xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 029a4939)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.18 2004/12/24 10:50:06 asmodai Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #include <net/bpf.h>
55 #include <sys/sockio.h>
56 #include <sys/bus.h>
57 #include <machine/bus.h>
58 #include <sys/rman.h>
59 #include <machine/resource.h>
60 
61 #include <net/ethernet.h>
62 #include <net/if_arp.h>
63 
64 #include <vm/vm.h>		/* for vtophys */
65 #include <vm/pmap.h>		/* for vtophys */
66 #include <machine/clock.h>	/* for DELAY */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
170      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
171      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
174      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
175      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
176      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
179      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
180      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
183      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
184      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
185      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
186      { 0,	-1,	NULL },
187 };
188 
189 static int		fxp_probe(device_t dev);
190 static int		fxp_attach(device_t dev);
191 static int		fxp_detach(device_t dev);
192 static int		fxp_shutdown(device_t dev);
193 static int		fxp_suspend(device_t dev);
194 static int		fxp_resume(device_t dev);
195 
196 static void		fxp_intr(void *xsc);
197 static void		fxp_intr_body(struct fxp_softc *sc,
198 				u_int8_t statack, int count);
199 
200 static void 		fxp_init(void *xsc);
201 static void 		fxp_tick(void *xsc);
202 static void		fxp_powerstate_d0(device_t dev);
203 static void 		fxp_start(struct ifnet *ifp);
204 static void		fxp_stop(struct fxp_softc *sc);
205 static void 		fxp_release(struct fxp_softc *sc);
206 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
207 			    caddr_t data, struct ucred *);
208 static void 		fxp_watchdog(struct ifnet *ifp);
209 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
210 static int		fxp_mc_addrs(struct fxp_softc *sc);
211 static void		fxp_mc_setup(struct fxp_softc *sc);
212 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
213 			    int autosize);
214 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
215 			    u_int16_t data);
216 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
217 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
218 			    int offset, int words);
219 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
220 			    int offset, int words);
221 static int		fxp_ifmedia_upd(struct ifnet *ifp);
222 static void		fxp_ifmedia_sts(struct ifnet *ifp,
223 			    struct ifmediareq *ifmr);
224 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
225 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
226 			    struct ifmediareq *ifmr);
227 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
228 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
229 			    int value);
230 static void		fxp_load_ucode(struct fxp_softc *sc);
231 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
232 			    int low, int high);
233 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
234 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
235 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
236 			    volatile u_int32_t *dst);
237 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
238 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
239 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
240 			    struct fxp_softc *sc);
241 
242 static device_method_t fxp_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		fxp_probe),
245 	DEVMETHOD(device_attach,	fxp_attach),
246 	DEVMETHOD(device_detach,	fxp_detach),
247 	DEVMETHOD(device_shutdown,	fxp_shutdown),
248 	DEVMETHOD(device_suspend,	fxp_suspend),
249 	DEVMETHOD(device_resume,	fxp_resume),
250 
251 	/* MII interface */
252 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
253 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
254 
255 	{ 0, 0 }
256 };
257 
258 static driver_t fxp_driver = {
259 	"fxp",
260 	fxp_methods,
261 	sizeof(struct fxp_softc),
262 };
263 
264 static devclass_t fxp_devclass;
265 
266 DECLARE_DUMMY_MODULE(if_fxp);
267 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
268 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
269 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
270 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
271 
272 static int fxp_rnr;
273 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
274 
275 /*
276  * Inline function to copy a 16-bit aligned 32-bit quantity.
277  */
278 static __inline void
279 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
280 {
281 #ifdef __i386__
282 	*dst = *src;
283 #else
284 	volatile u_int16_t *a = (volatile u_int16_t *)src;
285 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
286 
287 	b[0] = a[0];
288 	b[1] = a[1];
289 #endif
290 }
291 
292 /*
293  * Wait for the previous command to be accepted (but not necessarily
294  * completed).
295  */
296 static __inline void
297 fxp_scb_wait(struct fxp_softc *sc)
298 {
299 	int i = 10000;
300 
301 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
302 		DELAY(2);
303 	if (i == 0)
304 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
305 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
306 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
307 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
308 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
309 }
310 
311 static __inline void
312 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
313 {
314 
315 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
316 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
317 		fxp_scb_wait(sc);
318 	}
319 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
320 }
321 
322 static __inline void
323 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
324 {
325 	int i = 10000;
326 
327 	while (!(*status & FXP_CB_STATUS_C) && --i)
328 		DELAY(2);
329 	if (i == 0)
330 		device_printf(sc->dev, "DMA timeout\n");
331 }
332 
333 /*
334  * Return identification string if this is device is ours.
335  */
336 static int
337 fxp_probe(device_t dev)
338 {
339 	u_int16_t devid;
340 	u_int8_t revid;
341 	struct fxp_ident *ident;
342 
343 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
344 		devid = pci_get_device(dev);
345 		revid = pci_get_revid(dev);
346 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
347 			if (ident->devid == devid &&
348 			    (ident->revid == revid || ident->revid == -1)) {
349 				device_set_desc(dev, ident->name);
350 				return (0);
351 			}
352 		}
353 	}
354 	return (ENXIO);
355 }
356 
357 static void
358 fxp_powerstate_d0(device_t dev)
359 {
360 #if defined(__DragonFly__) || __FreeBSD_version >= 430002
361 	u_int32_t iobase, membase, irq;
362 
363 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
364 		/* Save important PCI config data. */
365 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
366 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
367 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
368 
369 		/* Reset the power state. */
370 		device_printf(dev, "chip is in D%d power mode "
371 		    "-- setting to D0\n", pci_get_powerstate(dev));
372 
373 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
374 
375 		/* Restore PCI config data. */
376 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
377 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
378 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
379 	}
380 #endif
381 }
382 
383 static int
384 fxp_attach(device_t dev)
385 {
386 	int error = 0;
387 	struct fxp_softc *sc = device_get_softc(dev);
388 	struct ifnet *ifp;
389 	u_int32_t val;
390 	u_int16_t data;
391 	int i, rid, m1, m2, prefer_iomap;
392 	int s;
393 
394 	bzero(sc, sizeof(*sc));
395 	sc->dev = dev;
396 	callout_init(&sc->fxp_stat_timer);
397 	sysctl_ctx_init(&sc->sysctl_ctx);
398 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
399 
400 	s = splimp();
401 
402 	/*
403 	 * Enable bus mastering. Enable memory space too, in case
404 	 * BIOS/Prom forgot about it.
405 	 */
406 	val = pci_read_config(dev, PCIR_COMMAND, 2);
407 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
408 	pci_write_config(dev, PCIR_COMMAND, val, 2);
409 	val = pci_read_config(dev, PCIR_COMMAND, 2);
410 
411 	fxp_powerstate_d0(dev);
412 
413 	/*
414 	 * Figure out which we should try first - memory mapping or i/o mapping?
415 	 * We default to memory mapping. Then we accept an override from the
416 	 * command line. Then we check to see which one is enabled.
417 	 */
418 	m1 = PCIM_CMD_MEMEN;
419 	m2 = PCIM_CMD_PORTEN;
420 	prefer_iomap = 0;
421 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
422 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
423 		m1 = PCIM_CMD_PORTEN;
424 		m2 = PCIM_CMD_MEMEN;
425 	}
426 
427 	if (val & m1) {
428 		sc->rtp =
429 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
430 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
431 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
432 	                                     0, ~0, 1, RF_ACTIVE);
433 	}
434 	if (sc->mem == NULL && (val & m2)) {
435 		sc->rtp =
436 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
437 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
438 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
439                                             0, ~0, 1, RF_ACTIVE);
440 	}
441 
442 	if (!sc->mem) {
443 		device_printf(dev, "could not map device registers\n");
444 		error = ENXIO;
445 		goto fail;
446         }
447 	if (bootverbose) {
448 		device_printf(dev, "using %s space register mapping\n",
449 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
450 	}
451 
452 	sc->sc_st = rman_get_bustag(sc->mem);
453 	sc->sc_sh = rman_get_bushandle(sc->mem);
454 
455 	/*
456 	 * Allocate our interrupt.
457 	 */
458 	rid = 0;
459 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
460 				 RF_SHAREABLE | RF_ACTIVE);
461 	if (sc->irq == NULL) {
462 		device_printf(dev, "could not map interrupt\n");
463 		error = ENXIO;
464 		goto fail;
465 	}
466 
467 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
468 			       fxp_intr, sc, &sc->ih);
469 	if (error) {
470 		device_printf(dev, "could not setup irq\n");
471 		goto fail;
472 	}
473 
474 	/*
475 	 * Reset to a stable state.
476 	 */
477 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
478 	DELAY(10);
479 
480 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
481 	    M_DEVBUF, M_WAITOK | M_ZERO);
482 
483 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
484 	    M_WAITOK | M_ZERO);
485 
486 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
487 
488 	/*
489 	 * Pre-allocate our receive buffers.
490 	 */
491 	for (i = 0; i < FXP_NRFABUFS; i++) {
492 		if (fxp_add_rfabuf(sc, NULL) != 0) {
493 			goto failmem;
494 		}
495 	}
496 
497 	/*
498 	 * Find out how large of an SEEPROM we have.
499 	 */
500 	fxp_autosize_eeprom(sc);
501 
502 	/*
503 	 * Determine whether we must use the 503 serial interface.
504 	 */
505 	fxp_read_eeprom(sc, &data, 6, 1);
506 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
507 	    (data & FXP_PHY_SERIAL_ONLY))
508 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
509 
510 	/*
511 	 * Create the sysctl tree
512 	 */
513 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
514 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
515 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
516 	if (sc->sysctl_tree == NULL)
517 		goto fail;
518 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
519 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
520 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
521 	    "FXP driver receive interrupt microcode bundling delay");
522 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
523 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
524 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
525 	    "FXP driver receive interrupt microcode bundle size limit");
526 
527 	/*
528 	 * Pull in device tunables.
529 	 */
530 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
531 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
532 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
533 	    "int_delay", &sc->tunable_int_delay);
534 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
535 	    "bundle_max", &sc->tunable_bundle_max);
536 
537 	/*
538 	 * Find out the chip revision; lump all 82557 revs together.
539 	 */
540 	fxp_read_eeprom(sc, &data, 5, 1);
541 	if ((data >> 8) == 1)
542 		sc->revision = FXP_REV_82557;
543 	else
544 		sc->revision = pci_get_revid(dev);
545 
546 	/*
547 	 * Enable workarounds for certain chip revision deficiencies.
548 	 *
549 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
550 	 * some systems based a normal 82559 design, have a defect where
551 	 * the chip can cause a PCI protocol violation if it receives
552 	 * a CU_RESUME command when it is entering the IDLE state.  The
553 	 * workaround is to disable Dynamic Standby Mode, so the chip never
554 	 * deasserts CLKRUN#, and always remains in an active state.
555 	 *
556 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
557 	 */
558 	i = pci_get_device(dev);
559 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
560 	    sc->revision >= FXP_REV_82559_A0) {
561 		fxp_read_eeprom(sc, &data, 10, 1);
562 		if (data & 0x02) {			/* STB enable */
563 			u_int16_t cksum;
564 			int i;
565 
566 			device_printf(dev,
567 			    "Disabling dynamic standby mode in EEPROM\n");
568 			data &= ~0x02;
569 			fxp_write_eeprom(sc, &data, 10, 1);
570 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
571 			cksum = 0;
572 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
573 				fxp_read_eeprom(sc, &data, i, 1);
574 				cksum += data;
575 			}
576 			i = (1 << sc->eeprom_size) - 1;
577 			cksum = 0xBABA - cksum;
578 			fxp_read_eeprom(sc, &data, i, 1);
579 			fxp_write_eeprom(sc, &cksum, i, 1);
580 			device_printf(dev,
581 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
582 			    i, data, cksum);
583 #if 1
584 			/*
585 			 * If the user elects to continue, try the software
586 			 * workaround, as it is better than nothing.
587 			 */
588 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
589 #endif
590 		}
591 	}
592 
593 	/*
594 	 * If we are not a 82557 chip, we can enable extended features.
595 	 */
596 	if (sc->revision != FXP_REV_82557) {
597 		/*
598 		 * If MWI is enabled in the PCI configuration, and there
599 		 * is a valid cacheline size (8 or 16 dwords), then tell
600 		 * the board to turn on MWI.
601 		 */
602 		if (val & PCIM_CMD_MWRICEN &&
603 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
604 			sc->flags |= FXP_FLAG_MWI_ENABLE;
605 
606 		/* turn on the extended TxCB feature */
607 		sc->flags |= FXP_FLAG_EXT_TXCB;
608 
609 		/* enable reception of long frames for VLAN */
610 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
611 	}
612 
613 	/*
614 	 * Read MAC address.
615 	 */
616 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
617 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
618 		device_printf(dev, "10Mbps");
619 	if (bootverbose) {
620 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
621 		    pci_get_vendor(dev), pci_get_device(dev),
622 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
623 		    pci_get_revid(dev));
624 		fxp_read_eeprom(sc, &data, 10, 1);
625 		device_printf(dev, "Dynamic Standby mode is %s\n",
626 		    data & 0x02 ? "enabled" : "disabled");
627 	}
628 
629 	/*
630 	 * If this is only a 10Mbps device, then there is no MII, and
631 	 * the PHY will use a serial interface instead.
632 	 *
633 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
634 	 * doesn't have a programming interface of any sort.  The
635 	 * media is sensed automatically based on how the link partner
636 	 * is configured.  This is, in essence, manual configuration.
637 	 */
638 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
639 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
640 		    fxp_serial_ifmedia_sts);
641 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
642 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
643 	} else {
644 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
645 		    fxp_ifmedia_sts)) {
646 	                device_printf(dev, "MII without any PHY!\n");
647 			error = ENXIO;
648 			goto fail;
649 		}
650 	}
651 
652 	ifp = &sc->arpcom.ac_if;
653 	if_initname(ifp, "fxp", device_get_unit(dev));
654 	ifp->if_baudrate = 100000000;
655 	ifp->if_init = fxp_init;
656 	ifp->if_softc = sc;
657 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 	ifp->if_ioctl = fxp_ioctl;
659 	ifp->if_start = fxp_start;
660 	ifp->if_watchdog = fxp_watchdog;
661 
662 	/*
663 	 * Attach the interface.
664 	 */
665 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
666 
667 	/*
668 	 * Tell the upper layer(s) we support long frames.
669 	 */
670 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
671 
672 	/*
673 	 * Let the system queue as many packets as we have available
674 	 * TX descriptors.
675 	 */
676 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
677 
678 	splx(s);
679 	return (0);
680 
681 failmem:
682 	device_printf(dev, "Failed to malloc memory\n");
683 	error = ENOMEM;
684 fail:
685 	splx(s);
686 	fxp_release(sc);
687 	return (error);
688 }
689 
690 /*
691  * release all resources
692  */
693 static void
694 fxp_release(struct fxp_softc *sc)
695 {
696 
697 	bus_generic_detach(sc->dev);
698 	if (sc->miibus)
699 		device_delete_child(sc->dev, sc->miibus);
700 
701 	if (sc->cbl_base)
702 		free(sc->cbl_base, M_DEVBUF);
703 	if (sc->fxp_stats)
704 		free(sc->fxp_stats, M_DEVBUF);
705 	if (sc->mcsp)
706 		free(sc->mcsp, M_DEVBUF);
707 	if (sc->rfa_headm)
708 		m_freem(sc->rfa_headm);
709 
710 	if (sc->ih)
711 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
712 	if (sc->irq)
713 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
714 	if (sc->mem)
715 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
716 
717         sysctl_ctx_free(&sc->sysctl_ctx);
718 
719 	mtx_destroy(&sc->sc_mtx);
720 }
721 
722 /*
723  * Detach interface.
724  */
725 static int
726 fxp_detach(device_t dev)
727 {
728 	struct fxp_softc *sc = device_get_softc(dev);
729 	int s;
730 
731 	/* disable interrupts */
732 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
733 
734 	s = splimp();
735 
736 	/*
737 	 * Stop DMA and drop transmit queue.
738 	 */
739 	fxp_stop(sc);
740 
741 	/*
742 	 * Close down routes etc.
743 	 */
744 	ether_ifdetach(&sc->arpcom.ac_if);
745 
746 	/*
747 	 * Free all media structures.
748 	 */
749 	ifmedia_removeall(&sc->sc_media);
750 
751 	splx(s);
752 
753 	/* Release our allocated resources. */
754 	fxp_release(sc);
755 
756 	return (0);
757 }
758 
759 /*
760  * Device shutdown routine. Called at system shutdown after sync. The
761  * main purpose of this routine is to shut off receiver DMA so that
762  * kernel memory doesn't get clobbered during warmboot.
763  */
764 static int
765 fxp_shutdown(device_t dev)
766 {
767 	/*
768 	 * Make sure that DMA is disabled prior to reboot. Not doing
769 	 * do could allow DMA to corrupt kernel memory during the
770 	 * reboot before the driver initializes.
771 	 */
772 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
773 	return (0);
774 }
775 
776 /*
777  * Device suspend routine.  Stop the interface and save some PCI
778  * settings in case the BIOS doesn't restore them properly on
779  * resume.
780  */
781 static int
782 fxp_suspend(device_t dev)
783 {
784 	struct fxp_softc *sc = device_get_softc(dev);
785 	int i, s;
786 
787 	s = splimp();
788 
789 	fxp_stop(sc);
790 
791 	for (i = 0; i < 5; i++)
792 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
793 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
794 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
795 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
796 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
797 
798 	sc->suspended = 1;
799 
800 	splx(s);
801 	return (0);
802 }
803 
804 /*
805  * Device resume routine.  Restore some PCI settings in case the BIOS
806  * doesn't, re-enable busmastering, and restart the interface if
807  * appropriate.
808  */
809 static int
810 fxp_resume(device_t dev)
811 {
812 	struct fxp_softc *sc = device_get_softc(dev);
813 	struct ifnet *ifp = &sc->sc_if;
814 	u_int16_t pci_command;
815 	int i, s;
816 
817 	s = splimp();
818 
819 	fxp_powerstate_d0(dev);
820 
821 	/* better way to do this? */
822 	for (i = 0; i < 5; i++)
823 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
824 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
825 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
826 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
827 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
828 
829 	/* reenable busmastering */
830 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
831 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
832 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
833 
834 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
835 	DELAY(10);
836 
837 	/* reinitialize interface if necessary */
838 	if (ifp->if_flags & IFF_UP)
839 		fxp_init(sc);
840 
841 	sc->suspended = 0;
842 
843 	splx(s);
844 	return (0);
845 }
846 
847 static void
848 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
849 {
850 	u_int16_t reg;
851 	int x;
852 
853 	/*
854 	 * Shift in data.
855 	 */
856 	for (x = 1 << (length - 1); x; x >>= 1) {
857 		if (data & x)
858 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
859 		else
860 			reg = FXP_EEPROM_EECS;
861 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
862 		DELAY(1);
863 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
864 		DELAY(1);
865 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
866 		DELAY(1);
867 	}
868 }
869 
870 /*
871  * Read from the serial EEPROM. Basically, you manually shift in
872  * the read opcode (one bit at a time) and then shift in the address,
873  * and then you shift out the data (all of this one bit at a time).
874  * The word size is 16 bits, so you have to provide the address for
875  * every 16 bits of data.
876  */
877 static u_int16_t
878 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
879 {
880 	u_int16_t reg, data;
881 	int x;
882 
883 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
884 	/*
885 	 * Shift in read opcode.
886 	 */
887 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
888 	/*
889 	 * Shift in address.
890 	 */
891 	data = 0;
892 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
893 		if (offset & x)
894 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
895 		else
896 			reg = FXP_EEPROM_EECS;
897 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
898 		DELAY(1);
899 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
900 		DELAY(1);
901 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
902 		DELAY(1);
903 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
904 		data++;
905 		if (autosize && reg == 0) {
906 			sc->eeprom_size = data;
907 			break;
908 		}
909 	}
910 	/*
911 	 * Shift out data.
912 	 */
913 	data = 0;
914 	reg = FXP_EEPROM_EECS;
915 	for (x = 1 << 15; x; x >>= 1) {
916 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
917 		DELAY(1);
918 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
919 			data |= x;
920 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
921 		DELAY(1);
922 	}
923 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
924 	DELAY(1);
925 
926 	return (data);
927 }
928 
929 static void
930 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
931 {
932 	int i;
933 
934 	/*
935 	 * Erase/write enable.
936 	 */
937 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
938 	fxp_eeprom_shiftin(sc, 0x4, 3);
939 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
940 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
941 	DELAY(1);
942 	/*
943 	 * Shift in write opcode, address, data.
944 	 */
945 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
946 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
947 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
948 	fxp_eeprom_shiftin(sc, data, 16);
949 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
950 	DELAY(1);
951 	/*
952 	 * Wait for EEPROM to finish up.
953 	 */
954 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
955 	DELAY(1);
956 	for (i = 0; i < 1000; i++) {
957 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
958 			break;
959 		DELAY(50);
960 	}
961 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
962 	DELAY(1);
963 	/*
964 	 * Erase/write disable.
965 	 */
966 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
967 	fxp_eeprom_shiftin(sc, 0x4, 3);
968 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
969 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
970 	DELAY(1);
971 }
972 
973 /*
974  * From NetBSD:
975  *
976  * Figure out EEPROM size.
977  *
978  * 559's can have either 64-word or 256-word EEPROMs, the 558
979  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
980  * talks about the existance of 16 to 256 word EEPROMs.
981  *
982  * The only known sizes are 64 and 256, where the 256 version is used
983  * by CardBus cards to store CIS information.
984  *
985  * The address is shifted in msb-to-lsb, and after the last
986  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
987  * after which follows the actual data. We try to detect this zero, by
988  * probing the data-out bit in the EEPROM control register just after
989  * having shifted in a bit. If the bit is zero, we assume we've
990  * shifted enough address bits. The data-out should be tri-state,
991  * before this, which should translate to a logical one.
992  */
993 static void
994 fxp_autosize_eeprom(struct fxp_softc *sc)
995 {
996 
997 	/* guess maximum size of 256 words */
998 	sc->eeprom_size = 8;
999 
1000 	/* autosize */
1001 	(void) fxp_eeprom_getword(sc, 0, 1);
1002 }
1003 
1004 static void
1005 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1006 {
1007 	int i;
1008 
1009 	for (i = 0; i < words; i++)
1010 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1011 }
1012 
1013 static void
1014 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < words; i++)
1019 		fxp_eeprom_putword(sc, offset + i, data[i]);
1020 }
1021 
1022 /*
1023  * Start packet transmission on the interface.
1024  */
1025 static void
1026 fxp_start(struct ifnet *ifp)
1027 {
1028 	struct fxp_softc *sc = ifp->if_softc;
1029 	struct fxp_cb_tx *txp;
1030 
1031 	/*
1032 	 * See if we need to suspend xmit until the multicast filter
1033 	 * has been reprogrammed (which can only be done at the head
1034 	 * of the command chain).
1035 	 */
1036 	if (sc->need_mcsetup) {
1037 		return;
1038 	}
1039 
1040 	txp = NULL;
1041 
1042 	/*
1043 	 * We're finished if there is nothing more to add to the list or if
1044 	 * we're all filled up with buffers to transmit.
1045 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1046 	 *       a NOP command when needed.
1047 	 */
1048 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1049 		struct mbuf *m, *mb_head;
1050 		int segment;
1051 
1052 		/*
1053 		 * Grab a packet to transmit.
1054 		 */
1055 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1056 
1057 		/*
1058 		 * Get pointer to next available tx desc.
1059 		 */
1060 		txp = sc->cbl_last->next;
1061 
1062 		/*
1063 		 * Go through each of the mbufs in the chain and initialize
1064 		 * the transmit buffer descriptors with the physical address
1065 		 * and size of the mbuf.
1066 		 */
1067 tbdinit:
1068 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1069 			if (m->m_len != 0) {
1070 				if (segment == FXP_NTXSEG)
1071 					break;
1072 				txp->tbd[segment].tb_addr =
1073 				    vtophys(mtod(m, vm_offset_t));
1074 				txp->tbd[segment].tb_size = m->m_len;
1075 				segment++;
1076 			}
1077 		}
1078 		if (m != NULL) {
1079 			struct mbuf *mn;
1080 
1081 			/*
1082 			 * We ran out of segments. We have to recopy this
1083 			 * mbuf chain first. Bail out if we can't get the
1084 			 * new buffers.
1085 			 */
1086 			MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1087 			if (mn == NULL) {
1088 				m_freem(mb_head);
1089 				break;
1090 			}
1091 			if (mb_head->m_pkthdr.len > MHLEN) {
1092 				MCLGET(mn, MB_DONTWAIT);
1093 				if ((mn->m_flags & M_EXT) == 0) {
1094 					m_freem(mn);
1095 					m_freem(mb_head);
1096 					break;
1097 				}
1098 			}
1099 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1100 			    mtod(mn, caddr_t));
1101 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1102 			m_freem(mb_head);
1103 			mb_head = mn;
1104 			goto tbdinit;
1105 		}
1106 
1107 		txp->tbd_number = segment;
1108 		txp->mb_head = mb_head;
1109 		txp->cb_status = 0;
1110 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1111 			txp->cb_command =
1112 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1113 			    FXP_CB_COMMAND_S;
1114 		} else {
1115 			txp->cb_command =
1116 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1117 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1118 			/*
1119 			 * Set a 5 second timer just in case we don't hear
1120 			 * from the card again.
1121 			 */
1122 			ifp->if_timer = 5;
1123 		}
1124 		txp->tx_threshold = tx_threshold;
1125 
1126 		/*
1127 		 * Advance the end of list forward.
1128 		 */
1129 
1130 #ifdef __alpha__
1131 		/*
1132 		 * On platforms which can't access memory in 16-bit
1133 		 * granularities, we must prevent the card from DMA'ing
1134 		 * up the status while we update the command field.
1135 		 * This could cause us to overwrite the completion status.
1136 		 */
1137 		atomic_clear_short(&sc->cbl_last->cb_command,
1138 		    FXP_CB_COMMAND_S);
1139 #else
1140 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1141 #endif /*__alpha__*/
1142 		sc->cbl_last = txp;
1143 
1144 		/*
1145 		 * Advance the beginning of the list forward if there are
1146 		 * no other packets queued (when nothing is queued, cbl_first
1147 		 * sits on the last TxCB that was sent out).
1148 		 */
1149 		if (sc->tx_queued == 0)
1150 			sc->cbl_first = txp;
1151 
1152 		sc->tx_queued++;
1153 
1154 		/*
1155 		 * Pass packet to bpf if there is a listener.
1156 		 */
1157 		if (ifp->if_bpf)
1158 			bpf_mtap(ifp, mb_head);
1159 	}
1160 
1161 	/*
1162 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1163 	 * going again if suspended.
1164 	 */
1165 	if (txp != NULL) {
1166 		fxp_scb_wait(sc);
1167 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1168 	}
1169 }
1170 
1171 #ifdef DEVICE_POLLING
1172 static poll_handler_t fxp_poll;
1173 
1174 static void
1175 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1176 {
1177 	struct fxp_softc *sc = ifp->if_softc;
1178 	u_int8_t statack;
1179 
1180 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1181 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1182 		return;
1183 	}
1184 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1185 	    FXP_SCB_STATACK_FR;
1186 	if (cmd == POLL_AND_CHECK_STATUS) {
1187 		u_int8_t tmp;
1188 
1189 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1190 		if (tmp == 0xff || tmp == 0)
1191 			return; /* nothing to do */
1192 		tmp &= ~statack;
1193 		/* ack what we can */
1194 		if (tmp != 0)
1195 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1196 		statack |= tmp;
1197 	}
1198 	fxp_intr_body(sc, statack, count);
1199 }
1200 #endif /* DEVICE_POLLING */
1201 
1202 /*
1203  * Process interface interrupts.
1204  */
1205 static void
1206 fxp_intr(void *xsc)
1207 {
1208 	struct fxp_softc *sc = xsc;
1209 	u_int8_t statack;
1210 
1211 #ifdef DEVICE_POLLING
1212 	struct ifnet *ifp = &sc->sc_if;
1213 
1214 	if (ifp->if_flags & IFF_POLLING)
1215 		return;
1216 	if (ether_poll_register(fxp_poll, ifp)) {
1217 		/* disable interrupts */
1218 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1219 		fxp_poll(ifp, 0, 1);
1220 		return;
1221 	}
1222 #endif
1223 
1224 	if (sc->suspended) {
1225 		return;
1226 	}
1227 
1228 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1229 		/*
1230 		 * It should not be possible to have all bits set; the
1231 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1232 		 * all bits are set, this may indicate that the card has
1233 		 * been physically ejected, so ignore it.
1234 		 */
1235 		if (statack == 0xff)
1236 			return;
1237 
1238 		/*
1239 		 * First ACK all the interrupts in this pass.
1240 		 */
1241 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1242 		fxp_intr_body(sc, statack, -1);
1243 	}
1244 }
1245 
1246 static void
1247 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1248 {
1249 	struct ifnet *ifp = &sc->sc_if;
1250 	struct mbuf *m;
1251 	struct fxp_rfa *rfa;
1252 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1253 
1254 	if (rnr)
1255 		fxp_rnr++;
1256 #ifdef DEVICE_POLLING
1257 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1258 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1259 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1260 		rnr = 1;
1261 	}
1262 #endif
1263 
1264 	/*
1265 	 * Free any finished transmit mbuf chains.
1266 	 *
1267 	 * Handle the CNA event likt a CXTNO event. It used to
1268 	 * be that this event (control unit not ready) was not
1269 	 * encountered, but it is now with the SMPng modifications.
1270 	 * The exact sequence of events that occur when the interface
1271 	 * is brought up are different now, and if this event
1272 	 * goes unhandled, the configuration/rxfilter setup sequence
1273 	 * can stall for several seconds. The result is that no
1274 	 * packets go out onto the wire for about 5 to 10 seconds
1275 	 * after the interface is ifconfig'ed for the first time.
1276 	 */
1277 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1278 		struct fxp_cb_tx *txp;
1279 
1280 		for (txp = sc->cbl_first; sc->tx_queued &&
1281 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1282 		    txp = txp->next) {
1283 			if ((m = txp->mb_head) != NULL) {
1284 				txp->mb_head = NULL;
1285 				sc->tx_queued--;
1286 				m_freem(m);
1287 			} else {
1288 				sc->tx_queued--;
1289 			}
1290 		}
1291 		sc->cbl_first = txp;
1292 		ifp->if_timer = 0;
1293 		if (sc->tx_queued == 0) {
1294 			if (sc->need_mcsetup)
1295 				fxp_mc_setup(sc);
1296 		}
1297 		/*
1298 		 * Try to start more packets transmitting.
1299 		 */
1300 		if (ifp->if_snd.ifq_head != NULL)
1301 			fxp_start(ifp);
1302 	}
1303 
1304 	/*
1305 	 * Just return if nothing happened on the receive side.
1306 	 */
1307 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1308 		return;
1309 
1310 	/*
1311 	 * Process receiver interrupts. If a no-resource (RNR)
1312 	 * condition exists, get whatever packets we can and
1313 	 * re-start the receiver.
1314 	 *
1315 	 * When using polling, we do not process the list to completion,
1316 	 * so when we get an RNR interrupt we must defer the restart
1317 	 * until we hit the last buffer with the C bit set.
1318 	 * If we run out of cycles and rfa_headm has the C bit set,
1319 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1320 	 * that the info will be used in the subsequent polling cycle.
1321 	 */
1322 	for (;;) {
1323 		m = sc->rfa_headm;
1324 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1325 		    RFA_ALIGNMENT_FUDGE);
1326 
1327 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1328 		if (count >= 0 && count-- == 0) {
1329 			if (rnr) {
1330 				/* Defer RNR processing until the next time. */
1331 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1332 				rnr = 0;
1333 			}
1334 			break;
1335 		}
1336 #endif /* DEVICE_POLLING */
1337 
1338 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1339 			break;
1340 
1341 		/*
1342 		 * Remove first packet from the chain.
1343 		 */
1344 		sc->rfa_headm = m->m_next;
1345 		m->m_next = NULL;
1346 
1347 		/*
1348 		 * Add a new buffer to the receive chain.
1349 		 * If this fails, the old buffer is recycled
1350 		 * instead.
1351 		 */
1352 		if (fxp_add_rfabuf(sc, m) == 0) {
1353 			int total_len;
1354 
1355 			/*
1356 			 * Fetch packet length (the top 2 bits of
1357 			 * actual_size are flags set by the controller
1358 			 * upon completion), and drop the packet in case
1359 			 * of bogus length or CRC errors.
1360 			 */
1361 			total_len = rfa->actual_size & 0x3fff;
1362 			if (total_len < sizeof(struct ether_header) ||
1363 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1364 				sizeof(struct fxp_rfa) ||
1365 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1366 				m_freem(m);
1367 				continue;
1368 			}
1369 			m->m_pkthdr.len = m->m_len = total_len;
1370 			(*ifp->if_input)(ifp, m);
1371 		}
1372 	}
1373 	if (rnr) {
1374 		fxp_scb_wait(sc);
1375 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1376 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1377 		    RFA_ALIGNMENT_FUDGE);
1378 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1379 	}
1380 }
1381 
1382 /*
1383  * Update packet in/out/collision statistics. The i82557 doesn't
1384  * allow you to access these counters without doing a fairly
1385  * expensive DMA to get _all_ of the statistics it maintains, so
1386  * we do this operation here only once per second. The statistics
1387  * counters in the kernel are updated from the previous dump-stats
1388  * DMA and then a new dump-stats DMA is started. The on-chip
1389  * counters are zeroed when the DMA completes. If we can't start
1390  * the DMA immediately, we don't wait - we just prepare to read
1391  * them again next time.
1392  */
1393 static void
1394 fxp_tick(void *xsc)
1395 {
1396 	struct fxp_softc *sc = xsc;
1397 	struct ifnet *ifp = &sc->sc_if;
1398 	struct fxp_stats *sp = sc->fxp_stats;
1399 	struct fxp_cb_tx *txp;
1400 	struct mbuf *m;
1401 	int s;
1402 
1403 	ifp->if_opackets += sp->tx_good;
1404 	ifp->if_collisions += sp->tx_total_collisions;
1405 	if (sp->rx_good) {
1406 		ifp->if_ipackets += sp->rx_good;
1407 		sc->rx_idle_secs = 0;
1408 	} else {
1409 		/*
1410 		 * Receiver's been idle for another second.
1411 		 */
1412 		sc->rx_idle_secs++;
1413 	}
1414 	ifp->if_ierrors +=
1415 	    sp->rx_crc_errors +
1416 	    sp->rx_alignment_errors +
1417 	    sp->rx_rnr_errors +
1418 	    sp->rx_overrun_errors;
1419 	/*
1420 	 * If any transmit underruns occured, bump up the transmit
1421 	 * threshold by another 512 bytes (64 * 8).
1422 	 */
1423 	if (sp->tx_underruns) {
1424 		ifp->if_oerrors += sp->tx_underruns;
1425 		if (tx_threshold < 192)
1426 			tx_threshold += 64;
1427 	}
1428 	s = splimp();
1429 	/*
1430 	 * Release any xmit buffers that have completed DMA. This isn't
1431 	 * strictly necessary to do here, but it's advantagous for mbufs
1432 	 * with external storage to be released in a timely manner rather
1433 	 * than being defered for a potentially long time. This limits
1434 	 * the delay to a maximum of one second.
1435 	 */
1436 	for (txp = sc->cbl_first; sc->tx_queued &&
1437 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1438 	    txp = txp->next) {
1439 		if ((m = txp->mb_head) != NULL) {
1440 			txp->mb_head = NULL;
1441 			sc->tx_queued--;
1442 			m_freem(m);
1443 		} else {
1444 			sc->tx_queued--;
1445 		}
1446 	}
1447 	sc->cbl_first = txp;
1448 	/*
1449 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1450 	 * then assume the receiver has locked up and attempt to clear
1451 	 * the condition by reprogramming the multicast filter. This is
1452 	 * a work-around for a bug in the 82557 where the receiver locks
1453 	 * up if it gets certain types of garbage in the syncronization
1454 	 * bits prior to the packet header. This bug is supposed to only
1455 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1456 	 * mode as well (perhaps due to a 10/100 speed transition).
1457 	 */
1458 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1459 		sc->rx_idle_secs = 0;
1460 		fxp_mc_setup(sc);
1461 	}
1462 	/*
1463 	 * If there is no pending command, start another stats
1464 	 * dump. Otherwise punt for now.
1465 	 */
1466 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1467 		/*
1468 		 * Start another stats dump.
1469 		 */
1470 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1471 	} else {
1472 		/*
1473 		 * A previous command is still waiting to be accepted.
1474 		 * Just zero our copy of the stats and wait for the
1475 		 * next timer event to update them.
1476 		 */
1477 		sp->tx_good = 0;
1478 		sp->tx_underruns = 0;
1479 		sp->tx_total_collisions = 0;
1480 
1481 		sp->rx_good = 0;
1482 		sp->rx_crc_errors = 0;
1483 		sp->rx_alignment_errors = 0;
1484 		sp->rx_rnr_errors = 0;
1485 		sp->rx_overrun_errors = 0;
1486 	}
1487 	if (sc->miibus != NULL)
1488 		mii_tick(device_get_softc(sc->miibus));
1489 	splx(s);
1490 	/*
1491 	 * Schedule another timeout one second from now.
1492 	 */
1493 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1494 }
1495 
1496 /*
1497  * Stop the interface. Cancels the statistics updater and resets
1498  * the interface.
1499  */
1500 static void
1501 fxp_stop(struct fxp_softc *sc)
1502 {
1503 	struct ifnet *ifp = &sc->sc_if;
1504 	struct fxp_cb_tx *txp;
1505 	int i;
1506 
1507 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1508 	ifp->if_timer = 0;
1509 
1510 #ifdef DEVICE_POLLING
1511 	ether_poll_deregister(ifp);
1512 #endif
1513 	/*
1514 	 * Cancel stats updater.
1515 	 */
1516 	callout_stop(&sc->fxp_stat_timer);
1517 
1518 	/*
1519 	 * Issue software reset, which also unloads the microcode.
1520 	 */
1521 	sc->flags &= ~FXP_FLAG_UCODE;
1522 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1523 	DELAY(50);
1524 
1525 	/*
1526 	 * Release any xmit buffers.
1527 	 */
1528 	txp = sc->cbl_base;
1529 	if (txp != NULL) {
1530 		for (i = 0; i < FXP_NTXCB; i++) {
1531 			if (txp[i].mb_head != NULL) {
1532 				m_freem(txp[i].mb_head);
1533 				txp[i].mb_head = NULL;
1534 			}
1535 		}
1536 	}
1537 	sc->tx_queued = 0;
1538 
1539 	/*
1540 	 * Free all the receive buffers then reallocate/reinitialize
1541 	 */
1542 	if (sc->rfa_headm != NULL)
1543 		m_freem(sc->rfa_headm);
1544 	sc->rfa_headm = NULL;
1545 	sc->rfa_tailm = NULL;
1546 	for (i = 0; i < FXP_NRFABUFS; i++) {
1547 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1548 			/*
1549 			 * This "can't happen" - we're at splimp()
1550 			 * and we just freed all the buffers we need
1551 			 * above.
1552 			 */
1553 			panic("fxp_stop: no buffers!");
1554 		}
1555 	}
1556 }
1557 
1558 /*
1559  * Watchdog/transmission transmit timeout handler. Called when a
1560  * transmission is started on the interface, but no interrupt is
1561  * received before the timeout. This usually indicates that the
1562  * card has wedged for some reason.
1563  */
1564 static void
1565 fxp_watchdog(struct ifnet *ifp)
1566 {
1567 	struct fxp_softc *sc = ifp->if_softc;
1568 
1569 	device_printf(sc->dev, "device timeout\n");
1570 	ifp->if_oerrors++;
1571 
1572 	fxp_init(sc);
1573 }
1574 
1575 static void
1576 fxp_init(void *xsc)
1577 {
1578 	struct fxp_softc *sc = xsc;
1579 	struct ifnet *ifp = &sc->sc_if;
1580 	struct fxp_cb_config *cbp;
1581 	struct fxp_cb_ias *cb_ias;
1582 	struct fxp_cb_tx *txp;
1583 	struct fxp_cb_mcs *mcsp;
1584 	int i, prm, s;
1585 
1586 	s = splimp();
1587 	/*
1588 	 * Cancel any pending I/O
1589 	 */
1590 	fxp_stop(sc);
1591 
1592 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1593 
1594 	/*
1595 	 * Initialize base of CBL and RFA memory. Loading with zero
1596 	 * sets it up for regular linear addressing.
1597 	 */
1598 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1599 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1600 
1601 	fxp_scb_wait(sc);
1602 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1603 
1604 	/*
1605 	 * Initialize base of dump-stats buffer.
1606 	 */
1607 	fxp_scb_wait(sc);
1608 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1609 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1610 
1611 	/*
1612 	 * Attempt to load microcode if requested.
1613 	 */
1614 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1615 		fxp_load_ucode(sc);
1616 
1617 	/*
1618 	 * Initialize the multicast address list.
1619 	 */
1620 	if (fxp_mc_addrs(sc)) {
1621 		mcsp = sc->mcsp;
1622 		mcsp->cb_status = 0;
1623 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1624 		mcsp->link_addr = -1;
1625 		/*
1626 	 	 * Start the multicast setup command.
1627 		 */
1628 		fxp_scb_wait(sc);
1629 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1630 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1631 		/* ...and wait for it to complete. */
1632 		fxp_dma_wait(&mcsp->cb_status, sc);
1633 	}
1634 
1635 	/*
1636 	 * We temporarily use memory that contains the TxCB list to
1637 	 * construct the config CB. The TxCB list memory is rebuilt
1638 	 * later.
1639 	 */
1640 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1641 
1642 	/*
1643 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1644 	 * zero and must be one bits in this structure and this is the easiest
1645 	 * way to initialize them all to proper values.
1646 	 */
1647 	bcopy(fxp_cb_config_template,
1648 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1649 		sizeof(fxp_cb_config_template));
1650 
1651 	cbp->cb_status =	0;
1652 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1653 	cbp->link_addr =	-1;	/* (no) next command */
1654 	cbp->byte_count =	22;	/* (22) bytes to config */
1655 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1656 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1657 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1658 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1659 	cbp->type_enable =	0;	/* actually reserved */
1660 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1661 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1662 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1663 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1664 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1665 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1666 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1667 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1668 	cbp->ci_int =		1;	/* interrupt on CU idle */
1669 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1670 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1671 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1672 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1673 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1674 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1675 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1676 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1677 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1678 	cbp->csma_dis =		0;	/* (don't) disable link */
1679 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1680 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1681 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1682 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1683 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1684 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1685 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1686 	cbp->loopback =		0;	/* (don't) loopback */
1687 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1688 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1689 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1690 	cbp->promiscuous =	prm;	/* promiscuous mode */
1691 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1692 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1693 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1694 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1695 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1696 
1697 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1698 	cbp->padding =		1;	/* (do) pad short tx packets */
1699 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1700 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1701 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1702 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1703 					/* must set wake_en in PMCSR also */
1704 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1705 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1706 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1707 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1708 
1709 	if (sc->revision == FXP_REV_82557) {
1710 		/*
1711 		 * The 82557 has no hardware flow control, the values
1712 		 * below are the defaults for the chip.
1713 		 */
1714 		cbp->fc_delay_lsb =	0;
1715 		cbp->fc_delay_msb =	0x40;
1716 		cbp->pri_fc_thresh =	3;
1717 		cbp->tx_fc_dis =	0;
1718 		cbp->rx_fc_restop =	0;
1719 		cbp->rx_fc_restart =	0;
1720 		cbp->fc_filter =	0;
1721 		cbp->pri_fc_loc =	1;
1722 	} else {
1723 		cbp->fc_delay_lsb =	0x1f;
1724 		cbp->fc_delay_msb =	0x01;
1725 		cbp->pri_fc_thresh =	3;
1726 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1727 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1728 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1729 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1730 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1731 	}
1732 
1733 	/*
1734 	 * Start the config command/DMA.
1735 	 */
1736 	fxp_scb_wait(sc);
1737 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1738 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1739 	/* ...and wait for it to complete. */
1740 	fxp_dma_wait(&cbp->cb_status, sc);
1741 
1742 	/*
1743 	 * Now initialize the station address. Temporarily use the TxCB
1744 	 * memory area like we did above for the config CB.
1745 	 */
1746 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1747 	cb_ias->cb_status = 0;
1748 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1749 	cb_ias->link_addr = -1;
1750 	bcopy(sc->arpcom.ac_enaddr,
1751 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1752 	    sizeof(sc->arpcom.ac_enaddr));
1753 
1754 	/*
1755 	 * Start the IAS (Individual Address Setup) command/DMA.
1756 	 */
1757 	fxp_scb_wait(sc);
1758 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1759 	/* ...and wait for it to complete. */
1760 	fxp_dma_wait(&cb_ias->cb_status, sc);
1761 
1762 	/*
1763 	 * Initialize transmit control block (TxCB) list.
1764 	 */
1765 
1766 	txp = sc->cbl_base;
1767 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1768 	for (i = 0; i < FXP_NTXCB; i++) {
1769 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1770 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1771 		txp[i].link_addr =
1772 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1773 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1774 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1775 		else
1776 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1777 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1778 	}
1779 	/*
1780 	 * Set the suspend flag on the first TxCB and start the control
1781 	 * unit. It will execute the NOP and then suspend.
1782 	 */
1783 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1784 	sc->cbl_first = sc->cbl_last = txp;
1785 	sc->tx_queued = 1;
1786 
1787 	fxp_scb_wait(sc);
1788 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1789 
1790 	/*
1791 	 * Initialize receiver buffer area - RFA.
1792 	 */
1793 	fxp_scb_wait(sc);
1794 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1795 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1796 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1797 
1798 	/*
1799 	 * Set current media.
1800 	 */
1801 	if (sc->miibus != NULL)
1802 		mii_mediachg(device_get_softc(sc->miibus));
1803 
1804 	ifp->if_flags |= IFF_RUNNING;
1805 	ifp->if_flags &= ~IFF_OACTIVE;
1806 
1807 	/*
1808 	 * Enable interrupts.
1809 	 */
1810 #ifdef DEVICE_POLLING
1811 	/*
1812 	 * ... but only do that if we are not polling. And because (presumably)
1813 	 * the default is interrupts on, we need to disable them explicitly!
1814 	 */
1815 	if ( ifp->if_flags & IFF_POLLING )
1816 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1817 	else
1818 #endif /* DEVICE_POLLING */
1819 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1820 	splx(s);
1821 
1822 	/*
1823 	 * Start stats updater.
1824 	 */
1825 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1826 }
1827 
1828 static int
1829 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1830 {
1831 
1832 	return (0);
1833 }
1834 
1835 static void
1836 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1837 {
1838 
1839 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1840 }
1841 
1842 /*
1843  * Change media according to request.
1844  */
1845 static int
1846 fxp_ifmedia_upd(struct ifnet *ifp)
1847 {
1848 	struct fxp_softc *sc = ifp->if_softc;
1849 	struct mii_data *mii;
1850 
1851 	mii = device_get_softc(sc->miibus);
1852 	mii_mediachg(mii);
1853 	return (0);
1854 }
1855 
1856 /*
1857  * Notify the world which media we're using.
1858  */
1859 static void
1860 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1861 {
1862 	struct fxp_softc *sc = ifp->if_softc;
1863 	struct mii_data *mii;
1864 
1865 	mii = device_get_softc(sc->miibus);
1866 	mii_pollstat(mii);
1867 	ifmr->ifm_active = mii->mii_media_active;
1868 	ifmr->ifm_status = mii->mii_media_status;
1869 
1870 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1871 		sc->cu_resume_bug = 1;
1872 	else
1873 		sc->cu_resume_bug = 0;
1874 }
1875 
1876 /*
1877  * Add a buffer to the end of the RFA buffer list.
1878  * Return 0 if successful, 1 for failure. A failure results in
1879  * adding the 'oldm' (if non-NULL) on to the end of the list -
1880  * tossing out its old contents and recycling it.
1881  * The RFA struct is stuck at the beginning of mbuf cluster and the
1882  * data pointer is fixed up to point just past it.
1883  */
1884 static int
1885 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1886 {
1887 	u_int32_t v;
1888 	struct mbuf *m;
1889 	struct fxp_rfa *rfa, *p_rfa;
1890 
1891 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1892 	if (m == NULL) { /* try to recycle the old mbuf instead */
1893 		if (oldm == NULL)
1894 			return 1;
1895 		m = oldm;
1896 		m->m_data = m->m_ext.ext_buf;
1897 	}
1898 
1899 	/*
1900 	 * Move the data pointer up so that the incoming data packet
1901 	 * will be 32-bit aligned.
1902 	 */
1903 	m->m_data += RFA_ALIGNMENT_FUDGE;
1904 
1905 	/*
1906 	 * Get a pointer to the base of the mbuf cluster and move
1907 	 * data start past it.
1908 	 */
1909 	rfa = mtod(m, struct fxp_rfa *);
1910 	m->m_data += sizeof(struct fxp_rfa);
1911 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1912 
1913 	/*
1914 	 * Initialize the rest of the RFA.  Note that since the RFA
1915 	 * is misaligned, we cannot store values directly.  Instead,
1916 	 * we use an optimized, inline copy.
1917 	 */
1918 
1919 	rfa->rfa_status = 0;
1920 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1921 	rfa->actual_size = 0;
1922 
1923 	v = -1;
1924 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1925 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1926 
1927 	/*
1928 	 * If there are other buffers already on the list, attach this
1929 	 * one to the end by fixing up the tail to point to this one.
1930 	 */
1931 	if (sc->rfa_headm != NULL) {
1932 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1933 		    RFA_ALIGNMENT_FUDGE);
1934 		sc->rfa_tailm->m_next = m;
1935 		v = vtophys(rfa);
1936 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1937 		p_rfa->rfa_control = 0;
1938 	} else {
1939 		sc->rfa_headm = m;
1940 	}
1941 	sc->rfa_tailm = m;
1942 
1943 	return (m == oldm);
1944 }
1945 
1946 static volatile int
1947 fxp_miibus_readreg(device_t dev, int phy, int reg)
1948 {
1949 	struct fxp_softc *sc = device_get_softc(dev);
1950 	int count = 10000;
1951 	int value;
1952 
1953 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1954 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1955 
1956 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1957 	    && count--)
1958 		DELAY(10);
1959 
1960 	if (count <= 0)
1961 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1962 
1963 	return (value & 0xffff);
1964 }
1965 
1966 static void
1967 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1968 {
1969 	struct fxp_softc *sc = device_get_softc(dev);
1970 	int count = 10000;
1971 
1972 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1973 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1974 	    (value & 0xffff));
1975 
1976 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1977 	    count--)
1978 		DELAY(10);
1979 
1980 	if (count <= 0)
1981 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1982 }
1983 
1984 static int
1985 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1986 {
1987 	struct fxp_softc *sc = ifp->if_softc;
1988 	struct ifreq *ifr = (struct ifreq *)data;
1989 	struct mii_data *mii;
1990 	int s, error = 0;
1991 
1992 	s = splimp();
1993 
1994 	switch (command) {
1995 	case SIOCSIFADDR:
1996 	case SIOCGIFADDR:
1997 	case SIOCSIFMTU:
1998 		error = ether_ioctl(ifp, command, data);
1999 		break;
2000 
2001 	case SIOCSIFFLAGS:
2002 		if (ifp->if_flags & IFF_ALLMULTI)
2003 			sc->flags |= FXP_FLAG_ALL_MCAST;
2004 		else
2005 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2006 
2007 		/*
2008 		 * If interface is marked up and not running, then start it.
2009 		 * If it is marked down and running, stop it.
2010 		 * XXX If it's up then re-initialize it. This is so flags
2011 		 * such as IFF_PROMISC are handled.
2012 		 */
2013 		if (ifp->if_flags & IFF_UP) {
2014 			fxp_init(sc);
2015 		} else {
2016 			if (ifp->if_flags & IFF_RUNNING)
2017 				fxp_stop(sc);
2018 		}
2019 		break;
2020 
2021 	case SIOCADDMULTI:
2022 	case SIOCDELMULTI:
2023 		if (ifp->if_flags & IFF_ALLMULTI)
2024 			sc->flags |= FXP_FLAG_ALL_MCAST;
2025 		else
2026 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2027 		/*
2028 		 * Multicast list has changed; set the hardware filter
2029 		 * accordingly.
2030 		 */
2031 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2032 			fxp_mc_setup(sc);
2033 		/*
2034 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2035 		 * again rather than else {}.
2036 		 */
2037 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2038 			fxp_init(sc);
2039 		error = 0;
2040 		break;
2041 
2042 	case SIOCSIFMEDIA:
2043 	case SIOCGIFMEDIA:
2044 		if (sc->miibus != NULL) {
2045 			mii = device_get_softc(sc->miibus);
2046                         error = ifmedia_ioctl(ifp, ifr,
2047                             &mii->mii_media, command);
2048 		} else {
2049                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2050 		}
2051 		break;
2052 
2053 	default:
2054 		error = EINVAL;
2055 	}
2056 	splx(s);
2057 	return (error);
2058 }
2059 
2060 /*
2061  * Fill in the multicast address list and return number of entries.
2062  */
2063 static int
2064 fxp_mc_addrs(struct fxp_softc *sc)
2065 {
2066 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2067 	struct ifnet *ifp = &sc->sc_if;
2068 	struct ifmultiaddr *ifma;
2069 	int nmcasts;
2070 
2071 	nmcasts = 0;
2072 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2073 #if defined(__DragonFly__) || __FreeBSD_version < 500000
2074 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2075 #else
2076 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2077 #endif
2078 			if (ifma->ifma_addr->sa_family != AF_LINK)
2079 				continue;
2080 			if (nmcasts >= MAXMCADDR) {
2081 				sc->flags |= FXP_FLAG_ALL_MCAST;
2082 				nmcasts = 0;
2083 				break;
2084 			}
2085 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2086 			    (void *)(uintptr_t)(volatile void *)
2087 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2088 			nmcasts++;
2089 		}
2090 	}
2091 	mcsp->mc_cnt = nmcasts * 6;
2092 	return (nmcasts);
2093 }
2094 
2095 /*
2096  * Program the multicast filter.
2097  *
2098  * We have an artificial restriction that the multicast setup command
2099  * must be the first command in the chain, so we take steps to ensure
2100  * this. By requiring this, it allows us to keep up the performance of
2101  * the pre-initialized command ring (esp. link pointers) by not actually
2102  * inserting the mcsetup command in the ring - i.e. its link pointer
2103  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2104  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2105  * lead into the regular TxCB ring when it completes.
2106  *
2107  * This function must be called at splimp.
2108  */
2109 static void
2110 fxp_mc_setup(struct fxp_softc *sc)
2111 {
2112 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2113 	struct ifnet *ifp = &sc->sc_if;
2114 	int count;
2115 
2116 	/*
2117 	 * If there are queued commands, we must wait until they are all
2118 	 * completed. If we are already waiting, then add a NOP command
2119 	 * with interrupt option so that we're notified when all commands
2120 	 * have been completed - fxp_start() ensures that no additional
2121 	 * TX commands will be added when need_mcsetup is true.
2122 	 */
2123 	if (sc->tx_queued) {
2124 		struct fxp_cb_tx *txp;
2125 
2126 		/*
2127 		 * need_mcsetup will be true if we are already waiting for the
2128 		 * NOP command to be completed (see below). In this case, bail.
2129 		 */
2130 		if (sc->need_mcsetup)
2131 			return;
2132 		sc->need_mcsetup = 1;
2133 
2134 		/*
2135 		 * Add a NOP command with interrupt so that we are notified
2136 		 * when all TX commands have been processed.
2137 		 */
2138 		txp = sc->cbl_last->next;
2139 		txp->mb_head = NULL;
2140 		txp->cb_status = 0;
2141 		txp->cb_command = FXP_CB_COMMAND_NOP |
2142 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2143 		/*
2144 		 * Advance the end of list forward.
2145 		 */
2146 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2147 		sc->cbl_last = txp;
2148 		sc->tx_queued++;
2149 		/*
2150 		 * Issue a resume in case the CU has just suspended.
2151 		 */
2152 		fxp_scb_wait(sc);
2153 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2154 		/*
2155 		 * Set a 5 second timer just in case we don't hear from the
2156 		 * card again.
2157 		 */
2158 		ifp->if_timer = 5;
2159 
2160 		return;
2161 	}
2162 	sc->need_mcsetup = 0;
2163 
2164 	/*
2165 	 * Initialize multicast setup descriptor.
2166 	 */
2167 	mcsp->next = sc->cbl_base;
2168 	mcsp->mb_head = NULL;
2169 	mcsp->cb_status = 0;
2170 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2171 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2172 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2173 	(void) fxp_mc_addrs(sc);
2174 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2175 	sc->tx_queued = 1;
2176 
2177 	/*
2178 	 * Wait until command unit is not active. This should never
2179 	 * be the case when nothing is queued, but make sure anyway.
2180 	 */
2181 	count = 100;
2182 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2183 	    FXP_SCB_CUS_ACTIVE && --count)
2184 		DELAY(10);
2185 	if (count == 0) {
2186 		device_printf(sc->dev, "command queue timeout\n");
2187 		return;
2188 	}
2189 
2190 	/*
2191 	 * Start the multicast setup command.
2192 	 */
2193 	fxp_scb_wait(sc);
2194 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2195 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2196 
2197 	ifp->if_timer = 2;
2198 	return;
2199 }
2200 
2201 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2202 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2203 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2204 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2205 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2206 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2207 
2208 #define UCODE(x)	x, sizeof(x)
2209 
2210 struct ucode {
2211 	u_int32_t	revision;
2212 	u_int32_t	*ucode;
2213 	int		length;
2214 	u_short		int_delay_offset;
2215 	u_short		bundle_max_offset;
2216 } ucode_table[] = {
2217 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2218 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2219 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2220 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2221 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2222 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2223 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2224 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2225 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2226 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2227 	{ 0, NULL, 0, 0, 0 }
2228 };
2229 
2230 static void
2231 fxp_load_ucode(struct fxp_softc *sc)
2232 {
2233 	struct ucode *uc;
2234 	struct fxp_cb_ucode *cbp;
2235 
2236 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2237 		if (sc->revision == uc->revision)
2238 			break;
2239 	if (uc->ucode == NULL)
2240 		return;
2241 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2242 	cbp->cb_status = 0;
2243 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2244 	cbp->link_addr = -1;    	/* (no) next command */
2245 	memcpy(cbp->ucode, uc->ucode, uc->length);
2246 	if (uc->int_delay_offset)
2247 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2248 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2249 	if (uc->bundle_max_offset)
2250 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2251 		    sc->tunable_bundle_max;
2252 	/*
2253 	 * Download the ucode to the chip.
2254 	 */
2255 	fxp_scb_wait(sc);
2256 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2257 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2258 	/* ...and wait for it to complete. */
2259 	fxp_dma_wait(&cbp->cb_status, sc);
2260 	device_printf(sc->dev,
2261 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2262 	    sc->tunable_int_delay,
2263 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2264 	sc->flags |= FXP_FLAG_UCODE;
2265 }
2266 
2267 static int
2268 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2269 {
2270 	int error, value;
2271 
2272 	value = *(int *)arg1;
2273 	error = sysctl_handle_int(oidp, &value, 0, req);
2274 	if (error || !req->newptr)
2275 		return (error);
2276 	if (value < low || value > high)
2277 		return (EINVAL);
2278 	*(int *)arg1 = value;
2279 	return (0);
2280 }
2281 
2282 /*
2283  * Interrupt delay is expressed in microseconds, a multiplier is used
2284  * to convert this to the appropriate clock ticks before using.
2285  */
2286 static int
2287 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2288 {
2289 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2290 }
2291 
2292 static int
2293 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2294 {
2295 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2296 }
2297