xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 16777b6b)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.3 2003/08/07 21:17:02 dillon Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #include <net/bpf.h>
55 #include <sys/sockio.h>
56 #include <sys/bus.h>
57 #include <machine/bus.h>
58 #include <sys/rman.h>
59 #include <machine/resource.h>
60 
61 #include <net/ethernet.h>
62 #include <net/if_arp.h>
63 
64 #include <vm/vm.h>		/* for vtophys */
65 #include <vm/pmap.h>		/* for vtophys */
66 #include <machine/clock.h>	/* for DELAY */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
82 #include "miibus_if.h"
83 
84 /*
85  * NOTE!  On the Alpha, we have an alignment constraint.  The
86  * card DMAs the packet immediately following the RFA.  However,
87  * the first thing in the packet is a 14-byte Ethernet header.
88  * This means that the packet is misaligned.  To compensate,
89  * we actually offset the RFA 2 bytes into the cluster.  This
90  * alignes the packet after the Ethernet header at a 32-bit
91  * boundary.  HOWEVER!  This means that the RFA is misaligned!
92  */
93 #define	RFA_ALIGNMENT_FUDGE	2
94 
95 /*
96  * Set initial transmit threshold at 64 (512 bytes). This is
97  * increased by 64 (512 bytes) at a time, to maximum of 192
98  * (1536 bytes), if an underrun occurs.
99  */
100 static int tx_threshold = 64;
101 
102 /*
103  * The configuration byte map has several undefined fields which
104  * must be one or must be zero.  Set up a template for these bits
105  * only, (assuming a 82557 chip) leaving the actual configuration
106  * to fxp_init.
107  *
108  * See struct fxp_cb_config for the bit definitions.
109  */
110 static u_char fxp_cb_config_template[] = {
111 	0x0, 0x0,		/* cb_status */
112 	0x0, 0x0,		/* cb_command */
113 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
114 	0x0,	/*  0 */
115 	0x0,	/*  1 */
116 	0x0,	/*  2 */
117 	0x0,	/*  3 */
118 	0x0,	/*  4 */
119 	0x0,	/*  5 */
120 	0x32,	/*  6 */
121 	0x0,	/*  7 */
122 	0x0,	/*  8 */
123 	0x0,	/*  9 */
124 	0x6,	/* 10 */
125 	0x0,	/* 11 */
126 	0x0,	/* 12 */
127 	0x0,	/* 13 */
128 	0xf2,	/* 14 */
129 	0x48,	/* 15 */
130 	0x0,	/* 16 */
131 	0x40,	/* 17 */
132 	0xf0,	/* 18 */
133 	0x0,	/* 19 */
134 	0x3f,	/* 20 */
135 	0x5	/* 21 */
136 };
137 
138 struct fxp_ident {
139 	u_int16_t	devid;
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150     { 0x1029,		"Intel 82559 PCI/CardBus Pro/100" },
151     { 0x1030,		"Intel 82559 Pro/100 Ethernet" },
152     { 0x1031,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153     { 0x1032,		"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154     { 0x1033,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155     { 0x1034,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156     { 0x1035,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157     { 0x1036,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158     { 0x1037,		"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159     { 0x1038,		"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1039,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161     { 0x103A,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162     { 0x103B,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163     { 0x103C,		"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164     { 0x103D,		"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165     { 0x103E,		"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166     { 0x1050,		"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167     { 0x1059,		"Intel 82551QM Pro/100 M Mobile Connection" },
168     { 0x1209,		"Intel 82559ER Embedded 10/100 Ethernet" },
169     { 0x1229,		"Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" },
170     { 0x2449,		"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
171     { 0,		NULL },
172 };
173 
174 static int		fxp_probe(device_t dev);
175 static int		fxp_attach(device_t dev);
176 static int		fxp_detach(device_t dev);
177 static int		fxp_shutdown(device_t dev);
178 static int		fxp_suspend(device_t dev);
179 static int		fxp_resume(device_t dev);
180 
181 static void		fxp_intr(void *xsc);
182 static void		fxp_intr_body(struct fxp_softc *sc,
183 				u_int8_t statack, int count);
184 
185 static void 		fxp_init(void *xsc);
186 static void 		fxp_tick(void *xsc);
187 static void		fxp_powerstate_d0(device_t dev);
188 static void 		fxp_start(struct ifnet *ifp);
189 static void		fxp_stop(struct fxp_softc *sc);
190 static void 		fxp_release(struct fxp_softc *sc);
191 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
192 			    caddr_t data);
193 static void 		fxp_watchdog(struct ifnet *ifp);
194 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
195 static int		fxp_mc_addrs(struct fxp_softc *sc);
196 static void		fxp_mc_setup(struct fxp_softc *sc);
197 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
198 			    int autosize);
199 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
200 			    u_int16_t data);
201 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
202 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
203 			    int offset, int words);
204 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
205 			    int offset, int words);
206 static int		fxp_ifmedia_upd(struct ifnet *ifp);
207 static void		fxp_ifmedia_sts(struct ifnet *ifp,
208 			    struct ifmediareq *ifmr);
209 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
210 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
211 			    struct ifmediareq *ifmr);
212 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
213 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
214 			    int value);
215 static void		fxp_load_ucode(struct fxp_softc *sc);
216 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
217 			    int low, int high);
218 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
219 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
220 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
221 			    volatile u_int32_t *dst);
222 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
223 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
224 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
225 			    struct fxp_softc *sc);
226 
227 static device_method_t fxp_methods[] = {
228 	/* Device interface */
229 	DEVMETHOD(device_probe,		fxp_probe),
230 	DEVMETHOD(device_attach,	fxp_attach),
231 	DEVMETHOD(device_detach,	fxp_detach),
232 	DEVMETHOD(device_shutdown,	fxp_shutdown),
233 	DEVMETHOD(device_suspend,	fxp_suspend),
234 	DEVMETHOD(device_resume,	fxp_resume),
235 
236 	/* MII interface */
237 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
238 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
239 
240 	{ 0, 0 }
241 };
242 
243 static driver_t fxp_driver = {
244 	"fxp",
245 	fxp_methods,
246 	sizeof(struct fxp_softc),
247 };
248 
249 static devclass_t fxp_devclass;
250 
251 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
252 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
253 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
254 
255 static int fxp_rnr;
256 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
257 
258 /*
259  * Inline function to copy a 16-bit aligned 32-bit quantity.
260  */
261 static __inline void
262 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
263 {
264 #ifdef __i386__
265 	*dst = *src;
266 #else
267 	volatile u_int16_t *a = (volatile u_int16_t *)src;
268 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
269 
270 	b[0] = a[0];
271 	b[1] = a[1];
272 #endif
273 }
274 
275 /*
276  * Wait for the previous command to be accepted (but not necessarily
277  * completed).
278  */
279 static __inline void
280 fxp_scb_wait(struct fxp_softc *sc)
281 {
282 	int i = 10000;
283 
284 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
285 		DELAY(2);
286 	if (i == 0)
287 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
288 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
289 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
290 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
291 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
292 }
293 
294 static __inline void
295 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
296 {
297 
298 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
299 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
300 		fxp_scb_wait(sc);
301 	}
302 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
303 }
304 
305 static __inline void
306 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
307 {
308 	int i = 10000;
309 
310 	while (!(*status & FXP_CB_STATUS_C) && --i)
311 		DELAY(2);
312 	if (i == 0)
313 		device_printf(sc->dev, "DMA timeout\n");
314 }
315 
316 /*
317  * Return identification string if this is device is ours.
318  */
319 static int
320 fxp_probe(device_t dev)
321 {
322 	u_int16_t devid;
323 	struct fxp_ident *ident;
324 
325 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
326 		devid = pci_get_device(dev);
327 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
328 			if (ident->devid == devid) {
329 				device_set_desc(dev, ident->name);
330 				return (0);
331 			}
332 		}
333 	}
334 	return (ENXIO);
335 }
336 
337 static void
338 fxp_powerstate_d0(device_t dev)
339 {
340 #if __FreeBSD_version >= 430002
341 	u_int32_t iobase, membase, irq;
342 
343 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
344 		/* Save important PCI config data. */
345 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
346 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
347 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
348 
349 		/* Reset the power state. */
350 		device_printf(dev, "chip is in D%d power mode "
351 		    "-- setting to D0\n", pci_get_powerstate(dev));
352 
353 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
354 
355 		/* Restore PCI config data. */
356 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
357 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
358 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
359 	}
360 #endif
361 }
362 
363 static int
364 fxp_attach(device_t dev)
365 {
366 	int error = 0;
367 	struct fxp_softc *sc = device_get_softc(dev);
368 	struct ifnet *ifp;
369 	u_int32_t val;
370 	u_int16_t data;
371 	int i, rid, m1, m2, prefer_iomap;
372 	int s;
373 
374 	bzero(sc, sizeof(*sc));
375 	sc->dev = dev;
376 	callout_handle_init(&sc->stat_ch);
377 	sysctl_ctx_init(&sc->sysctl_ctx);
378 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
379 
380 	s = splimp();
381 
382 	/*
383 	 * Enable bus mastering. Enable memory space too, in case
384 	 * BIOS/Prom forgot about it.
385 	 */
386 	val = pci_read_config(dev, PCIR_COMMAND, 2);
387 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
388 	pci_write_config(dev, PCIR_COMMAND, val, 2);
389 	val = pci_read_config(dev, PCIR_COMMAND, 2);
390 
391 	fxp_powerstate_d0(dev);
392 
393 	/*
394 	 * Figure out which we should try first - memory mapping or i/o mapping?
395 	 * We default to memory mapping. Then we accept an override from the
396 	 * command line. Then we check to see which one is enabled.
397 	 */
398 	m1 = PCIM_CMD_MEMEN;
399 	m2 = PCIM_CMD_PORTEN;
400 	prefer_iomap = 0;
401 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
402 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
403 		m1 = PCIM_CMD_PORTEN;
404 		m2 = PCIM_CMD_MEMEN;
405 	}
406 
407 	if (val & m1) {
408 		sc->rtp =
409 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
410 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
411 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
412 	                                     0, ~0, 1, RF_ACTIVE);
413 	}
414 	if (sc->mem == NULL && (val & m2)) {
415 		sc->rtp =
416 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
417 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
418 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
419                                             0, ~0, 1, RF_ACTIVE);
420 	}
421 
422 	if (!sc->mem) {
423 		device_printf(dev, "could not map device registers\n");
424 		error = ENXIO;
425 		goto fail;
426         }
427 	if (bootverbose) {
428 		device_printf(dev, "using %s space register mapping\n",
429 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
430 	}
431 
432 	sc->sc_st = rman_get_bustag(sc->mem);
433 	sc->sc_sh = rman_get_bushandle(sc->mem);
434 
435 	/*
436 	 * Allocate our interrupt.
437 	 */
438 	rid = 0;
439 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
440 				 RF_SHAREABLE | RF_ACTIVE);
441 	if (sc->irq == NULL) {
442 		device_printf(dev, "could not map interrupt\n");
443 		error = ENXIO;
444 		goto fail;
445 	}
446 
447 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
448 			       fxp_intr, sc, &sc->ih);
449 	if (error) {
450 		device_printf(dev, "could not setup irq\n");
451 		goto fail;
452 	}
453 
454 	/*
455 	 * Reset to a stable state.
456 	 */
457 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
458 	DELAY(10);
459 
460 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
461 	    M_DEVBUF, M_NOWAIT | M_ZERO);
462 	if (sc->cbl_base == NULL)
463 		goto failmem;
464 
465 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
466 	    M_NOWAIT | M_ZERO);
467 	if (sc->fxp_stats == NULL)
468 		goto failmem;
469 
470 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
471 	if (sc->mcsp == NULL)
472 		goto failmem;
473 
474 	/*
475 	 * Pre-allocate our receive buffers.
476 	 */
477 	for (i = 0; i < FXP_NRFABUFS; i++) {
478 		if (fxp_add_rfabuf(sc, NULL) != 0) {
479 			goto failmem;
480 		}
481 	}
482 
483 	/*
484 	 * Find out how large of an SEEPROM we have.
485 	 */
486 	fxp_autosize_eeprom(sc);
487 
488 	/*
489 	 * Determine whether we must use the 503 serial interface.
490 	 */
491 	fxp_read_eeprom(sc, &data, 6, 1);
492 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
493 	    (data & FXP_PHY_SERIAL_ONLY))
494 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
495 
496 	/*
497 	 * Create the sysctl tree
498 	 */
499 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
500 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
501 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
502 	if (sc->sysctl_tree == NULL)
503 		goto fail;
504 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
505 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
506 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
507 	    "FXP driver receive interrupt microcode bundling delay");
508 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
509 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
510 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
511 	    "FXP driver receive interrupt microcode bundle size limit");
512 
513 	/*
514 	 * Pull in device tunables.
515 	 */
516 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
517 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
518 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
519 	    "int_delay", &sc->tunable_int_delay);
520 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
521 	    "bundle_max", &sc->tunable_bundle_max);
522 
523 	/*
524 	 * Find out the chip revision; lump all 82557 revs together.
525 	 */
526 	fxp_read_eeprom(sc, &data, 5, 1);
527 	if ((data >> 8) == 1)
528 		sc->revision = FXP_REV_82557;
529 	else
530 		sc->revision = pci_get_revid(dev);
531 
532 	/*
533 	 * Enable workarounds for certain chip revision deficiencies.
534 	 *
535 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
536 	 * some systems based a normal 82559 design, have a defect where
537 	 * the chip can cause a PCI protocol violation if it receives
538 	 * a CU_RESUME command when it is entering the IDLE state.  The
539 	 * workaround is to disable Dynamic Standby Mode, so the chip never
540 	 * deasserts CLKRUN#, and always remains in an active state.
541 	 *
542 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
543 	 */
544 	i = pci_get_device(dev);
545 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
546 	    sc->revision >= FXP_REV_82559_A0) {
547 		fxp_read_eeprom(sc, &data, 10, 1);
548 		if (data & 0x02) {			/* STB enable */
549 			u_int16_t cksum;
550 			int i;
551 
552 			device_printf(dev,
553 			    "Disabling dynamic standby mode in EEPROM\n");
554 			data &= ~0x02;
555 			fxp_write_eeprom(sc, &data, 10, 1);
556 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
557 			cksum = 0;
558 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
559 				fxp_read_eeprom(sc, &data, i, 1);
560 				cksum += data;
561 			}
562 			i = (1 << sc->eeprom_size) - 1;
563 			cksum = 0xBABA - cksum;
564 			fxp_read_eeprom(sc, &data, i, 1);
565 			fxp_write_eeprom(sc, &cksum, i, 1);
566 			device_printf(dev,
567 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
568 			    i, data, cksum);
569 #if 1
570 			/*
571 			 * If the user elects to continue, try the software
572 			 * workaround, as it is better than nothing.
573 			 */
574 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
575 #endif
576 		}
577 	}
578 
579 	/*
580 	 * If we are not a 82557 chip, we can enable extended features.
581 	 */
582 	if (sc->revision != FXP_REV_82557) {
583 		/*
584 		 * If MWI is enabled in the PCI configuration, and there
585 		 * is a valid cacheline size (8 or 16 dwords), then tell
586 		 * the board to turn on MWI.
587 		 */
588 		if (val & PCIM_CMD_MWRICEN &&
589 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
590 			sc->flags |= FXP_FLAG_MWI_ENABLE;
591 
592 		/* turn on the extended TxCB feature */
593 		sc->flags |= FXP_FLAG_EXT_TXCB;
594 
595 		/* enable reception of long frames for VLAN */
596 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
597 	}
598 
599 	/*
600 	 * Read MAC address.
601 	 */
602 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
603 	device_printf(dev, "Ethernet address %6D%s\n",
604 	    sc->arpcom.ac_enaddr, ":",
605 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
606 	if (bootverbose) {
607 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
608 		    pci_get_vendor(dev), pci_get_device(dev),
609 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
610 		    pci_get_revid(dev));
611 		fxp_read_eeprom(sc, &data, 10, 1);
612 		device_printf(dev, "Dynamic Standby mode is %s\n",
613 		    data & 0x02 ? "enabled" : "disabled");
614 	}
615 
616 	/*
617 	 * If this is only a 10Mbps device, then there is no MII, and
618 	 * the PHY will use a serial interface instead.
619 	 *
620 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
621 	 * doesn't have a programming interface of any sort.  The
622 	 * media is sensed automatically based on how the link partner
623 	 * is configured.  This is, in essence, manual configuration.
624 	 */
625 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
626 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
627 		    fxp_serial_ifmedia_sts);
628 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
629 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
630 	} else {
631 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
632 		    fxp_ifmedia_sts)) {
633 	                device_printf(dev, "MII without any PHY!\n");
634 			error = ENXIO;
635 			goto fail;
636 		}
637 	}
638 
639 	ifp = &sc->arpcom.ac_if;
640 	ifp->if_unit = device_get_unit(dev);
641 	ifp->if_name = "fxp";
642 	ifp->if_output = ether_output;
643 	ifp->if_baudrate = 100000000;
644 	ifp->if_init = fxp_init;
645 	ifp->if_softc = sc;
646 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
647 	ifp->if_ioctl = fxp_ioctl;
648 	ifp->if_start = fxp_start;
649 	ifp->if_watchdog = fxp_watchdog;
650 
651 	/*
652 	 * Attach the interface.
653 	 */
654 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
655 
656 	/*
657 	 * Tell the upper layer(s) we support long frames.
658 	 */
659 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
660 
661 	/*
662 	 * Let the system queue as many packets as we have available
663 	 * TX descriptors.
664 	 */
665 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
666 
667 	splx(s);
668 	return (0);
669 
670 failmem:
671 	device_printf(dev, "Failed to malloc memory\n");
672 	error = ENOMEM;
673 fail:
674 	splx(s);
675 	fxp_release(sc);
676 	return (error);
677 }
678 
679 /*
680  * release all resources
681  */
682 static void
683 fxp_release(struct fxp_softc *sc)
684 {
685 
686 	bus_generic_detach(sc->dev);
687 	if (sc->miibus)
688 		device_delete_child(sc->dev, sc->miibus);
689 
690 	if (sc->cbl_base)
691 		free(sc->cbl_base, M_DEVBUF);
692 	if (sc->fxp_stats)
693 		free(sc->fxp_stats, M_DEVBUF);
694 	if (sc->mcsp)
695 		free(sc->mcsp, M_DEVBUF);
696 	if (sc->rfa_headm)
697 		m_freem(sc->rfa_headm);
698 
699 	if (sc->ih)
700 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
701 	if (sc->irq)
702 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
703 	if (sc->mem)
704 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
705 
706         sysctl_ctx_free(&sc->sysctl_ctx);
707 
708 	mtx_destroy(&sc->sc_mtx);
709 }
710 
711 /*
712  * Detach interface.
713  */
714 static int
715 fxp_detach(device_t dev)
716 {
717 	struct fxp_softc *sc = device_get_softc(dev);
718 	int s;
719 
720 	/* disable interrupts */
721 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
722 
723 	s = splimp();
724 
725 	/*
726 	 * Stop DMA and drop transmit queue.
727 	 */
728 	fxp_stop(sc);
729 
730 	/*
731 	 * Close down routes etc.
732 	 */
733 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
734 
735 	/*
736 	 * Free all media structures.
737 	 */
738 	ifmedia_removeall(&sc->sc_media);
739 
740 	splx(s);
741 
742 	/* Release our allocated resources. */
743 	fxp_release(sc);
744 
745 	return (0);
746 }
747 
748 /*
749  * Device shutdown routine. Called at system shutdown after sync. The
750  * main purpose of this routine is to shut off receiver DMA so that
751  * kernel memory doesn't get clobbered during warmboot.
752  */
753 static int
754 fxp_shutdown(device_t dev)
755 {
756 	/*
757 	 * Make sure that DMA is disabled prior to reboot. Not doing
758 	 * do could allow DMA to corrupt kernel memory during the
759 	 * reboot before the driver initializes.
760 	 */
761 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
762 	return (0);
763 }
764 
765 /*
766  * Device suspend routine.  Stop the interface and save some PCI
767  * settings in case the BIOS doesn't restore them properly on
768  * resume.
769  */
770 static int
771 fxp_suspend(device_t dev)
772 {
773 	struct fxp_softc *sc = device_get_softc(dev);
774 	int i, s;
775 
776 	s = splimp();
777 
778 	fxp_stop(sc);
779 
780 	for (i = 0; i < 5; i++)
781 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
782 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
783 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
784 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
785 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
786 
787 	sc->suspended = 1;
788 
789 	splx(s);
790 	return (0);
791 }
792 
793 /*
794  * Device resume routine.  Restore some PCI settings in case the BIOS
795  * doesn't, re-enable busmastering, and restart the interface if
796  * appropriate.
797  */
798 static int
799 fxp_resume(device_t dev)
800 {
801 	struct fxp_softc *sc = device_get_softc(dev);
802 	struct ifnet *ifp = &sc->sc_if;
803 	u_int16_t pci_command;
804 	int i, s;
805 
806 	s = splimp();
807 
808 	fxp_powerstate_d0(dev);
809 
810 	/* better way to do this? */
811 	for (i = 0; i < 5; i++)
812 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
813 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
814 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
815 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
816 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
817 
818 	/* reenable busmastering */
819 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
820 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
821 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
822 
823 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
824 	DELAY(10);
825 
826 	/* reinitialize interface if necessary */
827 	if (ifp->if_flags & IFF_UP)
828 		fxp_init(sc);
829 
830 	sc->suspended = 0;
831 
832 	splx(s);
833 	return (0);
834 }
835 
836 static void
837 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
838 {
839 	u_int16_t reg;
840 	int x;
841 
842 	/*
843 	 * Shift in data.
844 	 */
845 	for (x = 1 << (length - 1); x; x >>= 1) {
846 		if (data & x)
847 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
848 		else
849 			reg = FXP_EEPROM_EECS;
850 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
851 		DELAY(1);
852 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
853 		DELAY(1);
854 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
855 		DELAY(1);
856 	}
857 }
858 
859 /*
860  * Read from the serial EEPROM. Basically, you manually shift in
861  * the read opcode (one bit at a time) and then shift in the address,
862  * and then you shift out the data (all of this one bit at a time).
863  * The word size is 16 bits, so you have to provide the address for
864  * every 16 bits of data.
865  */
866 static u_int16_t
867 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
868 {
869 	u_int16_t reg, data;
870 	int x;
871 
872 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
873 	/*
874 	 * Shift in read opcode.
875 	 */
876 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
877 	/*
878 	 * Shift in address.
879 	 */
880 	data = 0;
881 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
882 		if (offset & x)
883 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
884 		else
885 			reg = FXP_EEPROM_EECS;
886 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
887 		DELAY(1);
888 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
889 		DELAY(1);
890 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
891 		DELAY(1);
892 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
893 		data++;
894 		if (autosize && reg == 0) {
895 			sc->eeprom_size = data;
896 			break;
897 		}
898 	}
899 	/*
900 	 * Shift out data.
901 	 */
902 	data = 0;
903 	reg = FXP_EEPROM_EECS;
904 	for (x = 1 << 15; x; x >>= 1) {
905 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
906 		DELAY(1);
907 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
908 			data |= x;
909 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
910 		DELAY(1);
911 	}
912 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
913 	DELAY(1);
914 
915 	return (data);
916 }
917 
918 static void
919 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
920 {
921 	int i;
922 
923 	/*
924 	 * Erase/write enable.
925 	 */
926 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
927 	fxp_eeprom_shiftin(sc, 0x4, 3);
928 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
929 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
930 	DELAY(1);
931 	/*
932 	 * Shift in write opcode, address, data.
933 	 */
934 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
935 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
936 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
937 	fxp_eeprom_shiftin(sc, data, 16);
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
939 	DELAY(1);
940 	/*
941 	 * Wait for EEPROM to finish up.
942 	 */
943 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
944 	DELAY(1);
945 	for (i = 0; i < 1000; i++) {
946 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
947 			break;
948 		DELAY(50);
949 	}
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
951 	DELAY(1);
952 	/*
953 	 * Erase/write disable.
954 	 */
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956 	fxp_eeprom_shiftin(sc, 0x4, 3);
957 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
958 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
959 	DELAY(1);
960 }
961 
962 /*
963  * From NetBSD:
964  *
965  * Figure out EEPROM size.
966  *
967  * 559's can have either 64-word or 256-word EEPROMs, the 558
968  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
969  * talks about the existance of 16 to 256 word EEPROMs.
970  *
971  * The only known sizes are 64 and 256, where the 256 version is used
972  * by CardBus cards to store CIS information.
973  *
974  * The address is shifted in msb-to-lsb, and after the last
975  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
976  * after which follows the actual data. We try to detect this zero, by
977  * probing the data-out bit in the EEPROM control register just after
978  * having shifted in a bit. If the bit is zero, we assume we've
979  * shifted enough address bits. The data-out should be tri-state,
980  * before this, which should translate to a logical one.
981  */
982 static void
983 fxp_autosize_eeprom(struct fxp_softc *sc)
984 {
985 
986 	/* guess maximum size of 256 words */
987 	sc->eeprom_size = 8;
988 
989 	/* autosize */
990 	(void) fxp_eeprom_getword(sc, 0, 1);
991 }
992 
993 static void
994 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
995 {
996 	int i;
997 
998 	for (i = 0; i < words; i++)
999 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1000 }
1001 
1002 static void
1003 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; i < words; i++)
1008 		fxp_eeprom_putword(sc, offset + i, data[i]);
1009 }
1010 
1011 /*
1012  * Start packet transmission on the interface.
1013  */
1014 static void
1015 fxp_start(struct ifnet *ifp)
1016 {
1017 	struct fxp_softc *sc = ifp->if_softc;
1018 	struct fxp_cb_tx *txp;
1019 
1020 	/*
1021 	 * See if we need to suspend xmit until the multicast filter
1022 	 * has been reprogrammed (which can only be done at the head
1023 	 * of the command chain).
1024 	 */
1025 	if (sc->need_mcsetup) {
1026 		return;
1027 	}
1028 
1029 	txp = NULL;
1030 
1031 	/*
1032 	 * We're finished if there is nothing more to add to the list or if
1033 	 * we're all filled up with buffers to transmit.
1034 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1035 	 *       a NOP command when needed.
1036 	 */
1037 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1038 		struct mbuf *m, *mb_head;
1039 		int segment;
1040 
1041 		/*
1042 		 * Grab a packet to transmit.
1043 		 */
1044 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1045 
1046 		/*
1047 		 * Get pointer to next available tx desc.
1048 		 */
1049 		txp = sc->cbl_last->next;
1050 
1051 		/*
1052 		 * Go through each of the mbufs in the chain and initialize
1053 		 * the transmit buffer descriptors with the physical address
1054 		 * and size of the mbuf.
1055 		 */
1056 tbdinit:
1057 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1058 			if (m->m_len != 0) {
1059 				if (segment == FXP_NTXSEG)
1060 					break;
1061 				txp->tbd[segment].tb_addr =
1062 				    vtophys(mtod(m, vm_offset_t));
1063 				txp->tbd[segment].tb_size = m->m_len;
1064 				segment++;
1065 			}
1066 		}
1067 		if (m != NULL) {
1068 			struct mbuf *mn;
1069 
1070 			/*
1071 			 * We ran out of segments. We have to recopy this
1072 			 * mbuf chain first. Bail out if we can't get the
1073 			 * new buffers.
1074 			 */
1075 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1076 			if (mn == NULL) {
1077 				m_freem(mb_head);
1078 				break;
1079 			}
1080 			if (mb_head->m_pkthdr.len > MHLEN) {
1081 				MCLGET(mn, M_DONTWAIT);
1082 				if ((mn->m_flags & M_EXT) == 0) {
1083 					m_freem(mn);
1084 					m_freem(mb_head);
1085 					break;
1086 				}
1087 			}
1088 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1089 			    mtod(mn, caddr_t));
1090 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1091 			m_freem(mb_head);
1092 			mb_head = mn;
1093 			goto tbdinit;
1094 		}
1095 
1096 		txp->tbd_number = segment;
1097 		txp->mb_head = mb_head;
1098 		txp->cb_status = 0;
1099 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1100 			txp->cb_command =
1101 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1102 			    FXP_CB_COMMAND_S;
1103 		} else {
1104 			txp->cb_command =
1105 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1106 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1107 			/*
1108 			 * Set a 5 second timer just in case we don't hear
1109 			 * from the card again.
1110 			 */
1111 			ifp->if_timer = 5;
1112 		}
1113 		txp->tx_threshold = tx_threshold;
1114 
1115 		/*
1116 		 * Advance the end of list forward.
1117 		 */
1118 
1119 #ifdef __alpha__
1120 		/*
1121 		 * On platforms which can't access memory in 16-bit
1122 		 * granularities, we must prevent the card from DMA'ing
1123 		 * up the status while we update the command field.
1124 		 * This could cause us to overwrite the completion status.
1125 		 */
1126 		atomic_clear_short(&sc->cbl_last->cb_command,
1127 		    FXP_CB_COMMAND_S);
1128 #else
1129 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1130 #endif /*__alpha__*/
1131 		sc->cbl_last = txp;
1132 
1133 		/*
1134 		 * Advance the beginning of the list forward if there are
1135 		 * no other packets queued (when nothing is queued, cbl_first
1136 		 * sits on the last TxCB that was sent out).
1137 		 */
1138 		if (sc->tx_queued == 0)
1139 			sc->cbl_first = txp;
1140 
1141 		sc->tx_queued++;
1142 
1143 		/*
1144 		 * Pass packet to bpf if there is a listener.
1145 		 */
1146 		if (ifp->if_bpf)
1147 			bpf_mtap(ifp, mb_head);
1148 	}
1149 
1150 	/*
1151 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1152 	 * going again if suspended.
1153 	 */
1154 	if (txp != NULL) {
1155 		fxp_scb_wait(sc);
1156 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1157 	}
1158 }
1159 
1160 #ifdef DEVICE_POLLING
1161 static poll_handler_t fxp_poll;
1162 
1163 static void
1164 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1165 {
1166 	struct fxp_softc *sc = ifp->if_softc;
1167 	u_int8_t statack;
1168 
1169 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1170 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1171 		return;
1172 	}
1173 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1174 	    FXP_SCB_STATACK_FR;
1175 	if (cmd == POLL_AND_CHECK_STATUS) {
1176 		u_int8_t tmp;
1177 
1178 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1179 		if (tmp == 0xff || tmp == 0)
1180 			return; /* nothing to do */
1181 		tmp &= ~statack;
1182 		/* ack what we can */
1183 		if (tmp != 0)
1184 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1185 		statack |= tmp;
1186 	}
1187 	fxp_intr_body(sc, statack, count);
1188 }
1189 #endif /* DEVICE_POLLING */
1190 
1191 /*
1192  * Process interface interrupts.
1193  */
1194 static void
1195 fxp_intr(void *xsc)
1196 {
1197 	struct fxp_softc *sc = xsc;
1198 	u_int8_t statack;
1199 
1200 #ifdef DEVICE_POLLING
1201 	struct ifnet *ifp = &sc->sc_if;
1202 
1203 	if (ifp->if_ipending & IFF_POLLING)
1204 		return;
1205 	if (ether_poll_register(fxp_poll, ifp)) {
1206 		/* disable interrupts */
1207 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1208 		fxp_poll(ifp, 0, 1);
1209 		return;
1210 	}
1211 #endif
1212 
1213 	if (sc->suspended) {
1214 		return;
1215 	}
1216 
1217 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1218 		/*
1219 		 * It should not be possible to have all bits set; the
1220 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1221 		 * all bits are set, this may indicate that the card has
1222 		 * been physically ejected, so ignore it.
1223 		 */
1224 		if (statack == 0xff)
1225 			return;
1226 
1227 		/*
1228 		 * First ACK all the interrupts in this pass.
1229 		 */
1230 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1231 		fxp_intr_body(sc, statack, -1);
1232 	}
1233 }
1234 
1235 static void
1236 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1237 {
1238 	struct ifnet *ifp = &sc->sc_if;
1239 	struct mbuf *m;
1240 	struct fxp_rfa *rfa;
1241 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1242 
1243 	if (rnr)
1244 		fxp_rnr++;
1245 #ifdef DEVICE_POLLING
1246 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1247 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1248 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1249 		rnr = 1;
1250 	}
1251 #endif
1252 
1253 	/*
1254 	 * Free any finished transmit mbuf chains.
1255 	 *
1256 	 * Handle the CNA event likt a CXTNO event. It used to
1257 	 * be that this event (control unit not ready) was not
1258 	 * encountered, but it is now with the SMPng modifications.
1259 	 * The exact sequence of events that occur when the interface
1260 	 * is brought up are different now, and if this event
1261 	 * goes unhandled, the configuration/rxfilter setup sequence
1262 	 * can stall for several seconds. The result is that no
1263 	 * packets go out onto the wire for about 5 to 10 seconds
1264 	 * after the interface is ifconfig'ed for the first time.
1265 	 */
1266 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1267 		struct fxp_cb_tx *txp;
1268 
1269 		for (txp = sc->cbl_first; sc->tx_queued &&
1270 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1271 		    txp = txp->next) {
1272 			if (txp->mb_head != NULL) {
1273 				m_freem(txp->mb_head);
1274 				txp->mb_head = NULL;
1275 			}
1276 			sc->tx_queued--;
1277 		}
1278 		sc->cbl_first = txp;
1279 		ifp->if_timer = 0;
1280 		if (sc->tx_queued == 0) {
1281 			if (sc->need_mcsetup)
1282 				fxp_mc_setup(sc);
1283 		}
1284 		/*
1285 		 * Try to start more packets transmitting.
1286 		 */
1287 		if (ifp->if_snd.ifq_head != NULL)
1288 			fxp_start(ifp);
1289 	}
1290 
1291 	/*
1292 	 * Just return if nothing happened on the receive side.
1293 	 */
1294 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1295 		return;
1296 
1297 	/*
1298 	 * Process receiver interrupts. If a no-resource (RNR)
1299 	 * condition exists, get whatever packets we can and
1300 	 * re-start the receiver.
1301 	 *
1302 	 * When using polling, we do not process the list to completion,
1303 	 * so when we get an RNR interrupt we must defer the restart
1304 	 * until we hit the last buffer with the C bit set.
1305 	 * If we run out of cycles and rfa_headm has the C bit set,
1306 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1307 	 * that the info will be used in the subsequent polling cycle.
1308 	 */
1309 	for (;;) {
1310 		m = sc->rfa_headm;
1311 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1312 		    RFA_ALIGNMENT_FUDGE);
1313 
1314 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1315 		if (count >= 0 && count-- == 0) {
1316 			if (rnr) {
1317 				/* Defer RNR processing until the next time. */
1318 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1319 				rnr = 0;
1320 			}
1321 			break;
1322 		}
1323 #endif /* DEVICE_POLLING */
1324 
1325 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1326 			break;
1327 
1328 		/*
1329 		 * Remove first packet from the chain.
1330 		 */
1331 		sc->rfa_headm = m->m_next;
1332 		m->m_next = NULL;
1333 
1334 		/*
1335 		 * Add a new buffer to the receive chain.
1336 		 * If this fails, the old buffer is recycled
1337 		 * instead.
1338 		 */
1339 		if (fxp_add_rfabuf(sc, m) == 0) {
1340 			int total_len;
1341 
1342 			/*
1343 			 * Fetch packet length (the top 2 bits of
1344 			 * actual_size are flags set by the controller
1345 			 * upon completion), and drop the packet in case
1346 			 * of bogus length or CRC errors.
1347 			 */
1348 			total_len = rfa->actual_size & 0x3fff;
1349 			if (total_len < sizeof(struct ether_header) ||
1350 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1351 				sizeof(struct fxp_rfa) ||
1352 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1353 				m_freem(m);
1354 				continue;
1355 			}
1356 			m->m_pkthdr.len = m->m_len = total_len;
1357 			ether_input(ifp, NULL, m);
1358 		}
1359 	}
1360 	if (rnr) {
1361 		fxp_scb_wait(sc);
1362 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1363 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1364 		    RFA_ALIGNMENT_FUDGE);
1365 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1366 	}
1367 }
1368 
1369 /*
1370  * Update packet in/out/collision statistics. The i82557 doesn't
1371  * allow you to access these counters without doing a fairly
1372  * expensive DMA to get _all_ of the statistics it maintains, so
1373  * we do this operation here only once per second. The statistics
1374  * counters in the kernel are updated from the previous dump-stats
1375  * DMA and then a new dump-stats DMA is started. The on-chip
1376  * counters are zeroed when the DMA completes. If we can't start
1377  * the DMA immediately, we don't wait - we just prepare to read
1378  * them again next time.
1379  */
1380 static void
1381 fxp_tick(void *xsc)
1382 {
1383 	struct fxp_softc *sc = xsc;
1384 	struct ifnet *ifp = &sc->sc_if;
1385 	struct fxp_stats *sp = sc->fxp_stats;
1386 	struct fxp_cb_tx *txp;
1387 	int s;
1388 
1389 	ifp->if_opackets += sp->tx_good;
1390 	ifp->if_collisions += sp->tx_total_collisions;
1391 	if (sp->rx_good) {
1392 		ifp->if_ipackets += sp->rx_good;
1393 		sc->rx_idle_secs = 0;
1394 	} else {
1395 		/*
1396 		 * Receiver's been idle for another second.
1397 		 */
1398 		sc->rx_idle_secs++;
1399 	}
1400 	ifp->if_ierrors +=
1401 	    sp->rx_crc_errors +
1402 	    sp->rx_alignment_errors +
1403 	    sp->rx_rnr_errors +
1404 	    sp->rx_overrun_errors;
1405 	/*
1406 	 * If any transmit underruns occured, bump up the transmit
1407 	 * threshold by another 512 bytes (64 * 8).
1408 	 */
1409 	if (sp->tx_underruns) {
1410 		ifp->if_oerrors += sp->tx_underruns;
1411 		if (tx_threshold < 192)
1412 			tx_threshold += 64;
1413 	}
1414 	s = splimp();
1415 	/*
1416 	 * Release any xmit buffers that have completed DMA. This isn't
1417 	 * strictly necessary to do here, but it's advantagous for mbufs
1418 	 * with external storage to be released in a timely manner rather
1419 	 * than being defered for a potentially long time. This limits
1420 	 * the delay to a maximum of one second.
1421 	 */
1422 	for (txp = sc->cbl_first; sc->tx_queued &&
1423 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1424 	    txp = txp->next) {
1425 		if (txp->mb_head != NULL) {
1426 			m_freem(txp->mb_head);
1427 			txp->mb_head = NULL;
1428 		}
1429 		sc->tx_queued--;
1430 	}
1431 	sc->cbl_first = txp;
1432 	/*
1433 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1434 	 * then assume the receiver has locked up and attempt to clear
1435 	 * the condition by reprogramming the multicast filter. This is
1436 	 * a work-around for a bug in the 82557 where the receiver locks
1437 	 * up if it gets certain types of garbage in the syncronization
1438 	 * bits prior to the packet header. This bug is supposed to only
1439 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1440 	 * mode as well (perhaps due to a 10/100 speed transition).
1441 	 */
1442 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1443 		sc->rx_idle_secs = 0;
1444 		fxp_mc_setup(sc);
1445 	}
1446 	/*
1447 	 * If there is no pending command, start another stats
1448 	 * dump. Otherwise punt for now.
1449 	 */
1450 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1451 		/*
1452 		 * Start another stats dump.
1453 		 */
1454 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1455 	} else {
1456 		/*
1457 		 * A previous command is still waiting to be accepted.
1458 		 * Just zero our copy of the stats and wait for the
1459 		 * next timer event to update them.
1460 		 */
1461 		sp->tx_good = 0;
1462 		sp->tx_underruns = 0;
1463 		sp->tx_total_collisions = 0;
1464 
1465 		sp->rx_good = 0;
1466 		sp->rx_crc_errors = 0;
1467 		sp->rx_alignment_errors = 0;
1468 		sp->rx_rnr_errors = 0;
1469 		sp->rx_overrun_errors = 0;
1470 	}
1471 	if (sc->miibus != NULL)
1472 		mii_tick(device_get_softc(sc->miibus));
1473 	splx(s);
1474 	/*
1475 	 * Schedule another timeout one second from now.
1476 	 */
1477 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1478 }
1479 
1480 /*
1481  * Stop the interface. Cancels the statistics updater and resets
1482  * the interface.
1483  */
1484 static void
1485 fxp_stop(struct fxp_softc *sc)
1486 {
1487 	struct ifnet *ifp = &sc->sc_if;
1488 	struct fxp_cb_tx *txp;
1489 	int i;
1490 
1491 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1492 	ifp->if_timer = 0;
1493 
1494 #ifdef DEVICE_POLLING
1495 	ether_poll_deregister(ifp);
1496 #endif
1497 	/*
1498 	 * Cancel stats updater.
1499 	 */
1500 	untimeout(fxp_tick, sc, sc->stat_ch);
1501 
1502 	/*
1503 	 * Issue software reset, which also unloads the microcode.
1504 	 */
1505 	sc->flags &= ~FXP_FLAG_UCODE;
1506 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1507 	DELAY(50);
1508 
1509 	/*
1510 	 * Release any xmit buffers.
1511 	 */
1512 	txp = sc->cbl_base;
1513 	if (txp != NULL) {
1514 		for (i = 0; i < FXP_NTXCB; i++) {
1515 			if (txp[i].mb_head != NULL) {
1516 				m_freem(txp[i].mb_head);
1517 				txp[i].mb_head = NULL;
1518 			}
1519 		}
1520 	}
1521 	sc->tx_queued = 0;
1522 
1523 	/*
1524 	 * Free all the receive buffers then reallocate/reinitialize
1525 	 */
1526 	if (sc->rfa_headm != NULL)
1527 		m_freem(sc->rfa_headm);
1528 	sc->rfa_headm = NULL;
1529 	sc->rfa_tailm = NULL;
1530 	for (i = 0; i < FXP_NRFABUFS; i++) {
1531 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1532 			/*
1533 			 * This "can't happen" - we're at splimp()
1534 			 * and we just freed all the buffers we need
1535 			 * above.
1536 			 */
1537 			panic("fxp_stop: no buffers!");
1538 		}
1539 	}
1540 }
1541 
1542 /*
1543  * Watchdog/transmission transmit timeout handler. Called when a
1544  * transmission is started on the interface, but no interrupt is
1545  * received before the timeout. This usually indicates that the
1546  * card has wedged for some reason.
1547  */
1548 static void
1549 fxp_watchdog(struct ifnet *ifp)
1550 {
1551 	struct fxp_softc *sc = ifp->if_softc;
1552 
1553 	device_printf(sc->dev, "device timeout\n");
1554 	ifp->if_oerrors++;
1555 
1556 	fxp_init(sc);
1557 }
1558 
1559 static void
1560 fxp_init(void *xsc)
1561 {
1562 	struct fxp_softc *sc = xsc;
1563 	struct ifnet *ifp = &sc->sc_if;
1564 	struct fxp_cb_config *cbp;
1565 	struct fxp_cb_ias *cb_ias;
1566 	struct fxp_cb_tx *txp;
1567 	struct fxp_cb_mcs *mcsp;
1568 	int i, prm, s;
1569 
1570 	s = splimp();
1571 	/*
1572 	 * Cancel any pending I/O
1573 	 */
1574 	fxp_stop(sc);
1575 
1576 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1577 
1578 	/*
1579 	 * Initialize base of CBL and RFA memory. Loading with zero
1580 	 * sets it up for regular linear addressing.
1581 	 */
1582 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1583 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1584 
1585 	fxp_scb_wait(sc);
1586 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1587 
1588 	/*
1589 	 * Initialize base of dump-stats buffer.
1590 	 */
1591 	fxp_scb_wait(sc);
1592 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1593 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1594 
1595 	/*
1596 	 * Attempt to load microcode if requested.
1597 	 */
1598 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1599 		fxp_load_ucode(sc);
1600 
1601 	/*
1602 	 * Initialize the multicast address list.
1603 	 */
1604 	if (fxp_mc_addrs(sc)) {
1605 		mcsp = sc->mcsp;
1606 		mcsp->cb_status = 0;
1607 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1608 		mcsp->link_addr = -1;
1609 		/*
1610 	 	 * Start the multicast setup command.
1611 		 */
1612 		fxp_scb_wait(sc);
1613 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1614 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1615 		/* ...and wait for it to complete. */
1616 		fxp_dma_wait(&mcsp->cb_status, sc);
1617 	}
1618 
1619 	/*
1620 	 * We temporarily use memory that contains the TxCB list to
1621 	 * construct the config CB. The TxCB list memory is rebuilt
1622 	 * later.
1623 	 */
1624 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1625 
1626 	/*
1627 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1628 	 * zero and must be one bits in this structure and this is the easiest
1629 	 * way to initialize them all to proper values.
1630 	 */
1631 	bcopy(fxp_cb_config_template,
1632 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1633 		sizeof(fxp_cb_config_template));
1634 
1635 	cbp->cb_status =	0;
1636 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1637 	cbp->link_addr =	-1;	/* (no) next command */
1638 	cbp->byte_count =	22;	/* (22) bytes to config */
1639 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1640 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1641 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1642 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1643 	cbp->type_enable =	0;	/* actually reserved */
1644 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1645 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1646 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1647 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1648 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1649 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1650 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1651 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1652 	cbp->ci_int =		1;	/* interrupt on CU idle */
1653 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1654 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1655 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1656 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1657 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1658 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1659 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1660 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1661 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1662 	cbp->csma_dis =		0;	/* (don't) disable link */
1663 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1664 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1665 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1666 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1667 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1668 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1669 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1670 	cbp->loopback =		0;	/* (don't) loopback */
1671 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1672 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1673 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1674 	cbp->promiscuous =	prm;	/* promiscuous mode */
1675 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1676 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1677 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1678 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1679 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1680 
1681 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1682 	cbp->padding =		1;	/* (do) pad short tx packets */
1683 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1684 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1685 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1686 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1687 					/* must set wake_en in PMCSR also */
1688 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1689 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1690 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1691 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1692 
1693 	if (sc->revision == FXP_REV_82557) {
1694 		/*
1695 		 * The 82557 has no hardware flow control, the values
1696 		 * below are the defaults for the chip.
1697 		 */
1698 		cbp->fc_delay_lsb =	0;
1699 		cbp->fc_delay_msb =	0x40;
1700 		cbp->pri_fc_thresh =	3;
1701 		cbp->tx_fc_dis =	0;
1702 		cbp->rx_fc_restop =	0;
1703 		cbp->rx_fc_restart =	0;
1704 		cbp->fc_filter =	0;
1705 		cbp->pri_fc_loc =	1;
1706 	} else {
1707 		cbp->fc_delay_lsb =	0x1f;
1708 		cbp->fc_delay_msb =	0x01;
1709 		cbp->pri_fc_thresh =	3;
1710 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1711 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1712 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1713 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1714 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1715 	}
1716 
1717 	/*
1718 	 * Start the config command/DMA.
1719 	 */
1720 	fxp_scb_wait(sc);
1721 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1722 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1723 	/* ...and wait for it to complete. */
1724 	fxp_dma_wait(&cbp->cb_status, sc);
1725 
1726 	/*
1727 	 * Now initialize the station address. Temporarily use the TxCB
1728 	 * memory area like we did above for the config CB.
1729 	 */
1730 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1731 	cb_ias->cb_status = 0;
1732 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1733 	cb_ias->link_addr = -1;
1734 	bcopy(sc->arpcom.ac_enaddr,
1735 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1736 	    sizeof(sc->arpcom.ac_enaddr));
1737 
1738 	/*
1739 	 * Start the IAS (Individual Address Setup) command/DMA.
1740 	 */
1741 	fxp_scb_wait(sc);
1742 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1743 	/* ...and wait for it to complete. */
1744 	fxp_dma_wait(&cb_ias->cb_status, sc);
1745 
1746 	/*
1747 	 * Initialize transmit control block (TxCB) list.
1748 	 */
1749 
1750 	txp = sc->cbl_base;
1751 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1752 	for (i = 0; i < FXP_NTXCB; i++) {
1753 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1754 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1755 		txp[i].link_addr =
1756 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1757 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1758 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1759 		else
1760 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1761 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1762 	}
1763 	/*
1764 	 * Set the suspend flag on the first TxCB and start the control
1765 	 * unit. It will execute the NOP and then suspend.
1766 	 */
1767 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1768 	sc->cbl_first = sc->cbl_last = txp;
1769 	sc->tx_queued = 1;
1770 
1771 	fxp_scb_wait(sc);
1772 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1773 
1774 	/*
1775 	 * Initialize receiver buffer area - RFA.
1776 	 */
1777 	fxp_scb_wait(sc);
1778 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1779 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1780 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1781 
1782 	/*
1783 	 * Set current media.
1784 	 */
1785 	if (sc->miibus != NULL)
1786 		mii_mediachg(device_get_softc(sc->miibus));
1787 
1788 	ifp->if_flags |= IFF_RUNNING;
1789 	ifp->if_flags &= ~IFF_OACTIVE;
1790 
1791 	/*
1792 	 * Enable interrupts.
1793 	 */
1794 #ifdef DEVICE_POLLING
1795 	/*
1796 	 * ... but only do that if we are not polling. And because (presumably)
1797 	 * the default is interrupts on, we need to disable them explicitly!
1798 	 */
1799 	if ( ifp->if_ipending & IFF_POLLING )
1800 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1801 	else
1802 #endif /* DEVICE_POLLING */
1803 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1804 	splx(s);
1805 
1806 	/*
1807 	 * Start stats updater.
1808 	 */
1809 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1810 }
1811 
1812 static int
1813 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1814 {
1815 
1816 	return (0);
1817 }
1818 
1819 static void
1820 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1821 {
1822 
1823 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1824 }
1825 
1826 /*
1827  * Change media according to request.
1828  */
1829 static int
1830 fxp_ifmedia_upd(struct ifnet *ifp)
1831 {
1832 	struct fxp_softc *sc = ifp->if_softc;
1833 	struct mii_data *mii;
1834 
1835 	mii = device_get_softc(sc->miibus);
1836 	mii_mediachg(mii);
1837 	return (0);
1838 }
1839 
1840 /*
1841  * Notify the world which media we're using.
1842  */
1843 static void
1844 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1845 {
1846 	struct fxp_softc *sc = ifp->if_softc;
1847 	struct mii_data *mii;
1848 
1849 	mii = device_get_softc(sc->miibus);
1850 	mii_pollstat(mii);
1851 	ifmr->ifm_active = mii->mii_media_active;
1852 	ifmr->ifm_status = mii->mii_media_status;
1853 
1854 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1855 		sc->cu_resume_bug = 1;
1856 	else
1857 		sc->cu_resume_bug = 0;
1858 }
1859 
1860 /*
1861  * Add a buffer to the end of the RFA buffer list.
1862  * Return 0 if successful, 1 for failure. A failure results in
1863  * adding the 'oldm' (if non-NULL) on to the end of the list -
1864  * tossing out its old contents and recycling it.
1865  * The RFA struct is stuck at the beginning of mbuf cluster and the
1866  * data pointer is fixed up to point just past it.
1867  */
1868 static int
1869 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1870 {
1871 	u_int32_t v;
1872 	struct mbuf *m;
1873 	struct fxp_rfa *rfa, *p_rfa;
1874 
1875 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1876 	if (m == NULL) { /* try to recycle the old mbuf instead */
1877 		if (oldm == NULL)
1878 			return 1;
1879 		m = oldm;
1880 		m->m_data = m->m_ext.ext_buf;
1881 	}
1882 
1883 	/*
1884 	 * Move the data pointer up so that the incoming data packet
1885 	 * will be 32-bit aligned.
1886 	 */
1887 	m->m_data += RFA_ALIGNMENT_FUDGE;
1888 
1889 	/*
1890 	 * Get a pointer to the base of the mbuf cluster and move
1891 	 * data start past it.
1892 	 */
1893 	rfa = mtod(m, struct fxp_rfa *);
1894 	m->m_data += sizeof(struct fxp_rfa);
1895 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1896 
1897 	/*
1898 	 * Initialize the rest of the RFA.  Note that since the RFA
1899 	 * is misaligned, we cannot store values directly.  Instead,
1900 	 * we use an optimized, inline copy.
1901 	 */
1902 
1903 	rfa->rfa_status = 0;
1904 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1905 	rfa->actual_size = 0;
1906 
1907 	v = -1;
1908 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1909 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1910 
1911 	/*
1912 	 * If there are other buffers already on the list, attach this
1913 	 * one to the end by fixing up the tail to point to this one.
1914 	 */
1915 	if (sc->rfa_headm != NULL) {
1916 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1917 		    RFA_ALIGNMENT_FUDGE);
1918 		sc->rfa_tailm->m_next = m;
1919 		v = vtophys(rfa);
1920 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1921 		p_rfa->rfa_control = 0;
1922 	} else {
1923 		sc->rfa_headm = m;
1924 	}
1925 	sc->rfa_tailm = m;
1926 
1927 	return (m == oldm);
1928 }
1929 
1930 static volatile int
1931 fxp_miibus_readreg(device_t dev, int phy, int reg)
1932 {
1933 	struct fxp_softc *sc = device_get_softc(dev);
1934 	int count = 10000;
1935 	int value;
1936 
1937 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1938 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1939 
1940 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1941 	    && count--)
1942 		DELAY(10);
1943 
1944 	if (count <= 0)
1945 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1946 
1947 	return (value & 0xffff);
1948 }
1949 
1950 static void
1951 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1952 {
1953 	struct fxp_softc *sc = device_get_softc(dev);
1954 	int count = 10000;
1955 
1956 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1957 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1958 	    (value & 0xffff));
1959 
1960 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1961 	    count--)
1962 		DELAY(10);
1963 
1964 	if (count <= 0)
1965 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1966 }
1967 
1968 static int
1969 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1970 {
1971 	struct fxp_softc *sc = ifp->if_softc;
1972 	struct ifreq *ifr = (struct ifreq *)data;
1973 	struct mii_data *mii;
1974 	int s, error = 0;
1975 
1976 	s = splimp();
1977 
1978 	switch (command) {
1979 	case SIOCSIFADDR:
1980 	case SIOCGIFADDR:
1981 	case SIOCSIFMTU:
1982 		error = ether_ioctl(ifp, command, data);
1983 		break;
1984 
1985 	case SIOCSIFFLAGS:
1986 		if (ifp->if_flags & IFF_ALLMULTI)
1987 			sc->flags |= FXP_FLAG_ALL_MCAST;
1988 		else
1989 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1990 
1991 		/*
1992 		 * If interface is marked up and not running, then start it.
1993 		 * If it is marked down and running, stop it.
1994 		 * XXX If it's up then re-initialize it. This is so flags
1995 		 * such as IFF_PROMISC are handled.
1996 		 */
1997 		if (ifp->if_flags & IFF_UP) {
1998 			fxp_init(sc);
1999 		} else {
2000 			if (ifp->if_flags & IFF_RUNNING)
2001 				fxp_stop(sc);
2002 		}
2003 		break;
2004 
2005 	case SIOCADDMULTI:
2006 	case SIOCDELMULTI:
2007 		if (ifp->if_flags & IFF_ALLMULTI)
2008 			sc->flags |= FXP_FLAG_ALL_MCAST;
2009 		else
2010 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2011 		/*
2012 		 * Multicast list has changed; set the hardware filter
2013 		 * accordingly.
2014 		 */
2015 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2016 			fxp_mc_setup(sc);
2017 		/*
2018 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2019 		 * again rather than else {}.
2020 		 */
2021 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2022 			fxp_init(sc);
2023 		error = 0;
2024 		break;
2025 
2026 	case SIOCSIFMEDIA:
2027 	case SIOCGIFMEDIA:
2028 		if (sc->miibus != NULL) {
2029 			mii = device_get_softc(sc->miibus);
2030                         error = ifmedia_ioctl(ifp, ifr,
2031                             &mii->mii_media, command);
2032 		} else {
2033                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2034 		}
2035 		break;
2036 
2037 	default:
2038 		error = EINVAL;
2039 	}
2040 	splx(s);
2041 	return (error);
2042 }
2043 
2044 /*
2045  * Fill in the multicast address list and return number of entries.
2046  */
2047 static int
2048 fxp_mc_addrs(struct fxp_softc *sc)
2049 {
2050 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2051 	struct ifnet *ifp = &sc->sc_if;
2052 	struct ifmultiaddr *ifma;
2053 	int nmcasts;
2054 
2055 	nmcasts = 0;
2056 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2057 #if __FreeBSD_version < 500000
2058 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2059 #else
2060 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2061 #endif
2062 			if (ifma->ifma_addr->sa_family != AF_LINK)
2063 				continue;
2064 			if (nmcasts >= MAXMCADDR) {
2065 				sc->flags |= FXP_FLAG_ALL_MCAST;
2066 				nmcasts = 0;
2067 				break;
2068 			}
2069 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2070 			    (void *)(uintptr_t)(volatile void *)
2071 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2072 			nmcasts++;
2073 		}
2074 	}
2075 	mcsp->mc_cnt = nmcasts * 6;
2076 	return (nmcasts);
2077 }
2078 
2079 /*
2080  * Program the multicast filter.
2081  *
2082  * We have an artificial restriction that the multicast setup command
2083  * must be the first command in the chain, so we take steps to ensure
2084  * this. By requiring this, it allows us to keep up the performance of
2085  * the pre-initialized command ring (esp. link pointers) by not actually
2086  * inserting the mcsetup command in the ring - i.e. its link pointer
2087  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2088  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2089  * lead into the regular TxCB ring when it completes.
2090  *
2091  * This function must be called at splimp.
2092  */
2093 static void
2094 fxp_mc_setup(struct fxp_softc *sc)
2095 {
2096 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2097 	struct ifnet *ifp = &sc->sc_if;
2098 	int count;
2099 
2100 	/*
2101 	 * If there are queued commands, we must wait until they are all
2102 	 * completed. If we are already waiting, then add a NOP command
2103 	 * with interrupt option so that we're notified when all commands
2104 	 * have been completed - fxp_start() ensures that no additional
2105 	 * TX commands will be added when need_mcsetup is true.
2106 	 */
2107 	if (sc->tx_queued) {
2108 		struct fxp_cb_tx *txp;
2109 
2110 		/*
2111 		 * need_mcsetup will be true if we are already waiting for the
2112 		 * NOP command to be completed (see below). In this case, bail.
2113 		 */
2114 		if (sc->need_mcsetup)
2115 			return;
2116 		sc->need_mcsetup = 1;
2117 
2118 		/*
2119 		 * Add a NOP command with interrupt so that we are notified
2120 		 * when all TX commands have been processed.
2121 		 */
2122 		txp = sc->cbl_last->next;
2123 		txp->mb_head = NULL;
2124 		txp->cb_status = 0;
2125 		txp->cb_command = FXP_CB_COMMAND_NOP |
2126 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2127 		/*
2128 		 * Advance the end of list forward.
2129 		 */
2130 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2131 		sc->cbl_last = txp;
2132 		sc->tx_queued++;
2133 		/*
2134 		 * Issue a resume in case the CU has just suspended.
2135 		 */
2136 		fxp_scb_wait(sc);
2137 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2138 		/*
2139 		 * Set a 5 second timer just in case we don't hear from the
2140 		 * card again.
2141 		 */
2142 		ifp->if_timer = 5;
2143 
2144 		return;
2145 	}
2146 	sc->need_mcsetup = 0;
2147 
2148 	/*
2149 	 * Initialize multicast setup descriptor.
2150 	 */
2151 	mcsp->next = sc->cbl_base;
2152 	mcsp->mb_head = NULL;
2153 	mcsp->cb_status = 0;
2154 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2155 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2156 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2157 	(void) fxp_mc_addrs(sc);
2158 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2159 	sc->tx_queued = 1;
2160 
2161 	/*
2162 	 * Wait until command unit is not active. This should never
2163 	 * be the case when nothing is queued, but make sure anyway.
2164 	 */
2165 	count = 100;
2166 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2167 	    FXP_SCB_CUS_ACTIVE && --count)
2168 		DELAY(10);
2169 	if (count == 0) {
2170 		device_printf(sc->dev, "command queue timeout\n");
2171 		return;
2172 	}
2173 
2174 	/*
2175 	 * Start the multicast setup command.
2176 	 */
2177 	fxp_scb_wait(sc);
2178 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2179 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2180 
2181 	ifp->if_timer = 2;
2182 	return;
2183 }
2184 
2185 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2186 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2187 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2188 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2189 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2190 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2191 
2192 #define UCODE(x)	x, sizeof(x)
2193 
2194 struct ucode {
2195 	u_int32_t	revision;
2196 	u_int32_t	*ucode;
2197 	int		length;
2198 	u_short		int_delay_offset;
2199 	u_short		bundle_max_offset;
2200 } ucode_table[] = {
2201 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2202 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2203 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2204 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2205 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2206 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2207 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2208 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2209 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2210 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2211 	{ 0, NULL, 0, 0, 0 }
2212 };
2213 
2214 static void
2215 fxp_load_ucode(struct fxp_softc *sc)
2216 {
2217 	struct ucode *uc;
2218 	struct fxp_cb_ucode *cbp;
2219 
2220 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2221 		if (sc->revision == uc->revision)
2222 			break;
2223 	if (uc->ucode == NULL)
2224 		return;
2225 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2226 	cbp->cb_status = 0;
2227 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2228 	cbp->link_addr = -1;    	/* (no) next command */
2229 	memcpy(cbp->ucode, uc->ucode, uc->length);
2230 	if (uc->int_delay_offset)
2231 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2232 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2233 	if (uc->bundle_max_offset)
2234 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2235 		    sc->tunable_bundle_max;
2236 	/*
2237 	 * Download the ucode to the chip.
2238 	 */
2239 	fxp_scb_wait(sc);
2240 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2241 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2242 	/* ...and wait for it to complete. */
2243 	fxp_dma_wait(&cbp->cb_status, sc);
2244 	device_printf(sc->dev,
2245 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2246 	    sc->tunable_int_delay,
2247 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2248 	sc->flags |= FXP_FLAG_UCODE;
2249 }
2250 
2251 static int
2252 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2253 {
2254 	int error, value;
2255 
2256 	value = *(int *)arg1;
2257 	error = sysctl_handle_int(oidp, &value, 0, req);
2258 	if (error || !req->newptr)
2259 		return (error);
2260 	if (value < low || value > high)
2261 		return (EINVAL);
2262 	*(int *)arg1 = value;
2263 	return (0);
2264 }
2265 
2266 /*
2267  * Interrupt delay is expressed in microseconds, a multiplier is used
2268  * to convert this to the appropriate clock ticks before using.
2269  */
2270 static int
2271 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2272 {
2273 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2274 }
2275 
2276 static int
2277 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2278 {
2279 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2280 }
2281