xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 896f2e3a)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/interrupt.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <net/bpf.h>
53 #include <sys/sockio.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 #include <net/if_poll.h>
60 
61 #include <vm/vm.h>		/* for vtophys */
62 #include <vm/pmap.h>		/* for vtophys */
63 
64 #include <net/if_types.h>
65 #include <net/vlan/if_vlan_var.h>
66 
67 #include <bus/pci/pcivar.h>
68 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
69 
70 #include "../mii_layer/mii.h"
71 #include "../mii_layer/miivar.h"
72 
73 #include "if_fxpreg.h"
74 #include "if_fxpvar.h"
75 #include "rcvbundl.h"
76 
77 #include "miibus_if.h"
78 
79 /*
80  * NOTE!  On the Alpha, we have an alignment constraint.  The
81  * card DMAs the packet immediately following the RFA.  However,
82  * the first thing in the packet is a 14-byte Ethernet header.
83  * This means that the packet is misaligned.  To compensate,
84  * we actually offset the RFA 2 bytes into the cluster.  This
85  * alignes the packet after the Ethernet header at a 32-bit
86  * boundary.  HOWEVER!  This means that the RFA is misaligned!
87  */
88 #define	RFA_ALIGNMENT_FUDGE	2
89 
90 /*
91  * Set initial transmit threshold at 64 (512 bytes). This is
92  * increased by 64 (512 bytes) at a time, to maximum of 192
93  * (1536 bytes), if an underrun occurs.
94  */
95 static int tx_threshold = 64;
96 
97 /*
98  * The configuration byte map has several undefined fields which
99  * must be one or must be zero.  Set up a template for these bits
100  * only, (assuming a 82557 chip) leaving the actual configuration
101  * to fxp_init.
102  *
103  * See struct fxp_cb_config for the bit definitions.
104  */
105 static u_char fxp_cb_config_template[] = {
106 	0x0, 0x0,		/* cb_status */
107 	0x0, 0x0,		/* cb_command */
108 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
109 	0x0,	/*  0 */
110 	0x0,	/*  1 */
111 	0x0,	/*  2 */
112 	0x0,	/*  3 */
113 	0x0,	/*  4 */
114 	0x0,	/*  5 */
115 	0x32,	/*  6 */
116 	0x0,	/*  7 */
117 	0x0,	/*  8 */
118 	0x0,	/*  9 */
119 	0x6,	/* 10 */
120 	0x0,	/* 11 */
121 	0x0,	/* 12 */
122 	0x0,	/* 13 */
123 	0xf2,	/* 14 */
124 	0x48,	/* 15 */
125 	0x0,	/* 16 */
126 	0x40,	/* 17 */
127 	0xf0,	/* 18 */
128 	0x0,	/* 19 */
129 	0x3f,	/* 20 */
130 	0x5	/* 21 */
131 };
132 
133 struct fxp_ident {
134 	u_int16_t	devid;
135 	int16_t		revid;		/* -1 matches anything */
136 	char 		*name;
137 };
138 
139 /*
140  * Claim various Intel PCI device identifiers for this driver.  The
141  * sub-vendor and sub-device field are extensively used to identify
142  * particular variants, but we don't currently differentiate between
143  * them.
144  */
145 static struct fxp_ident fxp_ident_table[] = {
146      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
147      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
148      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
149      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
150      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
151      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
152      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
153      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
154      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
155      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
157      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
158      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
159      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
160      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
162      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
163      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
164      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
165      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
166      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
167      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
168      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
169      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
170      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
171      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
172      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
173      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
191      { 0,	-1,	NULL },
192 };
193 
194 static int		fxp_probe(device_t dev);
195 static int		fxp_attach(device_t dev);
196 static int		fxp_detach(device_t dev);
197 static int		fxp_shutdown(device_t dev);
198 static int		fxp_suspend(device_t dev);
199 static int		fxp_resume(device_t dev);
200 
201 static void		fxp_intr(void *xsc);
202 static void		fxp_intr_body(struct fxp_softc *sc,
203 				u_int8_t statack, int count);
204 
205 static void 		fxp_init(void *xsc);
206 static void 		fxp_tick(void *xsc);
207 static void		fxp_powerstate_d0(device_t dev);
208 static void 		fxp_start(struct ifnet *ifp, struct ifaltq_subque *);
209 static void		fxp_stop(struct fxp_softc *sc);
210 static void 		fxp_release(device_t dev);
211 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
212 			    caddr_t data, struct ucred *);
213 static void 		fxp_watchdog(struct ifnet *ifp);
214 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
215 static int		fxp_mc_addrs(struct fxp_softc *sc);
216 static void		fxp_mc_setup(struct fxp_softc *sc);
217 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
218 			    int autosize);
219 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
220 			    u_int16_t data);
221 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
222 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
223 			    int offset, int words);
224 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
225 			    int offset, int words);
226 static int		fxp_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
230 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
231 			    struct ifmediareq *ifmr);
232 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
233 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
234 			    int value);
235 static void		fxp_load_ucode(struct fxp_softc *sc);
236 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
237 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
238 #ifdef IFPOLL_ENABLE
239 static void		fxp_npoll(struct ifnet *, struct ifpoll_info *);
240 static void		fxp_npoll_compat(struct ifnet *, void *, int);
241 #endif
242 
243 static void		fxp_lwcopy(volatile u_int32_t *src,
244 			    volatile u_int32_t *dst);
245 static void 		fxp_scb_wait(struct fxp_softc *sc);
246 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
247 static void		fxp_dma_wait(volatile u_int16_t *status,
248 			    struct fxp_softc *sc);
249 
250 static device_method_t fxp_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		fxp_probe),
253 	DEVMETHOD(device_attach,	fxp_attach),
254 	DEVMETHOD(device_detach,	fxp_detach),
255 	DEVMETHOD(device_shutdown,	fxp_shutdown),
256 	DEVMETHOD(device_suspend,	fxp_suspend),
257 	DEVMETHOD(device_resume,	fxp_resume),
258 
259 	/* MII interface */
260 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
261 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
262 
263 	DEVMETHOD_END
264 };
265 
266 static driver_t fxp_driver = {
267 	"fxp",
268 	fxp_methods,
269 	sizeof(struct fxp_softc),
270 };
271 
272 static devclass_t fxp_devclass;
273 
274 DECLARE_DUMMY_MODULE(if_fxp);
275 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
276 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, NULL, NULL);
277 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, NULL, NULL);
278 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
279 
280 static int fxp_rnr;
281 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
282 
283 /*
284  * Copy a 16-bit aligned 32-bit quantity.
285  */
286 static void
287 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
288 {
289 #ifdef __i386__
290 	*dst = *src;
291 #else
292 	volatile u_int16_t *a = (volatile u_int16_t *)src;
293 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
294 
295 	b[0] = a[0];
296 	b[1] = a[1];
297 #endif
298 }
299 
300 /*
301  * Wait for the previous command to be accepted (but not necessarily
302  * completed).
303  */
304 static void
305 fxp_scb_wait(struct fxp_softc *sc)
306 {
307 	int i = 10000;
308 
309 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
310 		DELAY(2);
311 	if (i == 0) {
312 		if_printf(&sc->arpcom.ac_if,
313 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
314 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
315 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
316 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
317 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
318 	}
319 }
320 
321 static void
322 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
323 {
324 
325 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
326 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
327 		fxp_scb_wait(sc);
328 	}
329 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
330 }
331 
332 static void
333 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
334 {
335 	int i = 10000;
336 
337 	while (!(*status & FXP_CB_STATUS_C) && --i)
338 		DELAY(2);
339 	if (i == 0)
340 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
341 }
342 
343 /*
344  * Return identification string if this is device is ours.
345  */
346 static int
347 fxp_probe(device_t dev)
348 {
349 	u_int16_t devid;
350 	u_int8_t revid;
351 	struct fxp_ident *ident;
352 
353 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
354 		devid = pci_get_device(dev);
355 		revid = pci_get_revid(dev);
356 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
357 			if (ident->devid == devid &&
358 			    (ident->revid == revid || ident->revid == -1)) {
359 				device_set_desc(dev, ident->name);
360 				return (0);
361 			}
362 		}
363 	}
364 	return (ENXIO);
365 }
366 
367 static void
368 fxp_powerstate_d0(device_t dev)
369 {
370 	u_int32_t iobase, membase, irq;
371 
372 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
373 		/* Save important PCI config data. */
374 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
375 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
376 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
377 
378 		/* Reset the power state. */
379 		device_printf(dev, "chip is in D%d power mode "
380 		    "-- setting to D0\n", pci_get_powerstate(dev));
381 
382 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
383 
384 		/* Restore PCI config data. */
385 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
386 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
387 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
388 	}
389 }
390 
391 static int
392 fxp_attach(device_t dev)
393 {
394 	int error = 0;
395 	struct fxp_softc *sc = device_get_softc(dev);
396 	struct ifnet *ifp;
397 	struct sysctl_ctx_list *ctx;
398 	struct sysctl_oid *tree;
399 	u_int32_t val;
400 	u_int16_t data;
401 	int i, rid, m1, m2, prefer_iomap;
402 
403 	callout_init(&sc->fxp_stat_timer);
404 
405 	/*
406 	 * Enable bus mastering. Enable memory space too, in case
407 	 * BIOS/Prom forgot about it.
408 	 */
409 	pci_enable_busmaster(dev);
410 	pci_enable_io(dev, SYS_RES_MEMORY);
411 	val = pci_read_config(dev, PCIR_COMMAND, 2);
412 
413 	fxp_powerstate_d0(dev);
414 
415 	/*
416 	 * Figure out which we should try first - memory mapping or i/o mapping?
417 	 * We default to memory mapping. Then we accept an override from the
418 	 * command line. Then we check to see which one is enabled.
419 	 */
420 	m1 = PCIM_CMD_MEMEN;
421 	m2 = PCIM_CMD_PORTEN;
422 	prefer_iomap = 0;
423 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
424 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
425 		m1 = PCIM_CMD_PORTEN;
426 		m2 = PCIM_CMD_MEMEN;
427 	}
428 
429 	if (val & m1) {
430 		sc->rtp =
431 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
432 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
433 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
434 		    RF_ACTIVE);
435 	}
436 	if (sc->mem == NULL && (val & m2)) {
437 		sc->rtp =
438 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
439 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
440 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
441             	    RF_ACTIVE);
442 	}
443 
444 	if (!sc->mem) {
445 		device_printf(dev, "could not map device registers\n");
446 		error = ENXIO;
447 		goto fail;
448         }
449 	if (bootverbose) {
450 		device_printf(dev, "using %s space register mapping\n",
451 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
452 	}
453 
454 	sc->sc_st = rman_get_bustag(sc->mem);
455 	sc->sc_sh = rman_get_bushandle(sc->mem);
456 
457 	/*
458 	 * Allocate our interrupt.
459 	 */
460 	rid = 0;
461 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
462 	    RF_SHAREABLE | RF_ACTIVE);
463 	if (sc->irq == NULL) {
464 		device_printf(dev, "could not map interrupt\n");
465 		error = ENXIO;
466 		goto fail;
467 	}
468 
469 	/*
470 	 * Reset to a stable state.
471 	 */
472 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
473 	DELAY(10);
474 
475 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
476 	    M_DEVBUF, M_WAITOK | M_ZERO);
477 
478 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
479 	    M_WAITOK | M_ZERO);
480 
481 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
482 
483 	/*
484 	 * Pre-allocate our receive buffers.
485 	 */
486 	for (i = 0; i < FXP_NRFABUFS; i++) {
487 		if (fxp_add_rfabuf(sc, NULL) != 0) {
488 			goto failmem;
489 		}
490 	}
491 
492 	/*
493 	 * Find out how large of an SEEPROM we have.
494 	 */
495 	fxp_autosize_eeprom(sc);
496 
497 	/*
498 	 * Determine whether we must use the 503 serial interface.
499 	 */
500 	fxp_read_eeprom(sc, &data, 6, 1);
501 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
502 	    (data & FXP_PHY_SERIAL_ONLY))
503 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
504 
505 	/*
506 	 * Create the sysctl tree
507 	 */
508 	ctx = device_get_sysctl_ctx(dev);
509 	tree = device_get_sysctl_tree(dev);
510 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
511 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
512 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
513 	    "FXP driver receive interrupt microcode bundling delay");
514 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
515 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
516 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
517 	    "FXP driver receive interrupt microcode bundle size limit");
518 
519 	/*
520 	 * Pull in device tunables.
521 	 */
522 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
523 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
524 	resource_int_value(device_get_name(dev), device_get_unit(dev),
525 	    "int_delay", &sc->tunable_int_delay);
526 	resource_int_value(device_get_name(dev), device_get_unit(dev),
527 	    "bundle_max", &sc->tunable_bundle_max);
528 
529 	/*
530 	 * Find out the chip revision; lump all 82557 revs together.
531 	 */
532 	fxp_read_eeprom(sc, &data, 5, 1);
533 	if ((data >> 8) == 1)
534 		sc->revision = FXP_REV_82557;
535 	else
536 		sc->revision = pci_get_revid(dev);
537 
538 	/*
539 	 * Enable workarounds for certain chip revision deficiencies.
540 	 *
541 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
542 	 * some systems based a normal 82559 design, have a defect where
543 	 * the chip can cause a PCI protocol violation if it receives
544 	 * a CU_RESUME command when it is entering the IDLE state.  The
545 	 * workaround is to disable Dynamic Standby Mode, so the chip never
546 	 * deasserts CLKRUN#, and always remains in an active state.
547 	 *
548 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
549 	 */
550 	i = pci_get_device(dev);
551 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
552 	    sc->revision >= FXP_REV_82559_A0) {
553 		fxp_read_eeprom(sc, &data, 10, 1);
554 		if (data & 0x02) {			/* STB enable */
555 			u_int16_t cksum;
556 			int i;
557 
558 			device_printf(dev,
559 			    "Disabling dynamic standby mode in EEPROM\n");
560 			data &= ~0x02;
561 			fxp_write_eeprom(sc, &data, 10, 1);
562 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
563 			cksum = 0;
564 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
565 				fxp_read_eeprom(sc, &data, i, 1);
566 				cksum += data;
567 			}
568 			i = (1 << sc->eeprom_size) - 1;
569 			cksum = 0xBABA - cksum;
570 			fxp_read_eeprom(sc, &data, i, 1);
571 			fxp_write_eeprom(sc, &cksum, i, 1);
572 			device_printf(dev,
573 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
574 			    i, data, cksum);
575 #if 1
576 			/*
577 			 * If the user elects to continue, try the software
578 			 * workaround, as it is better than nothing.
579 			 */
580 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
581 #endif
582 		}
583 	}
584 
585 	/*
586 	 * If we are not a 82557 chip, we can enable extended features.
587 	 */
588 	if (sc->revision != FXP_REV_82557) {
589 		/*
590 		 * If MWI is enabled in the PCI configuration, and there
591 		 * is a valid cacheline size (8 or 16 dwords), then tell
592 		 * the board to turn on MWI.
593 		 */
594 		if (val & PCIM_CMD_MWRICEN &&
595 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
596 			sc->flags |= FXP_FLAG_MWI_ENABLE;
597 
598 		/* turn on the extended TxCB feature */
599 		sc->flags |= FXP_FLAG_EXT_TXCB;
600 
601 		/* enable reception of long frames for VLAN */
602 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
603 	}
604 
605 	/*
606 	 * Read MAC address.
607 	 */
608 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
609 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
610 		device_printf(dev, "10Mbps\n");
611 	if (bootverbose) {
612 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
613 		    pci_get_vendor(dev), pci_get_device(dev),
614 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
615 		    pci_get_revid(dev));
616 		fxp_read_eeprom(sc, &data, 10, 1);
617 		device_printf(dev, "Dynamic Standby mode is %s\n",
618 		    data & 0x02 ? "enabled" : "disabled");
619 	}
620 
621 	/*
622 	 * If this is only a 10Mbps device, then there is no MII, and
623 	 * the PHY will use a serial interface instead.
624 	 *
625 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
626 	 * doesn't have a programming interface of any sort.  The
627 	 * media is sensed automatically based on how the link partner
628 	 * is configured.  This is, in essence, manual configuration.
629 	 */
630 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
631 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
632 		    fxp_serial_ifmedia_sts);
633 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
634 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
635 	} else {
636 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
637 		    fxp_ifmedia_sts)) {
638 	                device_printf(dev, "MII without any PHY!\n");
639 			error = ENXIO;
640 			goto fail;
641 		}
642 	}
643 
644 	ifp = &sc->arpcom.ac_if;
645 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
646 	ifp->if_baudrate = 100000000;
647 	ifp->if_init = fxp_init;
648 	ifp->if_softc = sc;
649 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
650 	ifp->if_ioctl = fxp_ioctl;
651 	ifp->if_start = fxp_start;
652 #ifdef IFPOLL_ENABLE
653 	ifp->if_npoll = fxp_npoll;
654 #endif
655 	ifp->if_watchdog = fxp_watchdog;
656 
657 	/*
658 	 * Attach the interface.
659 	 */
660 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
661 
662 #ifdef IFPOLL_ENABLE
663 	ifpoll_compat_setup(&sc->fxp_npoll, ctx, (struct sysctl_oid *)tree,
664 	    device_get_unit(dev), ifp->if_serializer);
665 #endif
666 
667 	/*
668 	 * Tell the upper layer(s) we support long frames.
669 	 */
670 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
671 
672 	/*
673 	 * Let the system queue as many packets as we have available
674 	 * TX descriptors.
675 	 */
676 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
677 	ifq_set_ready(&ifp->if_snd);
678 
679 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
680 
681 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
682 			       fxp_intr, sc, &sc->ih,
683 			       ifp->if_serializer);
684 	if (error) {
685 		ether_ifdetach(ifp);
686 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
687 			ifmedia_removeall(&sc->sc_media);
688 		device_printf(dev, "could not setup irq\n");
689 		goto fail;
690 	}
691 
692 	return (0);
693 
694 failmem:
695 	device_printf(dev, "Failed to malloc memory\n");
696 	error = ENOMEM;
697 fail:
698 	fxp_release(dev);
699 	return (error);
700 }
701 
702 /*
703  * release all resources
704  */
705 static void
706 fxp_release(device_t dev)
707 {
708 	struct fxp_softc *sc = device_get_softc(dev);
709 
710 	if (sc->miibus)
711 		device_delete_child(dev, sc->miibus);
712 	bus_generic_detach(dev);
713 
714 	if (sc->cbl_base)
715 		kfree(sc->cbl_base, M_DEVBUF);
716 	if (sc->fxp_stats)
717 		kfree(sc->fxp_stats, M_DEVBUF);
718 	if (sc->mcsp)
719 		kfree(sc->mcsp, M_DEVBUF);
720 	if (sc->rfa_headm)
721 		m_freem(sc->rfa_headm);
722 
723 	if (sc->irq)
724 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
725 	if (sc->mem)
726 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
727 }
728 
729 /*
730  * Detach interface.
731  */
732 static int
733 fxp_detach(device_t dev)
734 {
735 	struct fxp_softc *sc = device_get_softc(dev);
736 
737 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
738 
739 	/*
740 	 * Stop DMA and drop transmit queue.
741 	 */
742 	fxp_stop(sc);
743 
744 	/*
745 	 * Disable interrupts.
746 	 *
747 	 * NOTE: This should be done after fxp_stop(), because software
748 	 * resetting in fxp_stop() may leave interrupts turned on.
749 	 */
750 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
751 
752 	/*
753 	 * Free all media structures.
754 	 */
755 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
756 		ifmedia_removeall(&sc->sc_media);
757 
758 	if (sc->ih)
759 		bus_teardown_intr(dev, sc->irq, sc->ih);
760 
761 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
762 
763 	/*
764 	 * Close down routes etc.
765 	 */
766 	ether_ifdetach(&sc->arpcom.ac_if);
767 
768 	/* Release our allocated resources. */
769 	fxp_release(dev);
770 
771 	return (0);
772 }
773 
774 /*
775  * Device shutdown routine. Called at system shutdown after sync. The
776  * main purpose of this routine is to shut off receiver DMA so that
777  * kernel memory doesn't get clobbered during warmboot.
778  */
779 static int
780 fxp_shutdown(device_t dev)
781 {
782 	struct fxp_softc *sc = device_get_softc(dev);
783 	struct ifnet *ifp = &sc->arpcom.ac_if;
784 
785 	lwkt_serialize_enter(ifp->if_serializer);
786 	/*
787 	 * Make sure that DMA is disabled prior to reboot. Not doing
788 	 * do could allow DMA to corrupt kernel memory during the
789 	 * reboot before the driver initializes.
790 	 */
791 	fxp_stop(sc);
792 	lwkt_serialize_exit(ifp->if_serializer);
793 	return (0);
794 }
795 
796 /*
797  * Device suspend routine.  Stop the interface and save some PCI
798  * settings in case the BIOS doesn't restore them properly on
799  * resume.
800  */
801 static int
802 fxp_suspend(device_t dev)
803 {
804 	struct fxp_softc *sc = device_get_softc(dev);
805 	int i;
806 
807 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
808 
809 	fxp_stop(sc);
810 
811 	for (i = 0; i < 5; i++)
812 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
813 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
814 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
815 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
816 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
817 
818 	sc->suspended = 1;
819 
820 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
821 	return (0);
822 }
823 
824 /*
825  * Device resume routine.  Restore some PCI settings in case the BIOS
826  * doesn't, re-enable busmastering, and restart the interface if
827  * appropriate.
828  */
829 static int
830 fxp_resume(device_t dev)
831 {
832 	struct fxp_softc *sc = device_get_softc(dev);
833 	struct ifnet *ifp = &sc->arpcom.ac_if;
834 	int i;
835 
836 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
837 
838 	fxp_powerstate_d0(dev);
839 
840 	/* better way to do this? */
841 	for (i = 0; i < 5; i++)
842 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
843 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
844 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
845 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
846 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
847 
848 	/* reenable busmastering and memory space */
849 	pci_enable_busmaster(dev);
850 	pci_enable_io(dev, SYS_RES_MEMORY);
851 
852 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
853 	DELAY(10);
854 
855 	/* reinitialize interface if necessary */
856 	if (ifp->if_flags & IFF_UP)
857 		fxp_init(sc);
858 
859 	sc->suspended = 0;
860 
861 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
862 	return (0);
863 }
864 
865 static void
866 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
867 {
868 	u_int16_t reg;
869 	int x;
870 
871 	/*
872 	 * Shift in data.
873 	 */
874 	for (x = 1 << (length - 1); x; x >>= 1) {
875 		if (data & x)
876 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
877 		else
878 			reg = FXP_EEPROM_EECS;
879 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
880 		DELAY(1);
881 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
882 		DELAY(1);
883 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884 		DELAY(1);
885 	}
886 }
887 
888 /*
889  * Read from the serial EEPROM. Basically, you manually shift in
890  * the read opcode (one bit at a time) and then shift in the address,
891  * and then you shift out the data (all of this one bit at a time).
892  * The word size is 16 bits, so you have to provide the address for
893  * every 16 bits of data.
894  */
895 static u_int16_t
896 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
897 {
898 	u_int16_t reg, data;
899 	int x;
900 
901 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
902 	/*
903 	 * Shift in read opcode.
904 	 */
905 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
906 	/*
907 	 * Shift in address.
908 	 */
909 	data = 0;
910 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
911 		if (offset & x)
912 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
913 		else
914 			reg = FXP_EEPROM_EECS;
915 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916 		DELAY(1);
917 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
918 		DELAY(1);
919 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
920 		DELAY(1);
921 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
922 		data++;
923 		if (autosize && reg == 0) {
924 			sc->eeprom_size = data;
925 			break;
926 		}
927 	}
928 	/*
929 	 * Shift out data.
930 	 */
931 	data = 0;
932 	reg = FXP_EEPROM_EECS;
933 	for (x = 1 << 15; x; x >>= 1) {
934 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
935 		DELAY(1);
936 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
937 			data |= x;
938 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
939 		DELAY(1);
940 	}
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942 	DELAY(1);
943 
944 	return (data);
945 }
946 
947 static void
948 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
949 {
950 	int i;
951 
952 	/*
953 	 * Erase/write enable.
954 	 */
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956 	fxp_eeprom_shiftin(sc, 0x4, 3);
957 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
958 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
959 	DELAY(1);
960 	/*
961 	 * Shift in write opcode, address, data.
962 	 */
963 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
964 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
965 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
966 	fxp_eeprom_shiftin(sc, data, 16);
967 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
968 	DELAY(1);
969 	/*
970 	 * Wait for EEPROM to finish up.
971 	 */
972 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
973 	DELAY(1);
974 	for (i = 0; i < 1000; i++) {
975 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
976 			break;
977 		DELAY(50);
978 	}
979 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
980 	DELAY(1);
981 	/*
982 	 * Erase/write disable.
983 	 */
984 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
985 	fxp_eeprom_shiftin(sc, 0x4, 3);
986 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
987 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
988 	DELAY(1);
989 }
990 
991 /*
992  * From NetBSD:
993  *
994  * Figure out EEPROM size.
995  *
996  * 559's can have either 64-word or 256-word EEPROMs, the 558
997  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
998  * talks about the existance of 16 to 256 word EEPROMs.
999  *
1000  * The only known sizes are 64 and 256, where the 256 version is used
1001  * by CardBus cards to store CIS information.
1002  *
1003  * The address is shifted in msb-to-lsb, and after the last
1004  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1005  * after which follows the actual data. We try to detect this zero, by
1006  * probing the data-out bit in the EEPROM control register just after
1007  * having shifted in a bit. If the bit is zero, we assume we've
1008  * shifted enough address bits. The data-out should be tri-state,
1009  * before this, which should translate to a logical one.
1010  */
1011 static void
1012 fxp_autosize_eeprom(struct fxp_softc *sc)
1013 {
1014 
1015 	/* guess maximum size of 256 words */
1016 	sc->eeprom_size = 8;
1017 
1018 	/* autosize */
1019 	fxp_eeprom_getword(sc, 0, 1);
1020 }
1021 
1022 static void
1023 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1024 {
1025 	int i;
1026 
1027 	for (i = 0; i < words; i++)
1028 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1029 }
1030 
1031 static void
1032 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < words; i++)
1037 		fxp_eeprom_putword(sc, offset + i, data[i]);
1038 }
1039 
1040 /*
1041  * Start packet transmission on the interface.
1042  */
1043 static void
1044 fxp_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1045 {
1046 	struct fxp_softc *sc = ifp->if_softc;
1047 	struct fxp_cb_tx *txp;
1048 
1049 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1050 	ASSERT_SERIALIZED(ifp->if_serializer);
1051 
1052 	/*
1053 	 * See if we need to suspend xmit until the multicast filter
1054 	 * has been reprogrammed (which can only be done at the head
1055 	 * of the command chain).
1056 	 */
1057 	if (sc->need_mcsetup) {
1058 		ifq_purge(&ifp->if_snd);
1059 		return;
1060 	}
1061 
1062 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1063 		return;
1064 
1065 	txp = NULL;
1066 
1067 	/*
1068 	 * We're finished if there is nothing more to add to the list or if
1069 	 * we're all filled up with buffers to transmit.
1070 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1071 	 *       a NOP command when needed.
1072 	 */
1073 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1074 		struct mbuf *m, *mb_head;
1075 		int segment, ntries = 0;
1076 
1077 		/*
1078 		 * Grab a packet to transmit.
1079 		 */
1080 		mb_head = ifq_dequeue(&ifp->if_snd);
1081 		if (mb_head == NULL)
1082 			break;
1083 tbdinit:
1084 		/*
1085 		 * Make sure that the packet fits into one TX desc
1086 		 */
1087 		segment = 0;
1088 		for (m = mb_head; m != NULL; m = m->m_next) {
1089 			if (m->m_len != 0) {
1090 				++segment;
1091 				if (segment >= FXP_NTXSEG)
1092 					break;
1093 			}
1094 		}
1095 		if (segment >= FXP_NTXSEG) {
1096 			struct mbuf *mn;
1097 
1098 			if (ntries) {
1099 				/*
1100 				 * Packet is excessively fragmented,
1101 				 * and will never fit into one TX
1102 				 * desc.  Give it up.
1103 				 */
1104 				m_freem(mb_head);
1105 				IFNET_STAT_INC(ifp, oerrors, 1);
1106 				continue;
1107 			}
1108 
1109 			mn = m_dup(mb_head, M_NOWAIT);
1110 			if (mn == NULL) {
1111 				m_freem(mb_head);
1112 				IFNET_STAT_INC(ifp, oerrors, 1);
1113 				continue;
1114 			}
1115 
1116 			m_freem(mb_head);
1117 			mb_head = mn;
1118 			ntries = 1;
1119 			goto tbdinit;
1120 		}
1121 
1122 		/*
1123 		 * Get pointer to next available tx desc.
1124 		 */
1125 		txp = sc->cbl_last->next;
1126 
1127 		/*
1128 		 * Go through each of the mbufs in the chain and initialize
1129 		 * the transmit buffer descriptors with the physical address
1130 		 * and size of the mbuf.
1131 		 */
1132 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1133 			if (m->m_len != 0) {
1134 				KKASSERT(segment < FXP_NTXSEG);
1135 
1136 				txp->tbd[segment].tb_addr =
1137 				    vtophys(mtod(m, vm_offset_t));
1138 				txp->tbd[segment].tb_size = m->m_len;
1139 				segment++;
1140 			}
1141 		}
1142 		KKASSERT(m == NULL);
1143 
1144 		txp->tbd_number = segment;
1145 		txp->mb_head = mb_head;
1146 		txp->cb_status = 0;
1147 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1148 			txp->cb_command =
1149 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1150 			    FXP_CB_COMMAND_S;
1151 		} else {
1152 			txp->cb_command =
1153 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1154 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1155 		}
1156 		txp->tx_threshold = tx_threshold;
1157 
1158 		/*
1159 		 * Advance the end of list forward.
1160 		 */
1161 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1162 		sc->cbl_last = txp;
1163 
1164 		/*
1165 		 * Advance the beginning of the list forward if there are
1166 		 * no other packets queued (when nothing is queued, cbl_first
1167 		 * sits on the last TxCB that was sent out).
1168 		 */
1169 		if (sc->tx_queued == 0)
1170 			sc->cbl_first = txp;
1171 
1172 		sc->tx_queued++;
1173 		/*
1174 		 * Set a 5 second timer just in case we don't hear
1175 		 * from the card again.
1176 		 */
1177 		ifp->if_timer = 5;
1178 
1179 		BPF_MTAP(ifp, mb_head);
1180 	}
1181 
1182 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1183 		ifq_set_oactive(&ifp->if_snd);
1184 
1185 	/*
1186 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1187 	 * going again if suspended.
1188 	 */
1189 	if (txp != NULL) {
1190 		fxp_scb_wait(sc);
1191 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1192 	}
1193 }
1194 
1195 #ifdef IFPOLL_ENABLE
1196 
1197 static void
1198 fxp_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1199 {
1200 	struct fxp_softc *sc = ifp->if_softc;
1201 	u_int8_t statack;
1202 
1203 	ASSERT_SERIALIZED(ifp->if_serializer);
1204 
1205 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1206 		  FXP_SCB_STATACK_FR;
1207 	if (sc->fxp_npoll.ifpc_stcount-- == 0) {
1208 		u_int8_t tmp;
1209 
1210 		sc->fxp_npoll.ifpc_stcount = sc->fxp_npoll.ifpc_stfrac;
1211 
1212 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1213 		if (tmp == 0xff || tmp == 0)
1214 			return; /* nothing to do */
1215 		tmp &= ~statack;
1216 		/* ack what we can */
1217 		if (tmp != 0)
1218 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1219 		statack |= tmp;
1220 	}
1221 	fxp_intr_body(sc, statack, count);
1222 }
1223 
1224 static void
1225 fxp_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1226 {
1227 	struct fxp_softc *sc = ifp->if_softc;
1228 
1229 	ASSERT_SERIALIZED(ifp->if_serializer);
1230 
1231 	if (info != NULL) {
1232 		int cpuid = sc->fxp_npoll.ifpc_cpuid;
1233 
1234 		info->ifpi_rx[cpuid].poll_func = fxp_npoll_compat;
1235 		info->ifpi_rx[cpuid].arg = NULL;
1236 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1237 
1238 		if (ifp->if_flags & IFF_RUNNING) {
1239 			/* disable interrupts */
1240 			CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
1241 			    FXP_SCB_INTR_DISABLE);
1242 			sc->fxp_npoll.ifpc_stcount = 0;
1243 		}
1244 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1245 	} else {
1246 		if (ifp->if_flags & IFF_RUNNING) {
1247 			/* enable interrupts */
1248 			CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1249 		}
1250 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
1251 	}
1252 }
1253 
1254 #endif /* IFPOLL_ENABLE */
1255 
1256 /*
1257  * Process interface interrupts.
1258  */
1259 static void
1260 fxp_intr(void *xsc)
1261 {
1262 	struct fxp_softc *sc = xsc;
1263 	u_int8_t statack;
1264 
1265 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1266 
1267 	if (sc->suspended) {
1268 		return;
1269 	}
1270 
1271 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1272 		/*
1273 		 * It should not be possible to have all bits set; the
1274 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1275 		 * all bits are set, this may indicate that the card has
1276 		 * been physically ejected, so ignore it.
1277 		 */
1278 		if (statack == 0xff)
1279 			return;
1280 
1281 		/*
1282 		 * First ACK all the interrupts in this pass.
1283 		 */
1284 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1285 		fxp_intr_body(sc, statack, -1);
1286 	}
1287 }
1288 
1289 static void
1290 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1291 {
1292 	struct ifnet *ifp = &sc->arpcom.ac_if;
1293 	struct mbuf *m;
1294 	struct fxp_rfa *rfa;
1295 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1296 
1297 	if (rnr)
1298 		fxp_rnr++;
1299 #ifdef IFPOLL_ENABLE
1300 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1301 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1302 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1303 		rnr = 1;
1304 	}
1305 #endif
1306 
1307 	/*
1308 	 * Free any finished transmit mbuf chains.
1309 	 *
1310 	 * Handle the CNA event likt a CXTNO event. It used to
1311 	 * be that this event (control unit not ready) was not
1312 	 * encountered, but it is now with the SMPng modifications.
1313 	 * The exact sequence of events that occur when the interface
1314 	 * is brought up are different now, and if this event
1315 	 * goes unhandled, the configuration/rxfilter setup sequence
1316 	 * can stall for several seconds. The result is that no
1317 	 * packets go out onto the wire for about 5 to 10 seconds
1318 	 * after the interface is ifconfig'ed for the first time.
1319 	 */
1320 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1321 		struct fxp_cb_tx *txp;
1322 
1323 		for (txp = sc->cbl_first; sc->tx_queued &&
1324 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1325 		    txp = txp->next) {
1326 			if ((m = txp->mb_head) != NULL) {
1327 				txp->mb_head = NULL;
1328 				sc->tx_queued--;
1329 				m_freem(m);
1330 			} else {
1331 				sc->tx_queued--;
1332 			}
1333 		}
1334 		sc->cbl_first = txp;
1335 
1336 		if (sc->tx_queued < FXP_USABLE_TXCB)
1337 			ifq_clr_oactive(&ifp->if_snd);
1338 
1339 		if (sc->tx_queued == 0) {
1340 			ifp->if_timer = 0;
1341 			if (sc->need_mcsetup)
1342 				fxp_mc_setup(sc);
1343 		}
1344 
1345 		/*
1346 		 * Try to start more packets transmitting.
1347 		 */
1348 		if (!ifq_is_empty(&ifp->if_snd))
1349 			if_devstart(ifp);
1350 	}
1351 
1352 	/*
1353 	 * Just return if nothing happened on the receive side.
1354 	 */
1355 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1356 		return;
1357 
1358 	/*
1359 	 * Process receiver interrupts. If a no-resource (RNR)
1360 	 * condition exists, get whatever packets we can and
1361 	 * re-start the receiver.
1362 	 *
1363 	 * When using polling, we do not process the list to completion,
1364 	 * so when we get an RNR interrupt we must defer the restart
1365 	 * until we hit the last buffer with the C bit set.
1366 	 * If we run out of cycles and rfa_headm has the C bit set,
1367 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1368 	 * that the info will be used in the subsequent polling cycle.
1369 	 */
1370 	for (;;) {
1371 		m = sc->rfa_headm;
1372 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1373 					 RFA_ALIGNMENT_FUDGE);
1374 
1375 #ifdef IFPOLL_ENABLE /* loop at most count times if count >=0 */
1376 		if (count >= 0 && count-- == 0) {
1377 			if (rnr) {
1378 				/* Defer RNR processing until the next time. */
1379 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1380 				rnr = 0;
1381 			}
1382 			break;
1383 		}
1384 #endif /* IFPOLL_ENABLE */
1385 
1386 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1387 			break;
1388 
1389 		/*
1390 		 * Remove first packet from the chain.
1391 		 */
1392 		sc->rfa_headm = m->m_next;
1393 		if (sc->rfa_headm == NULL)
1394 			sc->rfa_tailm = NULL;
1395 		m->m_next = NULL;
1396 
1397 		/*
1398 		 * Add a new buffer to the receive chain.
1399 		 * If this fails, the old buffer is recycled
1400 		 * instead.
1401 		 */
1402 		if (fxp_add_rfabuf(sc, m) == 0) {
1403 			int total_len;
1404 
1405 			/*
1406 			 * Fetch packet length (the top 2 bits of
1407 			 * actual_size are flags set by the controller
1408 			 * upon completion), and drop the packet in case
1409 			 * of bogus length or CRC errors.
1410 			 */
1411 			total_len = rfa->actual_size & 0x3fff;
1412 			if (total_len < sizeof(struct ether_header) ||
1413 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1414 					sizeof(struct fxp_rfa) ||
1415 			    (rfa->rfa_status & FXP_RFA_STATUS_CRC)) {
1416 				m_freem(m);
1417 				continue;
1418 			}
1419 			m->m_pkthdr.len = m->m_len = total_len;
1420 			ifp->if_input(ifp, m, NULL, -1);
1421 		}
1422 	}
1423 
1424 	if (rnr) {
1425 		fxp_scb_wait(sc);
1426 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1427 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1428 		    RFA_ALIGNMENT_FUDGE);
1429 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1430 	}
1431 }
1432 
1433 /*
1434  * Update packet in/out/collision statistics. The i82557 doesn't
1435  * allow you to access these counters without doing a fairly
1436  * expensive DMA to get _all_ of the statistics it maintains, so
1437  * we do this operation here only once per second. The statistics
1438  * counters in the kernel are updated from the previous dump-stats
1439  * DMA and then a new dump-stats DMA is started. The on-chip
1440  * counters are zeroed when the DMA completes. If we can't start
1441  * the DMA immediately, we don't wait - we just prepare to read
1442  * them again next time.
1443  */
1444 static void
1445 fxp_tick(void *xsc)
1446 {
1447 	struct fxp_softc *sc = xsc;
1448 	struct ifnet *ifp = &sc->arpcom.ac_if;
1449 	struct fxp_stats *sp = sc->fxp_stats;
1450 	struct fxp_cb_tx *txp;
1451 	struct mbuf *m;
1452 
1453 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1454 
1455 	IFNET_STAT_INC(ifp, opackets, sp->tx_good);
1456 	IFNET_STAT_INC(ifp, collisions, sp->tx_total_collisions);
1457 	if (sp->rx_good) {
1458 		IFNET_STAT_INC(ifp, ipackets, sp->rx_good);
1459 		sc->rx_idle_secs = 0;
1460 	} else {
1461 		/*
1462 		 * Receiver's been idle for another second.
1463 		 */
1464 		sc->rx_idle_secs++;
1465 	}
1466 	IFNET_STAT_INC(ifp, ierrors,
1467 	    sp->rx_crc_errors +
1468 	    sp->rx_alignment_errors +
1469 	    sp->rx_rnr_errors +
1470 	    sp->rx_overrun_errors);
1471 	/*
1472 	 * If any transmit underruns occured, bump up the transmit
1473 	 * threshold by another 512 bytes (64 * 8).
1474 	 */
1475 	if (sp->tx_underruns) {
1476 		IFNET_STAT_INC(ifp, oerrors, sp->tx_underruns);
1477 		if (tx_threshold < 192)
1478 			tx_threshold += 64;
1479 	}
1480 
1481 	/*
1482 	 * Release any xmit buffers that have completed DMA. This isn't
1483 	 * strictly necessary to do here, but it's advantagous for mbufs
1484 	 * with external storage to be released in a timely manner rather
1485 	 * than being defered for a potentially long time. This limits
1486 	 * the delay to a maximum of one second.
1487 	 */
1488 	for (txp = sc->cbl_first; sc->tx_queued &&
1489 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1490 	    txp = txp->next) {
1491 		if ((m = txp->mb_head) != NULL) {
1492 			txp->mb_head = NULL;
1493 			sc->tx_queued--;
1494 			m_freem(m);
1495 		} else {
1496 			sc->tx_queued--;
1497 		}
1498 	}
1499 	sc->cbl_first = txp;
1500 
1501 	if (sc->tx_queued < FXP_USABLE_TXCB)
1502 		ifq_clr_oactive(&ifp->if_snd);
1503 	if (sc->tx_queued == 0)
1504 		ifp->if_timer = 0;
1505 
1506  	/*
1507 	 * Try to start more packets transmitting.
1508 	 */
1509 	if (!ifq_is_empty(&ifp->if_snd))
1510 		if_devstart(ifp);
1511 
1512 	/*
1513 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1514 	 * then assume the receiver has locked up and attempt to clear
1515 	 * the condition by reprogramming the multicast filter. This is
1516 	 * a work-around for a bug in the 82557 where the receiver locks
1517 	 * up if it gets certain types of garbage in the syncronization
1518 	 * bits prior to the packet header. This bug is supposed to only
1519 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1520 	 * mode as well (perhaps due to a 10/100 speed transition).
1521 	 */
1522 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1523 		sc->rx_idle_secs = 0;
1524 		fxp_mc_setup(sc);
1525 	}
1526 	/*
1527 	 * If there is no pending command, start another stats
1528 	 * dump. Otherwise punt for now.
1529 	 */
1530 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1531 		/*
1532 		 * Start another stats dump.
1533 		 */
1534 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1535 	} else {
1536 		/*
1537 		 * A previous command is still waiting to be accepted.
1538 		 * Just zero our copy of the stats and wait for the
1539 		 * next timer event to update them.
1540 		 */
1541 		sp->tx_good = 0;
1542 		sp->tx_underruns = 0;
1543 		sp->tx_total_collisions = 0;
1544 
1545 		sp->rx_good = 0;
1546 		sp->rx_crc_errors = 0;
1547 		sp->rx_alignment_errors = 0;
1548 		sp->rx_rnr_errors = 0;
1549 		sp->rx_overrun_errors = 0;
1550 	}
1551 	if (sc->miibus != NULL)
1552 		mii_tick(device_get_softc(sc->miibus));
1553 	/*
1554 	 * Schedule another timeout one second from now.
1555 	 */
1556 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1557 
1558 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1559 }
1560 
1561 /*
1562  * Stop the interface. Cancels the statistics updater and resets
1563  * the interface.
1564  */
1565 static void
1566 fxp_stop(struct fxp_softc *sc)
1567 {
1568 	struct ifnet *ifp = &sc->arpcom.ac_if;
1569 	struct fxp_cb_tx *txp;
1570 	int i;
1571 
1572 	ASSERT_SERIALIZED(ifp->if_serializer);
1573 
1574 	ifp->if_flags &= ~IFF_RUNNING;
1575 	ifq_clr_oactive(&ifp->if_snd);
1576 	ifp->if_timer = 0;
1577 
1578 	/*
1579 	 * Cancel stats updater.
1580 	 */
1581 	callout_stop(&sc->fxp_stat_timer);
1582 
1583 	/*
1584 	 * Issue software reset, which also unloads the microcode.
1585 	 */
1586 	sc->flags &= ~FXP_FLAG_UCODE;
1587 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1588 	DELAY(50);
1589 
1590 	/*
1591 	 * Release any xmit buffers.
1592 	 */
1593 	txp = sc->cbl_base;
1594 	if (txp != NULL) {
1595 		for (i = 0; i < FXP_NTXCB; i++) {
1596 			if (txp[i].mb_head != NULL) {
1597 				m_freem(txp[i].mb_head);
1598 				txp[i].mb_head = NULL;
1599 			}
1600 		}
1601 	}
1602 	sc->tx_queued = 0;
1603 
1604 	/*
1605 	 * Free all the receive buffers then reallocate/reinitialize
1606 	 */
1607 	if (sc->rfa_headm != NULL)
1608 		m_freem(sc->rfa_headm);
1609 	sc->rfa_headm = NULL;
1610 	sc->rfa_tailm = NULL;
1611 	for (i = 0; i < FXP_NRFABUFS; i++) {
1612 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1613 			/*
1614 			 * This "can't happen" - we're at splimp()
1615 			 * and we just freed all the buffers we need
1616 			 * above.
1617 			 */
1618 			panic("fxp_stop: no buffers!");
1619 		}
1620 	}
1621 }
1622 
1623 /*
1624  * Watchdog/transmission transmit timeout handler. Called when a
1625  * transmission is started on the interface, but no interrupt is
1626  * received before the timeout. This usually indicates that the
1627  * card has wedged for some reason.
1628  */
1629 static void
1630 fxp_watchdog(struct ifnet *ifp)
1631 {
1632 	ASSERT_SERIALIZED(ifp->if_serializer);
1633 
1634 	if_printf(ifp, "device timeout\n");
1635 	IFNET_STAT_INC(ifp, oerrors, 1);
1636 	fxp_init(ifp->if_softc);
1637 }
1638 
1639 static void
1640 fxp_init(void *xsc)
1641 {
1642 	struct fxp_softc *sc = xsc;
1643 	struct ifnet *ifp = &sc->arpcom.ac_if;
1644 	struct fxp_cb_config *cbp;
1645 	struct fxp_cb_ias *cb_ias;
1646 	struct fxp_cb_tx *txp;
1647 	struct fxp_cb_mcs *mcsp;
1648 	int i, prm;
1649 
1650 	ASSERT_SERIALIZED(ifp->if_serializer);
1651 
1652 	/*
1653 	 * Cancel any pending I/O
1654 	 */
1655 	fxp_stop(sc);
1656 
1657 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1658 
1659 	/*
1660 	 * Initialize base of CBL and RFA memory. Loading with zero
1661 	 * sets it up for regular linear addressing.
1662 	 */
1663 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1664 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1665 
1666 	fxp_scb_wait(sc);
1667 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1668 
1669 	/*
1670 	 * Initialize base of dump-stats buffer.
1671 	 */
1672 	fxp_scb_wait(sc);
1673 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1674 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1675 
1676 	/*
1677 	 * Attempt to load microcode if requested.
1678 	 */
1679 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1680 		fxp_load_ucode(sc);
1681 
1682 	/*
1683 	 * Initialize the multicast address list.
1684 	 */
1685 	if (fxp_mc_addrs(sc)) {
1686 		mcsp = sc->mcsp;
1687 		mcsp->cb_status = 0;
1688 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1689 		mcsp->link_addr = -1;
1690 		/*
1691 	 	 * Start the multicast setup command.
1692 		 */
1693 		fxp_scb_wait(sc);
1694 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1695 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1696 		/* ...and wait for it to complete. */
1697 		fxp_dma_wait(&mcsp->cb_status, sc);
1698 	}
1699 
1700 	/*
1701 	 * We temporarily use memory that contains the TxCB list to
1702 	 * construct the config CB. The TxCB list memory is rebuilt
1703 	 * later.
1704 	 */
1705 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1706 
1707 	/*
1708 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1709 	 * zero and must be one bits in this structure and this is the easiest
1710 	 * way to initialize them all to proper values.
1711 	 */
1712 	bcopy(fxp_cb_config_template,
1713 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1714 		sizeof(fxp_cb_config_template));
1715 
1716 	cbp->cb_status =	0;
1717 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1718 	cbp->link_addr =	-1;	/* (no) next command */
1719 	cbp->byte_count =	22;	/* (22) bytes to config */
1720 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1721 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1722 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1723 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1724 	cbp->type_enable =	0;	/* actually reserved */
1725 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1726 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1727 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1728 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1729 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1730 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1731 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1732 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1733 	cbp->ci_int =		1;	/* interrupt on CU idle */
1734 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1735 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1736 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1737 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1738 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1739 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1740 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1741 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1742 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1743 	cbp->csma_dis =		0;	/* (don't) disable link */
1744 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1745 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1746 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1747 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1748 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1749 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1750 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1751 	cbp->loopback =		0;	/* (don't) loopback */
1752 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1753 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1754 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1755 	cbp->promiscuous =	prm;	/* promiscuous mode */
1756 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1757 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1758 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1759 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1760 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1761 
1762 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1763 	cbp->padding =		1;	/* (do) pad short tx packets */
1764 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1765 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1766 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1767 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1768 					/* must set wake_en in PMCSR also */
1769 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1770 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1771 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1772 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1773 
1774 	if (sc->revision == FXP_REV_82557) {
1775 		/*
1776 		 * The 82557 has no hardware flow control, the values
1777 		 * below are the defaults for the chip.
1778 		 */
1779 		cbp->fc_delay_lsb =	0;
1780 		cbp->fc_delay_msb =	0x40;
1781 		cbp->pri_fc_thresh =	3;
1782 		cbp->tx_fc_dis =	0;
1783 		cbp->rx_fc_restop =	0;
1784 		cbp->rx_fc_restart =	0;
1785 		cbp->fc_filter =	0;
1786 		cbp->pri_fc_loc =	1;
1787 	} else {
1788 		cbp->fc_delay_lsb =	0x1f;
1789 		cbp->fc_delay_msb =	0x01;
1790 		cbp->pri_fc_thresh =	3;
1791 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1792 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1793 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1794 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1795 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1796 	}
1797 
1798 	/*
1799 	 * Start the config command/DMA.
1800 	 */
1801 	fxp_scb_wait(sc);
1802 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1803 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1804 	/* ...and wait for it to complete. */
1805 	fxp_dma_wait(&cbp->cb_status, sc);
1806 
1807 	/*
1808 	 * Now initialize the station address. Temporarily use the TxCB
1809 	 * memory area like we did above for the config CB.
1810 	 */
1811 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1812 	cb_ias->cb_status = 0;
1813 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1814 	cb_ias->link_addr = -1;
1815 	bcopy(sc->arpcom.ac_enaddr,
1816 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1817 	    sizeof(sc->arpcom.ac_enaddr));
1818 
1819 	/*
1820 	 * Start the IAS (Individual Address Setup) command/DMA.
1821 	 */
1822 	fxp_scb_wait(sc);
1823 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1824 	/* ...and wait for it to complete. */
1825 	fxp_dma_wait(&cb_ias->cb_status, sc);
1826 
1827 	/*
1828 	 * Initialize transmit control block (TxCB) list.
1829 	 */
1830 
1831 	txp = sc->cbl_base;
1832 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1833 	for (i = 0; i < FXP_NTXCB; i++) {
1834 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1835 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1836 		txp[i].link_addr =
1837 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1838 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1839 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1840 		else
1841 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1842 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1843 	}
1844 	/*
1845 	 * Set the suspend flag on the first TxCB and start the control
1846 	 * unit. It will execute the NOP and then suspend.
1847 	 */
1848 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1849 	sc->cbl_first = sc->cbl_last = txp;
1850 	sc->tx_queued = 1;
1851 
1852 	fxp_scb_wait(sc);
1853 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1854 
1855 	/*
1856 	 * Initialize receiver buffer area - RFA.
1857 	 */
1858 	fxp_scb_wait(sc);
1859 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1860 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1861 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1862 
1863 	/*
1864 	 * Set current media.
1865 	 */
1866 	if (sc->miibus != NULL)
1867 		mii_mediachg(device_get_softc(sc->miibus));
1868 
1869 	ifp->if_flags |= IFF_RUNNING;
1870 	ifq_clr_oactive(&ifp->if_snd);
1871 
1872 	/*
1873 	 * Enable interrupts.
1874 	 */
1875 #ifdef IFPOLL_ENABLE
1876 	/*
1877 	 * ... but only do that if we are not polling. And because (presumably)
1878 	 * the default is interrupts on, we need to disable them explicitly!
1879 	 */
1880 	if (ifp->if_flags & IFF_NPOLLING) {
1881 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1882 		sc->fxp_npoll.ifpc_stcount = 0;
1883 	} else
1884 #endif /* IFPOLL_ENABLE */
1885 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1886 
1887 	/*
1888 	 * Start stats updater.
1889 	 */
1890 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1891 }
1892 
1893 static int
1894 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1895 {
1896 	ASSERT_SERIALIZED(ifp->if_serializer);
1897 	return (0);
1898 }
1899 
1900 static void
1901 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1902 {
1903 	ASSERT_SERIALIZED(ifp->if_serializer);
1904 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1905 }
1906 
1907 /*
1908  * Change media according to request.
1909  */
1910 static int
1911 fxp_ifmedia_upd(struct ifnet *ifp)
1912 {
1913 	struct fxp_softc *sc = ifp->if_softc;
1914 	struct mii_data *mii;
1915 
1916 	ASSERT_SERIALIZED(ifp->if_serializer);
1917 
1918 	mii = device_get_softc(sc->miibus);
1919 	mii_mediachg(mii);
1920 	return (0);
1921 }
1922 
1923 /*
1924  * Notify the world which media we're using.
1925  */
1926 static void
1927 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1928 {
1929 	struct fxp_softc *sc = ifp->if_softc;
1930 	struct mii_data *mii;
1931 
1932 	ASSERT_SERIALIZED(ifp->if_serializer);
1933 
1934 	mii = device_get_softc(sc->miibus);
1935 	mii_pollstat(mii);
1936 	ifmr->ifm_active = mii->mii_media_active;
1937 	ifmr->ifm_status = mii->mii_media_status;
1938 
1939 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1940 		sc->cu_resume_bug = 1;
1941 	else
1942 		sc->cu_resume_bug = 0;
1943 }
1944 
1945 /*
1946  * Add a buffer to the end of the RFA buffer list.
1947  * Return 0 if successful, 1 for failure. A failure results in
1948  * adding the 'oldm' (if non-NULL) on to the end of the list -
1949  * tossing out its old contents and recycling it.
1950  * The RFA struct is stuck at the beginning of mbuf cluster and the
1951  * data pointer is fixed up to point just past it.
1952  */
1953 static int
1954 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1955 {
1956 	u_int32_t v;
1957 	struct mbuf *m;
1958 	struct fxp_rfa *rfa, *p_rfa;
1959 
1960 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1961 	if (m == NULL) { /* try to recycle the old mbuf instead */
1962 		if (oldm == NULL)
1963 			return 1;
1964 		m = oldm;
1965 		m->m_data = m->m_ext.ext_buf;
1966 	}
1967 
1968 	/*
1969 	 * Move the data pointer up so that the incoming data packet
1970 	 * will be 32-bit aligned.
1971 	 */
1972 	m->m_data += RFA_ALIGNMENT_FUDGE;
1973 
1974 	/*
1975 	 * Get a pointer to the base of the mbuf cluster and move
1976 	 * data start past it.
1977 	 */
1978 	rfa = mtod(m, struct fxp_rfa *);
1979 	m->m_data += sizeof(struct fxp_rfa);
1980 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
1981 				RFA_ALIGNMENT_FUDGE);
1982 
1983 	/*
1984 	 * Initialize the rest of the RFA.  Note that since the RFA
1985 	 * is misaligned, we cannot store values directly.  Instead,
1986 	 * we use an optimized, inline copy.
1987 	 */
1988 
1989 	rfa->rfa_status = 0;
1990 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1991 	rfa->actual_size = 0;
1992 
1993 	v = -1;
1994 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1995 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1996 
1997 	/*
1998 	 * If there are other buffers already on the list, attach this
1999 	 * one to the end by fixing up the tail to point to this one.
2000 	 */
2001 	if (sc->rfa_headm != NULL) {
2002 		p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf +
2003 					   RFA_ALIGNMENT_FUDGE);
2004 		sc->rfa_tailm->m_next = m;
2005 		v = vtophys(rfa);
2006 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2007 		p_rfa->rfa_control = 0;
2008 	} else {
2009 		sc->rfa_headm = m;
2010 	}
2011 	sc->rfa_tailm = m;
2012 
2013 	return (m == oldm);
2014 }
2015 
2016 static int
2017 fxp_miibus_readreg(device_t dev, int phy, int reg)
2018 {
2019 	struct fxp_softc *sc = device_get_softc(dev);
2020 	int count = 10000;
2021 	int value;
2022 
2023 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2024 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2025 
2026 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2027 	    && count--)
2028 		DELAY(10);
2029 
2030 	if (count <= 0)
2031 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2032 
2033 	return (value & 0xffff);
2034 }
2035 
2036 static void
2037 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2038 {
2039 	struct fxp_softc *sc = device_get_softc(dev);
2040 	int count = 10000;
2041 
2042 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2043 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2044 	    (value & 0xffff));
2045 
2046 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2047 	    count--)
2048 		DELAY(10);
2049 
2050 	if (count <= 0)
2051 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2052 }
2053 
2054 static int
2055 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2056 {
2057 	struct fxp_softc *sc = ifp->if_softc;
2058 	struct ifreq *ifr = (struct ifreq *)data;
2059 	struct mii_data *mii;
2060 	int error = 0;
2061 
2062 	ASSERT_SERIALIZED(ifp->if_serializer);
2063 
2064 	switch (command) {
2065 
2066 	case SIOCSIFFLAGS:
2067 		if (ifp->if_flags & IFF_ALLMULTI)
2068 			sc->flags |= FXP_FLAG_ALL_MCAST;
2069 		else
2070 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2071 
2072 		/*
2073 		 * If interface is marked up and not running, then start it.
2074 		 * If it is marked down and running, stop it.
2075 		 * XXX If it's up then re-initialize it. This is so flags
2076 		 * such as IFF_PROMISC are handled.
2077 		 */
2078 		if (ifp->if_flags & IFF_UP) {
2079 			fxp_init(sc);
2080 		} else {
2081 			if (ifp->if_flags & IFF_RUNNING)
2082 				fxp_stop(sc);
2083 		}
2084 		break;
2085 
2086 	case SIOCADDMULTI:
2087 	case SIOCDELMULTI:
2088 		if (ifp->if_flags & IFF_ALLMULTI)
2089 			sc->flags |= FXP_FLAG_ALL_MCAST;
2090 		else
2091 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2092 		/*
2093 		 * Multicast list has changed; set the hardware filter
2094 		 * accordingly.
2095 		 */
2096 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2097 			fxp_mc_setup(sc);
2098 		/*
2099 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2100 		 * again rather than else {}.
2101 		 */
2102 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2103 			fxp_init(sc);
2104 		error = 0;
2105 		break;
2106 
2107 	case SIOCSIFMEDIA:
2108 	case SIOCGIFMEDIA:
2109 		if (sc->miibus != NULL) {
2110 			mii = device_get_softc(sc->miibus);
2111                         error = ifmedia_ioctl(ifp, ifr,
2112                             &mii->mii_media, command);
2113 		} else {
2114                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2115 		}
2116 		break;
2117 
2118 	default:
2119 		error = ether_ioctl(ifp, command, data);
2120 		break;
2121 	}
2122 	return (error);
2123 }
2124 
2125 /*
2126  * Fill in the multicast address list and return number of entries.
2127  */
2128 static int
2129 fxp_mc_addrs(struct fxp_softc *sc)
2130 {
2131 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2132 	struct ifnet *ifp = &sc->arpcom.ac_if;
2133 	struct ifmultiaddr *ifma;
2134 	int nmcasts;
2135 
2136 	nmcasts = 0;
2137 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2138 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2139 			if (ifma->ifma_addr->sa_family != AF_LINK)
2140 				continue;
2141 			if (nmcasts >= MAXMCADDR) {
2142 				sc->flags |= FXP_FLAG_ALL_MCAST;
2143 				nmcasts = 0;
2144 				break;
2145 			}
2146 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2147 			    (void *)(uintptr_t)(volatile void *)
2148 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2149 			nmcasts++;
2150 		}
2151 	}
2152 	mcsp->mc_cnt = nmcasts * 6;
2153 	return (nmcasts);
2154 }
2155 
2156 /*
2157  * Program the multicast filter.
2158  *
2159  * We have an artificial restriction that the multicast setup command
2160  * must be the first command in the chain, so we take steps to ensure
2161  * this. By requiring this, it allows us to keep up the performance of
2162  * the pre-initialized command ring (esp. link pointers) by not actually
2163  * inserting the mcsetup command in the ring - i.e. its link pointer
2164  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2165  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2166  * lead into the regular TxCB ring when it completes.
2167  *
2168  * This function must be called at splimp.
2169  */
2170 static void
2171 fxp_mc_setup(struct fxp_softc *sc)
2172 {
2173 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2174 	struct ifnet *ifp = &sc->arpcom.ac_if;
2175 	int count;
2176 
2177 	/*
2178 	 * If there are queued commands, we must wait until they are all
2179 	 * completed. If we are already waiting, then add a NOP command
2180 	 * with interrupt option so that we're notified when all commands
2181 	 * have been completed - fxp_start() ensures that no additional
2182 	 * TX commands will be added when need_mcsetup is true.
2183 	 */
2184 	if (sc->tx_queued) {
2185 		struct fxp_cb_tx *txp;
2186 
2187 		/*
2188 		 * need_mcsetup will be true if we are already waiting for the
2189 		 * NOP command to be completed (see below). In this case, bail.
2190 		 */
2191 		if (sc->need_mcsetup)
2192 			return;
2193 		sc->need_mcsetup = 1;
2194 
2195 		/*
2196 		 * Add a NOP command with interrupt so that we are notified
2197 		 * when all TX commands have been processed.
2198 		 */
2199 		txp = sc->cbl_last->next;
2200 		txp->mb_head = NULL;
2201 		txp->cb_status = 0;
2202 		txp->cb_command = FXP_CB_COMMAND_NOP |
2203 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2204 		/*
2205 		 * Advance the end of list forward.
2206 		 */
2207 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2208 		sc->cbl_last = txp;
2209 		sc->tx_queued++;
2210 		/*
2211 		 * Issue a resume in case the CU has just suspended.
2212 		 */
2213 		fxp_scb_wait(sc);
2214 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2215 		/*
2216 		 * Set a 5 second timer just in case we don't hear from the
2217 		 * card again.
2218 		 */
2219 		ifp->if_timer = 5;
2220 
2221 		return;
2222 	}
2223 	sc->need_mcsetup = 0;
2224 
2225 	/*
2226 	 * Initialize multicast setup descriptor.
2227 	 */
2228 	mcsp->next = sc->cbl_base;
2229 	mcsp->mb_head = NULL;
2230 	mcsp->cb_status = 0;
2231 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2232 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2233 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2234 	fxp_mc_addrs(sc);
2235 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2236 	sc->tx_queued = 1;
2237 
2238 	/*
2239 	 * Wait until command unit is not active. This should never
2240 	 * be the case when nothing is queued, but make sure anyway.
2241 	 */
2242 	count = 100;
2243 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2244 	    FXP_SCB_CUS_ACTIVE && --count)
2245 		DELAY(10);
2246 	if (count == 0) {
2247 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2248 		return;
2249 	}
2250 
2251 	/*
2252 	 * Start the multicast setup command.
2253 	 */
2254 	fxp_scb_wait(sc);
2255 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2256 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2257 
2258 	ifp->if_timer = 2;
2259 	return;
2260 }
2261 
2262 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2263 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2264 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2265 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2266 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2267 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2268 
2269 #define UCODE(x)	x, sizeof(x)
2270 
2271 struct ucode {
2272 	u_int32_t	revision;
2273 	u_int32_t	*ucode;
2274 	int		length;
2275 	u_short		int_delay_offset;
2276 	u_short		bundle_max_offset;
2277 } ucode_table[] = {
2278 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2279 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2280 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2281 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2282 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2283 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2284 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2285 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2286 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2287 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2288 	{ 0, NULL, 0, 0, 0 }
2289 };
2290 
2291 static void
2292 fxp_load_ucode(struct fxp_softc *sc)
2293 {
2294 	struct ucode *uc;
2295 	struct fxp_cb_ucode *cbp;
2296 
2297 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2298 		if (sc->revision == uc->revision)
2299 			break;
2300 	if (uc->ucode == NULL)
2301 		return;
2302 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2303 	cbp->cb_status = 0;
2304 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2305 	cbp->link_addr = -1;    	/* (no) next command */
2306 	memcpy(cbp->ucode, uc->ucode, uc->length);
2307 	if (uc->int_delay_offset)
2308 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2309 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2310 	if (uc->bundle_max_offset)
2311 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2312 		    sc->tunable_bundle_max;
2313 	/*
2314 	 * Download the ucode to the chip.
2315 	 */
2316 	fxp_scb_wait(sc);
2317 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2318 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2319 	/* ...and wait for it to complete. */
2320 	fxp_dma_wait(&cbp->cb_status, sc);
2321 	if_printf(&sc->arpcom.ac_if,
2322 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2323 	    sc->tunable_int_delay,
2324 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2325 	sc->flags |= FXP_FLAG_UCODE;
2326 }
2327 
2328 /*
2329  * Interrupt delay is expressed in microseconds, a multiplier is used
2330  * to convert this to the appropriate clock ticks before using.
2331  */
2332 static int
2333 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2334 {
2335 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2336 }
2337 
2338 static int
2339 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2340 {
2341 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2342 }
2343