xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 4caa7869)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.6 2004/01/06 01:40:47 dillon Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 		/* #include <sys/mutex.h> */
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 
49 #ifdef NS
50 #include <netns/ns.h>
51 #include <netns/ns_if.h>
52 #endif
53 
54 #include <net/bpf.h>
55 #include <sys/sockio.h>
56 #include <sys/bus.h>
57 #include <machine/bus.h>
58 #include <sys/rman.h>
59 #include <machine/resource.h>
60 
61 #include <net/ethernet.h>
62 #include <net/if_arp.h>
63 
64 #include <vm/vm.h>		/* for vtophys */
65 #include <vm/pmap.h>		/* for vtophys */
66 #include <machine/clock.h>	/* for DELAY */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
168      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
169      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
170      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
171      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
173      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
174      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
175      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
176      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
178      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
179      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
180      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
182      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
183      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
184      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
185      { 0,	-1,	NULL },
186 };
187 
188 static int		fxp_probe(device_t dev);
189 static int		fxp_attach(device_t dev);
190 static int		fxp_detach(device_t dev);
191 static int		fxp_shutdown(device_t dev);
192 static int		fxp_suspend(device_t dev);
193 static int		fxp_resume(device_t dev);
194 
195 static void		fxp_intr(void *xsc);
196 static void		fxp_intr_body(struct fxp_softc *sc,
197 				u_int8_t statack, int count);
198 
199 static void 		fxp_init(void *xsc);
200 static void 		fxp_tick(void *xsc);
201 static void		fxp_powerstate_d0(device_t dev);
202 static void 		fxp_start(struct ifnet *ifp);
203 static void		fxp_stop(struct fxp_softc *sc);
204 static void 		fxp_release(struct fxp_softc *sc);
205 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
206 			    caddr_t data);
207 static void 		fxp_watchdog(struct ifnet *ifp);
208 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
209 static int		fxp_mc_addrs(struct fxp_softc *sc);
210 static void		fxp_mc_setup(struct fxp_softc *sc);
211 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
212 			    int autosize);
213 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
214 			    u_int16_t data);
215 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
216 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
217 			    int offset, int words);
218 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
219 			    int offset, int words);
220 static int		fxp_ifmedia_upd(struct ifnet *ifp);
221 static void		fxp_ifmedia_sts(struct ifnet *ifp,
222 			    struct ifmediareq *ifmr);
223 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
224 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
225 			    struct ifmediareq *ifmr);
226 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
227 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
228 			    int value);
229 static void		fxp_load_ucode(struct fxp_softc *sc);
230 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
231 			    int low, int high);
232 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
233 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
234 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
235 			    volatile u_int32_t *dst);
236 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
237 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
238 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
239 			    struct fxp_softc *sc);
240 
241 static device_method_t fxp_methods[] = {
242 	/* Device interface */
243 	DEVMETHOD(device_probe,		fxp_probe),
244 	DEVMETHOD(device_attach,	fxp_attach),
245 	DEVMETHOD(device_detach,	fxp_detach),
246 	DEVMETHOD(device_shutdown,	fxp_shutdown),
247 	DEVMETHOD(device_suspend,	fxp_suspend),
248 	DEVMETHOD(device_resume,	fxp_resume),
249 
250 	/* MII interface */
251 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
252 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
253 
254 	{ 0, 0 }
255 };
256 
257 static driver_t fxp_driver = {
258 	"fxp",
259 	fxp_methods,
260 	sizeof(struct fxp_softc),
261 };
262 
263 static devclass_t fxp_devclass;
264 
265 DECLARE_DUMMY_MODULE(if_fxp);
266 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
267 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
268 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
269 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
270 
271 static int fxp_rnr;
272 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
273 
274 /*
275  * Inline function to copy a 16-bit aligned 32-bit quantity.
276  */
277 static __inline void
278 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
279 {
280 #ifdef __i386__
281 	*dst = *src;
282 #else
283 	volatile u_int16_t *a = (volatile u_int16_t *)src;
284 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
285 
286 	b[0] = a[0];
287 	b[1] = a[1];
288 #endif
289 }
290 
291 /*
292  * Wait for the previous command to be accepted (but not necessarily
293  * completed).
294  */
295 static __inline void
296 fxp_scb_wait(struct fxp_softc *sc)
297 {
298 	int i = 10000;
299 
300 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
301 		DELAY(2);
302 	if (i == 0)
303 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
304 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
305 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
306 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
307 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
308 }
309 
310 static __inline void
311 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
312 {
313 
314 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
315 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
316 		fxp_scb_wait(sc);
317 	}
318 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
319 }
320 
321 static __inline void
322 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
323 {
324 	int i = 10000;
325 
326 	while (!(*status & FXP_CB_STATUS_C) && --i)
327 		DELAY(2);
328 	if (i == 0)
329 		device_printf(sc->dev, "DMA timeout\n");
330 }
331 
332 /*
333  * Return identification string if this is device is ours.
334  */
335 static int
336 fxp_probe(device_t dev)
337 {
338 	u_int16_t devid;
339 	u_int8_t revid;
340 	struct fxp_ident *ident;
341 
342 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
343 		devid = pci_get_device(dev);
344 		revid = pci_get_revid(dev);
345 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
346 			if (ident->devid == devid &&
347 			    (ident->revid == revid || ident->revid == -1)) {
348 				device_set_desc(dev, ident->name);
349 				return (0);
350 			}
351 		}
352 	}
353 	return (ENXIO);
354 }
355 
356 static void
357 fxp_powerstate_d0(device_t dev)
358 {
359 #if __FreeBSD_version >= 430002
360 	u_int32_t iobase, membase, irq;
361 
362 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
363 		/* Save important PCI config data. */
364 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
365 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
366 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
367 
368 		/* Reset the power state. */
369 		device_printf(dev, "chip is in D%d power mode "
370 		    "-- setting to D0\n", pci_get_powerstate(dev));
371 
372 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
373 
374 		/* Restore PCI config data. */
375 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
376 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
377 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
378 	}
379 #endif
380 }
381 
382 static int
383 fxp_attach(device_t dev)
384 {
385 	int error = 0;
386 	struct fxp_softc *sc = device_get_softc(dev);
387 	struct ifnet *ifp;
388 	u_int32_t val;
389 	u_int16_t data;
390 	int i, rid, m1, m2, prefer_iomap;
391 	int s;
392 
393 	bzero(sc, sizeof(*sc));
394 	sc->dev = dev;
395 	callout_handle_init(&sc->stat_ch);
396 	sysctl_ctx_init(&sc->sysctl_ctx);
397 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
398 
399 	s = splimp();
400 
401 	/*
402 	 * Enable bus mastering. Enable memory space too, in case
403 	 * BIOS/Prom forgot about it.
404 	 */
405 	val = pci_read_config(dev, PCIR_COMMAND, 2);
406 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
407 	pci_write_config(dev, PCIR_COMMAND, val, 2);
408 	val = pci_read_config(dev, PCIR_COMMAND, 2);
409 
410 	fxp_powerstate_d0(dev);
411 
412 	/*
413 	 * Figure out which we should try first - memory mapping or i/o mapping?
414 	 * We default to memory mapping. Then we accept an override from the
415 	 * command line. Then we check to see which one is enabled.
416 	 */
417 	m1 = PCIM_CMD_MEMEN;
418 	m2 = PCIM_CMD_PORTEN;
419 	prefer_iomap = 0;
420 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
421 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
422 		m1 = PCIM_CMD_PORTEN;
423 		m2 = PCIM_CMD_MEMEN;
424 	}
425 
426 	if (val & m1) {
427 		sc->rtp =
428 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
429 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
430 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
431 	                                     0, ~0, 1, RF_ACTIVE);
432 	}
433 	if (sc->mem == NULL && (val & m2)) {
434 		sc->rtp =
435 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
436 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
437 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
438                                             0, ~0, 1, RF_ACTIVE);
439 	}
440 
441 	if (!sc->mem) {
442 		device_printf(dev, "could not map device registers\n");
443 		error = ENXIO;
444 		goto fail;
445         }
446 	if (bootverbose) {
447 		device_printf(dev, "using %s space register mapping\n",
448 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
449 	}
450 
451 	sc->sc_st = rman_get_bustag(sc->mem);
452 	sc->sc_sh = rman_get_bushandle(sc->mem);
453 
454 	/*
455 	 * Allocate our interrupt.
456 	 */
457 	rid = 0;
458 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
459 				 RF_SHAREABLE | RF_ACTIVE);
460 	if (sc->irq == NULL) {
461 		device_printf(dev, "could not map interrupt\n");
462 		error = ENXIO;
463 		goto fail;
464 	}
465 
466 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
467 			       fxp_intr, sc, &sc->ih);
468 	if (error) {
469 		device_printf(dev, "could not setup irq\n");
470 		goto fail;
471 	}
472 
473 	/*
474 	 * Reset to a stable state.
475 	 */
476 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
477 	DELAY(10);
478 
479 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
480 	    M_DEVBUF, M_NOWAIT | M_ZERO);
481 	if (sc->cbl_base == NULL)
482 		goto failmem;
483 
484 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
485 	    M_NOWAIT | M_ZERO);
486 	if (sc->fxp_stats == NULL)
487 		goto failmem;
488 
489 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
490 	if (sc->mcsp == NULL)
491 		goto failmem;
492 
493 	/*
494 	 * Pre-allocate our receive buffers.
495 	 */
496 	for (i = 0; i < FXP_NRFABUFS; i++) {
497 		if (fxp_add_rfabuf(sc, NULL) != 0) {
498 			goto failmem;
499 		}
500 	}
501 
502 	/*
503 	 * Find out how large of an SEEPROM we have.
504 	 */
505 	fxp_autosize_eeprom(sc);
506 
507 	/*
508 	 * Determine whether we must use the 503 serial interface.
509 	 */
510 	fxp_read_eeprom(sc, &data, 6, 1);
511 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
512 	    (data & FXP_PHY_SERIAL_ONLY))
513 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
514 
515 	/*
516 	 * Create the sysctl tree
517 	 */
518 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
519 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
520 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
521 	if (sc->sysctl_tree == NULL)
522 		goto fail;
523 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
524 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
525 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
526 	    "FXP driver receive interrupt microcode bundling delay");
527 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
528 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
529 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
530 	    "FXP driver receive interrupt microcode bundle size limit");
531 
532 	/*
533 	 * Pull in device tunables.
534 	 */
535 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
536 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
537 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
538 	    "int_delay", &sc->tunable_int_delay);
539 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
540 	    "bundle_max", &sc->tunable_bundle_max);
541 
542 	/*
543 	 * Find out the chip revision; lump all 82557 revs together.
544 	 */
545 	fxp_read_eeprom(sc, &data, 5, 1);
546 	if ((data >> 8) == 1)
547 		sc->revision = FXP_REV_82557;
548 	else
549 		sc->revision = pci_get_revid(dev);
550 
551 	/*
552 	 * Enable workarounds for certain chip revision deficiencies.
553 	 *
554 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
555 	 * some systems based a normal 82559 design, have a defect where
556 	 * the chip can cause a PCI protocol violation if it receives
557 	 * a CU_RESUME command when it is entering the IDLE state.  The
558 	 * workaround is to disable Dynamic Standby Mode, so the chip never
559 	 * deasserts CLKRUN#, and always remains in an active state.
560 	 *
561 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
562 	 */
563 	i = pci_get_device(dev);
564 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
565 	    sc->revision >= FXP_REV_82559_A0) {
566 		fxp_read_eeprom(sc, &data, 10, 1);
567 		if (data & 0x02) {			/* STB enable */
568 			u_int16_t cksum;
569 			int i;
570 
571 			device_printf(dev,
572 			    "Disabling dynamic standby mode in EEPROM\n");
573 			data &= ~0x02;
574 			fxp_write_eeprom(sc, &data, 10, 1);
575 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
576 			cksum = 0;
577 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
578 				fxp_read_eeprom(sc, &data, i, 1);
579 				cksum += data;
580 			}
581 			i = (1 << sc->eeprom_size) - 1;
582 			cksum = 0xBABA - cksum;
583 			fxp_read_eeprom(sc, &data, i, 1);
584 			fxp_write_eeprom(sc, &cksum, i, 1);
585 			device_printf(dev,
586 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
587 			    i, data, cksum);
588 #if 1
589 			/*
590 			 * If the user elects to continue, try the software
591 			 * workaround, as it is better than nothing.
592 			 */
593 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
594 #endif
595 		}
596 	}
597 
598 	/*
599 	 * If we are not a 82557 chip, we can enable extended features.
600 	 */
601 	if (sc->revision != FXP_REV_82557) {
602 		/*
603 		 * If MWI is enabled in the PCI configuration, and there
604 		 * is a valid cacheline size (8 or 16 dwords), then tell
605 		 * the board to turn on MWI.
606 		 */
607 		if (val & PCIM_CMD_MWRICEN &&
608 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
609 			sc->flags |= FXP_FLAG_MWI_ENABLE;
610 
611 		/* turn on the extended TxCB feature */
612 		sc->flags |= FXP_FLAG_EXT_TXCB;
613 
614 		/* enable reception of long frames for VLAN */
615 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
616 	}
617 
618 	/*
619 	 * Read MAC address.
620 	 */
621 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
622 	device_printf(dev, "Ethernet address %6D%s\n",
623 	    sc->arpcom.ac_enaddr, ":",
624 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
625 	if (bootverbose) {
626 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
627 		    pci_get_vendor(dev), pci_get_device(dev),
628 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
629 		    pci_get_revid(dev));
630 		fxp_read_eeprom(sc, &data, 10, 1);
631 		device_printf(dev, "Dynamic Standby mode is %s\n",
632 		    data & 0x02 ? "enabled" : "disabled");
633 	}
634 
635 	/*
636 	 * If this is only a 10Mbps device, then there is no MII, and
637 	 * the PHY will use a serial interface instead.
638 	 *
639 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
640 	 * doesn't have a programming interface of any sort.  The
641 	 * media is sensed automatically based on how the link partner
642 	 * is configured.  This is, in essence, manual configuration.
643 	 */
644 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
645 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
646 		    fxp_serial_ifmedia_sts);
647 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
648 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
649 	} else {
650 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
651 		    fxp_ifmedia_sts)) {
652 	                device_printf(dev, "MII without any PHY!\n");
653 			error = ENXIO;
654 			goto fail;
655 		}
656 	}
657 
658 	ifp = &sc->arpcom.ac_if;
659 	if_initname(ifp, "fxp", device_get_unit(dev));
660 	ifp->if_output = ether_output;
661 	ifp->if_baudrate = 100000000;
662 	ifp->if_init = fxp_init;
663 	ifp->if_softc = sc;
664 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
665 	ifp->if_ioctl = fxp_ioctl;
666 	ifp->if_start = fxp_start;
667 	ifp->if_watchdog = fxp_watchdog;
668 
669 	/*
670 	 * Attach the interface.
671 	 */
672 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
673 
674 	/*
675 	 * Tell the upper layer(s) we support long frames.
676 	 */
677 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
678 
679 	/*
680 	 * Let the system queue as many packets as we have available
681 	 * TX descriptors.
682 	 */
683 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
684 
685 	splx(s);
686 	return (0);
687 
688 failmem:
689 	device_printf(dev, "Failed to malloc memory\n");
690 	error = ENOMEM;
691 fail:
692 	splx(s);
693 	fxp_release(sc);
694 	return (error);
695 }
696 
697 /*
698  * release all resources
699  */
700 static void
701 fxp_release(struct fxp_softc *sc)
702 {
703 
704 	bus_generic_detach(sc->dev);
705 	if (sc->miibus)
706 		device_delete_child(sc->dev, sc->miibus);
707 
708 	if (sc->cbl_base)
709 		free(sc->cbl_base, M_DEVBUF);
710 	if (sc->fxp_stats)
711 		free(sc->fxp_stats, M_DEVBUF);
712 	if (sc->mcsp)
713 		free(sc->mcsp, M_DEVBUF);
714 	if (sc->rfa_headm)
715 		m_freem(sc->rfa_headm);
716 
717 	if (sc->ih)
718 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
719 	if (sc->irq)
720 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
721 	if (sc->mem)
722 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
723 
724         sysctl_ctx_free(&sc->sysctl_ctx);
725 
726 	mtx_destroy(&sc->sc_mtx);
727 }
728 
729 /*
730  * Detach interface.
731  */
732 static int
733 fxp_detach(device_t dev)
734 {
735 	struct fxp_softc *sc = device_get_softc(dev);
736 	int s;
737 
738 	/* disable interrupts */
739 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
740 
741 	s = splimp();
742 
743 	/*
744 	 * Stop DMA and drop transmit queue.
745 	 */
746 	fxp_stop(sc);
747 
748 	/*
749 	 * Close down routes etc.
750 	 */
751 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
752 
753 	/*
754 	 * Free all media structures.
755 	 */
756 	ifmedia_removeall(&sc->sc_media);
757 
758 	splx(s);
759 
760 	/* Release our allocated resources. */
761 	fxp_release(sc);
762 
763 	return (0);
764 }
765 
766 /*
767  * Device shutdown routine. Called at system shutdown after sync. The
768  * main purpose of this routine is to shut off receiver DMA so that
769  * kernel memory doesn't get clobbered during warmboot.
770  */
771 static int
772 fxp_shutdown(device_t dev)
773 {
774 	/*
775 	 * Make sure that DMA is disabled prior to reboot. Not doing
776 	 * do could allow DMA to corrupt kernel memory during the
777 	 * reboot before the driver initializes.
778 	 */
779 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
780 	return (0);
781 }
782 
783 /*
784  * Device suspend routine.  Stop the interface and save some PCI
785  * settings in case the BIOS doesn't restore them properly on
786  * resume.
787  */
788 static int
789 fxp_suspend(device_t dev)
790 {
791 	struct fxp_softc *sc = device_get_softc(dev);
792 	int i, s;
793 
794 	s = splimp();
795 
796 	fxp_stop(sc);
797 
798 	for (i = 0; i < 5; i++)
799 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
800 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
801 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
802 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
803 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
804 
805 	sc->suspended = 1;
806 
807 	splx(s);
808 	return (0);
809 }
810 
811 /*
812  * Device resume routine.  Restore some PCI settings in case the BIOS
813  * doesn't, re-enable busmastering, and restart the interface if
814  * appropriate.
815  */
816 static int
817 fxp_resume(device_t dev)
818 {
819 	struct fxp_softc *sc = device_get_softc(dev);
820 	struct ifnet *ifp = &sc->sc_if;
821 	u_int16_t pci_command;
822 	int i, s;
823 
824 	s = splimp();
825 
826 	fxp_powerstate_d0(dev);
827 
828 	/* better way to do this? */
829 	for (i = 0; i < 5; i++)
830 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
831 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
832 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
833 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
834 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
835 
836 	/* reenable busmastering */
837 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
838 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
839 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
840 
841 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
842 	DELAY(10);
843 
844 	/* reinitialize interface if necessary */
845 	if (ifp->if_flags & IFF_UP)
846 		fxp_init(sc);
847 
848 	sc->suspended = 0;
849 
850 	splx(s);
851 	return (0);
852 }
853 
854 static void
855 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
856 {
857 	u_int16_t reg;
858 	int x;
859 
860 	/*
861 	 * Shift in data.
862 	 */
863 	for (x = 1 << (length - 1); x; x >>= 1) {
864 		if (data & x)
865 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
866 		else
867 			reg = FXP_EEPROM_EECS;
868 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
869 		DELAY(1);
870 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
871 		DELAY(1);
872 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
873 		DELAY(1);
874 	}
875 }
876 
877 /*
878  * Read from the serial EEPROM. Basically, you manually shift in
879  * the read opcode (one bit at a time) and then shift in the address,
880  * and then you shift out the data (all of this one bit at a time).
881  * The word size is 16 bits, so you have to provide the address for
882  * every 16 bits of data.
883  */
884 static u_int16_t
885 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
886 {
887 	u_int16_t reg, data;
888 	int x;
889 
890 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
891 	/*
892 	 * Shift in read opcode.
893 	 */
894 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
895 	/*
896 	 * Shift in address.
897 	 */
898 	data = 0;
899 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
900 		if (offset & x)
901 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
902 		else
903 			reg = FXP_EEPROM_EECS;
904 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
905 		DELAY(1);
906 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
907 		DELAY(1);
908 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
909 		DELAY(1);
910 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
911 		data++;
912 		if (autosize && reg == 0) {
913 			sc->eeprom_size = data;
914 			break;
915 		}
916 	}
917 	/*
918 	 * Shift out data.
919 	 */
920 	data = 0;
921 	reg = FXP_EEPROM_EECS;
922 	for (x = 1 << 15; x; x >>= 1) {
923 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
924 		DELAY(1);
925 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
926 			data |= x;
927 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
928 		DELAY(1);
929 	}
930 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
931 	DELAY(1);
932 
933 	return (data);
934 }
935 
936 static void
937 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
938 {
939 	int i;
940 
941 	/*
942 	 * Erase/write enable.
943 	 */
944 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
945 	fxp_eeprom_shiftin(sc, 0x4, 3);
946 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
947 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
948 	DELAY(1);
949 	/*
950 	 * Shift in write opcode, address, data.
951 	 */
952 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
953 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
954 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
955 	fxp_eeprom_shiftin(sc, data, 16);
956 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
957 	DELAY(1);
958 	/*
959 	 * Wait for EEPROM to finish up.
960 	 */
961 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
962 	DELAY(1);
963 	for (i = 0; i < 1000; i++) {
964 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
965 			break;
966 		DELAY(50);
967 	}
968 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
969 	DELAY(1);
970 	/*
971 	 * Erase/write disable.
972 	 */
973 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
974 	fxp_eeprom_shiftin(sc, 0x4, 3);
975 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
976 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
977 	DELAY(1);
978 }
979 
980 /*
981  * From NetBSD:
982  *
983  * Figure out EEPROM size.
984  *
985  * 559's can have either 64-word or 256-word EEPROMs, the 558
986  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
987  * talks about the existance of 16 to 256 word EEPROMs.
988  *
989  * The only known sizes are 64 and 256, where the 256 version is used
990  * by CardBus cards to store CIS information.
991  *
992  * The address is shifted in msb-to-lsb, and after the last
993  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
994  * after which follows the actual data. We try to detect this zero, by
995  * probing the data-out bit in the EEPROM control register just after
996  * having shifted in a bit. If the bit is zero, we assume we've
997  * shifted enough address bits. The data-out should be tri-state,
998  * before this, which should translate to a logical one.
999  */
1000 static void
1001 fxp_autosize_eeprom(struct fxp_softc *sc)
1002 {
1003 
1004 	/* guess maximum size of 256 words */
1005 	sc->eeprom_size = 8;
1006 
1007 	/* autosize */
1008 	(void) fxp_eeprom_getword(sc, 0, 1);
1009 }
1010 
1011 static void
1012 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1013 {
1014 	int i;
1015 
1016 	for (i = 0; i < words; i++)
1017 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1018 }
1019 
1020 static void
1021 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1022 {
1023 	int i;
1024 
1025 	for (i = 0; i < words; i++)
1026 		fxp_eeprom_putword(sc, offset + i, data[i]);
1027 }
1028 
1029 /*
1030  * Start packet transmission on the interface.
1031  */
1032 static void
1033 fxp_start(struct ifnet *ifp)
1034 {
1035 	struct fxp_softc *sc = ifp->if_softc;
1036 	struct fxp_cb_tx *txp;
1037 
1038 	/*
1039 	 * See if we need to suspend xmit until the multicast filter
1040 	 * has been reprogrammed (which can only be done at the head
1041 	 * of the command chain).
1042 	 */
1043 	if (sc->need_mcsetup) {
1044 		return;
1045 	}
1046 
1047 	txp = NULL;
1048 
1049 	/*
1050 	 * We're finished if there is nothing more to add to the list or if
1051 	 * we're all filled up with buffers to transmit.
1052 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1053 	 *       a NOP command when needed.
1054 	 */
1055 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1056 		struct mbuf *m, *mb_head;
1057 		int segment;
1058 
1059 		/*
1060 		 * Grab a packet to transmit.
1061 		 */
1062 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1063 
1064 		/*
1065 		 * Get pointer to next available tx desc.
1066 		 */
1067 		txp = sc->cbl_last->next;
1068 
1069 		/*
1070 		 * Go through each of the mbufs in the chain and initialize
1071 		 * the transmit buffer descriptors with the physical address
1072 		 * and size of the mbuf.
1073 		 */
1074 tbdinit:
1075 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1076 			if (m->m_len != 0) {
1077 				if (segment == FXP_NTXSEG)
1078 					break;
1079 				txp->tbd[segment].tb_addr =
1080 				    vtophys(mtod(m, vm_offset_t));
1081 				txp->tbd[segment].tb_size = m->m_len;
1082 				segment++;
1083 			}
1084 		}
1085 		if (m != NULL) {
1086 			struct mbuf *mn;
1087 
1088 			/*
1089 			 * We ran out of segments. We have to recopy this
1090 			 * mbuf chain first. Bail out if we can't get the
1091 			 * new buffers.
1092 			 */
1093 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1094 			if (mn == NULL) {
1095 				m_freem(mb_head);
1096 				break;
1097 			}
1098 			if (mb_head->m_pkthdr.len > MHLEN) {
1099 				MCLGET(mn, M_DONTWAIT);
1100 				if ((mn->m_flags & M_EXT) == 0) {
1101 					m_freem(mn);
1102 					m_freem(mb_head);
1103 					break;
1104 				}
1105 			}
1106 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1107 			    mtod(mn, caddr_t));
1108 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1109 			m_freem(mb_head);
1110 			mb_head = mn;
1111 			goto tbdinit;
1112 		}
1113 
1114 		txp->tbd_number = segment;
1115 		txp->mb_head = mb_head;
1116 		txp->cb_status = 0;
1117 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1118 			txp->cb_command =
1119 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1120 			    FXP_CB_COMMAND_S;
1121 		} else {
1122 			txp->cb_command =
1123 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1124 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1125 			/*
1126 			 * Set a 5 second timer just in case we don't hear
1127 			 * from the card again.
1128 			 */
1129 			ifp->if_timer = 5;
1130 		}
1131 		txp->tx_threshold = tx_threshold;
1132 
1133 		/*
1134 		 * Advance the end of list forward.
1135 		 */
1136 
1137 #ifdef __alpha__
1138 		/*
1139 		 * On platforms which can't access memory in 16-bit
1140 		 * granularities, we must prevent the card from DMA'ing
1141 		 * up the status while we update the command field.
1142 		 * This could cause us to overwrite the completion status.
1143 		 */
1144 		atomic_clear_short(&sc->cbl_last->cb_command,
1145 		    FXP_CB_COMMAND_S);
1146 #else
1147 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1148 #endif /*__alpha__*/
1149 		sc->cbl_last = txp;
1150 
1151 		/*
1152 		 * Advance the beginning of the list forward if there are
1153 		 * no other packets queued (when nothing is queued, cbl_first
1154 		 * sits on the last TxCB that was sent out).
1155 		 */
1156 		if (sc->tx_queued == 0)
1157 			sc->cbl_first = txp;
1158 
1159 		sc->tx_queued++;
1160 
1161 		/*
1162 		 * Pass packet to bpf if there is a listener.
1163 		 */
1164 		if (ifp->if_bpf)
1165 			bpf_mtap(ifp, mb_head);
1166 	}
1167 
1168 	/*
1169 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1170 	 * going again if suspended.
1171 	 */
1172 	if (txp != NULL) {
1173 		fxp_scb_wait(sc);
1174 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1175 	}
1176 }
1177 
1178 #ifdef DEVICE_POLLING
1179 static poll_handler_t fxp_poll;
1180 
1181 static void
1182 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1183 {
1184 	struct fxp_softc *sc = ifp->if_softc;
1185 	u_int8_t statack;
1186 
1187 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1188 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1189 		return;
1190 	}
1191 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1192 	    FXP_SCB_STATACK_FR;
1193 	if (cmd == POLL_AND_CHECK_STATUS) {
1194 		u_int8_t tmp;
1195 
1196 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1197 		if (tmp == 0xff || tmp == 0)
1198 			return; /* nothing to do */
1199 		tmp &= ~statack;
1200 		/* ack what we can */
1201 		if (tmp != 0)
1202 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1203 		statack |= tmp;
1204 	}
1205 	fxp_intr_body(sc, statack, count);
1206 }
1207 #endif /* DEVICE_POLLING */
1208 
1209 /*
1210  * Process interface interrupts.
1211  */
1212 static void
1213 fxp_intr(void *xsc)
1214 {
1215 	struct fxp_softc *sc = xsc;
1216 	u_int8_t statack;
1217 
1218 #ifdef DEVICE_POLLING
1219 	struct ifnet *ifp = &sc->sc_if;
1220 
1221 	if (ifp->if_ipending & IFF_POLLING)
1222 		return;
1223 	if (ether_poll_register(fxp_poll, ifp)) {
1224 		/* disable interrupts */
1225 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1226 		fxp_poll(ifp, 0, 1);
1227 		return;
1228 	}
1229 #endif
1230 
1231 	if (sc->suspended) {
1232 		return;
1233 	}
1234 
1235 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1236 		/*
1237 		 * It should not be possible to have all bits set; the
1238 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1239 		 * all bits are set, this may indicate that the card has
1240 		 * been physically ejected, so ignore it.
1241 		 */
1242 		if (statack == 0xff)
1243 			return;
1244 
1245 		/*
1246 		 * First ACK all the interrupts in this pass.
1247 		 */
1248 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1249 		fxp_intr_body(sc, statack, -1);
1250 	}
1251 }
1252 
1253 static void
1254 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1255 {
1256 	struct ifnet *ifp = &sc->sc_if;
1257 	struct mbuf *m;
1258 	struct fxp_rfa *rfa;
1259 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1260 
1261 	if (rnr)
1262 		fxp_rnr++;
1263 #ifdef DEVICE_POLLING
1264 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1265 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1266 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1267 		rnr = 1;
1268 	}
1269 #endif
1270 
1271 	/*
1272 	 * Free any finished transmit mbuf chains.
1273 	 *
1274 	 * Handle the CNA event likt a CXTNO event. It used to
1275 	 * be that this event (control unit not ready) was not
1276 	 * encountered, but it is now with the SMPng modifications.
1277 	 * The exact sequence of events that occur when the interface
1278 	 * is brought up are different now, and if this event
1279 	 * goes unhandled, the configuration/rxfilter setup sequence
1280 	 * can stall for several seconds. The result is that no
1281 	 * packets go out onto the wire for about 5 to 10 seconds
1282 	 * after the interface is ifconfig'ed for the first time.
1283 	 */
1284 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1285 		struct fxp_cb_tx *txp;
1286 
1287 		for (txp = sc->cbl_first; sc->tx_queued &&
1288 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1289 		    txp = txp->next) {
1290 			if (txp->mb_head != NULL) {
1291 				m_freem(txp->mb_head);
1292 				txp->mb_head = NULL;
1293 			}
1294 			sc->tx_queued--;
1295 		}
1296 		sc->cbl_first = txp;
1297 		ifp->if_timer = 0;
1298 		if (sc->tx_queued == 0) {
1299 			if (sc->need_mcsetup)
1300 				fxp_mc_setup(sc);
1301 		}
1302 		/*
1303 		 * Try to start more packets transmitting.
1304 		 */
1305 		if (ifp->if_snd.ifq_head != NULL)
1306 			fxp_start(ifp);
1307 	}
1308 
1309 	/*
1310 	 * Just return if nothing happened on the receive side.
1311 	 */
1312 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1313 		return;
1314 
1315 	/*
1316 	 * Process receiver interrupts. If a no-resource (RNR)
1317 	 * condition exists, get whatever packets we can and
1318 	 * re-start the receiver.
1319 	 *
1320 	 * When using polling, we do not process the list to completion,
1321 	 * so when we get an RNR interrupt we must defer the restart
1322 	 * until we hit the last buffer with the C bit set.
1323 	 * If we run out of cycles and rfa_headm has the C bit set,
1324 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1325 	 * that the info will be used in the subsequent polling cycle.
1326 	 */
1327 	for (;;) {
1328 		m = sc->rfa_headm;
1329 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1330 		    RFA_ALIGNMENT_FUDGE);
1331 
1332 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1333 		if (count >= 0 && count-- == 0) {
1334 			if (rnr) {
1335 				/* Defer RNR processing until the next time. */
1336 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1337 				rnr = 0;
1338 			}
1339 			break;
1340 		}
1341 #endif /* DEVICE_POLLING */
1342 
1343 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1344 			break;
1345 
1346 		/*
1347 		 * Remove first packet from the chain.
1348 		 */
1349 		sc->rfa_headm = m->m_next;
1350 		m->m_next = NULL;
1351 
1352 		/*
1353 		 * Add a new buffer to the receive chain.
1354 		 * If this fails, the old buffer is recycled
1355 		 * instead.
1356 		 */
1357 		if (fxp_add_rfabuf(sc, m) == 0) {
1358 			int total_len;
1359 
1360 			/*
1361 			 * Fetch packet length (the top 2 bits of
1362 			 * actual_size are flags set by the controller
1363 			 * upon completion), and drop the packet in case
1364 			 * of bogus length or CRC errors.
1365 			 */
1366 			total_len = rfa->actual_size & 0x3fff;
1367 			if (total_len < sizeof(struct ether_header) ||
1368 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1369 				sizeof(struct fxp_rfa) ||
1370 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1371 				m_freem(m);
1372 				continue;
1373 			}
1374 			m->m_pkthdr.len = m->m_len = total_len;
1375 			ether_input(ifp, NULL, m);
1376 		}
1377 	}
1378 	if (rnr) {
1379 		fxp_scb_wait(sc);
1380 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1381 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1382 		    RFA_ALIGNMENT_FUDGE);
1383 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1384 	}
1385 }
1386 
1387 /*
1388  * Update packet in/out/collision statistics. The i82557 doesn't
1389  * allow you to access these counters without doing a fairly
1390  * expensive DMA to get _all_ of the statistics it maintains, so
1391  * we do this operation here only once per second. The statistics
1392  * counters in the kernel are updated from the previous dump-stats
1393  * DMA and then a new dump-stats DMA is started. The on-chip
1394  * counters are zeroed when the DMA completes. If we can't start
1395  * the DMA immediately, we don't wait - we just prepare to read
1396  * them again next time.
1397  */
1398 static void
1399 fxp_tick(void *xsc)
1400 {
1401 	struct fxp_softc *sc = xsc;
1402 	struct ifnet *ifp = &sc->sc_if;
1403 	struct fxp_stats *sp = sc->fxp_stats;
1404 	struct fxp_cb_tx *txp;
1405 	int s;
1406 
1407 	ifp->if_opackets += sp->tx_good;
1408 	ifp->if_collisions += sp->tx_total_collisions;
1409 	if (sp->rx_good) {
1410 		ifp->if_ipackets += sp->rx_good;
1411 		sc->rx_idle_secs = 0;
1412 	} else {
1413 		/*
1414 		 * Receiver's been idle for another second.
1415 		 */
1416 		sc->rx_idle_secs++;
1417 	}
1418 	ifp->if_ierrors +=
1419 	    sp->rx_crc_errors +
1420 	    sp->rx_alignment_errors +
1421 	    sp->rx_rnr_errors +
1422 	    sp->rx_overrun_errors;
1423 	/*
1424 	 * If any transmit underruns occured, bump up the transmit
1425 	 * threshold by another 512 bytes (64 * 8).
1426 	 */
1427 	if (sp->tx_underruns) {
1428 		ifp->if_oerrors += sp->tx_underruns;
1429 		if (tx_threshold < 192)
1430 			tx_threshold += 64;
1431 	}
1432 	s = splimp();
1433 	/*
1434 	 * Release any xmit buffers that have completed DMA. This isn't
1435 	 * strictly necessary to do here, but it's advantagous for mbufs
1436 	 * with external storage to be released in a timely manner rather
1437 	 * than being defered for a potentially long time. This limits
1438 	 * the delay to a maximum of one second.
1439 	 */
1440 	for (txp = sc->cbl_first; sc->tx_queued &&
1441 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1442 	    txp = txp->next) {
1443 		if (txp->mb_head != NULL) {
1444 			m_freem(txp->mb_head);
1445 			txp->mb_head = NULL;
1446 		}
1447 		sc->tx_queued--;
1448 	}
1449 	sc->cbl_first = txp;
1450 	/*
1451 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1452 	 * then assume the receiver has locked up and attempt to clear
1453 	 * the condition by reprogramming the multicast filter. This is
1454 	 * a work-around for a bug in the 82557 where the receiver locks
1455 	 * up if it gets certain types of garbage in the syncronization
1456 	 * bits prior to the packet header. This bug is supposed to only
1457 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1458 	 * mode as well (perhaps due to a 10/100 speed transition).
1459 	 */
1460 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1461 		sc->rx_idle_secs = 0;
1462 		fxp_mc_setup(sc);
1463 	}
1464 	/*
1465 	 * If there is no pending command, start another stats
1466 	 * dump. Otherwise punt for now.
1467 	 */
1468 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1469 		/*
1470 		 * Start another stats dump.
1471 		 */
1472 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1473 	} else {
1474 		/*
1475 		 * A previous command is still waiting to be accepted.
1476 		 * Just zero our copy of the stats and wait for the
1477 		 * next timer event to update them.
1478 		 */
1479 		sp->tx_good = 0;
1480 		sp->tx_underruns = 0;
1481 		sp->tx_total_collisions = 0;
1482 
1483 		sp->rx_good = 0;
1484 		sp->rx_crc_errors = 0;
1485 		sp->rx_alignment_errors = 0;
1486 		sp->rx_rnr_errors = 0;
1487 		sp->rx_overrun_errors = 0;
1488 	}
1489 	if (sc->miibus != NULL)
1490 		mii_tick(device_get_softc(sc->miibus));
1491 	splx(s);
1492 	/*
1493 	 * Schedule another timeout one second from now.
1494 	 */
1495 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1496 }
1497 
1498 /*
1499  * Stop the interface. Cancels the statistics updater and resets
1500  * the interface.
1501  */
1502 static void
1503 fxp_stop(struct fxp_softc *sc)
1504 {
1505 	struct ifnet *ifp = &sc->sc_if;
1506 	struct fxp_cb_tx *txp;
1507 	int i;
1508 
1509 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1510 	ifp->if_timer = 0;
1511 
1512 #ifdef DEVICE_POLLING
1513 	ether_poll_deregister(ifp);
1514 #endif
1515 	/*
1516 	 * Cancel stats updater.
1517 	 */
1518 	untimeout(fxp_tick, sc, sc->stat_ch);
1519 
1520 	/*
1521 	 * Issue software reset, which also unloads the microcode.
1522 	 */
1523 	sc->flags &= ~FXP_FLAG_UCODE;
1524 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1525 	DELAY(50);
1526 
1527 	/*
1528 	 * Release any xmit buffers.
1529 	 */
1530 	txp = sc->cbl_base;
1531 	if (txp != NULL) {
1532 		for (i = 0; i < FXP_NTXCB; i++) {
1533 			if (txp[i].mb_head != NULL) {
1534 				m_freem(txp[i].mb_head);
1535 				txp[i].mb_head = NULL;
1536 			}
1537 		}
1538 	}
1539 	sc->tx_queued = 0;
1540 
1541 	/*
1542 	 * Free all the receive buffers then reallocate/reinitialize
1543 	 */
1544 	if (sc->rfa_headm != NULL)
1545 		m_freem(sc->rfa_headm);
1546 	sc->rfa_headm = NULL;
1547 	sc->rfa_tailm = NULL;
1548 	for (i = 0; i < FXP_NRFABUFS; i++) {
1549 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1550 			/*
1551 			 * This "can't happen" - we're at splimp()
1552 			 * and we just freed all the buffers we need
1553 			 * above.
1554 			 */
1555 			panic("fxp_stop: no buffers!");
1556 		}
1557 	}
1558 }
1559 
1560 /*
1561  * Watchdog/transmission transmit timeout handler. Called when a
1562  * transmission is started on the interface, but no interrupt is
1563  * received before the timeout. This usually indicates that the
1564  * card has wedged for some reason.
1565  */
1566 static void
1567 fxp_watchdog(struct ifnet *ifp)
1568 {
1569 	struct fxp_softc *sc = ifp->if_softc;
1570 
1571 	device_printf(sc->dev, "device timeout\n");
1572 	ifp->if_oerrors++;
1573 
1574 	fxp_init(sc);
1575 }
1576 
1577 static void
1578 fxp_init(void *xsc)
1579 {
1580 	struct fxp_softc *sc = xsc;
1581 	struct ifnet *ifp = &sc->sc_if;
1582 	struct fxp_cb_config *cbp;
1583 	struct fxp_cb_ias *cb_ias;
1584 	struct fxp_cb_tx *txp;
1585 	struct fxp_cb_mcs *mcsp;
1586 	int i, prm, s;
1587 
1588 	s = splimp();
1589 	/*
1590 	 * Cancel any pending I/O
1591 	 */
1592 	fxp_stop(sc);
1593 
1594 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1595 
1596 	/*
1597 	 * Initialize base of CBL and RFA memory. Loading with zero
1598 	 * sets it up for regular linear addressing.
1599 	 */
1600 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1601 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1602 
1603 	fxp_scb_wait(sc);
1604 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1605 
1606 	/*
1607 	 * Initialize base of dump-stats buffer.
1608 	 */
1609 	fxp_scb_wait(sc);
1610 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1611 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1612 
1613 	/*
1614 	 * Attempt to load microcode if requested.
1615 	 */
1616 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1617 		fxp_load_ucode(sc);
1618 
1619 	/*
1620 	 * Initialize the multicast address list.
1621 	 */
1622 	if (fxp_mc_addrs(sc)) {
1623 		mcsp = sc->mcsp;
1624 		mcsp->cb_status = 0;
1625 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1626 		mcsp->link_addr = -1;
1627 		/*
1628 	 	 * Start the multicast setup command.
1629 		 */
1630 		fxp_scb_wait(sc);
1631 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1632 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1633 		/* ...and wait for it to complete. */
1634 		fxp_dma_wait(&mcsp->cb_status, sc);
1635 	}
1636 
1637 	/*
1638 	 * We temporarily use memory that contains the TxCB list to
1639 	 * construct the config CB. The TxCB list memory is rebuilt
1640 	 * later.
1641 	 */
1642 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1643 
1644 	/*
1645 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1646 	 * zero and must be one bits in this structure and this is the easiest
1647 	 * way to initialize them all to proper values.
1648 	 */
1649 	bcopy(fxp_cb_config_template,
1650 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1651 		sizeof(fxp_cb_config_template));
1652 
1653 	cbp->cb_status =	0;
1654 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1655 	cbp->link_addr =	-1;	/* (no) next command */
1656 	cbp->byte_count =	22;	/* (22) bytes to config */
1657 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1658 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1659 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1660 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1661 	cbp->type_enable =	0;	/* actually reserved */
1662 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1663 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1664 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1665 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1666 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1667 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1668 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1669 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1670 	cbp->ci_int =		1;	/* interrupt on CU idle */
1671 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1672 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1673 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1674 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1675 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1676 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1677 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1678 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1679 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1680 	cbp->csma_dis =		0;	/* (don't) disable link */
1681 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1682 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1683 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1684 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1685 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1686 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1687 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1688 	cbp->loopback =		0;	/* (don't) loopback */
1689 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1690 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1691 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1692 	cbp->promiscuous =	prm;	/* promiscuous mode */
1693 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1694 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1695 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1696 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1697 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1698 
1699 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1700 	cbp->padding =		1;	/* (do) pad short tx packets */
1701 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1702 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1703 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1704 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1705 					/* must set wake_en in PMCSR also */
1706 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1707 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1708 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1709 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1710 
1711 	if (sc->revision == FXP_REV_82557) {
1712 		/*
1713 		 * The 82557 has no hardware flow control, the values
1714 		 * below are the defaults for the chip.
1715 		 */
1716 		cbp->fc_delay_lsb =	0;
1717 		cbp->fc_delay_msb =	0x40;
1718 		cbp->pri_fc_thresh =	3;
1719 		cbp->tx_fc_dis =	0;
1720 		cbp->rx_fc_restop =	0;
1721 		cbp->rx_fc_restart =	0;
1722 		cbp->fc_filter =	0;
1723 		cbp->pri_fc_loc =	1;
1724 	} else {
1725 		cbp->fc_delay_lsb =	0x1f;
1726 		cbp->fc_delay_msb =	0x01;
1727 		cbp->pri_fc_thresh =	3;
1728 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1729 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1730 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1731 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1732 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1733 	}
1734 
1735 	/*
1736 	 * Start the config command/DMA.
1737 	 */
1738 	fxp_scb_wait(sc);
1739 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1740 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1741 	/* ...and wait for it to complete. */
1742 	fxp_dma_wait(&cbp->cb_status, sc);
1743 
1744 	/*
1745 	 * Now initialize the station address. Temporarily use the TxCB
1746 	 * memory area like we did above for the config CB.
1747 	 */
1748 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1749 	cb_ias->cb_status = 0;
1750 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1751 	cb_ias->link_addr = -1;
1752 	bcopy(sc->arpcom.ac_enaddr,
1753 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1754 	    sizeof(sc->arpcom.ac_enaddr));
1755 
1756 	/*
1757 	 * Start the IAS (Individual Address Setup) command/DMA.
1758 	 */
1759 	fxp_scb_wait(sc);
1760 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1761 	/* ...and wait for it to complete. */
1762 	fxp_dma_wait(&cb_ias->cb_status, sc);
1763 
1764 	/*
1765 	 * Initialize transmit control block (TxCB) list.
1766 	 */
1767 
1768 	txp = sc->cbl_base;
1769 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1770 	for (i = 0; i < FXP_NTXCB; i++) {
1771 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1772 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1773 		txp[i].link_addr =
1774 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1775 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1776 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1777 		else
1778 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1779 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1780 	}
1781 	/*
1782 	 * Set the suspend flag on the first TxCB and start the control
1783 	 * unit. It will execute the NOP and then suspend.
1784 	 */
1785 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1786 	sc->cbl_first = sc->cbl_last = txp;
1787 	sc->tx_queued = 1;
1788 
1789 	fxp_scb_wait(sc);
1790 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1791 
1792 	/*
1793 	 * Initialize receiver buffer area - RFA.
1794 	 */
1795 	fxp_scb_wait(sc);
1796 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1797 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1798 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1799 
1800 	/*
1801 	 * Set current media.
1802 	 */
1803 	if (sc->miibus != NULL)
1804 		mii_mediachg(device_get_softc(sc->miibus));
1805 
1806 	ifp->if_flags |= IFF_RUNNING;
1807 	ifp->if_flags &= ~IFF_OACTIVE;
1808 
1809 	/*
1810 	 * Enable interrupts.
1811 	 */
1812 #ifdef DEVICE_POLLING
1813 	/*
1814 	 * ... but only do that if we are not polling. And because (presumably)
1815 	 * the default is interrupts on, we need to disable them explicitly!
1816 	 */
1817 	if ( ifp->if_ipending & IFF_POLLING )
1818 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1819 	else
1820 #endif /* DEVICE_POLLING */
1821 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1822 	splx(s);
1823 
1824 	/*
1825 	 * Start stats updater.
1826 	 */
1827 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1828 }
1829 
1830 static int
1831 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1832 {
1833 
1834 	return (0);
1835 }
1836 
1837 static void
1838 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1839 {
1840 
1841 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1842 }
1843 
1844 /*
1845  * Change media according to request.
1846  */
1847 static int
1848 fxp_ifmedia_upd(struct ifnet *ifp)
1849 {
1850 	struct fxp_softc *sc = ifp->if_softc;
1851 	struct mii_data *mii;
1852 
1853 	mii = device_get_softc(sc->miibus);
1854 	mii_mediachg(mii);
1855 	return (0);
1856 }
1857 
1858 /*
1859  * Notify the world which media we're using.
1860  */
1861 static void
1862 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1863 {
1864 	struct fxp_softc *sc = ifp->if_softc;
1865 	struct mii_data *mii;
1866 
1867 	mii = device_get_softc(sc->miibus);
1868 	mii_pollstat(mii);
1869 	ifmr->ifm_active = mii->mii_media_active;
1870 	ifmr->ifm_status = mii->mii_media_status;
1871 
1872 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1873 		sc->cu_resume_bug = 1;
1874 	else
1875 		sc->cu_resume_bug = 0;
1876 }
1877 
1878 /*
1879  * Add a buffer to the end of the RFA buffer list.
1880  * Return 0 if successful, 1 for failure. A failure results in
1881  * adding the 'oldm' (if non-NULL) on to the end of the list -
1882  * tossing out its old contents and recycling it.
1883  * The RFA struct is stuck at the beginning of mbuf cluster and the
1884  * data pointer is fixed up to point just past it.
1885  */
1886 static int
1887 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1888 {
1889 	u_int32_t v;
1890 	struct mbuf *m;
1891 	struct fxp_rfa *rfa, *p_rfa;
1892 
1893 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1894 	if (m == NULL) { /* try to recycle the old mbuf instead */
1895 		if (oldm == NULL)
1896 			return 1;
1897 		m = oldm;
1898 		m->m_data = m->m_ext.ext_buf;
1899 	}
1900 
1901 	/*
1902 	 * Move the data pointer up so that the incoming data packet
1903 	 * will be 32-bit aligned.
1904 	 */
1905 	m->m_data += RFA_ALIGNMENT_FUDGE;
1906 
1907 	/*
1908 	 * Get a pointer to the base of the mbuf cluster and move
1909 	 * data start past it.
1910 	 */
1911 	rfa = mtod(m, struct fxp_rfa *);
1912 	m->m_data += sizeof(struct fxp_rfa);
1913 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1914 
1915 	/*
1916 	 * Initialize the rest of the RFA.  Note that since the RFA
1917 	 * is misaligned, we cannot store values directly.  Instead,
1918 	 * we use an optimized, inline copy.
1919 	 */
1920 
1921 	rfa->rfa_status = 0;
1922 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1923 	rfa->actual_size = 0;
1924 
1925 	v = -1;
1926 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1927 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1928 
1929 	/*
1930 	 * If there are other buffers already on the list, attach this
1931 	 * one to the end by fixing up the tail to point to this one.
1932 	 */
1933 	if (sc->rfa_headm != NULL) {
1934 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1935 		    RFA_ALIGNMENT_FUDGE);
1936 		sc->rfa_tailm->m_next = m;
1937 		v = vtophys(rfa);
1938 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1939 		p_rfa->rfa_control = 0;
1940 	} else {
1941 		sc->rfa_headm = m;
1942 	}
1943 	sc->rfa_tailm = m;
1944 
1945 	return (m == oldm);
1946 }
1947 
1948 static volatile int
1949 fxp_miibus_readreg(device_t dev, int phy, int reg)
1950 {
1951 	struct fxp_softc *sc = device_get_softc(dev);
1952 	int count = 10000;
1953 	int value;
1954 
1955 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1956 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1957 
1958 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1959 	    && count--)
1960 		DELAY(10);
1961 
1962 	if (count <= 0)
1963 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1964 
1965 	return (value & 0xffff);
1966 }
1967 
1968 static void
1969 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1970 {
1971 	struct fxp_softc *sc = device_get_softc(dev);
1972 	int count = 10000;
1973 
1974 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1975 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1976 	    (value & 0xffff));
1977 
1978 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1979 	    count--)
1980 		DELAY(10);
1981 
1982 	if (count <= 0)
1983 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1984 }
1985 
1986 static int
1987 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1988 {
1989 	struct fxp_softc *sc = ifp->if_softc;
1990 	struct ifreq *ifr = (struct ifreq *)data;
1991 	struct mii_data *mii;
1992 	int s, error = 0;
1993 
1994 	s = splimp();
1995 
1996 	switch (command) {
1997 	case SIOCSIFADDR:
1998 	case SIOCGIFADDR:
1999 	case SIOCSIFMTU:
2000 		error = ether_ioctl(ifp, command, data);
2001 		break;
2002 
2003 	case SIOCSIFFLAGS:
2004 		if (ifp->if_flags & IFF_ALLMULTI)
2005 			sc->flags |= FXP_FLAG_ALL_MCAST;
2006 		else
2007 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2008 
2009 		/*
2010 		 * If interface is marked up and not running, then start it.
2011 		 * If it is marked down and running, stop it.
2012 		 * XXX If it's up then re-initialize it. This is so flags
2013 		 * such as IFF_PROMISC are handled.
2014 		 */
2015 		if (ifp->if_flags & IFF_UP) {
2016 			fxp_init(sc);
2017 		} else {
2018 			if (ifp->if_flags & IFF_RUNNING)
2019 				fxp_stop(sc);
2020 		}
2021 		break;
2022 
2023 	case SIOCADDMULTI:
2024 	case SIOCDELMULTI:
2025 		if (ifp->if_flags & IFF_ALLMULTI)
2026 			sc->flags |= FXP_FLAG_ALL_MCAST;
2027 		else
2028 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2029 		/*
2030 		 * Multicast list has changed; set the hardware filter
2031 		 * accordingly.
2032 		 */
2033 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2034 			fxp_mc_setup(sc);
2035 		/*
2036 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2037 		 * again rather than else {}.
2038 		 */
2039 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2040 			fxp_init(sc);
2041 		error = 0;
2042 		break;
2043 
2044 	case SIOCSIFMEDIA:
2045 	case SIOCGIFMEDIA:
2046 		if (sc->miibus != NULL) {
2047 			mii = device_get_softc(sc->miibus);
2048                         error = ifmedia_ioctl(ifp, ifr,
2049                             &mii->mii_media, command);
2050 		} else {
2051                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2052 		}
2053 		break;
2054 
2055 	default:
2056 		error = EINVAL;
2057 	}
2058 	splx(s);
2059 	return (error);
2060 }
2061 
2062 /*
2063  * Fill in the multicast address list and return number of entries.
2064  */
2065 static int
2066 fxp_mc_addrs(struct fxp_softc *sc)
2067 {
2068 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2069 	struct ifnet *ifp = &sc->sc_if;
2070 	struct ifmultiaddr *ifma;
2071 	int nmcasts;
2072 
2073 	nmcasts = 0;
2074 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2075 #if __FreeBSD_version < 500000
2076 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2077 #else
2078 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2079 #endif
2080 			if (ifma->ifma_addr->sa_family != AF_LINK)
2081 				continue;
2082 			if (nmcasts >= MAXMCADDR) {
2083 				sc->flags |= FXP_FLAG_ALL_MCAST;
2084 				nmcasts = 0;
2085 				break;
2086 			}
2087 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2088 			    (void *)(uintptr_t)(volatile void *)
2089 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2090 			nmcasts++;
2091 		}
2092 	}
2093 	mcsp->mc_cnt = nmcasts * 6;
2094 	return (nmcasts);
2095 }
2096 
2097 /*
2098  * Program the multicast filter.
2099  *
2100  * We have an artificial restriction that the multicast setup command
2101  * must be the first command in the chain, so we take steps to ensure
2102  * this. By requiring this, it allows us to keep up the performance of
2103  * the pre-initialized command ring (esp. link pointers) by not actually
2104  * inserting the mcsetup command in the ring - i.e. its link pointer
2105  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2106  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2107  * lead into the regular TxCB ring when it completes.
2108  *
2109  * This function must be called at splimp.
2110  */
2111 static void
2112 fxp_mc_setup(struct fxp_softc *sc)
2113 {
2114 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2115 	struct ifnet *ifp = &sc->sc_if;
2116 	int count;
2117 
2118 	/*
2119 	 * If there are queued commands, we must wait until they are all
2120 	 * completed. If we are already waiting, then add a NOP command
2121 	 * with interrupt option so that we're notified when all commands
2122 	 * have been completed - fxp_start() ensures that no additional
2123 	 * TX commands will be added when need_mcsetup is true.
2124 	 */
2125 	if (sc->tx_queued) {
2126 		struct fxp_cb_tx *txp;
2127 
2128 		/*
2129 		 * need_mcsetup will be true if we are already waiting for the
2130 		 * NOP command to be completed (see below). In this case, bail.
2131 		 */
2132 		if (sc->need_mcsetup)
2133 			return;
2134 		sc->need_mcsetup = 1;
2135 
2136 		/*
2137 		 * Add a NOP command with interrupt so that we are notified
2138 		 * when all TX commands have been processed.
2139 		 */
2140 		txp = sc->cbl_last->next;
2141 		txp->mb_head = NULL;
2142 		txp->cb_status = 0;
2143 		txp->cb_command = FXP_CB_COMMAND_NOP |
2144 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2145 		/*
2146 		 * Advance the end of list forward.
2147 		 */
2148 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2149 		sc->cbl_last = txp;
2150 		sc->tx_queued++;
2151 		/*
2152 		 * Issue a resume in case the CU has just suspended.
2153 		 */
2154 		fxp_scb_wait(sc);
2155 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2156 		/*
2157 		 * Set a 5 second timer just in case we don't hear from the
2158 		 * card again.
2159 		 */
2160 		ifp->if_timer = 5;
2161 
2162 		return;
2163 	}
2164 	sc->need_mcsetup = 0;
2165 
2166 	/*
2167 	 * Initialize multicast setup descriptor.
2168 	 */
2169 	mcsp->next = sc->cbl_base;
2170 	mcsp->mb_head = NULL;
2171 	mcsp->cb_status = 0;
2172 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2173 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2174 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2175 	(void) fxp_mc_addrs(sc);
2176 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2177 	sc->tx_queued = 1;
2178 
2179 	/*
2180 	 * Wait until command unit is not active. This should never
2181 	 * be the case when nothing is queued, but make sure anyway.
2182 	 */
2183 	count = 100;
2184 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2185 	    FXP_SCB_CUS_ACTIVE && --count)
2186 		DELAY(10);
2187 	if (count == 0) {
2188 		device_printf(sc->dev, "command queue timeout\n");
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * Start the multicast setup command.
2194 	 */
2195 	fxp_scb_wait(sc);
2196 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2197 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2198 
2199 	ifp->if_timer = 2;
2200 	return;
2201 }
2202 
2203 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2204 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2205 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2206 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2207 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2208 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2209 
2210 #define UCODE(x)	x, sizeof(x)
2211 
2212 struct ucode {
2213 	u_int32_t	revision;
2214 	u_int32_t	*ucode;
2215 	int		length;
2216 	u_short		int_delay_offset;
2217 	u_short		bundle_max_offset;
2218 } ucode_table[] = {
2219 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2220 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2221 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2222 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2223 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2224 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2225 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2226 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2227 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2228 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2229 	{ 0, NULL, 0, 0, 0 }
2230 };
2231 
2232 static void
2233 fxp_load_ucode(struct fxp_softc *sc)
2234 {
2235 	struct ucode *uc;
2236 	struct fxp_cb_ucode *cbp;
2237 
2238 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2239 		if (sc->revision == uc->revision)
2240 			break;
2241 	if (uc->ucode == NULL)
2242 		return;
2243 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2244 	cbp->cb_status = 0;
2245 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2246 	cbp->link_addr = -1;    	/* (no) next command */
2247 	memcpy(cbp->ucode, uc->ucode, uc->length);
2248 	if (uc->int_delay_offset)
2249 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2250 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2251 	if (uc->bundle_max_offset)
2252 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2253 		    sc->tunable_bundle_max;
2254 	/*
2255 	 * Download the ucode to the chip.
2256 	 */
2257 	fxp_scb_wait(sc);
2258 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2259 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2260 	/* ...and wait for it to complete. */
2261 	fxp_dma_wait(&cbp->cb_status, sc);
2262 	device_printf(sc->dev,
2263 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2264 	    sc->tunable_int_delay,
2265 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2266 	sc->flags |= FXP_FLAG_UCODE;
2267 }
2268 
2269 static int
2270 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2271 {
2272 	int error, value;
2273 
2274 	value = *(int *)arg1;
2275 	error = sysctl_handle_int(oidp, &value, 0, req);
2276 	if (error || !req->newptr)
2277 		return (error);
2278 	if (value < low || value > high)
2279 		return (EINVAL);
2280 	*(int *)arg1 = value;
2281 	return (0);
2282 }
2283 
2284 /*
2285  * Interrupt delay is expressed in microseconds, a multiplier is used
2286  * to convert this to the appropriate clock ticks before using.
2287  */
2288 static int
2289 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2290 {
2291 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2292 }
2293 
2294 static int
2295 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2296 {
2297 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2298 }
2299