),
164 
165 	DEVMETHOD_END
166 };
167 
168 static driver_t et_driver = {
169 	"et",
170 	et_methods,
171 	sizeof(struct et_softc)
172 };
173 
174 static devclass_t et_devclass;
175 
176 DECLARE_DUMMY_MODULE(if_et);
177 MODULE_DEPEND(if_et, miibus, 1, 1, 1);
178 DRIVER_MODULE(if_et, pci, et_driver, et_devclass, NULL, NULL);
179 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, NULL, NULL);
180 
181 static int	et_rx_intr_npkts = 129;
182 static int	et_rx_intr_delay = 25;		/* x4 usec */
183 static int	et_tx_intr_nsegs = 256;
184 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
185 
186 static int	et_msi_enable = 1;
187 
188 TUNABLE_INT("hw.et.timer", &et_timer);
189 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
190 TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
191 TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
192 TUNABLE_INT("hw.et.msi.enable", &et_msi_enable);
193 
194 struct et_bsize {
195 	int		bufsize;
196 	int		jumbo;
197 	et_newbuf_t	newbuf;
198 };
199 
200 static const struct et_bsize	et_bufsize_std[ET_RX_NRING] = {
201 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
202 	  .newbuf = et_newbuf_hdr },
203 	{ .bufsize = ET_RXDMA_CTRL_RING1_2048,	.jumbo = 0,
204 	  .newbuf = et_newbuf_cluster },
205 };
206 
207 static const struct et_bsize	et_bufsize_jumbo[ET_RX_NRING] = {
208 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
209 	  .newbuf = et_newbuf_hdr },
210 	{ .bufsize = ET_RXDMA_CTRL_RING1_16384,	.jumbo = 1,
211 	  .newbuf = et_newbuf_jumbo },
212 };
213 
214 static int
215 et_probe(device_t dev)
216 {
217 	const struct et_dev *d;
218 	uint16_t did, vid;
219 
220 	vid = pci_get_vendor(dev);
221 	did = pci_get_device(dev);
222 
223 	for (d = et_devices; d->desc != NULL; ++d) {
224 		if (vid == d->vid && did == d->did) {
225 			device_set_desc(dev, d->desc);
226 			return 0;
227 		}
228 	}
229 	return ENXIO;
230 }
231 
232 static int
233 et_attach(device_t dev)
234 {
235 	struct et_softc *sc = device_get_softc(dev);
236 	struct ifnet *ifp = &sc->arpcom.ac_if;
237 	struct sysctl_ctx_list *ctx;
238 	struct sysctl_oid *tree;
239 	uint8_t eaddr[ETHER_ADDR_LEN];
240 	int error;
241 	u_int irq_flags;
242 
243 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
244 	callout_init(&sc->sc_tick);
245 
246 	/*
247 	 * Initialize tunables
248 	 */
249 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
250 	sc->sc_rx_intr_delay = et_rx_intr_delay;
251 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
252 	sc->sc_timer = et_timer;
253 
254 #ifndef BURN_BRIDGES
255 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
256 		uint32_t irq, mem;
257 
258 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
259 		mem = pci_read_config(dev, ET_PCIR_BAR, 4);
260 
261 		device_printf(dev, "chip is in D%d power mode "
262 		    "-- setting to D0\n", pci_get_powerstate(dev));
263 
264 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
265 
266 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
267 		pci_write_config(dev, ET_PCIR_BAR, mem, 4);
268 	}
269 #endif	/* !BURN_BRIDGE */
270 
271 	/* Enable bus mastering */
272 	pci_enable_busmaster(dev);
273 
274 	/*
275 	 * Allocate IO memory
276 	 */
277 	sc->sc_mem_rid = ET_PCIR_BAR;
278 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
279 						&sc->sc_mem_rid, RF_ACTIVE);
280 	if (sc->sc_mem_res == NULL) {
281 		device_printf(dev, "can't allocate IO memory\n");
282 		return ENXIO;
283 	}
284 	sc->sc_mem_bt = rman_get_bustag(sc->sc_mem_res);
285 	sc->sc_mem_bh = rman_get_bushandle(sc->sc_mem_res);
286 
287 	/*
288 	 * Allocate IRQ
289 	 */
290 	sc->sc_irq_type = pci_alloc_1intr(dev, et_msi_enable,
291 	    &sc->sc_irq_rid, &irq_flags);
292 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
293 	    &sc->sc_irq_rid, irq_flags);
294 	if (sc->sc_irq_res == NULL) {
295 		device_printf(dev, "can't allocate irq\n");
296 		error = ENXIO;
297 		goto fail;
298 	}
299 
300 	/*
301 	 * Create sysctl tree
302 	 */
303 	ctx = device_get_sysctl_ctx(dev);
304 	tree = device_get_sysctl_tree(dev);
305 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
306 			OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW,
307 			sc, 0, et_sysctl_rx_intr_npkts, "I",
308 			"RX IM, # packets per RX interrupt");
309 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
310 			OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW,
311 			sc, 0, et_sysctl_rx_intr_delay, "I",
312 			"RX IM, RX interrupt delay (x10 usec)");
313 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
314 		       "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
315 		       "TX IM, # segments per TX interrupt");
316 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
317 			"timer", CTLFLAG_RW, &sc->sc_timer, 0,
318 			"TX timer");
319 
320 	error = et_bus_config(dev);
321 	if (error)
322 		goto fail;
323 
324 	et_get_eaddr(dev, eaddr);
325 
326 	CSR_WRITE_4(sc, ET_PM,
327 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
328 
329 	et_reset(sc);
330 
331 	et_disable_intrs(sc);
332 
333 	error = et_dma_alloc(dev);
334 	if (error)
335 		goto fail;
336 
337 	ifp->if_softc = sc;
338 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
339 	ifp->if_init = et_init;
340 	ifp->if_ioctl = et_ioctl;
341 	ifp->if_start = et_start;
342 	ifp->if_watchdog = et_watchdog;
343 	ifp->if_mtu = ETHERMTU;
344 	ifp->if_capabilities = IFCAP_VLAN_MTU;
345 	ifp->if_capenable = ifp->if_capabilities;
346 	ifq_set_maxlen(&ifp->if_snd, ET_TX_NDESC);
347 	ifq_set_ready(&ifp->if_snd);
348 
349 	et_chip_attach(sc);
350 
351 	error = mii_phy_probe(dev, &sc->sc_miibus,
352 			      et_ifmedia_upd, et_ifmedia_sts);
353 	if (error) {
354 		device_printf(dev, "can't probe any PHY\n");
355 		goto fail;
356 	}
357 
358 	ether_ifattach(ifp, eaddr, NULL);
359 
360 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sc_irq_res));
361 
362 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, et_intr, sc,
363 			       &sc->sc_irq_handle, ifp->if_serializer);
364 	if (error) {
365 		ether_ifdetach(ifp);
366 		device_printf(dev, "can't setup intr\n");
367 		goto fail;
368 	}
369 
370 	return 0;
371 fail:
372 	et_detach(dev);
373 	return error;
374 }
375 
376 static int
377 et_detach(device_t dev)
378 {
379 	struct et_softc *sc = device_get_softc(dev);
380 
381 	if (device_is_attached(dev)) {
382 		struct ifnet *ifp = &sc->arpcom.ac_if;
383 
384 		lwkt_serialize_enter(ifp->if_serializer);
385 		et_stop(sc);
386 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
387 		lwkt_serialize_exit(ifp->if_serializer);
388 
389 		ether_ifdetach(ifp);
390 	}
391 
392 	if (sc->sc_miibus != NULL)
393 		device_delete_child(dev, sc->sc_miibus);
394 	bus_generic_detach(dev);
395 
396 	if (sc->sc_irq_res != NULL) {
397 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
398 				     sc->sc_irq_res);
399 	}
400 	if (sc->sc_irq_type == PCI_INTR_TYPE_MSI)
401 		pci_release_msi(dev);
402 
403 	if (sc->sc_mem_res != NULL) {
404 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
405 				     sc->sc_mem_res);
406 	}
407 
408 	et_dma_free(dev);
409 
410 	return 0;
411 }
412 
413 static int
414 et_shutdown(device_t dev)
415 {
416 	struct et_softc *sc = device_get_softc(dev);
417 	struct ifnet *ifp = &sc->arpcom.ac_if;
418 
419 	lwkt_serialize_enter(ifp->if_serializer);
420 	et_stop(sc);
421 	lwkt_serialize_exit(ifp->if_serializer);
422 	return 0;
423 }
424 
425 static int
426 et_miibus_readreg(device_t dev, int phy, int reg)
427 {
428 	struct et_softc *sc = device_get_softc(dev);
429 	uint32_t val;
430 	int i, ret;
431 
432 	/* Stop any pending operations */
433 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
434 
435 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
436 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
437 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
438 
439 	/* Start reading */
440 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
441 
442 #define NRETRY	50
443 
444 	for (i = 0; i < NRETRY; ++i) {
445 		val = CSR_READ_4(sc, ET_MII_IND);
446 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
447 			break;
448 		DELAY(50);
449 	}
450 	if (i == NRETRY) {
451 		if_printf(&sc->arpcom.ac_if,
452 			  "read phy %d, reg %d timed out\n", phy, reg);
453 		ret = 0;
454 		goto back;
455 	}
456 
457 #undef NRETRY
458 
459 	val = CSR_READ_4(sc, ET_MII_STAT);
460 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
461 
462 back:
463 	/* Make sure that the current operation is stopped */
464 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
465 	return ret;
466 }
467 
468 static int
469 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
470 {
471 	struct et_softc *sc = device_get_softc(dev);
472 	uint32_t val;
473 	int i;
474 
475 	/* Stop any pending operations */
476 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
477 
478 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
479 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
480 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
481 
482 	/* Start writing */
483 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
484 
485 #define NRETRY 100
486 
487 	for (i = 0; i < NRETRY; ++i) {
488 		val = CSR_READ_4(sc, ET_MII_IND);
489 		if ((val & ET_MII_IND_BUSY) == 0)
490 			break;
491 		DELAY(50);
492 	}
493 	if (i == NRETRY) {
494 		if_printf(&sc->arpcom.ac_if,
495 			  "write phy %d, reg %d timed out\n", phy, reg);
496 		et_miibus_readreg(dev, phy, reg);
497 	}
498 
499 #undef NRETRY
500 
501 	/* Make sure that the current operation is stopped */
502 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
503 	return 0;
504 }
505 
506 static void
507 et_miibus_statchg(device_t dev)
508 {
509 	et_setmedia(device_get_softc(dev));
510 }
511 
512 static int
513 et_ifmedia_upd(struct ifnet *ifp)
514 {
515 	struct et_softc *sc = ifp->if_softc;
516 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
517 
518 	if (mii->mii_instance != 0) {
519 		struct mii_softc *miisc;
520 
521 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
522 			mii_phy_reset(miisc);
523 	}
524 	mii_mediachg(mii);
525 
526 	return 0;
527 }
528 
529 static void
530 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
531 {
532 	struct et_softc *sc = ifp->if_softc;
533 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
534 
535 	mii_pollstat(mii);
536 	ifmr->ifm_active = mii->mii_media_active;
537 	ifmr->ifm_status = mii->mii_media_status;
538 }
539 
540 static void
541 et_stop(struct et_softc *sc)
542 {
543 	struct ifnet *ifp = &sc->arpcom.ac_if;
544 
545 	ASSERT_SERIALIZED(ifp->if_serializer);
546 
547 	callout_stop(&sc->sc_tick);
548 
549 	et_stop_rxdma(sc);
550 	et_stop_txdma(sc);
551 
552 	et_disable_intrs(sc);
553 
554 	et_free_tx_ring(sc);
555 	et_free_rx_ring(sc);
556 
557 	et_reset(sc);
558 
559 	sc->sc_tx = 0;
560 	sc->sc_tx_intr = 0;
561 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
562 
563 	ifp->if_timer = 0;
564 	ifp->if_flags &= ~IFF_RUNNING;
565 	ifq_clr_oactive(&ifp->if_snd);
566 }
567 
568 static int
569 et_bus_config(device_t dev)
570 {
571 	uint32_t val, max_plsz;
572 	uint16_t ack_latency, replay_timer;
573 
574 	/*
575 	 * Test whether EEPROM is valid
576 	 * NOTE: Read twice to get the correct value
577 	 */
578 	pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
579 	val = pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
580 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
581 		device_printf(dev, "EEPROM status error 0x%02x\n", val);
582 		return ENXIO;
583 	}
584 
585 	/* TODO: LED */
586 
587 	/*
588 	 * Configure ACK latency and replay timer according to
589 	 * max playload size
590 	 */
591 	val = pci_read_config(dev, ET_PCIR_DEVICE_CAPS, 4);
592 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
593 
594 	switch (max_plsz) {
595 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
596 		ack_latency = ET_PCIV_ACK_LATENCY_128;
597 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
598 		break;
599 
600 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
601 		ack_latency = ET_PCIV_ACK_LATENCY_256;
602 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
603 		break;
604 
605 	default:
606 		ack_latency = pci_read_config(dev, ET_PCIR_ACK_LATENCY, 2);
607 		replay_timer = pci_read_config(dev, ET_PCIR_REPLAY_TIMER, 2);
608 		device_printf(dev, "ack latency %u, replay timer %u\n",
609 			      ack_latency, replay_timer);
610 		break;
611 	}
612 	if (ack_latency != 0) {
613 		pci_write_config(dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
614 		pci_write_config(dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2);
615 	}
616 
617 	/*
618 	 * Set L0s and L1 latency timer to 2us
619 	 */
620 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
621 	pci_write_config(dev, ET_PCIR_L0S_L1_LATENCY, val, 1);
622 
623 	/*
624 	 * Set max read request size to 2048 bytes
625 	 */
626 	val = pci_read_config(dev, ET_PCIR_DEVICE_CTRL, 2);
627 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
628 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
629 	pci_write_config(dev, ET_PCIR_DEVICE_CTRL, val, 2);
630 
631 	return 0;
632 }
633 
634 static void
635 et_get_eaddr(device_t dev, uint8_t eaddr[])
636 {
637 	uint32_t val;
638 	int i;
639 
640 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
641 	for (i = 0; i < 4; ++i)
642 		eaddr[i] = (val >> (8 * i)) & 0xff;
643 
644 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
645 	for (; i < ETHER_ADDR_LEN; ++i)
646 		eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
647 }
648 
649 static void
650 et_reset(struct et_softc *sc)
651 {
652 	CSR_WRITE_4(sc, ET_MAC_CFG1,
653 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
654 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
655 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
656 
657 	CSR_WRITE_4(sc, ET_SWRST,
658 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
659 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
660 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
661 
662 	CSR_WRITE_4(sc, ET_MAC_CFG1,
663 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
664 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
665 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
666 }
667 
668 static void
669 et_disable_intrs(struct et_softc *sc)
670 {
671 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
672 }
673 
674 static void
675 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
676 {
677 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
678 }
679 
680 static int
681 et_dma_alloc(device_t dev)
682 {
683 	struct et_softc *sc = device_get_softc(dev);
684 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
685 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
686 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
687 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
688 	int i, error;
689 
690 	/*
691 	 * Create top level DMA tag
692 	 */
693 	error = bus_dma_tag_create(NULL, 1, 0,
694 				   BUS_SPACE_MAXADDR,
695 				   BUS_SPACE_MAXADDR,
696 				   NULL, NULL,
697 				   BUS_SPACE_MAXSIZE_32BIT,
698 				   0,
699 				   BUS_SPACE_MAXSIZE_32BIT,
700 				   0, &sc->sc_dtag);
701 	if (error) {
702 		device_printf(dev, "can't create DMA tag\n");
703 		return error;
704 	}
705 
706 	/*
707 	 * Create TX ring DMA stuffs
708 	 */
709 	tx_ring->tr_desc = bus_dmamem_coherent_any(sc->sc_dtag,
710 				ET_ALIGN, ET_TX_RING_SIZE,
711 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
712 				&tx_ring->tr_dtag, &tx_ring->tr_dmap,
713 				&tx_ring->tr_paddr);
714 	if (tx_ring->tr_desc == NULL) {
715 		device_printf(dev, "can't create TX ring DMA stuffs\n");
716 		return ENOMEM;
717 	}
718 
719 	/*
720 	 * Create TX status DMA stuffs
721 	 */
722 	txsd->txsd_status = bus_dmamem_coherent_any(sc->sc_dtag,
723 				ET_ALIGN, sizeof(uint32_t),
724 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
725 				&txsd->txsd_dtag, &txsd->txsd_dmap,
726 				&txsd->txsd_paddr);
727 	if (txsd->txsd_status == NULL) {
728 		device_printf(dev, "can't create TX status DMA stuffs\n");
729 		return ENOMEM;
730 	}
731 
732 	/*
733 	 * Create DMA stuffs for RX rings
734 	 */
735 	for (i = 0; i < ET_RX_NRING; ++i) {
736 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
737 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
738 
739 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
740 
741 		rx_ring->rr_desc = bus_dmamem_coherent_any(sc->sc_dtag,
742 					ET_ALIGN, ET_RX_RING_SIZE,
743 					BUS_DMA_WAITOK | BUS_DMA_ZERO,
744 					&rx_ring->rr_dtag, &rx_ring->rr_dmap,
745 					&rx_ring->rr_paddr);
746 		if (rx_ring->rr_desc == NULL) {
747 			device_printf(dev, "can't create DMA stuffs for "
748 				      "the %d RX ring\n", i);
749 			return ENOMEM;
750 		}
751 		rx_ring->rr_posreg = rx_ring_posreg[i];
752 	}
753 
754 	/*
755 	 * Create RX stat ring DMA stuffs
756 	 */
757 	rxst_ring->rsr_stat = bus_dmamem_coherent_any(sc->sc_dtag,
758 				ET_ALIGN, ET_RXSTAT_RING_SIZE,
759 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
760 				&rxst_ring->rsr_dtag, &rxst_ring->rsr_dmap,
761 				&rxst_ring->rsr_paddr);
762 	if (rxst_ring->rsr_stat == NULL) {
763 		device_printf(dev, "can't create RX stat ring DMA stuffs\n");
764 		return ENOMEM;
765 	}
766 
767 	/*
768 	 * Create RX status DMA stuffs
769 	 */
770 	rxsd->rxsd_status = bus_dmamem_coherent_any(sc->sc_dtag,
771 				ET_ALIGN, sizeof(struct et_rxstatus),
772 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
773 				&rxsd->rxsd_dtag, &rxsd->rxsd_dmap,
774 				&rxsd->rxsd_paddr);
775 	if (rxsd->rxsd_status == NULL) {
776 		device_printf(dev, "can't create RX status DMA stuffs\n");
777 		return ENOMEM;
778 	}
779 
780 	/*
781 	 * Create mbuf DMA stuffs
782 	 */
783 	error = et_dma_mbuf_create(dev);
784 	if (error)
785 		return error;
786 
787 	/*
788 	 * Create jumbo buffer DMA stuffs
789 	 * NOTE: Allow it to fail
790 	 */
791 	if (et_jumbo_mem_alloc(dev) == 0)
792 		sc->sc_flags |= ET_FLAG_JUMBO;
793 
794 	return 0;
795 }
796 
797 static void
798 et_dma_free(device_t dev)
799 {
800 	struct et_softc *sc = device_get_softc(dev);
801 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
802 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
803 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
804 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
805 	int i, rx_done[ET_RX_NRING];
806 
807 	/*
808 	 * Destroy TX ring DMA stuffs
809 	 */
810 	et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
811 			   tx_ring->tr_dmap);
812 
813 	/*
814 	 * Destroy TX status DMA stuffs
815 	 */
816 	et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
817 			   txsd->txsd_dmap);
818 
819 	/*
820 	 * Destroy DMA stuffs for RX rings
821 	 */
822 	for (i = 0; i < ET_RX_NRING; ++i) {
823 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
824 
825 		et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
826 				   rx_ring->rr_dmap);
827 	}
828 
829 	/*
830 	 * Destroy RX stat ring DMA stuffs
831 	 */
832 	et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
833 			   rxst_ring->rsr_dmap);
834 
835 	/*
836 	 * Destroy RX status DMA stuffs
837 	 */
838 	et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
839 			   rxsd->rxsd_dmap);
840 
841 	/*
842 	 * Destroy mbuf DMA stuffs
843 	 */
844 	for (i = 0; i < ET_RX_NRING; ++i)
845 		rx_done[i] = ET_RX_NDESC;
846 	et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
847 
848 	/*
849 	 * Destroy jumbo buffer DMA stuffs
850 	 */
851 	if (sc->sc_flags & ET_FLAG_JUMBO)
852 		et_jumbo_mem_free(dev);
853 
854 	/*
855 	 * Destroy top level DMA tag
856 	 */
857 	if (sc->sc_dtag != NULL)
858 		bus_dma_tag_destroy(sc->sc_dtag);
859 }
860 
861 static int
862 et_dma_mbuf_create(device_t dev)
863 {
864 	struct et_softc *sc = device_get_softc(dev);
865 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
866 	int i, error, rx_done[ET_RX_NRING];
867 
868 	/*
869 	 * Create RX mbuf DMA tag
870 	 */
871 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
872 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
873 				   NULL, NULL,
874 				   MCLBYTES, 1, MCLBYTES,
875 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
876 				   &sc->sc_rxbuf_dtag);
877 	if (error) {
878 		device_printf(dev, "can't create RX mbuf DMA tag\n");
879 		return error;
880 	}
881 
882 	/*
883 	 * Create spare DMA map for RX mbufs
884 	 */
885 	error = bus_dmamap_create(sc->sc_rxbuf_dtag, BUS_DMA_WAITOK,
886 				  &sc->sc_rxbuf_tmp_dmap);
887 	if (error) {
888 		device_printf(dev, "can't create spare mbuf DMA map\n");
889 		bus_dma_tag_destroy(sc->sc_rxbuf_dtag);
890 		sc->sc_rxbuf_dtag = NULL;
891 		return error;
892 	}
893 
894 	/*
895 	 * Create DMA maps for RX mbufs
896 	 */
897 	bzero(rx_done, sizeof(rx_done));
898 	for (i = 0; i < ET_RX_NRING; ++i) {
899 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
900 		int j;
901 
902 		for (j = 0; j < ET_RX_NDESC; ++j) {
903 			error = bus_dmamap_create(sc->sc_rxbuf_dtag,
904 						  BUS_DMA_WAITOK,
905 						  &rbd->rbd_buf[j].rb_dmap);
906 			if (error) {
907 				device_printf(dev, "can't create %d RX mbuf "
908 					      "for %d RX ring\n", j, i);
909 				rx_done[i] = j;
910 				et_dma_mbuf_destroy(dev, 0, rx_done);
911 				return error;
912 			}
913 		}
914 		rx_done[i] = ET_RX_NDESC;
915 
916 		rbd->rbd_softc = sc;
917 		rbd->rbd_ring = &sc->sc_rx_ring[i];
918 	}
919 
920 	/*
921 	 * Create TX mbuf DMA tag
922 	 */
923 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
924 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
925 				   NULL, NULL,
926 				   ET_JUMBO_FRAMELEN, ET_NSEG_MAX, MCLBYTES,
927 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
928 				   BUS_DMA_ONEBPAGE,
929 				   &sc->sc_txbuf_dtag);
930 	if (error) {
931 		device_printf(dev, "can't create TX mbuf DMA tag\n");
932 		return error;
933 	}
934 
935 	/*
936 	 * Create DMA maps for TX mbufs
937 	 */
938 	for (i = 0; i < ET_TX_NDESC; ++i) {
939 		error = bus_dmamap_create(sc->sc_txbuf_dtag,
940 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
941 					  &tbd->tbd_buf[i].tb_dmap);
942 		if (error) {
943 			device_printf(dev, "can't create %d TX mbuf "
944 				      "DMA map\n", i);
945 			et_dma_mbuf_destroy(dev, i, rx_done);
946 			return error;
947 		}
948 	}
949 
950 	return 0;
951 }
952 
953 static void
954 et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
955 {
956 	struct et_softc *sc = device_get_softc(dev);
957 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
958 	int i;
959 
960 	/*
961 	 * Destroy DMA tag and maps for RX mbufs
962 	 */
963 	if (sc->sc_rxbuf_dtag) {
964 		for (i = 0; i < ET_RX_NRING; ++i) {
965 			struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
966 			int j;
967 
968 			for (j = 0; j < rx_done[i]; ++j) {
969 				struct et_rxbuf *rb = &rbd->rbd_buf[j];
970 
971 				KASSERT(rb->rb_mbuf == NULL,
972 					("RX mbuf in %d RX ring is "
973 					 "not freed yet", i));
974 				bus_dmamap_destroy(sc->sc_rxbuf_dtag,
975 						   rb->rb_dmap);
976 			}
977 		}
978 		bus_dmamap_destroy(sc->sc_rxbuf_dtag, sc->sc_rxbuf_tmp_dmap);
979 		bus_dma_tag_destroy(sc->sc_rxbuf_dtag);
980 		sc->sc_rxbuf_dtag = NULL;
981 	}
982 
983 	/*
984 	 * Destroy DMA tag and maps for TX mbufs
985 	 */
986 	if (sc->sc_txbuf_dtag) {
987 		for (i = 0; i < tx_done; ++i) {
988 			struct et_txbuf *tb = &tbd->tbd_buf[i];
989 
990 			KASSERT(tb->tb_mbuf == NULL,
991 				("TX mbuf is not freed yet"));
992 			bus_dmamap_destroy(sc->sc_txbuf_dtag, tb->tb_dmap);
993 		}
994 		bus_dma_tag_destroy(sc->sc_txbuf_dtag);
995 		sc->sc_txbuf_dtag = NULL;
996 	}
997 }
998 
999 static void
1000 et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
1001 {
1002 	if (dtag != NULL) {
1003 		bus_dmamap_unload(dtag, dmap);
1004 		bus_dmamem_free(dtag, addr, dmap);
1005 		bus_dma_tag_destroy(dtag);
1006 	}
1007 }
1008 
1009 static void
1010 et_chip_attach(struct et_softc *sc)
1011 {
1012 	uint32_t val;
1013 
1014 	/*
1015 	 * Perform minimal initialization
1016 	 */
1017 
1018 	/* Disable loopback */
1019 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1020 
1021 	/* Reset MAC */
1022 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1023 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1024 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1025 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1026 
1027 	/*
1028 	 * Setup half duplex mode
1029 	 */
1030 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1031 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1032 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1033 	      ET_MAC_HDX_EXC_DEFER;
1034 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1035 
1036 	/* Clear MAC control */
1037 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1038 
1039 	/* Reset MII */
1040 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1041 
1042 	/* Bring MAC out of reset state */
1043 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1044 
1045 	/* Enable memory controllers */
1046 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1047 }
1048 
1049 static void
1050 et_intr(void *xsc)
1051 {
1052 	struct et_softc *sc = xsc;
1053 	struct ifnet *ifp = &sc->arpcom.ac_if;
1054 	uint32_t intrs;
1055 
1056 	ASSERT_SERIALIZED(ifp->if_serializer);
1057 
1058 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1059 		return;
1060 
1061 	et_disable_intrs(sc);
1062 
1063 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1064 	intrs &= ET_INTRS;
1065 	if (intrs == 0)	/* Not interested */
1066 		goto back;
1067 
1068 	if (intrs & ET_INTR_RXEOF)
1069 		et_rxeof(sc);
1070 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1071 		et_txeof(sc, 1);
1072 	if (intrs & ET_INTR_TIMER)
1073 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1074 back:
1075 	et_enable_intrs(sc, ET_INTRS);
1076 }
1077 
1078 static void
1079 et_init(void *xsc)
1080 {
1081 	struct et_softc *sc = xsc;
1082 	struct ifnet *ifp = &sc->arpcom.ac_if;
1083 	const struct et_bsize *arr;
1084 	int error, i;
1085 
1086 	ASSERT_SERIALIZED(ifp->if_serializer);
1087 
1088 	et_stop(sc);
1089 
1090 	arr = ET_FRAMELEN(ifp->if_mtu) < MCLBYTES ?
1091 	      et_bufsize_std : et_bufsize_jumbo;
1092 	for (i = 0; i < ET_RX_NRING; ++i) {
1093 		sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
1094 		sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
1095 		sc->sc_rx_data[i].rbd_jumbo = arr[i].jumbo;
1096 	}
1097 
1098 	error = et_init_tx_ring(sc);
1099 	if (error)
1100 		goto back;
1101 
1102 	error = et_init_rx_ring(sc);
1103 	if (error)
1104 		goto back;
1105 
1106 	error = et_chip_init(sc);
1107 	if (error)
1108 		goto back;
1109 
1110 	error = et_enable_txrx(sc, 1);
1111 	if (error)
1112 		goto back;
1113 
1114 	et_enable_intrs(sc, ET_INTRS);
1115 
1116 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
1117 
1118 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1119 
1120 	ifp->if_flags |= IFF_RUNNING;
1121 	ifq_clr_oactive(&ifp->if_snd);
1122 back:
1123 	if (error)
1124 		et_stop(sc);
1125 }
1126 
1127 static int
1128 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1129 {
1130 	struct et_softc *sc = ifp->if_softc;
1131 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1132 	struct ifreq *ifr = (struct ifreq *)data;
1133 	int error = 0, max_framelen;
1134 
1135 	ASSERT_SERIALIZED(ifp->if_serializer);
1136 
1137 	switch (cmd) {
1138 	case SIOCSIFFLAGS:
1139 		if (ifp->if_flags & IFF_UP) {
1140 			if (ifp->if_flags & IFF_RUNNING) {
1141 				if ((ifp->if_flags ^ sc->sc_if_flags) &
1142 				    (IFF_ALLMULTI | IFF_PROMISC))
1143 					et_setmulti(sc);
1144 			} else {
1145 				et_init(sc);
1146 			}
1147 		} else {
1148 			if (ifp->if_flags & IFF_RUNNING)
1149 				et_stop(sc);
1150 		}
1151 		sc->sc_if_flags = ifp->if_flags;
1152 		break;
1153 
1154 	case SIOCSIFMEDIA:
1155 	case SIOCGIFMEDIA:
1156 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1157 		break;
1158 
1159 	case SIOCADDMULTI:
1160 	case SIOCDELMULTI:
1161 		if (ifp->if_flags & IFF_RUNNING)
1162 			et_setmulti(sc);
1163 		break;
1164 
1165 	case SIOCSIFMTU:
1166 		if (sc->sc_flags & ET_FLAG_JUMBO)
1167 			max_framelen = ET_JUMBO_FRAMELEN;
1168 		else
1169 			max_framelen = MCLBYTES - 1;
1170 
1171 		if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
1172 			error = EOPNOTSUPP;
1173 			break;
1174 		}
1175 
1176 		ifp->if_mtu = ifr->ifr_mtu;
1177 		if (ifp->if_flags & IFF_RUNNING)
1178 			et_init(sc);
1179 		break;
1180 
1181 	default:
1182 		error = ether_ioctl(ifp, cmd, data);
1183 		break;
1184 	}
1185 	return error;
1186 }
1187 
1188 static void
1189 et_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1190 {
1191 	struct et_softc *sc = ifp->if_softc;
1192 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1193 	int trans, oactive;
1194 
1195 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1196 	ASSERT_SERIALIZED(ifp->if_serializer);
1197 
1198 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) {
1199 		ifq_purge(&ifp->if_snd);
1200 		return;
1201 	}
1202 
1203 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1204 		return;
1205 
1206 	oactive = 0;
1207 	trans = 0;
1208 	for (;;) {
1209 		struct mbuf *m;
1210 		int error;
1211 
1212 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1213 			if (oactive) {
1214 				ifq_set_oactive(&ifp->if_snd);
1215 				break;
1216 			}
1217 
1218 			et_txeof(sc, 0);
1219 			oactive = 1;
1220 			continue;
1221 		}
1222 
1223 		m = ifq_dequeue(&ifp->if_snd);
1224 		if (m == NULL)
1225 			break;
1226 
1227 		error = et_encap(sc, &m);
1228 		if (error) {
1229 			IFNET_STAT_INC(ifp, oerrors, 1);
1230 			KKASSERT(m == NULL);
1231 
1232 			if (error == EFBIG) {
1233 				/*
1234 				 * Excessive fragmented packets
1235 				 */
1236 				if (oactive) {
1237 					ifq_set_oactive(&ifp->if_snd);
1238 					break;
1239 				}
1240 				et_txeof(sc, 0);
1241 				oactive = 1;
1242 			}
1243 			continue;
1244 		} else {
1245 			oactive = 0;
1246 		}
1247 		trans = 1;
1248 
1249 		BPF_MTAP(ifp, m);
1250 	}
1251 
1252 	if (trans)
1253 		ifp->if_timer = 5;
1254 }
1255 
1256 static void
1257 et_watchdog(struct ifnet *ifp)
1258 {
1259 	ASSERT_SERIALIZED(ifp->if_serializer);
1260 
1261 	if_printf(ifp, "watchdog timed out\n");
1262 
1263 	ifp->if_init(ifp->if_softc);
1264 	if_devstart(ifp);
1265 }
1266 
1267 static int
1268 et_stop_rxdma(struct et_softc *sc)
1269 {
1270 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1271 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1272 
1273 	DELAY(5);
1274 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1275 		if_printf(&sc->arpcom.ac_if, "can't stop RX DMA engine\n");
1276 		return ETIMEDOUT;
1277 	}
1278 	return 0;
1279 }
1280 
1281 static int
1282 et_stop_txdma(struct et_softc *sc)
1283 {
1284 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1285 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1286 	return 0;
1287 }
1288 
1289 static void
1290 et_free_tx_ring(struct et_softc *sc)
1291 {
1292 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1293 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1294 	int i;
1295 
1296 	for (i = 0; i < ET_TX_NDESC; ++i) {
1297 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1298 
1299 		if (tb->tb_mbuf != NULL) {
1300 			bus_dmamap_unload(sc->sc_txbuf_dtag, tb->tb_dmap);
1301 			m_freem(tb->tb_mbuf);
1302 			tb->tb_mbuf = NULL;
1303 		}
1304 	}
1305 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1306 }
1307 
1308 static void
1309 et_free_rx_ring(struct et_softc *sc)
1310 {
1311 	int n;
1312 
1313 	for (n = 0; n < ET_RX_NRING; ++n) {
1314 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1315 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1316 		int i;
1317 
1318 		for (i = 0; i < ET_RX_NDESC; ++i) {
1319 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1320 
1321 			if (rb->rb_mbuf != NULL) {
1322 				if (!rbd->rbd_jumbo) {
1323 					bus_dmamap_unload(sc->sc_rxbuf_dtag,
1324 							  rb->rb_dmap);
1325 				}
1326 				m_freem(rb->rb_mbuf);
1327 				rb->rb_mbuf = NULL;
1328 			}
1329 		}
1330 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1331 	}
1332 }
1333 
1334 static void
1335 et_setmulti(struct et_softc *sc)
1336 {
1337 	struct ifnet *ifp = &sc->arpcom.ac_if;
1338 	uint32_t hash[4] = { 0, 0, 0, 0 };
1339 	uint32_t rxmac_ctrl, pktfilt;
1340 	struct ifmultiaddr *ifma;
1341 	int i, count;
1342 
1343 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1344 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1345 
1346 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1347 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1348 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1349 		goto back;
1350 	}
1351 
1352 	count = 0;
1353 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1354 		uint32_t *hp, h;
1355 
1356 		if (ifma->ifma_addr->sa_family != AF_LINK)
1357 			continue;
1358 
1359 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1360 				   ifma->ifma_addr), ETHER_ADDR_LEN);
1361 		h = (h & 0x3f800000) >> 23;
1362 
1363 		hp = &hash[0];
1364 		if (h >= 32 && h < 64) {
1365 			h -= 32;
1366 			hp = &hash[1];
1367 		} else if (h >= 64 && h < 96) {
1368 			h -= 64;
1369 			hp = &hash[2];
1370 		} else if (h >= 96) {
1371 			h -= 96;
1372 			hp = &hash[3];
1373 		}
1374 		*hp |= (1 << h);
1375 
1376 		++count;
1377 	}
1378 
1379 	for (i = 0; i < 4; ++i)
1380 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1381 
1382 	if (count > 0)
1383 		pktfilt |= ET_PKTFILT_MCAST;
1384 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1385 back:
1386 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1387 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1388 }
1389 
1390 static int
1391 et_chip_init(struct et_softc *sc)
1392 {
1393 	struct ifnet *ifp = &sc->arpcom.ac_if;
1394 	uint32_t rxq_end;
1395 	int error, frame_len, rxmem_size;
1396 
1397 	/*
1398 	 * Split 16Kbytes internal memory between TX and RX
1399 	 * according to frame length.
1400 	 */
1401 	frame_len = ET_FRAMELEN(ifp->if_mtu);
1402 	if (frame_len < 2048) {
1403 		rxmem_size = ET_MEM_RXSIZE_DEFAULT;
1404 	} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
1405 		rxmem_size = ET_MEM_SIZE / 2;
1406 	} else {
1407 		rxmem_size = ET_MEM_SIZE -
1408 		roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
1409 	}
1410 	rxq_end = ET_QUEUE_ADDR(rxmem_size);
1411 
1412 	CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
1413 	CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
1414 	CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
1415 	CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
1416 
1417 	/* No loopback */
1418 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1419 
1420 	/* Clear MSI configure */
1421 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1422 
1423 	/* Disable timer */
1424 	CSR_WRITE_4(sc, ET_TIMER, 0);
1425 
1426 	/* Initialize MAC */
1427 	et_init_mac(sc);
1428 
1429 	/* Enable memory controllers */
1430 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1431 
1432 	/* Initialize RX MAC */
1433 	et_init_rxmac(sc);
1434 
1435 	/* Initialize TX MAC */
1436 	et_init_txmac(sc);
1437 
1438 	/* Initialize RX DMA engine */
1439 	error = et_init_rxdma(sc);
1440 	if (error)
1441 		return error;
1442 
1443 	/* Initialize TX DMA engine */
1444 	error = et_init_txdma(sc);
1445 	if (error)
1446 		return error;
1447 
1448 	return 0;
1449 }
1450 
1451 static int
1452 et_init_tx_ring(struct et_softc *sc)
1453 {
1454 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1455 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1456 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1457 
1458 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1459 
1460 	tbd->tbd_start_index = 0;
1461 	tbd->tbd_start_wrap = 0;
1462 	tbd->tbd_used = 0;
1463 
1464 	bzero(txsd->txsd_status, sizeof(uint32_t));
1465 
1466 	return 0;
1467 }
1468 
1469 static int
1470 et_init_rx_ring(struct et_softc *sc)
1471 {
1472 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1473 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1474 	int n;
1475 
1476 	for (n = 0; n < ET_RX_NRING; ++n) {
1477 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1478 		int i, error;
1479 
1480 		for (i = 0; i < ET_RX_NDESC; ++i) {
1481 			error = rbd->rbd_newbuf(rbd, i, 1);
1482 			if (error) {
1483 				if_printf(&sc->arpcom.ac_if, "%d ring %d buf, "
1484 					  "newbuf failed: %d\n", n, i, error);
1485 				return error;
1486 			}
1487 		}
1488 	}
1489 
1490 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1491 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1492 
1493 	return 0;
1494 }
1495 
1496 static int
1497 et_init_rxdma(struct et_softc *sc)
1498 {
1499 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1500 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1501 	struct et_rxdesc_ring *rx_ring;
1502 	int error;
1503 
1504 	error = et_stop_rxdma(sc);
1505 	if (error) {
1506 		if_printf(&sc->arpcom.ac_if, "can't init RX DMA engine\n");
1507 		return error;
1508 	}
1509 
1510 	/*
1511 	 * Install RX status
1512 	 */
1513 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1514 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1515 
1516 	/*
1517 	 * Install RX stat ring
1518 	 */
1519 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1520 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1521 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1522 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1523 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1524 
1525 	/* Match ET_RXSTAT_POS */
1526 	rxst_ring->rsr_index = 0;
1527 	rxst_ring->rsr_wrap = 0;
1528 
1529 	/*
1530 	 * Install the 2nd RX descriptor ring
1531 	 */
1532 	rx_ring = &sc->sc_rx_ring[1];
1533 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1534 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1535 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1536 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1537 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1538 
1539 	/* Match ET_RX_RING1_POS */
1540 	rx_ring->rr_index = 0;
1541 	rx_ring->rr_wrap = 1;
1542 
1543 	/*
1544 	 * Install the 1st RX descriptor ring
1545 	 */
1546 	rx_ring = &sc->sc_rx_ring[0];
1547 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1548 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1549 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1550 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1551 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1552 
1553 	/* Match ET_RX_RING0_POS */
1554 	rx_ring->rr_index = 0;
1555 	rx_ring->rr_wrap = 1;
1556 
1557 	/*
1558 	 * RX intr moderation
1559 	 */
1560 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1561 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1562 
1563 	return 0;
1564 }
1565 
1566 static int
1567 et_init_txdma(struct et_softc *sc)
1568 {
1569 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1570 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1571 	int error;
1572 
1573 	error = et_stop_txdma(sc);
1574 	if (error) {
1575 		if_printf(&sc->arpcom.ac_if, "can't init TX DMA engine\n");
1576 		return error;
1577 	}
1578 
1579 	/*
1580 	 * Install TX descriptor ring
1581 	 */
1582 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1583 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1584 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1585 
1586 	/*
1587 	 * Install TX status
1588 	 */
1589 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1590 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1591 
1592 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1593 
1594 	/* Match ET_TX_READY_POS */
1595 	tx_ring->tr_ready_index = 0;
1596 	tx_ring->tr_ready_wrap = 0;
1597 
1598 	return 0;
1599 }
1600 
1601 static void
1602 et_init_mac(struct et_softc *sc)
1603 {
1604 	struct ifnet *ifp = &sc->arpcom.ac_if;
1605 	const uint8_t *eaddr = IF_LLADDR(ifp);
1606 	uint32_t val;
1607 
1608 	/* Reset MAC */
1609 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1610 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1611 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1612 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1613 
1614 	/*
1615 	 * Setup inter packet gap
1616 	 */
1617 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1618 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1619 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1620 	      __SHIFTIN(96, ET_IPG_B2B);
1621 	CSR_WRITE_4(sc, ET_IPG, val);
1622 
1623 	/*
1624 	 * Setup half duplex mode
1625 	 */
1626 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1627 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1628 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1629 	      ET_MAC_HDX_EXC_DEFER;
1630 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1631 
1632 	/* Clear MAC control */
1633 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1634 
1635 	/* Reset MII */
1636 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1637 
1638 	/*
1639 	 * Set MAC address
1640 	 */
1641 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1642 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1643 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1644 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1645 
1646 	/* Set max frame length */
1647 	CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
1648 
1649 	/* Bring MAC out of reset state */
1650 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1651 }
1652 
1653 static void
1654 et_init_rxmac(struct et_softc *sc)
1655 {
1656 	struct ifnet *ifp = &sc->arpcom.ac_if;
1657 	const uint8_t *eaddr = IF_LLADDR(ifp);
1658 	uint32_t val;
1659 	int i;
1660 
1661 	/* Disable RX MAC and WOL */
1662 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1663 
1664 	/*
1665 	 * Clear all WOL related registers
1666 	 */
1667 	for (i = 0; i < 3; ++i)
1668 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1669 	for (i = 0; i < 20; ++i)
1670 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1671 
1672 	/*
1673 	 * Set WOL source address.  XXX is this necessary?
1674 	 */
1675 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1676 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1677 	val = (eaddr[0] << 8) | eaddr[1];
1678 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1679 
1680 	/* Clear packet filters */
1681 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1682 
1683 	/* No ucast filtering */
1684 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1685 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1686 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1687 
1688 	if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
1689 		/*
1690 		 * In order to transmit jumbo packets greater than
1691 		 * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
1692 		 * RX MAC and RX DMA needs to be reduced in size to
1693 		 * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen).  In
1694 		 * order to implement this, we must use "cut through"
1695 		 * mode in the RX MAC, which chops packets down into
1696 		 * segments.  In this case we selected 256 bytes,
1697 		 * since this is the size of the PCI-Express TLP's
1698 		 * that the ET1310 uses.
1699 		 */
1700 		val = __SHIFTIN(ET_RXMAC_SEGSZ(256), ET_RXMAC_MC_SEGSZ_MAX) |
1701 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1702 	} else {
1703 		val = 0;
1704 	}
1705 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1706 
1707 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1708 
1709 	/* Initialize RX MAC management register */
1710 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1711 
1712 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1713 
1714 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1715 		    ET_RXMAC_MGT_PASS_ECRC |
1716 		    ET_RXMAC_MGT_PASS_ELEN |
1717 		    ET_RXMAC_MGT_PASS_ETRUNC |
1718 		    ET_RXMAC_MGT_CHECK_PKT);
1719 
1720 	/*
1721 	 * Configure runt filtering (may not work on certain chip generation)
1722 	 */
1723 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1724 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1725 
1726 	/* Enable RX MAC but leave WOL disabled */
1727 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1728 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1729 
1730 	/*
1731 	 * Setup multicast hash and allmulti/promisc mode
1732 	 */
1733 	et_setmulti(sc);
1734 }
1735 
1736 static void
1737 et_init_txmac(struct et_softc *sc)
1738 {
1739 	/* Disable TX MAC and FC(?) */
1740 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1741 
1742 	/* No flow control yet */
1743 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1744 
1745 	/* Enable TX MAC but leave FC(?) diabled */
1746 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1747 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1748 }
1749 
1750 static int
1751 et_start_rxdma(struct et_softc *sc)
1752 {
1753 	uint32_t val = 0;
1754 
1755 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1756 			 ET_RXDMA_CTRL_RING0_SIZE) |
1757 	       ET_RXDMA_CTRL_RING0_ENABLE;
1758 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1759 			 ET_RXDMA_CTRL_RING1_SIZE) |
1760 	       ET_RXDMA_CTRL_RING1_ENABLE;
1761 
1762 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1763 
1764 	DELAY(5);
1765 
1766 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1767 		if_printf(&sc->arpcom.ac_if, "can't start RX DMA engine\n");
1768 		return ETIMEDOUT;
1769 	}
1770 	return 0;
1771 }
1772 
1773 static int
1774 et_start_txdma(struct et_softc *sc)
1775 {
1776 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1777 	return 0;
1778 }
1779 
1780 static int
1781 et_enable_txrx(struct et_softc *sc, int media_upd)
1782 {
1783 	struct ifnet *ifp = &sc->arpcom.ac_if;
1784 	uint32_t val;
1785 	int i, error;
1786 
1787 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1788 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1789 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1790 		 ET_MAC_CFG1_LOOPBACK);
1791 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1792 
1793 	if (media_upd)
1794 		et_ifmedia_upd(ifp);
1795 	else
1796 		et_setmedia(sc);
1797 
1798 #define NRETRY	100
1799 
1800 	for (i = 0; i < NRETRY; ++i) {
1801 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1802 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1803 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1804 			break;
1805 
1806 		DELAY(10);
1807 	}
1808 	if (i == NRETRY) {
1809 		if_printf(ifp, "can't enable RX/TX\n");
1810 		return 0;
1811 	}
1812 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
1813 
1814 #undef NRETRY
1815 
1816 	/*
1817 	 * Start TX/RX DMA engine
1818 	 */
1819 	error = et_start_rxdma(sc);
1820 	if (error)
1821 		return error;
1822 
1823 	error = et_start_txdma(sc);
1824 	if (error)
1825 		return error;
1826 
1827 	return 0;
1828 }
1829 
1830 static void
1831 et_rxeof(struct et_softc *sc)
1832 {
1833 	struct ifnet *ifp = &sc->arpcom.ac_if;
1834 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1835 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1836 	uint32_t rxs_stat_ring;
1837 	int rxst_wrap, rxst_index;
1838 
1839 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1840 		return;
1841 
1842 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1843 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1844 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1845 
1846 	while (rxst_index != rxst_ring->rsr_index ||
1847 	       rxst_wrap != rxst_ring->rsr_wrap) {
1848 		struct et_rxbuf_data *rbd;
1849 		struct et_rxdesc_ring *rx_ring;
1850 		struct et_rxstat *st;
1851 		struct mbuf *m;
1852 		int buflen, buf_idx, ring_idx;
1853 		uint32_t rxstat_pos, rxring_pos;
1854 
1855 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1856 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1857 
1858 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1859 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1860 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1861 
1862 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1863 			rxst_ring->rsr_index = 0;
1864 			rxst_ring->rsr_wrap ^= 1;
1865 		}
1866 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1867 				       ET_RXSTAT_POS_INDEX);
1868 		if (rxst_ring->rsr_wrap)
1869 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1870 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1871 
1872 		if (ring_idx >= ET_RX_NRING) {
1873 			IFNET_STAT_INC(ifp, ierrors, 1);
1874 			if_printf(ifp, "invalid ring index %d\n", ring_idx);
1875 			continue;
1876 		}
1877 		if (buf_idx >= ET_RX_NDESC) {
1878 			IFNET_STAT_INC(ifp, ierrors, 1);
1879 			if_printf(ifp, "invalid buf index %d\n", buf_idx);
1880 			continue;
1881 		}
1882 
1883 		rbd = &sc->sc_rx_data[ring_idx];
1884 		m = rbd->rbd_buf[buf_idx].rb_mbuf;
1885 
1886 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1887 			if (buflen < ETHER_CRC_LEN) {
1888 				m_freem(m);
1889 				IFNET_STAT_INC(ifp, ierrors, 1);
1890 			} else {
1891 				m->m_pkthdr.len = m->m_len = buflen;
1892 				m->m_pkthdr.rcvif = ifp;
1893 
1894 				m_adj(m, -ETHER_CRC_LEN);
1895 
1896 				IFNET_STAT_INC(ifp, ipackets, 1);
1897 				ifp->if_input(ifp, m, NULL, -1);
1898 			}
1899 		} else {
1900 			IFNET_STAT_INC(ifp, ierrors, 1);
1901 		}
1902 		m = NULL;	/* Catch invalid reference */
1903 
1904 		rx_ring = &sc->sc_rx_ring[ring_idx];
1905 
1906 		if (buf_idx != rx_ring->rr_index) {
1907 			if_printf(ifp, "WARNING!! ring %d, "
1908 				  "buf_idx %d, rr_idx %d\n",
1909 				  ring_idx, buf_idx, rx_ring->rr_index);
1910 		}
1911 
1912 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1913 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1914 			rx_ring->rr_index = 0;
1915 			rx_ring->rr_wrap ^= 1;
1916 		}
1917 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1918 		if (rx_ring->rr_wrap)
1919 			rxring_pos |= ET_RX_RING_POS_WRAP;
1920 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1921 	}
1922 }
1923 
1924 static int
1925 et_encap(struct et_softc *sc, struct mbuf **m0)
1926 {
1927 	bus_dma_segment_t segs[ET_NSEG_MAX];
1928 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1929 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1930 	struct et_txdesc *td;
1931 	bus_dmamap_t map;
1932 	int error, maxsegs, nsegs, first_idx, last_idx, i;
1933 	uint32_t tx_ready_pos, last_td_ctrl2;
1934 
1935 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1936 	if (maxsegs > ET_NSEG_MAX)
1937 		maxsegs = ET_NSEG_MAX;
1938 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1939 		("not enough spare TX desc (%d)", maxsegs));
1940 
1941 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1942 	first_idx = tx_ring->tr_ready_index;
1943 	map = tbd->tbd_buf[first_idx].tb_dmap;
1944 
1945 	error = bus_dmamap_load_mbuf_defrag(sc->sc_txbuf_dtag, map, m0,
1946 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1947 	if (error)
1948 		goto back;
1949 	bus_dmamap_sync(sc->sc_txbuf_dtag, map, BUS_DMASYNC_PREWRITE);
1950 
1951 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1952 	sc->sc_tx += nsegs;
1953 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1954 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1955 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1956 	}
1957 
1958 	last_idx = -1;
1959 	for (i = 0; i < nsegs; ++i) {
1960 		int idx;
1961 
1962 		idx = (first_idx + i) % ET_TX_NDESC;
1963 		td = &tx_ring->tr_desc[idx];
1964 		td->td_addr_hi = ET_ADDR_HI(segs[i].ds_addr);
1965 		td->td_addr_lo = ET_ADDR_LO(segs[i].ds_addr);
1966 		td->td_ctrl1 = __SHIFTIN(segs[i].ds_len, ET_TDCTRL1_LEN);
1967 
1968 		if (i == nsegs - 1) {	/* Last frag */
1969 			td->td_ctrl2 = last_td_ctrl2;
1970 			last_idx = idx;
1971 		}
1972 
1973 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1974 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1975 			tx_ring->tr_ready_index = 0;
1976 			tx_ring->tr_ready_wrap ^= 1;
1977 		}
1978 	}
1979 	td = &tx_ring->tr_desc[first_idx];
1980 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1981 
1982 	KKASSERT(last_idx >= 0);
1983 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1984 	tbd->tbd_buf[last_idx].tb_dmap = map;
1985 	tbd->tbd_buf[last_idx].tb_mbuf = *m0;
1986 
1987 	tbd->tbd_used += nsegs;
1988 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
1989 
1990 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1991 		       ET_TX_READY_POS_INDEX);
1992 	if (tx_ring->tr_ready_wrap)
1993 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1994 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1995 
1996 	error = 0;
1997 back:
1998 	if (error) {
1999 		m_freem(*m0);
2000 		*m0 = NULL;
2001 	}
2002 	return error;
2003 }
2004 
2005 static void
2006 et_txeof(struct et_softc *sc, int start)
2007 {
2008 	struct ifnet *ifp = &sc->arpcom.ac_if;
2009 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2010 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
2011 	uint32_t tx_done;
2012 	int end, wrap;
2013 
2014 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
2015 		return;
2016 
2017 	if (tbd->tbd_used == 0)
2018 		return;
2019 
2020 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2021 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2022 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2023 
2024 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2025 		struct et_txbuf *tb;
2026 
2027 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2028 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
2029 
2030 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2031 		      sizeof(struct et_txdesc));
2032 
2033 		if (tb->tb_mbuf != NULL) {
2034 			bus_dmamap_unload(sc->sc_txbuf_dtag, tb->tb_dmap);
2035 			m_freem(tb->tb_mbuf);
2036 			tb->tb_mbuf = NULL;
2037 			IFNET_STAT_INC(ifp, opackets, 1);
2038 		}
2039 
2040 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2041 			tbd->tbd_start_index = 0;
2042 			tbd->tbd_start_wrap ^= 1;
2043 		}
2044 
2045 		KKASSERT(tbd->tbd_used > 0);
2046 		tbd->tbd_used--;
2047 	}
2048 
2049 	if (tbd->tbd_used == 0)
2050 		ifp->if_timer = 0;
2051 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2052 		ifq_clr_oactive(&ifp->if_snd);
2053 
2054 	if (start)
2055 		if_devstart(ifp);
2056 }
2057 
2058 static void
2059 et_tick(void *xsc)
2060 {
2061 	struct et_softc *sc = xsc;
2062 	struct ifnet *ifp = &sc->arpcom.ac_if;
2063 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2064 
2065 	lwkt_serialize_enter(ifp->if_serializer);
2066 
2067 	mii_tick(mii);
2068 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
2069 	    (mii->mii_media_status & IFM_ACTIVE) &&
2070 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2071 		if_printf(ifp, "Link up, enable TX/RX\n");
2072 		if (et_enable_txrx(sc, 0) == 0)
2073 			if_devstart(ifp);
2074 	}
2075 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
2076 
2077 	lwkt_serialize_exit(ifp->if_serializer);
2078 }
2079 
2080 static int
2081 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2082 {
2083 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2084 }
2085 
2086 static int
2087 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2088 {
2089 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2090 }
2091 
2092 static int
2093 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2094 {
2095 	struct et_softc *sc = rbd->rbd_softc;
2096 	struct et_rxbuf *rb;
2097 	struct mbuf *m;
2098 	bus_dma_segment_t seg;
2099 	bus_dmamap_t dmap;
2100 	int error, len, nseg;
2101 
2102 	KASSERT(!rbd->rbd_jumbo, ("calling %s with jumbo ring", __func__));
2103 
2104 	KKASSERT(buf_idx < ET_RX_NDESC);
2105 	rb = &rbd->rbd_buf[buf_idx];
2106 
2107 	m = m_getl(len0, init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR, &len);
2108 	if (m == NULL) {
2109 		error = ENOBUFS;
2110 
2111 		if (init) {
2112 			if_printf(&sc->arpcom.ac_if,
2113 				  "m_getl failed, size %d\n", len0);
2114 			return error;
2115 		} else {
2116 			goto back;
2117 		}
2118 	}
2119 	m->m_len = m->m_pkthdr.len = len;
2120 
2121 	/*
2122 	 * Try load RX mbuf into temporary DMA tag
2123 	 */
2124 	error = bus_dmamap_load_mbuf_segment(sc->sc_rxbuf_dtag,
2125 			sc->sc_rxbuf_tmp_dmap, m, &seg, 1, &nseg,
2126 			BUS_DMA_NOWAIT);
2127 	if (error) {
2128 		m_freem(m);
2129 		if (init) {
2130 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2131 			return error;
2132 		} else {
2133 			goto back;
2134 		}
2135 	}
2136 
2137 	if (!init) {
2138 		bus_dmamap_sync(sc->sc_rxbuf_dtag, rb->rb_dmap,
2139 				BUS_DMASYNC_POSTREAD);
2140 		bus_dmamap_unload(sc->sc_rxbuf_dtag, rb->rb_dmap);
2141 	}
2142 	rb->rb_mbuf = m;
2143 	rb->rb_paddr = seg.ds_addr;
2144 
2145 	/*
2146 	 * Swap RX buf's DMA map with the loaded temporary one
2147 	 */
2148 	dmap = rb->rb_dmap;
2149 	rb->rb_dmap = sc->sc_rxbuf_tmp_dmap;
2150 	sc->sc_rxbuf_tmp_dmap = dmap;
2151 
2152 	error = 0;
2153 back:
2154 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2155 	return error;
2156 }
2157 
2158 static int
2159 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
2160 {
2161 	struct et_softc *sc = arg1;
2162 	struct ifnet *ifp = &sc->arpcom.ac_if;
2163 	int error = 0, v;
2164 
2165 	lwkt_serialize_enter(ifp->if_serializer);
2166 
2167 	v = sc->sc_rx_intr_npkts;
2168 	error = sysctl_handle_int(oidp, &v, 0, req);
2169 	if (error || req->newptr == NULL)
2170 		goto back;
2171 	if (v <= 0) {
2172 		error = EINVAL;
2173 		goto back;
2174 	}
2175 
2176 	if (sc->sc_rx_intr_npkts != v) {
2177 		if (ifp->if_flags & IFF_RUNNING)
2178 			CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
2179 		sc->sc_rx_intr_npkts = v;
2180 	}
2181 back:
2182 	lwkt_serialize_exit(ifp->if_serializer);
2183 	return error;
2184 }
2185 
2186 static int
2187 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
2188 {
2189 	struct et_softc *sc = arg1;
2190 	struct ifnet *ifp = &sc->arpcom.ac_if;
2191 	int error = 0, v;
2192 
2193 	lwkt_serialize_enter(ifp->if_serializer);
2194 
2195 	v = sc->sc_rx_intr_delay;
2196 	error = sysctl_handle_int(oidp, &v, 0, req);
2197 	if (error || req->newptr == NULL)
2198 		goto back;
2199 	if (v <= 0) {
2200 		error = EINVAL;
2201 		goto back;
2202 	}
2203 
2204 	if (sc->sc_rx_intr_delay != v) {
2205 		if (ifp->if_flags & IFF_RUNNING)
2206 			CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
2207 		sc->sc_rx_intr_delay = v;
2208 	}
2209 back:
2210 	lwkt_serialize_exit(ifp->if_serializer);
2211 	return error;
2212 }
2213 
2214 static void
2215 et_setmedia(struct et_softc *sc)
2216 {
2217 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2218 	uint32_t cfg2, ctrl;
2219 
2220 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
2221 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
2222 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
2223 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
2224 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
2225 
2226 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
2227 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
2228 
2229 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
2230 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
2231 	} else {
2232 		cfg2 |= ET_MAC_CFG2_MODE_MII;
2233 		ctrl |= ET_MAC_CTRL_MODE_MII;
2234 	}
2235 
2236 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
2237 		cfg2 |= ET_MAC_CFG2_FDX;
2238 	else
2239 		ctrl |= ET_MAC_CTRL_GHDX;
2240 
2241 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
2242 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
2243 }
2244 
2245 static int
2246 et_jumbo_mem_alloc(device_t dev)
2247 {
2248 	struct et_softc *sc = device_get_softc(dev);
2249 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2250 	bus_addr_t paddr;
2251 	uint8_t *buf;
2252 	int i;
2253 
2254 	jd->jd_buf = bus_dmamem_coherent_any(sc->sc_dtag,
2255 			ET_JUMBO_ALIGN, ET_JUMBO_MEM_SIZE, BUS_DMA_WAITOK,
2256 			&jd->jd_dtag, &jd->jd_dmap, &paddr);
2257 	if (jd->jd_buf == NULL) {
2258 		device_printf(dev, "can't create jumbo DMA stuffs\n");
2259 		return ENOMEM;
2260 	}
2261 
2262 	jd->jd_slots = kmalloc(sizeof(*jd->jd_slots) * ET_JSLOTS, M_DEVBUF,
2263 			       M_WAITOK | M_ZERO);
2264 	lwkt_serialize_init(&jd->jd_serializer);
2265 	SLIST_INIT(&jd->jd_free_slots);
2266 
2267 	buf = jd->jd_buf;
2268 	for (i = 0; i < ET_JSLOTS; ++i) {
2269 		struct et_jslot *jslot = &jd->jd_slots[i];
2270 
2271 		jslot->jslot_data = jd;
2272 		jslot->jslot_buf = buf;
2273 		jslot->jslot_paddr = paddr;
2274 		jslot->jslot_inuse = 0;
2275 		jslot->jslot_index = i;
2276 		SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot, jslot_link);
2277 
2278 		buf += ET_JLEN;
2279 		paddr += ET_JLEN;
2280 	}
2281 	return 0;
2282 }
2283 
2284 static void
2285 et_jumbo_mem_free(device_t dev)
2286 {
2287 	struct et_softc *sc = device_get_softc(dev);
2288 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2289 
2290 	KKASSERT(sc->sc_flags & ET_FLAG_JUMBO);
2291 
2292 	kfree(jd->jd_slots, M_DEVBUF);
2293 	et_dma_mem_destroy(jd->jd_dtag, jd->jd_buf, jd->jd_dmap);
2294 }
2295 
2296 static struct et_jslot *
2297 et_jalloc(struct et_jumbo_data *jd)
2298 {
2299 	struct et_jslot *jslot;
2300 
2301 	lwkt_serialize_enter(&jd->jd_serializer);
2302 
2303 	jslot = SLIST_FIRST(&jd->jd_free_slots);
2304 	if (jslot) {
2305 		SLIST_REMOVE_HEAD(&jd->jd_free_slots, jslot_link);
2306 		jslot->jslot_inuse = 1;
2307 	}
2308 
2309 	lwkt_serialize_exit(&jd->jd_serializer);
2310 	return jslot;
2311 }
2312 
2313 static void
2314 et_jfree(void *xjslot)
2315 {
2316 	struct et_jslot *jslot = xjslot;
2317 	struct et_jumbo_data *jd = jslot->jslot_data;
2318 
2319 	if (&jd->jd_slots[jslot->jslot_index] != jslot) {
2320 		panic("%s wrong jslot!?", __func__);
2321 	} else if (jslot->jslot_inuse == 0) {
2322 		panic("%s jslot already freed", __func__);
2323 	} else {
2324 		lwkt_serialize_enter(&jd->jd_serializer);
2325 
2326 		atomic_subtract_int(&jslot->jslot_inuse, 1);
2327 		if (jslot->jslot_inuse == 0) {
2328 			SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot,
2329 					  jslot_link);
2330 		}
2331 
2332 		lwkt_serialize_exit(&jd->jd_serializer);
2333 	}
2334 }
2335 
2336 static void
2337 et_jref(void *xjslot)
2338 {
2339 	struct et_jslot *jslot = xjslot;
2340 	struct et_jumbo_data *jd = jslot->jslot_data;
2341 
2342 	if (&jd->jd_slots[jslot->jslot_index] != jslot)
2343 		panic("%s wrong jslot!?", __func__);
2344 	else if (jslot->jslot_inuse == 0)
2345 		panic("%s jslot already freed", __func__);
2346 	else
2347 		atomic_add_int(&jslot->jslot_inuse, 1);
2348 }
2349 
2350 static int
2351 et_newbuf_jumbo(struct et_rxbuf_data *rbd, int buf_idx, int init)
2352 {
2353 	struct et_softc *sc = rbd->rbd_softc;
2354 	struct et_rxbuf *rb;
2355 	struct mbuf *m;
2356 	struct et_jslot *jslot;
2357 	int error;
2358 
2359 	KASSERT(rbd->rbd_jumbo, ("calling %s with non-jumbo ring", __func__));
2360 
2361 	KKASSERT(buf_idx < ET_RX_NDESC);
2362 	rb = &rbd->rbd_buf[buf_idx];
2363 
2364 	error = ENOBUFS;
2365 
2366 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2367 	if (m == NULL) {
2368 		if (init) {
2369 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
2370 			return error;
2371 		} else {
2372 			goto back;
2373 		}
2374 	}
2375 
2376 	jslot = et_jalloc(&sc->sc_jumbo_data);
2377 	if (jslot == NULL) {
2378 		m_freem(m);
2379 
2380 		if (init) {
2381 			if_printf(&sc->arpcom.ac_if,
2382 				  "jslot allocation failed\n");
2383 			return error;
2384 		} else {
2385 			goto back;
2386 		}
2387 	}
2388 
2389 	m->m_ext.ext_arg = jslot;
2390 	m->m_ext.ext_buf = jslot->jslot_buf;
2391 	m->m_ext.ext_free = et_jfree;
2392 	m->m_ext.ext_ref = et_jref;
2393 	m->m_ext.ext_size = ET_JUMBO_FRAMELEN;
2394 	m->m_flags |= M_EXT;
2395 	m->m_data = m->m_ext.ext_buf;
2396 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2397 
2398 	rb->rb_mbuf = m;
2399 	rb->rb_paddr = jslot->jslot_paddr;
2400 
2401 	error = 0;
2402 back:
2403 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2404 	return error;
2405 }
2406 
2407 static void
2408 et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr)
2409 {
2410 	struct et_rxdesc_ring *rx_ring = rbd->rbd_ring;
2411 	struct et_rxdesc *desc;
2412 
2413 	KKASSERT(buf_idx < ET_RX_NDESC);
2414 	desc = &rx_ring->rr_desc[buf_idx];
2415 
2416 	desc->rd_addr_hi = ET_ADDR_HI(paddr);
2417 	desc->rd_addr_lo = ET_ADDR_LO(paddr);
2418 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2419 }
2420