xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 23265324)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.48 2006/12/24 03:30:56 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #ifdef NS
53 #include <netns/ns.h>
54 #include <netns/ns_if.h>
55 #endif
56 
57 #include <net/bpf.h>
58 #include <sys/sockio.h>
59 #include <sys/bus.h>
60 #include <sys/rman.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
170      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
171      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
172      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
173      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
174      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
175      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
176      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
194      { 0,	-1,	NULL },
195 };
196 
197 static int		fxp_probe(device_t dev);
198 static int		fxp_attach(device_t dev);
199 static int		fxp_detach(device_t dev);
200 static int		fxp_shutdown(device_t dev);
201 static int		fxp_suspend(device_t dev);
202 static int		fxp_resume(device_t dev);
203 
204 static void		fxp_intr(void *xsc);
205 static void		fxp_intr_body(struct fxp_softc *sc,
206 				u_int8_t statack, int count);
207 
208 static void 		fxp_init(void *xsc);
209 static void 		fxp_tick(void *xsc);
210 static void		fxp_powerstate_d0(device_t dev);
211 static void 		fxp_start(struct ifnet *ifp);
212 static void		fxp_stop(struct fxp_softc *sc);
213 static void 		fxp_release(device_t dev);
214 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
215 			    caddr_t data, struct ucred *);
216 static void 		fxp_watchdog(struct ifnet *ifp);
217 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
218 static int		fxp_mc_addrs(struct fxp_softc *sc);
219 static void		fxp_mc_setup(struct fxp_softc *sc);
220 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
221 			    int autosize);
222 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
223 			    u_int16_t data);
224 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
225 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
226 			    int offset, int words);
227 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
228 			    int offset, int words);
229 static int		fxp_ifmedia_upd(struct ifnet *ifp);
230 static void		fxp_ifmedia_sts(struct ifnet *ifp,
231 			    struct ifmediareq *ifmr);
232 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
233 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
234 			    struct ifmediareq *ifmr);
235 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
236 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
237 			    int value);
238 static void		fxp_load_ucode(struct fxp_softc *sc);
239 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
240 			    int low, int high);
241 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
242 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
243 #ifdef DEVICE_POLLING
244 static poll_handler_t fxp_poll;
245 #endif
246 
247 static void		fxp_lwcopy(volatile u_int32_t *src,
248 			    volatile u_int32_t *dst);
249 static void 		fxp_scb_wait(struct fxp_softc *sc);
250 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
251 static void		fxp_dma_wait(volatile u_int16_t *status,
252 			    struct fxp_softc *sc);
253 
254 static device_method_t fxp_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		fxp_probe),
257 	DEVMETHOD(device_attach,	fxp_attach),
258 	DEVMETHOD(device_detach,	fxp_detach),
259 	DEVMETHOD(device_shutdown,	fxp_shutdown),
260 	DEVMETHOD(device_suspend,	fxp_suspend),
261 	DEVMETHOD(device_resume,	fxp_resume),
262 
263 	/* MII interface */
264 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
265 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
266 
267 	{ 0, 0 }
268 };
269 
270 static driver_t fxp_driver = {
271 	"fxp",
272 	fxp_methods,
273 	sizeof(struct fxp_softc),
274 };
275 
276 static devclass_t fxp_devclass;
277 
278 DECLARE_DUMMY_MODULE(if_fxp);
279 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
280 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283 
284 static int fxp_rnr;
285 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
286 
287 /*
288  * Copy a 16-bit aligned 32-bit quantity.
289  */
290 static void
291 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
292 {
293 #ifdef __i386__
294 	*dst = *src;
295 #else
296 	volatile u_int16_t *a = (volatile u_int16_t *)src;
297 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
298 
299 	b[0] = a[0];
300 	b[1] = a[1];
301 #endif
302 }
303 
304 /*
305  * Wait for the previous command to be accepted (but not necessarily
306  * completed).
307  */
308 static void
309 fxp_scb_wait(struct fxp_softc *sc)
310 {
311 	int i = 10000;
312 
313 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
314 		DELAY(2);
315 	if (i == 0) {
316 		if_printf(&sc->arpcom.ac_if,
317 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
318 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
319 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
320 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
321 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
322 	}
323 }
324 
325 static void
326 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
327 {
328 
329 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
330 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
331 		fxp_scb_wait(sc);
332 	}
333 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
334 }
335 
336 static void
337 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
338 {
339 	int i = 10000;
340 
341 	while (!(*status & FXP_CB_STATUS_C) && --i)
342 		DELAY(2);
343 	if (i == 0)
344 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
345 }
346 
347 /*
348  * Return identification string if this is device is ours.
349  */
350 static int
351 fxp_probe(device_t dev)
352 {
353 	u_int16_t devid;
354 	u_int8_t revid;
355 	struct fxp_ident *ident;
356 
357 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
358 		devid = pci_get_device(dev);
359 		revid = pci_get_revid(dev);
360 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
361 			if (ident->devid == devid &&
362 			    (ident->revid == revid || ident->revid == -1)) {
363 				device_set_desc(dev, ident->name);
364 				return (0);
365 			}
366 		}
367 	}
368 	return (ENXIO);
369 }
370 
371 static void
372 fxp_powerstate_d0(device_t dev)
373 {
374 	u_int32_t iobase, membase, irq;
375 
376 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
377 		/* Save important PCI config data. */
378 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
379 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
380 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
381 
382 		/* Reset the power state. */
383 		device_printf(dev, "chip is in D%d power mode "
384 		    "-- setting to D0\n", pci_get_powerstate(dev));
385 
386 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
387 
388 		/* Restore PCI config data. */
389 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
390 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
391 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
392 	}
393 }
394 
395 static int
396 fxp_attach(device_t dev)
397 {
398 	int error = 0;
399 	struct fxp_softc *sc = device_get_softc(dev);
400 	struct ifnet *ifp;
401 	u_int32_t val;
402 	u_int16_t data;
403 	int i, rid, m1, m2, prefer_iomap;
404 
405 	callout_init(&sc->fxp_stat_timer);
406 	sysctl_ctx_init(&sc->sysctl_ctx);
407 
408 	/*
409 	 * Enable bus mastering. Enable memory space too, in case
410 	 * BIOS/Prom forgot about it.
411 	 */
412 	pci_enable_busmaster(dev);
413 	pci_enable_io(dev, SYS_RES_MEMORY);
414 	val = pci_read_config(dev, PCIR_COMMAND, 2);
415 
416 	fxp_powerstate_d0(dev);
417 
418 	/*
419 	 * Figure out which we should try first - memory mapping or i/o mapping?
420 	 * We default to memory mapping. Then we accept an override from the
421 	 * command line. Then we check to see which one is enabled.
422 	 */
423 	m1 = PCIM_CMD_MEMEN;
424 	m2 = PCIM_CMD_PORTEN;
425 	prefer_iomap = 0;
426 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
427 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
428 		m1 = PCIM_CMD_PORTEN;
429 		m2 = PCIM_CMD_MEMEN;
430 	}
431 
432 	if (val & m1) {
433 		sc->rtp =
434 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
436 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
437 		    RF_ACTIVE);
438 	}
439 	if (sc->mem == NULL && (val & m2)) {
440 		sc->rtp =
441 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
442 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
443 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
444             	    RF_ACTIVE);
445 	}
446 
447 	if (!sc->mem) {
448 		device_printf(dev, "could not map device registers\n");
449 		error = ENXIO;
450 		goto fail;
451         }
452 	if (bootverbose) {
453 		device_printf(dev, "using %s space register mapping\n",
454 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
455 	}
456 
457 	sc->sc_st = rman_get_bustag(sc->mem);
458 	sc->sc_sh = rman_get_bushandle(sc->mem);
459 
460 	/*
461 	 * Allocate our interrupt.
462 	 */
463 	rid = 0;
464 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
465 	    RF_SHAREABLE | RF_ACTIVE);
466 	if (sc->irq == NULL) {
467 		device_printf(dev, "could not map interrupt\n");
468 		error = ENXIO;
469 		goto fail;
470 	}
471 
472 	/*
473 	 * Reset to a stable state.
474 	 */
475 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
476 	DELAY(10);
477 
478 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
479 	    M_DEVBUF, M_WAITOK | M_ZERO);
480 
481 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
482 	    M_WAITOK | M_ZERO);
483 
484 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
485 
486 	/*
487 	 * Pre-allocate our receive buffers.
488 	 */
489 	for (i = 0; i < FXP_NRFABUFS; i++) {
490 		if (fxp_add_rfabuf(sc, NULL) != 0) {
491 			goto failmem;
492 		}
493 	}
494 
495 	/*
496 	 * Find out how large of an SEEPROM we have.
497 	 */
498 	fxp_autosize_eeprom(sc);
499 
500 	/*
501 	 * Determine whether we must use the 503 serial interface.
502 	 */
503 	fxp_read_eeprom(sc, &data, 6, 1);
504 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
505 	    (data & FXP_PHY_SERIAL_ONLY))
506 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
507 
508 	/*
509 	 * Create the sysctl tree
510 	 */
511 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
512 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
513 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
514 	if (sc->sysctl_tree == NULL)
515 		goto fail;
516 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
517 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
518 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
519 	    "FXP driver receive interrupt microcode bundling delay");
520 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
521 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
522 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
523 	    "FXP driver receive interrupt microcode bundle size limit");
524 
525 	/*
526 	 * Pull in device tunables.
527 	 */
528 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
529 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
530 	resource_int_value(device_get_name(dev), device_get_unit(dev),
531 	    "int_delay", &sc->tunable_int_delay);
532 	resource_int_value(device_get_name(dev), device_get_unit(dev),
533 	    "bundle_max", &sc->tunable_bundle_max);
534 
535 	/*
536 	 * Find out the chip revision; lump all 82557 revs together.
537 	 */
538 	fxp_read_eeprom(sc, &data, 5, 1);
539 	if ((data >> 8) == 1)
540 		sc->revision = FXP_REV_82557;
541 	else
542 		sc->revision = pci_get_revid(dev);
543 
544 	/*
545 	 * Enable workarounds for certain chip revision deficiencies.
546 	 *
547 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
548 	 * some systems based a normal 82559 design, have a defect where
549 	 * the chip can cause a PCI protocol violation if it receives
550 	 * a CU_RESUME command when it is entering the IDLE state.  The
551 	 * workaround is to disable Dynamic Standby Mode, so the chip never
552 	 * deasserts CLKRUN#, and always remains in an active state.
553 	 *
554 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
555 	 */
556 	i = pci_get_device(dev);
557 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
558 	    sc->revision >= FXP_REV_82559_A0) {
559 		fxp_read_eeprom(sc, &data, 10, 1);
560 		if (data & 0x02) {			/* STB enable */
561 			u_int16_t cksum;
562 			int i;
563 
564 			device_printf(dev,
565 			    "Disabling dynamic standby mode in EEPROM\n");
566 			data &= ~0x02;
567 			fxp_write_eeprom(sc, &data, 10, 1);
568 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
569 			cksum = 0;
570 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
571 				fxp_read_eeprom(sc, &data, i, 1);
572 				cksum += data;
573 			}
574 			i = (1 << sc->eeprom_size) - 1;
575 			cksum = 0xBABA - cksum;
576 			fxp_read_eeprom(sc, &data, i, 1);
577 			fxp_write_eeprom(sc, &cksum, i, 1);
578 			device_printf(dev,
579 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
580 			    i, data, cksum);
581 #if 1
582 			/*
583 			 * If the user elects to continue, try the software
584 			 * workaround, as it is better than nothing.
585 			 */
586 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
587 #endif
588 		}
589 	}
590 
591 	/*
592 	 * If we are not a 82557 chip, we can enable extended features.
593 	 */
594 	if (sc->revision != FXP_REV_82557) {
595 		/*
596 		 * If MWI is enabled in the PCI configuration, and there
597 		 * is a valid cacheline size (8 or 16 dwords), then tell
598 		 * the board to turn on MWI.
599 		 */
600 		if (val & PCIM_CMD_MWRICEN &&
601 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
602 			sc->flags |= FXP_FLAG_MWI_ENABLE;
603 
604 		/* turn on the extended TxCB feature */
605 		sc->flags |= FXP_FLAG_EXT_TXCB;
606 
607 		/* enable reception of long frames for VLAN */
608 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
609 	}
610 
611 	/*
612 	 * Read MAC address.
613 	 */
614 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
615 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
616 		device_printf(dev, "10Mbps\n");
617 	if (bootverbose) {
618 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
619 		    pci_get_vendor(dev), pci_get_device(dev),
620 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
621 		    pci_get_revid(dev));
622 		fxp_read_eeprom(sc, &data, 10, 1);
623 		device_printf(dev, "Dynamic Standby mode is %s\n",
624 		    data & 0x02 ? "enabled" : "disabled");
625 	}
626 
627 	/*
628 	 * If this is only a 10Mbps device, then there is no MII, and
629 	 * the PHY will use a serial interface instead.
630 	 *
631 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
632 	 * doesn't have a programming interface of any sort.  The
633 	 * media is sensed automatically based on how the link partner
634 	 * is configured.  This is, in essence, manual configuration.
635 	 */
636 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
637 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
638 		    fxp_serial_ifmedia_sts);
639 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
640 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
641 	} else {
642 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
643 		    fxp_ifmedia_sts)) {
644 	                device_printf(dev, "MII without any PHY!\n");
645 			error = ENXIO;
646 			goto fail;
647 		}
648 	}
649 
650 	ifp = &sc->arpcom.ac_if;
651 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
652 	ifp->if_baudrate = 100000000;
653 	ifp->if_init = fxp_init;
654 	ifp->if_softc = sc;
655 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
656 	ifp->if_ioctl = fxp_ioctl;
657 	ifp->if_start = fxp_start;
658 #ifdef DEVICE_POLLING
659 	ifp->if_poll = fxp_poll;
660 #endif
661 	ifp->if_watchdog = fxp_watchdog;
662 
663 	/*
664 	 * Attach the interface.
665 	 */
666 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
667 
668 	/*
669 	 * Tell the upper layer(s) we support long frames.
670 	 */
671 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
672 
673 	/*
674 	 * Let the system queue as many packets as we have available
675 	 * TX descriptors.
676 	 */
677 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
678 	ifq_set_ready(&ifp->if_snd);
679 
680 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
681 			       fxp_intr, sc, &sc->ih,
682 			       ifp->if_serializer);
683 	if (error) {
684 		ether_ifdetach(ifp);
685 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
686 			ifmedia_removeall(&sc->sc_media);
687 		device_printf(dev, "could not setup irq\n");
688 		goto fail;
689 	}
690 
691 	return (0);
692 
693 failmem:
694 	device_printf(dev, "Failed to malloc memory\n");
695 	error = ENOMEM;
696 fail:
697 	fxp_release(dev);
698 	return (error);
699 }
700 
701 /*
702  * release all resources
703  */
704 static void
705 fxp_release(device_t dev)
706 {
707 	struct fxp_softc *sc = device_get_softc(dev);
708 
709 	if (sc->miibus)
710 		device_delete_child(dev, sc->miibus);
711 	bus_generic_detach(dev);
712 
713 	if (sc->cbl_base)
714 		kfree(sc->cbl_base, M_DEVBUF);
715 	if (sc->fxp_stats)
716 		kfree(sc->fxp_stats, M_DEVBUF);
717 	if (sc->mcsp)
718 		kfree(sc->mcsp, M_DEVBUF);
719 	if (sc->rfa_headm)
720 		m_freem(sc->rfa_headm);
721 
722 	if (sc->irq)
723 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
724 	if (sc->mem)
725 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
726 
727         sysctl_ctx_free(&sc->sysctl_ctx);
728 }
729 
730 /*
731  * Detach interface.
732  */
733 static int
734 fxp_detach(device_t dev)
735 {
736 	struct fxp_softc *sc = device_get_softc(dev);
737 
738 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
739 
740 	/*
741 	 * Stop DMA and drop transmit queue.
742 	 */
743 	fxp_stop(sc);
744 
745 	/*
746 	 * Disable interrupts.
747 	 *
748 	 * NOTE: This should be done after fxp_stop(), because software
749 	 * resetting in fxp_stop() may leave interrupts turned on.
750 	 */
751 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
752 
753 	/*
754 	 * Free all media structures.
755 	 */
756 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
757 		ifmedia_removeall(&sc->sc_media);
758 
759 	if (sc->ih)
760 		bus_teardown_intr(dev, sc->irq, sc->ih);
761 
762 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
763 
764 	/*
765 	 * Close down routes etc.
766 	 */
767 	ether_ifdetach(&sc->arpcom.ac_if);
768 
769 	/* Release our allocated resources. */
770 	fxp_release(dev);
771 
772 	return (0);
773 }
774 
775 /*
776  * Device shutdown routine. Called at system shutdown after sync. The
777  * main purpose of this routine is to shut off receiver DMA so that
778  * kernel memory doesn't get clobbered during warmboot.
779  */
780 static int
781 fxp_shutdown(device_t dev)
782 {
783 	/*
784 	 * Make sure that DMA is disabled prior to reboot. Not doing
785 	 * do could allow DMA to corrupt kernel memory during the
786 	 * reboot before the driver initializes.
787 	 */
788 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
789 	return (0);
790 }
791 
792 /*
793  * Device suspend routine.  Stop the interface and save some PCI
794  * settings in case the BIOS doesn't restore them properly on
795  * resume.
796  */
797 static int
798 fxp_suspend(device_t dev)
799 {
800 	struct fxp_softc *sc = device_get_softc(dev);
801 	int i;
802 
803 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
804 
805 	fxp_stop(sc);
806 
807 	for (i = 0; i < 5; i++)
808 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
809 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
810 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
811 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
812 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
813 
814 	sc->suspended = 1;
815 
816 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
817 	return (0);
818 }
819 
820 /*
821  * Device resume routine.  Restore some PCI settings in case the BIOS
822  * doesn't, re-enable busmastering, and restart the interface if
823  * appropriate.
824  */
825 static int
826 fxp_resume(device_t dev)
827 {
828 	struct fxp_softc *sc = device_get_softc(dev);
829 	struct ifnet *ifp = &sc->arpcom.ac_if;
830 	int i;
831 
832 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
833 
834 	fxp_powerstate_d0(dev);
835 
836 	/* better way to do this? */
837 	for (i = 0; i < 5; i++)
838 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
839 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
840 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
841 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
842 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
843 
844 	/* reenable busmastering and memory space */
845 	pci_enable_busmaster(dev);
846 	pci_enable_io(dev, SYS_RES_MEMORY);
847 
848 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
849 	DELAY(10);
850 
851 	/* reinitialize interface if necessary */
852 	if (ifp->if_flags & IFF_UP)
853 		fxp_init(sc);
854 
855 	sc->suspended = 0;
856 
857 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
858 	return (0);
859 }
860 
861 static void
862 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
863 {
864 	u_int16_t reg;
865 	int x;
866 
867 	/*
868 	 * Shift in data.
869 	 */
870 	for (x = 1 << (length - 1); x; x >>= 1) {
871 		if (data & x)
872 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
873 		else
874 			reg = FXP_EEPROM_EECS;
875 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
876 		DELAY(1);
877 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
878 		DELAY(1);
879 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
880 		DELAY(1);
881 	}
882 }
883 
884 /*
885  * Read from the serial EEPROM. Basically, you manually shift in
886  * the read opcode (one bit at a time) and then shift in the address,
887  * and then you shift out the data (all of this one bit at a time).
888  * The word size is 16 bits, so you have to provide the address for
889  * every 16 bits of data.
890  */
891 static u_int16_t
892 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
893 {
894 	u_int16_t reg, data;
895 	int x;
896 
897 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
898 	/*
899 	 * Shift in read opcode.
900 	 */
901 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
902 	/*
903 	 * Shift in address.
904 	 */
905 	data = 0;
906 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
907 		if (offset & x)
908 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
909 		else
910 			reg = FXP_EEPROM_EECS;
911 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
912 		DELAY(1);
913 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
914 		DELAY(1);
915 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916 		DELAY(1);
917 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
918 		data++;
919 		if (autosize && reg == 0) {
920 			sc->eeprom_size = data;
921 			break;
922 		}
923 	}
924 	/*
925 	 * Shift out data.
926 	 */
927 	data = 0;
928 	reg = FXP_EEPROM_EECS;
929 	for (x = 1 << 15; x; x >>= 1) {
930 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
931 		DELAY(1);
932 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
933 			data |= x;
934 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
935 		DELAY(1);
936 	}
937 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
938 	DELAY(1);
939 
940 	return (data);
941 }
942 
943 static void
944 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
945 {
946 	int i;
947 
948 	/*
949 	 * Erase/write enable.
950 	 */
951 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
952 	fxp_eeprom_shiftin(sc, 0x4, 3);
953 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
954 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
955 	DELAY(1);
956 	/*
957 	 * Shift in write opcode, address, data.
958 	 */
959 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
960 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
961 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
962 	fxp_eeprom_shiftin(sc, data, 16);
963 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
964 	DELAY(1);
965 	/*
966 	 * Wait for EEPROM to finish up.
967 	 */
968 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
969 	DELAY(1);
970 	for (i = 0; i < 1000; i++) {
971 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
972 			break;
973 		DELAY(50);
974 	}
975 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
976 	DELAY(1);
977 	/*
978 	 * Erase/write disable.
979 	 */
980 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
981 	fxp_eeprom_shiftin(sc, 0x4, 3);
982 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
983 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
984 	DELAY(1);
985 }
986 
987 /*
988  * From NetBSD:
989  *
990  * Figure out EEPROM size.
991  *
992  * 559's can have either 64-word or 256-word EEPROMs, the 558
993  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
994  * talks about the existance of 16 to 256 word EEPROMs.
995  *
996  * The only known sizes are 64 and 256, where the 256 version is used
997  * by CardBus cards to store CIS information.
998  *
999  * The address is shifted in msb-to-lsb, and after the last
1000  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1001  * after which follows the actual data. We try to detect this zero, by
1002  * probing the data-out bit in the EEPROM control register just after
1003  * having shifted in a bit. If the bit is zero, we assume we've
1004  * shifted enough address bits. The data-out should be tri-state,
1005  * before this, which should translate to a logical one.
1006  */
1007 static void
1008 fxp_autosize_eeprom(struct fxp_softc *sc)
1009 {
1010 
1011 	/* guess maximum size of 256 words */
1012 	sc->eeprom_size = 8;
1013 
1014 	/* autosize */
1015 	fxp_eeprom_getword(sc, 0, 1);
1016 }
1017 
1018 static void
1019 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1020 {
1021 	int i;
1022 
1023 	for (i = 0; i < words; i++)
1024 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1025 }
1026 
1027 static void
1028 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < words; i++)
1033 		fxp_eeprom_putword(sc, offset + i, data[i]);
1034 }
1035 
1036 /*
1037  * Start packet transmission on the interface.
1038  */
1039 static void
1040 fxp_start(struct ifnet *ifp)
1041 {
1042 	struct fxp_softc *sc = ifp->if_softc;
1043 	struct fxp_cb_tx *txp;
1044 
1045 	/*
1046 	 * See if we need to suspend xmit until the multicast filter
1047 	 * has been reprogrammed (which can only be done at the head
1048 	 * of the command chain).
1049 	 */
1050 	if (sc->need_mcsetup) {
1051 		return;
1052 	}
1053 
1054 	txp = NULL;
1055 
1056 	/*
1057 	 * We're finished if there is nothing more to add to the list or if
1058 	 * we're all filled up with buffers to transmit.
1059 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1060 	 *       a NOP command when needed.
1061 	 */
1062 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1063 		struct mbuf *m, *mb_head;
1064 		int segment, ntries = 0;
1065 
1066 		/*
1067 		 * Grab a packet to transmit. The packet is dequeued,
1068 		 * once we are sure that we have enough free descriptors.
1069 		 */
1070 		mb_head = ifq_poll(&ifp->if_snd);
1071 		if (mb_head == NULL)
1072 			break;
1073 
1074 		/*
1075 		 * Get pointer to next available tx desc.
1076 		 */
1077 		txp = sc->cbl_last->next;
1078 
1079 		/*
1080 		 * Go through each of the mbufs in the chain and initialize
1081 		 * the transmit buffer descriptors with the physical address
1082 		 * and size of the mbuf.
1083 		 */
1084 tbdinit:
1085 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1086 			if (m->m_len != 0) {
1087 				if (segment == FXP_NTXSEG)
1088 					break;
1089 				txp->tbd[segment].tb_addr =
1090 				    vtophys(mtod(m, vm_offset_t));
1091 				txp->tbd[segment].tb_size = m->m_len;
1092 				segment++;
1093 			}
1094 		}
1095 		if (m != NULL) {
1096 			struct mbuf *mn;
1097 
1098 			/*
1099 			 * We ran out of segments. We have to recopy this
1100 			 * mbuf chain first. Bail out if we can't get the
1101 			 * new buffers.
1102 			 */
1103 			if (ntries > 0)
1104 				break;
1105 			mn = m_dup(mb_head, MB_DONTWAIT);
1106 			if (mn == NULL)
1107 				break;
1108 			 /* We can transmit the packet, dequeue it. */
1109 			ifq_dequeue(&ifp->if_snd, mb_head);
1110 			m_freem(mb_head);
1111 			mb_head = mn;
1112 			ntries = 1;
1113 			goto tbdinit;
1114 		} else {
1115 			/* Nothing to worry about, just dequeue. */
1116 			ifq_dequeue(&ifp->if_snd, mb_head);
1117 		}
1118 
1119 		txp->tbd_number = segment;
1120 		txp->mb_head = mb_head;
1121 		txp->cb_status = 0;
1122 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1123 			txp->cb_command =
1124 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1125 			    FXP_CB_COMMAND_S;
1126 		} else {
1127 			txp->cb_command =
1128 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1129 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1130 			/*
1131 			 * Set a 5 second timer just in case we don't hear
1132 			 * from the card again.
1133 			 */
1134 			ifp->if_timer = 5;
1135 		}
1136 		txp->tx_threshold = tx_threshold;
1137 
1138 		/*
1139 		 * Advance the end of list forward.
1140 		 */
1141 
1142 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1143 		sc->cbl_last = txp;
1144 
1145 		/*
1146 		 * Advance the beginning of the list forward if there are
1147 		 * no other packets queued (when nothing is queued, cbl_first
1148 		 * sits on the last TxCB that was sent out).
1149 		 */
1150 		if (sc->tx_queued == 0)
1151 			sc->cbl_first = txp;
1152 
1153 		sc->tx_queued++;
1154 
1155 		BPF_MTAP(ifp, mb_head);
1156 	}
1157 
1158 	/*
1159 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1160 	 * going again if suspended.
1161 	 */
1162 	if (txp != NULL) {
1163 		fxp_scb_wait(sc);
1164 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1165 	}
1166 }
1167 
1168 #ifdef DEVICE_POLLING
1169 
1170 static void
1171 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1172 {
1173 	struct fxp_softc *sc = ifp->if_softc;
1174 	u_int8_t statack;
1175 
1176 	switch(cmd) {
1177 	case POLL_REGISTER:
1178 		/* disable interrupts */
1179 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1180 		break;
1181 	case POLL_DEREGISTER:
1182 		/* enable interrupts */
1183 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1184 		break;
1185 	default:
1186 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1187 			  FXP_SCB_STATACK_FR;
1188 		if (cmd == POLL_AND_CHECK_STATUS) {
1189 			u_int8_t tmp;
1190 
1191 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1192 			if (tmp == 0xff || tmp == 0)
1193 				return; /* nothing to do */
1194 			tmp &= ~statack;
1195 			/* ack what we can */
1196 			if (tmp != 0)
1197 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1198 			statack |= tmp;
1199 		}
1200 		fxp_intr_body(sc, statack, count);
1201 		break;
1202 	}
1203 }
1204 
1205 #endif /* DEVICE_POLLING */
1206 
1207 /*
1208  * Process interface interrupts.
1209  */
1210 static void
1211 fxp_intr(void *xsc)
1212 {
1213 	struct fxp_softc *sc = xsc;
1214 	u_int8_t statack;
1215 
1216 	if (sc->suspended) {
1217 		return;
1218 	}
1219 
1220 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1221 		/*
1222 		 * It should not be possible to have all bits set; the
1223 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1224 		 * all bits are set, this may indicate that the card has
1225 		 * been physically ejected, so ignore it.
1226 		 */
1227 		if (statack == 0xff)
1228 			return;
1229 
1230 		/*
1231 		 * First ACK all the interrupts in this pass.
1232 		 */
1233 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1234 		fxp_intr_body(sc, statack, -1);
1235 	}
1236 }
1237 
1238 static void
1239 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1240 {
1241 	struct ifnet *ifp = &sc->arpcom.ac_if;
1242 	struct mbuf *m;
1243 	struct fxp_rfa *rfa;
1244 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1245 
1246 	if (rnr)
1247 		fxp_rnr++;
1248 #ifdef DEVICE_POLLING
1249 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1250 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1251 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1252 		rnr = 1;
1253 	}
1254 #endif
1255 
1256 	/*
1257 	 * Free any finished transmit mbuf chains.
1258 	 *
1259 	 * Handle the CNA event likt a CXTNO event. It used to
1260 	 * be that this event (control unit not ready) was not
1261 	 * encountered, but it is now with the SMPng modifications.
1262 	 * The exact sequence of events that occur when the interface
1263 	 * is brought up are different now, and if this event
1264 	 * goes unhandled, the configuration/rxfilter setup sequence
1265 	 * can stall for several seconds. The result is that no
1266 	 * packets go out onto the wire for about 5 to 10 seconds
1267 	 * after the interface is ifconfig'ed for the first time.
1268 	 */
1269 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1270 		struct fxp_cb_tx *txp;
1271 
1272 		for (txp = sc->cbl_first; sc->tx_queued &&
1273 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1274 		    txp = txp->next) {
1275 			if ((m = txp->mb_head) != NULL) {
1276 				txp->mb_head = NULL;
1277 				sc->tx_queued--;
1278 				m_freem(m);
1279 			} else {
1280 				sc->tx_queued--;
1281 			}
1282 		}
1283 		sc->cbl_first = txp;
1284 		ifp->if_timer = 0;
1285 		if (sc->tx_queued == 0) {
1286 			if (sc->need_mcsetup)
1287 				fxp_mc_setup(sc);
1288 		}
1289 		/*
1290 		 * Try to start more packets transmitting.
1291 		 */
1292 		if (!ifq_is_empty(&ifp->if_snd))
1293 			(*ifp->if_start)(ifp);
1294 	}
1295 
1296 	/*
1297 	 * Just return if nothing happened on the receive side.
1298 	 */
1299 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1300 		return;
1301 
1302 	/*
1303 	 * Process receiver interrupts. If a no-resource (RNR)
1304 	 * condition exists, get whatever packets we can and
1305 	 * re-start the receiver.
1306 	 *
1307 	 * When using polling, we do not process the list to completion,
1308 	 * so when we get an RNR interrupt we must defer the restart
1309 	 * until we hit the last buffer with the C bit set.
1310 	 * If we run out of cycles and rfa_headm has the C bit set,
1311 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1312 	 * that the info will be used in the subsequent polling cycle.
1313 	 */
1314 	for (;;) {
1315 		m = sc->rfa_headm;
1316 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1317 		    RFA_ALIGNMENT_FUDGE);
1318 
1319 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1320 		if (count >= 0 && count-- == 0) {
1321 			if (rnr) {
1322 				/* Defer RNR processing until the next time. */
1323 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1324 				rnr = 0;
1325 			}
1326 			break;
1327 		}
1328 #endif /* DEVICE_POLLING */
1329 
1330 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1331 			break;
1332 
1333 		/*
1334 		 * Remove first packet from the chain.
1335 		 */
1336 		sc->rfa_headm = m->m_next;
1337 		m->m_next = NULL;
1338 
1339 		/*
1340 		 * Add a new buffer to the receive chain.
1341 		 * If this fails, the old buffer is recycled
1342 		 * instead.
1343 		 */
1344 		if (fxp_add_rfabuf(sc, m) == 0) {
1345 			int total_len;
1346 
1347 			/*
1348 			 * Fetch packet length (the top 2 bits of
1349 			 * actual_size are flags set by the controller
1350 			 * upon completion), and drop the packet in case
1351 			 * of bogus length or CRC errors.
1352 			 */
1353 			total_len = rfa->actual_size & 0x3fff;
1354 			if (total_len < sizeof(struct ether_header) ||
1355 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1356 				sizeof(struct fxp_rfa) ||
1357 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1358 				m_freem(m);
1359 				continue;
1360 			}
1361 			m->m_pkthdr.len = m->m_len = total_len;
1362 			ifp->if_input(ifp, m);
1363 		}
1364 	}
1365 	if (rnr) {
1366 		fxp_scb_wait(sc);
1367 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1368 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1369 		    RFA_ALIGNMENT_FUDGE);
1370 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1371 	}
1372 }
1373 
1374 /*
1375  * Update packet in/out/collision statistics. The i82557 doesn't
1376  * allow you to access these counters without doing a fairly
1377  * expensive DMA to get _all_ of the statistics it maintains, so
1378  * we do this operation here only once per second. The statistics
1379  * counters in the kernel are updated from the previous dump-stats
1380  * DMA and then a new dump-stats DMA is started. The on-chip
1381  * counters are zeroed when the DMA completes. If we can't start
1382  * the DMA immediately, we don't wait - we just prepare to read
1383  * them again next time.
1384  */
1385 static void
1386 fxp_tick(void *xsc)
1387 {
1388 	struct fxp_softc *sc = xsc;
1389 	struct ifnet *ifp = &sc->arpcom.ac_if;
1390 	struct fxp_stats *sp = sc->fxp_stats;
1391 	struct fxp_cb_tx *txp;
1392 	struct mbuf *m;
1393 
1394 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1395 
1396 	ifp->if_opackets += sp->tx_good;
1397 	ifp->if_collisions += sp->tx_total_collisions;
1398 	if (sp->rx_good) {
1399 		ifp->if_ipackets += sp->rx_good;
1400 		sc->rx_idle_secs = 0;
1401 	} else {
1402 		/*
1403 		 * Receiver's been idle for another second.
1404 		 */
1405 		sc->rx_idle_secs++;
1406 	}
1407 	ifp->if_ierrors +=
1408 	    sp->rx_crc_errors +
1409 	    sp->rx_alignment_errors +
1410 	    sp->rx_rnr_errors +
1411 	    sp->rx_overrun_errors;
1412 	/*
1413 	 * If any transmit underruns occured, bump up the transmit
1414 	 * threshold by another 512 bytes (64 * 8).
1415 	 */
1416 	if (sp->tx_underruns) {
1417 		ifp->if_oerrors += sp->tx_underruns;
1418 		if (tx_threshold < 192)
1419 			tx_threshold += 64;
1420 	}
1421 
1422 	/*
1423 	 * Release any xmit buffers that have completed DMA. This isn't
1424 	 * strictly necessary to do here, but it's advantagous for mbufs
1425 	 * with external storage to be released in a timely manner rather
1426 	 * than being defered for a potentially long time. This limits
1427 	 * the delay to a maximum of one second.
1428 	 */
1429 	for (txp = sc->cbl_first; sc->tx_queued &&
1430 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1431 	    txp = txp->next) {
1432 		if ((m = txp->mb_head) != NULL) {
1433 			txp->mb_head = NULL;
1434 			sc->tx_queued--;
1435 			m_freem(m);
1436 		} else {
1437 			sc->tx_queued--;
1438 		}
1439 	}
1440 	sc->cbl_first = txp;
1441 	/*
1442 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1443 	 * then assume the receiver has locked up and attempt to clear
1444 	 * the condition by reprogramming the multicast filter. This is
1445 	 * a work-around for a bug in the 82557 where the receiver locks
1446 	 * up if it gets certain types of garbage in the syncronization
1447 	 * bits prior to the packet header. This bug is supposed to only
1448 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1449 	 * mode as well (perhaps due to a 10/100 speed transition).
1450 	 */
1451 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1452 		sc->rx_idle_secs = 0;
1453 		fxp_mc_setup(sc);
1454 	}
1455 	/*
1456 	 * If there is no pending command, start another stats
1457 	 * dump. Otherwise punt for now.
1458 	 */
1459 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1460 		/*
1461 		 * Start another stats dump.
1462 		 */
1463 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1464 	} else {
1465 		/*
1466 		 * A previous command is still waiting to be accepted.
1467 		 * Just zero our copy of the stats and wait for the
1468 		 * next timer event to update them.
1469 		 */
1470 		sp->tx_good = 0;
1471 		sp->tx_underruns = 0;
1472 		sp->tx_total_collisions = 0;
1473 
1474 		sp->rx_good = 0;
1475 		sp->rx_crc_errors = 0;
1476 		sp->rx_alignment_errors = 0;
1477 		sp->rx_rnr_errors = 0;
1478 		sp->rx_overrun_errors = 0;
1479 	}
1480 	if (sc->miibus != NULL)
1481 		mii_tick(device_get_softc(sc->miibus));
1482 	/*
1483 	 * Schedule another timeout one second from now.
1484 	 */
1485 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1486 
1487 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1488 }
1489 
1490 /*
1491  * Stop the interface. Cancels the statistics updater and resets
1492  * the interface.
1493  */
1494 static void
1495 fxp_stop(struct fxp_softc *sc)
1496 {
1497 	struct ifnet *ifp = &sc->arpcom.ac_if;
1498 	struct fxp_cb_tx *txp;
1499 	int i;
1500 
1501 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1502 	ifp->if_timer = 0;
1503 
1504 	/*
1505 	 * Cancel stats updater.
1506 	 */
1507 	callout_stop(&sc->fxp_stat_timer);
1508 
1509 	/*
1510 	 * Issue software reset, which also unloads the microcode.
1511 	 */
1512 	sc->flags &= ~FXP_FLAG_UCODE;
1513 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1514 	DELAY(50);
1515 
1516 	/*
1517 	 * Release any xmit buffers.
1518 	 */
1519 	txp = sc->cbl_base;
1520 	if (txp != NULL) {
1521 		for (i = 0; i < FXP_NTXCB; i++) {
1522 			if (txp[i].mb_head != NULL) {
1523 				m_freem(txp[i].mb_head);
1524 				txp[i].mb_head = NULL;
1525 			}
1526 		}
1527 	}
1528 	sc->tx_queued = 0;
1529 
1530 	/*
1531 	 * Free all the receive buffers then reallocate/reinitialize
1532 	 */
1533 	if (sc->rfa_headm != NULL)
1534 		m_freem(sc->rfa_headm);
1535 	sc->rfa_headm = NULL;
1536 	sc->rfa_tailm = NULL;
1537 	for (i = 0; i < FXP_NRFABUFS; i++) {
1538 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1539 			/*
1540 			 * This "can't happen" - we're at splimp()
1541 			 * and we just freed all the buffers we need
1542 			 * above.
1543 			 */
1544 			panic("fxp_stop: no buffers!");
1545 		}
1546 	}
1547 }
1548 
1549 /*
1550  * Watchdog/transmission transmit timeout handler. Called when a
1551  * transmission is started on the interface, but no interrupt is
1552  * received before the timeout. This usually indicates that the
1553  * card has wedged for some reason.
1554  */
1555 static void
1556 fxp_watchdog(struct ifnet *ifp)
1557 {
1558 	if_printf(ifp, "device timeout\n");
1559 	ifp->if_oerrors++;
1560 	fxp_init(ifp->if_softc);
1561 }
1562 
1563 static void
1564 fxp_init(void *xsc)
1565 {
1566 	struct fxp_softc *sc = xsc;
1567 	struct ifnet *ifp = &sc->arpcom.ac_if;
1568 	struct fxp_cb_config *cbp;
1569 	struct fxp_cb_ias *cb_ias;
1570 	struct fxp_cb_tx *txp;
1571 	struct fxp_cb_mcs *mcsp;
1572 	int i, prm;
1573 
1574 	/*
1575 	 * Cancel any pending I/O
1576 	 */
1577 	fxp_stop(sc);
1578 
1579 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1580 
1581 	/*
1582 	 * Initialize base of CBL and RFA memory. Loading with zero
1583 	 * sets it up for regular linear addressing.
1584 	 */
1585 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1586 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1587 
1588 	fxp_scb_wait(sc);
1589 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1590 
1591 	/*
1592 	 * Initialize base of dump-stats buffer.
1593 	 */
1594 	fxp_scb_wait(sc);
1595 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1596 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1597 
1598 	/*
1599 	 * Attempt to load microcode if requested.
1600 	 */
1601 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1602 		fxp_load_ucode(sc);
1603 
1604 	/*
1605 	 * Initialize the multicast address list.
1606 	 */
1607 	if (fxp_mc_addrs(sc)) {
1608 		mcsp = sc->mcsp;
1609 		mcsp->cb_status = 0;
1610 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1611 		mcsp->link_addr = -1;
1612 		/*
1613 	 	 * Start the multicast setup command.
1614 		 */
1615 		fxp_scb_wait(sc);
1616 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1617 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1618 		/* ...and wait for it to complete. */
1619 		fxp_dma_wait(&mcsp->cb_status, sc);
1620 	}
1621 
1622 	/*
1623 	 * We temporarily use memory that contains the TxCB list to
1624 	 * construct the config CB. The TxCB list memory is rebuilt
1625 	 * later.
1626 	 */
1627 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1628 
1629 	/*
1630 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1631 	 * zero and must be one bits in this structure and this is the easiest
1632 	 * way to initialize them all to proper values.
1633 	 */
1634 	bcopy(fxp_cb_config_template,
1635 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1636 		sizeof(fxp_cb_config_template));
1637 
1638 	cbp->cb_status =	0;
1639 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1640 	cbp->link_addr =	-1;	/* (no) next command */
1641 	cbp->byte_count =	22;	/* (22) bytes to config */
1642 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1643 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1644 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1645 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1646 	cbp->type_enable =	0;	/* actually reserved */
1647 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1648 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1649 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1650 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1651 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1652 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1653 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1654 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1655 	cbp->ci_int =		1;	/* interrupt on CU idle */
1656 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1657 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1658 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1659 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1660 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1661 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1662 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1663 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1664 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1665 	cbp->csma_dis =		0;	/* (don't) disable link */
1666 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1667 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1668 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1669 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1670 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1671 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1672 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1673 	cbp->loopback =		0;	/* (don't) loopback */
1674 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1675 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1676 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1677 	cbp->promiscuous =	prm;	/* promiscuous mode */
1678 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1679 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1680 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1681 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1682 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1683 
1684 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1685 	cbp->padding =		1;	/* (do) pad short tx packets */
1686 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1687 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1688 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1689 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1690 					/* must set wake_en in PMCSR also */
1691 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1692 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1693 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1694 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1695 
1696 	if (sc->revision == FXP_REV_82557) {
1697 		/*
1698 		 * The 82557 has no hardware flow control, the values
1699 		 * below are the defaults for the chip.
1700 		 */
1701 		cbp->fc_delay_lsb =	0;
1702 		cbp->fc_delay_msb =	0x40;
1703 		cbp->pri_fc_thresh =	3;
1704 		cbp->tx_fc_dis =	0;
1705 		cbp->rx_fc_restop =	0;
1706 		cbp->rx_fc_restart =	0;
1707 		cbp->fc_filter =	0;
1708 		cbp->pri_fc_loc =	1;
1709 	} else {
1710 		cbp->fc_delay_lsb =	0x1f;
1711 		cbp->fc_delay_msb =	0x01;
1712 		cbp->pri_fc_thresh =	3;
1713 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1714 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1715 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1716 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1717 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1718 	}
1719 
1720 	/*
1721 	 * Start the config command/DMA.
1722 	 */
1723 	fxp_scb_wait(sc);
1724 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1725 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1726 	/* ...and wait for it to complete. */
1727 	fxp_dma_wait(&cbp->cb_status, sc);
1728 
1729 	/*
1730 	 * Now initialize the station address. Temporarily use the TxCB
1731 	 * memory area like we did above for the config CB.
1732 	 */
1733 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1734 	cb_ias->cb_status = 0;
1735 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1736 	cb_ias->link_addr = -1;
1737 	bcopy(sc->arpcom.ac_enaddr,
1738 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1739 	    sizeof(sc->arpcom.ac_enaddr));
1740 
1741 	/*
1742 	 * Start the IAS (Individual Address Setup) command/DMA.
1743 	 */
1744 	fxp_scb_wait(sc);
1745 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1746 	/* ...and wait for it to complete. */
1747 	fxp_dma_wait(&cb_ias->cb_status, sc);
1748 
1749 	/*
1750 	 * Initialize transmit control block (TxCB) list.
1751 	 */
1752 
1753 	txp = sc->cbl_base;
1754 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1755 	for (i = 0; i < FXP_NTXCB; i++) {
1756 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1757 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1758 		txp[i].link_addr =
1759 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1760 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1761 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1762 		else
1763 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1764 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1765 	}
1766 	/*
1767 	 * Set the suspend flag on the first TxCB and start the control
1768 	 * unit. It will execute the NOP and then suspend.
1769 	 */
1770 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1771 	sc->cbl_first = sc->cbl_last = txp;
1772 	sc->tx_queued = 1;
1773 
1774 	fxp_scb_wait(sc);
1775 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1776 
1777 	/*
1778 	 * Initialize receiver buffer area - RFA.
1779 	 */
1780 	fxp_scb_wait(sc);
1781 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1782 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1783 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1784 
1785 	/*
1786 	 * Set current media.
1787 	 */
1788 	if (sc->miibus != NULL)
1789 		mii_mediachg(device_get_softc(sc->miibus));
1790 
1791 	ifp->if_flags |= IFF_RUNNING;
1792 	ifp->if_flags &= ~IFF_OACTIVE;
1793 
1794 	/*
1795 	 * Enable interrupts.
1796 	 */
1797 #ifdef DEVICE_POLLING
1798 	/*
1799 	 * ... but only do that if we are not polling. And because (presumably)
1800 	 * the default is interrupts on, we need to disable them explicitly!
1801 	 */
1802 	if ( ifp->if_flags & IFF_POLLING )
1803 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1804 	else
1805 #endif /* DEVICE_POLLING */
1806 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1807 
1808 	/*
1809 	 * Start stats updater.
1810 	 */
1811 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1812 }
1813 
1814 static int
1815 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1816 {
1817 
1818 	return (0);
1819 }
1820 
1821 static void
1822 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1823 {
1824 
1825 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1826 }
1827 
1828 /*
1829  * Change media according to request.
1830  */
1831 static int
1832 fxp_ifmedia_upd(struct ifnet *ifp)
1833 {
1834 	struct fxp_softc *sc = ifp->if_softc;
1835 	struct mii_data *mii;
1836 
1837 	mii = device_get_softc(sc->miibus);
1838 	mii_mediachg(mii);
1839 	return (0);
1840 }
1841 
1842 /*
1843  * Notify the world which media we're using.
1844  */
1845 static void
1846 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1847 {
1848 	struct fxp_softc *sc = ifp->if_softc;
1849 	struct mii_data *mii;
1850 
1851 	mii = device_get_softc(sc->miibus);
1852 	mii_pollstat(mii);
1853 	ifmr->ifm_active = mii->mii_media_active;
1854 	ifmr->ifm_status = mii->mii_media_status;
1855 
1856 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1857 		sc->cu_resume_bug = 1;
1858 	else
1859 		sc->cu_resume_bug = 0;
1860 }
1861 
1862 /*
1863  * Add a buffer to the end of the RFA buffer list.
1864  * Return 0 if successful, 1 for failure. A failure results in
1865  * adding the 'oldm' (if non-NULL) on to the end of the list -
1866  * tossing out its old contents and recycling it.
1867  * The RFA struct is stuck at the beginning of mbuf cluster and the
1868  * data pointer is fixed up to point just past it.
1869  */
1870 static int
1871 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1872 {
1873 	u_int32_t v;
1874 	struct mbuf *m;
1875 	struct fxp_rfa *rfa, *p_rfa;
1876 
1877 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1878 	if (m == NULL) { /* try to recycle the old mbuf instead */
1879 		if (oldm == NULL)
1880 			return 1;
1881 		m = oldm;
1882 		m->m_data = m->m_ext.ext_buf;
1883 	}
1884 
1885 	/*
1886 	 * Move the data pointer up so that the incoming data packet
1887 	 * will be 32-bit aligned.
1888 	 */
1889 	m->m_data += RFA_ALIGNMENT_FUDGE;
1890 
1891 	/*
1892 	 * Get a pointer to the base of the mbuf cluster and move
1893 	 * data start past it.
1894 	 */
1895 	rfa = mtod(m, struct fxp_rfa *);
1896 	m->m_data += sizeof(struct fxp_rfa);
1897 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1898 
1899 	/*
1900 	 * Initialize the rest of the RFA.  Note that since the RFA
1901 	 * is misaligned, we cannot store values directly.  Instead,
1902 	 * we use an optimized, inline copy.
1903 	 */
1904 
1905 	rfa->rfa_status = 0;
1906 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1907 	rfa->actual_size = 0;
1908 
1909 	v = -1;
1910 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1911 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1912 
1913 	/*
1914 	 * If there are other buffers already on the list, attach this
1915 	 * one to the end by fixing up the tail to point to this one.
1916 	 */
1917 	if (sc->rfa_headm != NULL) {
1918 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1919 		    RFA_ALIGNMENT_FUDGE);
1920 		sc->rfa_tailm->m_next = m;
1921 		v = vtophys(rfa);
1922 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1923 		p_rfa->rfa_control = 0;
1924 	} else {
1925 		sc->rfa_headm = m;
1926 	}
1927 	sc->rfa_tailm = m;
1928 
1929 	return (m == oldm);
1930 }
1931 
1932 static volatile int
1933 fxp_miibus_readreg(device_t dev, int phy, int reg)
1934 {
1935 	struct fxp_softc *sc = device_get_softc(dev);
1936 	int count = 10000;
1937 	int value;
1938 
1939 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1940 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1941 
1942 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1943 	    && count--)
1944 		DELAY(10);
1945 
1946 	if (count <= 0)
1947 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1948 
1949 	return (value & 0xffff);
1950 }
1951 
1952 static void
1953 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1954 {
1955 	struct fxp_softc *sc = device_get_softc(dev);
1956 	int count = 10000;
1957 
1958 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1959 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1960 	    (value & 0xffff));
1961 
1962 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1963 	    count--)
1964 		DELAY(10);
1965 
1966 	if (count <= 0)
1967 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1968 }
1969 
1970 static int
1971 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1972 {
1973 	struct fxp_softc *sc = ifp->if_softc;
1974 	struct ifreq *ifr = (struct ifreq *)data;
1975 	struct mii_data *mii;
1976 	int error = 0;
1977 
1978 	switch (command) {
1979 
1980 	case SIOCSIFFLAGS:
1981 		if (ifp->if_flags & IFF_ALLMULTI)
1982 			sc->flags |= FXP_FLAG_ALL_MCAST;
1983 		else
1984 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1985 
1986 		/*
1987 		 * If interface is marked up and not running, then start it.
1988 		 * If it is marked down and running, stop it.
1989 		 * XXX If it's up then re-initialize it. This is so flags
1990 		 * such as IFF_PROMISC are handled.
1991 		 */
1992 		if (ifp->if_flags & IFF_UP) {
1993 			fxp_init(sc);
1994 		} else {
1995 			if (ifp->if_flags & IFF_RUNNING)
1996 				fxp_stop(sc);
1997 		}
1998 		break;
1999 
2000 	case SIOCADDMULTI:
2001 	case SIOCDELMULTI:
2002 		if (ifp->if_flags & IFF_ALLMULTI)
2003 			sc->flags |= FXP_FLAG_ALL_MCAST;
2004 		else
2005 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2006 		/*
2007 		 * Multicast list has changed; set the hardware filter
2008 		 * accordingly.
2009 		 */
2010 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2011 			fxp_mc_setup(sc);
2012 		/*
2013 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2014 		 * again rather than else {}.
2015 		 */
2016 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2017 			fxp_init(sc);
2018 		error = 0;
2019 		break;
2020 
2021 	case SIOCSIFMEDIA:
2022 	case SIOCGIFMEDIA:
2023 		if (sc->miibus != NULL) {
2024 			mii = device_get_softc(sc->miibus);
2025                         error = ifmedia_ioctl(ifp, ifr,
2026                             &mii->mii_media, command);
2027 		} else {
2028                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2029 		}
2030 		break;
2031 
2032 	default:
2033 		error = ether_ioctl(ifp, command, data);
2034 		break;
2035 	}
2036 	return (error);
2037 }
2038 
2039 /*
2040  * Fill in the multicast address list and return number of entries.
2041  */
2042 static int
2043 fxp_mc_addrs(struct fxp_softc *sc)
2044 {
2045 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2046 	struct ifnet *ifp = &sc->arpcom.ac_if;
2047 	struct ifmultiaddr *ifma;
2048 	int nmcasts;
2049 
2050 	nmcasts = 0;
2051 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2052 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2053 			if (ifma->ifma_addr->sa_family != AF_LINK)
2054 				continue;
2055 			if (nmcasts >= MAXMCADDR) {
2056 				sc->flags |= FXP_FLAG_ALL_MCAST;
2057 				nmcasts = 0;
2058 				break;
2059 			}
2060 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2061 			    (void *)(uintptr_t)(volatile void *)
2062 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2063 			nmcasts++;
2064 		}
2065 	}
2066 	mcsp->mc_cnt = nmcasts * 6;
2067 	return (nmcasts);
2068 }
2069 
2070 /*
2071  * Program the multicast filter.
2072  *
2073  * We have an artificial restriction that the multicast setup command
2074  * must be the first command in the chain, so we take steps to ensure
2075  * this. By requiring this, it allows us to keep up the performance of
2076  * the pre-initialized command ring (esp. link pointers) by not actually
2077  * inserting the mcsetup command in the ring - i.e. its link pointer
2078  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2079  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2080  * lead into the regular TxCB ring when it completes.
2081  *
2082  * This function must be called at splimp.
2083  */
2084 static void
2085 fxp_mc_setup(struct fxp_softc *sc)
2086 {
2087 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2088 	struct ifnet *ifp = &sc->arpcom.ac_if;
2089 	int count;
2090 
2091 	/*
2092 	 * If there are queued commands, we must wait until they are all
2093 	 * completed. If we are already waiting, then add a NOP command
2094 	 * with interrupt option so that we're notified when all commands
2095 	 * have been completed - fxp_start() ensures that no additional
2096 	 * TX commands will be added when need_mcsetup is true.
2097 	 */
2098 	if (sc->tx_queued) {
2099 		struct fxp_cb_tx *txp;
2100 
2101 		/*
2102 		 * need_mcsetup will be true if we are already waiting for the
2103 		 * NOP command to be completed (see below). In this case, bail.
2104 		 */
2105 		if (sc->need_mcsetup)
2106 			return;
2107 		sc->need_mcsetup = 1;
2108 
2109 		/*
2110 		 * Add a NOP command with interrupt so that we are notified
2111 		 * when all TX commands have been processed.
2112 		 */
2113 		txp = sc->cbl_last->next;
2114 		txp->mb_head = NULL;
2115 		txp->cb_status = 0;
2116 		txp->cb_command = FXP_CB_COMMAND_NOP |
2117 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2118 		/*
2119 		 * Advance the end of list forward.
2120 		 */
2121 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2122 		sc->cbl_last = txp;
2123 		sc->tx_queued++;
2124 		/*
2125 		 * Issue a resume in case the CU has just suspended.
2126 		 */
2127 		fxp_scb_wait(sc);
2128 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2129 		/*
2130 		 * Set a 5 second timer just in case we don't hear from the
2131 		 * card again.
2132 		 */
2133 		ifp->if_timer = 5;
2134 
2135 		return;
2136 	}
2137 	sc->need_mcsetup = 0;
2138 
2139 	/*
2140 	 * Initialize multicast setup descriptor.
2141 	 */
2142 	mcsp->next = sc->cbl_base;
2143 	mcsp->mb_head = NULL;
2144 	mcsp->cb_status = 0;
2145 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2146 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2147 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2148 	fxp_mc_addrs(sc);
2149 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2150 	sc->tx_queued = 1;
2151 
2152 	/*
2153 	 * Wait until command unit is not active. This should never
2154 	 * be the case when nothing is queued, but make sure anyway.
2155 	 */
2156 	count = 100;
2157 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2158 	    FXP_SCB_CUS_ACTIVE && --count)
2159 		DELAY(10);
2160 	if (count == 0) {
2161 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2162 		return;
2163 	}
2164 
2165 	/*
2166 	 * Start the multicast setup command.
2167 	 */
2168 	fxp_scb_wait(sc);
2169 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2170 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2171 
2172 	ifp->if_timer = 2;
2173 	return;
2174 }
2175 
2176 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2177 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2178 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2179 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2180 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2181 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2182 
2183 #define UCODE(x)	x, sizeof(x)
2184 
2185 struct ucode {
2186 	u_int32_t	revision;
2187 	u_int32_t	*ucode;
2188 	int		length;
2189 	u_short		int_delay_offset;
2190 	u_short		bundle_max_offset;
2191 } ucode_table[] = {
2192 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2193 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2194 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2195 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2196 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2197 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2198 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2199 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2200 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2201 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2202 	{ 0, NULL, 0, 0, 0 }
2203 };
2204 
2205 static void
2206 fxp_load_ucode(struct fxp_softc *sc)
2207 {
2208 	struct ucode *uc;
2209 	struct fxp_cb_ucode *cbp;
2210 
2211 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2212 		if (sc->revision == uc->revision)
2213 			break;
2214 	if (uc->ucode == NULL)
2215 		return;
2216 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2217 	cbp->cb_status = 0;
2218 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2219 	cbp->link_addr = -1;    	/* (no) next command */
2220 	memcpy(cbp->ucode, uc->ucode, uc->length);
2221 	if (uc->int_delay_offset)
2222 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2223 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2224 	if (uc->bundle_max_offset)
2225 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2226 		    sc->tunable_bundle_max;
2227 	/*
2228 	 * Download the ucode to the chip.
2229 	 */
2230 	fxp_scb_wait(sc);
2231 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2232 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2233 	/* ...and wait for it to complete. */
2234 	fxp_dma_wait(&cbp->cb_status, sc);
2235 	if_printf(&sc->arpcom.ac_if,
2236 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2237 	    sc->tunable_int_delay,
2238 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2239 	sc->flags |= FXP_FLAG_UCODE;
2240 }
2241 
2242 static int
2243 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2244 {
2245 	int error, value;
2246 
2247 	value = *(int *)arg1;
2248 	error = sysctl_handle_int(oidp, &value, 0, req);
2249 	if (error || !req->newptr)
2250 		return (error);
2251 	if (value < low || value > high)
2252 		return (EINVAL);
2253 	*(int *)arg1 = value;
2254 	return (0);
2255 }
2256 
2257 /*
2258  * Interrupt delay is expressed in microseconds, a multiplier is used
2259  * to convert this to the appropriate clock ticks before using.
2260  */
2261 static int
2262 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2263 {
2264 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2265 }
2266 
2267 static int
2268 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2269 {
2270 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2271 }
2272