xref: /dragonfly/sys/dev/netif/et/if_et.c (revision cf89a63b)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/param.h>
36 #include <sys/bitops.h>
37 #include <sys/endian.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/interrupt.h>
41 #include <sys/malloc.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/bpf.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/ifq_var.h>
56 #include <net/vlan/if_vlan_var.h>
57 
58 #include <dev/netif/mii_layer/miivar.h>
59 
60 #include <bus/pci/pcireg.h>
61 #include <bus/pci/pcivar.h>
62 #include <bus/pci/pcidevs.h>
63 
64 #include <dev/netif/et/if_etreg.h>
65 #include <dev/netif/et/if_etvar.h>
66 
67 #include "miibus_if.h"
68 
69 static int	et_probe(device_t);
70 static int	et_attach(device_t);
71 static int	et_detach(device_t);
72 static int	et_shutdown(device_t);
73 
74 static int	et_miibus_readreg(device_t, int, int);
75 static int	et_miibus_writereg(device_t, int, int, int);
76 static void	et_miibus_statchg(device_t);
77 
78 static void	et_init(void *);
79 static int	et_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
80 static void	et_start(struct ifnet *, struct ifaltq_subque *);
81 static void	et_watchdog(struct ifnet *);
82 static int	et_ifmedia_upd(struct ifnet *);
83 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
84 
85 static int	et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS);
86 static int	et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS);
87 
88 static void	et_intr(void *);
89 static void	et_enable_intrs(struct et_softc *, uint32_t);
90 static void	et_disable_intrs(struct et_softc *);
91 static void	et_rxeof(struct et_softc *);
92 static void	et_txeof(struct et_softc *, int);
93 
94 static int	et_dma_alloc(device_t);
95 static void	et_dma_free(device_t);
96 static void	et_dma_mem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
97 static int	et_dma_mbuf_create(device_t);
98 static void	et_dma_mbuf_destroy(device_t, int, const int[]);
99 static int	et_jumbo_mem_alloc(device_t);
100 static void	et_jumbo_mem_free(device_t);
101 static int	et_init_tx_ring(struct et_softc *);
102 static int	et_init_rx_ring(struct et_softc *);
103 static void	et_free_tx_ring(struct et_softc *);
104 static void	et_free_rx_ring(struct et_softc *);
105 static int	et_encap(struct et_softc *, struct mbuf **);
106 static struct et_jslot *
107 		et_jalloc(struct et_jumbo_data *);
108 static void	et_jfree(void *);
109 static void	et_jref(void *);
110 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
111 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
112 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
113 static int	et_newbuf_jumbo(struct et_rxbuf_data *, int, int);
114 
115 static void	et_stop(struct et_softc *);
116 static int	et_chip_init(struct et_softc *);
117 static void	et_chip_attach(struct et_softc *);
118 static void	et_init_mac(struct et_softc *);
119 static void	et_init_rxmac(struct et_softc *);
120 static void	et_init_txmac(struct et_softc *);
121 static int	et_init_rxdma(struct et_softc *);
122 static int	et_init_txdma(struct et_softc *);
123 static int	et_start_rxdma(struct et_softc *);
124 static int	et_start_txdma(struct et_softc *);
125 static int	et_stop_rxdma(struct et_softc *);
126 static int	et_stop_txdma(struct et_softc *);
127 static int	et_enable_txrx(struct et_softc *, int);
128 static void	et_reset(struct et_softc *);
129 static int	et_bus_config(device_t);
130 static void	et_get_eaddr(device_t, uint8_t[]);
131 static void	et_setmulti(struct et_softc *);
132 static void	et_tick(void *);
133 static void	et_setmedia(struct et_softc *);
134 static void	et_setup_rxdesc(struct et_rxbuf_data *, int, bus_addr_t);
135 
136 static const struct et_dev {
137 	uint16_t	vid;
138 	uint16_t	did;
139 	const char	*desc;
140 } et_devices[] = {
141 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310,
142 	  "Agere ET1310 Gigabit Ethernet" },
143 	{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST,
144 	  "Agere ET1310 Fast Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static device_method_t et_methods[] = {
149 	DEVMETHOD(device_probe,		et_probe),
150 	DEVMETHOD(device_attach,	et_attach),
151 	DEVMETHOD(device_detach,	et_detach),
152 	DEVMETHOD(device_shutdown,	et_shutdown),
153 #if 0
154 	DEVMETHOD(device_suspend,	et_suspend),
155 	DEVMETHOD(device_resume,	et_resume),
156 #endif
157 
158 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
159 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
160 
161 	DEVMETHOD(miibus_readreg,	et_miibus_readreg),
162 	DEVMETHOD(miibus_writereg,	et_miibus_writereg),
163 	DEVMETHOD(miibus_statchg,	et_miibus_statchg),
164 
165 	DEVMETHOD_END
166 };
167 
168 static driver_t et_driver = {
169 	"et",
170 	et_methods,
171 	sizeof(struct et_softc)
172 };
173 
174 static devclass_t et_devclass;
175 
176 DECLARE_DUMMY_MODULE(if_et);
177 MODULE_DEPEND(if_et, miibus, 1, 1, 1);
178 DRIVER_MODULE(if_et, pci, et_driver, et_devclass, NULL, NULL);
179 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, NULL, NULL);
180 
181 static int	et_rx_intr_npkts = 129;
182 static int	et_rx_intr_delay = 25;		/* x4 usec */
183 static int	et_tx_intr_nsegs = 256;
184 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
185 
186 static int	et_msi_enable = 1;
187 
188 TUNABLE_INT("hw.et.timer", &et_timer);
189 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts);
190 TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay);
191 TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs);
192 TUNABLE_INT("hw.et.msi.enable", &et_msi_enable);
193 
194 struct et_bsize {
195 	int		bufsize;
196 	int		jumbo;
197 	et_newbuf_t	newbuf;
198 };
199 
200 static const struct et_bsize	et_bufsize_std[ET_RX_NRING] = {
201 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
202 	  .newbuf = et_newbuf_hdr },
203 	{ .bufsize = ET_RXDMA_CTRL_RING1_2048,	.jumbo = 0,
204 	  .newbuf = et_newbuf_cluster },
205 };
206 
207 static const struct et_bsize	et_bufsize_jumbo[ET_RX_NRING] = {
208 	{ .bufsize = ET_RXDMA_CTRL_RING0_128,	.jumbo = 0,
209 	  .newbuf = et_newbuf_hdr },
210 	{ .bufsize = ET_RXDMA_CTRL_RING1_16384,	.jumbo = 1,
211 	  .newbuf = et_newbuf_jumbo },
212 };
213 
214 static int
215 et_probe(device_t dev)
216 {
217 	const struct et_dev *d;
218 	uint16_t did, vid;
219 
220 	vid = pci_get_vendor(dev);
221 	did = pci_get_device(dev);
222 
223 	for (d = et_devices; d->desc != NULL; ++d) {
224 		if (vid == d->vid && did == d->did) {
225 			device_set_desc(dev, d->desc);
226 			return 0;
227 		}
228 	}
229 	return ENXIO;
230 }
231 
232 static int
233 et_attach(device_t dev)
234 {
235 	struct et_softc *sc = device_get_softc(dev);
236 	struct ifnet *ifp = &sc->arpcom.ac_if;
237 	uint8_t eaddr[ETHER_ADDR_LEN];
238 	int error;
239 	u_int irq_flags;
240 
241 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
242 	callout_init(&sc->sc_tick);
243 
244 	/*
245 	 * Initialize tunables
246 	 */
247 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
248 	sc->sc_rx_intr_delay = et_rx_intr_delay;
249 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
250 	sc->sc_timer = et_timer;
251 
252 #ifndef BURN_BRIDGES
253 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
254 		uint32_t irq, mem;
255 
256 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
257 		mem = pci_read_config(dev, ET_PCIR_BAR, 4);
258 
259 		device_printf(dev, "chip is in D%d power mode "
260 		    "-- setting to D0\n", pci_get_powerstate(dev));
261 
262 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
263 
264 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
265 		pci_write_config(dev, ET_PCIR_BAR, mem, 4);
266 	}
267 #endif	/* !BURN_BRIDGE */
268 
269 	/* Enable bus mastering */
270 	pci_enable_busmaster(dev);
271 
272 	/*
273 	 * Allocate IO memory
274 	 */
275 	sc->sc_mem_rid = ET_PCIR_BAR;
276 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
277 						&sc->sc_mem_rid, RF_ACTIVE);
278 	if (sc->sc_mem_res == NULL) {
279 		device_printf(dev, "can't allocate IO memory\n");
280 		return ENXIO;
281 	}
282 	sc->sc_mem_bt = rman_get_bustag(sc->sc_mem_res);
283 	sc->sc_mem_bh = rman_get_bushandle(sc->sc_mem_res);
284 
285 	/*
286 	 * Allocate IRQ
287 	 */
288 	sc->sc_irq_type = pci_alloc_1intr(dev, et_msi_enable,
289 	    &sc->sc_irq_rid, &irq_flags);
290 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
291 	    &sc->sc_irq_rid, irq_flags);
292 	if (sc->sc_irq_res == NULL) {
293 		device_printf(dev, "can't allocate irq\n");
294 		error = ENXIO;
295 		goto fail;
296 	}
297 
298 	/*
299 	 * Create sysctl tree
300 	 */
301 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
302 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
303 					     SYSCTL_STATIC_CHILDREN(_hw),
304 					     OID_AUTO,
305 					     device_get_nameunit(dev),
306 					     CTLFLAG_RD, 0, "");
307 	if (sc->sc_sysctl_tree == NULL) {
308 		device_printf(dev, "can't add sysctl node\n");
309 		error = ENXIO;
310 		goto fail;
311 	}
312 
313 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
314 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
315 			OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW,
316 			sc, 0, et_sysctl_rx_intr_npkts, "I",
317 			"RX IM, # packets per RX interrupt");
318 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
319 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
320 			OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW,
321 			sc, 0, et_sysctl_rx_intr_delay, "I",
322 			"RX IM, RX interrupt delay (x10 usec)");
323 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
324 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
325 		       "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0,
326 		       "TX IM, # segments per TX interrupt");
327 	SYSCTL_ADD_UINT(&sc->sc_sysctl_ctx,
328 			SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
329 			"timer", CTLFLAG_RW, &sc->sc_timer, 0,
330 			"TX timer");
331 
332 	error = et_bus_config(dev);
333 	if (error)
334 		goto fail;
335 
336 	et_get_eaddr(dev, eaddr);
337 
338 	CSR_WRITE_4(sc, ET_PM,
339 		    ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
340 
341 	et_reset(sc);
342 
343 	et_disable_intrs(sc);
344 
345 	error = et_dma_alloc(dev);
346 	if (error)
347 		goto fail;
348 
349 	ifp->if_softc = sc;
350 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
351 	ifp->if_init = et_init;
352 	ifp->if_ioctl = et_ioctl;
353 	ifp->if_start = et_start;
354 	ifp->if_watchdog = et_watchdog;
355 	ifp->if_mtu = ETHERMTU;
356 	ifp->if_capabilities = IFCAP_VLAN_MTU;
357 	ifp->if_capenable = ifp->if_capabilities;
358 	ifq_set_maxlen(&ifp->if_snd, ET_TX_NDESC);
359 	ifq_set_ready(&ifp->if_snd);
360 
361 	et_chip_attach(sc);
362 
363 	error = mii_phy_probe(dev, &sc->sc_miibus,
364 			      et_ifmedia_upd, et_ifmedia_sts);
365 	if (error) {
366 		device_printf(dev, "can't probe any PHY\n");
367 		goto fail;
368 	}
369 
370 	ether_ifattach(ifp, eaddr, NULL);
371 
372 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sc_irq_res));
373 
374 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, et_intr, sc,
375 			       &sc->sc_irq_handle, ifp->if_serializer);
376 	if (error) {
377 		ether_ifdetach(ifp);
378 		device_printf(dev, "can't setup intr\n");
379 		goto fail;
380 	}
381 
382 	return 0;
383 fail:
384 	et_detach(dev);
385 	return error;
386 }
387 
388 static int
389 et_detach(device_t dev)
390 {
391 	struct et_softc *sc = device_get_softc(dev);
392 
393 	if (device_is_attached(dev)) {
394 		struct ifnet *ifp = &sc->arpcom.ac_if;
395 
396 		lwkt_serialize_enter(ifp->if_serializer);
397 		et_stop(sc);
398 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
399 		lwkt_serialize_exit(ifp->if_serializer);
400 
401 		ether_ifdetach(ifp);
402 	}
403 
404 	if (sc->sc_sysctl_tree != NULL)
405 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
406 
407 	if (sc->sc_miibus != NULL)
408 		device_delete_child(dev, sc->sc_miibus);
409 	bus_generic_detach(dev);
410 
411 	if (sc->sc_irq_res != NULL) {
412 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
413 				     sc->sc_irq_res);
414 	}
415 	if (sc->sc_irq_type == PCI_INTR_TYPE_MSI)
416 		pci_release_msi(dev);
417 
418 	if (sc->sc_mem_res != NULL) {
419 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
420 				     sc->sc_mem_res);
421 	}
422 
423 	et_dma_free(dev);
424 
425 	return 0;
426 }
427 
428 static int
429 et_shutdown(device_t dev)
430 {
431 	struct et_softc *sc = device_get_softc(dev);
432 	struct ifnet *ifp = &sc->arpcom.ac_if;
433 
434 	lwkt_serialize_enter(ifp->if_serializer);
435 	et_stop(sc);
436 	lwkt_serialize_exit(ifp->if_serializer);
437 	return 0;
438 }
439 
440 static int
441 et_miibus_readreg(device_t dev, int phy, int reg)
442 {
443 	struct et_softc *sc = device_get_softc(dev);
444 	uint32_t val;
445 	int i, ret;
446 
447 	/* Stop any pending operations */
448 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
449 
450 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
451 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
452 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
453 
454 	/* Start reading */
455 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
456 
457 #define NRETRY	50
458 
459 	for (i = 0; i < NRETRY; ++i) {
460 		val = CSR_READ_4(sc, ET_MII_IND);
461 		if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
462 			break;
463 		DELAY(50);
464 	}
465 	if (i == NRETRY) {
466 		if_printf(&sc->arpcom.ac_if,
467 			  "read phy %d, reg %d timed out\n", phy, reg);
468 		ret = 0;
469 		goto back;
470 	}
471 
472 #undef NRETRY
473 
474 	val = CSR_READ_4(sc, ET_MII_STAT);
475 	ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
476 
477 back:
478 	/* Make sure that the current operation is stopped */
479 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
480 	return ret;
481 }
482 
483 static int
484 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
485 {
486 	struct et_softc *sc = device_get_softc(dev);
487 	uint32_t val;
488 	int i;
489 
490 	/* Stop any pending operations */
491 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
492 
493 	val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
494 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
495 	CSR_WRITE_4(sc, ET_MII_ADDR, val);
496 
497 	/* Start writing */
498 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
499 
500 #define NRETRY 100
501 
502 	for (i = 0; i < NRETRY; ++i) {
503 		val = CSR_READ_4(sc, ET_MII_IND);
504 		if ((val & ET_MII_IND_BUSY) == 0)
505 			break;
506 		DELAY(50);
507 	}
508 	if (i == NRETRY) {
509 		if_printf(&sc->arpcom.ac_if,
510 			  "write phy %d, reg %d timed out\n", phy, reg);
511 		et_miibus_readreg(dev, phy, reg);
512 	}
513 
514 #undef NRETRY
515 
516 	/* Make sure that the current operation is stopped */
517 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
518 	return 0;
519 }
520 
521 static void
522 et_miibus_statchg(device_t dev)
523 {
524 	et_setmedia(device_get_softc(dev));
525 }
526 
527 static int
528 et_ifmedia_upd(struct ifnet *ifp)
529 {
530 	struct et_softc *sc = ifp->if_softc;
531 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
532 
533 	if (mii->mii_instance != 0) {
534 		struct mii_softc *miisc;
535 
536 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
537 			mii_phy_reset(miisc);
538 	}
539 	mii_mediachg(mii);
540 
541 	return 0;
542 }
543 
544 static void
545 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
546 {
547 	struct et_softc *sc = ifp->if_softc;
548 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
549 
550 	mii_pollstat(mii);
551 	ifmr->ifm_active = mii->mii_media_active;
552 	ifmr->ifm_status = mii->mii_media_status;
553 }
554 
555 static void
556 et_stop(struct et_softc *sc)
557 {
558 	struct ifnet *ifp = &sc->arpcom.ac_if;
559 
560 	ASSERT_SERIALIZED(ifp->if_serializer);
561 
562 	callout_stop(&sc->sc_tick);
563 
564 	et_stop_rxdma(sc);
565 	et_stop_txdma(sc);
566 
567 	et_disable_intrs(sc);
568 
569 	et_free_tx_ring(sc);
570 	et_free_rx_ring(sc);
571 
572 	et_reset(sc);
573 
574 	sc->sc_tx = 0;
575 	sc->sc_tx_intr = 0;
576 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
577 
578 	ifp->if_timer = 0;
579 	ifp->if_flags &= ~IFF_RUNNING;
580 	ifq_clr_oactive(&ifp->if_snd);
581 }
582 
583 static int
584 et_bus_config(device_t dev)
585 {
586 	uint32_t val, max_plsz;
587 	uint16_t ack_latency, replay_timer;
588 
589 	/*
590 	 * Test whether EEPROM is valid
591 	 * NOTE: Read twice to get the correct value
592 	 */
593 	pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
594 	val = pci_read_config(dev, ET_PCIR_EEPROM_STATUS, 1);
595 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
596 		device_printf(dev, "EEPROM status error 0x%02x\n", val);
597 		return ENXIO;
598 	}
599 
600 	/* TODO: LED */
601 
602 	/*
603 	 * Configure ACK latency and replay timer according to
604 	 * max playload size
605 	 */
606 	val = pci_read_config(dev, ET_PCIR_DEVICE_CAPS, 4);
607 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
608 
609 	switch (max_plsz) {
610 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
611 		ack_latency = ET_PCIV_ACK_LATENCY_128;
612 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
613 		break;
614 
615 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
616 		ack_latency = ET_PCIV_ACK_LATENCY_256;
617 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
618 		break;
619 
620 	default:
621 		ack_latency = pci_read_config(dev, ET_PCIR_ACK_LATENCY, 2);
622 		replay_timer = pci_read_config(dev, ET_PCIR_REPLAY_TIMER, 2);
623 		device_printf(dev, "ack latency %u, replay timer %u\n",
624 			      ack_latency, replay_timer);
625 		break;
626 	}
627 	if (ack_latency != 0) {
628 		pci_write_config(dev, ET_PCIR_ACK_LATENCY, ack_latency, 2);
629 		pci_write_config(dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2);
630 	}
631 
632 	/*
633 	 * Set L0s and L1 latency timer to 2us
634 	 */
635 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
636 	pci_write_config(dev, ET_PCIR_L0S_L1_LATENCY, val, 1);
637 
638 	/*
639 	 * Set max read request size to 2048 bytes
640 	 */
641 	val = pci_read_config(dev, ET_PCIR_DEVICE_CTRL, 2);
642 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
643 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
644 	pci_write_config(dev, ET_PCIR_DEVICE_CTRL, val, 2);
645 
646 	return 0;
647 }
648 
649 static void
650 et_get_eaddr(device_t dev, uint8_t eaddr[])
651 {
652 	uint32_t val;
653 	int i;
654 
655 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4);
656 	for (i = 0; i < 4; ++i)
657 		eaddr[i] = (val >> (8 * i)) & 0xff;
658 
659 	val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2);
660 	for (; i < ETHER_ADDR_LEN; ++i)
661 		eaddr[i] = (val >> (8 * (i - 4))) & 0xff;
662 }
663 
664 static void
665 et_reset(struct et_softc *sc)
666 {
667 	CSR_WRITE_4(sc, ET_MAC_CFG1,
668 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
669 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
670 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
671 
672 	CSR_WRITE_4(sc, ET_SWRST,
673 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
674 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
675 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
676 
677 	CSR_WRITE_4(sc, ET_MAC_CFG1,
678 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
679 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
680 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
681 }
682 
683 static void
684 et_disable_intrs(struct et_softc *sc)
685 {
686 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
687 }
688 
689 static void
690 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
691 {
692 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
693 }
694 
695 static int
696 et_dma_alloc(device_t dev)
697 {
698 	struct et_softc *sc = device_get_softc(dev);
699 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
700 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
701 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
702 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
703 	int i, error;
704 
705 	/*
706 	 * Create top level DMA tag
707 	 */
708 	error = bus_dma_tag_create(NULL, 1, 0,
709 				   BUS_SPACE_MAXADDR,
710 				   BUS_SPACE_MAXADDR,
711 				   NULL, NULL,
712 				   BUS_SPACE_MAXSIZE_32BIT,
713 				   0,
714 				   BUS_SPACE_MAXSIZE_32BIT,
715 				   0, &sc->sc_dtag);
716 	if (error) {
717 		device_printf(dev, "can't create DMA tag\n");
718 		return error;
719 	}
720 
721 	/*
722 	 * Create TX ring DMA stuffs
723 	 */
724 	tx_ring->tr_desc = bus_dmamem_coherent_any(sc->sc_dtag,
725 				ET_ALIGN, ET_TX_RING_SIZE,
726 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
727 				&tx_ring->tr_dtag, &tx_ring->tr_dmap,
728 				&tx_ring->tr_paddr);
729 	if (tx_ring->tr_desc == NULL) {
730 		device_printf(dev, "can't create TX ring DMA stuffs\n");
731 		return ENOMEM;
732 	}
733 
734 	/*
735 	 * Create TX status DMA stuffs
736 	 */
737 	txsd->txsd_status = bus_dmamem_coherent_any(sc->sc_dtag,
738 				ET_ALIGN, sizeof(uint32_t),
739 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
740 				&txsd->txsd_dtag, &txsd->txsd_dmap,
741 				&txsd->txsd_paddr);
742 	if (txsd->txsd_status == NULL) {
743 		device_printf(dev, "can't create TX status DMA stuffs\n");
744 		return ENOMEM;
745 	}
746 
747 	/*
748 	 * Create DMA stuffs for RX rings
749 	 */
750 	for (i = 0; i < ET_RX_NRING; ++i) {
751 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
752 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
753 
754 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
755 
756 		rx_ring->rr_desc = bus_dmamem_coherent_any(sc->sc_dtag,
757 					ET_ALIGN, ET_RX_RING_SIZE,
758 					BUS_DMA_WAITOK | BUS_DMA_ZERO,
759 					&rx_ring->rr_dtag, &rx_ring->rr_dmap,
760 					&rx_ring->rr_paddr);
761 		if (rx_ring->rr_desc == NULL) {
762 			device_printf(dev, "can't create DMA stuffs for "
763 				      "the %d RX ring\n", i);
764 			return ENOMEM;
765 		}
766 		rx_ring->rr_posreg = rx_ring_posreg[i];
767 	}
768 
769 	/*
770 	 * Create RX stat ring DMA stuffs
771 	 */
772 	rxst_ring->rsr_stat = bus_dmamem_coherent_any(sc->sc_dtag,
773 				ET_ALIGN, ET_RXSTAT_RING_SIZE,
774 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
775 				&rxst_ring->rsr_dtag, &rxst_ring->rsr_dmap,
776 				&rxst_ring->rsr_paddr);
777 	if (rxst_ring->rsr_stat == NULL) {
778 		device_printf(dev, "can't create RX stat ring DMA stuffs\n");
779 		return ENOMEM;
780 	}
781 
782 	/*
783 	 * Create RX status DMA stuffs
784 	 */
785 	rxsd->rxsd_status = bus_dmamem_coherent_any(sc->sc_dtag,
786 				ET_ALIGN, sizeof(struct et_rxstatus),
787 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
788 				&rxsd->rxsd_dtag, &rxsd->rxsd_dmap,
789 				&rxsd->rxsd_paddr);
790 	if (rxsd->rxsd_status == NULL) {
791 		device_printf(dev, "can't create RX status DMA stuffs\n");
792 		return ENOMEM;
793 	}
794 
795 	/*
796 	 * Create mbuf DMA stuffs
797 	 */
798 	error = et_dma_mbuf_create(dev);
799 	if (error)
800 		return error;
801 
802 	/*
803 	 * Create jumbo buffer DMA stuffs
804 	 * NOTE: Allow it to fail
805 	 */
806 	if (et_jumbo_mem_alloc(dev) == 0)
807 		sc->sc_flags |= ET_FLAG_JUMBO;
808 
809 	return 0;
810 }
811 
812 static void
813 et_dma_free(device_t dev)
814 {
815 	struct et_softc *sc = device_get_softc(dev);
816 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
817 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
818 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
819 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
820 	int i, rx_done[ET_RX_NRING];
821 
822 	/*
823 	 * Destroy TX ring DMA stuffs
824 	 */
825 	et_dma_mem_destroy(tx_ring->tr_dtag, tx_ring->tr_desc,
826 			   tx_ring->tr_dmap);
827 
828 	/*
829 	 * Destroy TX status DMA stuffs
830 	 */
831 	et_dma_mem_destroy(txsd->txsd_dtag, txsd->txsd_status,
832 			   txsd->txsd_dmap);
833 
834 	/*
835 	 * Destroy DMA stuffs for RX rings
836 	 */
837 	for (i = 0; i < ET_RX_NRING; ++i) {
838 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
839 
840 		et_dma_mem_destroy(rx_ring->rr_dtag, rx_ring->rr_desc,
841 				   rx_ring->rr_dmap);
842 	}
843 
844 	/*
845 	 * Destroy RX stat ring DMA stuffs
846 	 */
847 	et_dma_mem_destroy(rxst_ring->rsr_dtag, rxst_ring->rsr_stat,
848 			   rxst_ring->rsr_dmap);
849 
850 	/*
851 	 * Destroy RX status DMA stuffs
852 	 */
853 	et_dma_mem_destroy(rxsd->rxsd_dtag, rxsd->rxsd_status,
854 			   rxsd->rxsd_dmap);
855 
856 	/*
857 	 * Destroy mbuf DMA stuffs
858 	 */
859 	for (i = 0; i < ET_RX_NRING; ++i)
860 		rx_done[i] = ET_RX_NDESC;
861 	et_dma_mbuf_destroy(dev, ET_TX_NDESC, rx_done);
862 
863 	/*
864 	 * Destroy jumbo buffer DMA stuffs
865 	 */
866 	if (sc->sc_flags & ET_FLAG_JUMBO)
867 		et_jumbo_mem_free(dev);
868 
869 	/*
870 	 * Destroy top level DMA tag
871 	 */
872 	if (sc->sc_dtag != NULL)
873 		bus_dma_tag_destroy(sc->sc_dtag);
874 }
875 
876 static int
877 et_dma_mbuf_create(device_t dev)
878 {
879 	struct et_softc *sc = device_get_softc(dev);
880 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
881 	int i, error, rx_done[ET_RX_NRING];
882 
883 	/*
884 	 * Create RX mbuf DMA tag
885 	 */
886 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
887 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
888 				   NULL, NULL,
889 				   MCLBYTES, 1, MCLBYTES,
890 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
891 				   &sc->sc_rxbuf_dtag);
892 	if (error) {
893 		device_printf(dev, "can't create RX mbuf DMA tag\n");
894 		return error;
895 	}
896 
897 	/*
898 	 * Create spare DMA map for RX mbufs
899 	 */
900 	error = bus_dmamap_create(sc->sc_rxbuf_dtag, BUS_DMA_WAITOK,
901 				  &sc->sc_rxbuf_tmp_dmap);
902 	if (error) {
903 		device_printf(dev, "can't create spare mbuf DMA map\n");
904 		bus_dma_tag_destroy(sc->sc_rxbuf_dtag);
905 		sc->sc_rxbuf_dtag = NULL;
906 		return error;
907 	}
908 
909 	/*
910 	 * Create DMA maps for RX mbufs
911 	 */
912 	bzero(rx_done, sizeof(rx_done));
913 	for (i = 0; i < ET_RX_NRING; ++i) {
914 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
915 		int j;
916 
917 		for (j = 0; j < ET_RX_NDESC; ++j) {
918 			error = bus_dmamap_create(sc->sc_rxbuf_dtag,
919 						  BUS_DMA_WAITOK,
920 						  &rbd->rbd_buf[j].rb_dmap);
921 			if (error) {
922 				device_printf(dev, "can't create %d RX mbuf "
923 					      "for %d RX ring\n", j, i);
924 				rx_done[i] = j;
925 				et_dma_mbuf_destroy(dev, 0, rx_done);
926 				return error;
927 			}
928 		}
929 		rx_done[i] = ET_RX_NDESC;
930 
931 		rbd->rbd_softc = sc;
932 		rbd->rbd_ring = &sc->sc_rx_ring[i];
933 	}
934 
935 	/*
936 	 * Create TX mbuf DMA tag
937 	 */
938 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
939 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
940 				   NULL, NULL,
941 				   ET_JUMBO_FRAMELEN, ET_NSEG_MAX, MCLBYTES,
942 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
943 				   BUS_DMA_ONEBPAGE,
944 				   &sc->sc_txbuf_dtag);
945 	if (error) {
946 		device_printf(dev, "can't create TX mbuf DMA tag\n");
947 		return error;
948 	}
949 
950 	/*
951 	 * Create DMA maps for TX mbufs
952 	 */
953 	for (i = 0; i < ET_TX_NDESC; ++i) {
954 		error = bus_dmamap_create(sc->sc_txbuf_dtag,
955 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
956 					  &tbd->tbd_buf[i].tb_dmap);
957 		if (error) {
958 			device_printf(dev, "can't create %d TX mbuf "
959 				      "DMA map\n", i);
960 			et_dma_mbuf_destroy(dev, i, rx_done);
961 			return error;
962 		}
963 	}
964 
965 	return 0;
966 }
967 
968 static void
969 et_dma_mbuf_destroy(device_t dev, int tx_done, const int rx_done[])
970 {
971 	struct et_softc *sc = device_get_softc(dev);
972 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
973 	int i;
974 
975 	/*
976 	 * Destroy DMA tag and maps for RX mbufs
977 	 */
978 	if (sc->sc_rxbuf_dtag) {
979 		for (i = 0; i < ET_RX_NRING; ++i) {
980 			struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
981 			int j;
982 
983 			for (j = 0; j < rx_done[i]; ++j) {
984 				struct et_rxbuf *rb = &rbd->rbd_buf[j];
985 
986 				KASSERT(rb->rb_mbuf == NULL,
987 					("RX mbuf in %d RX ring is "
988 					 "not freed yet", i));
989 				bus_dmamap_destroy(sc->sc_rxbuf_dtag,
990 						   rb->rb_dmap);
991 			}
992 		}
993 		bus_dmamap_destroy(sc->sc_rxbuf_dtag, sc->sc_rxbuf_tmp_dmap);
994 		bus_dma_tag_destroy(sc->sc_rxbuf_dtag);
995 		sc->sc_rxbuf_dtag = NULL;
996 	}
997 
998 	/*
999 	 * Destroy DMA tag and maps for TX mbufs
1000 	 */
1001 	if (sc->sc_txbuf_dtag) {
1002 		for (i = 0; i < tx_done; ++i) {
1003 			struct et_txbuf *tb = &tbd->tbd_buf[i];
1004 
1005 			KASSERT(tb->tb_mbuf == NULL,
1006 				("TX mbuf is not freed yet"));
1007 			bus_dmamap_destroy(sc->sc_txbuf_dtag, tb->tb_dmap);
1008 		}
1009 		bus_dma_tag_destroy(sc->sc_txbuf_dtag);
1010 		sc->sc_txbuf_dtag = NULL;
1011 	}
1012 }
1013 
1014 static void
1015 et_dma_mem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
1016 {
1017 	if (dtag != NULL) {
1018 		bus_dmamap_unload(dtag, dmap);
1019 		bus_dmamem_free(dtag, addr, dmap);
1020 		bus_dma_tag_destroy(dtag);
1021 	}
1022 }
1023 
1024 static void
1025 et_chip_attach(struct et_softc *sc)
1026 {
1027 	uint32_t val;
1028 
1029 	/*
1030 	 * Perform minimal initialization
1031 	 */
1032 
1033 	/* Disable loopback */
1034 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1035 
1036 	/* Reset MAC */
1037 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1038 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1039 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1040 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1041 
1042 	/*
1043 	 * Setup half duplex mode
1044 	 */
1045 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1046 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1047 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1048 	      ET_MAC_HDX_EXC_DEFER;
1049 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1050 
1051 	/* Clear MAC control */
1052 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1053 
1054 	/* Reset MII */
1055 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1056 
1057 	/* Bring MAC out of reset state */
1058 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1059 
1060 	/* Enable memory controllers */
1061 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1062 }
1063 
1064 static void
1065 et_intr(void *xsc)
1066 {
1067 	struct et_softc *sc = xsc;
1068 	struct ifnet *ifp = &sc->arpcom.ac_if;
1069 	uint32_t intrs;
1070 
1071 	ASSERT_SERIALIZED(ifp->if_serializer);
1072 
1073 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1074 		return;
1075 
1076 	et_disable_intrs(sc);
1077 
1078 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1079 	intrs &= ET_INTRS;
1080 	if (intrs == 0)	/* Not interested */
1081 		goto back;
1082 
1083 	if (intrs & ET_INTR_RXEOF)
1084 		et_rxeof(sc);
1085 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1086 		et_txeof(sc, 1);
1087 	if (intrs & ET_INTR_TIMER)
1088 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1089 back:
1090 	et_enable_intrs(sc, ET_INTRS);
1091 }
1092 
1093 static void
1094 et_init(void *xsc)
1095 {
1096 	struct et_softc *sc = xsc;
1097 	struct ifnet *ifp = &sc->arpcom.ac_if;
1098 	const struct et_bsize *arr;
1099 	int error, i;
1100 
1101 	ASSERT_SERIALIZED(ifp->if_serializer);
1102 
1103 	et_stop(sc);
1104 
1105 	arr = ET_FRAMELEN(ifp->if_mtu) < MCLBYTES ?
1106 	      et_bufsize_std : et_bufsize_jumbo;
1107 	for (i = 0; i < ET_RX_NRING; ++i) {
1108 		sc->sc_rx_data[i].rbd_bufsize = arr[i].bufsize;
1109 		sc->sc_rx_data[i].rbd_newbuf = arr[i].newbuf;
1110 		sc->sc_rx_data[i].rbd_jumbo = arr[i].jumbo;
1111 	}
1112 
1113 	error = et_init_tx_ring(sc);
1114 	if (error)
1115 		goto back;
1116 
1117 	error = et_init_rx_ring(sc);
1118 	if (error)
1119 		goto back;
1120 
1121 	error = et_chip_init(sc);
1122 	if (error)
1123 		goto back;
1124 
1125 	error = et_enable_txrx(sc, 1);
1126 	if (error)
1127 		goto back;
1128 
1129 	et_enable_intrs(sc, ET_INTRS);
1130 
1131 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
1132 
1133 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1134 
1135 	ifp->if_flags |= IFF_RUNNING;
1136 	ifq_clr_oactive(&ifp->if_snd);
1137 back:
1138 	if (error)
1139 		et_stop(sc);
1140 }
1141 
1142 static int
1143 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1144 {
1145 	struct et_softc *sc = ifp->if_softc;
1146 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1147 	struct ifreq *ifr = (struct ifreq *)data;
1148 	int error = 0, max_framelen;
1149 
1150 	ASSERT_SERIALIZED(ifp->if_serializer);
1151 
1152 	switch (cmd) {
1153 	case SIOCSIFFLAGS:
1154 		if (ifp->if_flags & IFF_UP) {
1155 			if (ifp->if_flags & IFF_RUNNING) {
1156 				if ((ifp->if_flags ^ sc->sc_if_flags) &
1157 				    (IFF_ALLMULTI | IFF_PROMISC))
1158 					et_setmulti(sc);
1159 			} else {
1160 				et_init(sc);
1161 			}
1162 		} else {
1163 			if (ifp->if_flags & IFF_RUNNING)
1164 				et_stop(sc);
1165 		}
1166 		sc->sc_if_flags = ifp->if_flags;
1167 		break;
1168 
1169 	case SIOCSIFMEDIA:
1170 	case SIOCGIFMEDIA:
1171 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1172 		break;
1173 
1174 	case SIOCADDMULTI:
1175 	case SIOCDELMULTI:
1176 		if (ifp->if_flags & IFF_RUNNING)
1177 			et_setmulti(sc);
1178 		break;
1179 
1180 	case SIOCSIFMTU:
1181 		if (sc->sc_flags & ET_FLAG_JUMBO)
1182 			max_framelen = ET_JUMBO_FRAMELEN;
1183 		else
1184 			max_framelen = MCLBYTES - 1;
1185 
1186 		if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) {
1187 			error = EOPNOTSUPP;
1188 			break;
1189 		}
1190 
1191 		ifp->if_mtu = ifr->ifr_mtu;
1192 		if (ifp->if_flags & IFF_RUNNING)
1193 			et_init(sc);
1194 		break;
1195 
1196 	default:
1197 		error = ether_ioctl(ifp, cmd, data);
1198 		break;
1199 	}
1200 	return error;
1201 }
1202 
1203 static void
1204 et_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1205 {
1206 	struct et_softc *sc = ifp->if_softc;
1207 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1208 	int trans, oactive;
1209 
1210 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1211 	ASSERT_SERIALIZED(ifp->if_serializer);
1212 
1213 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) {
1214 		ifq_purge(&ifp->if_snd);
1215 		return;
1216 	}
1217 
1218 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1219 		return;
1220 
1221 	oactive = 0;
1222 	trans = 0;
1223 	for (;;) {
1224 		struct mbuf *m;
1225 		int error;
1226 
1227 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1228 			if (oactive) {
1229 				ifq_set_oactive(&ifp->if_snd);
1230 				break;
1231 			}
1232 
1233 			et_txeof(sc, 0);
1234 			oactive = 1;
1235 			continue;
1236 		}
1237 
1238 		m = ifq_dequeue(&ifp->if_snd);
1239 		if (m == NULL)
1240 			break;
1241 
1242 		error = et_encap(sc, &m);
1243 		if (error) {
1244 			IFNET_STAT_INC(ifp, oerrors, 1);
1245 			KKASSERT(m == NULL);
1246 
1247 			if (error == EFBIG) {
1248 				/*
1249 				 * Excessive fragmented packets
1250 				 */
1251 				if (oactive) {
1252 					ifq_set_oactive(&ifp->if_snd);
1253 					break;
1254 				}
1255 				et_txeof(sc, 0);
1256 				oactive = 1;
1257 			}
1258 			continue;
1259 		} else {
1260 			oactive = 0;
1261 		}
1262 		trans = 1;
1263 
1264 		BPF_MTAP(ifp, m);
1265 	}
1266 
1267 	if (trans)
1268 		ifp->if_timer = 5;
1269 }
1270 
1271 static void
1272 et_watchdog(struct ifnet *ifp)
1273 {
1274 	ASSERT_SERIALIZED(ifp->if_serializer);
1275 
1276 	if_printf(ifp, "watchdog timed out\n");
1277 
1278 	ifp->if_init(ifp->if_softc);
1279 	if_devstart(ifp);
1280 }
1281 
1282 static int
1283 et_stop_rxdma(struct et_softc *sc)
1284 {
1285 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1286 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1287 
1288 	DELAY(5);
1289 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1290 		if_printf(&sc->arpcom.ac_if, "can't stop RX DMA engine\n");
1291 		return ETIMEDOUT;
1292 	}
1293 	return 0;
1294 }
1295 
1296 static int
1297 et_stop_txdma(struct et_softc *sc)
1298 {
1299 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1300 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1301 	return 0;
1302 }
1303 
1304 static void
1305 et_free_tx_ring(struct et_softc *sc)
1306 {
1307 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1308 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1309 	int i;
1310 
1311 	for (i = 0; i < ET_TX_NDESC; ++i) {
1312 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1313 
1314 		if (tb->tb_mbuf != NULL) {
1315 			bus_dmamap_unload(sc->sc_txbuf_dtag, tb->tb_dmap);
1316 			m_freem(tb->tb_mbuf);
1317 			tb->tb_mbuf = NULL;
1318 		}
1319 	}
1320 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1321 }
1322 
1323 static void
1324 et_free_rx_ring(struct et_softc *sc)
1325 {
1326 	int n;
1327 
1328 	for (n = 0; n < ET_RX_NRING; ++n) {
1329 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1330 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1331 		int i;
1332 
1333 		for (i = 0; i < ET_RX_NDESC; ++i) {
1334 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1335 
1336 			if (rb->rb_mbuf != NULL) {
1337 				if (!rbd->rbd_jumbo) {
1338 					bus_dmamap_unload(sc->sc_rxbuf_dtag,
1339 							  rb->rb_dmap);
1340 				}
1341 				m_freem(rb->rb_mbuf);
1342 				rb->rb_mbuf = NULL;
1343 			}
1344 		}
1345 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1346 	}
1347 }
1348 
1349 static void
1350 et_setmulti(struct et_softc *sc)
1351 {
1352 	struct ifnet *ifp = &sc->arpcom.ac_if;
1353 	uint32_t hash[4] = { 0, 0, 0, 0 };
1354 	uint32_t rxmac_ctrl, pktfilt;
1355 	struct ifmultiaddr *ifma;
1356 	int i, count;
1357 
1358 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1359 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1360 
1361 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1362 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1363 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1364 		goto back;
1365 	}
1366 
1367 	count = 0;
1368 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1369 		uint32_t *hp, h;
1370 
1371 		if (ifma->ifma_addr->sa_family != AF_LINK)
1372 			continue;
1373 
1374 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1375 				   ifma->ifma_addr), ETHER_ADDR_LEN);
1376 		h = (h & 0x3f800000) >> 23;
1377 
1378 		hp = &hash[0];
1379 		if (h >= 32 && h < 64) {
1380 			h -= 32;
1381 			hp = &hash[1];
1382 		} else if (h >= 64 && h < 96) {
1383 			h -= 64;
1384 			hp = &hash[2];
1385 		} else if (h >= 96) {
1386 			h -= 96;
1387 			hp = &hash[3];
1388 		}
1389 		*hp |= (1 << h);
1390 
1391 		++count;
1392 	}
1393 
1394 	for (i = 0; i < 4; ++i)
1395 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1396 
1397 	if (count > 0)
1398 		pktfilt |= ET_PKTFILT_MCAST;
1399 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1400 back:
1401 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1402 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1403 }
1404 
1405 static int
1406 et_chip_init(struct et_softc *sc)
1407 {
1408 	struct ifnet *ifp = &sc->arpcom.ac_if;
1409 	uint32_t rxq_end;
1410 	int error, frame_len, rxmem_size;
1411 
1412 	/*
1413 	 * Split 16Kbytes internal memory between TX and RX
1414 	 * according to frame length.
1415 	 */
1416 	frame_len = ET_FRAMELEN(ifp->if_mtu);
1417 	if (frame_len < 2048) {
1418 		rxmem_size = ET_MEM_RXSIZE_DEFAULT;
1419 	} else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) {
1420 		rxmem_size = ET_MEM_SIZE / 2;
1421 	} else {
1422 		rxmem_size = ET_MEM_SIZE -
1423 		roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT);
1424 	}
1425 	rxq_end = ET_QUEUE_ADDR(rxmem_size);
1426 
1427 	CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START);
1428 	CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end);
1429 	CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1);
1430 	CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END);
1431 
1432 	/* No loopback */
1433 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1434 
1435 	/* Clear MSI configure */
1436 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1437 
1438 	/* Disable timer */
1439 	CSR_WRITE_4(sc, ET_TIMER, 0);
1440 
1441 	/* Initialize MAC */
1442 	et_init_mac(sc);
1443 
1444 	/* Enable memory controllers */
1445 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1446 
1447 	/* Initialize RX MAC */
1448 	et_init_rxmac(sc);
1449 
1450 	/* Initialize TX MAC */
1451 	et_init_txmac(sc);
1452 
1453 	/* Initialize RX DMA engine */
1454 	error = et_init_rxdma(sc);
1455 	if (error)
1456 		return error;
1457 
1458 	/* Initialize TX DMA engine */
1459 	error = et_init_txdma(sc);
1460 	if (error)
1461 		return error;
1462 
1463 	return 0;
1464 }
1465 
1466 static int
1467 et_init_tx_ring(struct et_softc *sc)
1468 {
1469 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1470 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1471 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1472 
1473 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1474 
1475 	tbd->tbd_start_index = 0;
1476 	tbd->tbd_start_wrap = 0;
1477 	tbd->tbd_used = 0;
1478 
1479 	bzero(txsd->txsd_status, sizeof(uint32_t));
1480 
1481 	return 0;
1482 }
1483 
1484 static int
1485 et_init_rx_ring(struct et_softc *sc)
1486 {
1487 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1488 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1489 	int n;
1490 
1491 	for (n = 0; n < ET_RX_NRING; ++n) {
1492 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1493 		int i, error;
1494 
1495 		for (i = 0; i < ET_RX_NDESC; ++i) {
1496 			error = rbd->rbd_newbuf(rbd, i, 1);
1497 			if (error) {
1498 				if_printf(&sc->arpcom.ac_if, "%d ring %d buf, "
1499 					  "newbuf failed: %d\n", n, i, error);
1500 				return error;
1501 			}
1502 		}
1503 	}
1504 
1505 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1506 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1507 
1508 	return 0;
1509 }
1510 
1511 static int
1512 et_init_rxdma(struct et_softc *sc)
1513 {
1514 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1515 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1516 	struct et_rxdesc_ring *rx_ring;
1517 	int error;
1518 
1519 	error = et_stop_rxdma(sc);
1520 	if (error) {
1521 		if_printf(&sc->arpcom.ac_if, "can't init RX DMA engine\n");
1522 		return error;
1523 	}
1524 
1525 	/*
1526 	 * Install RX status
1527 	 */
1528 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1529 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1530 
1531 	/*
1532 	 * Install RX stat ring
1533 	 */
1534 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1535 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1536 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1537 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1538 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1539 
1540 	/* Match ET_RXSTAT_POS */
1541 	rxst_ring->rsr_index = 0;
1542 	rxst_ring->rsr_wrap = 0;
1543 
1544 	/*
1545 	 * Install the 2nd RX descriptor ring
1546 	 */
1547 	rx_ring = &sc->sc_rx_ring[1];
1548 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1549 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1550 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1551 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1552 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1553 
1554 	/* Match ET_RX_RING1_POS */
1555 	rx_ring->rr_index = 0;
1556 	rx_ring->rr_wrap = 1;
1557 
1558 	/*
1559 	 * Install the 1st RX descriptor ring
1560 	 */
1561 	rx_ring = &sc->sc_rx_ring[0];
1562 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1563 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1564 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1565 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1566 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1567 
1568 	/* Match ET_RX_RING0_POS */
1569 	rx_ring->rr_index = 0;
1570 	rx_ring->rr_wrap = 1;
1571 
1572 	/*
1573 	 * RX intr moderation
1574 	 */
1575 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1576 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1577 
1578 	return 0;
1579 }
1580 
1581 static int
1582 et_init_txdma(struct et_softc *sc)
1583 {
1584 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1585 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1586 	int error;
1587 
1588 	error = et_stop_txdma(sc);
1589 	if (error) {
1590 		if_printf(&sc->arpcom.ac_if, "can't init TX DMA engine\n");
1591 		return error;
1592 	}
1593 
1594 	/*
1595 	 * Install TX descriptor ring
1596 	 */
1597 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1598 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1599 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1600 
1601 	/*
1602 	 * Install TX status
1603 	 */
1604 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1605 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1606 
1607 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1608 
1609 	/* Match ET_TX_READY_POS */
1610 	tx_ring->tr_ready_index = 0;
1611 	tx_ring->tr_ready_wrap = 0;
1612 
1613 	return 0;
1614 }
1615 
1616 static void
1617 et_init_mac(struct et_softc *sc)
1618 {
1619 	struct ifnet *ifp = &sc->arpcom.ac_if;
1620 	const uint8_t *eaddr = IF_LLADDR(ifp);
1621 	uint32_t val;
1622 
1623 	/* Reset MAC */
1624 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1625 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1626 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1627 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1628 
1629 	/*
1630 	 * Setup inter packet gap
1631 	 */
1632 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1633 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1634 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1635 	      __SHIFTIN(96, ET_IPG_B2B);
1636 	CSR_WRITE_4(sc, ET_IPG, val);
1637 
1638 	/*
1639 	 * Setup half duplex mode
1640 	 */
1641 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1642 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1643 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1644 	      ET_MAC_HDX_EXC_DEFER;
1645 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1646 
1647 	/* Clear MAC control */
1648 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1649 
1650 	/* Reset MII */
1651 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1652 
1653 	/*
1654 	 * Set MAC address
1655 	 */
1656 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1657 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1658 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1659 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1660 
1661 	/* Set max frame length */
1662 	CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu));
1663 
1664 	/* Bring MAC out of reset state */
1665 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1666 }
1667 
1668 static void
1669 et_init_rxmac(struct et_softc *sc)
1670 {
1671 	struct ifnet *ifp = &sc->arpcom.ac_if;
1672 	const uint8_t *eaddr = IF_LLADDR(ifp);
1673 	uint32_t val;
1674 	int i;
1675 
1676 	/* Disable RX MAC and WOL */
1677 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1678 
1679 	/*
1680 	 * Clear all WOL related registers
1681 	 */
1682 	for (i = 0; i < 3; ++i)
1683 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1684 	for (i = 0; i < 20; ++i)
1685 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1686 
1687 	/*
1688 	 * Set WOL source address.  XXX is this necessary?
1689 	 */
1690 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1691 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1692 	val = (eaddr[0] << 8) | eaddr[1];
1693 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1694 
1695 	/* Clear packet filters */
1696 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1697 
1698 	/* No ucast filtering */
1699 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1700 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1701 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1702 
1703 	if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) {
1704 		/*
1705 		 * In order to transmit jumbo packets greater than
1706 		 * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between
1707 		 * RX MAC and RX DMA needs to be reduced in size to
1708 		 * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen).  In
1709 		 * order to implement this, we must use "cut through"
1710 		 * mode in the RX MAC, which chops packets down into
1711 		 * segments.  In this case we selected 256 bytes,
1712 		 * since this is the size of the PCI-Express TLP's
1713 		 * that the ET1310 uses.
1714 		 */
1715 		val = __SHIFTIN(ET_RXMAC_SEGSZ(256), ET_RXMAC_MC_SEGSZ_MAX) |
1716 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1717 	} else {
1718 		val = 0;
1719 	}
1720 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1721 
1722 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1723 
1724 	/* Initialize RX MAC management register */
1725 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1726 
1727 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1728 
1729 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1730 		    ET_RXMAC_MGT_PASS_ECRC |
1731 		    ET_RXMAC_MGT_PASS_ELEN |
1732 		    ET_RXMAC_MGT_PASS_ETRUNC |
1733 		    ET_RXMAC_MGT_CHECK_PKT);
1734 
1735 	/*
1736 	 * Configure runt filtering (may not work on certain chip generation)
1737 	 */
1738 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1739 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1740 
1741 	/* Enable RX MAC but leave WOL disabled */
1742 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1743 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1744 
1745 	/*
1746 	 * Setup multicast hash and allmulti/promisc mode
1747 	 */
1748 	et_setmulti(sc);
1749 }
1750 
1751 static void
1752 et_init_txmac(struct et_softc *sc)
1753 {
1754 	/* Disable TX MAC and FC(?) */
1755 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1756 
1757 	/* No flow control yet */
1758 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1759 
1760 	/* Enable TX MAC but leave FC(?) diabled */
1761 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1762 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1763 }
1764 
1765 static int
1766 et_start_rxdma(struct et_softc *sc)
1767 {
1768 	uint32_t val = 0;
1769 
1770 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1771 			 ET_RXDMA_CTRL_RING0_SIZE) |
1772 	       ET_RXDMA_CTRL_RING0_ENABLE;
1773 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1774 			 ET_RXDMA_CTRL_RING1_SIZE) |
1775 	       ET_RXDMA_CTRL_RING1_ENABLE;
1776 
1777 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1778 
1779 	DELAY(5);
1780 
1781 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1782 		if_printf(&sc->arpcom.ac_if, "can't start RX DMA engine\n");
1783 		return ETIMEDOUT;
1784 	}
1785 	return 0;
1786 }
1787 
1788 static int
1789 et_start_txdma(struct et_softc *sc)
1790 {
1791 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1792 	return 0;
1793 }
1794 
1795 static int
1796 et_enable_txrx(struct et_softc *sc, int media_upd)
1797 {
1798 	struct ifnet *ifp = &sc->arpcom.ac_if;
1799 	uint32_t val;
1800 	int i, error;
1801 
1802 	val = CSR_READ_4(sc, ET_MAC_CFG1);
1803 	val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1804 	val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1805 		 ET_MAC_CFG1_LOOPBACK);
1806 	CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1807 
1808 	if (media_upd)
1809 		et_ifmedia_upd(ifp);
1810 	else
1811 		et_setmedia(sc);
1812 
1813 #define NRETRY	100
1814 
1815 	for (i = 0; i < NRETRY; ++i) {
1816 		val = CSR_READ_4(sc, ET_MAC_CFG1);
1817 		if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1818 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1819 			break;
1820 
1821 		DELAY(10);
1822 	}
1823 	if (i == NRETRY) {
1824 		if_printf(ifp, "can't enable RX/TX\n");
1825 		return 0;
1826 	}
1827 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
1828 
1829 #undef NRETRY
1830 
1831 	/*
1832 	 * Start TX/RX DMA engine
1833 	 */
1834 	error = et_start_rxdma(sc);
1835 	if (error)
1836 		return error;
1837 
1838 	error = et_start_txdma(sc);
1839 	if (error)
1840 		return error;
1841 
1842 	return 0;
1843 }
1844 
1845 static void
1846 et_rxeof(struct et_softc *sc)
1847 {
1848 	struct ifnet *ifp = &sc->arpcom.ac_if;
1849 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1850 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1851 	uint32_t rxs_stat_ring;
1852 	int rxst_wrap, rxst_index;
1853 
1854 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1855 		return;
1856 
1857 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1858 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1859 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1860 
1861 	while (rxst_index != rxst_ring->rsr_index ||
1862 	       rxst_wrap != rxst_ring->rsr_wrap) {
1863 		struct et_rxbuf_data *rbd;
1864 		struct et_rxdesc_ring *rx_ring;
1865 		struct et_rxstat *st;
1866 		struct mbuf *m;
1867 		int buflen, buf_idx, ring_idx;
1868 		uint32_t rxstat_pos, rxring_pos;
1869 
1870 		KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1871 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1872 
1873 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1874 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1875 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1876 
1877 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1878 			rxst_ring->rsr_index = 0;
1879 			rxst_ring->rsr_wrap ^= 1;
1880 		}
1881 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1882 				       ET_RXSTAT_POS_INDEX);
1883 		if (rxst_ring->rsr_wrap)
1884 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1885 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1886 
1887 		if (ring_idx >= ET_RX_NRING) {
1888 			IFNET_STAT_INC(ifp, ierrors, 1);
1889 			if_printf(ifp, "invalid ring index %d\n", ring_idx);
1890 			continue;
1891 		}
1892 		if (buf_idx >= ET_RX_NDESC) {
1893 			IFNET_STAT_INC(ifp, ierrors, 1);
1894 			if_printf(ifp, "invalid buf index %d\n", buf_idx);
1895 			continue;
1896 		}
1897 
1898 		rbd = &sc->sc_rx_data[ring_idx];
1899 		m = rbd->rbd_buf[buf_idx].rb_mbuf;
1900 
1901 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1902 			if (buflen < ETHER_CRC_LEN) {
1903 				m_freem(m);
1904 				IFNET_STAT_INC(ifp, ierrors, 1);
1905 			} else {
1906 				m->m_pkthdr.len = m->m_len = buflen;
1907 				m->m_pkthdr.rcvif = ifp;
1908 
1909 				m_adj(m, -ETHER_CRC_LEN);
1910 
1911 				IFNET_STAT_INC(ifp, ipackets, 1);
1912 				ifp->if_input(ifp, m);
1913 			}
1914 		} else {
1915 			IFNET_STAT_INC(ifp, ierrors, 1);
1916 		}
1917 		m = NULL;	/* Catch invalid reference */
1918 
1919 		rx_ring = &sc->sc_rx_ring[ring_idx];
1920 
1921 		if (buf_idx != rx_ring->rr_index) {
1922 			if_printf(ifp, "WARNING!! ring %d, "
1923 				  "buf_idx %d, rr_idx %d\n",
1924 				  ring_idx, buf_idx, rx_ring->rr_index);
1925 		}
1926 
1927 		KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1928 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1929 			rx_ring->rr_index = 0;
1930 			rx_ring->rr_wrap ^= 1;
1931 		}
1932 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1933 		if (rx_ring->rr_wrap)
1934 			rxring_pos |= ET_RX_RING_POS_WRAP;
1935 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1936 	}
1937 }
1938 
1939 static int
1940 et_encap(struct et_softc *sc, struct mbuf **m0)
1941 {
1942 	bus_dma_segment_t segs[ET_NSEG_MAX];
1943 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1944 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1945 	struct et_txdesc *td;
1946 	bus_dmamap_t map;
1947 	int error, maxsegs, nsegs, first_idx, last_idx, i;
1948 	uint32_t tx_ready_pos, last_td_ctrl2;
1949 
1950 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1951 	if (maxsegs > ET_NSEG_MAX)
1952 		maxsegs = ET_NSEG_MAX;
1953 	KASSERT(maxsegs >= ET_NSEG_SPARE,
1954 		("not enough spare TX desc (%d)", maxsegs));
1955 
1956 	KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1957 	first_idx = tx_ring->tr_ready_index;
1958 	map = tbd->tbd_buf[first_idx].tb_dmap;
1959 
1960 	error = bus_dmamap_load_mbuf_defrag(sc->sc_txbuf_dtag, map, m0,
1961 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1962 	if (error)
1963 		goto back;
1964 	bus_dmamap_sync(sc->sc_txbuf_dtag, map, BUS_DMASYNC_PREWRITE);
1965 
1966 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1967 	sc->sc_tx += nsegs;
1968 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1969 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1970 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1971 	}
1972 
1973 	last_idx = -1;
1974 	for (i = 0; i < nsegs; ++i) {
1975 		int idx;
1976 
1977 		idx = (first_idx + i) % ET_TX_NDESC;
1978 		td = &tx_ring->tr_desc[idx];
1979 		td->td_addr_hi = ET_ADDR_HI(segs[i].ds_addr);
1980 		td->td_addr_lo = ET_ADDR_LO(segs[i].ds_addr);
1981 		td->td_ctrl1 = __SHIFTIN(segs[i].ds_len, ET_TDCTRL1_LEN);
1982 
1983 		if (i == nsegs - 1) {	/* Last frag */
1984 			td->td_ctrl2 = last_td_ctrl2;
1985 			last_idx = idx;
1986 		}
1987 
1988 		KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1989 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1990 			tx_ring->tr_ready_index = 0;
1991 			tx_ring->tr_ready_wrap ^= 1;
1992 		}
1993 	}
1994 	td = &tx_ring->tr_desc[first_idx];
1995 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1996 
1997 	KKASSERT(last_idx >= 0);
1998 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1999 	tbd->tbd_buf[last_idx].tb_dmap = map;
2000 	tbd->tbd_buf[last_idx].tb_mbuf = *m0;
2001 
2002 	tbd->tbd_used += nsegs;
2003 	KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
2004 
2005 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
2006 		       ET_TX_READY_POS_INDEX);
2007 	if (tx_ring->tr_ready_wrap)
2008 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
2009 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
2010 
2011 	error = 0;
2012 back:
2013 	if (error) {
2014 		m_freem(*m0);
2015 		*m0 = NULL;
2016 	}
2017 	return error;
2018 }
2019 
2020 static void
2021 et_txeof(struct et_softc *sc, int start)
2022 {
2023 	struct ifnet *ifp = &sc->arpcom.ac_if;
2024 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
2025 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
2026 	uint32_t tx_done;
2027 	int end, wrap;
2028 
2029 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
2030 		return;
2031 
2032 	if (tbd->tbd_used == 0)
2033 		return;
2034 
2035 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2036 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2037 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2038 
2039 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2040 		struct et_txbuf *tb;
2041 
2042 		KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2043 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
2044 
2045 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2046 		      sizeof(struct et_txdesc));
2047 
2048 		if (tb->tb_mbuf != NULL) {
2049 			bus_dmamap_unload(sc->sc_txbuf_dtag, tb->tb_dmap);
2050 			m_freem(tb->tb_mbuf);
2051 			tb->tb_mbuf = NULL;
2052 			IFNET_STAT_INC(ifp, opackets, 1);
2053 		}
2054 
2055 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2056 			tbd->tbd_start_index = 0;
2057 			tbd->tbd_start_wrap ^= 1;
2058 		}
2059 
2060 		KKASSERT(tbd->tbd_used > 0);
2061 		tbd->tbd_used--;
2062 	}
2063 
2064 	if (tbd->tbd_used == 0)
2065 		ifp->if_timer = 0;
2066 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2067 		ifq_clr_oactive(&ifp->if_snd);
2068 
2069 	if (start)
2070 		if_devstart(ifp);
2071 }
2072 
2073 static void
2074 et_tick(void *xsc)
2075 {
2076 	struct et_softc *sc = xsc;
2077 	struct ifnet *ifp = &sc->arpcom.ac_if;
2078 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2079 
2080 	lwkt_serialize_enter(ifp->if_serializer);
2081 
2082 	mii_tick(mii);
2083 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0 &&
2084 	    (mii->mii_media_status & IFM_ACTIVE) &&
2085 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2086 		if_printf(ifp, "Link up, enable TX/RX\n");
2087 		if (et_enable_txrx(sc, 0) == 0)
2088 			if_devstart(ifp);
2089 	}
2090 	callout_reset(&sc->sc_tick, hz, et_tick, sc);
2091 
2092 	lwkt_serialize_exit(ifp->if_serializer);
2093 }
2094 
2095 static int
2096 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2097 {
2098 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2099 }
2100 
2101 static int
2102 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2103 {
2104 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2105 }
2106 
2107 static int
2108 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2109 {
2110 	struct et_softc *sc = rbd->rbd_softc;
2111 	struct et_rxbuf *rb;
2112 	struct mbuf *m;
2113 	bus_dma_segment_t seg;
2114 	bus_dmamap_t dmap;
2115 	int error, len, nseg;
2116 
2117 	KASSERT(!rbd->rbd_jumbo, ("calling %s with jumbo ring", __func__));
2118 
2119 	KKASSERT(buf_idx < ET_RX_NDESC);
2120 	rb = &rbd->rbd_buf[buf_idx];
2121 
2122 	m = m_getl(len0, init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR, &len);
2123 	if (m == NULL) {
2124 		error = ENOBUFS;
2125 
2126 		if (init) {
2127 			if_printf(&sc->arpcom.ac_if,
2128 				  "m_getl failed, size %d\n", len0);
2129 			return error;
2130 		} else {
2131 			goto back;
2132 		}
2133 	}
2134 	m->m_len = m->m_pkthdr.len = len;
2135 
2136 	/*
2137 	 * Try load RX mbuf into temporary DMA tag
2138 	 */
2139 	error = bus_dmamap_load_mbuf_segment(sc->sc_rxbuf_dtag,
2140 			sc->sc_rxbuf_tmp_dmap, m, &seg, 1, &nseg,
2141 			BUS_DMA_NOWAIT);
2142 	if (error) {
2143 		m_freem(m);
2144 		if (init) {
2145 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2146 			return error;
2147 		} else {
2148 			goto back;
2149 		}
2150 	}
2151 
2152 	if (!init) {
2153 		bus_dmamap_sync(sc->sc_rxbuf_dtag, rb->rb_dmap,
2154 				BUS_DMASYNC_POSTREAD);
2155 		bus_dmamap_unload(sc->sc_rxbuf_dtag, rb->rb_dmap);
2156 	}
2157 	rb->rb_mbuf = m;
2158 	rb->rb_paddr = seg.ds_addr;
2159 
2160 	/*
2161 	 * Swap RX buf's DMA map with the loaded temporary one
2162 	 */
2163 	dmap = rb->rb_dmap;
2164 	rb->rb_dmap = sc->sc_rxbuf_tmp_dmap;
2165 	sc->sc_rxbuf_tmp_dmap = dmap;
2166 
2167 	error = 0;
2168 back:
2169 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2170 	return error;
2171 }
2172 
2173 static int
2174 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS)
2175 {
2176 	struct et_softc *sc = arg1;
2177 	struct ifnet *ifp = &sc->arpcom.ac_if;
2178 	int error = 0, v;
2179 
2180 	lwkt_serialize_enter(ifp->if_serializer);
2181 
2182 	v = sc->sc_rx_intr_npkts;
2183 	error = sysctl_handle_int(oidp, &v, 0, req);
2184 	if (error || req->newptr == NULL)
2185 		goto back;
2186 	if (v <= 0) {
2187 		error = EINVAL;
2188 		goto back;
2189 	}
2190 
2191 	if (sc->sc_rx_intr_npkts != v) {
2192 		if (ifp->if_flags & IFF_RUNNING)
2193 			CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v);
2194 		sc->sc_rx_intr_npkts = v;
2195 	}
2196 back:
2197 	lwkt_serialize_exit(ifp->if_serializer);
2198 	return error;
2199 }
2200 
2201 static int
2202 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS)
2203 {
2204 	struct et_softc *sc = arg1;
2205 	struct ifnet *ifp = &sc->arpcom.ac_if;
2206 	int error = 0, v;
2207 
2208 	lwkt_serialize_enter(ifp->if_serializer);
2209 
2210 	v = sc->sc_rx_intr_delay;
2211 	error = sysctl_handle_int(oidp, &v, 0, req);
2212 	if (error || req->newptr == NULL)
2213 		goto back;
2214 	if (v <= 0) {
2215 		error = EINVAL;
2216 		goto back;
2217 	}
2218 
2219 	if (sc->sc_rx_intr_delay != v) {
2220 		if (ifp->if_flags & IFF_RUNNING)
2221 			CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v);
2222 		sc->sc_rx_intr_delay = v;
2223 	}
2224 back:
2225 	lwkt_serialize_exit(ifp->if_serializer);
2226 	return error;
2227 }
2228 
2229 static void
2230 et_setmedia(struct et_softc *sc)
2231 {
2232 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2233 	uint32_t cfg2, ctrl;
2234 
2235 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
2236 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
2237 		  ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
2238 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
2239 		__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
2240 
2241 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
2242 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
2243 
2244 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
2245 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
2246 	} else {
2247 		cfg2 |= ET_MAC_CFG2_MODE_MII;
2248 		ctrl |= ET_MAC_CTRL_MODE_MII;
2249 	}
2250 
2251 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
2252 		cfg2 |= ET_MAC_CFG2_FDX;
2253 	else
2254 		ctrl |= ET_MAC_CTRL_GHDX;
2255 
2256 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
2257 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
2258 }
2259 
2260 static int
2261 et_jumbo_mem_alloc(device_t dev)
2262 {
2263 	struct et_softc *sc = device_get_softc(dev);
2264 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2265 	bus_addr_t paddr;
2266 	uint8_t *buf;
2267 	int i;
2268 
2269 	jd->jd_buf = bus_dmamem_coherent_any(sc->sc_dtag,
2270 			ET_JUMBO_ALIGN, ET_JUMBO_MEM_SIZE, BUS_DMA_WAITOK,
2271 			&jd->jd_dtag, &jd->jd_dmap, &paddr);
2272 	if (jd->jd_buf == NULL) {
2273 		device_printf(dev, "can't create jumbo DMA stuffs\n");
2274 		return ENOMEM;
2275 	}
2276 
2277 	jd->jd_slots = kmalloc(sizeof(*jd->jd_slots) * ET_JSLOTS, M_DEVBUF,
2278 			       M_WAITOK | M_ZERO);
2279 	lwkt_serialize_init(&jd->jd_serializer);
2280 	SLIST_INIT(&jd->jd_free_slots);
2281 
2282 	buf = jd->jd_buf;
2283 	for (i = 0; i < ET_JSLOTS; ++i) {
2284 		struct et_jslot *jslot = &jd->jd_slots[i];
2285 
2286 		jslot->jslot_data = jd;
2287 		jslot->jslot_buf = buf;
2288 		jslot->jslot_paddr = paddr;
2289 		jslot->jslot_inuse = 0;
2290 		jslot->jslot_index = i;
2291 		SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot, jslot_link);
2292 
2293 		buf += ET_JLEN;
2294 		paddr += ET_JLEN;
2295 	}
2296 	return 0;
2297 }
2298 
2299 static void
2300 et_jumbo_mem_free(device_t dev)
2301 {
2302 	struct et_softc *sc = device_get_softc(dev);
2303 	struct et_jumbo_data *jd = &sc->sc_jumbo_data;
2304 
2305 	KKASSERT(sc->sc_flags & ET_FLAG_JUMBO);
2306 
2307 	kfree(jd->jd_slots, M_DEVBUF);
2308 	et_dma_mem_destroy(jd->jd_dtag, jd->jd_buf, jd->jd_dmap);
2309 }
2310 
2311 static struct et_jslot *
2312 et_jalloc(struct et_jumbo_data *jd)
2313 {
2314 	struct et_jslot *jslot;
2315 
2316 	lwkt_serialize_enter(&jd->jd_serializer);
2317 
2318 	jslot = SLIST_FIRST(&jd->jd_free_slots);
2319 	if (jslot) {
2320 		SLIST_REMOVE_HEAD(&jd->jd_free_slots, jslot_link);
2321 		jslot->jslot_inuse = 1;
2322 	}
2323 
2324 	lwkt_serialize_exit(&jd->jd_serializer);
2325 	return jslot;
2326 }
2327 
2328 static void
2329 et_jfree(void *xjslot)
2330 {
2331 	struct et_jslot *jslot = xjslot;
2332 	struct et_jumbo_data *jd = jslot->jslot_data;
2333 
2334 	if (&jd->jd_slots[jslot->jslot_index] != jslot) {
2335 		panic("%s wrong jslot!?", __func__);
2336 	} else if (jslot->jslot_inuse == 0) {
2337 		panic("%s jslot already freed", __func__);
2338 	} else {
2339 		lwkt_serialize_enter(&jd->jd_serializer);
2340 
2341 		atomic_subtract_int(&jslot->jslot_inuse, 1);
2342 		if (jslot->jslot_inuse == 0) {
2343 			SLIST_INSERT_HEAD(&jd->jd_free_slots, jslot,
2344 					  jslot_link);
2345 		}
2346 
2347 		lwkt_serialize_exit(&jd->jd_serializer);
2348 	}
2349 }
2350 
2351 static void
2352 et_jref(void *xjslot)
2353 {
2354 	struct et_jslot *jslot = xjslot;
2355 	struct et_jumbo_data *jd = jslot->jslot_data;
2356 
2357 	if (&jd->jd_slots[jslot->jslot_index] != jslot)
2358 		panic("%s wrong jslot!?", __func__);
2359 	else if (jslot->jslot_inuse == 0)
2360 		panic("%s jslot already freed", __func__);
2361 	else
2362 		atomic_add_int(&jslot->jslot_inuse, 1);
2363 }
2364 
2365 static int
2366 et_newbuf_jumbo(struct et_rxbuf_data *rbd, int buf_idx, int init)
2367 {
2368 	struct et_softc *sc = rbd->rbd_softc;
2369 	struct et_rxbuf *rb;
2370 	struct mbuf *m;
2371 	struct et_jslot *jslot;
2372 	int error;
2373 
2374 	KASSERT(rbd->rbd_jumbo, ("calling %s with non-jumbo ring", __func__));
2375 
2376 	KKASSERT(buf_idx < ET_RX_NDESC);
2377 	rb = &rbd->rbd_buf[buf_idx];
2378 
2379 	error = ENOBUFS;
2380 
2381 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2382 	if (m == NULL) {
2383 		if (init) {
2384 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
2385 			return error;
2386 		} else {
2387 			goto back;
2388 		}
2389 	}
2390 
2391 	jslot = et_jalloc(&sc->sc_jumbo_data);
2392 	if (jslot == NULL) {
2393 		m_freem(m);
2394 
2395 		if (init) {
2396 			if_printf(&sc->arpcom.ac_if,
2397 				  "jslot allocation failed\n");
2398 			return error;
2399 		} else {
2400 			goto back;
2401 		}
2402 	}
2403 
2404 	m->m_ext.ext_arg = jslot;
2405 	m->m_ext.ext_buf = jslot->jslot_buf;
2406 	m->m_ext.ext_free = et_jfree;
2407 	m->m_ext.ext_ref = et_jref;
2408 	m->m_ext.ext_size = ET_JUMBO_FRAMELEN;
2409 	m->m_flags |= M_EXT;
2410 	m->m_data = m->m_ext.ext_buf;
2411 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2412 
2413 	rb->rb_mbuf = m;
2414 	rb->rb_paddr = jslot->jslot_paddr;
2415 
2416 	error = 0;
2417 back:
2418 	et_setup_rxdesc(rbd, buf_idx, rb->rb_paddr);
2419 	return error;
2420 }
2421 
2422 static void
2423 et_setup_rxdesc(struct et_rxbuf_data *rbd, int buf_idx, bus_addr_t paddr)
2424 {
2425 	struct et_rxdesc_ring *rx_ring = rbd->rbd_ring;
2426 	struct et_rxdesc *desc;
2427 
2428 	KKASSERT(buf_idx < ET_RX_NDESC);
2429 	desc = &rx_ring->rr_desc[buf_idx];
2430 
2431 	desc->rd_addr_hi = ET_ADDR_HI(paddr);
2432 	desc->rd_addr_lo = ET_ADDR_LO(paddr);
2433 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2434 }
2435