xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision 8a7bdfea)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.50 2007/09/15 21:28:15 swildner Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #ifdef NS
53 #include <netns/ns.h>
54 #include <netns/ns_if.h>
55 #endif
56 
57 #include <net/bpf.h>
58 #include <sys/sockio.h>
59 #include <sys/bus.h>
60 #include <sys/rman.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <vm/vm.h>		/* for vtophys */
66 #include <vm/pmap.h>		/* for vtophys */
67 
68 #include <net/if_types.h>
69 #include <net/vlan/if_vlan_var.h>
70 
71 #include <bus/pci/pcivar.h>
72 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
73 
74 #include "../mii_layer/mii.h"
75 #include "../mii_layer/miivar.h"
76 
77 #include "if_fxpreg.h"
78 #include "if_fxpvar.h"
79 #include "rcvbundl.h"
80 
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	int16_t		revid;		/* -1 matches anything */
140 	char 		*name;
141 };
142 
143 /*
144  * Claim various Intel PCI device identifiers for this driver.  The
145  * sub-vendor and sub-device field are extensively used to identify
146  * particular variants, but we don't currently differentiate between
147  * them.
148  */
149 static struct fxp_ident fxp_ident_table[] = {
150      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
151      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
152      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
162      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
167      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
169      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
170      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
171      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
172      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
173      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
174      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
175      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
176      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
177      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
178      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
179      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
180      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
181      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
182      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
183      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
184      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
185      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
186      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
187      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
188      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
189      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
190      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
191      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
192      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
193      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
194      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
195      { 0,	-1,	NULL },
196 };
197 
198 static int		fxp_probe(device_t dev);
199 static int		fxp_attach(device_t dev);
200 static int		fxp_detach(device_t dev);
201 static int		fxp_shutdown(device_t dev);
202 static int		fxp_suspend(device_t dev);
203 static int		fxp_resume(device_t dev);
204 
205 static void		fxp_intr(void *xsc);
206 static void		fxp_intr_body(struct fxp_softc *sc,
207 				u_int8_t statack, int count);
208 
209 static void 		fxp_init(void *xsc);
210 static void 		fxp_tick(void *xsc);
211 static void		fxp_powerstate_d0(device_t dev);
212 static void 		fxp_start(struct ifnet *ifp);
213 static void		fxp_stop(struct fxp_softc *sc);
214 static void 		fxp_release(device_t dev);
215 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
216 			    caddr_t data, struct ucred *);
217 static void 		fxp_watchdog(struct ifnet *ifp);
218 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
219 static int		fxp_mc_addrs(struct fxp_softc *sc);
220 static void		fxp_mc_setup(struct fxp_softc *sc);
221 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
222 			    int autosize);
223 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
224 			    u_int16_t data);
225 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
226 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
227 			    int offset, int words);
228 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
229 			    int offset, int words);
230 static int		fxp_ifmedia_upd(struct ifnet *ifp);
231 static void		fxp_ifmedia_sts(struct ifnet *ifp,
232 			    struct ifmediareq *ifmr);
233 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
234 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
235 			    struct ifmediareq *ifmr);
236 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
237 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
238 			    int value);
239 static void		fxp_load_ucode(struct fxp_softc *sc);
240 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
241 			    int low, int high);
242 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
243 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
244 #ifdef DEVICE_POLLING
245 static poll_handler_t fxp_poll;
246 #endif
247 
248 static void		fxp_lwcopy(volatile u_int32_t *src,
249 			    volatile u_int32_t *dst);
250 static void 		fxp_scb_wait(struct fxp_softc *sc);
251 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252 static void		fxp_dma_wait(volatile u_int16_t *status,
253 			    struct fxp_softc *sc);
254 
255 static device_method_t fxp_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		fxp_probe),
258 	DEVMETHOD(device_attach,	fxp_attach),
259 	DEVMETHOD(device_detach,	fxp_detach),
260 	DEVMETHOD(device_shutdown,	fxp_shutdown),
261 	DEVMETHOD(device_suspend,	fxp_suspend),
262 	DEVMETHOD(device_resume,	fxp_resume),
263 
264 	/* MII interface */
265 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
266 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
267 
268 	{ 0, 0 }
269 };
270 
271 static driver_t fxp_driver = {
272 	"fxp",
273 	fxp_methods,
274 	sizeof(struct fxp_softc),
275 };
276 
277 static devclass_t fxp_devclass;
278 
279 DECLARE_DUMMY_MODULE(if_fxp);
280 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
281 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284 
285 static int fxp_rnr;
286 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
287 
288 /*
289  * Copy a 16-bit aligned 32-bit quantity.
290  */
291 static void
292 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
293 {
294 #ifdef __i386__
295 	*dst = *src;
296 #else
297 	volatile u_int16_t *a = (volatile u_int16_t *)src;
298 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
299 
300 	b[0] = a[0];
301 	b[1] = a[1];
302 #endif
303 }
304 
305 /*
306  * Wait for the previous command to be accepted (but not necessarily
307  * completed).
308  */
309 static void
310 fxp_scb_wait(struct fxp_softc *sc)
311 {
312 	int i = 10000;
313 
314 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
315 		DELAY(2);
316 	if (i == 0) {
317 		if_printf(&sc->arpcom.ac_if,
318 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
319 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
320 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
321 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
322 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
323 	}
324 }
325 
326 static void
327 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
328 {
329 
330 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
331 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
332 		fxp_scb_wait(sc);
333 	}
334 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
335 }
336 
337 static void
338 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
339 {
340 	int i = 10000;
341 
342 	while (!(*status & FXP_CB_STATUS_C) && --i)
343 		DELAY(2);
344 	if (i == 0)
345 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
346 }
347 
348 /*
349  * Return identification string if this is device is ours.
350  */
351 static int
352 fxp_probe(device_t dev)
353 {
354 	u_int16_t devid;
355 	u_int8_t revid;
356 	struct fxp_ident *ident;
357 
358 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
359 		devid = pci_get_device(dev);
360 		revid = pci_get_revid(dev);
361 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
362 			if (ident->devid == devid &&
363 			    (ident->revid == revid || ident->revid == -1)) {
364 				device_set_desc(dev, ident->name);
365 				return (0);
366 			}
367 		}
368 	}
369 	return (ENXIO);
370 }
371 
372 static void
373 fxp_powerstate_d0(device_t dev)
374 {
375 	u_int32_t iobase, membase, irq;
376 
377 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
378 		/* Save important PCI config data. */
379 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
380 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
381 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
382 
383 		/* Reset the power state. */
384 		device_printf(dev, "chip is in D%d power mode "
385 		    "-- setting to D0\n", pci_get_powerstate(dev));
386 
387 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
388 
389 		/* Restore PCI config data. */
390 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
391 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
392 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
393 	}
394 }
395 
396 static int
397 fxp_attach(device_t dev)
398 {
399 	int error = 0;
400 	struct fxp_softc *sc = device_get_softc(dev);
401 	struct ifnet *ifp;
402 	u_int32_t val;
403 	u_int16_t data;
404 	int i, rid, m1, m2, prefer_iomap;
405 
406 	callout_init(&sc->fxp_stat_timer);
407 	sysctl_ctx_init(&sc->sysctl_ctx);
408 
409 	/*
410 	 * Enable bus mastering. Enable memory space too, in case
411 	 * BIOS/Prom forgot about it.
412 	 */
413 	pci_enable_busmaster(dev);
414 	pci_enable_io(dev, SYS_RES_MEMORY);
415 	val = pci_read_config(dev, PCIR_COMMAND, 2);
416 
417 	fxp_powerstate_d0(dev);
418 
419 	/*
420 	 * Figure out which we should try first - memory mapping or i/o mapping?
421 	 * We default to memory mapping. Then we accept an override from the
422 	 * command line. Then we check to see which one is enabled.
423 	 */
424 	m1 = PCIM_CMD_MEMEN;
425 	m2 = PCIM_CMD_PORTEN;
426 	prefer_iomap = 0;
427 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
428 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
429 		m1 = PCIM_CMD_PORTEN;
430 		m2 = PCIM_CMD_MEMEN;
431 	}
432 
433 	if (val & m1) {
434 		sc->rtp =
435 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
436 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
437 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
438 		    RF_ACTIVE);
439 	}
440 	if (sc->mem == NULL && (val & m2)) {
441 		sc->rtp =
442 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
443 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
444 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
445             	    RF_ACTIVE);
446 	}
447 
448 	if (!sc->mem) {
449 		device_printf(dev, "could not map device registers\n");
450 		error = ENXIO;
451 		goto fail;
452         }
453 	if (bootverbose) {
454 		device_printf(dev, "using %s space register mapping\n",
455 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
456 	}
457 
458 	sc->sc_st = rman_get_bustag(sc->mem);
459 	sc->sc_sh = rman_get_bushandle(sc->mem);
460 
461 	/*
462 	 * Allocate our interrupt.
463 	 */
464 	rid = 0;
465 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
466 	    RF_SHAREABLE | RF_ACTIVE);
467 	if (sc->irq == NULL) {
468 		device_printf(dev, "could not map interrupt\n");
469 		error = ENXIO;
470 		goto fail;
471 	}
472 
473 	/*
474 	 * Reset to a stable state.
475 	 */
476 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
477 	DELAY(10);
478 
479 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
480 	    M_DEVBUF, M_WAITOK | M_ZERO);
481 
482 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
483 	    M_WAITOK | M_ZERO);
484 
485 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
486 
487 	/*
488 	 * Pre-allocate our receive buffers.
489 	 */
490 	for (i = 0; i < FXP_NRFABUFS; i++) {
491 		if (fxp_add_rfabuf(sc, NULL) != 0) {
492 			goto failmem;
493 		}
494 	}
495 
496 	/*
497 	 * Find out how large of an SEEPROM we have.
498 	 */
499 	fxp_autosize_eeprom(sc);
500 
501 	/*
502 	 * Determine whether we must use the 503 serial interface.
503 	 */
504 	fxp_read_eeprom(sc, &data, 6, 1);
505 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
506 	    (data & FXP_PHY_SERIAL_ONLY))
507 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
508 
509 	/*
510 	 * Create the sysctl tree
511 	 */
512 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
513 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
514 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
515 	if (sc->sysctl_tree == NULL)
516 		goto fail;
517 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
518 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
519 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
520 	    "FXP driver receive interrupt microcode bundling delay");
521 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
522 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
523 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
524 	    "FXP driver receive interrupt microcode bundle size limit");
525 
526 	/*
527 	 * Pull in device tunables.
528 	 */
529 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
530 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
531 	resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "int_delay", &sc->tunable_int_delay);
533 	resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "bundle_max", &sc->tunable_bundle_max);
535 
536 	/*
537 	 * Find out the chip revision; lump all 82557 revs together.
538 	 */
539 	fxp_read_eeprom(sc, &data, 5, 1);
540 	if ((data >> 8) == 1)
541 		sc->revision = FXP_REV_82557;
542 	else
543 		sc->revision = pci_get_revid(dev);
544 
545 	/*
546 	 * Enable workarounds for certain chip revision deficiencies.
547 	 *
548 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
549 	 * some systems based a normal 82559 design, have a defect where
550 	 * the chip can cause a PCI protocol violation if it receives
551 	 * a CU_RESUME command when it is entering the IDLE state.  The
552 	 * workaround is to disable Dynamic Standby Mode, so the chip never
553 	 * deasserts CLKRUN#, and always remains in an active state.
554 	 *
555 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
556 	 */
557 	i = pci_get_device(dev);
558 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
559 	    sc->revision >= FXP_REV_82559_A0) {
560 		fxp_read_eeprom(sc, &data, 10, 1);
561 		if (data & 0x02) {			/* STB enable */
562 			u_int16_t cksum;
563 			int i;
564 
565 			device_printf(dev,
566 			    "Disabling dynamic standby mode in EEPROM\n");
567 			data &= ~0x02;
568 			fxp_write_eeprom(sc, &data, 10, 1);
569 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
570 			cksum = 0;
571 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
572 				fxp_read_eeprom(sc, &data, i, 1);
573 				cksum += data;
574 			}
575 			i = (1 << sc->eeprom_size) - 1;
576 			cksum = 0xBABA - cksum;
577 			fxp_read_eeprom(sc, &data, i, 1);
578 			fxp_write_eeprom(sc, &cksum, i, 1);
579 			device_printf(dev,
580 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
581 			    i, data, cksum);
582 #if 1
583 			/*
584 			 * If the user elects to continue, try the software
585 			 * workaround, as it is better than nothing.
586 			 */
587 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
588 #endif
589 		}
590 	}
591 
592 	/*
593 	 * If we are not a 82557 chip, we can enable extended features.
594 	 */
595 	if (sc->revision != FXP_REV_82557) {
596 		/*
597 		 * If MWI is enabled in the PCI configuration, and there
598 		 * is a valid cacheline size (8 or 16 dwords), then tell
599 		 * the board to turn on MWI.
600 		 */
601 		if (val & PCIM_CMD_MWRICEN &&
602 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
603 			sc->flags |= FXP_FLAG_MWI_ENABLE;
604 
605 		/* turn on the extended TxCB feature */
606 		sc->flags |= FXP_FLAG_EXT_TXCB;
607 
608 		/* enable reception of long frames for VLAN */
609 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
610 	}
611 
612 	/*
613 	 * Read MAC address.
614 	 */
615 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
616 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
617 		device_printf(dev, "10Mbps\n");
618 	if (bootverbose) {
619 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
620 		    pci_get_vendor(dev), pci_get_device(dev),
621 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
622 		    pci_get_revid(dev));
623 		fxp_read_eeprom(sc, &data, 10, 1);
624 		device_printf(dev, "Dynamic Standby mode is %s\n",
625 		    data & 0x02 ? "enabled" : "disabled");
626 	}
627 
628 	/*
629 	 * If this is only a 10Mbps device, then there is no MII, and
630 	 * the PHY will use a serial interface instead.
631 	 *
632 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
633 	 * doesn't have a programming interface of any sort.  The
634 	 * media is sensed automatically based on how the link partner
635 	 * is configured.  This is, in essence, manual configuration.
636 	 */
637 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
638 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
639 		    fxp_serial_ifmedia_sts);
640 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
641 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
642 	} else {
643 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
644 		    fxp_ifmedia_sts)) {
645 	                device_printf(dev, "MII without any PHY!\n");
646 			error = ENXIO;
647 			goto fail;
648 		}
649 	}
650 
651 	ifp = &sc->arpcom.ac_if;
652 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653 	ifp->if_baudrate = 100000000;
654 	ifp->if_init = fxp_init;
655 	ifp->if_softc = sc;
656 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
657 	ifp->if_ioctl = fxp_ioctl;
658 	ifp->if_start = fxp_start;
659 #ifdef DEVICE_POLLING
660 	ifp->if_poll = fxp_poll;
661 #endif
662 	ifp->if_watchdog = fxp_watchdog;
663 
664 	/*
665 	 * Attach the interface.
666 	 */
667 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
668 
669 	/*
670 	 * Tell the upper layer(s) we support long frames.
671 	 */
672 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
673 
674 	/*
675 	 * Let the system queue as many packets as we have available
676 	 * TX descriptors.
677 	 */
678 	ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
679 	ifq_set_ready(&ifp->if_snd);
680 
681 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
682 			       fxp_intr, sc, &sc->ih,
683 			       ifp->if_serializer);
684 	if (error) {
685 		ether_ifdetach(ifp);
686 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
687 			ifmedia_removeall(&sc->sc_media);
688 		device_printf(dev, "could not setup irq\n");
689 		goto fail;
690 	}
691 
692 	return (0);
693 
694 failmem:
695 	device_printf(dev, "Failed to malloc memory\n");
696 	error = ENOMEM;
697 fail:
698 	fxp_release(dev);
699 	return (error);
700 }
701 
702 /*
703  * release all resources
704  */
705 static void
706 fxp_release(device_t dev)
707 {
708 	struct fxp_softc *sc = device_get_softc(dev);
709 
710 	if (sc->miibus)
711 		device_delete_child(dev, sc->miibus);
712 	bus_generic_detach(dev);
713 
714 	if (sc->cbl_base)
715 		kfree(sc->cbl_base, M_DEVBUF);
716 	if (sc->fxp_stats)
717 		kfree(sc->fxp_stats, M_DEVBUF);
718 	if (sc->mcsp)
719 		kfree(sc->mcsp, M_DEVBUF);
720 	if (sc->rfa_headm)
721 		m_freem(sc->rfa_headm);
722 
723 	if (sc->irq)
724 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
725 	if (sc->mem)
726 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
727 
728         sysctl_ctx_free(&sc->sysctl_ctx);
729 }
730 
731 /*
732  * Detach interface.
733  */
734 static int
735 fxp_detach(device_t dev)
736 {
737 	struct fxp_softc *sc = device_get_softc(dev);
738 
739 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
740 
741 	/*
742 	 * Stop DMA and drop transmit queue.
743 	 */
744 	fxp_stop(sc);
745 
746 	/*
747 	 * Disable interrupts.
748 	 *
749 	 * NOTE: This should be done after fxp_stop(), because software
750 	 * resetting in fxp_stop() may leave interrupts turned on.
751 	 */
752 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
753 
754 	/*
755 	 * Free all media structures.
756 	 */
757 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
758 		ifmedia_removeall(&sc->sc_media);
759 
760 	if (sc->ih)
761 		bus_teardown_intr(dev, sc->irq, sc->ih);
762 
763 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
764 
765 	/*
766 	 * Close down routes etc.
767 	 */
768 	ether_ifdetach(&sc->arpcom.ac_if);
769 
770 	/* Release our allocated resources. */
771 	fxp_release(dev);
772 
773 	return (0);
774 }
775 
776 /*
777  * Device shutdown routine. Called at system shutdown after sync. The
778  * main purpose of this routine is to shut off receiver DMA so that
779  * kernel memory doesn't get clobbered during warmboot.
780  */
781 static int
782 fxp_shutdown(device_t dev)
783 {
784 	/*
785 	 * Make sure that DMA is disabled prior to reboot. Not doing
786 	 * do could allow DMA to corrupt kernel memory during the
787 	 * reboot before the driver initializes.
788 	 */
789 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
790 	return (0);
791 }
792 
793 /*
794  * Device suspend routine.  Stop the interface and save some PCI
795  * settings in case the BIOS doesn't restore them properly on
796  * resume.
797  */
798 static int
799 fxp_suspend(device_t dev)
800 {
801 	struct fxp_softc *sc = device_get_softc(dev);
802 	int i;
803 
804 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
805 
806 	fxp_stop(sc);
807 
808 	for (i = 0; i < 5; i++)
809 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
810 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
811 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
812 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
813 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
814 
815 	sc->suspended = 1;
816 
817 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
818 	return (0);
819 }
820 
821 /*
822  * Device resume routine.  Restore some PCI settings in case the BIOS
823  * doesn't, re-enable busmastering, and restart the interface if
824  * appropriate.
825  */
826 static int
827 fxp_resume(device_t dev)
828 {
829 	struct fxp_softc *sc = device_get_softc(dev);
830 	struct ifnet *ifp = &sc->arpcom.ac_if;
831 	int i;
832 
833 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
834 
835 	fxp_powerstate_d0(dev);
836 
837 	/* better way to do this? */
838 	for (i = 0; i < 5; i++)
839 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
840 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
841 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
842 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
843 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
844 
845 	/* reenable busmastering and memory space */
846 	pci_enable_busmaster(dev);
847 	pci_enable_io(dev, SYS_RES_MEMORY);
848 
849 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
850 	DELAY(10);
851 
852 	/* reinitialize interface if necessary */
853 	if (ifp->if_flags & IFF_UP)
854 		fxp_init(sc);
855 
856 	sc->suspended = 0;
857 
858 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
859 	return (0);
860 }
861 
862 static void
863 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
864 {
865 	u_int16_t reg;
866 	int x;
867 
868 	/*
869 	 * Shift in data.
870 	 */
871 	for (x = 1 << (length - 1); x; x >>= 1) {
872 		if (data & x)
873 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
874 		else
875 			reg = FXP_EEPROM_EECS;
876 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
877 		DELAY(1);
878 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
879 		DELAY(1);
880 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
881 		DELAY(1);
882 	}
883 }
884 
885 /*
886  * Read from the serial EEPROM. Basically, you manually shift in
887  * the read opcode (one bit at a time) and then shift in the address,
888  * and then you shift out the data (all of this one bit at a time).
889  * The word size is 16 bits, so you have to provide the address for
890  * every 16 bits of data.
891  */
892 static u_int16_t
893 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
894 {
895 	u_int16_t reg, data;
896 	int x;
897 
898 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
899 	/*
900 	 * Shift in read opcode.
901 	 */
902 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
903 	/*
904 	 * Shift in address.
905 	 */
906 	data = 0;
907 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
908 		if (offset & x)
909 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
910 		else
911 			reg = FXP_EEPROM_EECS;
912 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
913 		DELAY(1);
914 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
915 		DELAY(1);
916 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
917 		DELAY(1);
918 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
919 		data++;
920 		if (autosize && reg == 0) {
921 			sc->eeprom_size = data;
922 			break;
923 		}
924 	}
925 	/*
926 	 * Shift out data.
927 	 */
928 	data = 0;
929 	reg = FXP_EEPROM_EECS;
930 	for (x = 1 << 15; x; x >>= 1) {
931 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
932 		DELAY(1);
933 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
934 			data |= x;
935 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
936 		DELAY(1);
937 	}
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
939 	DELAY(1);
940 
941 	return (data);
942 }
943 
944 static void
945 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
946 {
947 	int i;
948 
949 	/*
950 	 * Erase/write enable.
951 	 */
952 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
953 	fxp_eeprom_shiftin(sc, 0x4, 3);
954 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
956 	DELAY(1);
957 	/*
958 	 * Shift in write opcode, address, data.
959 	 */
960 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
961 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
962 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
963 	fxp_eeprom_shiftin(sc, data, 16);
964 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
965 	DELAY(1);
966 	/*
967 	 * Wait for EEPROM to finish up.
968 	 */
969 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
970 	DELAY(1);
971 	for (i = 0; i < 1000; i++) {
972 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
973 			break;
974 		DELAY(50);
975 	}
976 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
977 	DELAY(1);
978 	/*
979 	 * Erase/write disable.
980 	 */
981 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
982 	fxp_eeprom_shiftin(sc, 0x4, 3);
983 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
984 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
985 	DELAY(1);
986 }
987 
988 /*
989  * From NetBSD:
990  *
991  * Figure out EEPROM size.
992  *
993  * 559's can have either 64-word or 256-word EEPROMs, the 558
994  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
995  * talks about the existance of 16 to 256 word EEPROMs.
996  *
997  * The only known sizes are 64 and 256, where the 256 version is used
998  * by CardBus cards to store CIS information.
999  *
1000  * The address is shifted in msb-to-lsb, and after the last
1001  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1002  * after which follows the actual data. We try to detect this zero, by
1003  * probing the data-out bit in the EEPROM control register just after
1004  * having shifted in a bit. If the bit is zero, we assume we've
1005  * shifted enough address bits. The data-out should be tri-state,
1006  * before this, which should translate to a logical one.
1007  */
1008 static void
1009 fxp_autosize_eeprom(struct fxp_softc *sc)
1010 {
1011 
1012 	/* guess maximum size of 256 words */
1013 	sc->eeprom_size = 8;
1014 
1015 	/* autosize */
1016 	fxp_eeprom_getword(sc, 0, 1);
1017 }
1018 
1019 static void
1020 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1021 {
1022 	int i;
1023 
1024 	for (i = 0; i < words; i++)
1025 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1026 }
1027 
1028 static void
1029 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1030 {
1031 	int i;
1032 
1033 	for (i = 0; i < words; i++)
1034 		fxp_eeprom_putword(sc, offset + i, data[i]);
1035 }
1036 
1037 /*
1038  * Start packet transmission on the interface.
1039  */
1040 static void
1041 fxp_start(struct ifnet *ifp)
1042 {
1043 	struct fxp_softc *sc = ifp->if_softc;
1044 	struct fxp_cb_tx *txp;
1045 
1046 	/*
1047 	 * See if we need to suspend xmit until the multicast filter
1048 	 * has been reprogrammed (which can only be done at the head
1049 	 * of the command chain).
1050 	 */
1051 	if (sc->need_mcsetup) {
1052 		return;
1053 	}
1054 
1055 	txp = NULL;
1056 
1057 	/*
1058 	 * We're finished if there is nothing more to add to the list or if
1059 	 * we're all filled up with buffers to transmit.
1060 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1061 	 *       a NOP command when needed.
1062 	 */
1063 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1064 		struct mbuf *m, *mb_head;
1065 		int segment, ntries = 0;
1066 
1067 		/*
1068 		 * Grab a packet to transmit. The packet is dequeued,
1069 		 * once we are sure that we have enough free descriptors.
1070 		 */
1071 		mb_head = ifq_poll(&ifp->if_snd);
1072 		if (mb_head == NULL)
1073 			break;
1074 
1075 		/*
1076 		 * Get pointer to next available tx desc.
1077 		 */
1078 		txp = sc->cbl_last->next;
1079 
1080 		/*
1081 		 * Go through each of the mbufs in the chain and initialize
1082 		 * the transmit buffer descriptors with the physical address
1083 		 * and size of the mbuf.
1084 		 */
1085 tbdinit:
1086 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1087 			if (m->m_len != 0) {
1088 				if (segment == FXP_NTXSEG)
1089 					break;
1090 				txp->tbd[segment].tb_addr =
1091 				    vtophys(mtod(m, vm_offset_t));
1092 				txp->tbd[segment].tb_size = m->m_len;
1093 				segment++;
1094 			}
1095 		}
1096 		if (m != NULL) {
1097 			struct mbuf *mn;
1098 
1099 			/*
1100 			 * We ran out of segments. We have to recopy this
1101 			 * mbuf chain first. Bail out if we can't get the
1102 			 * new buffers.
1103 			 */
1104 			if (ntries > 0)
1105 				break;
1106 			mn = m_dup(mb_head, MB_DONTWAIT);
1107 			if (mn == NULL)
1108 				break;
1109 			 /* We can transmit the packet, dequeue it. */
1110 			ifq_dequeue(&ifp->if_snd, mb_head);
1111 			m_freem(mb_head);
1112 			mb_head = mn;
1113 			ntries = 1;
1114 			goto tbdinit;
1115 		} else {
1116 			/* Nothing to worry about, just dequeue. */
1117 			ifq_dequeue(&ifp->if_snd, mb_head);
1118 		}
1119 
1120 		txp->tbd_number = segment;
1121 		txp->mb_head = mb_head;
1122 		txp->cb_status = 0;
1123 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1124 			txp->cb_command =
1125 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1126 			    FXP_CB_COMMAND_S;
1127 		} else {
1128 			txp->cb_command =
1129 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1130 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1131 			/*
1132 			 * Set a 5 second timer just in case we don't hear
1133 			 * from the card again.
1134 			 */
1135 			ifp->if_timer = 5;
1136 		}
1137 		txp->tx_threshold = tx_threshold;
1138 
1139 		/*
1140 		 * Advance the end of list forward.
1141 		 */
1142 
1143 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1144 		sc->cbl_last = txp;
1145 
1146 		/*
1147 		 * Advance the beginning of the list forward if there are
1148 		 * no other packets queued (when nothing is queued, cbl_first
1149 		 * sits on the last TxCB that was sent out).
1150 		 */
1151 		if (sc->tx_queued == 0)
1152 			sc->cbl_first = txp;
1153 
1154 		sc->tx_queued++;
1155 
1156 		BPF_MTAP(ifp, mb_head);
1157 	}
1158 
1159 	/*
1160 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1161 	 * going again if suspended.
1162 	 */
1163 	if (txp != NULL) {
1164 		fxp_scb_wait(sc);
1165 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1166 	}
1167 }
1168 
1169 #ifdef DEVICE_POLLING
1170 
1171 static void
1172 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1173 {
1174 	struct fxp_softc *sc = ifp->if_softc;
1175 	u_int8_t statack;
1176 
1177 	switch(cmd) {
1178 	case POLL_REGISTER:
1179 		/* disable interrupts */
1180 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1181 		break;
1182 	case POLL_DEREGISTER:
1183 		/* enable interrupts */
1184 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1185 		break;
1186 	default:
1187 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1188 			  FXP_SCB_STATACK_FR;
1189 		if (cmd == POLL_AND_CHECK_STATUS) {
1190 			u_int8_t tmp;
1191 
1192 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1193 			if (tmp == 0xff || tmp == 0)
1194 				return; /* nothing to do */
1195 			tmp &= ~statack;
1196 			/* ack what we can */
1197 			if (tmp != 0)
1198 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1199 			statack |= tmp;
1200 		}
1201 		fxp_intr_body(sc, statack, count);
1202 		break;
1203 	}
1204 }
1205 
1206 #endif /* DEVICE_POLLING */
1207 
1208 /*
1209  * Process interface interrupts.
1210  */
1211 static void
1212 fxp_intr(void *xsc)
1213 {
1214 	struct fxp_softc *sc = xsc;
1215 	u_int8_t statack;
1216 
1217 	if (sc->suspended) {
1218 		return;
1219 	}
1220 
1221 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1222 		/*
1223 		 * It should not be possible to have all bits set; the
1224 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1225 		 * all bits are set, this may indicate that the card has
1226 		 * been physically ejected, so ignore it.
1227 		 */
1228 		if (statack == 0xff)
1229 			return;
1230 
1231 		/*
1232 		 * First ACK all the interrupts in this pass.
1233 		 */
1234 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1235 		fxp_intr_body(sc, statack, -1);
1236 	}
1237 }
1238 
1239 static void
1240 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1241 {
1242 	struct ifnet *ifp = &sc->arpcom.ac_if;
1243 	struct mbuf *m;
1244 	struct fxp_rfa *rfa;
1245 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1246 
1247 	if (rnr)
1248 		fxp_rnr++;
1249 #ifdef DEVICE_POLLING
1250 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1251 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1252 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1253 		rnr = 1;
1254 	}
1255 #endif
1256 
1257 	/*
1258 	 * Free any finished transmit mbuf chains.
1259 	 *
1260 	 * Handle the CNA event likt a CXTNO event. It used to
1261 	 * be that this event (control unit not ready) was not
1262 	 * encountered, but it is now with the SMPng modifications.
1263 	 * The exact sequence of events that occur when the interface
1264 	 * is brought up are different now, and if this event
1265 	 * goes unhandled, the configuration/rxfilter setup sequence
1266 	 * can stall for several seconds. The result is that no
1267 	 * packets go out onto the wire for about 5 to 10 seconds
1268 	 * after the interface is ifconfig'ed for the first time.
1269 	 */
1270 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1271 		struct fxp_cb_tx *txp;
1272 
1273 		for (txp = sc->cbl_first; sc->tx_queued &&
1274 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1275 		    txp = txp->next) {
1276 			if ((m = txp->mb_head) != NULL) {
1277 				txp->mb_head = NULL;
1278 				sc->tx_queued--;
1279 				m_freem(m);
1280 			} else {
1281 				sc->tx_queued--;
1282 			}
1283 		}
1284 		sc->cbl_first = txp;
1285 		ifp->if_timer = 0;
1286 		if (sc->tx_queued == 0) {
1287 			if (sc->need_mcsetup)
1288 				fxp_mc_setup(sc);
1289 		}
1290 		/*
1291 		 * Try to start more packets transmitting.
1292 		 */
1293 		if (!ifq_is_empty(&ifp->if_snd))
1294 			(*ifp->if_start)(ifp);
1295 	}
1296 
1297 	/*
1298 	 * Just return if nothing happened on the receive side.
1299 	 */
1300 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1301 		return;
1302 
1303 	/*
1304 	 * Process receiver interrupts. If a no-resource (RNR)
1305 	 * condition exists, get whatever packets we can and
1306 	 * re-start the receiver.
1307 	 *
1308 	 * When using polling, we do not process the list to completion,
1309 	 * so when we get an RNR interrupt we must defer the restart
1310 	 * until we hit the last buffer with the C bit set.
1311 	 * If we run out of cycles and rfa_headm has the C bit set,
1312 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1313 	 * that the info will be used in the subsequent polling cycle.
1314 	 */
1315 	for (;;) {
1316 		m = sc->rfa_headm;
1317 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1318 		    RFA_ALIGNMENT_FUDGE);
1319 
1320 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1321 		if (count >= 0 && count-- == 0) {
1322 			if (rnr) {
1323 				/* Defer RNR processing until the next time. */
1324 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1325 				rnr = 0;
1326 			}
1327 			break;
1328 		}
1329 #endif /* DEVICE_POLLING */
1330 
1331 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1332 			break;
1333 
1334 		/*
1335 		 * Remove first packet from the chain.
1336 		 */
1337 		sc->rfa_headm = m->m_next;
1338 		m->m_next = NULL;
1339 
1340 		/*
1341 		 * Add a new buffer to the receive chain.
1342 		 * If this fails, the old buffer is recycled
1343 		 * instead.
1344 		 */
1345 		if (fxp_add_rfabuf(sc, m) == 0) {
1346 			int total_len;
1347 
1348 			/*
1349 			 * Fetch packet length (the top 2 bits of
1350 			 * actual_size are flags set by the controller
1351 			 * upon completion), and drop the packet in case
1352 			 * of bogus length or CRC errors.
1353 			 */
1354 			total_len = rfa->actual_size & 0x3fff;
1355 			if (total_len < sizeof(struct ether_header) ||
1356 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1357 				sizeof(struct fxp_rfa) ||
1358 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1359 				m_freem(m);
1360 				continue;
1361 			}
1362 			m->m_pkthdr.len = m->m_len = total_len;
1363 			ifp->if_input(ifp, m);
1364 		}
1365 	}
1366 	if (rnr) {
1367 		fxp_scb_wait(sc);
1368 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1369 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1370 		    RFA_ALIGNMENT_FUDGE);
1371 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1372 	}
1373 }
1374 
1375 /*
1376  * Update packet in/out/collision statistics. The i82557 doesn't
1377  * allow you to access these counters without doing a fairly
1378  * expensive DMA to get _all_ of the statistics it maintains, so
1379  * we do this operation here only once per second. The statistics
1380  * counters in the kernel are updated from the previous dump-stats
1381  * DMA and then a new dump-stats DMA is started. The on-chip
1382  * counters are zeroed when the DMA completes. If we can't start
1383  * the DMA immediately, we don't wait - we just prepare to read
1384  * them again next time.
1385  */
1386 static void
1387 fxp_tick(void *xsc)
1388 {
1389 	struct fxp_softc *sc = xsc;
1390 	struct ifnet *ifp = &sc->arpcom.ac_if;
1391 	struct fxp_stats *sp = sc->fxp_stats;
1392 	struct fxp_cb_tx *txp;
1393 	struct mbuf *m;
1394 
1395 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1396 
1397 	ifp->if_opackets += sp->tx_good;
1398 	ifp->if_collisions += sp->tx_total_collisions;
1399 	if (sp->rx_good) {
1400 		ifp->if_ipackets += sp->rx_good;
1401 		sc->rx_idle_secs = 0;
1402 	} else {
1403 		/*
1404 		 * Receiver's been idle for another second.
1405 		 */
1406 		sc->rx_idle_secs++;
1407 	}
1408 	ifp->if_ierrors +=
1409 	    sp->rx_crc_errors +
1410 	    sp->rx_alignment_errors +
1411 	    sp->rx_rnr_errors +
1412 	    sp->rx_overrun_errors;
1413 	/*
1414 	 * If any transmit underruns occured, bump up the transmit
1415 	 * threshold by another 512 bytes (64 * 8).
1416 	 */
1417 	if (sp->tx_underruns) {
1418 		ifp->if_oerrors += sp->tx_underruns;
1419 		if (tx_threshold < 192)
1420 			tx_threshold += 64;
1421 	}
1422 
1423 	/*
1424 	 * Release any xmit buffers that have completed DMA. This isn't
1425 	 * strictly necessary to do here, but it's advantagous for mbufs
1426 	 * with external storage to be released in a timely manner rather
1427 	 * than being defered for a potentially long time. This limits
1428 	 * the delay to a maximum of one second.
1429 	 */
1430 	for (txp = sc->cbl_first; sc->tx_queued &&
1431 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1432 	    txp = txp->next) {
1433 		if ((m = txp->mb_head) != NULL) {
1434 			txp->mb_head = NULL;
1435 			sc->tx_queued--;
1436 			m_freem(m);
1437 		} else {
1438 			sc->tx_queued--;
1439 		}
1440 	}
1441 	sc->cbl_first = txp;
1442 	/*
1443 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1444 	 * then assume the receiver has locked up and attempt to clear
1445 	 * the condition by reprogramming the multicast filter. This is
1446 	 * a work-around for a bug in the 82557 where the receiver locks
1447 	 * up if it gets certain types of garbage in the syncronization
1448 	 * bits prior to the packet header. This bug is supposed to only
1449 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1450 	 * mode as well (perhaps due to a 10/100 speed transition).
1451 	 */
1452 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1453 		sc->rx_idle_secs = 0;
1454 		fxp_mc_setup(sc);
1455 	}
1456 	/*
1457 	 * If there is no pending command, start another stats
1458 	 * dump. Otherwise punt for now.
1459 	 */
1460 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1461 		/*
1462 		 * Start another stats dump.
1463 		 */
1464 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1465 	} else {
1466 		/*
1467 		 * A previous command is still waiting to be accepted.
1468 		 * Just zero our copy of the stats and wait for the
1469 		 * next timer event to update them.
1470 		 */
1471 		sp->tx_good = 0;
1472 		sp->tx_underruns = 0;
1473 		sp->tx_total_collisions = 0;
1474 
1475 		sp->rx_good = 0;
1476 		sp->rx_crc_errors = 0;
1477 		sp->rx_alignment_errors = 0;
1478 		sp->rx_rnr_errors = 0;
1479 		sp->rx_overrun_errors = 0;
1480 	}
1481 	if (sc->miibus != NULL)
1482 		mii_tick(device_get_softc(sc->miibus));
1483 	/*
1484 	 * Schedule another timeout one second from now.
1485 	 */
1486 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1487 
1488 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1489 }
1490 
1491 /*
1492  * Stop the interface. Cancels the statistics updater and resets
1493  * the interface.
1494  */
1495 static void
1496 fxp_stop(struct fxp_softc *sc)
1497 {
1498 	struct ifnet *ifp = &sc->arpcom.ac_if;
1499 	struct fxp_cb_tx *txp;
1500 	int i;
1501 
1502 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1503 	ifp->if_timer = 0;
1504 
1505 	/*
1506 	 * Cancel stats updater.
1507 	 */
1508 	callout_stop(&sc->fxp_stat_timer);
1509 
1510 	/*
1511 	 * Issue software reset, which also unloads the microcode.
1512 	 */
1513 	sc->flags &= ~FXP_FLAG_UCODE;
1514 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1515 	DELAY(50);
1516 
1517 	/*
1518 	 * Release any xmit buffers.
1519 	 */
1520 	txp = sc->cbl_base;
1521 	if (txp != NULL) {
1522 		for (i = 0; i < FXP_NTXCB; i++) {
1523 			if (txp[i].mb_head != NULL) {
1524 				m_freem(txp[i].mb_head);
1525 				txp[i].mb_head = NULL;
1526 			}
1527 		}
1528 	}
1529 	sc->tx_queued = 0;
1530 
1531 	/*
1532 	 * Free all the receive buffers then reallocate/reinitialize
1533 	 */
1534 	if (sc->rfa_headm != NULL)
1535 		m_freem(sc->rfa_headm);
1536 	sc->rfa_headm = NULL;
1537 	sc->rfa_tailm = NULL;
1538 	for (i = 0; i < FXP_NRFABUFS; i++) {
1539 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1540 			/*
1541 			 * This "can't happen" - we're at splimp()
1542 			 * and we just freed all the buffers we need
1543 			 * above.
1544 			 */
1545 			panic("fxp_stop: no buffers!");
1546 		}
1547 	}
1548 }
1549 
1550 /*
1551  * Watchdog/transmission transmit timeout handler. Called when a
1552  * transmission is started on the interface, but no interrupt is
1553  * received before the timeout. This usually indicates that the
1554  * card has wedged for some reason.
1555  */
1556 static void
1557 fxp_watchdog(struct ifnet *ifp)
1558 {
1559 	if_printf(ifp, "device timeout\n");
1560 	ifp->if_oerrors++;
1561 	fxp_init(ifp->if_softc);
1562 }
1563 
1564 static void
1565 fxp_init(void *xsc)
1566 {
1567 	struct fxp_softc *sc = xsc;
1568 	struct ifnet *ifp = &sc->arpcom.ac_if;
1569 	struct fxp_cb_config *cbp;
1570 	struct fxp_cb_ias *cb_ias;
1571 	struct fxp_cb_tx *txp;
1572 	struct fxp_cb_mcs *mcsp;
1573 	int i, prm;
1574 
1575 	/*
1576 	 * Cancel any pending I/O
1577 	 */
1578 	fxp_stop(sc);
1579 
1580 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1581 
1582 	/*
1583 	 * Initialize base of CBL and RFA memory. Loading with zero
1584 	 * sets it up for regular linear addressing.
1585 	 */
1586 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1587 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1588 
1589 	fxp_scb_wait(sc);
1590 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1591 
1592 	/*
1593 	 * Initialize base of dump-stats buffer.
1594 	 */
1595 	fxp_scb_wait(sc);
1596 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1597 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1598 
1599 	/*
1600 	 * Attempt to load microcode if requested.
1601 	 */
1602 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1603 		fxp_load_ucode(sc);
1604 
1605 	/*
1606 	 * Initialize the multicast address list.
1607 	 */
1608 	if (fxp_mc_addrs(sc)) {
1609 		mcsp = sc->mcsp;
1610 		mcsp->cb_status = 0;
1611 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1612 		mcsp->link_addr = -1;
1613 		/*
1614 	 	 * Start the multicast setup command.
1615 		 */
1616 		fxp_scb_wait(sc);
1617 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1618 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1619 		/* ...and wait for it to complete. */
1620 		fxp_dma_wait(&mcsp->cb_status, sc);
1621 	}
1622 
1623 	/*
1624 	 * We temporarily use memory that contains the TxCB list to
1625 	 * construct the config CB. The TxCB list memory is rebuilt
1626 	 * later.
1627 	 */
1628 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1629 
1630 	/*
1631 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1632 	 * zero and must be one bits in this structure and this is the easiest
1633 	 * way to initialize them all to proper values.
1634 	 */
1635 	bcopy(fxp_cb_config_template,
1636 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1637 		sizeof(fxp_cb_config_template));
1638 
1639 	cbp->cb_status =	0;
1640 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1641 	cbp->link_addr =	-1;	/* (no) next command */
1642 	cbp->byte_count =	22;	/* (22) bytes to config */
1643 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1644 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1645 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1646 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1647 	cbp->type_enable =	0;	/* actually reserved */
1648 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1649 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1650 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1651 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1652 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1653 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1654 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1655 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1656 	cbp->ci_int =		1;	/* interrupt on CU idle */
1657 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1658 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1659 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1660 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1661 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1662 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1663 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1664 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1665 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1666 	cbp->csma_dis =		0;	/* (don't) disable link */
1667 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1668 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1669 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1670 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1671 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1672 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1673 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1674 	cbp->loopback =		0;	/* (don't) loopback */
1675 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1676 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1677 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1678 	cbp->promiscuous =	prm;	/* promiscuous mode */
1679 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1680 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1681 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1682 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1683 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1684 
1685 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1686 	cbp->padding =		1;	/* (do) pad short tx packets */
1687 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1688 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1689 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1690 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1691 					/* must set wake_en in PMCSR also */
1692 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1693 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1694 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1695 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1696 
1697 	if (sc->revision == FXP_REV_82557) {
1698 		/*
1699 		 * The 82557 has no hardware flow control, the values
1700 		 * below are the defaults for the chip.
1701 		 */
1702 		cbp->fc_delay_lsb =	0;
1703 		cbp->fc_delay_msb =	0x40;
1704 		cbp->pri_fc_thresh =	3;
1705 		cbp->tx_fc_dis =	0;
1706 		cbp->rx_fc_restop =	0;
1707 		cbp->rx_fc_restart =	0;
1708 		cbp->fc_filter =	0;
1709 		cbp->pri_fc_loc =	1;
1710 	} else {
1711 		cbp->fc_delay_lsb =	0x1f;
1712 		cbp->fc_delay_msb =	0x01;
1713 		cbp->pri_fc_thresh =	3;
1714 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1715 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1716 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1717 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1718 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1719 	}
1720 
1721 	/*
1722 	 * Start the config command/DMA.
1723 	 */
1724 	fxp_scb_wait(sc);
1725 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1726 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1727 	/* ...and wait for it to complete. */
1728 	fxp_dma_wait(&cbp->cb_status, sc);
1729 
1730 	/*
1731 	 * Now initialize the station address. Temporarily use the TxCB
1732 	 * memory area like we did above for the config CB.
1733 	 */
1734 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1735 	cb_ias->cb_status = 0;
1736 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1737 	cb_ias->link_addr = -1;
1738 	bcopy(sc->arpcom.ac_enaddr,
1739 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1740 	    sizeof(sc->arpcom.ac_enaddr));
1741 
1742 	/*
1743 	 * Start the IAS (Individual Address Setup) command/DMA.
1744 	 */
1745 	fxp_scb_wait(sc);
1746 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1747 	/* ...and wait for it to complete. */
1748 	fxp_dma_wait(&cb_ias->cb_status, sc);
1749 
1750 	/*
1751 	 * Initialize transmit control block (TxCB) list.
1752 	 */
1753 
1754 	txp = sc->cbl_base;
1755 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1756 	for (i = 0; i < FXP_NTXCB; i++) {
1757 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1758 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1759 		txp[i].link_addr =
1760 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1761 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1762 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1763 		else
1764 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1765 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1766 	}
1767 	/*
1768 	 * Set the suspend flag on the first TxCB and start the control
1769 	 * unit. It will execute the NOP and then suspend.
1770 	 */
1771 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1772 	sc->cbl_first = sc->cbl_last = txp;
1773 	sc->tx_queued = 1;
1774 
1775 	fxp_scb_wait(sc);
1776 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1777 
1778 	/*
1779 	 * Initialize receiver buffer area - RFA.
1780 	 */
1781 	fxp_scb_wait(sc);
1782 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1783 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1784 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1785 
1786 	/*
1787 	 * Set current media.
1788 	 */
1789 	if (sc->miibus != NULL)
1790 		mii_mediachg(device_get_softc(sc->miibus));
1791 
1792 	ifp->if_flags |= IFF_RUNNING;
1793 	ifp->if_flags &= ~IFF_OACTIVE;
1794 
1795 	/*
1796 	 * Enable interrupts.
1797 	 */
1798 #ifdef DEVICE_POLLING
1799 	/*
1800 	 * ... but only do that if we are not polling. And because (presumably)
1801 	 * the default is interrupts on, we need to disable them explicitly!
1802 	 */
1803 	if ( ifp->if_flags & IFF_POLLING )
1804 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1805 	else
1806 #endif /* DEVICE_POLLING */
1807 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1808 
1809 	/*
1810 	 * Start stats updater.
1811 	 */
1812 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1813 }
1814 
1815 static int
1816 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1817 {
1818 
1819 	return (0);
1820 }
1821 
1822 static void
1823 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1824 {
1825 
1826 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1827 }
1828 
1829 /*
1830  * Change media according to request.
1831  */
1832 static int
1833 fxp_ifmedia_upd(struct ifnet *ifp)
1834 {
1835 	struct fxp_softc *sc = ifp->if_softc;
1836 	struct mii_data *mii;
1837 
1838 	mii = device_get_softc(sc->miibus);
1839 	mii_mediachg(mii);
1840 	return (0);
1841 }
1842 
1843 /*
1844  * Notify the world which media we're using.
1845  */
1846 static void
1847 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1848 {
1849 	struct fxp_softc *sc = ifp->if_softc;
1850 	struct mii_data *mii;
1851 
1852 	mii = device_get_softc(sc->miibus);
1853 	mii_pollstat(mii);
1854 	ifmr->ifm_active = mii->mii_media_active;
1855 	ifmr->ifm_status = mii->mii_media_status;
1856 
1857 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1858 		sc->cu_resume_bug = 1;
1859 	else
1860 		sc->cu_resume_bug = 0;
1861 }
1862 
1863 /*
1864  * Add a buffer to the end of the RFA buffer list.
1865  * Return 0 if successful, 1 for failure. A failure results in
1866  * adding the 'oldm' (if non-NULL) on to the end of the list -
1867  * tossing out its old contents and recycling it.
1868  * The RFA struct is stuck at the beginning of mbuf cluster and the
1869  * data pointer is fixed up to point just past it.
1870  */
1871 static int
1872 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1873 {
1874 	u_int32_t v;
1875 	struct mbuf *m;
1876 	struct fxp_rfa *rfa, *p_rfa;
1877 
1878 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1879 	if (m == NULL) { /* try to recycle the old mbuf instead */
1880 		if (oldm == NULL)
1881 			return 1;
1882 		m = oldm;
1883 		m->m_data = m->m_ext.ext_buf;
1884 	}
1885 
1886 	/*
1887 	 * Move the data pointer up so that the incoming data packet
1888 	 * will be 32-bit aligned.
1889 	 */
1890 	m->m_data += RFA_ALIGNMENT_FUDGE;
1891 
1892 	/*
1893 	 * Get a pointer to the base of the mbuf cluster and move
1894 	 * data start past it.
1895 	 */
1896 	rfa = mtod(m, struct fxp_rfa *);
1897 	m->m_data += sizeof(struct fxp_rfa);
1898 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1899 
1900 	/*
1901 	 * Initialize the rest of the RFA.  Note that since the RFA
1902 	 * is misaligned, we cannot store values directly.  Instead,
1903 	 * we use an optimized, inline copy.
1904 	 */
1905 
1906 	rfa->rfa_status = 0;
1907 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1908 	rfa->actual_size = 0;
1909 
1910 	v = -1;
1911 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1912 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1913 
1914 	/*
1915 	 * If there are other buffers already on the list, attach this
1916 	 * one to the end by fixing up the tail to point to this one.
1917 	 */
1918 	if (sc->rfa_headm != NULL) {
1919 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1920 		    RFA_ALIGNMENT_FUDGE);
1921 		sc->rfa_tailm->m_next = m;
1922 		v = vtophys(rfa);
1923 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1924 		p_rfa->rfa_control = 0;
1925 	} else {
1926 		sc->rfa_headm = m;
1927 	}
1928 	sc->rfa_tailm = m;
1929 
1930 	return (m == oldm);
1931 }
1932 
1933 static int
1934 fxp_miibus_readreg(device_t dev, int phy, int reg)
1935 {
1936 	struct fxp_softc *sc = device_get_softc(dev);
1937 	int count = 10000;
1938 	int value;
1939 
1940 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1941 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1942 
1943 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1944 	    && count--)
1945 		DELAY(10);
1946 
1947 	if (count <= 0)
1948 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1949 
1950 	return (value & 0xffff);
1951 }
1952 
1953 static void
1954 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1955 {
1956 	struct fxp_softc *sc = device_get_softc(dev);
1957 	int count = 10000;
1958 
1959 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1960 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1961 	    (value & 0xffff));
1962 
1963 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1964 	    count--)
1965 		DELAY(10);
1966 
1967 	if (count <= 0)
1968 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1969 }
1970 
1971 static int
1972 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1973 {
1974 	struct fxp_softc *sc = ifp->if_softc;
1975 	struct ifreq *ifr = (struct ifreq *)data;
1976 	struct mii_data *mii;
1977 	int error = 0;
1978 
1979 	switch (command) {
1980 
1981 	case SIOCSIFFLAGS:
1982 		if (ifp->if_flags & IFF_ALLMULTI)
1983 			sc->flags |= FXP_FLAG_ALL_MCAST;
1984 		else
1985 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1986 
1987 		/*
1988 		 * If interface is marked up and not running, then start it.
1989 		 * If it is marked down and running, stop it.
1990 		 * XXX If it's up then re-initialize it. This is so flags
1991 		 * such as IFF_PROMISC are handled.
1992 		 */
1993 		if (ifp->if_flags & IFF_UP) {
1994 			fxp_init(sc);
1995 		} else {
1996 			if (ifp->if_flags & IFF_RUNNING)
1997 				fxp_stop(sc);
1998 		}
1999 		break;
2000 
2001 	case SIOCADDMULTI:
2002 	case SIOCDELMULTI:
2003 		if (ifp->if_flags & IFF_ALLMULTI)
2004 			sc->flags |= FXP_FLAG_ALL_MCAST;
2005 		else
2006 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2007 		/*
2008 		 * Multicast list has changed; set the hardware filter
2009 		 * accordingly.
2010 		 */
2011 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2012 			fxp_mc_setup(sc);
2013 		/*
2014 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2015 		 * again rather than else {}.
2016 		 */
2017 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2018 			fxp_init(sc);
2019 		error = 0;
2020 		break;
2021 
2022 	case SIOCSIFMEDIA:
2023 	case SIOCGIFMEDIA:
2024 		if (sc->miibus != NULL) {
2025 			mii = device_get_softc(sc->miibus);
2026                         error = ifmedia_ioctl(ifp, ifr,
2027                             &mii->mii_media, command);
2028 		} else {
2029                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2030 		}
2031 		break;
2032 
2033 	default:
2034 		error = ether_ioctl(ifp, command, data);
2035 		break;
2036 	}
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Fill in the multicast address list and return number of entries.
2042  */
2043 static int
2044 fxp_mc_addrs(struct fxp_softc *sc)
2045 {
2046 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2047 	struct ifnet *ifp = &sc->arpcom.ac_if;
2048 	struct ifmultiaddr *ifma;
2049 	int nmcasts;
2050 
2051 	nmcasts = 0;
2052 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2053 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2054 			if (ifma->ifma_addr->sa_family != AF_LINK)
2055 				continue;
2056 			if (nmcasts >= MAXMCADDR) {
2057 				sc->flags |= FXP_FLAG_ALL_MCAST;
2058 				nmcasts = 0;
2059 				break;
2060 			}
2061 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2062 			    (void *)(uintptr_t)(volatile void *)
2063 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2064 			nmcasts++;
2065 		}
2066 	}
2067 	mcsp->mc_cnt = nmcasts * 6;
2068 	return (nmcasts);
2069 }
2070 
2071 /*
2072  * Program the multicast filter.
2073  *
2074  * We have an artificial restriction that the multicast setup command
2075  * must be the first command in the chain, so we take steps to ensure
2076  * this. By requiring this, it allows us to keep up the performance of
2077  * the pre-initialized command ring (esp. link pointers) by not actually
2078  * inserting the mcsetup command in the ring - i.e. its link pointer
2079  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2080  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2081  * lead into the regular TxCB ring when it completes.
2082  *
2083  * This function must be called at splimp.
2084  */
2085 static void
2086 fxp_mc_setup(struct fxp_softc *sc)
2087 {
2088 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2089 	struct ifnet *ifp = &sc->arpcom.ac_if;
2090 	int count;
2091 
2092 	/*
2093 	 * If there are queued commands, we must wait until they are all
2094 	 * completed. If we are already waiting, then add a NOP command
2095 	 * with interrupt option so that we're notified when all commands
2096 	 * have been completed - fxp_start() ensures that no additional
2097 	 * TX commands will be added when need_mcsetup is true.
2098 	 */
2099 	if (sc->tx_queued) {
2100 		struct fxp_cb_tx *txp;
2101 
2102 		/*
2103 		 * need_mcsetup will be true if we are already waiting for the
2104 		 * NOP command to be completed (see below). In this case, bail.
2105 		 */
2106 		if (sc->need_mcsetup)
2107 			return;
2108 		sc->need_mcsetup = 1;
2109 
2110 		/*
2111 		 * Add a NOP command with interrupt so that we are notified
2112 		 * when all TX commands have been processed.
2113 		 */
2114 		txp = sc->cbl_last->next;
2115 		txp->mb_head = NULL;
2116 		txp->cb_status = 0;
2117 		txp->cb_command = FXP_CB_COMMAND_NOP |
2118 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2119 		/*
2120 		 * Advance the end of list forward.
2121 		 */
2122 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2123 		sc->cbl_last = txp;
2124 		sc->tx_queued++;
2125 		/*
2126 		 * Issue a resume in case the CU has just suspended.
2127 		 */
2128 		fxp_scb_wait(sc);
2129 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2130 		/*
2131 		 * Set a 5 second timer just in case we don't hear from the
2132 		 * card again.
2133 		 */
2134 		ifp->if_timer = 5;
2135 
2136 		return;
2137 	}
2138 	sc->need_mcsetup = 0;
2139 
2140 	/*
2141 	 * Initialize multicast setup descriptor.
2142 	 */
2143 	mcsp->next = sc->cbl_base;
2144 	mcsp->mb_head = NULL;
2145 	mcsp->cb_status = 0;
2146 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2147 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2148 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2149 	fxp_mc_addrs(sc);
2150 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2151 	sc->tx_queued = 1;
2152 
2153 	/*
2154 	 * Wait until command unit is not active. This should never
2155 	 * be the case when nothing is queued, but make sure anyway.
2156 	 */
2157 	count = 100;
2158 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2159 	    FXP_SCB_CUS_ACTIVE && --count)
2160 		DELAY(10);
2161 	if (count == 0) {
2162 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2163 		return;
2164 	}
2165 
2166 	/*
2167 	 * Start the multicast setup command.
2168 	 */
2169 	fxp_scb_wait(sc);
2170 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2171 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2172 
2173 	ifp->if_timer = 2;
2174 	return;
2175 }
2176 
2177 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2178 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2179 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2180 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2181 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2182 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2183 
2184 #define UCODE(x)	x, sizeof(x)
2185 
2186 struct ucode {
2187 	u_int32_t	revision;
2188 	u_int32_t	*ucode;
2189 	int		length;
2190 	u_short		int_delay_offset;
2191 	u_short		bundle_max_offset;
2192 } ucode_table[] = {
2193 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2194 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2195 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2196 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2197 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2198 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2199 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2200 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2201 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2202 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2203 	{ 0, NULL, 0, 0, 0 }
2204 };
2205 
2206 static void
2207 fxp_load_ucode(struct fxp_softc *sc)
2208 {
2209 	struct ucode *uc;
2210 	struct fxp_cb_ucode *cbp;
2211 
2212 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2213 		if (sc->revision == uc->revision)
2214 			break;
2215 	if (uc->ucode == NULL)
2216 		return;
2217 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2218 	cbp->cb_status = 0;
2219 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2220 	cbp->link_addr = -1;    	/* (no) next command */
2221 	memcpy(cbp->ucode, uc->ucode, uc->length);
2222 	if (uc->int_delay_offset)
2223 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2224 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2225 	if (uc->bundle_max_offset)
2226 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2227 		    sc->tunable_bundle_max;
2228 	/*
2229 	 * Download the ucode to the chip.
2230 	 */
2231 	fxp_scb_wait(sc);
2232 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2233 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2234 	/* ...and wait for it to complete. */
2235 	fxp_dma_wait(&cbp->cb_status, sc);
2236 	if_printf(&sc->arpcom.ac_if,
2237 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2238 	    sc->tunable_int_delay,
2239 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2240 	sc->flags |= FXP_FLAG_UCODE;
2241 }
2242 
2243 static int
2244 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2245 {
2246 	int error, value;
2247 
2248 	value = *(int *)arg1;
2249 	error = sysctl_handle_int(oidp, &value, 0, req);
2250 	if (error || !req->newptr)
2251 		return (error);
2252 	if (value < low || value > high)
2253 		return (EINVAL);
2254 	*(int *)arg1 = value;
2255 	return (0);
2256 }
2257 
2258 /*
2259  * Interrupt delay is expressed in microseconds, a multiplier is used
2260  * to convert this to the appropriate clock ticks before using.
2261  */
2262 static int
2263 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2264 {
2265 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2266 }
2267 
2268 static int
2269 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2270 {
2271 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2272 }
2273