xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision f223f854)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/interrupt.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 #include <sys/thread2.h>
46 
47 #include <net/if.h>
48 #include <net/ifq_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <net/bpf.h>
53 #include <sys/sockio.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 #include <net/if_poll.h>
60 
61 #include <vm/vm.h>		/* for vtophys */
62 #include <vm/pmap.h>		/* for vtophys */
63 
64 #include <net/if_types.h>
65 #include <net/vlan/if_vlan_var.h>
66 
67 #include <bus/pci/pcivar.h>
68 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
69 
70 #include "../mii_layer/mii.h"
71 #include "../mii_layer/miivar.h"
72 
73 #include "if_fxpreg.h"
74 #include "if_fxpvar.h"
75 #include "rcvbundl.h"
76 
77 #include "miibus_if.h"
78 
79 /*
80  * NOTE!  On the Alpha, we have an alignment constraint.  The
81  * card DMAs the packet immediately following the RFA.  However,
82  * the first thing in the packet is a 14-byte Ethernet header.
83  * This means that the packet is misaligned.  To compensate,
84  * we actually offset the RFA 2 bytes into the cluster.  This
85  * alignes the packet after the Ethernet header at a 32-bit
86  * boundary.  HOWEVER!  This means that the RFA is misaligned!
87  */
88 #define	RFA_ALIGNMENT_FUDGE	2
89 
90 /*
91  * Set initial transmit threshold at 64 (512 bytes). This is
92  * increased by 64 (512 bytes) at a time, to maximum of 192
93  * (1536 bytes), if an underrun occurs.
94  */
95 static int tx_threshold = 64;
96 
97 /*
98  * The configuration byte map has several undefined fields which
99  * must be one or must be zero.  Set up a template for these bits
100  * only, (assuming a 82557 chip) leaving the actual configuration
101  * to fxp_init.
102  *
103  * See struct fxp_cb_config for the bit definitions.
104  */
105 static u_char fxp_cb_config_template[] = {
106 	0x0, 0x0,		/* cb_status */
107 	0x0, 0x0,		/* cb_command */
108 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
109 	0x0,	/*  0 */
110 	0x0,	/*  1 */
111 	0x0,	/*  2 */
112 	0x0,	/*  3 */
113 	0x0,	/*  4 */
114 	0x0,	/*  5 */
115 	0x32,	/*  6 */
116 	0x0,	/*  7 */
117 	0x0,	/*  8 */
118 	0x0,	/*  9 */
119 	0x6,	/* 10 */
120 	0x0,	/* 11 */
121 	0x0,	/* 12 */
122 	0x0,	/* 13 */
123 	0xf2,	/* 14 */
124 	0x48,	/* 15 */
125 	0x0,	/* 16 */
126 	0x40,	/* 17 */
127 	0xf0,	/* 18 */
128 	0x0,	/* 19 */
129 	0x3f,	/* 20 */
130 	0x5	/* 21 */
131 };
132 
133 struct fxp_ident {
134 	u_int16_t	devid;
135 	int16_t		revid;		/* -1 matches anything */
136 	char 		*name;
137 };
138 
139 /*
140  * Claim various Intel PCI device identifiers for this driver.  The
141  * sub-vendor and sub-device field are extensively used to identify
142  * particular variants, but we don't currently differentiate between
143  * them.
144  */
145 static struct fxp_ident fxp_ident_table[] = {
146      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
147      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
148      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
149      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
150      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
151      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
152      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
153      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
154      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
155      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
157      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
158      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
159      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
160      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
162      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
163      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
164      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
165      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
166      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
167      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
168      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
169      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
170      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
171      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
172      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
173      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
191      { 0,	-1,	NULL },
192 };
193 
194 static int		fxp_probe(device_t dev);
195 static int		fxp_attach(device_t dev);
196 static int		fxp_detach(device_t dev);
197 static int		fxp_shutdown(device_t dev);
198 static int		fxp_suspend(device_t dev);
199 static int		fxp_resume(device_t dev);
200 
201 static void		fxp_intr(void *xsc);
202 static void		fxp_intr_body(struct fxp_softc *sc,
203 				u_int8_t statack, int count);
204 
205 static void 		fxp_init(void *xsc);
206 static void 		fxp_tick(void *xsc);
207 static void		fxp_powerstate_d0(device_t dev);
208 static void 		fxp_start(struct ifnet *ifp, struct ifaltq_subque *);
209 static void		fxp_stop(struct fxp_softc *sc);
210 static void 		fxp_release(device_t dev);
211 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
212 			    caddr_t data, struct ucred *);
213 static void 		fxp_watchdog(struct ifnet *ifp);
214 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
215 static int		fxp_mc_addrs(struct fxp_softc *sc);
216 static void		fxp_mc_setup(struct fxp_softc *sc);
217 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
218 			    int autosize);
219 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
220 			    u_int16_t data);
221 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
222 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
223 			    int offset, int words);
224 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
225 			    int offset, int words);
226 static int		fxp_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
230 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
231 			    struct ifmediareq *ifmr);
232 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
233 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
234 			    int value);
235 static void		fxp_load_ucode(struct fxp_softc *sc);
236 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
237 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
238 #ifdef IFPOLL_ENABLE
239 static void		fxp_npoll(struct ifnet *, struct ifpoll_info *);
240 static void		fxp_npoll_compat(struct ifnet *, void *, int);
241 #endif
242 
243 static void		fxp_lwcopy(volatile u_int32_t *src,
244 			    volatile u_int32_t *dst);
245 static void 		fxp_scb_wait(struct fxp_softc *sc);
246 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
247 static void		fxp_dma_wait(volatile u_int16_t *status,
248 			    struct fxp_softc *sc);
249 
250 static device_method_t fxp_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		fxp_probe),
253 	DEVMETHOD(device_attach,	fxp_attach),
254 	DEVMETHOD(device_detach,	fxp_detach),
255 	DEVMETHOD(device_shutdown,	fxp_shutdown),
256 	DEVMETHOD(device_suspend,	fxp_suspend),
257 	DEVMETHOD(device_resume,	fxp_resume),
258 
259 	/* MII interface */
260 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
261 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
262 
263 	DEVMETHOD_END
264 };
265 
266 static driver_t fxp_driver = {
267 	"fxp",
268 	fxp_methods,
269 	sizeof(struct fxp_softc),
270 };
271 
272 static devclass_t fxp_devclass;
273 
274 DECLARE_DUMMY_MODULE(if_fxp);
275 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
276 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, NULL, NULL);
277 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, NULL, NULL);
278 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
279 
280 static int fxp_rnr;
281 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
282 
283 /*
284  * Copy a 16-bit aligned 32-bit quantity.
285  */
286 static void
287 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
288 {
289 	volatile u_int16_t *a = (volatile u_int16_t *)src;
290 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
291 
292 	b[0] = a[0];
293 	b[1] = a[1];
294 }
295 
296 /*
297  * Wait for the previous command to be accepted (but not necessarily
298  * completed).
299  */
300 static void
301 fxp_scb_wait(struct fxp_softc *sc)
302 {
303 	int i = 10000;
304 
305 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
306 		DELAY(2);
307 	if (i == 0) {
308 		if_printf(&sc->arpcom.ac_if,
309 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
310 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
311 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
312 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
313 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
314 	}
315 }
316 
317 static void
318 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
319 {
320 
321 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
322 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
323 		fxp_scb_wait(sc);
324 	}
325 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
326 }
327 
328 static void
329 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
330 {
331 	int i = 10000;
332 
333 	while (!(*status & FXP_CB_STATUS_C) && --i)
334 		DELAY(2);
335 	if (i == 0)
336 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
337 }
338 
339 /*
340  * Return identification string if this is device is ours.
341  */
342 static int
343 fxp_probe(device_t dev)
344 {
345 	u_int16_t devid;
346 	u_int8_t revid;
347 	struct fxp_ident *ident;
348 
349 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
350 		devid = pci_get_device(dev);
351 		revid = pci_get_revid(dev);
352 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
353 			if (ident->devid == devid &&
354 			    (ident->revid == revid || ident->revid == -1)) {
355 				device_set_desc(dev, ident->name);
356 				return (0);
357 			}
358 		}
359 	}
360 	return (ENXIO);
361 }
362 
363 static void
364 fxp_powerstate_d0(device_t dev)
365 {
366 	u_int32_t iobase, membase, irq;
367 
368 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
369 		/* Save important PCI config data. */
370 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
371 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
372 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
373 
374 		/* Reset the power state. */
375 		device_printf(dev, "chip is in D%d power mode "
376 		    "-- setting to D0\n", pci_get_powerstate(dev));
377 
378 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
379 
380 		/* Restore PCI config data. */
381 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
382 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
383 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
384 	}
385 }
386 
387 static int
388 fxp_attach(device_t dev)
389 {
390 	int error = 0;
391 	struct fxp_softc *sc = device_get_softc(dev);
392 	struct ifnet *ifp;
393 	struct sysctl_ctx_list *ctx;
394 	struct sysctl_oid *tree;
395 	u_int32_t val;
396 	u_int16_t data;
397 	int i, rid, m1, m2, prefer_iomap;
398 
399 	callout_init(&sc->fxp_stat_timer);
400 
401 	/*
402 	 * Enable bus mastering. Enable memory space too, in case
403 	 * BIOS/Prom forgot about it.
404 	 */
405 	pci_enable_busmaster(dev);
406 	pci_enable_io(dev, SYS_RES_MEMORY);
407 	val = pci_read_config(dev, PCIR_COMMAND, 2);
408 
409 	fxp_powerstate_d0(dev);
410 
411 	/*
412 	 * Figure out which we should try first - memory mapping or i/o mapping?
413 	 * We default to memory mapping. Then we accept an override from the
414 	 * command line. Then we check to see which one is enabled.
415 	 */
416 	m1 = PCIM_CMD_MEMEN;
417 	m2 = PCIM_CMD_PORTEN;
418 	prefer_iomap = 0;
419 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
420 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
421 		m1 = PCIM_CMD_PORTEN;
422 		m2 = PCIM_CMD_MEMEN;
423 	}
424 
425 	if (val & m1) {
426 		sc->rtp =
427 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
428 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
429 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
430 		    RF_ACTIVE);
431 	}
432 	if (sc->mem == NULL && (val & m2)) {
433 		sc->rtp =
434 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
436 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
437             	    RF_ACTIVE);
438 	}
439 
440 	if (!sc->mem) {
441 		device_printf(dev, "could not map device registers\n");
442 		error = ENXIO;
443 		goto fail;
444         }
445 	if (bootverbose) {
446 		device_printf(dev, "using %s space register mapping\n",
447 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
448 	}
449 
450 	sc->sc_st = rman_get_bustag(sc->mem);
451 	sc->sc_sh = rman_get_bushandle(sc->mem);
452 
453 	/*
454 	 * Allocate our interrupt.
455 	 */
456 	rid = 0;
457 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
458 	    RF_SHAREABLE | RF_ACTIVE);
459 	if (sc->irq == NULL) {
460 		device_printf(dev, "could not map interrupt\n");
461 		error = ENXIO;
462 		goto fail;
463 	}
464 
465 	/*
466 	 * Reset to a stable state.
467 	 */
468 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
469 	DELAY(10);
470 
471 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
472 	    M_DEVBUF, M_WAITOK | M_ZERO);
473 
474 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
475 	    M_WAITOK | M_ZERO);
476 
477 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
478 
479 	/*
480 	 * Pre-allocate our receive buffers.
481 	 */
482 	for (i = 0; i < FXP_NRFABUFS; i++) {
483 		if (fxp_add_rfabuf(sc, NULL) != 0) {
484 			goto failmem;
485 		}
486 	}
487 
488 	/*
489 	 * Find out how large of an SEEPROM we have.
490 	 */
491 	fxp_autosize_eeprom(sc);
492 
493 	/*
494 	 * Determine whether we must use the 503 serial interface.
495 	 */
496 	fxp_read_eeprom(sc, &data, 6, 1);
497 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
498 	    (data & FXP_PHY_SERIAL_ONLY))
499 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
500 
501 	/*
502 	 * Create the sysctl tree
503 	 */
504 	ctx = device_get_sysctl_ctx(dev);
505 	tree = device_get_sysctl_tree(dev);
506 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
507 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
508 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
509 	    "FXP driver receive interrupt microcode bundling delay");
510 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
511 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
512 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
513 	    "FXP driver receive interrupt microcode bundle size limit");
514 
515 	/*
516 	 * Pull in device tunables.
517 	 */
518 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
519 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
520 	resource_int_value(device_get_name(dev), device_get_unit(dev),
521 	    "int_delay", &sc->tunable_int_delay);
522 	resource_int_value(device_get_name(dev), device_get_unit(dev),
523 	    "bundle_max", &sc->tunable_bundle_max);
524 
525 	/*
526 	 * Find out the chip revision; lump all 82557 revs together.
527 	 */
528 	fxp_read_eeprom(sc, &data, 5, 1);
529 	if ((data >> 8) == 1)
530 		sc->revision = FXP_REV_82557;
531 	else
532 		sc->revision = pci_get_revid(dev);
533 
534 	/*
535 	 * Enable workarounds for certain chip revision deficiencies.
536 	 *
537 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
538 	 * some systems based a normal 82559 design, have a defect where
539 	 * the chip can cause a PCI protocol violation if it receives
540 	 * a CU_RESUME command when it is entering the IDLE state.  The
541 	 * workaround is to disable Dynamic Standby Mode, so the chip never
542 	 * deasserts CLKRUN#, and always remains in an active state.
543 	 *
544 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
545 	 */
546 	i = pci_get_device(dev);
547 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
548 	    sc->revision >= FXP_REV_82559_A0) {
549 		fxp_read_eeprom(sc, &data, 10, 1);
550 		if (data & 0x02) {			/* STB enable */
551 			u_int16_t cksum;
552 			int i;
553 
554 			device_printf(dev,
555 			    "Disabling dynamic standby mode in EEPROM\n");
556 			data &= ~0x02;
557 			fxp_write_eeprom(sc, &data, 10, 1);
558 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
559 			cksum = 0;
560 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
561 				fxp_read_eeprom(sc, &data, i, 1);
562 				cksum += data;
563 			}
564 			i = (1 << sc->eeprom_size) - 1;
565 			cksum = 0xBABA - cksum;
566 			fxp_read_eeprom(sc, &data, i, 1);
567 			fxp_write_eeprom(sc, &cksum, i, 1);
568 			device_printf(dev,
569 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
570 			    i, data, cksum);
571 #if 1
572 			/*
573 			 * If the user elects to continue, try the software
574 			 * workaround, as it is better than nothing.
575 			 */
576 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
577 #endif
578 		}
579 	}
580 
581 	/*
582 	 * If we are not a 82557 chip, we can enable extended features.
583 	 */
584 	if (sc->revision != FXP_REV_82557) {
585 		/*
586 		 * If MWI is enabled in the PCI configuration, and there
587 		 * is a valid cacheline size (8 or 16 dwords), then tell
588 		 * the board to turn on MWI.
589 		 */
590 		if (val & PCIM_CMD_MWRICEN &&
591 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
592 			sc->flags |= FXP_FLAG_MWI_ENABLE;
593 
594 		/* turn on the extended TxCB feature */
595 		sc->flags |= FXP_FLAG_EXT_TXCB;
596 
597 		/* enable reception of long frames for VLAN */
598 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
599 	}
600 
601 	/*
602 	 * Read MAC address.
603 	 */
604 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
605 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
606 		device_printf(dev, "10Mbps\n");
607 	if (bootverbose) {
608 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
609 		    pci_get_vendor(dev), pci_get_device(dev),
610 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
611 		    pci_get_revid(dev));
612 		fxp_read_eeprom(sc, &data, 10, 1);
613 		device_printf(dev, "Dynamic Standby mode is %s\n",
614 		    data & 0x02 ? "enabled" : "disabled");
615 	}
616 
617 	/*
618 	 * If this is only a 10Mbps device, then there is no MII, and
619 	 * the PHY will use a serial interface instead.
620 	 *
621 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
622 	 * doesn't have a programming interface of any sort.  The
623 	 * media is sensed automatically based on how the link partner
624 	 * is configured.  This is, in essence, manual configuration.
625 	 */
626 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
627 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
628 		    fxp_serial_ifmedia_sts);
629 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
630 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
631 	} else {
632 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
633 		    fxp_ifmedia_sts)) {
634 	                device_printf(dev, "MII without any PHY!\n");
635 			error = ENXIO;
636 			goto fail;
637 		}
638 	}
639 
640 	ifp = &sc->arpcom.ac_if;
641 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
642 	ifp->if_baudrate = 100000000;
643 	ifp->if_init = fxp_init;
644 	ifp->if_softc = sc;
645 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
646 	ifp->if_ioctl = fxp_ioctl;
647 	ifp->if_start = fxp_start;
648 #ifdef IFPOLL_ENABLE
649 	ifp->if_npoll = fxp_npoll;
650 #endif
651 	ifp->if_watchdog = fxp_watchdog;
652 
653 	/*
654 	 * Attach the interface.
655 	 */
656 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
657 
658 #ifdef IFPOLL_ENABLE
659 	ifpoll_compat_setup(&sc->fxp_npoll, ctx, (struct sysctl_oid *)tree,
660 	    device_get_unit(dev), ifp->if_serializer);
661 #endif
662 
663 	/*
664 	 * Tell the upper layer(s) we support long frames.
665 	 */
666 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
667 
668 	/*
669 	 * Let the system queue as many packets as we have available
670 	 * TX descriptors.
671 	 */
672 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
673 	ifq_set_ready(&ifp->if_snd);
674 
675 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
676 
677 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
678 			       fxp_intr, sc, &sc->ih,
679 			       ifp->if_serializer);
680 	if (error) {
681 		ether_ifdetach(ifp);
682 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
683 			ifmedia_removeall(&sc->sc_media);
684 		device_printf(dev, "could not setup irq\n");
685 		goto fail;
686 	}
687 
688 	return (0);
689 
690 failmem:
691 	device_printf(dev, "Failed to malloc memory\n");
692 	error = ENOMEM;
693 fail:
694 	fxp_release(dev);
695 	return (error);
696 }
697 
698 /*
699  * release all resources
700  */
701 static void
702 fxp_release(device_t dev)
703 {
704 	struct fxp_softc *sc = device_get_softc(dev);
705 
706 	if (sc->miibus)
707 		device_delete_child(dev, sc->miibus);
708 	bus_generic_detach(dev);
709 
710 	if (sc->cbl_base)
711 		kfree(sc->cbl_base, M_DEVBUF);
712 	if (sc->fxp_stats)
713 		kfree(sc->fxp_stats, M_DEVBUF);
714 	if (sc->mcsp)
715 		kfree(sc->mcsp, M_DEVBUF);
716 	if (sc->rfa_headm)
717 		m_freem(sc->rfa_headm);
718 
719 	if (sc->irq)
720 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
721 	if (sc->mem)
722 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
723 }
724 
725 /*
726  * Detach interface.
727  */
728 static int
729 fxp_detach(device_t dev)
730 {
731 	struct fxp_softc *sc = device_get_softc(dev);
732 
733 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
734 
735 	/*
736 	 * Stop DMA and drop transmit queue.
737 	 */
738 	fxp_stop(sc);
739 
740 	/*
741 	 * Disable interrupts.
742 	 *
743 	 * NOTE: This should be done after fxp_stop(), because software
744 	 * resetting in fxp_stop() may leave interrupts turned on.
745 	 */
746 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
747 
748 	/*
749 	 * Free all media structures.
750 	 */
751 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
752 		ifmedia_removeall(&sc->sc_media);
753 
754 	if (sc->ih)
755 		bus_teardown_intr(dev, sc->irq, sc->ih);
756 
757 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
758 
759 	/*
760 	 * Close down routes etc.
761 	 */
762 	ether_ifdetach(&sc->arpcom.ac_if);
763 
764 	/* Release our allocated resources. */
765 	fxp_release(dev);
766 
767 	return (0);
768 }
769 
770 /*
771  * Device shutdown routine. Called at system shutdown after sync. The
772  * main purpose of this routine is to shut off receiver DMA so that
773  * kernel memory doesn't get clobbered during warmboot.
774  */
775 static int
776 fxp_shutdown(device_t dev)
777 {
778 	struct fxp_softc *sc = device_get_softc(dev);
779 	struct ifnet *ifp = &sc->arpcom.ac_if;
780 
781 	lwkt_serialize_enter(ifp->if_serializer);
782 	/*
783 	 * Make sure that DMA is disabled prior to reboot. Not doing
784 	 * do could allow DMA to corrupt kernel memory during the
785 	 * reboot before the driver initializes.
786 	 */
787 	fxp_stop(sc);
788 	lwkt_serialize_exit(ifp->if_serializer);
789 	return (0);
790 }
791 
792 /*
793  * Device suspend routine.  Stop the interface and save some PCI
794  * settings in case the BIOS doesn't restore them properly on
795  * resume.
796  */
797 static int
798 fxp_suspend(device_t dev)
799 {
800 	struct fxp_softc *sc = device_get_softc(dev);
801 	int i;
802 
803 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
804 
805 	fxp_stop(sc);
806 
807 	for (i = 0; i < 5; i++)
808 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
809 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
810 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
811 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
812 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
813 
814 	sc->suspended = 1;
815 
816 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
817 	return (0);
818 }
819 
820 /*
821  * Device resume routine.  Restore some PCI settings in case the BIOS
822  * doesn't, re-enable busmastering, and restart the interface if
823  * appropriate.
824  */
825 static int
826 fxp_resume(device_t dev)
827 {
828 	struct fxp_softc *sc = device_get_softc(dev);
829 	struct ifnet *ifp = &sc->arpcom.ac_if;
830 	int i;
831 
832 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
833 
834 	fxp_powerstate_d0(dev);
835 
836 	/* better way to do this? */
837 	for (i = 0; i < 5; i++)
838 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
839 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
840 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
841 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
842 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
843 
844 	/* reenable busmastering and memory space */
845 	pci_enable_busmaster(dev);
846 	pci_enable_io(dev, SYS_RES_MEMORY);
847 
848 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
849 	DELAY(10);
850 
851 	/* reinitialize interface if necessary */
852 	if (ifp->if_flags & IFF_UP)
853 		fxp_init(sc);
854 
855 	sc->suspended = 0;
856 
857 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
858 	return (0);
859 }
860 
861 static void
862 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
863 {
864 	u_int16_t reg;
865 	int x;
866 
867 	/*
868 	 * Shift in data.
869 	 */
870 	for (x = 1 << (length - 1); x; x >>= 1) {
871 		if (data & x)
872 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
873 		else
874 			reg = FXP_EEPROM_EECS;
875 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
876 		DELAY(1);
877 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
878 		DELAY(1);
879 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
880 		DELAY(1);
881 	}
882 }
883 
884 /*
885  * Read from the serial EEPROM. Basically, you manually shift in
886  * the read opcode (one bit at a time) and then shift in the address,
887  * and then you shift out the data (all of this one bit at a time).
888  * The word size is 16 bits, so you have to provide the address for
889  * every 16 bits of data.
890  */
891 static u_int16_t
892 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
893 {
894 	u_int16_t reg, data;
895 	int x;
896 
897 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
898 	/*
899 	 * Shift in read opcode.
900 	 */
901 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
902 	/*
903 	 * Shift in address.
904 	 */
905 	data = 0;
906 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
907 		if (offset & x)
908 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
909 		else
910 			reg = FXP_EEPROM_EECS;
911 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
912 		DELAY(1);
913 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
914 		DELAY(1);
915 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916 		DELAY(1);
917 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
918 		data++;
919 		if (autosize && reg == 0) {
920 			sc->eeprom_size = data;
921 			break;
922 		}
923 	}
924 	/*
925 	 * Shift out data.
926 	 */
927 	data = 0;
928 	reg = FXP_EEPROM_EECS;
929 	for (x = 1 << 15; x; x >>= 1) {
930 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
931 		DELAY(1);
932 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
933 			data |= x;
934 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
935 		DELAY(1);
936 	}
937 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
938 	DELAY(1);
939 
940 	return (data);
941 }
942 
943 static void
944 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
945 {
946 	int i;
947 
948 	/*
949 	 * Erase/write enable.
950 	 */
951 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
952 	fxp_eeprom_shiftin(sc, 0x4, 3);
953 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
954 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
955 	DELAY(1);
956 	/*
957 	 * Shift in write opcode, address, data.
958 	 */
959 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
960 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
961 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
962 	fxp_eeprom_shiftin(sc, data, 16);
963 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
964 	DELAY(1);
965 	/*
966 	 * Wait for EEPROM to finish up.
967 	 */
968 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
969 	DELAY(1);
970 	for (i = 0; i < 1000; i++) {
971 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
972 			break;
973 		DELAY(50);
974 	}
975 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
976 	DELAY(1);
977 	/*
978 	 * Erase/write disable.
979 	 */
980 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
981 	fxp_eeprom_shiftin(sc, 0x4, 3);
982 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
983 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
984 	DELAY(1);
985 }
986 
987 /*
988  * From NetBSD:
989  *
990  * Figure out EEPROM size.
991  *
992  * 559's can have either 64-word or 256-word EEPROMs, the 558
993  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
994  * talks about the existance of 16 to 256 word EEPROMs.
995  *
996  * The only known sizes are 64 and 256, where the 256 version is used
997  * by CardBus cards to store CIS information.
998  *
999  * The address is shifted in msb-to-lsb, and after the last
1000  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1001  * after which follows the actual data. We try to detect this zero, by
1002  * probing the data-out bit in the EEPROM control register just after
1003  * having shifted in a bit. If the bit is zero, we assume we've
1004  * shifted enough address bits. The data-out should be tri-state,
1005  * before this, which should translate to a logical one.
1006  */
1007 static void
1008 fxp_autosize_eeprom(struct fxp_softc *sc)
1009 {
1010 
1011 	/* guess maximum size of 256 words */
1012 	sc->eeprom_size = 8;
1013 
1014 	/* autosize */
1015 	fxp_eeprom_getword(sc, 0, 1);
1016 }
1017 
1018 static void
1019 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1020 {
1021 	int i;
1022 
1023 	for (i = 0; i < words; i++)
1024 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1025 }
1026 
1027 static void
1028 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < words; i++)
1033 		fxp_eeprom_putword(sc, offset + i, data[i]);
1034 }
1035 
1036 /*
1037  * Start packet transmission on the interface.
1038  */
1039 static void
1040 fxp_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1041 {
1042 	struct fxp_softc *sc = ifp->if_softc;
1043 	struct fxp_cb_tx *txp;
1044 
1045 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1046 	ASSERT_SERIALIZED(ifp->if_serializer);
1047 
1048 	/*
1049 	 * See if we need to suspend xmit until the multicast filter
1050 	 * has been reprogrammed (which can only be done at the head
1051 	 * of the command chain).
1052 	 */
1053 	if (sc->need_mcsetup) {
1054 		ifq_purge(&ifp->if_snd);
1055 		return;
1056 	}
1057 
1058 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1059 		return;
1060 
1061 	txp = NULL;
1062 
1063 	/*
1064 	 * We're finished if there is nothing more to add to the list or if
1065 	 * we're all filled up with buffers to transmit.
1066 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1067 	 *       a NOP command when needed.
1068 	 */
1069 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1070 		struct mbuf *m, *mb_head;
1071 		int segment, ntries = 0;
1072 
1073 		/*
1074 		 * Grab a packet to transmit.
1075 		 */
1076 		mb_head = ifq_dequeue(&ifp->if_snd);
1077 		if (mb_head == NULL)
1078 			break;
1079 tbdinit:
1080 		/*
1081 		 * Make sure that the packet fits into one TX desc
1082 		 */
1083 		segment = 0;
1084 		for (m = mb_head; m != NULL; m = m->m_next) {
1085 			if (m->m_len != 0) {
1086 				++segment;
1087 				if (segment >= FXP_NTXSEG)
1088 					break;
1089 			}
1090 		}
1091 		if (segment >= FXP_NTXSEG) {
1092 			struct mbuf *mn;
1093 
1094 			if (ntries) {
1095 				/*
1096 				 * Packet is excessively fragmented,
1097 				 * and will never fit into one TX
1098 				 * desc.  Give it up.
1099 				 */
1100 				m_freem(mb_head);
1101 				IFNET_STAT_INC(ifp, oerrors, 1);
1102 				continue;
1103 			}
1104 
1105 			mn = m_dup(mb_head, M_NOWAIT);
1106 			if (mn == NULL) {
1107 				m_freem(mb_head);
1108 				IFNET_STAT_INC(ifp, oerrors, 1);
1109 				continue;
1110 			}
1111 
1112 			m_freem(mb_head);
1113 			mb_head = mn;
1114 			ntries = 1;
1115 			goto tbdinit;
1116 		}
1117 
1118 		/*
1119 		 * Get pointer to next available tx desc.
1120 		 */
1121 		txp = sc->cbl_last->next;
1122 
1123 		/*
1124 		 * Go through each of the mbufs in the chain and initialize
1125 		 * the transmit buffer descriptors with the physical address
1126 		 * and size of the mbuf.
1127 		 */
1128 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1129 			if (m->m_len != 0) {
1130 				KKASSERT(segment < FXP_NTXSEG);
1131 
1132 				txp->tbd[segment].tb_addr =
1133 				    vtophys(mtod(m, vm_offset_t));
1134 				txp->tbd[segment].tb_size = m->m_len;
1135 				segment++;
1136 			}
1137 		}
1138 		KKASSERT(m == NULL);
1139 
1140 		txp->tbd_number = segment;
1141 		txp->mb_head = mb_head;
1142 		txp->cb_status = 0;
1143 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1144 			txp->cb_command =
1145 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1146 			    FXP_CB_COMMAND_S;
1147 		} else {
1148 			txp->cb_command =
1149 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1150 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1151 		}
1152 		txp->tx_threshold = tx_threshold;
1153 
1154 		/*
1155 		 * Advance the end of list forward.
1156 		 */
1157 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1158 		sc->cbl_last = txp;
1159 
1160 		/*
1161 		 * Advance the beginning of the list forward if there are
1162 		 * no other packets queued (when nothing is queued, cbl_first
1163 		 * sits on the last TxCB that was sent out).
1164 		 */
1165 		if (sc->tx_queued == 0)
1166 			sc->cbl_first = txp;
1167 
1168 		sc->tx_queued++;
1169 		/*
1170 		 * Set a 5 second timer just in case we don't hear
1171 		 * from the card again.
1172 		 */
1173 		ifp->if_timer = 5;
1174 
1175 		BPF_MTAP(ifp, mb_head);
1176 	}
1177 
1178 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1179 		ifq_set_oactive(&ifp->if_snd);
1180 
1181 	/*
1182 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1183 	 * going again if suspended.
1184 	 */
1185 	if (txp != NULL) {
1186 		fxp_scb_wait(sc);
1187 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1188 	}
1189 }
1190 
1191 #ifdef IFPOLL_ENABLE
1192 
1193 static void
1194 fxp_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1195 {
1196 	struct fxp_softc *sc = ifp->if_softc;
1197 	u_int8_t statack;
1198 
1199 	ASSERT_SERIALIZED(ifp->if_serializer);
1200 
1201 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1202 		  FXP_SCB_STATACK_FR;
1203 	if (sc->fxp_npoll.ifpc_stcount-- == 0) {
1204 		u_int8_t tmp;
1205 
1206 		sc->fxp_npoll.ifpc_stcount = sc->fxp_npoll.ifpc_stfrac;
1207 
1208 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1209 		if (tmp == 0xff || tmp == 0)
1210 			return; /* nothing to do */
1211 		tmp &= ~statack;
1212 		/* ack what we can */
1213 		if (tmp != 0)
1214 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1215 		statack |= tmp;
1216 	}
1217 	fxp_intr_body(sc, statack, count);
1218 }
1219 
1220 static void
1221 fxp_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1222 {
1223 	struct fxp_softc *sc = ifp->if_softc;
1224 
1225 	ASSERT_SERIALIZED(ifp->if_serializer);
1226 
1227 	if (info != NULL) {
1228 		int cpuid = sc->fxp_npoll.ifpc_cpuid;
1229 
1230 		info->ifpi_rx[cpuid].poll_func = fxp_npoll_compat;
1231 		info->ifpi_rx[cpuid].arg = NULL;
1232 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1233 
1234 		if (ifp->if_flags & IFF_RUNNING) {
1235 			/* disable interrupts */
1236 			CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
1237 			    FXP_SCB_INTR_DISABLE);
1238 			sc->fxp_npoll.ifpc_stcount = 0;
1239 		}
1240 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1241 	} else {
1242 		if (ifp->if_flags & IFF_RUNNING) {
1243 			/* enable interrupts */
1244 			CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1245 		}
1246 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->irq));
1247 	}
1248 }
1249 
1250 #endif /* IFPOLL_ENABLE */
1251 
1252 /*
1253  * Process interface interrupts.
1254  */
1255 static void
1256 fxp_intr(void *xsc)
1257 {
1258 	struct fxp_softc *sc = xsc;
1259 	u_int8_t statack;
1260 
1261 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1262 
1263 	if (sc->suspended) {
1264 		return;
1265 	}
1266 
1267 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1268 		/*
1269 		 * It should not be possible to have all bits set; the
1270 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1271 		 * all bits are set, this may indicate that the card has
1272 		 * been physically ejected, so ignore it.
1273 		 */
1274 		if (statack == 0xff)
1275 			return;
1276 
1277 		/*
1278 		 * First ACK all the interrupts in this pass.
1279 		 */
1280 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1281 		fxp_intr_body(sc, statack, -1);
1282 	}
1283 }
1284 
1285 static void
1286 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1287 {
1288 	struct ifnet *ifp = &sc->arpcom.ac_if;
1289 	struct mbuf *m;
1290 	struct fxp_rfa *rfa;
1291 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1292 
1293 	if (rnr)
1294 		fxp_rnr++;
1295 #ifdef IFPOLL_ENABLE
1296 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1297 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1298 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1299 		rnr = 1;
1300 	}
1301 #endif
1302 
1303 	/*
1304 	 * Free any finished transmit mbuf chains.
1305 	 *
1306 	 * Handle the CNA event likt a CXTNO event. It used to
1307 	 * be that this event (control unit not ready) was not
1308 	 * encountered, but it is now with the SMPng modifications.
1309 	 * The exact sequence of events that occur when the interface
1310 	 * is brought up are different now, and if this event
1311 	 * goes unhandled, the configuration/rxfilter setup sequence
1312 	 * can stall for several seconds. The result is that no
1313 	 * packets go out onto the wire for about 5 to 10 seconds
1314 	 * after the interface is ifconfig'ed for the first time.
1315 	 */
1316 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1317 		struct fxp_cb_tx *txp;
1318 
1319 		for (txp = sc->cbl_first; sc->tx_queued &&
1320 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1321 		    txp = txp->next) {
1322 			if ((m = txp->mb_head) != NULL) {
1323 				txp->mb_head = NULL;
1324 				sc->tx_queued--;
1325 				m_freem(m);
1326 			} else {
1327 				sc->tx_queued--;
1328 			}
1329 		}
1330 		sc->cbl_first = txp;
1331 
1332 		if (sc->tx_queued < FXP_USABLE_TXCB)
1333 			ifq_clr_oactive(&ifp->if_snd);
1334 
1335 		if (sc->tx_queued == 0) {
1336 			ifp->if_timer = 0;
1337 			if (sc->need_mcsetup)
1338 				fxp_mc_setup(sc);
1339 		}
1340 
1341 		/*
1342 		 * Try to start more packets transmitting.
1343 		 */
1344 		if (!ifq_is_empty(&ifp->if_snd))
1345 			if_devstart(ifp);
1346 	}
1347 
1348 	/*
1349 	 * Just return if nothing happened on the receive side.
1350 	 */
1351 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1352 		return;
1353 
1354 	/*
1355 	 * Process receiver interrupts. If a no-resource (RNR)
1356 	 * condition exists, get whatever packets we can and
1357 	 * re-start the receiver.
1358 	 *
1359 	 * When using polling, we do not process the list to completion,
1360 	 * so when we get an RNR interrupt we must defer the restart
1361 	 * until we hit the last buffer with the C bit set.
1362 	 * If we run out of cycles and rfa_headm has the C bit set,
1363 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1364 	 * that the info will be used in the subsequent polling cycle.
1365 	 */
1366 	for (;;) {
1367 		m = sc->rfa_headm;
1368 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1369 					 RFA_ALIGNMENT_FUDGE);
1370 
1371 #ifdef IFPOLL_ENABLE /* loop at most count times if count >=0 */
1372 		if (count >= 0 && count-- == 0) {
1373 			if (rnr) {
1374 				/* Defer RNR processing until the next time. */
1375 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1376 				rnr = 0;
1377 			}
1378 			break;
1379 		}
1380 #endif /* IFPOLL_ENABLE */
1381 
1382 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1383 			break;
1384 
1385 		/*
1386 		 * Remove first packet from the chain.
1387 		 */
1388 		sc->rfa_headm = m->m_next;
1389 		if (sc->rfa_headm == NULL)
1390 			sc->rfa_tailm = NULL;
1391 		m->m_next = NULL;
1392 
1393 		/*
1394 		 * Add a new buffer to the receive chain.
1395 		 * If this fails, the old buffer is recycled
1396 		 * instead.
1397 		 */
1398 		if (fxp_add_rfabuf(sc, m) == 0) {
1399 			int total_len;
1400 
1401 			/*
1402 			 * Fetch packet length (the top 2 bits of
1403 			 * actual_size are flags set by the controller
1404 			 * upon completion), and drop the packet in case
1405 			 * of bogus length or CRC errors.
1406 			 */
1407 			total_len = rfa->actual_size & 0x3fff;
1408 			if (total_len < sizeof(struct ether_header) ||
1409 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1410 					sizeof(struct fxp_rfa) ||
1411 			    (rfa->rfa_status & FXP_RFA_STATUS_CRC)) {
1412 				m_freem(m);
1413 				continue;
1414 			}
1415 			m->m_pkthdr.len = m->m_len = total_len;
1416 			ifp->if_input(ifp, m, NULL, -1);
1417 		}
1418 	}
1419 
1420 	if (rnr) {
1421 		fxp_scb_wait(sc);
1422 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1423 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1424 		    RFA_ALIGNMENT_FUDGE);
1425 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1426 	}
1427 }
1428 
1429 /*
1430  * Update packet in/out/collision statistics. The i82557 doesn't
1431  * allow you to access these counters without doing a fairly
1432  * expensive DMA to get _all_ of the statistics it maintains, so
1433  * we do this operation here only once per second. The statistics
1434  * counters in the kernel are updated from the previous dump-stats
1435  * DMA and then a new dump-stats DMA is started. The on-chip
1436  * counters are zeroed when the DMA completes. If we can't start
1437  * the DMA immediately, we don't wait - we just prepare to read
1438  * them again next time.
1439  */
1440 static void
1441 fxp_tick(void *xsc)
1442 {
1443 	struct fxp_softc *sc = xsc;
1444 	struct ifnet *ifp = &sc->arpcom.ac_if;
1445 	struct fxp_stats *sp = sc->fxp_stats;
1446 	struct fxp_cb_tx *txp;
1447 	struct mbuf *m;
1448 
1449 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1450 
1451 	IFNET_STAT_INC(ifp, opackets, sp->tx_good);
1452 	IFNET_STAT_INC(ifp, collisions, sp->tx_total_collisions);
1453 	if (sp->rx_good) {
1454 		IFNET_STAT_INC(ifp, ipackets, sp->rx_good);
1455 		sc->rx_idle_secs = 0;
1456 	} else {
1457 		/*
1458 		 * Receiver's been idle for another second.
1459 		 */
1460 		sc->rx_idle_secs++;
1461 	}
1462 	IFNET_STAT_INC(ifp, ierrors,
1463 	    sp->rx_crc_errors +
1464 	    sp->rx_alignment_errors +
1465 	    sp->rx_rnr_errors +
1466 	    sp->rx_overrun_errors);
1467 	/*
1468 	 * If any transmit underruns occured, bump up the transmit
1469 	 * threshold by another 512 bytes (64 * 8).
1470 	 */
1471 	if (sp->tx_underruns) {
1472 		IFNET_STAT_INC(ifp, oerrors, sp->tx_underruns);
1473 		if (tx_threshold < 192)
1474 			tx_threshold += 64;
1475 	}
1476 
1477 	/*
1478 	 * Release any xmit buffers that have completed DMA. This isn't
1479 	 * strictly necessary to do here, but it's advantagous for mbufs
1480 	 * with external storage to be released in a timely manner rather
1481 	 * than being defered for a potentially long time. This limits
1482 	 * the delay to a maximum of one second.
1483 	 */
1484 	for (txp = sc->cbl_first; sc->tx_queued &&
1485 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1486 	    txp = txp->next) {
1487 		if ((m = txp->mb_head) != NULL) {
1488 			txp->mb_head = NULL;
1489 			sc->tx_queued--;
1490 			m_freem(m);
1491 		} else {
1492 			sc->tx_queued--;
1493 		}
1494 	}
1495 	sc->cbl_first = txp;
1496 
1497 	if (sc->tx_queued < FXP_USABLE_TXCB)
1498 		ifq_clr_oactive(&ifp->if_snd);
1499 	if (sc->tx_queued == 0)
1500 		ifp->if_timer = 0;
1501 
1502  	/*
1503 	 * Try to start more packets transmitting.
1504 	 */
1505 	if (!ifq_is_empty(&ifp->if_snd))
1506 		if_devstart(ifp);
1507 
1508 	/*
1509 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1510 	 * then assume the receiver has locked up and attempt to clear
1511 	 * the condition by reprogramming the multicast filter. This is
1512 	 * a work-around for a bug in the 82557 where the receiver locks
1513 	 * up if it gets certain types of garbage in the syncronization
1514 	 * bits prior to the packet header. This bug is supposed to only
1515 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1516 	 * mode as well (perhaps due to a 10/100 speed transition).
1517 	 */
1518 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1519 		sc->rx_idle_secs = 0;
1520 		fxp_mc_setup(sc);
1521 	}
1522 	/*
1523 	 * If there is no pending command, start another stats
1524 	 * dump. Otherwise punt for now.
1525 	 */
1526 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1527 		/*
1528 		 * Start another stats dump.
1529 		 */
1530 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1531 	} else {
1532 		/*
1533 		 * A previous command is still waiting to be accepted.
1534 		 * Just zero our copy of the stats and wait for the
1535 		 * next timer event to update them.
1536 		 */
1537 		sp->tx_good = 0;
1538 		sp->tx_underruns = 0;
1539 		sp->tx_total_collisions = 0;
1540 
1541 		sp->rx_good = 0;
1542 		sp->rx_crc_errors = 0;
1543 		sp->rx_alignment_errors = 0;
1544 		sp->rx_rnr_errors = 0;
1545 		sp->rx_overrun_errors = 0;
1546 	}
1547 	if (sc->miibus != NULL)
1548 		mii_tick(device_get_softc(sc->miibus));
1549 	/*
1550 	 * Schedule another timeout one second from now.
1551 	 */
1552 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1553 
1554 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1555 }
1556 
1557 /*
1558  * Stop the interface. Cancels the statistics updater and resets
1559  * the interface.
1560  */
1561 static void
1562 fxp_stop(struct fxp_softc *sc)
1563 {
1564 	struct ifnet *ifp = &sc->arpcom.ac_if;
1565 	struct fxp_cb_tx *txp;
1566 	int i;
1567 
1568 	ASSERT_SERIALIZED(ifp->if_serializer);
1569 
1570 	ifp->if_flags &= ~IFF_RUNNING;
1571 	ifq_clr_oactive(&ifp->if_snd);
1572 	ifp->if_timer = 0;
1573 
1574 	/*
1575 	 * Cancel stats updater.
1576 	 */
1577 	callout_stop(&sc->fxp_stat_timer);
1578 
1579 	/*
1580 	 * Issue software reset, which also unloads the microcode.
1581 	 */
1582 	sc->flags &= ~FXP_FLAG_UCODE;
1583 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1584 	DELAY(50);
1585 
1586 	/*
1587 	 * Release any xmit buffers.
1588 	 */
1589 	txp = sc->cbl_base;
1590 	if (txp != NULL) {
1591 		for (i = 0; i < FXP_NTXCB; i++) {
1592 			if (txp[i].mb_head != NULL) {
1593 				m_freem(txp[i].mb_head);
1594 				txp[i].mb_head = NULL;
1595 			}
1596 		}
1597 	}
1598 	sc->tx_queued = 0;
1599 
1600 	/*
1601 	 * Free all the receive buffers then reallocate/reinitialize
1602 	 */
1603 	if (sc->rfa_headm != NULL)
1604 		m_freem(sc->rfa_headm);
1605 	sc->rfa_headm = NULL;
1606 	sc->rfa_tailm = NULL;
1607 	for (i = 0; i < FXP_NRFABUFS; i++) {
1608 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1609 			/*
1610 			 * This "can't happen" - we're at splimp()
1611 			 * and we just freed all the buffers we need
1612 			 * above.
1613 			 */
1614 			panic("fxp_stop: no buffers!");
1615 		}
1616 	}
1617 }
1618 
1619 /*
1620  * Watchdog/transmission transmit timeout handler. Called when a
1621  * transmission is started on the interface, but no interrupt is
1622  * received before the timeout. This usually indicates that the
1623  * card has wedged for some reason.
1624  */
1625 static void
1626 fxp_watchdog(struct ifnet *ifp)
1627 {
1628 	ASSERT_SERIALIZED(ifp->if_serializer);
1629 
1630 	if_printf(ifp, "device timeout\n");
1631 	IFNET_STAT_INC(ifp, oerrors, 1);
1632 	fxp_init(ifp->if_softc);
1633 }
1634 
1635 static void
1636 fxp_init(void *xsc)
1637 {
1638 	struct fxp_softc *sc = xsc;
1639 	struct ifnet *ifp = &sc->arpcom.ac_if;
1640 	struct fxp_cb_config *cbp;
1641 	struct fxp_cb_ias *cb_ias;
1642 	struct fxp_cb_tx *txp;
1643 	struct fxp_cb_mcs *mcsp;
1644 	int i, prm;
1645 
1646 	ASSERT_SERIALIZED(ifp->if_serializer);
1647 
1648 	/*
1649 	 * Cancel any pending I/O
1650 	 */
1651 	fxp_stop(sc);
1652 
1653 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1654 
1655 	/*
1656 	 * Initialize base of CBL and RFA memory. Loading with zero
1657 	 * sets it up for regular linear addressing.
1658 	 */
1659 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1660 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1661 
1662 	fxp_scb_wait(sc);
1663 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1664 
1665 	/*
1666 	 * Initialize base of dump-stats buffer.
1667 	 */
1668 	fxp_scb_wait(sc);
1669 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1670 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1671 
1672 	/*
1673 	 * Attempt to load microcode if requested.
1674 	 */
1675 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1676 		fxp_load_ucode(sc);
1677 
1678 	/*
1679 	 * Initialize the multicast address list.
1680 	 */
1681 	if (fxp_mc_addrs(sc)) {
1682 		mcsp = sc->mcsp;
1683 		mcsp->cb_status = 0;
1684 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1685 		mcsp->link_addr = -1;
1686 		/*
1687 	 	 * Start the multicast setup command.
1688 		 */
1689 		fxp_scb_wait(sc);
1690 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1691 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1692 		/* ...and wait for it to complete. */
1693 		fxp_dma_wait(&mcsp->cb_status, sc);
1694 	}
1695 
1696 	/*
1697 	 * We temporarily use memory that contains the TxCB list to
1698 	 * construct the config CB. The TxCB list memory is rebuilt
1699 	 * later.
1700 	 */
1701 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1702 
1703 	/*
1704 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1705 	 * zero and must be one bits in this structure and this is the easiest
1706 	 * way to initialize them all to proper values.
1707 	 */
1708 	bcopy(fxp_cb_config_template,
1709 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1710 		sizeof(fxp_cb_config_template));
1711 
1712 	cbp->cb_status =	0;
1713 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1714 	cbp->link_addr =	-1;	/* (no) next command */
1715 	cbp->byte_count =	22;	/* (22) bytes to config */
1716 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1717 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1718 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1719 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1720 	cbp->type_enable =	0;	/* actually reserved */
1721 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1722 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1723 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1724 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1725 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1726 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1727 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1728 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1729 	cbp->ci_int =		1;	/* interrupt on CU idle */
1730 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1731 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1732 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1733 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1734 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1735 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1736 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1737 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1738 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1739 	cbp->csma_dis =		0;	/* (don't) disable link */
1740 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1741 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1742 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1743 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1744 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1745 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1746 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1747 	cbp->loopback =		0;	/* (don't) loopback */
1748 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1749 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1750 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1751 	cbp->promiscuous =	prm;	/* promiscuous mode */
1752 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1753 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1754 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1755 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1756 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1757 
1758 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1759 	cbp->padding =		1;	/* (do) pad short tx packets */
1760 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1761 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1762 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1763 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1764 					/* must set wake_en in PMCSR also */
1765 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1766 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1767 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1768 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1769 
1770 	if (sc->revision == FXP_REV_82557) {
1771 		/*
1772 		 * The 82557 has no hardware flow control, the values
1773 		 * below are the defaults for the chip.
1774 		 */
1775 		cbp->fc_delay_lsb =	0;
1776 		cbp->fc_delay_msb =	0x40;
1777 		cbp->pri_fc_thresh =	3;
1778 		cbp->tx_fc_dis =	0;
1779 		cbp->rx_fc_restop =	0;
1780 		cbp->rx_fc_restart =	0;
1781 		cbp->fc_filter =	0;
1782 		cbp->pri_fc_loc =	1;
1783 	} else {
1784 		cbp->fc_delay_lsb =	0x1f;
1785 		cbp->fc_delay_msb =	0x01;
1786 		cbp->pri_fc_thresh =	3;
1787 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1788 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1789 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1790 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1791 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1792 	}
1793 
1794 	/*
1795 	 * Start the config command/DMA.
1796 	 */
1797 	fxp_scb_wait(sc);
1798 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1799 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1800 	/* ...and wait for it to complete. */
1801 	fxp_dma_wait(&cbp->cb_status, sc);
1802 
1803 	/*
1804 	 * Now initialize the station address. Temporarily use the TxCB
1805 	 * memory area like we did above for the config CB.
1806 	 */
1807 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1808 	cb_ias->cb_status = 0;
1809 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1810 	cb_ias->link_addr = -1;
1811 	bcopy(sc->arpcom.ac_enaddr,
1812 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1813 	    sizeof(sc->arpcom.ac_enaddr));
1814 
1815 	/*
1816 	 * Start the IAS (Individual Address Setup) command/DMA.
1817 	 */
1818 	fxp_scb_wait(sc);
1819 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1820 	/* ...and wait for it to complete. */
1821 	fxp_dma_wait(&cb_ias->cb_status, sc);
1822 
1823 	/*
1824 	 * Initialize transmit control block (TxCB) list.
1825 	 */
1826 
1827 	txp = sc->cbl_base;
1828 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1829 	for (i = 0; i < FXP_NTXCB; i++) {
1830 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1831 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1832 		txp[i].link_addr =
1833 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1834 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1835 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1836 		else
1837 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1838 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1839 	}
1840 	/*
1841 	 * Set the suspend flag on the first TxCB and start the control
1842 	 * unit. It will execute the NOP and then suspend.
1843 	 */
1844 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1845 	sc->cbl_first = sc->cbl_last = txp;
1846 	sc->tx_queued = 1;
1847 
1848 	fxp_scb_wait(sc);
1849 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1850 
1851 	/*
1852 	 * Initialize receiver buffer area - RFA.
1853 	 */
1854 	fxp_scb_wait(sc);
1855 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1856 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1857 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1858 
1859 	/*
1860 	 * Set current media.
1861 	 */
1862 	if (sc->miibus != NULL)
1863 		mii_mediachg(device_get_softc(sc->miibus));
1864 
1865 	ifp->if_flags |= IFF_RUNNING;
1866 	ifq_clr_oactive(&ifp->if_snd);
1867 
1868 	/*
1869 	 * Enable interrupts.
1870 	 */
1871 #ifdef IFPOLL_ENABLE
1872 	/*
1873 	 * ... but only do that if we are not polling. And because (presumably)
1874 	 * the default is interrupts on, we need to disable them explicitly!
1875 	 */
1876 	if (ifp->if_flags & IFF_NPOLLING) {
1877 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1878 		sc->fxp_npoll.ifpc_stcount = 0;
1879 	} else
1880 #endif /* IFPOLL_ENABLE */
1881 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1882 
1883 	/*
1884 	 * Start stats updater.
1885 	 */
1886 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1887 }
1888 
1889 static int
1890 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1891 {
1892 	ASSERT_SERIALIZED(ifp->if_serializer);
1893 	return (0);
1894 }
1895 
1896 static void
1897 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1898 {
1899 	ASSERT_SERIALIZED(ifp->if_serializer);
1900 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1901 }
1902 
1903 /*
1904  * Change media according to request.
1905  */
1906 static int
1907 fxp_ifmedia_upd(struct ifnet *ifp)
1908 {
1909 	struct fxp_softc *sc = ifp->if_softc;
1910 	struct mii_data *mii;
1911 
1912 	ASSERT_SERIALIZED(ifp->if_serializer);
1913 
1914 	mii = device_get_softc(sc->miibus);
1915 	mii_mediachg(mii);
1916 	return (0);
1917 }
1918 
1919 /*
1920  * Notify the world which media we're using.
1921  */
1922 static void
1923 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1924 {
1925 	struct fxp_softc *sc = ifp->if_softc;
1926 	struct mii_data *mii;
1927 
1928 	ASSERT_SERIALIZED(ifp->if_serializer);
1929 
1930 	mii = device_get_softc(sc->miibus);
1931 	mii_pollstat(mii);
1932 	ifmr->ifm_active = mii->mii_media_active;
1933 	ifmr->ifm_status = mii->mii_media_status;
1934 
1935 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1936 		sc->cu_resume_bug = 1;
1937 	else
1938 		sc->cu_resume_bug = 0;
1939 }
1940 
1941 /*
1942  * Add a buffer to the end of the RFA buffer list.
1943  * Return 0 if successful, 1 for failure. A failure results in
1944  * adding the 'oldm' (if non-NULL) on to the end of the list -
1945  * tossing out its old contents and recycling it.
1946  * The RFA struct is stuck at the beginning of mbuf cluster and the
1947  * data pointer is fixed up to point just past it.
1948  */
1949 static int
1950 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1951 {
1952 	u_int32_t v;
1953 	struct mbuf *m;
1954 	struct fxp_rfa *rfa, *p_rfa;
1955 
1956 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1957 	if (m == NULL) { /* try to recycle the old mbuf instead */
1958 		if (oldm == NULL)
1959 			return 1;
1960 		m = oldm;
1961 		m->m_data = m->m_ext.ext_buf;
1962 	}
1963 
1964 	/*
1965 	 * Move the data pointer up so that the incoming data packet
1966 	 * will be 32-bit aligned.
1967 	 */
1968 	m->m_data += RFA_ALIGNMENT_FUDGE;
1969 
1970 	/*
1971 	 * Get a pointer to the base of the mbuf cluster and move
1972 	 * data start past it.
1973 	 */
1974 	rfa = mtod(m, struct fxp_rfa *);
1975 	m->m_data += sizeof(struct fxp_rfa);
1976 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
1977 				RFA_ALIGNMENT_FUDGE);
1978 
1979 	/*
1980 	 * Initialize the rest of the RFA.  Note that since the RFA
1981 	 * is misaligned, we cannot store values directly.  Instead,
1982 	 * we use an optimized, inline copy.
1983 	 */
1984 
1985 	rfa->rfa_status = 0;
1986 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1987 	rfa->actual_size = 0;
1988 
1989 	v = -1;
1990 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1991 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1992 
1993 	/*
1994 	 * If there are other buffers already on the list, attach this
1995 	 * one to the end by fixing up the tail to point to this one.
1996 	 */
1997 	if (sc->rfa_headm != NULL) {
1998 		p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf +
1999 					   RFA_ALIGNMENT_FUDGE);
2000 		sc->rfa_tailm->m_next = m;
2001 		v = vtophys(rfa);
2002 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2003 		p_rfa->rfa_control = 0;
2004 	} else {
2005 		sc->rfa_headm = m;
2006 	}
2007 	sc->rfa_tailm = m;
2008 
2009 	return (m == oldm);
2010 }
2011 
2012 static int
2013 fxp_miibus_readreg(device_t dev, int phy, int reg)
2014 {
2015 	struct fxp_softc *sc = device_get_softc(dev);
2016 	int count = 10000;
2017 	int value;
2018 
2019 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2020 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2021 
2022 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2023 	    && count--)
2024 		DELAY(10);
2025 
2026 	if (count <= 0)
2027 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2028 
2029 	return (value & 0xffff);
2030 }
2031 
2032 static void
2033 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2034 {
2035 	struct fxp_softc *sc = device_get_softc(dev);
2036 	int count = 10000;
2037 
2038 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2039 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2040 	    (value & 0xffff));
2041 
2042 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2043 	    count--)
2044 		DELAY(10);
2045 
2046 	if (count <= 0)
2047 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2048 }
2049 
2050 static int
2051 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2052 {
2053 	struct fxp_softc *sc = ifp->if_softc;
2054 	struct ifreq *ifr = (struct ifreq *)data;
2055 	struct mii_data *mii;
2056 	int error = 0;
2057 
2058 	ASSERT_SERIALIZED(ifp->if_serializer);
2059 
2060 	switch (command) {
2061 
2062 	case SIOCSIFFLAGS:
2063 		if (ifp->if_flags & IFF_ALLMULTI)
2064 			sc->flags |= FXP_FLAG_ALL_MCAST;
2065 		else
2066 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2067 
2068 		/*
2069 		 * If interface is marked up and not running, then start it.
2070 		 * If it is marked down and running, stop it.
2071 		 * XXX If it's up then re-initialize it. This is so flags
2072 		 * such as IFF_PROMISC are handled.
2073 		 */
2074 		if (ifp->if_flags & IFF_UP) {
2075 			fxp_init(sc);
2076 		} else {
2077 			if (ifp->if_flags & IFF_RUNNING)
2078 				fxp_stop(sc);
2079 		}
2080 		break;
2081 
2082 	case SIOCADDMULTI:
2083 	case SIOCDELMULTI:
2084 		if (ifp->if_flags & IFF_ALLMULTI)
2085 			sc->flags |= FXP_FLAG_ALL_MCAST;
2086 		else
2087 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2088 		/*
2089 		 * Multicast list has changed; set the hardware filter
2090 		 * accordingly.
2091 		 */
2092 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2093 			fxp_mc_setup(sc);
2094 		/*
2095 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2096 		 * again rather than else {}.
2097 		 */
2098 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2099 			fxp_init(sc);
2100 		error = 0;
2101 		break;
2102 
2103 	case SIOCSIFMEDIA:
2104 	case SIOCGIFMEDIA:
2105 		if (sc->miibus != NULL) {
2106 			mii = device_get_softc(sc->miibus);
2107                         error = ifmedia_ioctl(ifp, ifr,
2108                             &mii->mii_media, command);
2109 		} else {
2110                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2111 		}
2112 		break;
2113 
2114 	default:
2115 		error = ether_ioctl(ifp, command, data);
2116 		break;
2117 	}
2118 	return (error);
2119 }
2120 
2121 /*
2122  * Fill in the multicast address list and return number of entries.
2123  */
2124 static int
2125 fxp_mc_addrs(struct fxp_softc *sc)
2126 {
2127 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2128 	struct ifnet *ifp = &sc->arpcom.ac_if;
2129 	struct ifmultiaddr *ifma;
2130 	int nmcasts;
2131 
2132 	nmcasts = 0;
2133 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2134 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2135 			if (ifma->ifma_addr->sa_family != AF_LINK)
2136 				continue;
2137 			if (nmcasts >= MAXMCADDR) {
2138 				sc->flags |= FXP_FLAG_ALL_MCAST;
2139 				nmcasts = 0;
2140 				break;
2141 			}
2142 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2143 			    (void *)(uintptr_t)(volatile void *)
2144 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2145 			nmcasts++;
2146 		}
2147 	}
2148 	mcsp->mc_cnt = nmcasts * 6;
2149 	return (nmcasts);
2150 }
2151 
2152 /*
2153  * Program the multicast filter.
2154  *
2155  * We have an artificial restriction that the multicast setup command
2156  * must be the first command in the chain, so we take steps to ensure
2157  * this. By requiring this, it allows us to keep up the performance of
2158  * the pre-initialized command ring (esp. link pointers) by not actually
2159  * inserting the mcsetup command in the ring - i.e. its link pointer
2160  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2161  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2162  * lead into the regular TxCB ring when it completes.
2163  *
2164  * This function must be called at splimp.
2165  */
2166 static void
2167 fxp_mc_setup(struct fxp_softc *sc)
2168 {
2169 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2170 	struct ifnet *ifp = &sc->arpcom.ac_if;
2171 	int count;
2172 
2173 	/*
2174 	 * If there are queued commands, we must wait until they are all
2175 	 * completed. If we are already waiting, then add a NOP command
2176 	 * with interrupt option so that we're notified when all commands
2177 	 * have been completed - fxp_start() ensures that no additional
2178 	 * TX commands will be added when need_mcsetup is true.
2179 	 */
2180 	if (sc->tx_queued) {
2181 		struct fxp_cb_tx *txp;
2182 
2183 		/*
2184 		 * need_mcsetup will be true if we are already waiting for the
2185 		 * NOP command to be completed (see below). In this case, bail.
2186 		 */
2187 		if (sc->need_mcsetup)
2188 			return;
2189 		sc->need_mcsetup = 1;
2190 
2191 		/*
2192 		 * Add a NOP command with interrupt so that we are notified
2193 		 * when all TX commands have been processed.
2194 		 */
2195 		txp = sc->cbl_last->next;
2196 		txp->mb_head = NULL;
2197 		txp->cb_status = 0;
2198 		txp->cb_command = FXP_CB_COMMAND_NOP |
2199 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2200 		/*
2201 		 * Advance the end of list forward.
2202 		 */
2203 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2204 		sc->cbl_last = txp;
2205 		sc->tx_queued++;
2206 		/*
2207 		 * Issue a resume in case the CU has just suspended.
2208 		 */
2209 		fxp_scb_wait(sc);
2210 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2211 		/*
2212 		 * Set a 5 second timer just in case we don't hear from the
2213 		 * card again.
2214 		 */
2215 		ifp->if_timer = 5;
2216 
2217 		return;
2218 	}
2219 	sc->need_mcsetup = 0;
2220 
2221 	/*
2222 	 * Initialize multicast setup descriptor.
2223 	 */
2224 	mcsp->next = sc->cbl_base;
2225 	mcsp->mb_head = NULL;
2226 	mcsp->cb_status = 0;
2227 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2228 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2229 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2230 	fxp_mc_addrs(sc);
2231 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2232 	sc->tx_queued = 1;
2233 
2234 	/*
2235 	 * Wait until command unit is not active. This should never
2236 	 * be the case when nothing is queued, but make sure anyway.
2237 	 */
2238 	count = 100;
2239 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2240 	    FXP_SCB_CUS_ACTIVE && --count)
2241 		DELAY(10);
2242 	if (count == 0) {
2243 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2244 		return;
2245 	}
2246 
2247 	/*
2248 	 * Start the multicast setup command.
2249 	 */
2250 	fxp_scb_wait(sc);
2251 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2252 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2253 
2254 	ifp->if_timer = 2;
2255 	return;
2256 }
2257 
2258 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2259 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2260 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2261 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2262 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2263 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2264 
2265 #define UCODE(x)	x, sizeof(x)
2266 
2267 struct ucode {
2268 	u_int32_t	revision;
2269 	u_int32_t	*ucode;
2270 	int		length;
2271 	u_short		int_delay_offset;
2272 	u_short		bundle_max_offset;
2273 } ucode_table[] = {
2274 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2275 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2276 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2277 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2278 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2279 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2280 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2281 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2282 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2283 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2284 	{ 0, NULL, 0, 0, 0 }
2285 };
2286 
2287 static void
2288 fxp_load_ucode(struct fxp_softc *sc)
2289 {
2290 	struct ucode *uc;
2291 	struct fxp_cb_ucode *cbp;
2292 
2293 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2294 		if (sc->revision == uc->revision)
2295 			break;
2296 	if (uc->ucode == NULL)
2297 		return;
2298 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2299 	cbp->cb_status = 0;
2300 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2301 	cbp->link_addr = -1;    	/* (no) next command */
2302 	memcpy(cbp->ucode, uc->ucode, uc->length);
2303 	if (uc->int_delay_offset)
2304 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2305 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2306 	if (uc->bundle_max_offset)
2307 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2308 		    sc->tunable_bundle_max;
2309 	/*
2310 	 * Download the ucode to the chip.
2311 	 */
2312 	fxp_scb_wait(sc);
2313 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2314 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2315 	/* ...and wait for it to complete. */
2316 	fxp_dma_wait(&cbp->cb_status, sc);
2317 	if_printf(&sc->arpcom.ac_if,
2318 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2319 	    sc->tunable_int_delay,
2320 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2321 	sc->flags |= FXP_FLAG_UCODE;
2322 }
2323 
2324 /*
2325  * Interrupt delay is expressed in microseconds, a multiplier is used
2326  * to convert this to the appropriate clock ticks before using.
2327  */
2328 static int
2329 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2330 {
2331 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2332 }
2333 
2334 static int
2335 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2336 {
2337 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2338 }
2339