xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 066b6da2)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/interrupt.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <net/bpf.h>
53 #include <sys/sockio.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 #include <net/if_poll.h>
60 
61 #include <vm/vm.h>		/* for vtophys */
62 #include <vm/pmap.h>		/* for vtophys */
63 
64 #include <net/if_types.h>
65 #include <net/vlan/if_vlan_var.h>
66 
67 #include <bus/pci/pcivar.h>
68 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
69 
70 #include "../mii_layer/mii.h"
71 #include "../mii_layer/miivar.h"
72 
73 #include "if_fxpreg.h"
74 #include "if_fxpvar.h"
75 #include "rcvbundl.h"
76 
77 #include "miibus_if.h"
78 
79 /*
80  * NOTE!  On the Alpha, we have an alignment constraint.  The
81  * card DMAs the packet immediately following the RFA.  However,
82  * the first thing in the packet is a 14-byte Ethernet header.
83  * This means that the packet is misaligned.  To compensate,
84  * we actually offset the RFA 2 bytes into the cluster.  This
85  * alignes the packet after the Ethernet header at a 32-bit
86  * boundary.  HOWEVER!  This means that the RFA is misaligned!
87  */
88 #define	RFA_ALIGNMENT_FUDGE	2
89 
90 /*
91  * Set initial transmit threshold at 64 (512 bytes). This is
92  * increased by 64 (512 bytes) at a time, to maximum of 192
93  * (1536 bytes), if an underrun occurs.
94  */
95 static int tx_threshold = 64;
96 
97 /*
98  * The configuration byte map has several undefined fields which
99  * must be one or must be zero.  Set up a template for these bits
100  * only, (assuming a 82557 chip) leaving the actual configuration
101  * to fxp_init.
102  *
103  * See struct fxp_cb_config for the bit definitions.
104  */
105 static u_char fxp_cb_config_template[] = {
106 	0x0, 0x0,		/* cb_status */
107 	0x0, 0x0,		/* cb_command */
108 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
109 	0x0,	/*  0 */
110 	0x0,	/*  1 */
111 	0x0,	/*  2 */
112 	0x0,	/*  3 */
113 	0x0,	/*  4 */
114 	0x0,	/*  5 */
115 	0x32,	/*  6 */
116 	0x0,	/*  7 */
117 	0x0,	/*  8 */
118 	0x0,	/*  9 */
119 	0x6,	/* 10 */
120 	0x0,	/* 11 */
121 	0x0,	/* 12 */
122 	0x0,	/* 13 */
123 	0xf2,	/* 14 */
124 	0x48,	/* 15 */
125 	0x0,	/* 16 */
126 	0x40,	/* 17 */
127 	0xf0,	/* 18 */
128 	0x0,	/* 19 */
129 	0x3f,	/* 20 */
130 	0x5	/* 21 */
131 };
132 
133 struct fxp_ident {
134 	u_int16_t	devid;
135 	int16_t		revid;		/* -1 matches anything */
136 	char 		*name;
137 };
138 
139 /*
140  * Claim various Intel PCI device identifiers for this driver.  The
141  * sub-vendor and sub-device field are extensively used to identify
142  * particular variants, but we don't currently differentiate between
143  * them.
144  */
145 static struct fxp_ident fxp_ident_table[] = {
146      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
147      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
148      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
149      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
150      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
151      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
152      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
153      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
154      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
155      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
157      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
158      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
159      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
160      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
162      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
163      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
164      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
165      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
166      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
167      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
168      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
169      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
170      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
171      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
172      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
173      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
191      { 0,	-1,	NULL },
192 };
193 
194 static int		fxp_probe(device_t dev);
195 static int		fxp_attach(device_t dev);
196 static int		fxp_detach(device_t dev);
197 static int		fxp_shutdown(device_t dev);
198 static int		fxp_suspend(device_t dev);
199 static int		fxp_resume(device_t dev);
200 
201 static void		fxp_intr(void *xsc);
202 static void		fxp_intr_body(struct fxp_softc *sc,
203 				u_int8_t statack, int count);
204 
205 static void 		fxp_init(void *xsc);
206 static void 		fxp_tick(void *xsc);
207 static void		fxp_powerstate_d0(device_t dev);
208 static void 		fxp_start(struct ifnet *ifp, struct ifaltq_subque *);
209 static void		fxp_stop(struct fxp_softc *sc);
210 static void 		fxp_release(device_t dev);
211 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
212 			    caddr_t data, struct ucred *);
213 static void 		fxp_watchdog(struct ifnet *ifp);
214 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
215 static int		fxp_mc_addrs(struct fxp_softc *sc);
216 static void		fxp_mc_setup(struct fxp_softc *sc);
217 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
218 			    int autosize);
219 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
220 			    u_int16_t data);
221 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
222 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
223 			    int offset, int words);
224 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
225 			    int offset, int words);
226 static int		fxp_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
230 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
231 			    struct ifmediareq *ifmr);
232 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
233 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
234 			    int value);
235 static void		fxp_load_ucode(struct fxp_softc *sc);
236 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
237 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
238 #ifdef IFPOLL_ENABLE
239 static void		fxp_npoll(struct ifnet *, struct ifpoll_info *);
240 static void		fxp_npoll_compat(struct ifnet *, void *, int);
241 #endif
242 
243 static void		fxp_lwcopy(volatile u_int32_t *src,
244 			    volatile u_int32_t *dst);
245 static void 		fxp_scb_wait(struct fxp_softc *sc);
246 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
247 static void		fxp_dma_wait(volatile u_int16_t *status,
248 			    struct fxp_softc *sc);
249 
250 static device_method_t fxp_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		fxp_probe),
253 	DEVMETHOD(device_attach,	fxp_attach),
254 	DEVMETHOD(device_detach,	fxp_detach),
255 	DEVMETHOD(device_shutdown,	fxp_shutdown),
256 	DEVMETHOD(device_suspend,	fxp_suspend),
257 	DEVMETHOD(device_resume,	fxp_resume),
258 
259 	/* MII interface */
260 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
261 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
262 
263 	DEVMETHOD_END
264 };
265 
266 static driver_t fxp_driver = {
267 	"fxp",
268 	fxp_methods,
269 	sizeof(struct fxp_softc),
270 };
271 
272 static devclass_t fxp_devclass;
273 
274 DECLARE_DUMMY_MODULE(if_fxp);
275 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
276 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, NULL, NULL);
277 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, NULL, NULL);
278 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
279 
280 static int fxp_rnr;
281 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
282 
283 /*
284  * Copy a 16-bit aligned 32-bit quantity.
285  */
286 static void
287 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
288 {
289 #ifdef __i386__
290 	*dst = *src;
291 #else
292 	volatile u_int16_t *a = (volatile u_int16_t *)src;
293 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
294 
295 	b[0] = a[0];
296 	b[1] = a[1];
297 #endif
298 }
299 
300 /*
301  * Wait for the previous command to be accepted (but not necessarily
302  * completed).
303  */
304 static void
305 fxp_scb_wait(struct fxp_softc *sc)
306 {
307 	int i = 10000;
308 
309 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
310 		DELAY(2);
311 	if (i == 0) {
312 		if_printf(&sc->arpcom.ac_if,
313 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
314 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
315 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
316 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
317 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
318 	}
319 }
320 
321 static void
322 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
323 {
324 
325 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
326 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
327 		fxp_scb_wait(sc);
328 	}
329 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
330 }
331 
332 static void
333 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
334 {
335 	int i = 10000;
336 
337 	while (!(*status & FXP_CB_STATUS_C) && --i)
338 		DELAY(2);
339 	if (i == 0)
340 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
341 }
342 
343 /*
344  * Return identification string if this is device is ours.
345  */
346 static int
347 fxp_probe(device_t dev)
348 {
349 	u_int16_t devid;
350 	u_int8_t revid;
351 	struct fxp_ident *ident;
352 
353 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
354 		devid = pci_get_device(dev);
355 		revid = pci_get_revid(dev);
356 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
357 			if (ident->devid == devid &&
358 			    (ident->revid == revid || ident->revid == -1)) {
359 				device_set_desc(dev, ident->name);
360 				return (0);
361 			}
362 		}
363 	}
364 	return (ENXIO);
365 }
366 
367 static void
368 fxp_powerstate_d0(device_t dev)
369 {
370 	u_int32_t iobase, membase, irq;
371 
372 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
373 		/* Save important PCI config data. */
374 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
375 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
376 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
377 
378 		/* Reset the power state. */
379 		device_printf(dev, "chip is in D%d power mode "
380 		    "-- setting to D0\n", pci_get_powerstate(dev));
381 
382 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
383 
384 		/* Restore PCI config data. */
385 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
386 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
387 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
388 	}
389 }
390 
391 static int
392 fxp_attach(device_t dev)
393 {
394 	int error = 0;
395 	struct fxp_softc *sc = device_get_softc(dev);
396 	struct ifnet *ifp;
397 	u_int32_t val;
398 	u_int16_t data;
399 	int i, rid, m1, m2, prefer_iomap;
400 
401 	callout_init(&sc->fxp_stat_timer);
402 	sysctl_ctx_init(&sc->sysctl_ctx);
403 
404 	/*
405 	 * Enable bus mastering. Enable memory space too, in case
406 	 * BIOS/Prom forgot about it.
407 	 */
408 	pci_enable_busmaster(dev);
409 	pci_enable_io(dev, SYS_RES_MEMORY);
410 	val = pci_read_config(dev, PCIR_COMMAND, 2);
411 
412 	fxp_powerstate_d0(dev);
413 
414 	/*
415 	 * Figure out which we should try first - memory mapping or i/o mapping?
416 	 * We default to memory mapping. Then we accept an override from the
417 	 * command line. Then we check to see which one is enabled.
418 	 */
419 	m1 = PCIM_CMD_MEMEN;
420 	m2 = PCIM_CMD_PORTEN;
421 	prefer_iomap = 0;
422 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
423 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
424 		m1 = PCIM_CMD_PORTEN;
425 		m2 = PCIM_CMD_MEMEN;
426 	}
427 
428 	if (val & m1) {
429 		sc->rtp =
430 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
431 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
432 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
433 		    RF_ACTIVE);
434 	}
435 	if (sc->mem == NULL && (val & m2)) {
436 		sc->rtp =
437 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
438 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
439 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
440             	    RF_ACTIVE);
441 	}
442 
443 	if (!sc->mem) {
444 		device_printf(dev, "could not map device registers\n");
445 		error = ENXIO;
446 		goto fail;
447         }
448 	if (bootverbose) {
449 		device_printf(dev, "using %s space register mapping\n",
450 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
451 	}
452 
453 	sc->sc_st = rman_get_bustag(sc->mem);
454 	sc->sc_sh = rman_get_bushandle(sc->mem);
455 
456 	/*
457 	 * Allocate our interrupt.
458 	 */
459 	rid = 0;
460 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
461 	    RF_SHAREABLE | RF_ACTIVE);
462 	if (sc->irq == NULL) {
463 		device_printf(dev, "could not map interrupt\n");
464 		error = ENXIO;
465 		goto fail;
466 	}
467 
468 	/*
469 	 * Reset to a stable state.
470 	 */
471 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
472 	DELAY(10);
473 
474 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
475 	    M_DEVBUF, M_WAITOK | M_ZERO);
476 
477 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
478 	    M_WAITOK | M_ZERO);
479 
480 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
481 
482 	/*
483 	 * Pre-allocate our receive buffers.
484 	 */
485 	for (i = 0; i < FXP_NRFABUFS; i++) {
486 		if (fxp_add_rfabuf(sc, NULL) != 0) {
487 			goto failmem;
488 		}
489 	}
490 
491 	/*
492 	 * Find out how large of an SEEPROM we have.
493 	 */
494 	fxp_autosize_eeprom(sc);
495 
496 	/*
497 	 * Determine whether we must use the 503 serial interface.
498 	 */
499 	fxp_read_eeprom(sc, &data, 6, 1);
500 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
501 	    (data & FXP_PHY_SERIAL_ONLY))
502 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
503 
504 	/*
505 	 * Create the sysctl tree
506 	 */
507 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
508 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
509 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
510 	if (sc->sysctl_tree == NULL)
511 		goto fail;
512 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
513 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
514 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
515 	    "FXP driver receive interrupt microcode bundling delay");
516 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
517 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
518 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
519 	    "FXP driver receive interrupt microcode bundle size limit");
520 
521 	/*
522 	 * Pull in device tunables.
523 	 */
524 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
525 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
526 	resource_int_value(device_get_name(dev), device_get_unit(dev),
527 	    "int_delay", &sc->tunable_int_delay);
528 	resource_int_value(device_get_name(dev), device_get_unit(dev),
529 	    "bundle_max", &sc->tunable_bundle_max);
530 
531 	/*
532 	 * Find out the chip revision; lump all 82557 revs together.
533 	 */
534 	fxp_read_eeprom(sc, &data, 5, 1);
535 	if ((data >> 8) == 1)
536 		sc->revision = FXP_REV_82557;
537 	else
538 		sc->revision = pci_get_revid(dev);
539 
540 	/*
541 	 * Enable workarounds for certain chip revision deficiencies.
542 	 *
543 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
544 	 * some systems based a normal 82559 design, have a defect where
545 	 * the chip can cause a PCI protocol violation if it receives
546 	 * a CU_RESUME command when it is entering the IDLE state.  The
547 	 * workaround is to disable Dynamic Standby Mode, so the chip never
548 	 * deasserts CLKRUN#, and always remains in an active state.
549 	 *
550 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
551 	 */
552 	i = pci_get_device(dev);
553 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
554 	    sc->revision >= FXP_REV_82559_A0) {
555 		fxp_read_eeprom(sc, &data, 10, 1);
556 		if (data & 0x02) {			/* STB enable */
557 			u_int16_t cksum;
558 			int i;
559 
560 			device_printf(dev,
561 			    "Disabling dynamic standby mode in EEPROM\n");
562 			data &= ~0x02;
563 			fxp_write_eeprom(sc, &data, 10, 1);
564 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
565 			cksum = 0;
566 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
567 				fxp_read_eeprom(sc, &data, i, 1);
568 				cksum += data;
569 			}
570 			i = (1 << sc->eeprom_size) - 1;
571 			cksum = 0xBABA - cksum;
572 			fxp_read_eeprom(sc, &data, i, 1);
573 			fxp_write_eeprom(sc, &cksum, i, 1);
574 			device_printf(dev,
575 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
576 			    i, data, cksum);
577 #if 1
578 			/*
579 			 * If the user elects to continue, try the software
580 			 * workaround, as it is better than nothing.
581 			 */
582 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
583 #endif
584 		}
585 	}
586 
587 	/*
588 	 * If we are not a 82557 chip, we can enable extended features.
589 	 */
590 	if (sc->revision != FXP_REV_82557) {
591 		/*
592 		 * If MWI is enabled in the PCI configuration, and there
593 		 * is a valid cacheline size (8 or 16 dwords), then tell
594 		 * the board to turn on MWI.
595 		 */
596 		if (val & PCIM_CMD_MWRICEN &&
597 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
598 			sc->flags |= FXP_FLAG_MWI_ENABLE;
599 
600 		/* turn on the extended TxCB feature */
601 		sc->flags |= FXP_FLAG_EXT_TXCB;
602 
603 		/* enable reception of long frames for VLAN */
604 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
605 	}
606 
607 	/*
608 	 * Read MAC address.
609 	 */
610 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
611 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
612 		device_printf(dev, "10Mbps\n");
613 	if (bootverbose) {
614 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
615 		    pci_get_vendor(dev), pci_get_device(dev),
616 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
617 		    pci_get_revid(dev));
618 		fxp_read_eeprom(sc, &data, 10, 1);
619 		device_printf(dev, "Dynamic Standby mode is %s\n",
620 		    data & 0x02 ? "enabled" : "disabled");
621 	}
622 
623 	/*
624 	 * If this is only a 10Mbps device, then there is no MII, and
625 	 * the PHY will use a serial interface instead.
626 	 *
627 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
628 	 * doesn't have a programming interface of any sort.  The
629 	 * media is sensed automatically based on how the link partner
630 	 * is configured.  This is, in essence, manual configuration.
631 	 */
632 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
633 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
634 		    fxp_serial_ifmedia_sts);
635 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
636 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
637 	} else {
638 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
639 		    fxp_ifmedia_sts)) {
640 	                device_printf(dev, "MII without any PHY!\n");
641 			error = ENXIO;
642 			goto fail;
643 		}
644 	}
645 
646 	ifp = &sc->arpcom.ac_if;
647 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
648 	ifp->if_baudrate = 100000000;
649 	ifp->if_init = fxp_init;
650 	ifp->if_softc = sc;
651 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
652 	ifp->if_ioctl = fxp_ioctl;
653 	ifp->if_start = fxp_start;
654 #ifdef IFPOLL_ENABLE
655 	ifp->if_npoll = fxp_npoll;
656 #endif
657 	ifp->if_watchdog = fxp_watchdog;
658 
659 	/*
660 	 * Attach the interface.
661 	 */
662 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
663 
664 #ifdef IFPOLL_ENABLE
665 	ifpoll_compat_setup(&sc->fxp_npoll,
666 	    &sc->sysctl_ctx, sc->sysctl_tree, device_get_unit(dev),
667 	    ifp->if_serializer);
668 #endif
669 
670 	/*
671 	 * Tell the upper layer(s) we support long frames.
672 	 */
673 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
674 
675 	/*
676 	 * Let the system queue as many packets as we have available
677 	 * TX descriptors.
678 	 */
679 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
680 	ifq_set_ready(&ifp->if_snd);
681 
682 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
683 
684 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
685 			       fxp_intr, sc, &sc->ih,
686 			       ifp->if_serializer);
687 	if (error) {
688 		ether_ifdetach(ifp);
689 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
690 			ifmedia_removeall(&sc->sc_media);
691 		device_printf(dev, "could not setup irq\n");
692 		goto fail;
693 	}
694 
695 	return (0);
696 
697 failmem:
698 	device_printf(dev, "Failed to malloc memory\n");
699 	error = ENOMEM;
700 fail:
701 	fxp_release(dev);
702 	return (error);
703 }
704 
705 /*
706  * release all resources
707  */
708 static void
709 fxp_release(device_t dev)
710 {
711 	struct fxp_softc *sc = device_get_softc(dev);
712 
713 	if (sc->miibus)
714 		device_delete_child(dev, sc->miibus);
715 	bus_generic_detach(dev);
716 
717 	if (sc->cbl_base)
718 		kfree(sc->cbl_base, M_DEVBUF);
719 	if (sc->fxp_stats)
720 		kfree(sc->fxp_stats, M_DEVBUF);
721 	if (sc->mcsp)
722 		kfree(sc->mcsp, M_DEVBUF);
723 	if (sc->rfa_headm)
724 		m_freem(sc->rfa_headm);
725 
726 	if (sc->irq)
727 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
728 	if (sc->mem)
729 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
730 
731         sysctl_ctx_free(&sc->sysctl_ctx);
732 }
733 
734 /*
735  * Detach interface.
736  */
737 static int
738 fxp_detach(device_t dev)
739 {
740 	struct fxp_softc *sc = device_get_softc(dev);
741 
742 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
743 
744 	/*
745 	 * Stop DMA and drop transmit queue.
746 	 */
747 	fxp_stop(sc);
748 
749 	/*
750 	 * Disable interrupts.
751 	 *
752 	 * NOTE: This should be done after fxp_stop(), because software
753 	 * resetting in fxp_stop() may leave interrupts turned on.
754 	 */
755 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
756 
757 	/*
758 	 * Free all media structures.
759 	 */
760 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
761 		ifmedia_removeall(&sc->sc_media);
762 
763 	if (sc->ih)
764 		bus_teardown_intr(dev, sc->irq, sc->ih);
765 
766 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
767 
768 	/*
769 	 * Close down routes etc.
770 	 */
771 	ether_ifdetach(&sc->arpcom.ac_if);
772 
773 	/* Release our allocated resources. */
774 	fxp_release(dev);
775 
776 	return (0);
777 }
778 
779 /*
780  * Device shutdown routine. Called at system shutdown after sync. The
781  * main purpose of this routine is to shut off receiver DMA so that
782  * kernel memory doesn't get clobbered during warmboot.
783  */
784 static int
785 fxp_shutdown(device_t dev)
786 {
787 	struct fxp_softc *sc = device_get_softc(dev);
788 	struct ifnet *ifp = &sc->arpcom.ac_if;
789 
790 	lwkt_serialize_enter(ifp->if_serializer);
791 	/*
792 	 * Make sure that DMA is disabled prior to reboot. Not doing
793 	 * do could allow DMA to corrupt kernel memory during the
794 	 * reboot before the driver initializes.
795 	 */
796 	fxp_stop(sc);
797 	lwkt_serialize_exit(ifp->if_serializer);
798 	return (0);
799 }
800 
801 /*
802  * Device suspend routine.  Stop the interface and save some PCI
803  * settings in case the BIOS doesn't restore them properly on
804  * resume.
805  */
806 static int
807 fxp_suspend(device_t dev)
808 {
809 	struct fxp_softc *sc = device_get_softc(dev);
810 	int i;
811 
812 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
813 
814 	fxp_stop(sc);
815 
816 	for (i = 0; i < 5; i++)
817 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
818 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
819 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
820 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
821 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
822 
823 	sc->suspended = 1;
824 
825 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
826 	return (0);
827 }
828 
829 /*
830  * Device resume routine.  Restore some PCI settings in case the BIOS
831  * doesn't, re-enable busmastering, and restart the interface if
832  * appropriate.
833  */
834 static int
835 fxp_resume(device_t dev)
836 {
837 	struct fxp_softc *sc = device_get_softc(dev);
838 	struct ifnet *ifp = &sc->arpcom.ac_if;
839 	int i;
840 
841 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
842 
843 	fxp_powerstate_d0(dev);
844 
845 	/* better way to do this? */
846 	for (i = 0; i < 5; i++)
847 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
848 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
849 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
850 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
851 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
852 
853 	/* reenable busmastering and memory space */
854 	pci_enable_busmaster(dev);
855 	pci_enable_io(dev, SYS_RES_MEMORY);
856 
857 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
858 	DELAY(10);
859 
860 	/* reinitialize interface if necessary */
861 	if (ifp->if_flags & IFF_UP)
862 		fxp_init(sc);
863 
864 	sc->suspended = 0;
865 
866 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
867 	return (0);
868 }
869 
870 static void
871 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
872 {
873 	u_int16_t reg;
874 	int x;
875 
876 	/*
877 	 * Shift in data.
878 	 */
879 	for (x = 1 << (length - 1); x; x >>= 1) {
880 		if (data & x)
881 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
882 		else
883 			reg = FXP_EEPROM_EECS;
884 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
885 		DELAY(1);
886 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
887 		DELAY(1);
888 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
889 		DELAY(1);
890 	}
891 }
892 
893 /*
894  * Read from the serial EEPROM. Basically, you manually shift in
895  * the read opcode (one bit at a time) and then shift in the address,
896  * and then you shift out the data (all of this one bit at a time).
897  * The word size is 16 bits, so you have to provide the address for
898  * every 16 bits of data.
899  */
900 static u_int16_t
901 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
902 {
903 	u_int16_t reg, data;
904 	int x;
905 
906 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
907 	/*
908 	 * Shift in read opcode.
909 	 */
910 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
911 	/*
912 	 * Shift in address.
913 	 */
914 	data = 0;
915 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
916 		if (offset & x)
917 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
918 		else
919 			reg = FXP_EEPROM_EECS;
920 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
921 		DELAY(1);
922 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
923 		DELAY(1);
924 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
925 		DELAY(1);
926 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
927 		data++;
928 		if (autosize && reg == 0) {
929 			sc->eeprom_size = data;
930 			break;
931 		}
932 	}
933 	/*
934 	 * Shift out data.
935 	 */
936 	data = 0;
937 	reg = FXP_EEPROM_EECS;
938 	for (x = 1 << 15; x; x >>= 1) {
939 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
940 		DELAY(1);
941 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
942 			data |= x;
943 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
944 		DELAY(1);
945 	}
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
947 	DELAY(1);
948 
949 	return (data);
950 }
951 
952 static void
953 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
954 {
955 	int i;
956 
957 	/*
958 	 * Erase/write enable.
959 	 */
960 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
961 	fxp_eeprom_shiftin(sc, 0x4, 3);
962 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
963 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
964 	DELAY(1);
965 	/*
966 	 * Shift in write opcode, address, data.
967 	 */
968 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
969 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
970 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
971 	fxp_eeprom_shiftin(sc, data, 16);
972 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
973 	DELAY(1);
974 	/*
975 	 * Wait for EEPROM to finish up.
976 	 */
977 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
978 	DELAY(1);
979 	for (i = 0; i < 1000; i++) {
980 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
981 			break;
982 		DELAY(50);
983 	}
984 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
985 	DELAY(1);
986 	/*
987 	 * Erase/write disable.
988 	 */
989 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
990 	fxp_eeprom_shiftin(sc, 0x4, 3);
991 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
992 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
993 	DELAY(1);
994 }
995 
996 /*
997  * From NetBSD:
998  *
999  * Figure out EEPROM size.
1000  *
1001  * 559's can have either 64-word or 256-word EEPROMs, the 558
1002  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1003  * talks about the existance of 16 to 256 word EEPROMs.
1004  *
1005  * The only known sizes are 64 and 256, where the 256 version is used
1006  * by CardBus cards to store CIS information.
1007  *
1008  * The address is shifted in msb-to-lsb, and after the last
1009  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1010  * after which follows the actual data. We try to detect this zero, by
1011  * probing the data-out bit in the EEPROM control register just after
1012  * having shifted in a bit. If the bit is zero, we assume we've
1013  * shifted enough address bits. The data-out should be tri-state,
1014  * before this, which should translate to a logical one.
1015  */
1016 static void
1017 fxp_autosize_eeprom(struct fxp_softc *sc)
1018 {
1019 
1020 	/* guess maximum size of 256 words */
1021 	sc->eeprom_size = 8;
1022 
1023 	/* autosize */
1024 	fxp_eeprom_getword(sc, 0, 1);
1025 }
1026 
1027 static void
1028 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < words; i++)
1033 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1034 }
1035 
1036 static void
1037 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < words; i++)
1042 		fxp_eeprom_putword(sc, offset + i, data[i]);
1043 }
1044 
1045 /*
1046  * Start packet transmission on the interface.
1047  */
1048 static void
1049 fxp_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1050 {
1051 	struct fxp_softc *sc = ifp->if_softc;
1052 	struct fxp_cb_tx *txp;
1053 
1054 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1055 	ASSERT_SERIALIZED(ifp->if_serializer);
1056 
1057 	/*
1058 	 * See if we need to suspend xmit until the multicast filter
1059 	 * has been reprogrammed (which can only be done at the head
1060 	 * of the command chain).
1061 	 */
1062 	if (sc->need_mcsetup) {
1063 		ifq_purge(&ifp->if_snd);
1064 		return;
1065 	}
1066 
1067 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1068 		return;
1069 
1070 	txp = NULL;
1071 
1072 	/*
1073 	 * We're finished if there is nothing more to add to the list or if
1074 	 * we're all filled up with buffers to transmit.
1075 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1076 	 *       a NOP command when needed.
1077 	 */
1078 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1079 		struct mbuf *m, *mb_head;
1080 		int segment, ntries = 0;
1081 
1082 		/*
1083 		 * Grab a packet to transmit.
1084 		 */
1085 		mb_head = ifq_dequeue(&ifp->if_snd);
1086 		if (mb_head == NULL)
1087 			break;
1088 tbdinit:
1089 		/*
1090 		 * Make sure that the packet fits into one TX desc
1091 		 */
1092 		segment = 0;
1093 		for (m = mb_head; m != NULL; m = m->m_next) {
1094 			if (m->m_len != 0) {
1095 				++segment;
1096 				if (segment >= FXP_NTXSEG)
1097 					break;
1098 			}
1099 		}
1100 		if (segment >= FXP_NTXSEG) {
1101 			struct mbuf *mn;
1102 
1103 			if (ntries) {
1104 				/*
1105 				 * Packet is excessively fragmented,
1106 				 * and will never fit into one TX
1107 				 * desc.  Give it up.
1108 				 */
1109 				m_freem(mb_head);
1110 				IFNET_STAT_INC(ifp, oerrors, 1);
1111 				continue;
1112 			}
1113 
1114 			mn = m_dup(mb_head, MB_DONTWAIT);
1115 			if (mn == NULL) {
1116 				m_freem(mb_head);
1117 				IFNET_STAT_INC(ifp, oerrors, 1);
1118 				continue;
1119 			}
1120 
1121 			m_freem(mb_head);
1122 			mb_head = mn;
1123 			ntries = 1;
1124 			goto tbdinit;
1125 		}
1126 
1127 		/*
1128 		 * Get pointer to next available tx desc.
1129 		 */
1130 		txp = sc->cbl_last->next;
1131 
1132 		/*
1133 		 * Go through each of the mbufs in the chain and initialize
1134 		 * the transmit buffer descriptors with the physical address
1135 		 * and size of the mbuf.
1136 		 */
1137 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1138 			if (m->m_len != 0) {
1139 				KKASSERT(segment < FXP_NTXSEG);
1140 
1141 				txp->tbd[segment].tb_addr =
1142 				    vtophys(mtod(m, vm_offset_t));
1143 				txp->tbd[segment].tb_size = m->m_len;
1144 				segment++;
1145 			}
1146 		}
1147 		KKASSERT(m == NULL);
1148 
1149 		txp->tbd_number = segment;
1150 		txp->mb_head = mb_head;
1151 		txp->cb_status = 0;
1152 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1153 			txp->cb_command =
1154 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1155 			    FXP_CB_COMMAND_S;
1156 		} else {
1157 			txp->cb_command =
1158 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1159 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1160 		}
1161 		txp->tx_threshold = tx_threshold;
1162 
1163 		/*
1164 		 * Advance the end of list forward.
1165 		 */
1166 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1167 		sc->cbl_last = txp;
1168 
1169 		/*
1170 		 * Advance the beginning of the list forward if there are
1171 		 * no other packets queued (when nothing is queued, cbl_first
1172 		 * sits on the last TxCB that was sent out).
1173 		 */
1174 		if (sc->tx_queued == 0)
1175 			sc->cbl_first = txp;
1176 
1177 		sc->tx_queued++;
1178 		/*
1179 		 * Set a 5 second timer just in case we don't hear
1180 		 * from the card again.
1181 		 */
1182 		ifp->if_timer = 5;
1183 
1184 		BPF_MTAP(ifp, mb_head);
1185 	}
1186 
1187 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1188 		ifq_set_oactive(&ifp->if_snd);
1189 
1190 	/*
1191 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1192 	 * going again if suspended.
1193 	 */
1194 	if (txp != NULL) {
1195 		fxp_scb_wait(sc);
1196 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1197 	}
1198 }
1199 
1200 #ifdef IFPOLL_ENABLE
1201 
1202 static void
1203 fxp_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1204 {
1205 	struct fxp_softc *sc = ifp->if_softc;
1206 	u_int8_t statack;
1207 
1208 	ASSERT_SERIALIZED(ifp->if_serializer);
1209 
1210 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1211 		  FXP_SCB_STATACK_FR;
1212 	if (sc->fxp_npoll.ifpc_stcount-- == 0) {
1213 		u_int8_t tmp;
1214 
1215 		sc->fxp_npoll.ifpc_stcount = sc->fxp_npoll.ifpc_stfrac;
1216 
1217 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1218 		if (tmp == 0xff || tmp == 0)
1219 			return; /* nothing to do */
1220 		tmp &= ~statack;
1221 		/* ack what we can */
1222 		if (tmp != 0)
1223 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1224 		statack |= tmp;
1225 	}
1226 	fxp_intr_body(sc, statack, count);
1227 }
1228 
1229 static void
1230 fxp_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1231 {
1232 	struct fxp_softc *sc = ifp->if_softc;
1233 
1234 	ASSERT_SERIALIZED(ifp->if_serializer);
1235 
1236 	if (info != NULL) {
1237 		int cpuid = sc->fxp_npoll.ifpc_cpuid;
1238 
1239 		info->ifpi_rx[cpuid].poll_func = fxp_npoll_compat;
1240 		info->ifpi_rx[cpuid].arg = NULL;
1241 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1242 
1243 		if (ifp->if_flags & IFF_RUNNING) {
1244 			/* disable interrupts */
1245 			CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
1246 			    FXP_SCB_INTR_DISABLE);
1247 			sc->fxp_npoll.ifpc_stcount = 0;
1248 		}
1249 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1250 	} else {
1251 		if (ifp->if_flags & IFF_RUNNING) {
1252 			/* enable interrupts */
1253 			CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1254 		}
1255 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
1256 	}
1257 }
1258 
1259 #endif /* IFPOLL_ENABLE */
1260 
1261 /*
1262  * Process interface interrupts.
1263  */
1264 static void
1265 fxp_intr(void *xsc)
1266 {
1267 	struct fxp_softc *sc = xsc;
1268 	u_int8_t statack;
1269 
1270 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1271 
1272 	if (sc->suspended) {
1273 		return;
1274 	}
1275 
1276 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1277 		/*
1278 		 * It should not be possible to have all bits set; the
1279 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1280 		 * all bits are set, this may indicate that the card has
1281 		 * been physically ejected, so ignore it.
1282 		 */
1283 		if (statack == 0xff)
1284 			return;
1285 
1286 		/*
1287 		 * First ACK all the interrupts in this pass.
1288 		 */
1289 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1290 		fxp_intr_body(sc, statack, -1);
1291 	}
1292 }
1293 
1294 static void
1295 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1296 {
1297 	struct ifnet *ifp = &sc->arpcom.ac_if;
1298 	struct mbuf *m;
1299 	struct fxp_rfa *rfa;
1300 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1301 
1302 	if (rnr)
1303 		fxp_rnr++;
1304 #ifdef IFPOLL_ENABLE
1305 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1306 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1307 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1308 		rnr = 1;
1309 	}
1310 #endif
1311 
1312 	/*
1313 	 * Free any finished transmit mbuf chains.
1314 	 *
1315 	 * Handle the CNA event likt a CXTNO event. It used to
1316 	 * be that this event (control unit not ready) was not
1317 	 * encountered, but it is now with the SMPng modifications.
1318 	 * The exact sequence of events that occur when the interface
1319 	 * is brought up are different now, and if this event
1320 	 * goes unhandled, the configuration/rxfilter setup sequence
1321 	 * can stall for several seconds. The result is that no
1322 	 * packets go out onto the wire for about 5 to 10 seconds
1323 	 * after the interface is ifconfig'ed for the first time.
1324 	 */
1325 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1326 		struct fxp_cb_tx *txp;
1327 
1328 		for (txp = sc->cbl_first; sc->tx_queued &&
1329 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1330 		    txp = txp->next) {
1331 			if ((m = txp->mb_head) != NULL) {
1332 				txp->mb_head = NULL;
1333 				sc->tx_queued--;
1334 				m_freem(m);
1335 			} else {
1336 				sc->tx_queued--;
1337 			}
1338 		}
1339 		sc->cbl_first = txp;
1340 
1341 		if (sc->tx_queued < FXP_USABLE_TXCB)
1342 			ifq_clr_oactive(&ifp->if_snd);
1343 
1344 		if (sc->tx_queued == 0) {
1345 			ifp->if_timer = 0;
1346 			if (sc->need_mcsetup)
1347 				fxp_mc_setup(sc);
1348 		}
1349 
1350 		/*
1351 		 * Try to start more packets transmitting.
1352 		 */
1353 		if (!ifq_is_empty(&ifp->if_snd))
1354 			if_devstart(ifp);
1355 	}
1356 
1357 	/*
1358 	 * Just return if nothing happened on the receive side.
1359 	 */
1360 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1361 		return;
1362 
1363 	/*
1364 	 * Process receiver interrupts. If a no-resource (RNR)
1365 	 * condition exists, get whatever packets we can and
1366 	 * re-start the receiver.
1367 	 *
1368 	 * When using polling, we do not process the list to completion,
1369 	 * so when we get an RNR interrupt we must defer the restart
1370 	 * until we hit the last buffer with the C bit set.
1371 	 * If we run out of cycles and rfa_headm has the C bit set,
1372 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1373 	 * that the info will be used in the subsequent polling cycle.
1374 	 */
1375 	for (;;) {
1376 		m = sc->rfa_headm;
1377 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1378 					 RFA_ALIGNMENT_FUDGE);
1379 
1380 #ifdef IFPOLL_ENABLE /* loop at most count times if count >=0 */
1381 		if (count >= 0 && count-- == 0) {
1382 			if (rnr) {
1383 				/* Defer RNR processing until the next time. */
1384 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1385 				rnr = 0;
1386 			}
1387 			break;
1388 		}
1389 #endif /* IFPOLL_ENABLE */
1390 
1391 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1392 			break;
1393 
1394 		/*
1395 		 * Remove first packet from the chain.
1396 		 */
1397 		sc->rfa_headm = m->m_next;
1398 		if (sc->rfa_headm == NULL)
1399 			sc->rfa_tailm = NULL;
1400 		m->m_next = NULL;
1401 
1402 		/*
1403 		 * Add a new buffer to the receive chain.
1404 		 * If this fails, the old buffer is recycled
1405 		 * instead.
1406 		 */
1407 		if (fxp_add_rfabuf(sc, m) == 0) {
1408 			int total_len;
1409 
1410 			/*
1411 			 * Fetch packet length (the top 2 bits of
1412 			 * actual_size are flags set by the controller
1413 			 * upon completion), and drop the packet in case
1414 			 * of bogus length or CRC errors.
1415 			 */
1416 			total_len = rfa->actual_size & 0x3fff;
1417 			if (total_len < sizeof(struct ether_header) ||
1418 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1419 					sizeof(struct fxp_rfa) ||
1420 			    (rfa->rfa_status & FXP_RFA_STATUS_CRC)) {
1421 				m_freem(m);
1422 				continue;
1423 			}
1424 			m->m_pkthdr.len = m->m_len = total_len;
1425 			ifp->if_input(ifp, m, NULL, -1);
1426 		}
1427 	}
1428 
1429 	if (rnr) {
1430 		fxp_scb_wait(sc);
1431 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1432 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1433 		    RFA_ALIGNMENT_FUDGE);
1434 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1435 	}
1436 }
1437 
1438 /*
1439  * Update packet in/out/collision statistics. The i82557 doesn't
1440  * allow you to access these counters without doing a fairly
1441  * expensive DMA to get _all_ of the statistics it maintains, so
1442  * we do this operation here only once per second. The statistics
1443  * counters in the kernel are updated from the previous dump-stats
1444  * DMA and then a new dump-stats DMA is started. The on-chip
1445  * counters are zeroed when the DMA completes. If we can't start
1446  * the DMA immediately, we don't wait - we just prepare to read
1447  * them again next time.
1448  */
1449 static void
1450 fxp_tick(void *xsc)
1451 {
1452 	struct fxp_softc *sc = xsc;
1453 	struct ifnet *ifp = &sc->arpcom.ac_if;
1454 	struct fxp_stats *sp = sc->fxp_stats;
1455 	struct fxp_cb_tx *txp;
1456 	struct mbuf *m;
1457 
1458 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1459 
1460 	IFNET_STAT_INC(ifp, opackets, sp->tx_good);
1461 	IFNET_STAT_INC(ifp, collisions, sp->tx_total_collisions);
1462 	if (sp->rx_good) {
1463 		IFNET_STAT_INC(ifp, ipackets, sp->rx_good);
1464 		sc->rx_idle_secs = 0;
1465 	} else {
1466 		/*
1467 		 * Receiver's been idle for another second.
1468 		 */
1469 		sc->rx_idle_secs++;
1470 	}
1471 	IFNET_STAT_INC(ifp, ierrors,
1472 	    sp->rx_crc_errors +
1473 	    sp->rx_alignment_errors +
1474 	    sp->rx_rnr_errors +
1475 	    sp->rx_overrun_errors);
1476 	/*
1477 	 * If any transmit underruns occured, bump up the transmit
1478 	 * threshold by another 512 bytes (64 * 8).
1479 	 */
1480 	if (sp->tx_underruns) {
1481 		IFNET_STAT_INC(ifp, oerrors, sp->tx_underruns);
1482 		if (tx_threshold < 192)
1483 			tx_threshold += 64;
1484 	}
1485 
1486 	/*
1487 	 * Release any xmit buffers that have completed DMA. This isn't
1488 	 * strictly necessary to do here, but it's advantagous for mbufs
1489 	 * with external storage to be released in a timely manner rather
1490 	 * than being defered for a potentially long time. This limits
1491 	 * the delay to a maximum of one second.
1492 	 */
1493 	for (txp = sc->cbl_first; sc->tx_queued &&
1494 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1495 	    txp = txp->next) {
1496 		if ((m = txp->mb_head) != NULL) {
1497 			txp->mb_head = NULL;
1498 			sc->tx_queued--;
1499 			m_freem(m);
1500 		} else {
1501 			sc->tx_queued--;
1502 		}
1503 	}
1504 	sc->cbl_first = txp;
1505 
1506 	if (sc->tx_queued < FXP_USABLE_TXCB)
1507 		ifq_clr_oactive(&ifp->if_snd);
1508 	if (sc->tx_queued == 0)
1509 		ifp->if_timer = 0;
1510 
1511  	/*
1512 	 * Try to start more packets transmitting.
1513 	 */
1514 	if (!ifq_is_empty(&ifp->if_snd))
1515 		if_devstart(ifp);
1516 
1517 	/*
1518 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1519 	 * then assume the receiver has locked up and attempt to clear
1520 	 * the condition by reprogramming the multicast filter. This is
1521 	 * a work-around for a bug in the 82557 where the receiver locks
1522 	 * up if it gets certain types of garbage in the syncronization
1523 	 * bits prior to the packet header. This bug is supposed to only
1524 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1525 	 * mode as well (perhaps due to a 10/100 speed transition).
1526 	 */
1527 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1528 		sc->rx_idle_secs = 0;
1529 		fxp_mc_setup(sc);
1530 	}
1531 	/*
1532 	 * If there is no pending command, start another stats
1533 	 * dump. Otherwise punt for now.
1534 	 */
1535 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1536 		/*
1537 		 * Start another stats dump.
1538 		 */
1539 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1540 	} else {
1541 		/*
1542 		 * A previous command is still waiting to be accepted.
1543 		 * Just zero our copy of the stats and wait for the
1544 		 * next timer event to update them.
1545 		 */
1546 		sp->tx_good = 0;
1547 		sp->tx_underruns = 0;
1548 		sp->tx_total_collisions = 0;
1549 
1550 		sp->rx_good = 0;
1551 		sp->rx_crc_errors = 0;
1552 		sp->rx_alignment_errors = 0;
1553 		sp->rx_rnr_errors = 0;
1554 		sp->rx_overrun_errors = 0;
1555 	}
1556 	if (sc->miibus != NULL)
1557 		mii_tick(device_get_softc(sc->miibus));
1558 	/*
1559 	 * Schedule another timeout one second from now.
1560 	 */
1561 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1562 
1563 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1564 }
1565 
1566 /*
1567  * Stop the interface. Cancels the statistics updater and resets
1568  * the interface.
1569  */
1570 static void
1571 fxp_stop(struct fxp_softc *sc)
1572 {
1573 	struct ifnet *ifp = &sc->arpcom.ac_if;
1574 	struct fxp_cb_tx *txp;
1575 	int i;
1576 
1577 	ASSERT_SERIALIZED(ifp->if_serializer);
1578 
1579 	ifp->if_flags &= ~IFF_RUNNING;
1580 	ifq_clr_oactive(&ifp->if_snd);
1581 	ifp->if_timer = 0;
1582 
1583 	/*
1584 	 * Cancel stats updater.
1585 	 */
1586 	callout_stop(&sc->fxp_stat_timer);
1587 
1588 	/*
1589 	 * Issue software reset, which also unloads the microcode.
1590 	 */
1591 	sc->flags &= ~FXP_FLAG_UCODE;
1592 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1593 	DELAY(50);
1594 
1595 	/*
1596 	 * Release any xmit buffers.
1597 	 */
1598 	txp = sc->cbl_base;
1599 	if (txp != NULL) {
1600 		for (i = 0; i < FXP_NTXCB; i++) {
1601 			if (txp[i].mb_head != NULL) {
1602 				m_freem(txp[i].mb_head);
1603 				txp[i].mb_head = NULL;
1604 			}
1605 		}
1606 	}
1607 	sc->tx_queued = 0;
1608 
1609 	/*
1610 	 * Free all the receive buffers then reallocate/reinitialize
1611 	 */
1612 	if (sc->rfa_headm != NULL)
1613 		m_freem(sc->rfa_headm);
1614 	sc->rfa_headm = NULL;
1615 	sc->rfa_tailm = NULL;
1616 	for (i = 0; i < FXP_NRFABUFS; i++) {
1617 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1618 			/*
1619 			 * This "can't happen" - we're at splimp()
1620 			 * and we just freed all the buffers we need
1621 			 * above.
1622 			 */
1623 			panic("fxp_stop: no buffers!");
1624 		}
1625 	}
1626 }
1627 
1628 /*
1629  * Watchdog/transmission transmit timeout handler. Called when a
1630  * transmission is started on the interface, but no interrupt is
1631  * received before the timeout. This usually indicates that the
1632  * card has wedged for some reason.
1633  */
1634 static void
1635 fxp_watchdog(struct ifnet *ifp)
1636 {
1637 	ASSERT_SERIALIZED(ifp->if_serializer);
1638 
1639 	if_printf(ifp, "device timeout\n");
1640 	IFNET_STAT_INC(ifp, oerrors, 1);
1641 	fxp_init(ifp->if_softc);
1642 }
1643 
1644 static void
1645 fxp_init(void *xsc)
1646 {
1647 	struct fxp_softc *sc = xsc;
1648 	struct ifnet *ifp = &sc->arpcom.ac_if;
1649 	struct fxp_cb_config *cbp;
1650 	struct fxp_cb_ias *cb_ias;
1651 	struct fxp_cb_tx *txp;
1652 	struct fxp_cb_mcs *mcsp;
1653 	int i, prm;
1654 
1655 	ASSERT_SERIALIZED(ifp->if_serializer);
1656 
1657 	/*
1658 	 * Cancel any pending I/O
1659 	 */
1660 	fxp_stop(sc);
1661 
1662 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1663 
1664 	/*
1665 	 * Initialize base of CBL and RFA memory. Loading with zero
1666 	 * sets it up for regular linear addressing.
1667 	 */
1668 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1669 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1670 
1671 	fxp_scb_wait(sc);
1672 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1673 
1674 	/*
1675 	 * Initialize base of dump-stats buffer.
1676 	 */
1677 	fxp_scb_wait(sc);
1678 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1679 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1680 
1681 	/*
1682 	 * Attempt to load microcode if requested.
1683 	 */
1684 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1685 		fxp_load_ucode(sc);
1686 
1687 	/*
1688 	 * Initialize the multicast address list.
1689 	 */
1690 	if (fxp_mc_addrs(sc)) {
1691 		mcsp = sc->mcsp;
1692 		mcsp->cb_status = 0;
1693 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1694 		mcsp->link_addr = -1;
1695 		/*
1696 	 	 * Start the multicast setup command.
1697 		 */
1698 		fxp_scb_wait(sc);
1699 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1700 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1701 		/* ...and wait for it to complete. */
1702 		fxp_dma_wait(&mcsp->cb_status, sc);
1703 	}
1704 
1705 	/*
1706 	 * We temporarily use memory that contains the TxCB list to
1707 	 * construct the config CB. The TxCB list memory is rebuilt
1708 	 * later.
1709 	 */
1710 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1711 
1712 	/*
1713 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1714 	 * zero and must be one bits in this structure and this is the easiest
1715 	 * way to initialize them all to proper values.
1716 	 */
1717 	bcopy(fxp_cb_config_template,
1718 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1719 		sizeof(fxp_cb_config_template));
1720 
1721 	cbp->cb_status =	0;
1722 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1723 	cbp->link_addr =	-1;	/* (no) next command */
1724 	cbp->byte_count =	22;	/* (22) bytes to config */
1725 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1726 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1727 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1728 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1729 	cbp->type_enable =	0;	/* actually reserved */
1730 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1731 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1732 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1733 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1734 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1735 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1736 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1737 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1738 	cbp->ci_int =		1;	/* interrupt on CU idle */
1739 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1740 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1741 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1742 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1743 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1744 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1745 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1746 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1747 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1748 	cbp->csma_dis =		0;	/* (don't) disable link */
1749 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1750 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1751 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1752 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1753 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1754 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1755 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1756 	cbp->loopback =		0;	/* (don't) loopback */
1757 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1758 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1759 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1760 	cbp->promiscuous =	prm;	/* promiscuous mode */
1761 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1762 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1763 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1764 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1765 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1766 
1767 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1768 	cbp->padding =		1;	/* (do) pad short tx packets */
1769 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1770 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1771 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1772 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1773 					/* must set wake_en in PMCSR also */
1774 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1775 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1776 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1777 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1778 
1779 	if (sc->revision == FXP_REV_82557) {
1780 		/*
1781 		 * The 82557 has no hardware flow control, the values
1782 		 * below are the defaults for the chip.
1783 		 */
1784 		cbp->fc_delay_lsb =	0;
1785 		cbp->fc_delay_msb =	0x40;
1786 		cbp->pri_fc_thresh =	3;
1787 		cbp->tx_fc_dis =	0;
1788 		cbp->rx_fc_restop =	0;
1789 		cbp->rx_fc_restart =	0;
1790 		cbp->fc_filter =	0;
1791 		cbp->pri_fc_loc =	1;
1792 	} else {
1793 		cbp->fc_delay_lsb =	0x1f;
1794 		cbp->fc_delay_msb =	0x01;
1795 		cbp->pri_fc_thresh =	3;
1796 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1797 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1798 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1799 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1800 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1801 	}
1802 
1803 	/*
1804 	 * Start the config command/DMA.
1805 	 */
1806 	fxp_scb_wait(sc);
1807 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1808 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1809 	/* ...and wait for it to complete. */
1810 	fxp_dma_wait(&cbp->cb_status, sc);
1811 
1812 	/*
1813 	 * Now initialize the station address. Temporarily use the TxCB
1814 	 * memory area like we did above for the config CB.
1815 	 */
1816 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1817 	cb_ias->cb_status = 0;
1818 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1819 	cb_ias->link_addr = -1;
1820 	bcopy(sc->arpcom.ac_enaddr,
1821 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1822 	    sizeof(sc->arpcom.ac_enaddr));
1823 
1824 	/*
1825 	 * Start the IAS (Individual Address Setup) command/DMA.
1826 	 */
1827 	fxp_scb_wait(sc);
1828 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1829 	/* ...and wait for it to complete. */
1830 	fxp_dma_wait(&cb_ias->cb_status, sc);
1831 
1832 	/*
1833 	 * Initialize transmit control block (TxCB) list.
1834 	 */
1835 
1836 	txp = sc->cbl_base;
1837 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1838 	for (i = 0; i < FXP_NTXCB; i++) {
1839 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1840 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1841 		txp[i].link_addr =
1842 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1843 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1844 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1845 		else
1846 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1847 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1848 	}
1849 	/*
1850 	 * Set the suspend flag on the first TxCB and start the control
1851 	 * unit. It will execute the NOP and then suspend.
1852 	 */
1853 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1854 	sc->cbl_first = sc->cbl_last = txp;
1855 	sc->tx_queued = 1;
1856 
1857 	fxp_scb_wait(sc);
1858 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1859 
1860 	/*
1861 	 * Initialize receiver buffer area - RFA.
1862 	 */
1863 	fxp_scb_wait(sc);
1864 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1865 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1866 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1867 
1868 	/*
1869 	 * Set current media.
1870 	 */
1871 	if (sc->miibus != NULL)
1872 		mii_mediachg(device_get_softc(sc->miibus));
1873 
1874 	ifp->if_flags |= IFF_RUNNING;
1875 	ifq_clr_oactive(&ifp->if_snd);
1876 
1877 	/*
1878 	 * Enable interrupts.
1879 	 */
1880 #ifdef IFPOLL_ENABLE
1881 	/*
1882 	 * ... but only do that if we are not polling. And because (presumably)
1883 	 * the default is interrupts on, we need to disable them explicitly!
1884 	 */
1885 	if (ifp->if_flags & IFF_NPOLLING) {
1886 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1887 		sc->fxp_npoll.ifpc_stcount = 0;
1888 	} else
1889 #endif /* IFPOLL_ENABLE */
1890 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1891 
1892 	/*
1893 	 * Start stats updater.
1894 	 */
1895 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1896 }
1897 
1898 static int
1899 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1900 {
1901 	ASSERT_SERIALIZED(ifp->if_serializer);
1902 	return (0);
1903 }
1904 
1905 static void
1906 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1907 {
1908 	ASSERT_SERIALIZED(ifp->if_serializer);
1909 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1910 }
1911 
1912 /*
1913  * Change media according to request.
1914  */
1915 static int
1916 fxp_ifmedia_upd(struct ifnet *ifp)
1917 {
1918 	struct fxp_softc *sc = ifp->if_softc;
1919 	struct mii_data *mii;
1920 
1921 	ASSERT_SERIALIZED(ifp->if_serializer);
1922 
1923 	mii = device_get_softc(sc->miibus);
1924 	mii_mediachg(mii);
1925 	return (0);
1926 }
1927 
1928 /*
1929  * Notify the world which media we're using.
1930  */
1931 static void
1932 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1933 {
1934 	struct fxp_softc *sc = ifp->if_softc;
1935 	struct mii_data *mii;
1936 
1937 	ASSERT_SERIALIZED(ifp->if_serializer);
1938 
1939 	mii = device_get_softc(sc->miibus);
1940 	mii_pollstat(mii);
1941 	ifmr->ifm_active = mii->mii_media_active;
1942 	ifmr->ifm_status = mii->mii_media_status;
1943 
1944 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1945 		sc->cu_resume_bug = 1;
1946 	else
1947 		sc->cu_resume_bug = 0;
1948 }
1949 
1950 /*
1951  * Add a buffer to the end of the RFA buffer list.
1952  * Return 0 if successful, 1 for failure. A failure results in
1953  * adding the 'oldm' (if non-NULL) on to the end of the list -
1954  * tossing out its old contents and recycling it.
1955  * The RFA struct is stuck at the beginning of mbuf cluster and the
1956  * data pointer is fixed up to point just past it.
1957  */
1958 static int
1959 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1960 {
1961 	u_int32_t v;
1962 	struct mbuf *m;
1963 	struct fxp_rfa *rfa, *p_rfa;
1964 
1965 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1966 	if (m == NULL) { /* try to recycle the old mbuf instead */
1967 		if (oldm == NULL)
1968 			return 1;
1969 		m = oldm;
1970 		m->m_data = m->m_ext.ext_buf;
1971 	}
1972 
1973 	/*
1974 	 * Move the data pointer up so that the incoming data packet
1975 	 * will be 32-bit aligned.
1976 	 */
1977 	m->m_data += RFA_ALIGNMENT_FUDGE;
1978 
1979 	/*
1980 	 * Get a pointer to the base of the mbuf cluster and move
1981 	 * data start past it.
1982 	 */
1983 	rfa = mtod(m, struct fxp_rfa *);
1984 	m->m_data += sizeof(struct fxp_rfa);
1985 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
1986 				RFA_ALIGNMENT_FUDGE);
1987 
1988 	/*
1989 	 * Initialize the rest of the RFA.  Note that since the RFA
1990 	 * is misaligned, we cannot store values directly.  Instead,
1991 	 * we use an optimized, inline copy.
1992 	 */
1993 
1994 	rfa->rfa_status = 0;
1995 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1996 	rfa->actual_size = 0;
1997 
1998 	v = -1;
1999 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
2000 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
2001 
2002 	/*
2003 	 * If there are other buffers already on the list, attach this
2004 	 * one to the end by fixing up the tail to point to this one.
2005 	 */
2006 	if (sc->rfa_headm != NULL) {
2007 		p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf +
2008 					   RFA_ALIGNMENT_FUDGE);
2009 		sc->rfa_tailm->m_next = m;
2010 		v = vtophys(rfa);
2011 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2012 		p_rfa->rfa_control = 0;
2013 	} else {
2014 		sc->rfa_headm = m;
2015 	}
2016 	sc->rfa_tailm = m;
2017 
2018 	return (m == oldm);
2019 }
2020 
2021 static int
2022 fxp_miibus_readreg(device_t dev, int phy, int reg)
2023 {
2024 	struct fxp_softc *sc = device_get_softc(dev);
2025 	int count = 10000;
2026 	int value;
2027 
2028 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2029 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2030 
2031 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2032 	    && count--)
2033 		DELAY(10);
2034 
2035 	if (count <= 0)
2036 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2037 
2038 	return (value & 0xffff);
2039 }
2040 
2041 static void
2042 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2043 {
2044 	struct fxp_softc *sc = device_get_softc(dev);
2045 	int count = 10000;
2046 
2047 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2048 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2049 	    (value & 0xffff));
2050 
2051 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2052 	    count--)
2053 		DELAY(10);
2054 
2055 	if (count <= 0)
2056 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2057 }
2058 
2059 static int
2060 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2061 {
2062 	struct fxp_softc *sc = ifp->if_softc;
2063 	struct ifreq *ifr = (struct ifreq *)data;
2064 	struct mii_data *mii;
2065 	int error = 0;
2066 
2067 	ASSERT_SERIALIZED(ifp->if_serializer);
2068 
2069 	switch (command) {
2070 
2071 	case SIOCSIFFLAGS:
2072 		if (ifp->if_flags & IFF_ALLMULTI)
2073 			sc->flags |= FXP_FLAG_ALL_MCAST;
2074 		else
2075 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2076 
2077 		/*
2078 		 * If interface is marked up and not running, then start it.
2079 		 * If it is marked down and running, stop it.
2080 		 * XXX If it's up then re-initialize it. This is so flags
2081 		 * such as IFF_PROMISC are handled.
2082 		 */
2083 		if (ifp->if_flags & IFF_UP) {
2084 			fxp_init(sc);
2085 		} else {
2086 			if (ifp->if_flags & IFF_RUNNING)
2087 				fxp_stop(sc);
2088 		}
2089 		break;
2090 
2091 	case SIOCADDMULTI:
2092 	case SIOCDELMULTI:
2093 		if (ifp->if_flags & IFF_ALLMULTI)
2094 			sc->flags |= FXP_FLAG_ALL_MCAST;
2095 		else
2096 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2097 		/*
2098 		 * Multicast list has changed; set the hardware filter
2099 		 * accordingly.
2100 		 */
2101 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2102 			fxp_mc_setup(sc);
2103 		/*
2104 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2105 		 * again rather than else {}.
2106 		 */
2107 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2108 			fxp_init(sc);
2109 		error = 0;
2110 		break;
2111 
2112 	case SIOCSIFMEDIA:
2113 	case SIOCGIFMEDIA:
2114 		if (sc->miibus != NULL) {
2115 			mii = device_get_softc(sc->miibus);
2116                         error = ifmedia_ioctl(ifp, ifr,
2117                             &mii->mii_media, command);
2118 		} else {
2119                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2120 		}
2121 		break;
2122 
2123 	default:
2124 		error = ether_ioctl(ifp, command, data);
2125 		break;
2126 	}
2127 	return (error);
2128 }
2129 
2130 /*
2131  * Fill in the multicast address list and return number of entries.
2132  */
2133 static int
2134 fxp_mc_addrs(struct fxp_softc *sc)
2135 {
2136 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2137 	struct ifnet *ifp = &sc->arpcom.ac_if;
2138 	struct ifmultiaddr *ifma;
2139 	int nmcasts;
2140 
2141 	nmcasts = 0;
2142 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2143 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2144 			if (ifma->ifma_addr->sa_family != AF_LINK)
2145 				continue;
2146 			if (nmcasts >= MAXMCADDR) {
2147 				sc->flags |= FXP_FLAG_ALL_MCAST;
2148 				nmcasts = 0;
2149 				break;
2150 			}
2151 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2152 			    (void *)(uintptr_t)(volatile void *)
2153 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2154 			nmcasts++;
2155 		}
2156 	}
2157 	mcsp->mc_cnt = nmcasts * 6;
2158 	return (nmcasts);
2159 }
2160 
2161 /*
2162  * Program the multicast filter.
2163  *
2164  * We have an artificial restriction that the multicast setup command
2165  * must be the first command in the chain, so we take steps to ensure
2166  * this. By requiring this, it allows us to keep up the performance of
2167  * the pre-initialized command ring (esp. link pointers) by not actually
2168  * inserting the mcsetup command in the ring - i.e. its link pointer
2169  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2170  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2171  * lead into the regular TxCB ring when it completes.
2172  *
2173  * This function must be called at splimp.
2174  */
2175 static void
2176 fxp_mc_setup(struct fxp_softc *sc)
2177 {
2178 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2179 	struct ifnet *ifp = &sc->arpcom.ac_if;
2180 	int count;
2181 
2182 	/*
2183 	 * If there are queued commands, we must wait until they are all
2184 	 * completed. If we are already waiting, then add a NOP command
2185 	 * with interrupt option so that we're notified when all commands
2186 	 * have been completed - fxp_start() ensures that no additional
2187 	 * TX commands will be added when need_mcsetup is true.
2188 	 */
2189 	if (sc->tx_queued) {
2190 		struct fxp_cb_tx *txp;
2191 
2192 		/*
2193 		 * need_mcsetup will be true if we are already waiting for the
2194 		 * NOP command to be completed (see below). In this case, bail.
2195 		 */
2196 		if (sc->need_mcsetup)
2197 			return;
2198 		sc->need_mcsetup = 1;
2199 
2200 		/*
2201 		 * Add a NOP command with interrupt so that we are notified
2202 		 * when all TX commands have been processed.
2203 		 */
2204 		txp = sc->cbl_last->next;
2205 		txp->mb_head = NULL;
2206 		txp->cb_status = 0;
2207 		txp->cb_command = FXP_CB_COMMAND_NOP |
2208 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2209 		/*
2210 		 * Advance the end of list forward.
2211 		 */
2212 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2213 		sc->cbl_last = txp;
2214 		sc->tx_queued++;
2215 		/*
2216 		 * Issue a resume in case the CU has just suspended.
2217 		 */
2218 		fxp_scb_wait(sc);
2219 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2220 		/*
2221 		 * Set a 5 second timer just in case we don't hear from the
2222 		 * card again.
2223 		 */
2224 		ifp->if_timer = 5;
2225 
2226 		return;
2227 	}
2228 	sc->need_mcsetup = 0;
2229 
2230 	/*
2231 	 * Initialize multicast setup descriptor.
2232 	 */
2233 	mcsp->next = sc->cbl_base;
2234 	mcsp->mb_head = NULL;
2235 	mcsp->cb_status = 0;
2236 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2237 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2238 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2239 	fxp_mc_addrs(sc);
2240 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2241 	sc->tx_queued = 1;
2242 
2243 	/*
2244 	 * Wait until command unit is not active. This should never
2245 	 * be the case when nothing is queued, but make sure anyway.
2246 	 */
2247 	count = 100;
2248 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2249 	    FXP_SCB_CUS_ACTIVE && --count)
2250 		DELAY(10);
2251 	if (count == 0) {
2252 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2253 		return;
2254 	}
2255 
2256 	/*
2257 	 * Start the multicast setup command.
2258 	 */
2259 	fxp_scb_wait(sc);
2260 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2261 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2262 
2263 	ifp->if_timer = 2;
2264 	return;
2265 }
2266 
2267 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2268 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2269 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2270 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2271 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2272 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2273 
2274 #define UCODE(x)	x, sizeof(x)
2275 
2276 struct ucode {
2277 	u_int32_t	revision;
2278 	u_int32_t	*ucode;
2279 	int		length;
2280 	u_short		int_delay_offset;
2281 	u_short		bundle_max_offset;
2282 } ucode_table[] = {
2283 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2284 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2285 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2286 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2287 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2288 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2289 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2290 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2291 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2292 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2293 	{ 0, NULL, 0, 0, 0 }
2294 };
2295 
2296 static void
2297 fxp_load_ucode(struct fxp_softc *sc)
2298 {
2299 	struct ucode *uc;
2300 	struct fxp_cb_ucode *cbp;
2301 
2302 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2303 		if (sc->revision == uc->revision)
2304 			break;
2305 	if (uc->ucode == NULL)
2306 		return;
2307 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2308 	cbp->cb_status = 0;
2309 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2310 	cbp->link_addr = -1;    	/* (no) next command */
2311 	memcpy(cbp->ucode, uc->ucode, uc->length);
2312 	if (uc->int_delay_offset)
2313 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2314 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2315 	if (uc->bundle_max_offset)
2316 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2317 		    sc->tunable_bundle_max;
2318 	/*
2319 	 * Download the ucode to the chip.
2320 	 */
2321 	fxp_scb_wait(sc);
2322 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2323 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2324 	/* ...and wait for it to complete. */
2325 	fxp_dma_wait(&cbp->cb_status, sc);
2326 	if_printf(&sc->arpcom.ac_if,
2327 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2328 	    sc->tunable_int_delay,
2329 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2330 	sc->flags |= FXP_FLAG_UCODE;
2331 }
2332 
2333 /*
2334  * Interrupt delay is expressed in microseconds, a multiplier is used
2335  * to convert this to the appropriate clock ticks before using.
2336  */
2337 static int
2338 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2339 {
2340 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2341 }
2342 
2343 static int
2344 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2345 {
2346 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2347 }
2348