xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 509221ae)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.35 2005/06/15 11:15:37 joerg Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 #include <sys/thread2.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #ifdef NS
51 #include <netns/ns.h>
52 #include <netns/ns_if.h>
53 #endif
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169 	 { 0x1064,  -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
170      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
171      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
172      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
173      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
174      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
175      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
176      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
177      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
178      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
179      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
180      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
181      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
182      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
183      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
184      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
185      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
186      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
187      { 0,	-1,	NULL },
188 };
189 
190 static int		fxp_probe(device_t dev);
191 static int		fxp_attach(device_t dev);
192 static int		fxp_detach(device_t dev);
193 static int		fxp_shutdown(device_t dev);
194 static int		fxp_suspend(device_t dev);
195 static int		fxp_resume(device_t dev);
196 
197 static void		fxp_intr(void *xsc);
198 static void		fxp_intr_body(struct fxp_softc *sc,
199 				u_int8_t statack, int count);
200 
201 static void 		fxp_init(void *xsc);
202 static void 		fxp_tick(void *xsc);
203 static void		fxp_powerstate_d0(device_t dev);
204 static void 		fxp_start(struct ifnet *ifp);
205 static void		fxp_stop(struct fxp_softc *sc);
206 static void 		fxp_release(device_t dev);
207 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
208 			    caddr_t data, struct ucred *);
209 static void 		fxp_watchdog(struct ifnet *ifp);
210 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
211 static int		fxp_mc_addrs(struct fxp_softc *sc);
212 static void		fxp_mc_setup(struct fxp_softc *sc);
213 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
214 			    int autosize);
215 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
216 			    u_int16_t data);
217 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
218 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
219 			    int offset, int words);
220 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
221 			    int offset, int words);
222 static int		fxp_ifmedia_upd(struct ifnet *ifp);
223 static void		fxp_ifmedia_sts(struct ifnet *ifp,
224 			    struct ifmediareq *ifmr);
225 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
226 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
227 			    struct ifmediareq *ifmr);
228 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
229 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
230 			    int value);
231 static void		fxp_load_ucode(struct fxp_softc *sc);
232 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
233 			    int low, int high);
234 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
235 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
236 #ifdef DEVICE_POLLING
237 static poll_handler_t fxp_poll;
238 #endif
239 
240 static void		fxp_lwcopy(volatile u_int32_t *src,
241 			    volatile u_int32_t *dst);
242 static void 		fxp_scb_wait(struct fxp_softc *sc);
243 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
244 static void		fxp_dma_wait(volatile u_int16_t *status,
245 			    struct fxp_softc *sc);
246 
247 static device_method_t fxp_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		fxp_probe),
250 	DEVMETHOD(device_attach,	fxp_attach),
251 	DEVMETHOD(device_detach,	fxp_detach),
252 	DEVMETHOD(device_shutdown,	fxp_shutdown),
253 	DEVMETHOD(device_suspend,	fxp_suspend),
254 	DEVMETHOD(device_resume,	fxp_resume),
255 
256 	/* MII interface */
257 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
258 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t fxp_driver = {
264 	"fxp",
265 	fxp_methods,
266 	sizeof(struct fxp_softc),
267 };
268 
269 static devclass_t fxp_devclass;
270 
271 DECLARE_DUMMY_MODULE(if_fxp);
272 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
273 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
274 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
275 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
276 
277 static int fxp_rnr;
278 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
279 
280 /*
281  * Copy a 16-bit aligned 32-bit quantity.
282  */
283 static void
284 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
285 {
286 #ifdef __i386__
287 	*dst = *src;
288 #else
289 	volatile u_int16_t *a = (volatile u_int16_t *)src;
290 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
291 
292 	b[0] = a[0];
293 	b[1] = a[1];
294 #endif
295 }
296 
297 /*
298  * Wait for the previous command to be accepted (but not necessarily
299  * completed).
300  */
301 static void
302 fxp_scb_wait(struct fxp_softc *sc)
303 {
304 	int i = 10000;
305 
306 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
307 		DELAY(2);
308 	if (i == 0) {
309 		if_printf(&sc->arpcom.ac_if,
310 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
311 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
312 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
313 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
314 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
315 	}
316 }
317 
318 static void
319 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
320 {
321 
322 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
323 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
324 		fxp_scb_wait(sc);
325 	}
326 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
327 }
328 
329 static void
330 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
331 {
332 	int i = 10000;
333 
334 	while (!(*status & FXP_CB_STATUS_C) && --i)
335 		DELAY(2);
336 	if (i == 0)
337 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
338 }
339 
340 /*
341  * Return identification string if this is device is ours.
342  */
343 static int
344 fxp_probe(device_t dev)
345 {
346 	u_int16_t devid;
347 	u_int8_t revid;
348 	struct fxp_ident *ident;
349 
350 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
351 		devid = pci_get_device(dev);
352 		revid = pci_get_revid(dev);
353 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
354 			if (ident->devid == devid &&
355 			    (ident->revid == revid || ident->revid == -1)) {
356 				device_set_desc(dev, ident->name);
357 				return (0);
358 			}
359 		}
360 	}
361 	return (ENXIO);
362 }
363 
364 static void
365 fxp_powerstate_d0(device_t dev)
366 {
367 	u_int32_t iobase, membase, irq;
368 
369 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
370 		/* Save important PCI config data. */
371 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
372 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
373 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
374 
375 		/* Reset the power state. */
376 		device_printf(dev, "chip is in D%d power mode "
377 		    "-- setting to D0\n", pci_get_powerstate(dev));
378 
379 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
380 
381 		/* Restore PCI config data. */
382 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
383 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
384 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
385 	}
386 }
387 
388 static int
389 fxp_attach(device_t dev)
390 {
391 	int error = 0;
392 	struct fxp_softc *sc = device_get_softc(dev);
393 	struct ifnet *ifp;
394 	u_int32_t val;
395 	u_int16_t data;
396 	int i, rid, m1, m2, prefer_iomap;
397 
398 	callout_init(&sc->fxp_stat_timer);
399 	sysctl_ctx_init(&sc->sysctl_ctx);
400 
401 	/*
402 	 * Enable bus mastering. Enable memory space too, in case
403 	 * BIOS/Prom forgot about it.
404 	 */
405 	pci_enable_busmaster(dev);
406 	pci_enable_io(dev, SYS_RES_MEMORY);
407 	val = pci_read_config(dev, PCIR_COMMAND, 2);
408 
409 	fxp_powerstate_d0(dev);
410 
411 	/*
412 	 * Figure out which we should try first - memory mapping or i/o mapping?
413 	 * We default to memory mapping. Then we accept an override from the
414 	 * command line. Then we check to see which one is enabled.
415 	 */
416 	m1 = PCIM_CMD_MEMEN;
417 	m2 = PCIM_CMD_PORTEN;
418 	prefer_iomap = 0;
419 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
420 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
421 		m1 = PCIM_CMD_PORTEN;
422 		m2 = PCIM_CMD_MEMEN;
423 	}
424 
425 	if (val & m1) {
426 		sc->rtp =
427 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
428 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
429 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
430 		    RF_ACTIVE);
431 	}
432 	if (sc->mem == NULL && (val & m2)) {
433 		sc->rtp =
434 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
436 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
437             	    RF_ACTIVE);
438 	}
439 
440 	if (!sc->mem) {
441 		device_printf(dev, "could not map device registers\n");
442 		error = ENXIO;
443 		goto fail;
444         }
445 	if (bootverbose) {
446 		device_printf(dev, "using %s space register mapping\n",
447 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
448 	}
449 
450 	sc->sc_st = rman_get_bustag(sc->mem);
451 	sc->sc_sh = rman_get_bushandle(sc->mem);
452 
453 	/*
454 	 * Allocate our interrupt.
455 	 */
456 	rid = 0;
457 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
458 	    RF_SHAREABLE | RF_ACTIVE);
459 	if (sc->irq == NULL) {
460 		device_printf(dev, "could not map interrupt\n");
461 		error = ENXIO;
462 		goto fail;
463 	}
464 
465 	/*
466 	 * Reset to a stable state.
467 	 */
468 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
469 	DELAY(10);
470 
471 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
472 	    M_DEVBUF, M_WAITOK | M_ZERO);
473 
474 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
475 	    M_WAITOK | M_ZERO);
476 
477 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
478 
479 	/*
480 	 * Pre-allocate our receive buffers.
481 	 */
482 	for (i = 0; i < FXP_NRFABUFS; i++) {
483 		if (fxp_add_rfabuf(sc, NULL) != 0) {
484 			goto failmem;
485 		}
486 	}
487 
488 	/*
489 	 * Find out how large of an SEEPROM we have.
490 	 */
491 	fxp_autosize_eeprom(sc);
492 
493 	/*
494 	 * Determine whether we must use the 503 serial interface.
495 	 */
496 	fxp_read_eeprom(sc, &data, 6, 1);
497 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
498 	    (data & FXP_PHY_SERIAL_ONLY))
499 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
500 
501 	/*
502 	 * Create the sysctl tree
503 	 */
504 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
505 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
506 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
507 	if (sc->sysctl_tree == NULL)
508 		goto fail;
509 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
510 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
511 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
512 	    "FXP driver receive interrupt microcode bundling delay");
513 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
514 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
515 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
516 	    "FXP driver receive interrupt microcode bundle size limit");
517 
518 	/*
519 	 * Pull in device tunables.
520 	 */
521 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
522 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
523 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
524 	    "int_delay", &sc->tunable_int_delay);
525 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
526 	    "bundle_max", &sc->tunable_bundle_max);
527 
528 	/*
529 	 * Find out the chip revision; lump all 82557 revs together.
530 	 */
531 	fxp_read_eeprom(sc, &data, 5, 1);
532 	if ((data >> 8) == 1)
533 		sc->revision = FXP_REV_82557;
534 	else
535 		sc->revision = pci_get_revid(dev);
536 
537 	/*
538 	 * Enable workarounds for certain chip revision deficiencies.
539 	 *
540 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
541 	 * some systems based a normal 82559 design, have a defect where
542 	 * the chip can cause a PCI protocol violation if it receives
543 	 * a CU_RESUME command when it is entering the IDLE state.  The
544 	 * workaround is to disable Dynamic Standby Mode, so the chip never
545 	 * deasserts CLKRUN#, and always remains in an active state.
546 	 *
547 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
548 	 */
549 	i = pci_get_device(dev);
550 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
551 	    sc->revision >= FXP_REV_82559_A0) {
552 		fxp_read_eeprom(sc, &data, 10, 1);
553 		if (data & 0x02) {			/* STB enable */
554 			u_int16_t cksum;
555 			int i;
556 
557 			device_printf(dev,
558 			    "Disabling dynamic standby mode in EEPROM\n");
559 			data &= ~0x02;
560 			fxp_write_eeprom(sc, &data, 10, 1);
561 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
562 			cksum = 0;
563 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
564 				fxp_read_eeprom(sc, &data, i, 1);
565 				cksum += data;
566 			}
567 			i = (1 << sc->eeprom_size) - 1;
568 			cksum = 0xBABA - cksum;
569 			fxp_read_eeprom(sc, &data, i, 1);
570 			fxp_write_eeprom(sc, &cksum, i, 1);
571 			device_printf(dev,
572 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
573 			    i, data, cksum);
574 #if 1
575 			/*
576 			 * If the user elects to continue, try the software
577 			 * workaround, as it is better than nothing.
578 			 */
579 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
580 #endif
581 		}
582 	}
583 
584 	/*
585 	 * If we are not a 82557 chip, we can enable extended features.
586 	 */
587 	if (sc->revision != FXP_REV_82557) {
588 		/*
589 		 * If MWI is enabled in the PCI configuration, and there
590 		 * is a valid cacheline size (8 or 16 dwords), then tell
591 		 * the board to turn on MWI.
592 		 */
593 		if (val & PCIM_CMD_MWRICEN &&
594 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
595 			sc->flags |= FXP_FLAG_MWI_ENABLE;
596 
597 		/* turn on the extended TxCB feature */
598 		sc->flags |= FXP_FLAG_EXT_TXCB;
599 
600 		/* enable reception of long frames for VLAN */
601 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
602 	}
603 
604 	/*
605 	 * Read MAC address.
606 	 */
607 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
608 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
609 		device_printf(dev, "10Mbps\n");
610 	if (bootverbose) {
611 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
612 		    pci_get_vendor(dev), pci_get_device(dev),
613 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
614 		    pci_get_revid(dev));
615 		fxp_read_eeprom(sc, &data, 10, 1);
616 		device_printf(dev, "Dynamic Standby mode is %s\n",
617 		    data & 0x02 ? "enabled" : "disabled");
618 	}
619 
620 	/*
621 	 * If this is only a 10Mbps device, then there is no MII, and
622 	 * the PHY will use a serial interface instead.
623 	 *
624 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
625 	 * doesn't have a programming interface of any sort.  The
626 	 * media is sensed automatically based on how the link partner
627 	 * is configured.  This is, in essence, manual configuration.
628 	 */
629 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
630 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
631 		    fxp_serial_ifmedia_sts);
632 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
633 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
634 	} else {
635 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
636 		    fxp_ifmedia_sts)) {
637 	                device_printf(dev, "MII without any PHY!\n");
638 			error = ENXIO;
639 			goto fail;
640 		}
641 	}
642 
643 	ifp = &sc->arpcom.ac_if;
644 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
645 	ifp->if_baudrate = 100000000;
646 	ifp->if_init = fxp_init;
647 	ifp->if_softc = sc;
648 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
649 	ifp->if_ioctl = fxp_ioctl;
650 	ifp->if_start = fxp_start;
651 #ifdef DEVICE_POLLING
652 	ifp->if_poll = fxp_poll;
653 #endif
654 	ifp->if_watchdog = fxp_watchdog;
655 
656 	/*
657 	 * Attach the interface.
658 	 */
659 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
660 
661 	/*
662 	 * Tell the upper layer(s) we support long frames.
663 	 */
664 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
665 
666 	/*
667 	 * Let the system queue as many packets as we have available
668 	 * TX descriptors.
669 	 */
670 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
671 	ifq_set_ready(&ifp->if_snd);
672 
673 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
674 			       fxp_intr, sc, &sc->ih, NULL);
675 	if (error) {
676 		ether_ifdetach(ifp);
677 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
678 			ifmedia_removeall(&sc->sc_media);
679 		device_printf(dev, "could not setup irq\n");
680 		goto fail;
681 	}
682 
683 	return (0);
684 
685 failmem:
686 	device_printf(dev, "Failed to malloc memory\n");
687 	error = ENOMEM;
688 fail:
689 	fxp_release(dev);
690 	return (error);
691 }
692 
693 /*
694  * release all resources
695  */
696 static void
697 fxp_release(device_t dev)
698 {
699 	struct fxp_softc *sc = device_get_softc(dev);
700 
701 	if (sc->miibus)
702 		device_delete_child(dev, sc->miibus);
703 	bus_generic_detach(dev);
704 
705 	if (sc->cbl_base)
706 		free(sc->cbl_base, M_DEVBUF);
707 	if (sc->fxp_stats)
708 		free(sc->fxp_stats, M_DEVBUF);
709 	if (sc->mcsp)
710 		free(sc->mcsp, M_DEVBUF);
711 	if (sc->rfa_headm)
712 		m_freem(sc->rfa_headm);
713 
714 	if (sc->irq)
715 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
716 	if (sc->mem)
717 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
718 
719         sysctl_ctx_free(&sc->sysctl_ctx);
720 }
721 
722 /*
723  * Detach interface.
724  */
725 static int
726 fxp_detach(device_t dev)
727 {
728 	struct fxp_softc *sc = device_get_softc(dev);
729 
730 	/* disable interrupts */
731 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
732 
733 	crit_enter();
734 
735 	/*
736 	 * Stop DMA and drop transmit queue.
737 	 */
738 	fxp_stop(sc);
739 
740 	/*
741 	 * Close down routes etc.
742 	 */
743 	ether_ifdetach(&sc->arpcom.ac_if);
744 
745 	/*
746 	 * Free all media structures.
747 	 */
748 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
749 		ifmedia_removeall(&sc->sc_media);
750 
751 	if (sc->ih)
752 		bus_teardown_intr(dev, sc->irq, sc->ih);
753 
754 	crit_exit();
755 
756 	/* Release our allocated resources. */
757 	fxp_release(dev);
758 
759 	return (0);
760 }
761 
762 /*
763  * Device shutdown routine. Called at system shutdown after sync. The
764  * main purpose of this routine is to shut off receiver DMA so that
765  * kernel memory doesn't get clobbered during warmboot.
766  */
767 static int
768 fxp_shutdown(device_t dev)
769 {
770 	/*
771 	 * Make sure that DMA is disabled prior to reboot. Not doing
772 	 * do could allow DMA to corrupt kernel memory during the
773 	 * reboot before the driver initializes.
774 	 */
775 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
776 	return (0);
777 }
778 
779 /*
780  * Device suspend routine.  Stop the interface and save some PCI
781  * settings in case the BIOS doesn't restore them properly on
782  * resume.
783  */
784 static int
785 fxp_suspend(device_t dev)
786 {
787 	struct fxp_softc *sc = device_get_softc(dev);
788 	int i;
789 
790 	crit_enter();
791 
792 	fxp_stop(sc);
793 
794 	for (i = 0; i < 5; i++)
795 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
796 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
797 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
798 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
799 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
800 
801 	sc->suspended = 1;
802 
803 	crit_exit();
804 	return (0);
805 }
806 
807 /*
808  * Device resume routine.  Restore some PCI settings in case the BIOS
809  * doesn't, re-enable busmastering, and restart the interface if
810  * appropriate.
811  */
812 static int
813 fxp_resume(device_t dev)
814 {
815 	struct fxp_softc *sc = device_get_softc(dev);
816 	struct ifnet *ifp = &sc->arpcom.ac_if;
817 	int i;
818 
819 	crit_enter();
820 
821 	fxp_powerstate_d0(dev);
822 
823 	/* better way to do this? */
824 	for (i = 0; i < 5; i++)
825 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
826 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
827 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
828 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
829 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
830 
831 	/* reenable busmastering and memory space */
832 	pci_enable_busmaster(dev);
833 	pci_enable_io(dev, SYS_RES_MEMORY);
834 
835 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
836 	DELAY(10);
837 
838 	/* reinitialize interface if necessary */
839 	if (ifp->if_flags & IFF_UP)
840 		fxp_init(sc);
841 
842 	sc->suspended = 0;
843 
844 	crit_exit();
845 	return (0);
846 }
847 
848 static void
849 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
850 {
851 	u_int16_t reg;
852 	int x;
853 
854 	/*
855 	 * Shift in data.
856 	 */
857 	for (x = 1 << (length - 1); x; x >>= 1) {
858 		if (data & x)
859 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
860 		else
861 			reg = FXP_EEPROM_EECS;
862 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
863 		DELAY(1);
864 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
865 		DELAY(1);
866 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
867 		DELAY(1);
868 	}
869 }
870 
871 /*
872  * Read from the serial EEPROM. Basically, you manually shift in
873  * the read opcode (one bit at a time) and then shift in the address,
874  * and then you shift out the data (all of this one bit at a time).
875  * The word size is 16 bits, so you have to provide the address for
876  * every 16 bits of data.
877  */
878 static u_int16_t
879 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
880 {
881 	u_int16_t reg, data;
882 	int x;
883 
884 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
885 	/*
886 	 * Shift in read opcode.
887 	 */
888 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
889 	/*
890 	 * Shift in address.
891 	 */
892 	data = 0;
893 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
894 		if (offset & x)
895 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
896 		else
897 			reg = FXP_EEPROM_EECS;
898 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
899 		DELAY(1);
900 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
901 		DELAY(1);
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
903 		DELAY(1);
904 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
905 		data++;
906 		if (autosize && reg == 0) {
907 			sc->eeprom_size = data;
908 			break;
909 		}
910 	}
911 	/*
912 	 * Shift out data.
913 	 */
914 	data = 0;
915 	reg = FXP_EEPROM_EECS;
916 	for (x = 1 << 15; x; x >>= 1) {
917 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
918 		DELAY(1);
919 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
920 			data |= x;
921 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
922 		DELAY(1);
923 	}
924 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
925 	DELAY(1);
926 
927 	return (data);
928 }
929 
930 static void
931 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
932 {
933 	int i;
934 
935 	/*
936 	 * Erase/write enable.
937 	 */
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
939 	fxp_eeprom_shiftin(sc, 0x4, 3);
940 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942 	DELAY(1);
943 	/*
944 	 * Shift in write opcode, address, data.
945 	 */
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
947 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
948 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
949 	fxp_eeprom_shiftin(sc, data, 16);
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
951 	DELAY(1);
952 	/*
953 	 * Wait for EEPROM to finish up.
954 	 */
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956 	DELAY(1);
957 	for (i = 0; i < 1000; i++) {
958 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
959 			break;
960 		DELAY(50);
961 	}
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 	DELAY(1);
964 	/*
965 	 * Erase/write disable.
966 	 */
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 	fxp_eeprom_shiftin(sc, 0x4, 3);
969 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
970 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
971 	DELAY(1);
972 }
973 
974 /*
975  * From NetBSD:
976  *
977  * Figure out EEPROM size.
978  *
979  * 559's can have either 64-word or 256-word EEPROMs, the 558
980  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
981  * talks about the existance of 16 to 256 word EEPROMs.
982  *
983  * The only known sizes are 64 and 256, where the 256 version is used
984  * by CardBus cards to store CIS information.
985  *
986  * The address is shifted in msb-to-lsb, and after the last
987  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
988  * after which follows the actual data. We try to detect this zero, by
989  * probing the data-out bit in the EEPROM control register just after
990  * having shifted in a bit. If the bit is zero, we assume we've
991  * shifted enough address bits. The data-out should be tri-state,
992  * before this, which should translate to a logical one.
993  */
994 static void
995 fxp_autosize_eeprom(struct fxp_softc *sc)
996 {
997 
998 	/* guess maximum size of 256 words */
999 	sc->eeprom_size = 8;
1000 
1001 	/* autosize */
1002 	(void) fxp_eeprom_getword(sc, 0, 1);
1003 }
1004 
1005 static void
1006 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < words; i++)
1011 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1012 }
1013 
1014 static void
1015 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < words; i++)
1020 		fxp_eeprom_putword(sc, offset + i, data[i]);
1021 }
1022 
1023 /*
1024  * Start packet transmission on the interface.
1025  */
1026 static void
1027 fxp_start(struct ifnet *ifp)
1028 {
1029 	struct fxp_softc *sc = ifp->if_softc;
1030 	struct fxp_cb_tx *txp;
1031 
1032 	/*
1033 	 * See if we need to suspend xmit until the multicast filter
1034 	 * has been reprogrammed (which can only be done at the head
1035 	 * of the command chain).
1036 	 */
1037 	if (sc->need_mcsetup) {
1038 		return;
1039 	}
1040 
1041 	txp = NULL;
1042 
1043 	/*
1044 	 * We're finished if there is nothing more to add to the list or if
1045 	 * we're all filled up with buffers to transmit.
1046 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1047 	 *       a NOP command when needed.
1048 	 */
1049 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1050 		struct mbuf *m, *mb_head;
1051 		int segment, ntries = 0;
1052 
1053 		/*
1054 		 * Grab a packet to transmit. The packet is dequeued,
1055 		 * once we are sure that we have enough free descriptors.
1056 		 */
1057 		mb_head = ifq_poll(&ifp->if_snd);
1058 		if (mb_head == NULL)
1059 			break;
1060 
1061 		/*
1062 		 * Get pointer to next available tx desc.
1063 		 */
1064 		txp = sc->cbl_last->next;
1065 
1066 		/*
1067 		 * Go through each of the mbufs in the chain and initialize
1068 		 * the transmit buffer descriptors with the physical address
1069 		 * and size of the mbuf.
1070 		 */
1071 tbdinit:
1072 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1073 			if (m->m_len != 0) {
1074 				if (segment == FXP_NTXSEG)
1075 					break;
1076 				txp->tbd[segment].tb_addr =
1077 				    vtophys(mtod(m, vm_offset_t));
1078 				txp->tbd[segment].tb_size = m->m_len;
1079 				segment++;
1080 			}
1081 		}
1082 		if (m != NULL) {
1083 			struct mbuf *mn;
1084 
1085 			/*
1086 			 * We ran out of segments. We have to recopy this
1087 			 * mbuf chain first. Bail out if we can't get the
1088 			 * new buffers.
1089 			 */
1090 			if (ntries > 0)
1091 				break;
1092 			mn = m_dup(mb_head, MB_DONTWAIT);
1093 			if (mn == NULL)
1094 				break;
1095 			 /* We can transmit the packet, dequeue it. */
1096 			mb_head = ifq_dequeue(&ifp->if_snd);
1097 			m_freem(mb_head);
1098 			mb_head = mn;
1099 			ntries = 1;
1100 			goto tbdinit;
1101 		} else {
1102 			/* Nothing to worry about, just dequeue. */
1103 			mb_head = ifq_dequeue(&ifp->if_snd);
1104 		}
1105 
1106 		txp->tbd_number = segment;
1107 		txp->mb_head = mb_head;
1108 		txp->cb_status = 0;
1109 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1110 			txp->cb_command =
1111 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1112 			    FXP_CB_COMMAND_S;
1113 		} else {
1114 			txp->cb_command =
1115 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1116 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1117 			/*
1118 			 * Set a 5 second timer just in case we don't hear
1119 			 * from the card again.
1120 			 */
1121 			ifp->if_timer = 5;
1122 		}
1123 		txp->tx_threshold = tx_threshold;
1124 
1125 		/*
1126 		 * Advance the end of list forward.
1127 		 */
1128 
1129 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1130 		sc->cbl_last = txp;
1131 
1132 		/*
1133 		 * Advance the beginning of the list forward if there are
1134 		 * no other packets queued (when nothing is queued, cbl_first
1135 		 * sits on the last TxCB that was sent out).
1136 		 */
1137 		if (sc->tx_queued == 0)
1138 			sc->cbl_first = txp;
1139 
1140 		sc->tx_queued++;
1141 
1142 		BPF_MTAP(ifp, mb_head);
1143 	}
1144 
1145 	/*
1146 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1147 	 * going again if suspended.
1148 	 */
1149 	if (txp != NULL) {
1150 		fxp_scb_wait(sc);
1151 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1152 	}
1153 }
1154 
1155 #ifdef DEVICE_POLLING
1156 
1157 static void
1158 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1159 {
1160 	struct fxp_softc *sc = ifp->if_softc;
1161 	u_int8_t statack;
1162 
1163 	switch(cmd) {
1164 	case POLL_REGISTER:
1165 		/* disable interrupts */
1166 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1167 		break;
1168 	case POLL_DEREGISTER:
1169 		/* enable interrupts */
1170 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1171 		break;
1172 	default:
1173 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1174 			  FXP_SCB_STATACK_FR;
1175 		if (cmd == POLL_AND_CHECK_STATUS) {
1176 			u_int8_t tmp;
1177 
1178 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1179 			if (tmp == 0xff || tmp == 0)
1180 				return; /* nothing to do */
1181 			tmp &= ~statack;
1182 			/* ack what we can */
1183 			if (tmp != 0)
1184 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1185 			statack |= tmp;
1186 		}
1187 		fxp_intr_body(sc, statack, count);
1188 		break;
1189 	}
1190 }
1191 
1192 #endif /* DEVICE_POLLING */
1193 
1194 /*
1195  * Process interface interrupts.
1196  */
1197 static void
1198 fxp_intr(void *xsc)
1199 {
1200 	struct fxp_softc *sc = xsc;
1201 	u_int8_t statack;
1202 
1203 	if (sc->suspended) {
1204 		return;
1205 	}
1206 
1207 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1208 		/*
1209 		 * It should not be possible to have all bits set; the
1210 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1211 		 * all bits are set, this may indicate that the card has
1212 		 * been physically ejected, so ignore it.
1213 		 */
1214 		if (statack == 0xff)
1215 			return;
1216 
1217 		/*
1218 		 * First ACK all the interrupts in this pass.
1219 		 */
1220 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1221 		fxp_intr_body(sc, statack, -1);
1222 	}
1223 }
1224 
1225 static void
1226 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1227 {
1228 	struct ifnet *ifp = &sc->arpcom.ac_if;
1229 	struct mbuf *m;
1230 	struct fxp_rfa *rfa;
1231 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1232 
1233 	if (rnr)
1234 		fxp_rnr++;
1235 #ifdef DEVICE_POLLING
1236 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1237 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1238 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1239 		rnr = 1;
1240 	}
1241 #endif
1242 
1243 	/*
1244 	 * Free any finished transmit mbuf chains.
1245 	 *
1246 	 * Handle the CNA event likt a CXTNO event. It used to
1247 	 * be that this event (control unit not ready) was not
1248 	 * encountered, but it is now with the SMPng modifications.
1249 	 * The exact sequence of events that occur when the interface
1250 	 * is brought up are different now, and if this event
1251 	 * goes unhandled, the configuration/rxfilter setup sequence
1252 	 * can stall for several seconds. The result is that no
1253 	 * packets go out onto the wire for about 5 to 10 seconds
1254 	 * after the interface is ifconfig'ed for the first time.
1255 	 */
1256 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1257 		struct fxp_cb_tx *txp;
1258 
1259 		for (txp = sc->cbl_first; sc->tx_queued &&
1260 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1261 		    txp = txp->next) {
1262 			if ((m = txp->mb_head) != NULL) {
1263 				txp->mb_head = NULL;
1264 				sc->tx_queued--;
1265 				m_freem(m);
1266 			} else {
1267 				sc->tx_queued--;
1268 			}
1269 		}
1270 		sc->cbl_first = txp;
1271 		ifp->if_timer = 0;
1272 		if (sc->tx_queued == 0) {
1273 			if (sc->need_mcsetup)
1274 				fxp_mc_setup(sc);
1275 		}
1276 		/*
1277 		 * Try to start more packets transmitting.
1278 		 */
1279 		if (!ifq_is_empty(&ifp->if_snd))
1280 			(*ifp->if_start)(ifp);
1281 	}
1282 
1283 	/*
1284 	 * Just return if nothing happened on the receive side.
1285 	 */
1286 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1287 		return;
1288 
1289 	/*
1290 	 * Process receiver interrupts. If a no-resource (RNR)
1291 	 * condition exists, get whatever packets we can and
1292 	 * re-start the receiver.
1293 	 *
1294 	 * When using polling, we do not process the list to completion,
1295 	 * so when we get an RNR interrupt we must defer the restart
1296 	 * until we hit the last buffer with the C bit set.
1297 	 * If we run out of cycles and rfa_headm has the C bit set,
1298 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1299 	 * that the info will be used in the subsequent polling cycle.
1300 	 */
1301 	for (;;) {
1302 		m = sc->rfa_headm;
1303 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1304 		    RFA_ALIGNMENT_FUDGE);
1305 
1306 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1307 		if (count >= 0 && count-- == 0) {
1308 			if (rnr) {
1309 				/* Defer RNR processing until the next time. */
1310 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1311 				rnr = 0;
1312 			}
1313 			break;
1314 		}
1315 #endif /* DEVICE_POLLING */
1316 
1317 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1318 			break;
1319 
1320 		/*
1321 		 * Remove first packet from the chain.
1322 		 */
1323 		sc->rfa_headm = m->m_next;
1324 		m->m_next = NULL;
1325 
1326 		/*
1327 		 * Add a new buffer to the receive chain.
1328 		 * If this fails, the old buffer is recycled
1329 		 * instead.
1330 		 */
1331 		if (fxp_add_rfabuf(sc, m) == 0) {
1332 			int total_len;
1333 
1334 			/*
1335 			 * Fetch packet length (the top 2 bits of
1336 			 * actual_size are flags set by the controller
1337 			 * upon completion), and drop the packet in case
1338 			 * of bogus length or CRC errors.
1339 			 */
1340 			total_len = rfa->actual_size & 0x3fff;
1341 			if (total_len < sizeof(struct ether_header) ||
1342 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1343 				sizeof(struct fxp_rfa) ||
1344 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1345 				m_freem(m);
1346 				continue;
1347 			}
1348 			m->m_pkthdr.len = m->m_len = total_len;
1349 			(*ifp->if_input)(ifp, m);
1350 		}
1351 	}
1352 	if (rnr) {
1353 		fxp_scb_wait(sc);
1354 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1355 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1356 		    RFA_ALIGNMENT_FUDGE);
1357 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1358 	}
1359 }
1360 
1361 /*
1362  * Update packet in/out/collision statistics. The i82557 doesn't
1363  * allow you to access these counters without doing a fairly
1364  * expensive DMA to get _all_ of the statistics it maintains, so
1365  * we do this operation here only once per second. The statistics
1366  * counters in the kernel are updated from the previous dump-stats
1367  * DMA and then a new dump-stats DMA is started. The on-chip
1368  * counters are zeroed when the DMA completes. If we can't start
1369  * the DMA immediately, we don't wait - we just prepare to read
1370  * them again next time.
1371  */
1372 static void
1373 fxp_tick(void *xsc)
1374 {
1375 	struct fxp_softc *sc = xsc;
1376 	struct ifnet *ifp = &sc->arpcom.ac_if;
1377 	struct fxp_stats *sp = sc->fxp_stats;
1378 	struct fxp_cb_tx *txp;
1379 	struct mbuf *m;
1380 
1381 	ifp->if_opackets += sp->tx_good;
1382 	ifp->if_collisions += sp->tx_total_collisions;
1383 	if (sp->rx_good) {
1384 		ifp->if_ipackets += sp->rx_good;
1385 		sc->rx_idle_secs = 0;
1386 	} else {
1387 		/*
1388 		 * Receiver's been idle for another second.
1389 		 */
1390 		sc->rx_idle_secs++;
1391 	}
1392 	ifp->if_ierrors +=
1393 	    sp->rx_crc_errors +
1394 	    sp->rx_alignment_errors +
1395 	    sp->rx_rnr_errors +
1396 	    sp->rx_overrun_errors;
1397 	/*
1398 	 * If any transmit underruns occured, bump up the transmit
1399 	 * threshold by another 512 bytes (64 * 8).
1400 	 */
1401 	if (sp->tx_underruns) {
1402 		ifp->if_oerrors += sp->tx_underruns;
1403 		if (tx_threshold < 192)
1404 			tx_threshold += 64;
1405 	}
1406 
1407 	crit_enter();
1408 
1409 	/*
1410 	 * Release any xmit buffers that have completed DMA. This isn't
1411 	 * strictly necessary to do here, but it's advantagous for mbufs
1412 	 * with external storage to be released in a timely manner rather
1413 	 * than being defered for a potentially long time. This limits
1414 	 * the delay to a maximum of one second.
1415 	 */
1416 	for (txp = sc->cbl_first; sc->tx_queued &&
1417 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1418 	    txp = txp->next) {
1419 		if ((m = txp->mb_head) != NULL) {
1420 			txp->mb_head = NULL;
1421 			sc->tx_queued--;
1422 			m_freem(m);
1423 		} else {
1424 			sc->tx_queued--;
1425 		}
1426 	}
1427 	sc->cbl_first = txp;
1428 	/*
1429 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1430 	 * then assume the receiver has locked up and attempt to clear
1431 	 * the condition by reprogramming the multicast filter. This is
1432 	 * a work-around for a bug in the 82557 where the receiver locks
1433 	 * up if it gets certain types of garbage in the syncronization
1434 	 * bits prior to the packet header. This bug is supposed to only
1435 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1436 	 * mode as well (perhaps due to a 10/100 speed transition).
1437 	 */
1438 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1439 		sc->rx_idle_secs = 0;
1440 		fxp_mc_setup(sc);
1441 	}
1442 	/*
1443 	 * If there is no pending command, start another stats
1444 	 * dump. Otherwise punt for now.
1445 	 */
1446 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1447 		/*
1448 		 * Start another stats dump.
1449 		 */
1450 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1451 	} else {
1452 		/*
1453 		 * A previous command is still waiting to be accepted.
1454 		 * Just zero our copy of the stats and wait for the
1455 		 * next timer event to update them.
1456 		 */
1457 		sp->tx_good = 0;
1458 		sp->tx_underruns = 0;
1459 		sp->tx_total_collisions = 0;
1460 
1461 		sp->rx_good = 0;
1462 		sp->rx_crc_errors = 0;
1463 		sp->rx_alignment_errors = 0;
1464 		sp->rx_rnr_errors = 0;
1465 		sp->rx_overrun_errors = 0;
1466 	}
1467 	if (sc->miibus != NULL)
1468 		mii_tick(device_get_softc(sc->miibus));
1469 	/*
1470 	 * Schedule another timeout one second from now.
1471 	 */
1472 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1473 
1474 	crit_exit();
1475 }
1476 
1477 /*
1478  * Stop the interface. Cancels the statistics updater and resets
1479  * the interface.
1480  */
1481 static void
1482 fxp_stop(struct fxp_softc *sc)
1483 {
1484 	struct ifnet *ifp = &sc->arpcom.ac_if;
1485 	struct fxp_cb_tx *txp;
1486 	int i;
1487 
1488 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1489 	ifp->if_timer = 0;
1490 
1491 	/*
1492 	 * Cancel stats updater.
1493 	 */
1494 	callout_stop(&sc->fxp_stat_timer);
1495 
1496 	/*
1497 	 * Issue software reset, which also unloads the microcode.
1498 	 */
1499 	sc->flags &= ~FXP_FLAG_UCODE;
1500 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1501 	DELAY(50);
1502 
1503 	/*
1504 	 * Release any xmit buffers.
1505 	 */
1506 	txp = sc->cbl_base;
1507 	if (txp != NULL) {
1508 		for (i = 0; i < FXP_NTXCB; i++) {
1509 			if (txp[i].mb_head != NULL) {
1510 				m_freem(txp[i].mb_head);
1511 				txp[i].mb_head = NULL;
1512 			}
1513 		}
1514 	}
1515 	sc->tx_queued = 0;
1516 
1517 	/*
1518 	 * Free all the receive buffers then reallocate/reinitialize
1519 	 */
1520 	if (sc->rfa_headm != NULL)
1521 		m_freem(sc->rfa_headm);
1522 	sc->rfa_headm = NULL;
1523 	sc->rfa_tailm = NULL;
1524 	for (i = 0; i < FXP_NRFABUFS; i++) {
1525 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1526 			/*
1527 			 * This "can't happen" - we're at splimp()
1528 			 * and we just freed all the buffers we need
1529 			 * above.
1530 			 */
1531 			panic("fxp_stop: no buffers!");
1532 		}
1533 	}
1534 }
1535 
1536 /*
1537  * Watchdog/transmission transmit timeout handler. Called when a
1538  * transmission is started on the interface, but no interrupt is
1539  * received before the timeout. This usually indicates that the
1540  * card has wedged for some reason.
1541  */
1542 static void
1543 fxp_watchdog(struct ifnet *ifp)
1544 {
1545 	if_printf(ifp, "device timeout\n");
1546 	ifp->if_oerrors++;
1547 	fxp_init(ifp->if_softc);
1548 }
1549 
1550 static void
1551 fxp_init(void *xsc)
1552 {
1553 	struct fxp_softc *sc = xsc;
1554 	struct ifnet *ifp = &sc->arpcom.ac_if;
1555 	struct fxp_cb_config *cbp;
1556 	struct fxp_cb_ias *cb_ias;
1557 	struct fxp_cb_tx *txp;
1558 	struct fxp_cb_mcs *mcsp;
1559 	int i, prm;
1560 
1561 	crit_enter();
1562 
1563 	/*
1564 	 * Cancel any pending I/O
1565 	 */
1566 	fxp_stop(sc);
1567 
1568 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1569 
1570 	/*
1571 	 * Initialize base of CBL and RFA memory. Loading with zero
1572 	 * sets it up for regular linear addressing.
1573 	 */
1574 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1575 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1576 
1577 	fxp_scb_wait(sc);
1578 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1579 
1580 	/*
1581 	 * Initialize base of dump-stats buffer.
1582 	 */
1583 	fxp_scb_wait(sc);
1584 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1585 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1586 
1587 	/*
1588 	 * Attempt to load microcode if requested.
1589 	 */
1590 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1591 		fxp_load_ucode(sc);
1592 
1593 	/*
1594 	 * Initialize the multicast address list.
1595 	 */
1596 	if (fxp_mc_addrs(sc)) {
1597 		mcsp = sc->mcsp;
1598 		mcsp->cb_status = 0;
1599 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1600 		mcsp->link_addr = -1;
1601 		/*
1602 	 	 * Start the multicast setup command.
1603 		 */
1604 		fxp_scb_wait(sc);
1605 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1606 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1607 		/* ...and wait for it to complete. */
1608 		fxp_dma_wait(&mcsp->cb_status, sc);
1609 	}
1610 
1611 	/*
1612 	 * We temporarily use memory that contains the TxCB list to
1613 	 * construct the config CB. The TxCB list memory is rebuilt
1614 	 * later.
1615 	 */
1616 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1617 
1618 	/*
1619 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1620 	 * zero and must be one bits in this structure and this is the easiest
1621 	 * way to initialize them all to proper values.
1622 	 */
1623 	bcopy(fxp_cb_config_template,
1624 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1625 		sizeof(fxp_cb_config_template));
1626 
1627 	cbp->cb_status =	0;
1628 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1629 	cbp->link_addr =	-1;	/* (no) next command */
1630 	cbp->byte_count =	22;	/* (22) bytes to config */
1631 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1632 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1633 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1634 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1635 	cbp->type_enable =	0;	/* actually reserved */
1636 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1637 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1638 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1639 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1640 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1641 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1642 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1643 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1644 	cbp->ci_int =		1;	/* interrupt on CU idle */
1645 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1646 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1647 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1648 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1649 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1650 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1651 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1652 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1653 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1654 	cbp->csma_dis =		0;	/* (don't) disable link */
1655 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1656 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1657 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1658 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1659 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1660 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1661 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1662 	cbp->loopback =		0;	/* (don't) loopback */
1663 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1664 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1665 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1666 	cbp->promiscuous =	prm;	/* promiscuous mode */
1667 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1668 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1669 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1670 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1671 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1672 
1673 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1674 	cbp->padding =		1;	/* (do) pad short tx packets */
1675 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1676 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1677 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1678 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1679 					/* must set wake_en in PMCSR also */
1680 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1681 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1682 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1683 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1684 
1685 	if (sc->revision == FXP_REV_82557) {
1686 		/*
1687 		 * The 82557 has no hardware flow control, the values
1688 		 * below are the defaults for the chip.
1689 		 */
1690 		cbp->fc_delay_lsb =	0;
1691 		cbp->fc_delay_msb =	0x40;
1692 		cbp->pri_fc_thresh =	3;
1693 		cbp->tx_fc_dis =	0;
1694 		cbp->rx_fc_restop =	0;
1695 		cbp->rx_fc_restart =	0;
1696 		cbp->fc_filter =	0;
1697 		cbp->pri_fc_loc =	1;
1698 	} else {
1699 		cbp->fc_delay_lsb =	0x1f;
1700 		cbp->fc_delay_msb =	0x01;
1701 		cbp->pri_fc_thresh =	3;
1702 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1703 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1704 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1705 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1706 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1707 	}
1708 
1709 	/*
1710 	 * Start the config command/DMA.
1711 	 */
1712 	fxp_scb_wait(sc);
1713 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1714 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1715 	/* ...and wait for it to complete. */
1716 	fxp_dma_wait(&cbp->cb_status, sc);
1717 
1718 	/*
1719 	 * Now initialize the station address. Temporarily use the TxCB
1720 	 * memory area like we did above for the config CB.
1721 	 */
1722 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1723 	cb_ias->cb_status = 0;
1724 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1725 	cb_ias->link_addr = -1;
1726 	bcopy(sc->arpcom.ac_enaddr,
1727 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1728 	    sizeof(sc->arpcom.ac_enaddr));
1729 
1730 	/*
1731 	 * Start the IAS (Individual Address Setup) command/DMA.
1732 	 */
1733 	fxp_scb_wait(sc);
1734 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1735 	/* ...and wait for it to complete. */
1736 	fxp_dma_wait(&cb_ias->cb_status, sc);
1737 
1738 	/*
1739 	 * Initialize transmit control block (TxCB) list.
1740 	 */
1741 
1742 	txp = sc->cbl_base;
1743 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1744 	for (i = 0; i < FXP_NTXCB; i++) {
1745 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1746 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1747 		txp[i].link_addr =
1748 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1749 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1750 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1751 		else
1752 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1753 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1754 	}
1755 	/*
1756 	 * Set the suspend flag on the first TxCB and start the control
1757 	 * unit. It will execute the NOP and then suspend.
1758 	 */
1759 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1760 	sc->cbl_first = sc->cbl_last = txp;
1761 	sc->tx_queued = 1;
1762 
1763 	fxp_scb_wait(sc);
1764 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1765 
1766 	/*
1767 	 * Initialize receiver buffer area - RFA.
1768 	 */
1769 	fxp_scb_wait(sc);
1770 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1771 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1772 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1773 
1774 	/*
1775 	 * Set current media.
1776 	 */
1777 	if (sc->miibus != NULL)
1778 		mii_mediachg(device_get_softc(sc->miibus));
1779 
1780 	ifp->if_flags |= IFF_RUNNING;
1781 	ifp->if_flags &= ~IFF_OACTIVE;
1782 
1783 	/*
1784 	 * Enable interrupts.
1785 	 */
1786 #ifdef DEVICE_POLLING
1787 	/*
1788 	 * ... but only do that if we are not polling. And because (presumably)
1789 	 * the default is interrupts on, we need to disable them explicitly!
1790 	 */
1791 	if ( ifp->if_flags & IFF_POLLING )
1792 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1793 	else
1794 #endif /* DEVICE_POLLING */
1795 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1796 
1797 	/*
1798 	 * Start stats updater.
1799 	 */
1800 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1801 
1802 	crit_exit();
1803 }
1804 
1805 static int
1806 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1807 {
1808 
1809 	return (0);
1810 }
1811 
1812 static void
1813 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1814 {
1815 
1816 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1817 }
1818 
1819 /*
1820  * Change media according to request.
1821  */
1822 static int
1823 fxp_ifmedia_upd(struct ifnet *ifp)
1824 {
1825 	struct fxp_softc *sc = ifp->if_softc;
1826 	struct mii_data *mii;
1827 
1828 	mii = device_get_softc(sc->miibus);
1829 	mii_mediachg(mii);
1830 	return (0);
1831 }
1832 
1833 /*
1834  * Notify the world which media we're using.
1835  */
1836 static void
1837 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1838 {
1839 	struct fxp_softc *sc = ifp->if_softc;
1840 	struct mii_data *mii;
1841 
1842 	mii = device_get_softc(sc->miibus);
1843 	mii_pollstat(mii);
1844 	ifmr->ifm_active = mii->mii_media_active;
1845 	ifmr->ifm_status = mii->mii_media_status;
1846 
1847 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1848 		sc->cu_resume_bug = 1;
1849 	else
1850 		sc->cu_resume_bug = 0;
1851 }
1852 
1853 /*
1854  * Add a buffer to the end of the RFA buffer list.
1855  * Return 0 if successful, 1 for failure. A failure results in
1856  * adding the 'oldm' (if non-NULL) on to the end of the list -
1857  * tossing out its old contents and recycling it.
1858  * The RFA struct is stuck at the beginning of mbuf cluster and the
1859  * data pointer is fixed up to point just past it.
1860  */
1861 static int
1862 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1863 {
1864 	u_int32_t v;
1865 	struct mbuf *m;
1866 	struct fxp_rfa *rfa, *p_rfa;
1867 
1868 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1869 	if (m == NULL) { /* try to recycle the old mbuf instead */
1870 		if (oldm == NULL)
1871 			return 1;
1872 		m = oldm;
1873 		m->m_data = m->m_ext.ext_buf;
1874 	}
1875 
1876 	/*
1877 	 * Move the data pointer up so that the incoming data packet
1878 	 * will be 32-bit aligned.
1879 	 */
1880 	m->m_data += RFA_ALIGNMENT_FUDGE;
1881 
1882 	/*
1883 	 * Get a pointer to the base of the mbuf cluster and move
1884 	 * data start past it.
1885 	 */
1886 	rfa = mtod(m, struct fxp_rfa *);
1887 	m->m_data += sizeof(struct fxp_rfa);
1888 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1889 
1890 	/*
1891 	 * Initialize the rest of the RFA.  Note that since the RFA
1892 	 * is misaligned, we cannot store values directly.  Instead,
1893 	 * we use an optimized, inline copy.
1894 	 */
1895 
1896 	rfa->rfa_status = 0;
1897 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1898 	rfa->actual_size = 0;
1899 
1900 	v = -1;
1901 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1902 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1903 
1904 	/*
1905 	 * If there are other buffers already on the list, attach this
1906 	 * one to the end by fixing up the tail to point to this one.
1907 	 */
1908 	if (sc->rfa_headm != NULL) {
1909 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1910 		    RFA_ALIGNMENT_FUDGE);
1911 		sc->rfa_tailm->m_next = m;
1912 		v = vtophys(rfa);
1913 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1914 		p_rfa->rfa_control = 0;
1915 	} else {
1916 		sc->rfa_headm = m;
1917 	}
1918 	sc->rfa_tailm = m;
1919 
1920 	return (m == oldm);
1921 }
1922 
1923 static volatile int
1924 fxp_miibus_readreg(device_t dev, int phy, int reg)
1925 {
1926 	struct fxp_softc *sc = device_get_softc(dev);
1927 	int count = 10000;
1928 	int value;
1929 
1930 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1931 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1932 
1933 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1934 	    && count--)
1935 		DELAY(10);
1936 
1937 	if (count <= 0)
1938 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1939 
1940 	return (value & 0xffff);
1941 }
1942 
1943 static void
1944 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1945 {
1946 	struct fxp_softc *sc = device_get_softc(dev);
1947 	int count = 10000;
1948 
1949 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1950 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1951 	    (value & 0xffff));
1952 
1953 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1954 	    count--)
1955 		DELAY(10);
1956 
1957 	if (count <= 0)
1958 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1959 }
1960 
1961 static int
1962 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1963 {
1964 	struct fxp_softc *sc = ifp->if_softc;
1965 	struct ifreq *ifr = (struct ifreq *)data;
1966 	struct mii_data *mii;
1967 	int error = 0;
1968 
1969 	crit_enter();
1970 
1971 	switch (command) {
1972 
1973 	case SIOCSIFFLAGS:
1974 		if (ifp->if_flags & IFF_ALLMULTI)
1975 			sc->flags |= FXP_FLAG_ALL_MCAST;
1976 		else
1977 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1978 
1979 		/*
1980 		 * If interface is marked up and not running, then start it.
1981 		 * If it is marked down and running, stop it.
1982 		 * XXX If it's up then re-initialize it. This is so flags
1983 		 * such as IFF_PROMISC are handled.
1984 		 */
1985 		if (ifp->if_flags & IFF_UP) {
1986 			fxp_init(sc);
1987 		} else {
1988 			if (ifp->if_flags & IFF_RUNNING)
1989 				fxp_stop(sc);
1990 		}
1991 		break;
1992 
1993 	case SIOCADDMULTI:
1994 	case SIOCDELMULTI:
1995 		if (ifp->if_flags & IFF_ALLMULTI)
1996 			sc->flags |= FXP_FLAG_ALL_MCAST;
1997 		else
1998 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1999 		/*
2000 		 * Multicast list has changed; set the hardware filter
2001 		 * accordingly.
2002 		 */
2003 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2004 			fxp_mc_setup(sc);
2005 		/*
2006 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2007 		 * again rather than else {}.
2008 		 */
2009 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2010 			fxp_init(sc);
2011 		error = 0;
2012 		break;
2013 
2014 	case SIOCSIFMEDIA:
2015 	case SIOCGIFMEDIA:
2016 		if (sc->miibus != NULL) {
2017 			mii = device_get_softc(sc->miibus);
2018                         error = ifmedia_ioctl(ifp, ifr,
2019                             &mii->mii_media, command);
2020 		} else {
2021                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2022 		}
2023 		break;
2024 
2025 	default:
2026 		error = ether_ioctl(ifp, command, data);
2027 		break;
2028 	}
2029 
2030 	crit_exit();
2031 
2032 	return (error);
2033 }
2034 
2035 /*
2036  * Fill in the multicast address list and return number of entries.
2037  */
2038 static int
2039 fxp_mc_addrs(struct fxp_softc *sc)
2040 {
2041 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2042 	struct ifnet *ifp = &sc->arpcom.ac_if;
2043 	struct ifmultiaddr *ifma;
2044 	int nmcasts;
2045 
2046 	nmcasts = 0;
2047 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2048 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2049 			if (ifma->ifma_addr->sa_family != AF_LINK)
2050 				continue;
2051 			if (nmcasts >= MAXMCADDR) {
2052 				sc->flags |= FXP_FLAG_ALL_MCAST;
2053 				nmcasts = 0;
2054 				break;
2055 			}
2056 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2057 			    (void *)(uintptr_t)(volatile void *)
2058 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2059 			nmcasts++;
2060 		}
2061 	}
2062 	mcsp->mc_cnt = nmcasts * 6;
2063 	return (nmcasts);
2064 }
2065 
2066 /*
2067  * Program the multicast filter.
2068  *
2069  * We have an artificial restriction that the multicast setup command
2070  * must be the first command in the chain, so we take steps to ensure
2071  * this. By requiring this, it allows us to keep up the performance of
2072  * the pre-initialized command ring (esp. link pointers) by not actually
2073  * inserting the mcsetup command in the ring - i.e. its link pointer
2074  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2075  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2076  * lead into the regular TxCB ring when it completes.
2077  *
2078  * This function must be called at splimp.
2079  */
2080 static void
2081 fxp_mc_setup(struct fxp_softc *sc)
2082 {
2083 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2084 	struct ifnet *ifp = &sc->arpcom.ac_if;
2085 	int count;
2086 
2087 	/*
2088 	 * If there are queued commands, we must wait until they are all
2089 	 * completed. If we are already waiting, then add a NOP command
2090 	 * with interrupt option so that we're notified when all commands
2091 	 * have been completed - fxp_start() ensures that no additional
2092 	 * TX commands will be added when need_mcsetup is true.
2093 	 */
2094 	if (sc->tx_queued) {
2095 		struct fxp_cb_tx *txp;
2096 
2097 		/*
2098 		 * need_mcsetup will be true if we are already waiting for the
2099 		 * NOP command to be completed (see below). In this case, bail.
2100 		 */
2101 		if (sc->need_mcsetup)
2102 			return;
2103 		sc->need_mcsetup = 1;
2104 
2105 		/*
2106 		 * Add a NOP command with interrupt so that we are notified
2107 		 * when all TX commands have been processed.
2108 		 */
2109 		txp = sc->cbl_last->next;
2110 		txp->mb_head = NULL;
2111 		txp->cb_status = 0;
2112 		txp->cb_command = FXP_CB_COMMAND_NOP |
2113 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2114 		/*
2115 		 * Advance the end of list forward.
2116 		 */
2117 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2118 		sc->cbl_last = txp;
2119 		sc->tx_queued++;
2120 		/*
2121 		 * Issue a resume in case the CU has just suspended.
2122 		 */
2123 		fxp_scb_wait(sc);
2124 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2125 		/*
2126 		 * Set a 5 second timer just in case we don't hear from the
2127 		 * card again.
2128 		 */
2129 		ifp->if_timer = 5;
2130 
2131 		return;
2132 	}
2133 	sc->need_mcsetup = 0;
2134 
2135 	/*
2136 	 * Initialize multicast setup descriptor.
2137 	 */
2138 	mcsp->next = sc->cbl_base;
2139 	mcsp->mb_head = NULL;
2140 	mcsp->cb_status = 0;
2141 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2142 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2143 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2144 	(void) fxp_mc_addrs(sc);
2145 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2146 	sc->tx_queued = 1;
2147 
2148 	/*
2149 	 * Wait until command unit is not active. This should never
2150 	 * be the case when nothing is queued, but make sure anyway.
2151 	 */
2152 	count = 100;
2153 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2154 	    FXP_SCB_CUS_ACTIVE && --count)
2155 		DELAY(10);
2156 	if (count == 0) {
2157 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2158 		return;
2159 	}
2160 
2161 	/*
2162 	 * Start the multicast setup command.
2163 	 */
2164 	fxp_scb_wait(sc);
2165 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2166 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2167 
2168 	ifp->if_timer = 2;
2169 	return;
2170 }
2171 
2172 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2173 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2174 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2175 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2176 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2177 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2178 
2179 #define UCODE(x)	x, sizeof(x)
2180 
2181 struct ucode {
2182 	u_int32_t	revision;
2183 	u_int32_t	*ucode;
2184 	int		length;
2185 	u_short		int_delay_offset;
2186 	u_short		bundle_max_offset;
2187 } ucode_table[] = {
2188 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2189 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2190 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2191 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2192 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2193 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2194 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2195 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2196 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2197 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2198 	{ 0, NULL, 0, 0, 0 }
2199 };
2200 
2201 static void
2202 fxp_load_ucode(struct fxp_softc *sc)
2203 {
2204 	struct ucode *uc;
2205 	struct fxp_cb_ucode *cbp;
2206 
2207 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2208 		if (sc->revision == uc->revision)
2209 			break;
2210 	if (uc->ucode == NULL)
2211 		return;
2212 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2213 	cbp->cb_status = 0;
2214 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2215 	cbp->link_addr = -1;    	/* (no) next command */
2216 	memcpy(cbp->ucode, uc->ucode, uc->length);
2217 	if (uc->int_delay_offset)
2218 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2219 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2220 	if (uc->bundle_max_offset)
2221 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2222 		    sc->tunable_bundle_max;
2223 	/*
2224 	 * Download the ucode to the chip.
2225 	 */
2226 	fxp_scb_wait(sc);
2227 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2228 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2229 	/* ...and wait for it to complete. */
2230 	fxp_dma_wait(&cbp->cb_status, sc);
2231 	if_printf(&sc->arpcom.ac_if,
2232 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2233 	    sc->tunable_int_delay,
2234 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2235 	sc->flags |= FXP_FLAG_UCODE;
2236 }
2237 
2238 static int
2239 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2240 {
2241 	int error, value;
2242 
2243 	value = *(int *)arg1;
2244 	error = sysctl_handle_int(oidp, &value, 0, req);
2245 	if (error || !req->newptr)
2246 		return (error);
2247 	if (value < low || value > high)
2248 		return (EINVAL);
2249 	*(int *)arg1 = value;
2250 	return (0);
2251 }
2252 
2253 /*
2254  * Interrupt delay is expressed in microseconds, a multiplier is used
2255  * to convert this to the appropriate clock ticks before using.
2256  */
2257 static int
2258 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2259 {
2260 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2261 }
2262 
2263 static int
2264 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2265 {
2266 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2267 }
2268