xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 222a27c4)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.23 2005/02/19 19:39:29 dillon Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #ifdef NS
51 #include <netns/ns.h>
52 #include <netns/ns_if.h>
53 #endif
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 #include <machine/clock.h>	/* for DELAY */
68 
69 #include <net/if_types.h>
70 #include <net/vlan/if_vlan_var.h>
71 
72 #include <bus/pci/pcivar.h>
73 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include "../mii_layer/mii.h"
76 #include "../mii_layer/miivar.h"
77 
78 #include "if_fxpreg.h"
79 #include "if_fxpvar.h"
80 #include "rcvbundl.h"
81 
82 #include "miibus_if.h"
83 
84 /*
85  * NOTE!  On the Alpha, we have an alignment constraint.  The
86  * card DMAs the packet immediately following the RFA.  However,
87  * the first thing in the packet is a 14-byte Ethernet header.
88  * This means that the packet is misaligned.  To compensate,
89  * we actually offset the RFA 2 bytes into the cluster.  This
90  * alignes the packet after the Ethernet header at a 32-bit
91  * boundary.  HOWEVER!  This means that the RFA is misaligned!
92  */
93 #define	RFA_ALIGNMENT_FUDGE	2
94 
95 /*
96  * Set initial transmit threshold at 64 (512 bytes). This is
97  * increased by 64 (512 bytes) at a time, to maximum of 192
98  * (1536 bytes), if an underrun occurs.
99  */
100 static int tx_threshold = 64;
101 
102 /*
103  * The configuration byte map has several undefined fields which
104  * must be one or must be zero.  Set up a template for these bits
105  * only, (assuming a 82557 chip) leaving the actual configuration
106  * to fxp_init.
107  *
108  * See struct fxp_cb_config for the bit definitions.
109  */
110 static u_char fxp_cb_config_template[] = {
111 	0x0, 0x0,		/* cb_status */
112 	0x0, 0x0,		/* cb_command */
113 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
114 	0x0,	/*  0 */
115 	0x0,	/*  1 */
116 	0x0,	/*  2 */
117 	0x0,	/*  3 */
118 	0x0,	/*  4 */
119 	0x0,	/*  5 */
120 	0x32,	/*  6 */
121 	0x0,	/*  7 */
122 	0x0,	/*  8 */
123 	0x0,	/*  9 */
124 	0x6,	/* 10 */
125 	0x0,	/* 11 */
126 	0x0,	/* 12 */
127 	0x0,	/* 13 */
128 	0xf2,	/* 14 */
129 	0x48,	/* 15 */
130 	0x0,	/* 16 */
131 	0x40,	/* 17 */
132 	0xf0,	/* 18 */
133 	0x0,	/* 19 */
134 	0x3f,	/* 20 */
135 	0x5	/* 21 */
136 };
137 
138 struct fxp_ident {
139 	u_int16_t	devid;
140 	int16_t		revid;		/* -1 matches anything */
141 	char 		*name;
142 };
143 
144 /*
145  * Claim various Intel PCI device identifiers for this driver.  The
146  * sub-vendor and sub-device field are extensively used to identify
147  * particular variants, but we don't currently differentiate between
148  * them.
149  */
150 static struct fxp_ident fxp_ident_table[] = {
151      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
152      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
153      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
162      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
163      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
164      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
165      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
168      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
169      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
170 	 { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
171      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
172      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
174      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
176      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
177      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
179      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
181      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
183      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
185      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
186      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
187      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
188      { 0,	-1,	NULL },
189 };
190 
191 static int		fxp_probe(device_t dev);
192 static int		fxp_attach(device_t dev);
193 static int		fxp_detach(device_t dev);
194 static int		fxp_shutdown(device_t dev);
195 static int		fxp_suspend(device_t dev);
196 static int		fxp_resume(device_t dev);
197 
198 static void		fxp_intr(void *xsc);
199 static void		fxp_intr_body(struct fxp_softc *sc,
200 				u_int8_t statack, int count);
201 
202 static void 		fxp_init(void *xsc);
203 static void 		fxp_tick(void *xsc);
204 static void		fxp_powerstate_d0(device_t dev);
205 static void 		fxp_start(struct ifnet *ifp);
206 static void		fxp_stop(struct fxp_softc *sc);
207 static void 		fxp_release(struct fxp_softc *sc);
208 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
209 			    caddr_t data, struct ucred *);
210 static void 		fxp_watchdog(struct ifnet *ifp);
211 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
212 static int		fxp_mc_addrs(struct fxp_softc *sc);
213 static void		fxp_mc_setup(struct fxp_softc *sc);
214 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
215 			    int autosize);
216 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
217 			    u_int16_t data);
218 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
219 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
220 			    int offset, int words);
221 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
222 			    int offset, int words);
223 static int		fxp_ifmedia_upd(struct ifnet *ifp);
224 static void		fxp_ifmedia_sts(struct ifnet *ifp,
225 			    struct ifmediareq *ifmr);
226 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
230 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
231 			    int value);
232 static void		fxp_load_ucode(struct fxp_softc *sc);
233 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
234 			    int low, int high);
235 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
236 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
237 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
238 			    volatile u_int32_t *dst);
239 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
240 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
241 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
242 			    struct fxp_softc *sc);
243 
244 static device_method_t fxp_methods[] = {
245 	/* Device interface */
246 	DEVMETHOD(device_probe,		fxp_probe),
247 	DEVMETHOD(device_attach,	fxp_attach),
248 	DEVMETHOD(device_detach,	fxp_detach),
249 	DEVMETHOD(device_shutdown,	fxp_shutdown),
250 	DEVMETHOD(device_suspend,	fxp_suspend),
251 	DEVMETHOD(device_resume,	fxp_resume),
252 
253 	/* MII interface */
254 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
255 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
256 
257 	{ 0, 0 }
258 };
259 
260 static driver_t fxp_driver = {
261 	"fxp",
262 	fxp_methods,
263 	sizeof(struct fxp_softc),
264 };
265 
266 static devclass_t fxp_devclass;
267 
268 DECLARE_DUMMY_MODULE(if_fxp);
269 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
270 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
271 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
272 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
273 
274 static int fxp_rnr;
275 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
276 
277 /*
278  * Inline function to copy a 16-bit aligned 32-bit quantity.
279  */
280 static __inline void
281 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
282 {
283 #ifdef __i386__
284 	*dst = *src;
285 #else
286 	volatile u_int16_t *a = (volatile u_int16_t *)src;
287 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
288 
289 	b[0] = a[0];
290 	b[1] = a[1];
291 #endif
292 }
293 
294 /*
295  * Wait for the previous command to be accepted (but not necessarily
296  * completed).
297  */
298 static __inline void
299 fxp_scb_wait(struct fxp_softc *sc)
300 {
301 	int i = 10000;
302 
303 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
304 		DELAY(2);
305 	if (i == 0)
306 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
307 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
308 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
309 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
310 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
311 }
312 
313 static __inline void
314 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
315 {
316 
317 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
318 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
319 		fxp_scb_wait(sc);
320 	}
321 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
322 }
323 
324 static __inline void
325 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
326 {
327 	int i = 10000;
328 
329 	while (!(*status & FXP_CB_STATUS_C) && --i)
330 		DELAY(2);
331 	if (i == 0)
332 		device_printf(sc->dev, "DMA timeout\n");
333 }
334 
335 /*
336  * Return identification string if this is device is ours.
337  */
338 static int
339 fxp_probe(device_t dev)
340 {
341 	u_int16_t devid;
342 	u_int8_t revid;
343 	struct fxp_ident *ident;
344 
345 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
346 		devid = pci_get_device(dev);
347 		revid = pci_get_revid(dev);
348 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
349 			if (ident->devid == devid &&
350 			    (ident->revid == revid || ident->revid == -1)) {
351 				device_set_desc(dev, ident->name);
352 				return (0);
353 			}
354 		}
355 	}
356 	return (ENXIO);
357 }
358 
359 static void
360 fxp_powerstate_d0(device_t dev)
361 {
362 	u_int32_t iobase, membase, irq;
363 
364 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
365 		/* Save important PCI config data. */
366 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
367 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
368 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
369 
370 		/* Reset the power state. */
371 		device_printf(dev, "chip is in D%d power mode "
372 		    "-- setting to D0\n", pci_get_powerstate(dev));
373 
374 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
375 
376 		/* Restore PCI config data. */
377 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
378 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
379 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
380 	}
381 }
382 
383 static int
384 fxp_attach(device_t dev)
385 {
386 	int error = 0;
387 	struct fxp_softc *sc = device_get_softc(dev);
388 	struct ifnet *ifp;
389 	u_int32_t val;
390 	u_int16_t data;
391 	int i, rid, m1, m2, prefer_iomap;
392 	int s;
393 
394 	bzero(sc, sizeof(*sc));
395 	sc->dev = dev;
396 	callout_init(&sc->fxp_stat_timer);
397 	sysctl_ctx_init(&sc->sysctl_ctx);
398 
399 	s = splimp();
400 
401 	/*
402 	 * Enable bus mastering. Enable memory space too, in case
403 	 * BIOS/Prom forgot about it.
404 	 */
405 	val = pci_read_config(dev, PCIR_COMMAND, 2);
406 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
407 	pci_write_config(dev, PCIR_COMMAND, val, 2);
408 	val = pci_read_config(dev, PCIR_COMMAND, 2);
409 
410 	fxp_powerstate_d0(dev);
411 
412 	/*
413 	 * Figure out which we should try first - memory mapping or i/o mapping?
414 	 * We default to memory mapping. Then we accept an override from the
415 	 * command line. Then we check to see which one is enabled.
416 	 */
417 	m1 = PCIM_CMD_MEMEN;
418 	m2 = PCIM_CMD_PORTEN;
419 	prefer_iomap = 0;
420 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
421 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
422 		m1 = PCIM_CMD_PORTEN;
423 		m2 = PCIM_CMD_MEMEN;
424 	}
425 
426 	if (val & m1) {
427 		sc->rtp =
428 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
429 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
430 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
431 	                                     0, ~0, 1, RF_ACTIVE);
432 	}
433 	if (sc->mem == NULL && (val & m2)) {
434 		sc->rtp =
435 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
436 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
437 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
438                                             0, ~0, 1, RF_ACTIVE);
439 	}
440 
441 	if (!sc->mem) {
442 		device_printf(dev, "could not map device registers\n");
443 		error = ENXIO;
444 		goto fail;
445         }
446 	if (bootverbose) {
447 		device_printf(dev, "using %s space register mapping\n",
448 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
449 	}
450 
451 	sc->sc_st = rman_get_bustag(sc->mem);
452 	sc->sc_sh = rman_get_bushandle(sc->mem);
453 
454 	/*
455 	 * Allocate our interrupt.
456 	 */
457 	rid = 0;
458 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
459 				 RF_SHAREABLE | RF_ACTIVE);
460 	if (sc->irq == NULL) {
461 		device_printf(dev, "could not map interrupt\n");
462 		error = ENXIO;
463 		goto fail;
464 	}
465 
466 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
467 			       fxp_intr, sc, &sc->ih);
468 	if (error) {
469 		device_printf(dev, "could not setup irq\n");
470 		goto fail;
471 	}
472 
473 	/*
474 	 * Reset to a stable state.
475 	 */
476 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
477 	DELAY(10);
478 
479 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
480 	    M_DEVBUF, M_WAITOK | M_ZERO);
481 
482 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
483 	    M_WAITOK | M_ZERO);
484 
485 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
486 
487 	/*
488 	 * Pre-allocate our receive buffers.
489 	 */
490 	for (i = 0; i < FXP_NRFABUFS; i++) {
491 		if (fxp_add_rfabuf(sc, NULL) != 0) {
492 			goto failmem;
493 		}
494 	}
495 
496 	/*
497 	 * Find out how large of an SEEPROM we have.
498 	 */
499 	fxp_autosize_eeprom(sc);
500 
501 	/*
502 	 * Determine whether we must use the 503 serial interface.
503 	 */
504 	fxp_read_eeprom(sc, &data, 6, 1);
505 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
506 	    (data & FXP_PHY_SERIAL_ONLY))
507 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
508 
509 	/*
510 	 * Create the sysctl tree
511 	 */
512 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
513 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
514 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
515 	if (sc->sysctl_tree == NULL)
516 		goto fail;
517 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
518 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
519 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
520 	    "FXP driver receive interrupt microcode bundling delay");
521 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
522 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
523 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
524 	    "FXP driver receive interrupt microcode bundle size limit");
525 
526 	/*
527 	 * Pull in device tunables.
528 	 */
529 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
530 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
531 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "int_delay", &sc->tunable_int_delay);
533 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "bundle_max", &sc->tunable_bundle_max);
535 
536 	/*
537 	 * Find out the chip revision; lump all 82557 revs together.
538 	 */
539 	fxp_read_eeprom(sc, &data, 5, 1);
540 	if ((data >> 8) == 1)
541 		sc->revision = FXP_REV_82557;
542 	else
543 		sc->revision = pci_get_revid(dev);
544 
545 	/*
546 	 * Enable workarounds for certain chip revision deficiencies.
547 	 *
548 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
549 	 * some systems based a normal 82559 design, have a defect where
550 	 * the chip can cause a PCI protocol violation if it receives
551 	 * a CU_RESUME command when it is entering the IDLE state.  The
552 	 * workaround is to disable Dynamic Standby Mode, so the chip never
553 	 * deasserts CLKRUN#, and always remains in an active state.
554 	 *
555 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
556 	 */
557 	i = pci_get_device(dev);
558 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
559 	    sc->revision >= FXP_REV_82559_A0) {
560 		fxp_read_eeprom(sc, &data, 10, 1);
561 		if (data & 0x02) {			/* STB enable */
562 			u_int16_t cksum;
563 			int i;
564 
565 			device_printf(dev,
566 			    "Disabling dynamic standby mode in EEPROM\n");
567 			data &= ~0x02;
568 			fxp_write_eeprom(sc, &data, 10, 1);
569 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
570 			cksum = 0;
571 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
572 				fxp_read_eeprom(sc, &data, i, 1);
573 				cksum += data;
574 			}
575 			i = (1 << sc->eeprom_size) - 1;
576 			cksum = 0xBABA - cksum;
577 			fxp_read_eeprom(sc, &data, i, 1);
578 			fxp_write_eeprom(sc, &cksum, i, 1);
579 			device_printf(dev,
580 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
581 			    i, data, cksum);
582 #if 1
583 			/*
584 			 * If the user elects to continue, try the software
585 			 * workaround, as it is better than nothing.
586 			 */
587 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
588 #endif
589 		}
590 	}
591 
592 	/*
593 	 * If we are not a 82557 chip, we can enable extended features.
594 	 */
595 	if (sc->revision != FXP_REV_82557) {
596 		/*
597 		 * If MWI is enabled in the PCI configuration, and there
598 		 * is a valid cacheline size (8 or 16 dwords), then tell
599 		 * the board to turn on MWI.
600 		 */
601 		if (val & PCIM_CMD_MWRICEN &&
602 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
603 			sc->flags |= FXP_FLAG_MWI_ENABLE;
604 
605 		/* turn on the extended TxCB feature */
606 		sc->flags |= FXP_FLAG_EXT_TXCB;
607 
608 		/* enable reception of long frames for VLAN */
609 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
610 	}
611 
612 	/*
613 	 * Read MAC address.
614 	 */
615 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
616 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
617 		device_printf(dev, "10Mbps");
618 	if (bootverbose) {
619 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
620 		    pci_get_vendor(dev), pci_get_device(dev),
621 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
622 		    pci_get_revid(dev));
623 		fxp_read_eeprom(sc, &data, 10, 1);
624 		device_printf(dev, "Dynamic Standby mode is %s\n",
625 		    data & 0x02 ? "enabled" : "disabled");
626 	}
627 
628 	/*
629 	 * If this is only a 10Mbps device, then there is no MII, and
630 	 * the PHY will use a serial interface instead.
631 	 *
632 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
633 	 * doesn't have a programming interface of any sort.  The
634 	 * media is sensed automatically based on how the link partner
635 	 * is configured.  This is, in essence, manual configuration.
636 	 */
637 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
638 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
639 		    fxp_serial_ifmedia_sts);
640 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
641 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
642 	} else {
643 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
644 		    fxp_ifmedia_sts)) {
645 	                device_printf(dev, "MII without any PHY!\n");
646 			error = ENXIO;
647 			goto fail;
648 		}
649 	}
650 
651 	ifp = &sc->arpcom.ac_if;
652 	if_initname(ifp, "fxp", device_get_unit(dev));
653 	ifp->if_baudrate = 100000000;
654 	ifp->if_init = fxp_init;
655 	ifp->if_softc = sc;
656 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
657 	ifp->if_ioctl = fxp_ioctl;
658 	ifp->if_start = fxp_start;
659 	ifp->if_watchdog = fxp_watchdog;
660 
661 	/*
662 	 * Attach the interface.
663 	 */
664 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
665 
666 	/*
667 	 * Tell the upper layer(s) we support long frames.
668 	 */
669 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
670 
671 	/*
672 	 * Let the system queue as many packets as we have available
673 	 * TX descriptors.
674 	 */
675 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
676 	ifq_set_ready(&ifp->if_snd);
677 
678 	splx(s);
679 	return (0);
680 
681 failmem:
682 	device_printf(dev, "Failed to malloc memory\n");
683 	error = ENOMEM;
684 fail:
685 	splx(s);
686 	fxp_release(sc);
687 	return (error);
688 }
689 
690 /*
691  * release all resources
692  */
693 static void
694 fxp_release(struct fxp_softc *sc)
695 {
696 
697 	bus_generic_detach(sc->dev);
698 	if (sc->miibus)
699 		device_delete_child(sc->dev, sc->miibus);
700 
701 	if (sc->cbl_base)
702 		free(sc->cbl_base, M_DEVBUF);
703 	if (sc->fxp_stats)
704 		free(sc->fxp_stats, M_DEVBUF);
705 	if (sc->mcsp)
706 		free(sc->mcsp, M_DEVBUF);
707 	if (sc->rfa_headm)
708 		m_freem(sc->rfa_headm);
709 
710 	if (sc->ih)
711 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
712 	if (sc->irq)
713 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
714 	if (sc->mem)
715 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
716 
717         sysctl_ctx_free(&sc->sysctl_ctx);
718 }
719 
720 /*
721  * Detach interface.
722  */
723 static int
724 fxp_detach(device_t dev)
725 {
726 	struct fxp_softc *sc = device_get_softc(dev);
727 	int s;
728 
729 	/* disable interrupts */
730 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
731 
732 	s = splimp();
733 
734 	/*
735 	 * Stop DMA and drop transmit queue.
736 	 */
737 	fxp_stop(sc);
738 
739 	/*
740 	 * Close down routes etc.
741 	 */
742 	ether_ifdetach(&sc->arpcom.ac_if);
743 
744 	/*
745 	 * Free all media structures.
746 	 */
747 	ifmedia_removeall(&sc->sc_media);
748 
749 	splx(s);
750 
751 	/* Release our allocated resources. */
752 	fxp_release(sc);
753 
754 	return (0);
755 }
756 
757 /*
758  * Device shutdown routine. Called at system shutdown after sync. The
759  * main purpose of this routine is to shut off receiver DMA so that
760  * kernel memory doesn't get clobbered during warmboot.
761  */
762 static int
763 fxp_shutdown(device_t dev)
764 {
765 	/*
766 	 * Make sure that DMA is disabled prior to reboot. Not doing
767 	 * do could allow DMA to corrupt kernel memory during the
768 	 * reboot before the driver initializes.
769 	 */
770 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
771 	return (0);
772 }
773 
774 /*
775  * Device suspend routine.  Stop the interface and save some PCI
776  * settings in case the BIOS doesn't restore them properly on
777  * resume.
778  */
779 static int
780 fxp_suspend(device_t dev)
781 {
782 	struct fxp_softc *sc = device_get_softc(dev);
783 	int i, s;
784 
785 	s = splimp();
786 
787 	fxp_stop(sc);
788 
789 	for (i = 0; i < 5; i++)
790 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
791 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
792 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
793 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
794 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
795 
796 	sc->suspended = 1;
797 
798 	splx(s);
799 	return (0);
800 }
801 
802 /*
803  * Device resume routine.  Restore some PCI settings in case the BIOS
804  * doesn't, re-enable busmastering, and restart the interface if
805  * appropriate.
806  */
807 static int
808 fxp_resume(device_t dev)
809 {
810 	struct fxp_softc *sc = device_get_softc(dev);
811 	struct ifnet *ifp = &sc->arpcom.ac_if;
812 	u_int16_t pci_command;
813 	int i, s;
814 
815 	s = splimp();
816 
817 	fxp_powerstate_d0(dev);
818 
819 	/* better way to do this? */
820 	for (i = 0; i < 5; i++)
821 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
822 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
823 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
824 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
825 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
826 
827 	/* reenable busmastering */
828 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
829 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
830 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
831 
832 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
833 	DELAY(10);
834 
835 	/* reinitialize interface if necessary */
836 	if (ifp->if_flags & IFF_UP)
837 		fxp_init(sc);
838 
839 	sc->suspended = 0;
840 
841 	splx(s);
842 	return (0);
843 }
844 
845 static void
846 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
847 {
848 	u_int16_t reg;
849 	int x;
850 
851 	/*
852 	 * Shift in data.
853 	 */
854 	for (x = 1 << (length - 1); x; x >>= 1) {
855 		if (data & x)
856 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
857 		else
858 			reg = FXP_EEPROM_EECS;
859 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
860 		DELAY(1);
861 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
862 		DELAY(1);
863 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
864 		DELAY(1);
865 	}
866 }
867 
868 /*
869  * Read from the serial EEPROM. Basically, you manually shift in
870  * the read opcode (one bit at a time) and then shift in the address,
871  * and then you shift out the data (all of this one bit at a time).
872  * The word size is 16 bits, so you have to provide the address for
873  * every 16 bits of data.
874  */
875 static u_int16_t
876 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
877 {
878 	u_int16_t reg, data;
879 	int x;
880 
881 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
882 	/*
883 	 * Shift in read opcode.
884 	 */
885 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
886 	/*
887 	 * Shift in address.
888 	 */
889 	data = 0;
890 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
891 		if (offset & x)
892 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
893 		else
894 			reg = FXP_EEPROM_EECS;
895 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
896 		DELAY(1);
897 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
898 		DELAY(1);
899 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
900 		DELAY(1);
901 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
902 		data++;
903 		if (autosize && reg == 0) {
904 			sc->eeprom_size = data;
905 			break;
906 		}
907 	}
908 	/*
909 	 * Shift out data.
910 	 */
911 	data = 0;
912 	reg = FXP_EEPROM_EECS;
913 	for (x = 1 << 15; x; x >>= 1) {
914 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
915 		DELAY(1);
916 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
917 			data |= x;
918 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
919 		DELAY(1);
920 	}
921 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
922 	DELAY(1);
923 
924 	return (data);
925 }
926 
927 static void
928 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
929 {
930 	int i;
931 
932 	/*
933 	 * Erase/write enable.
934 	 */
935 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
936 	fxp_eeprom_shiftin(sc, 0x4, 3);
937 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
939 	DELAY(1);
940 	/*
941 	 * Shift in write opcode, address, data.
942 	 */
943 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
944 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
945 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
946 	fxp_eeprom_shiftin(sc, data, 16);
947 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
948 	DELAY(1);
949 	/*
950 	 * Wait for EEPROM to finish up.
951 	 */
952 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
953 	DELAY(1);
954 	for (i = 0; i < 1000; i++) {
955 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
956 			break;
957 		DELAY(50);
958 	}
959 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
960 	DELAY(1);
961 	/*
962 	 * Erase/write disable.
963 	 */
964 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
965 	fxp_eeprom_shiftin(sc, 0x4, 3);
966 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
968 	DELAY(1);
969 }
970 
971 /*
972  * From NetBSD:
973  *
974  * Figure out EEPROM size.
975  *
976  * 559's can have either 64-word or 256-word EEPROMs, the 558
977  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
978  * talks about the existance of 16 to 256 word EEPROMs.
979  *
980  * The only known sizes are 64 and 256, where the 256 version is used
981  * by CardBus cards to store CIS information.
982  *
983  * The address is shifted in msb-to-lsb, and after the last
984  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
985  * after which follows the actual data. We try to detect this zero, by
986  * probing the data-out bit in the EEPROM control register just after
987  * having shifted in a bit. If the bit is zero, we assume we've
988  * shifted enough address bits. The data-out should be tri-state,
989  * before this, which should translate to a logical one.
990  */
991 static void
992 fxp_autosize_eeprom(struct fxp_softc *sc)
993 {
994 
995 	/* guess maximum size of 256 words */
996 	sc->eeprom_size = 8;
997 
998 	/* autosize */
999 	(void) fxp_eeprom_getword(sc, 0, 1);
1000 }
1001 
1002 static void
1003 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; i < words; i++)
1008 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1009 }
1010 
1011 static void
1012 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1013 {
1014 	int i;
1015 
1016 	for (i = 0; i < words; i++)
1017 		fxp_eeprom_putword(sc, offset + i, data[i]);
1018 }
1019 
1020 /*
1021  * Start packet transmission on the interface.
1022  */
1023 static void
1024 fxp_start(struct ifnet *ifp)
1025 {
1026 	struct fxp_softc *sc = ifp->if_softc;
1027 	struct fxp_cb_tx *txp;
1028 
1029 	/*
1030 	 * See if we need to suspend xmit until the multicast filter
1031 	 * has been reprogrammed (which can only be done at the head
1032 	 * of the command chain).
1033 	 */
1034 	if (sc->need_mcsetup) {
1035 		return;
1036 	}
1037 
1038 	txp = NULL;
1039 
1040 	/*
1041 	 * We're finished if there is nothing more to add to the list or if
1042 	 * we're all filled up with buffers to transmit.
1043 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1044 	 *       a NOP command when needed.
1045 	 */
1046 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1047 		struct mbuf *m, *mb_head;
1048 		int segment;
1049 
1050 		/*
1051 		 * Grab a packet to transmit. The packet is dequeued,
1052 		 * once we are sure that we have enough free descriptors.
1053 		 */
1054 		mb_head = ifq_poll(&ifp->if_snd);
1055 		if (mb_head == NULL)
1056 			break;
1057 
1058 		/*
1059 		 * Get pointer to next available tx desc.
1060 		 */
1061 		txp = sc->cbl_last->next;
1062 
1063 		/*
1064 		 * Go through each of the mbufs in the chain and initialize
1065 		 * the transmit buffer descriptors with the physical address
1066 		 * and size of the mbuf.
1067 		 */
1068 tbdinit:
1069 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1070 			if (m->m_len != 0) {
1071 				if (segment == FXP_NTXSEG)
1072 					break;
1073 				txp->tbd[segment].tb_addr =
1074 				    vtophys(mtod(m, vm_offset_t));
1075 				txp->tbd[segment].tb_size = m->m_len;
1076 				segment++;
1077 			}
1078 		}
1079 		if (m != NULL) {
1080 			struct mbuf *mn;
1081 
1082 			/*
1083 			 * We ran out of segments. We have to recopy this
1084 			 * mbuf chain first. Bail out if we can't get the
1085 			 * new buffers.
1086 			 */
1087 			MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1088 			if (mn == NULL)
1089 				break;
1090 			if (mb_head->m_pkthdr.len > MHLEN) {
1091 				MCLGET(mn, MB_DONTWAIT);
1092 				if ((mn->m_flags & M_EXT) == 0) {
1093 					m_freem(mn);
1094 					break;
1095 				}
1096 			}
1097 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1098 			    mtod(mn, caddr_t));
1099 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1100 			 /* We can transmit the packet, dequeue it. */
1101 			mb_head = ifq_dequeue(&ifp->if_snd);
1102 			m_freem(mb_head);
1103 			mb_head = mn;
1104 			goto tbdinit;
1105 		} else {
1106 			/* Nothing to worry about, just dequeue. */
1107 			mb_head = ifq_dequeue(&ifp->if_snd);
1108 		}
1109 
1110 		txp->tbd_number = segment;
1111 		txp->mb_head = mb_head;
1112 		txp->cb_status = 0;
1113 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1114 			txp->cb_command =
1115 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1116 			    FXP_CB_COMMAND_S;
1117 		} else {
1118 			txp->cb_command =
1119 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1120 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1121 			/*
1122 			 * Set a 5 second timer just in case we don't hear
1123 			 * from the card again.
1124 			 */
1125 			ifp->if_timer = 5;
1126 		}
1127 		txp->tx_threshold = tx_threshold;
1128 
1129 		/*
1130 		 * Advance the end of list forward.
1131 		 */
1132 
1133 #ifdef __alpha__
1134 		/*
1135 		 * On platforms which can't access memory in 16-bit
1136 		 * granularities, we must prevent the card from DMA'ing
1137 		 * up the status while we update the command field.
1138 		 * This could cause us to overwrite the completion status.
1139 		 */
1140 		atomic_clear_short(&sc->cbl_last->cb_command,
1141 		    FXP_CB_COMMAND_S);
1142 #else
1143 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1144 #endif /*__alpha__*/
1145 		sc->cbl_last = txp;
1146 
1147 		/*
1148 		 * Advance the beginning of the list forward if there are
1149 		 * no other packets queued (when nothing is queued, cbl_first
1150 		 * sits on the last TxCB that was sent out).
1151 		 */
1152 		if (sc->tx_queued == 0)
1153 			sc->cbl_first = txp;
1154 
1155 		sc->tx_queued++;
1156 
1157 		BPF_MTAP(ifp, mb_head);
1158 	}
1159 
1160 	/*
1161 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1162 	 * going again if suspended.
1163 	 */
1164 	if (txp != NULL) {
1165 		fxp_scb_wait(sc);
1166 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1167 	}
1168 }
1169 
1170 #ifdef DEVICE_POLLING
1171 static poll_handler_t fxp_poll;
1172 
1173 static void
1174 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1175 {
1176 	struct fxp_softc *sc = ifp->if_softc;
1177 	u_int8_t statack;
1178 
1179 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1180 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1181 		return;
1182 	}
1183 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1184 	    FXP_SCB_STATACK_FR;
1185 	if (cmd == POLL_AND_CHECK_STATUS) {
1186 		u_int8_t tmp;
1187 
1188 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1189 		if (tmp == 0xff || tmp == 0)
1190 			return; /* nothing to do */
1191 		tmp &= ~statack;
1192 		/* ack what we can */
1193 		if (tmp != 0)
1194 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1195 		statack |= tmp;
1196 	}
1197 	fxp_intr_body(sc, statack, count);
1198 }
1199 #endif /* DEVICE_POLLING */
1200 
1201 /*
1202  * Process interface interrupts.
1203  */
1204 static void
1205 fxp_intr(void *xsc)
1206 {
1207 	struct fxp_softc *sc = xsc;
1208 	u_int8_t statack;
1209 
1210 #ifdef DEVICE_POLLING
1211 	struct ifnet *ifp = &sc->arpcom.ac_if;
1212 
1213 	if (ifp->if_flags & IFF_POLLING)
1214 		return;
1215 	if (ether_poll_register(fxp_poll, ifp)) {
1216 		/* disable interrupts */
1217 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1218 		fxp_poll(ifp, 0, 1);
1219 		return;
1220 	}
1221 #endif
1222 
1223 	if (sc->suspended) {
1224 		return;
1225 	}
1226 
1227 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1228 		/*
1229 		 * It should not be possible to have all bits set; the
1230 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1231 		 * all bits are set, this may indicate that the card has
1232 		 * been physically ejected, so ignore it.
1233 		 */
1234 		if (statack == 0xff)
1235 			return;
1236 
1237 		/*
1238 		 * First ACK all the interrupts in this pass.
1239 		 */
1240 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1241 		fxp_intr_body(sc, statack, -1);
1242 	}
1243 }
1244 
1245 static void
1246 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1247 {
1248 	struct ifnet *ifp = &sc->arpcom.ac_if;
1249 	struct mbuf *m;
1250 	struct fxp_rfa *rfa;
1251 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1252 
1253 	if (rnr)
1254 		fxp_rnr++;
1255 #ifdef DEVICE_POLLING
1256 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1257 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1258 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1259 		rnr = 1;
1260 	}
1261 #endif
1262 
1263 	/*
1264 	 * Free any finished transmit mbuf chains.
1265 	 *
1266 	 * Handle the CNA event likt a CXTNO event. It used to
1267 	 * be that this event (control unit not ready) was not
1268 	 * encountered, but it is now with the SMPng modifications.
1269 	 * The exact sequence of events that occur when the interface
1270 	 * is brought up are different now, and if this event
1271 	 * goes unhandled, the configuration/rxfilter setup sequence
1272 	 * can stall for several seconds. The result is that no
1273 	 * packets go out onto the wire for about 5 to 10 seconds
1274 	 * after the interface is ifconfig'ed for the first time.
1275 	 */
1276 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1277 		struct fxp_cb_tx *txp;
1278 
1279 		for (txp = sc->cbl_first; sc->tx_queued &&
1280 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1281 		    txp = txp->next) {
1282 			if ((m = txp->mb_head) != NULL) {
1283 				txp->mb_head = NULL;
1284 				sc->tx_queued--;
1285 				m_freem(m);
1286 			} else {
1287 				sc->tx_queued--;
1288 			}
1289 		}
1290 		sc->cbl_first = txp;
1291 		ifp->if_timer = 0;
1292 		if (sc->tx_queued == 0) {
1293 			if (sc->need_mcsetup)
1294 				fxp_mc_setup(sc);
1295 		}
1296 		/*
1297 		 * Try to start more packets transmitting.
1298 		 */
1299 		if (!ifq_is_empty(&ifp->if_snd))
1300 			(*ifp->if_start)(ifp);
1301 	}
1302 
1303 	/*
1304 	 * Just return if nothing happened on the receive side.
1305 	 */
1306 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1307 		return;
1308 
1309 	/*
1310 	 * Process receiver interrupts. If a no-resource (RNR)
1311 	 * condition exists, get whatever packets we can and
1312 	 * re-start the receiver.
1313 	 *
1314 	 * When using polling, we do not process the list to completion,
1315 	 * so when we get an RNR interrupt we must defer the restart
1316 	 * until we hit the last buffer with the C bit set.
1317 	 * If we run out of cycles and rfa_headm has the C bit set,
1318 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1319 	 * that the info will be used in the subsequent polling cycle.
1320 	 */
1321 	for (;;) {
1322 		m = sc->rfa_headm;
1323 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1324 		    RFA_ALIGNMENT_FUDGE);
1325 
1326 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1327 		if (count >= 0 && count-- == 0) {
1328 			if (rnr) {
1329 				/* Defer RNR processing until the next time. */
1330 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1331 				rnr = 0;
1332 			}
1333 			break;
1334 		}
1335 #endif /* DEVICE_POLLING */
1336 
1337 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1338 			break;
1339 
1340 		/*
1341 		 * Remove first packet from the chain.
1342 		 */
1343 		sc->rfa_headm = m->m_next;
1344 		m->m_next = NULL;
1345 
1346 		/*
1347 		 * Add a new buffer to the receive chain.
1348 		 * If this fails, the old buffer is recycled
1349 		 * instead.
1350 		 */
1351 		if (fxp_add_rfabuf(sc, m) == 0) {
1352 			int total_len;
1353 
1354 			/*
1355 			 * Fetch packet length (the top 2 bits of
1356 			 * actual_size are flags set by the controller
1357 			 * upon completion), and drop the packet in case
1358 			 * of bogus length or CRC errors.
1359 			 */
1360 			total_len = rfa->actual_size & 0x3fff;
1361 			if (total_len < sizeof(struct ether_header) ||
1362 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1363 				sizeof(struct fxp_rfa) ||
1364 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1365 				m_freem(m);
1366 				continue;
1367 			}
1368 			m->m_pkthdr.len = m->m_len = total_len;
1369 			(*ifp->if_input)(ifp, m);
1370 		}
1371 	}
1372 	if (rnr) {
1373 		fxp_scb_wait(sc);
1374 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1375 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1376 		    RFA_ALIGNMENT_FUDGE);
1377 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1378 	}
1379 }
1380 
1381 /*
1382  * Update packet in/out/collision statistics. The i82557 doesn't
1383  * allow you to access these counters without doing a fairly
1384  * expensive DMA to get _all_ of the statistics it maintains, so
1385  * we do this operation here only once per second. The statistics
1386  * counters in the kernel are updated from the previous dump-stats
1387  * DMA and then a new dump-stats DMA is started. The on-chip
1388  * counters are zeroed when the DMA completes. If we can't start
1389  * the DMA immediately, we don't wait - we just prepare to read
1390  * them again next time.
1391  */
1392 static void
1393 fxp_tick(void *xsc)
1394 {
1395 	struct fxp_softc *sc = xsc;
1396 	struct ifnet *ifp = &sc->arpcom.ac_if;
1397 	struct fxp_stats *sp = sc->fxp_stats;
1398 	struct fxp_cb_tx *txp;
1399 	struct mbuf *m;
1400 	int s;
1401 
1402 	ifp->if_opackets += sp->tx_good;
1403 	ifp->if_collisions += sp->tx_total_collisions;
1404 	if (sp->rx_good) {
1405 		ifp->if_ipackets += sp->rx_good;
1406 		sc->rx_idle_secs = 0;
1407 	} else {
1408 		/*
1409 		 * Receiver's been idle for another second.
1410 		 */
1411 		sc->rx_idle_secs++;
1412 	}
1413 	ifp->if_ierrors +=
1414 	    sp->rx_crc_errors +
1415 	    sp->rx_alignment_errors +
1416 	    sp->rx_rnr_errors +
1417 	    sp->rx_overrun_errors;
1418 	/*
1419 	 * If any transmit underruns occured, bump up the transmit
1420 	 * threshold by another 512 bytes (64 * 8).
1421 	 */
1422 	if (sp->tx_underruns) {
1423 		ifp->if_oerrors += sp->tx_underruns;
1424 		if (tx_threshold < 192)
1425 			tx_threshold += 64;
1426 	}
1427 	s = splimp();
1428 	/*
1429 	 * Release any xmit buffers that have completed DMA. This isn't
1430 	 * strictly necessary to do here, but it's advantagous for mbufs
1431 	 * with external storage to be released in a timely manner rather
1432 	 * than being defered for a potentially long time. This limits
1433 	 * the delay to a maximum of one second.
1434 	 */
1435 	for (txp = sc->cbl_first; sc->tx_queued &&
1436 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1437 	    txp = txp->next) {
1438 		if ((m = txp->mb_head) != NULL) {
1439 			txp->mb_head = NULL;
1440 			sc->tx_queued--;
1441 			m_freem(m);
1442 		} else {
1443 			sc->tx_queued--;
1444 		}
1445 	}
1446 	sc->cbl_first = txp;
1447 	/*
1448 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1449 	 * then assume the receiver has locked up and attempt to clear
1450 	 * the condition by reprogramming the multicast filter. This is
1451 	 * a work-around for a bug in the 82557 where the receiver locks
1452 	 * up if it gets certain types of garbage in the syncronization
1453 	 * bits prior to the packet header. This bug is supposed to only
1454 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1455 	 * mode as well (perhaps due to a 10/100 speed transition).
1456 	 */
1457 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1458 		sc->rx_idle_secs = 0;
1459 		fxp_mc_setup(sc);
1460 	}
1461 	/*
1462 	 * If there is no pending command, start another stats
1463 	 * dump. Otherwise punt for now.
1464 	 */
1465 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1466 		/*
1467 		 * Start another stats dump.
1468 		 */
1469 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1470 	} else {
1471 		/*
1472 		 * A previous command is still waiting to be accepted.
1473 		 * Just zero our copy of the stats and wait for the
1474 		 * next timer event to update them.
1475 		 */
1476 		sp->tx_good = 0;
1477 		sp->tx_underruns = 0;
1478 		sp->tx_total_collisions = 0;
1479 
1480 		sp->rx_good = 0;
1481 		sp->rx_crc_errors = 0;
1482 		sp->rx_alignment_errors = 0;
1483 		sp->rx_rnr_errors = 0;
1484 		sp->rx_overrun_errors = 0;
1485 	}
1486 	if (sc->miibus != NULL)
1487 		mii_tick(device_get_softc(sc->miibus));
1488 	splx(s);
1489 	/*
1490 	 * Schedule another timeout one second from now.
1491 	 */
1492 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1493 }
1494 
1495 /*
1496  * Stop the interface. Cancels the statistics updater and resets
1497  * the interface.
1498  */
1499 static void
1500 fxp_stop(struct fxp_softc *sc)
1501 {
1502 	struct ifnet *ifp = &sc->arpcom.ac_if;
1503 	struct fxp_cb_tx *txp;
1504 	int i;
1505 
1506 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1507 	ifp->if_timer = 0;
1508 
1509 #ifdef DEVICE_POLLING
1510 	ether_poll_deregister(ifp);
1511 #endif
1512 	/*
1513 	 * Cancel stats updater.
1514 	 */
1515 	callout_stop(&sc->fxp_stat_timer);
1516 
1517 	/*
1518 	 * Issue software reset, which also unloads the microcode.
1519 	 */
1520 	sc->flags &= ~FXP_FLAG_UCODE;
1521 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1522 	DELAY(50);
1523 
1524 	/*
1525 	 * Release any xmit buffers.
1526 	 */
1527 	txp = sc->cbl_base;
1528 	if (txp != NULL) {
1529 		for (i = 0; i < FXP_NTXCB; i++) {
1530 			if (txp[i].mb_head != NULL) {
1531 				m_freem(txp[i].mb_head);
1532 				txp[i].mb_head = NULL;
1533 			}
1534 		}
1535 	}
1536 	sc->tx_queued = 0;
1537 
1538 	/*
1539 	 * Free all the receive buffers then reallocate/reinitialize
1540 	 */
1541 	if (sc->rfa_headm != NULL)
1542 		m_freem(sc->rfa_headm);
1543 	sc->rfa_headm = NULL;
1544 	sc->rfa_tailm = NULL;
1545 	for (i = 0; i < FXP_NRFABUFS; i++) {
1546 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1547 			/*
1548 			 * This "can't happen" - we're at splimp()
1549 			 * and we just freed all the buffers we need
1550 			 * above.
1551 			 */
1552 			panic("fxp_stop: no buffers!");
1553 		}
1554 	}
1555 }
1556 
1557 /*
1558  * Watchdog/transmission transmit timeout handler. Called when a
1559  * transmission is started on the interface, but no interrupt is
1560  * received before the timeout. This usually indicates that the
1561  * card has wedged for some reason.
1562  */
1563 static void
1564 fxp_watchdog(struct ifnet *ifp)
1565 {
1566 	struct fxp_softc *sc = ifp->if_softc;
1567 
1568 	device_printf(sc->dev, "device timeout\n");
1569 	ifp->if_oerrors++;
1570 
1571 	fxp_init(sc);
1572 }
1573 
1574 static void
1575 fxp_init(void *xsc)
1576 {
1577 	struct fxp_softc *sc = xsc;
1578 	struct ifnet *ifp = &sc->arpcom.ac_if;
1579 	struct fxp_cb_config *cbp;
1580 	struct fxp_cb_ias *cb_ias;
1581 	struct fxp_cb_tx *txp;
1582 	struct fxp_cb_mcs *mcsp;
1583 	int i, prm, s;
1584 
1585 	s = splimp();
1586 	/*
1587 	 * Cancel any pending I/O
1588 	 */
1589 	fxp_stop(sc);
1590 
1591 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1592 
1593 	/*
1594 	 * Initialize base of CBL and RFA memory. Loading with zero
1595 	 * sets it up for regular linear addressing.
1596 	 */
1597 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1598 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1599 
1600 	fxp_scb_wait(sc);
1601 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1602 
1603 	/*
1604 	 * Initialize base of dump-stats buffer.
1605 	 */
1606 	fxp_scb_wait(sc);
1607 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1608 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1609 
1610 	/*
1611 	 * Attempt to load microcode if requested.
1612 	 */
1613 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1614 		fxp_load_ucode(sc);
1615 
1616 	/*
1617 	 * Initialize the multicast address list.
1618 	 */
1619 	if (fxp_mc_addrs(sc)) {
1620 		mcsp = sc->mcsp;
1621 		mcsp->cb_status = 0;
1622 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1623 		mcsp->link_addr = -1;
1624 		/*
1625 	 	 * Start the multicast setup command.
1626 		 */
1627 		fxp_scb_wait(sc);
1628 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1629 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1630 		/* ...and wait for it to complete. */
1631 		fxp_dma_wait(&mcsp->cb_status, sc);
1632 	}
1633 
1634 	/*
1635 	 * We temporarily use memory that contains the TxCB list to
1636 	 * construct the config CB. The TxCB list memory is rebuilt
1637 	 * later.
1638 	 */
1639 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1640 
1641 	/*
1642 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1643 	 * zero and must be one bits in this structure and this is the easiest
1644 	 * way to initialize them all to proper values.
1645 	 */
1646 	bcopy(fxp_cb_config_template,
1647 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1648 		sizeof(fxp_cb_config_template));
1649 
1650 	cbp->cb_status =	0;
1651 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1652 	cbp->link_addr =	-1;	/* (no) next command */
1653 	cbp->byte_count =	22;	/* (22) bytes to config */
1654 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1655 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1656 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1657 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1658 	cbp->type_enable =	0;	/* actually reserved */
1659 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1660 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1661 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1662 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1663 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1664 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1665 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1666 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1667 	cbp->ci_int =		1;	/* interrupt on CU idle */
1668 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1669 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1670 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1671 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1672 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1673 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1674 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1675 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1676 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1677 	cbp->csma_dis =		0;	/* (don't) disable link */
1678 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1679 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1680 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1681 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1682 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1683 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1684 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1685 	cbp->loopback =		0;	/* (don't) loopback */
1686 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1687 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1688 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1689 	cbp->promiscuous =	prm;	/* promiscuous mode */
1690 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1691 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1692 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1693 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1694 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1695 
1696 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1697 	cbp->padding =		1;	/* (do) pad short tx packets */
1698 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1699 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1700 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1701 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1702 					/* must set wake_en in PMCSR also */
1703 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1704 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1705 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1706 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1707 
1708 	if (sc->revision == FXP_REV_82557) {
1709 		/*
1710 		 * The 82557 has no hardware flow control, the values
1711 		 * below are the defaults for the chip.
1712 		 */
1713 		cbp->fc_delay_lsb =	0;
1714 		cbp->fc_delay_msb =	0x40;
1715 		cbp->pri_fc_thresh =	3;
1716 		cbp->tx_fc_dis =	0;
1717 		cbp->rx_fc_restop =	0;
1718 		cbp->rx_fc_restart =	0;
1719 		cbp->fc_filter =	0;
1720 		cbp->pri_fc_loc =	1;
1721 	} else {
1722 		cbp->fc_delay_lsb =	0x1f;
1723 		cbp->fc_delay_msb =	0x01;
1724 		cbp->pri_fc_thresh =	3;
1725 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1726 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1727 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1728 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1729 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1730 	}
1731 
1732 	/*
1733 	 * Start the config command/DMA.
1734 	 */
1735 	fxp_scb_wait(sc);
1736 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1737 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1738 	/* ...and wait for it to complete. */
1739 	fxp_dma_wait(&cbp->cb_status, sc);
1740 
1741 	/*
1742 	 * Now initialize the station address. Temporarily use the TxCB
1743 	 * memory area like we did above for the config CB.
1744 	 */
1745 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1746 	cb_ias->cb_status = 0;
1747 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1748 	cb_ias->link_addr = -1;
1749 	bcopy(sc->arpcom.ac_enaddr,
1750 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1751 	    sizeof(sc->arpcom.ac_enaddr));
1752 
1753 	/*
1754 	 * Start the IAS (Individual Address Setup) command/DMA.
1755 	 */
1756 	fxp_scb_wait(sc);
1757 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1758 	/* ...and wait for it to complete. */
1759 	fxp_dma_wait(&cb_ias->cb_status, sc);
1760 
1761 	/*
1762 	 * Initialize transmit control block (TxCB) list.
1763 	 */
1764 
1765 	txp = sc->cbl_base;
1766 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1767 	for (i = 0; i < FXP_NTXCB; i++) {
1768 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1769 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1770 		txp[i].link_addr =
1771 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1772 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1773 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1774 		else
1775 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1776 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1777 	}
1778 	/*
1779 	 * Set the suspend flag on the first TxCB and start the control
1780 	 * unit. It will execute the NOP and then suspend.
1781 	 */
1782 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1783 	sc->cbl_first = sc->cbl_last = txp;
1784 	sc->tx_queued = 1;
1785 
1786 	fxp_scb_wait(sc);
1787 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1788 
1789 	/*
1790 	 * Initialize receiver buffer area - RFA.
1791 	 */
1792 	fxp_scb_wait(sc);
1793 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1794 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1795 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1796 
1797 	/*
1798 	 * Set current media.
1799 	 */
1800 	if (sc->miibus != NULL)
1801 		mii_mediachg(device_get_softc(sc->miibus));
1802 
1803 	ifp->if_flags |= IFF_RUNNING;
1804 	ifp->if_flags &= ~IFF_OACTIVE;
1805 
1806 	/*
1807 	 * Enable interrupts.
1808 	 */
1809 #ifdef DEVICE_POLLING
1810 	/*
1811 	 * ... but only do that if we are not polling. And because (presumably)
1812 	 * the default is interrupts on, we need to disable them explicitly!
1813 	 */
1814 	if ( ifp->if_flags & IFF_POLLING )
1815 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1816 	else
1817 #endif /* DEVICE_POLLING */
1818 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1819 	splx(s);
1820 
1821 	/*
1822 	 * Start stats updater.
1823 	 */
1824 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1825 }
1826 
1827 static int
1828 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1829 {
1830 
1831 	return (0);
1832 }
1833 
1834 static void
1835 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1836 {
1837 
1838 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1839 }
1840 
1841 /*
1842  * Change media according to request.
1843  */
1844 static int
1845 fxp_ifmedia_upd(struct ifnet *ifp)
1846 {
1847 	struct fxp_softc *sc = ifp->if_softc;
1848 	struct mii_data *mii;
1849 
1850 	mii = device_get_softc(sc->miibus);
1851 	mii_mediachg(mii);
1852 	return (0);
1853 }
1854 
1855 /*
1856  * Notify the world which media we're using.
1857  */
1858 static void
1859 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1860 {
1861 	struct fxp_softc *sc = ifp->if_softc;
1862 	struct mii_data *mii;
1863 
1864 	mii = device_get_softc(sc->miibus);
1865 	mii_pollstat(mii);
1866 	ifmr->ifm_active = mii->mii_media_active;
1867 	ifmr->ifm_status = mii->mii_media_status;
1868 
1869 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1870 		sc->cu_resume_bug = 1;
1871 	else
1872 		sc->cu_resume_bug = 0;
1873 }
1874 
1875 /*
1876  * Add a buffer to the end of the RFA buffer list.
1877  * Return 0 if successful, 1 for failure. A failure results in
1878  * adding the 'oldm' (if non-NULL) on to the end of the list -
1879  * tossing out its old contents and recycling it.
1880  * The RFA struct is stuck at the beginning of mbuf cluster and the
1881  * data pointer is fixed up to point just past it.
1882  */
1883 static int
1884 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1885 {
1886 	u_int32_t v;
1887 	struct mbuf *m;
1888 	struct fxp_rfa *rfa, *p_rfa;
1889 
1890 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1891 	if (m == NULL) { /* try to recycle the old mbuf instead */
1892 		if (oldm == NULL)
1893 			return 1;
1894 		m = oldm;
1895 		m->m_data = m->m_ext.ext_buf;
1896 	}
1897 
1898 	/*
1899 	 * Move the data pointer up so that the incoming data packet
1900 	 * will be 32-bit aligned.
1901 	 */
1902 	m->m_data += RFA_ALIGNMENT_FUDGE;
1903 
1904 	/*
1905 	 * Get a pointer to the base of the mbuf cluster and move
1906 	 * data start past it.
1907 	 */
1908 	rfa = mtod(m, struct fxp_rfa *);
1909 	m->m_data += sizeof(struct fxp_rfa);
1910 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1911 
1912 	/*
1913 	 * Initialize the rest of the RFA.  Note that since the RFA
1914 	 * is misaligned, we cannot store values directly.  Instead,
1915 	 * we use an optimized, inline copy.
1916 	 */
1917 
1918 	rfa->rfa_status = 0;
1919 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1920 	rfa->actual_size = 0;
1921 
1922 	v = -1;
1923 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1924 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1925 
1926 	/*
1927 	 * If there are other buffers already on the list, attach this
1928 	 * one to the end by fixing up the tail to point to this one.
1929 	 */
1930 	if (sc->rfa_headm != NULL) {
1931 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1932 		    RFA_ALIGNMENT_FUDGE);
1933 		sc->rfa_tailm->m_next = m;
1934 		v = vtophys(rfa);
1935 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1936 		p_rfa->rfa_control = 0;
1937 	} else {
1938 		sc->rfa_headm = m;
1939 	}
1940 	sc->rfa_tailm = m;
1941 
1942 	return (m == oldm);
1943 }
1944 
1945 static volatile int
1946 fxp_miibus_readreg(device_t dev, int phy, int reg)
1947 {
1948 	struct fxp_softc *sc = device_get_softc(dev);
1949 	int count = 10000;
1950 	int value;
1951 
1952 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1953 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1954 
1955 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1956 	    && count--)
1957 		DELAY(10);
1958 
1959 	if (count <= 0)
1960 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1961 
1962 	return (value & 0xffff);
1963 }
1964 
1965 static void
1966 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1967 {
1968 	struct fxp_softc *sc = device_get_softc(dev);
1969 	int count = 10000;
1970 
1971 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1972 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1973 	    (value & 0xffff));
1974 
1975 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1976 	    count--)
1977 		DELAY(10);
1978 
1979 	if (count <= 0)
1980 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1981 }
1982 
1983 static int
1984 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1985 {
1986 	struct fxp_softc *sc = ifp->if_softc;
1987 	struct ifreq *ifr = (struct ifreq *)data;
1988 	struct mii_data *mii;
1989 	int s, error = 0;
1990 
1991 	s = splimp();
1992 
1993 	switch (command) {
1994 	case SIOCSIFADDR:
1995 	case SIOCGIFADDR:
1996 	case SIOCSIFMTU:
1997 		error = ether_ioctl(ifp, command, data);
1998 		break;
1999 
2000 	case SIOCSIFFLAGS:
2001 		if (ifp->if_flags & IFF_ALLMULTI)
2002 			sc->flags |= FXP_FLAG_ALL_MCAST;
2003 		else
2004 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2005 
2006 		/*
2007 		 * If interface is marked up and not running, then start it.
2008 		 * If it is marked down and running, stop it.
2009 		 * XXX If it's up then re-initialize it. This is so flags
2010 		 * such as IFF_PROMISC are handled.
2011 		 */
2012 		if (ifp->if_flags & IFF_UP) {
2013 			fxp_init(sc);
2014 		} else {
2015 			if (ifp->if_flags & IFF_RUNNING)
2016 				fxp_stop(sc);
2017 		}
2018 		break;
2019 
2020 	case SIOCADDMULTI:
2021 	case SIOCDELMULTI:
2022 		if (ifp->if_flags & IFF_ALLMULTI)
2023 			sc->flags |= FXP_FLAG_ALL_MCAST;
2024 		else
2025 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2026 		/*
2027 		 * Multicast list has changed; set the hardware filter
2028 		 * accordingly.
2029 		 */
2030 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2031 			fxp_mc_setup(sc);
2032 		/*
2033 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2034 		 * again rather than else {}.
2035 		 */
2036 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2037 			fxp_init(sc);
2038 		error = 0;
2039 		break;
2040 
2041 	case SIOCSIFMEDIA:
2042 	case SIOCGIFMEDIA:
2043 		if (sc->miibus != NULL) {
2044 			mii = device_get_softc(sc->miibus);
2045                         error = ifmedia_ioctl(ifp, ifr,
2046                             &mii->mii_media, command);
2047 		} else {
2048                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2049 		}
2050 		break;
2051 
2052 	default:
2053 		error = EINVAL;
2054 	}
2055 	splx(s);
2056 	return (error);
2057 }
2058 
2059 /*
2060  * Fill in the multicast address list and return number of entries.
2061  */
2062 static int
2063 fxp_mc_addrs(struct fxp_softc *sc)
2064 {
2065 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2066 	struct ifnet *ifp = &sc->arpcom.ac_if;
2067 	struct ifmultiaddr *ifma;
2068 	int nmcasts;
2069 
2070 	nmcasts = 0;
2071 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2072 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2073 			if (ifma->ifma_addr->sa_family != AF_LINK)
2074 				continue;
2075 			if (nmcasts >= MAXMCADDR) {
2076 				sc->flags |= FXP_FLAG_ALL_MCAST;
2077 				nmcasts = 0;
2078 				break;
2079 			}
2080 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2081 			    (void *)(uintptr_t)(volatile void *)
2082 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2083 			nmcasts++;
2084 		}
2085 	}
2086 	mcsp->mc_cnt = nmcasts * 6;
2087 	return (nmcasts);
2088 }
2089 
2090 /*
2091  * Program the multicast filter.
2092  *
2093  * We have an artificial restriction that the multicast setup command
2094  * must be the first command in the chain, so we take steps to ensure
2095  * this. By requiring this, it allows us to keep up the performance of
2096  * the pre-initialized command ring (esp. link pointers) by not actually
2097  * inserting the mcsetup command in the ring - i.e. its link pointer
2098  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2099  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2100  * lead into the regular TxCB ring when it completes.
2101  *
2102  * This function must be called at splimp.
2103  */
2104 static void
2105 fxp_mc_setup(struct fxp_softc *sc)
2106 {
2107 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2108 	struct ifnet *ifp = &sc->arpcom.ac_if;
2109 	int count;
2110 
2111 	/*
2112 	 * If there are queued commands, we must wait until they are all
2113 	 * completed. If we are already waiting, then add a NOP command
2114 	 * with interrupt option so that we're notified when all commands
2115 	 * have been completed - fxp_start() ensures that no additional
2116 	 * TX commands will be added when need_mcsetup is true.
2117 	 */
2118 	if (sc->tx_queued) {
2119 		struct fxp_cb_tx *txp;
2120 
2121 		/*
2122 		 * need_mcsetup will be true if we are already waiting for the
2123 		 * NOP command to be completed (see below). In this case, bail.
2124 		 */
2125 		if (sc->need_mcsetup)
2126 			return;
2127 		sc->need_mcsetup = 1;
2128 
2129 		/*
2130 		 * Add a NOP command with interrupt so that we are notified
2131 		 * when all TX commands have been processed.
2132 		 */
2133 		txp = sc->cbl_last->next;
2134 		txp->mb_head = NULL;
2135 		txp->cb_status = 0;
2136 		txp->cb_command = FXP_CB_COMMAND_NOP |
2137 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2138 		/*
2139 		 * Advance the end of list forward.
2140 		 */
2141 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2142 		sc->cbl_last = txp;
2143 		sc->tx_queued++;
2144 		/*
2145 		 * Issue a resume in case the CU has just suspended.
2146 		 */
2147 		fxp_scb_wait(sc);
2148 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2149 		/*
2150 		 * Set a 5 second timer just in case we don't hear from the
2151 		 * card again.
2152 		 */
2153 		ifp->if_timer = 5;
2154 
2155 		return;
2156 	}
2157 	sc->need_mcsetup = 0;
2158 
2159 	/*
2160 	 * Initialize multicast setup descriptor.
2161 	 */
2162 	mcsp->next = sc->cbl_base;
2163 	mcsp->mb_head = NULL;
2164 	mcsp->cb_status = 0;
2165 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2166 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2167 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2168 	(void) fxp_mc_addrs(sc);
2169 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2170 	sc->tx_queued = 1;
2171 
2172 	/*
2173 	 * Wait until command unit is not active. This should never
2174 	 * be the case when nothing is queued, but make sure anyway.
2175 	 */
2176 	count = 100;
2177 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2178 	    FXP_SCB_CUS_ACTIVE && --count)
2179 		DELAY(10);
2180 	if (count == 0) {
2181 		device_printf(sc->dev, "command queue timeout\n");
2182 		return;
2183 	}
2184 
2185 	/*
2186 	 * Start the multicast setup command.
2187 	 */
2188 	fxp_scb_wait(sc);
2189 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2190 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2191 
2192 	ifp->if_timer = 2;
2193 	return;
2194 }
2195 
2196 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2197 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2198 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2199 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2200 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2201 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2202 
2203 #define UCODE(x)	x, sizeof(x)
2204 
2205 struct ucode {
2206 	u_int32_t	revision;
2207 	u_int32_t	*ucode;
2208 	int		length;
2209 	u_short		int_delay_offset;
2210 	u_short		bundle_max_offset;
2211 } ucode_table[] = {
2212 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2213 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2214 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2215 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2216 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2217 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2218 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2219 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2220 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2221 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2222 	{ 0, NULL, 0, 0, 0 }
2223 };
2224 
2225 static void
2226 fxp_load_ucode(struct fxp_softc *sc)
2227 {
2228 	struct ucode *uc;
2229 	struct fxp_cb_ucode *cbp;
2230 
2231 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2232 		if (sc->revision == uc->revision)
2233 			break;
2234 	if (uc->ucode == NULL)
2235 		return;
2236 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2237 	cbp->cb_status = 0;
2238 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2239 	cbp->link_addr = -1;    	/* (no) next command */
2240 	memcpy(cbp->ucode, uc->ucode, uc->length);
2241 	if (uc->int_delay_offset)
2242 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2243 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2244 	if (uc->bundle_max_offset)
2245 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2246 		    sc->tunable_bundle_max;
2247 	/*
2248 	 * Download the ucode to the chip.
2249 	 */
2250 	fxp_scb_wait(sc);
2251 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2252 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2253 	/* ...and wait for it to complete. */
2254 	fxp_dma_wait(&cbp->cb_status, sc);
2255 	device_printf(sc->dev,
2256 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2257 	    sc->tunable_int_delay,
2258 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2259 	sc->flags |= FXP_FLAG_UCODE;
2260 }
2261 
2262 static int
2263 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2264 {
2265 	int error, value;
2266 
2267 	value = *(int *)arg1;
2268 	error = sysctl_handle_int(oidp, &value, 0, req);
2269 	if (error || !req->newptr)
2270 		return (error);
2271 	if (value < low || value > high)
2272 		return (EINVAL);
2273 	*(int *)arg1 = value;
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Interrupt delay is expressed in microseconds, a multiplier is used
2279  * to convert this to the appropriate clock ticks before using.
2280  */
2281 static int
2282 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2283 {
2284 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2285 }
2286 
2287 static int
2288 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2289 {
2290 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2291 }
2292