xref: /dragonfly/sys/dev/netif/fxp/if_fxp.c (revision fb5b3747)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.61 2008/09/17 08:51:29 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 #include <sys/thread2.h>
47 
48 #include <net/if.h>
49 #include <net/ifq_var.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <vm/vm.h>		/* for vtophys */
62 #include <vm/pmap.h>		/* for vtophys */
63 
64 #include <net/if_types.h>
65 #include <net/vlan/if_vlan_var.h>
66 
67 #include <bus/pci/pcivar.h>
68 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
69 
70 #include "../mii_layer/mii.h"
71 #include "../mii_layer/miivar.h"
72 
73 #include "if_fxpreg.h"
74 #include "if_fxpvar.h"
75 #include "rcvbundl.h"
76 
77 #include "miibus_if.h"
78 
79 /*
80  * NOTE!  On the Alpha, we have an alignment constraint.  The
81  * card DMAs the packet immediately following the RFA.  However,
82  * the first thing in the packet is a 14-byte Ethernet header.
83  * This means that the packet is misaligned.  To compensate,
84  * we actually offset the RFA 2 bytes into the cluster.  This
85  * alignes the packet after the Ethernet header at a 32-bit
86  * boundary.  HOWEVER!  This means that the RFA is misaligned!
87  */
88 #define	RFA_ALIGNMENT_FUDGE	2
89 
90 /*
91  * Set initial transmit threshold at 64 (512 bytes). This is
92  * increased by 64 (512 bytes) at a time, to maximum of 192
93  * (1536 bytes), if an underrun occurs.
94  */
95 static int tx_threshold = 64;
96 
97 /*
98  * The configuration byte map has several undefined fields which
99  * must be one or must be zero.  Set up a template for these bits
100  * only, (assuming a 82557 chip) leaving the actual configuration
101  * to fxp_init.
102  *
103  * See struct fxp_cb_config for the bit definitions.
104  */
105 static u_char fxp_cb_config_template[] = {
106 	0x0, 0x0,		/* cb_status */
107 	0x0, 0x0,		/* cb_command */
108 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
109 	0x0,	/*  0 */
110 	0x0,	/*  1 */
111 	0x0,	/*  2 */
112 	0x0,	/*  3 */
113 	0x0,	/*  4 */
114 	0x0,	/*  5 */
115 	0x32,	/*  6 */
116 	0x0,	/*  7 */
117 	0x0,	/*  8 */
118 	0x0,	/*  9 */
119 	0x6,	/* 10 */
120 	0x0,	/* 11 */
121 	0x0,	/* 12 */
122 	0x0,	/* 13 */
123 	0xf2,	/* 14 */
124 	0x48,	/* 15 */
125 	0x0,	/* 16 */
126 	0x40,	/* 17 */
127 	0xf0,	/* 18 */
128 	0x0,	/* 19 */
129 	0x3f,	/* 20 */
130 	0x5	/* 21 */
131 };
132 
133 struct fxp_ident {
134 	u_int16_t	devid;
135 	int16_t		revid;		/* -1 matches anything */
136 	char 		*name;
137 };
138 
139 /*
140  * Claim various Intel PCI device identifiers for this driver.  The
141  * sub-vendor and sub-device field are extensively used to identify
142  * particular variants, but we don't currently differentiate between
143  * them.
144  */
145 static struct fxp_ident fxp_ident_table[] = {
146      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
147      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
148      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
149      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
150      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
151      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
152      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
153      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
154      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
155      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
157      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
158      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
159      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
160      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
162      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
163      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
164      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
165      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
166      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
167      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
168      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
169      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
170      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
171      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
172      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
173      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
191      { 0,	-1,	NULL },
192 };
193 
194 static int		fxp_probe(device_t dev);
195 static int		fxp_attach(device_t dev);
196 static int		fxp_detach(device_t dev);
197 static int		fxp_shutdown(device_t dev);
198 static int		fxp_suspend(device_t dev);
199 static int		fxp_resume(device_t dev);
200 
201 static void		fxp_intr(void *xsc);
202 static void		fxp_intr_body(struct fxp_softc *sc,
203 				u_int8_t statack, int count);
204 
205 static void 		fxp_init(void *xsc);
206 static void 		fxp_tick(void *xsc);
207 static void		fxp_powerstate_d0(device_t dev);
208 static void 		fxp_start(struct ifnet *ifp);
209 static void		fxp_stop(struct fxp_softc *sc);
210 static void 		fxp_release(device_t dev);
211 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
212 			    caddr_t data, struct ucred *);
213 static void 		fxp_watchdog(struct ifnet *ifp);
214 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
215 static int		fxp_mc_addrs(struct fxp_softc *sc);
216 static void		fxp_mc_setup(struct fxp_softc *sc);
217 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
218 			    int autosize);
219 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
220 			    u_int16_t data);
221 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
222 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
223 			    int offset, int words);
224 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
225 			    int offset, int words);
226 static int		fxp_ifmedia_upd(struct ifnet *ifp);
227 static void		fxp_ifmedia_sts(struct ifnet *ifp,
228 			    struct ifmediareq *ifmr);
229 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
230 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
231 			    struct ifmediareq *ifmr);
232 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
233 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
234 			    int value);
235 static void		fxp_load_ucode(struct fxp_softc *sc);
236 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
237 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
238 #ifdef DEVICE_POLLING
239 static poll_handler_t fxp_poll;
240 #endif
241 
242 static void		fxp_lwcopy(volatile u_int32_t *src,
243 			    volatile u_int32_t *dst);
244 static void 		fxp_scb_wait(struct fxp_softc *sc);
245 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
246 static void		fxp_dma_wait(volatile u_int16_t *status,
247 			    struct fxp_softc *sc);
248 
249 static device_method_t fxp_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		fxp_probe),
252 	DEVMETHOD(device_attach,	fxp_attach),
253 	DEVMETHOD(device_detach,	fxp_detach),
254 	DEVMETHOD(device_shutdown,	fxp_shutdown),
255 	DEVMETHOD(device_suspend,	fxp_suspend),
256 	DEVMETHOD(device_resume,	fxp_resume),
257 
258 	/* MII interface */
259 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
260 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
261 
262 	{ 0, 0 }
263 };
264 
265 static driver_t fxp_driver = {
266 	"fxp",
267 	fxp_methods,
268 	sizeof(struct fxp_softc),
269 };
270 
271 static devclass_t fxp_devclass;
272 
273 DECLARE_DUMMY_MODULE(if_fxp);
274 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
275 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
276 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
277 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
278 
279 static int fxp_rnr;
280 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
281 
282 /*
283  * Copy a 16-bit aligned 32-bit quantity.
284  */
285 static void
286 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
287 {
288 #ifdef __i386__
289 	*dst = *src;
290 #else
291 	volatile u_int16_t *a = (volatile u_int16_t *)src;
292 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
293 
294 	b[0] = a[0];
295 	b[1] = a[1];
296 #endif
297 }
298 
299 /*
300  * Wait for the previous command to be accepted (but not necessarily
301  * completed).
302  */
303 static void
304 fxp_scb_wait(struct fxp_softc *sc)
305 {
306 	int i = 10000;
307 
308 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
309 		DELAY(2);
310 	if (i == 0) {
311 		if_printf(&sc->arpcom.ac_if,
312 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
313 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
314 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
315 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
316 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
317 	}
318 }
319 
320 static void
321 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
322 {
323 
324 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
325 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
326 		fxp_scb_wait(sc);
327 	}
328 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
329 }
330 
331 static void
332 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
333 {
334 	int i = 10000;
335 
336 	while (!(*status & FXP_CB_STATUS_C) && --i)
337 		DELAY(2);
338 	if (i == 0)
339 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
340 }
341 
342 /*
343  * Return identification string if this is device is ours.
344  */
345 static int
346 fxp_probe(device_t dev)
347 {
348 	u_int16_t devid;
349 	u_int8_t revid;
350 	struct fxp_ident *ident;
351 
352 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
353 		devid = pci_get_device(dev);
354 		revid = pci_get_revid(dev);
355 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
356 			if (ident->devid == devid &&
357 			    (ident->revid == revid || ident->revid == -1)) {
358 				device_set_desc(dev, ident->name);
359 				return (0);
360 			}
361 		}
362 	}
363 	return (ENXIO);
364 }
365 
366 static void
367 fxp_powerstate_d0(device_t dev)
368 {
369 	u_int32_t iobase, membase, irq;
370 
371 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
372 		/* Save important PCI config data. */
373 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
374 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
375 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
376 
377 		/* Reset the power state. */
378 		device_printf(dev, "chip is in D%d power mode "
379 		    "-- setting to D0\n", pci_get_powerstate(dev));
380 
381 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
382 
383 		/* Restore PCI config data. */
384 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
385 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
386 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
387 	}
388 }
389 
390 static int
391 fxp_attach(device_t dev)
392 {
393 	int error = 0;
394 	struct fxp_softc *sc = device_get_softc(dev);
395 	struct ifnet *ifp;
396 	u_int32_t val;
397 	u_int16_t data;
398 	int i, rid, m1, m2, prefer_iomap;
399 
400 	callout_init(&sc->fxp_stat_timer);
401 	sysctl_ctx_init(&sc->sysctl_ctx);
402 
403 	/*
404 	 * Enable bus mastering. Enable memory space too, in case
405 	 * BIOS/Prom forgot about it.
406 	 */
407 	pci_enable_busmaster(dev);
408 	pci_enable_io(dev, SYS_RES_MEMORY);
409 	val = pci_read_config(dev, PCIR_COMMAND, 2);
410 
411 	fxp_powerstate_d0(dev);
412 
413 	/*
414 	 * Figure out which we should try first - memory mapping or i/o mapping?
415 	 * We default to memory mapping. Then we accept an override from the
416 	 * command line. Then we check to see which one is enabled.
417 	 */
418 	m1 = PCIM_CMD_MEMEN;
419 	m2 = PCIM_CMD_PORTEN;
420 	prefer_iomap = 0;
421 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
422 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
423 		m1 = PCIM_CMD_PORTEN;
424 		m2 = PCIM_CMD_MEMEN;
425 	}
426 
427 	if (val & m1) {
428 		sc->rtp =
429 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
430 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
431 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
432 		    RF_ACTIVE);
433 	}
434 	if (sc->mem == NULL && (val & m2)) {
435 		sc->rtp =
436 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
437 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
438 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
439             	    RF_ACTIVE);
440 	}
441 
442 	if (!sc->mem) {
443 		device_printf(dev, "could not map device registers\n");
444 		error = ENXIO;
445 		goto fail;
446         }
447 	if (bootverbose) {
448 		device_printf(dev, "using %s space register mapping\n",
449 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
450 	}
451 
452 	sc->sc_st = rman_get_bustag(sc->mem);
453 	sc->sc_sh = rman_get_bushandle(sc->mem);
454 
455 	/*
456 	 * Allocate our interrupt.
457 	 */
458 	rid = 0;
459 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
460 	    RF_SHAREABLE | RF_ACTIVE);
461 	if (sc->irq == NULL) {
462 		device_printf(dev, "could not map interrupt\n");
463 		error = ENXIO;
464 		goto fail;
465 	}
466 
467 	/*
468 	 * Reset to a stable state.
469 	 */
470 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
471 	DELAY(10);
472 
473 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
474 	    M_DEVBUF, M_WAITOK | M_ZERO);
475 
476 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
477 	    M_WAITOK | M_ZERO);
478 
479 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
480 
481 	/*
482 	 * Pre-allocate our receive buffers.
483 	 */
484 	for (i = 0; i < FXP_NRFABUFS; i++) {
485 		if (fxp_add_rfabuf(sc, NULL) != 0) {
486 			goto failmem;
487 		}
488 	}
489 
490 	/*
491 	 * Find out how large of an SEEPROM we have.
492 	 */
493 	fxp_autosize_eeprom(sc);
494 
495 	/*
496 	 * Determine whether we must use the 503 serial interface.
497 	 */
498 	fxp_read_eeprom(sc, &data, 6, 1);
499 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
500 	    (data & FXP_PHY_SERIAL_ONLY))
501 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
502 
503 	/*
504 	 * Create the sysctl tree
505 	 */
506 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
507 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
508 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
509 	if (sc->sysctl_tree == NULL)
510 		goto fail;
511 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
512 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
513 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
514 	    "FXP driver receive interrupt microcode bundling delay");
515 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
516 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
517 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
518 	    "FXP driver receive interrupt microcode bundle size limit");
519 
520 	/*
521 	 * Pull in device tunables.
522 	 */
523 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
524 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
525 	resource_int_value(device_get_name(dev), device_get_unit(dev),
526 	    "int_delay", &sc->tunable_int_delay);
527 	resource_int_value(device_get_name(dev), device_get_unit(dev),
528 	    "bundle_max", &sc->tunable_bundle_max);
529 
530 	/*
531 	 * Find out the chip revision; lump all 82557 revs together.
532 	 */
533 	fxp_read_eeprom(sc, &data, 5, 1);
534 	if ((data >> 8) == 1)
535 		sc->revision = FXP_REV_82557;
536 	else
537 		sc->revision = pci_get_revid(dev);
538 
539 	/*
540 	 * Enable workarounds for certain chip revision deficiencies.
541 	 *
542 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
543 	 * some systems based a normal 82559 design, have a defect where
544 	 * the chip can cause a PCI protocol violation if it receives
545 	 * a CU_RESUME command when it is entering the IDLE state.  The
546 	 * workaround is to disable Dynamic Standby Mode, so the chip never
547 	 * deasserts CLKRUN#, and always remains in an active state.
548 	 *
549 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
550 	 */
551 	i = pci_get_device(dev);
552 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
553 	    sc->revision >= FXP_REV_82559_A0) {
554 		fxp_read_eeprom(sc, &data, 10, 1);
555 		if (data & 0x02) {			/* STB enable */
556 			u_int16_t cksum;
557 			int i;
558 
559 			device_printf(dev,
560 			    "Disabling dynamic standby mode in EEPROM\n");
561 			data &= ~0x02;
562 			fxp_write_eeprom(sc, &data, 10, 1);
563 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
564 			cksum = 0;
565 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
566 				fxp_read_eeprom(sc, &data, i, 1);
567 				cksum += data;
568 			}
569 			i = (1 << sc->eeprom_size) - 1;
570 			cksum = 0xBABA - cksum;
571 			fxp_read_eeprom(sc, &data, i, 1);
572 			fxp_write_eeprom(sc, &cksum, i, 1);
573 			device_printf(dev,
574 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
575 			    i, data, cksum);
576 #if 1
577 			/*
578 			 * If the user elects to continue, try the software
579 			 * workaround, as it is better than nothing.
580 			 */
581 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
582 #endif
583 		}
584 	}
585 
586 	/*
587 	 * If we are not a 82557 chip, we can enable extended features.
588 	 */
589 	if (sc->revision != FXP_REV_82557) {
590 		/*
591 		 * If MWI is enabled in the PCI configuration, and there
592 		 * is a valid cacheline size (8 or 16 dwords), then tell
593 		 * the board to turn on MWI.
594 		 */
595 		if (val & PCIM_CMD_MWRICEN &&
596 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
597 			sc->flags |= FXP_FLAG_MWI_ENABLE;
598 
599 		/* turn on the extended TxCB feature */
600 		sc->flags |= FXP_FLAG_EXT_TXCB;
601 
602 		/* enable reception of long frames for VLAN */
603 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
604 	}
605 
606 	/*
607 	 * Read MAC address.
608 	 */
609 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
610 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
611 		device_printf(dev, "10Mbps\n");
612 	if (bootverbose) {
613 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
614 		    pci_get_vendor(dev), pci_get_device(dev),
615 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
616 		    pci_get_revid(dev));
617 		fxp_read_eeprom(sc, &data, 10, 1);
618 		device_printf(dev, "Dynamic Standby mode is %s\n",
619 		    data & 0x02 ? "enabled" : "disabled");
620 	}
621 
622 	/*
623 	 * If this is only a 10Mbps device, then there is no MII, and
624 	 * the PHY will use a serial interface instead.
625 	 *
626 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
627 	 * doesn't have a programming interface of any sort.  The
628 	 * media is sensed automatically based on how the link partner
629 	 * is configured.  This is, in essence, manual configuration.
630 	 */
631 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
632 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
633 		    fxp_serial_ifmedia_sts);
634 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
635 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
636 	} else {
637 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
638 		    fxp_ifmedia_sts)) {
639 	                device_printf(dev, "MII without any PHY!\n");
640 			error = ENXIO;
641 			goto fail;
642 		}
643 	}
644 
645 	ifp = &sc->arpcom.ac_if;
646 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
647 	ifp->if_baudrate = 100000000;
648 	ifp->if_init = fxp_init;
649 	ifp->if_softc = sc;
650 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
651 	ifp->if_ioctl = fxp_ioctl;
652 	ifp->if_start = fxp_start;
653 #ifdef DEVICE_POLLING
654 	ifp->if_poll = fxp_poll;
655 #endif
656 	ifp->if_watchdog = fxp_watchdog;
657 
658 	/*
659 	 * Attach the interface.
660 	 */
661 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
662 
663 	/*
664 	 * Tell the upper layer(s) we support long frames.
665 	 */
666 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
667 
668 	/*
669 	 * Let the system queue as many packets as we have available
670 	 * TX descriptors.
671 	 */
672 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
673 	ifq_set_ready(&ifp->if_snd);
674 
675 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
676 			       fxp_intr, sc, &sc->ih,
677 			       ifp->if_serializer);
678 	if (error) {
679 		ether_ifdetach(ifp);
680 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
681 			ifmedia_removeall(&sc->sc_media);
682 		device_printf(dev, "could not setup irq\n");
683 		goto fail;
684 	}
685 
686 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq));
687 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
688 
689 	return (0);
690 
691 failmem:
692 	device_printf(dev, "Failed to malloc memory\n");
693 	error = ENOMEM;
694 fail:
695 	fxp_release(dev);
696 	return (error);
697 }
698 
699 /*
700  * release all resources
701  */
702 static void
703 fxp_release(device_t dev)
704 {
705 	struct fxp_softc *sc = device_get_softc(dev);
706 
707 	if (sc->miibus)
708 		device_delete_child(dev, sc->miibus);
709 	bus_generic_detach(dev);
710 
711 	if (sc->cbl_base)
712 		kfree(sc->cbl_base, M_DEVBUF);
713 	if (sc->fxp_stats)
714 		kfree(sc->fxp_stats, M_DEVBUF);
715 	if (sc->mcsp)
716 		kfree(sc->mcsp, M_DEVBUF);
717 	if (sc->rfa_headm)
718 		m_freem(sc->rfa_headm);
719 
720 	if (sc->irq)
721 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
722 	if (sc->mem)
723 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
724 
725         sysctl_ctx_free(&sc->sysctl_ctx);
726 }
727 
728 /*
729  * Detach interface.
730  */
731 static int
732 fxp_detach(device_t dev)
733 {
734 	struct fxp_softc *sc = device_get_softc(dev);
735 
736 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
737 
738 	/*
739 	 * Stop DMA and drop transmit queue.
740 	 */
741 	fxp_stop(sc);
742 
743 	/*
744 	 * Disable interrupts.
745 	 *
746 	 * NOTE: This should be done after fxp_stop(), because software
747 	 * resetting in fxp_stop() may leave interrupts turned on.
748 	 */
749 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
750 
751 	/*
752 	 * Free all media structures.
753 	 */
754 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
755 		ifmedia_removeall(&sc->sc_media);
756 
757 	if (sc->ih)
758 		bus_teardown_intr(dev, sc->irq, sc->ih);
759 
760 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
761 
762 	/*
763 	 * Close down routes etc.
764 	 */
765 	ether_ifdetach(&sc->arpcom.ac_if);
766 
767 	/* Release our allocated resources. */
768 	fxp_release(dev);
769 
770 	return (0);
771 }
772 
773 /*
774  * Device shutdown routine. Called at system shutdown after sync. The
775  * main purpose of this routine is to shut off receiver DMA so that
776  * kernel memory doesn't get clobbered during warmboot.
777  */
778 static int
779 fxp_shutdown(device_t dev)
780 {
781 	struct fxp_softc *sc = device_get_softc(dev);
782 	struct ifnet *ifp = &sc->arpcom.ac_if;
783 
784 	lwkt_serialize_enter(ifp->if_serializer);
785 	/*
786 	 * Make sure that DMA is disabled prior to reboot. Not doing
787 	 * do could allow DMA to corrupt kernel memory during the
788 	 * reboot before the driver initializes.
789 	 */
790 	fxp_stop(sc);
791 	lwkt_serialize_exit(ifp->if_serializer);
792 	return (0);
793 }
794 
795 /*
796  * Device suspend routine.  Stop the interface and save some PCI
797  * settings in case the BIOS doesn't restore them properly on
798  * resume.
799  */
800 static int
801 fxp_suspend(device_t dev)
802 {
803 	struct fxp_softc *sc = device_get_softc(dev);
804 	int i;
805 
806 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
807 
808 	fxp_stop(sc);
809 
810 	for (i = 0; i < 5; i++)
811 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
812 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
813 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
814 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
815 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
816 
817 	sc->suspended = 1;
818 
819 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
820 	return (0);
821 }
822 
823 /*
824  * Device resume routine.  Restore some PCI settings in case the BIOS
825  * doesn't, re-enable busmastering, and restart the interface if
826  * appropriate.
827  */
828 static int
829 fxp_resume(device_t dev)
830 {
831 	struct fxp_softc *sc = device_get_softc(dev);
832 	struct ifnet *ifp = &sc->arpcom.ac_if;
833 	int i;
834 
835 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
836 
837 	fxp_powerstate_d0(dev);
838 
839 	/* better way to do this? */
840 	for (i = 0; i < 5; i++)
841 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
842 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
843 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
844 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
845 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
846 
847 	/* reenable busmastering and memory space */
848 	pci_enable_busmaster(dev);
849 	pci_enable_io(dev, SYS_RES_MEMORY);
850 
851 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
852 	DELAY(10);
853 
854 	/* reinitialize interface if necessary */
855 	if (ifp->if_flags & IFF_UP)
856 		fxp_init(sc);
857 
858 	sc->suspended = 0;
859 
860 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
861 	return (0);
862 }
863 
864 static void
865 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
866 {
867 	u_int16_t reg;
868 	int x;
869 
870 	/*
871 	 * Shift in data.
872 	 */
873 	for (x = 1 << (length - 1); x; x >>= 1) {
874 		if (data & x)
875 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
876 		else
877 			reg = FXP_EEPROM_EECS;
878 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
879 		DELAY(1);
880 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
881 		DELAY(1);
882 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
883 		DELAY(1);
884 	}
885 }
886 
887 /*
888  * Read from the serial EEPROM. Basically, you manually shift in
889  * the read opcode (one bit at a time) and then shift in the address,
890  * and then you shift out the data (all of this one bit at a time).
891  * The word size is 16 bits, so you have to provide the address for
892  * every 16 bits of data.
893  */
894 static u_int16_t
895 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
896 {
897 	u_int16_t reg, data;
898 	int x;
899 
900 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
901 	/*
902 	 * Shift in read opcode.
903 	 */
904 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
905 	/*
906 	 * Shift in address.
907 	 */
908 	data = 0;
909 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
910 		if (offset & x)
911 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
912 		else
913 			reg = FXP_EEPROM_EECS;
914 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
915 		DELAY(1);
916 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
917 		DELAY(1);
918 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
919 		DELAY(1);
920 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
921 		data++;
922 		if (autosize && reg == 0) {
923 			sc->eeprom_size = data;
924 			break;
925 		}
926 	}
927 	/*
928 	 * Shift out data.
929 	 */
930 	data = 0;
931 	reg = FXP_EEPROM_EECS;
932 	for (x = 1 << 15; x; x >>= 1) {
933 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
934 		DELAY(1);
935 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
936 			data |= x;
937 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
938 		DELAY(1);
939 	}
940 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
941 	DELAY(1);
942 
943 	return (data);
944 }
945 
946 static void
947 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
948 {
949 	int i;
950 
951 	/*
952 	 * Erase/write enable.
953 	 */
954 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
955 	fxp_eeprom_shiftin(sc, 0x4, 3);
956 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
957 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
958 	DELAY(1);
959 	/*
960 	 * Shift in write opcode, address, data.
961 	 */
962 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
963 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
964 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
965 	fxp_eeprom_shiftin(sc, data, 16);
966 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
967 	DELAY(1);
968 	/*
969 	 * Wait for EEPROM to finish up.
970 	 */
971 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
972 	DELAY(1);
973 	for (i = 0; i < 1000; i++) {
974 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
975 			break;
976 		DELAY(50);
977 	}
978 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
979 	DELAY(1);
980 	/*
981 	 * Erase/write disable.
982 	 */
983 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
984 	fxp_eeprom_shiftin(sc, 0x4, 3);
985 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
986 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
987 	DELAY(1);
988 }
989 
990 /*
991  * From NetBSD:
992  *
993  * Figure out EEPROM size.
994  *
995  * 559's can have either 64-word or 256-word EEPROMs, the 558
996  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
997  * talks about the existance of 16 to 256 word EEPROMs.
998  *
999  * The only known sizes are 64 and 256, where the 256 version is used
1000  * by CardBus cards to store CIS information.
1001  *
1002  * The address is shifted in msb-to-lsb, and after the last
1003  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1004  * after which follows the actual data. We try to detect this zero, by
1005  * probing the data-out bit in the EEPROM control register just after
1006  * having shifted in a bit. If the bit is zero, we assume we've
1007  * shifted enough address bits. The data-out should be tri-state,
1008  * before this, which should translate to a logical one.
1009  */
1010 static void
1011 fxp_autosize_eeprom(struct fxp_softc *sc)
1012 {
1013 
1014 	/* guess maximum size of 256 words */
1015 	sc->eeprom_size = 8;
1016 
1017 	/* autosize */
1018 	fxp_eeprom_getword(sc, 0, 1);
1019 }
1020 
1021 static void
1022 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < words; i++)
1027 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1028 }
1029 
1030 static void
1031 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1032 {
1033 	int i;
1034 
1035 	for (i = 0; i < words; i++)
1036 		fxp_eeprom_putword(sc, offset + i, data[i]);
1037 }
1038 
1039 /*
1040  * Start packet transmission on the interface.
1041  */
1042 static void
1043 fxp_start(struct ifnet *ifp)
1044 {
1045 	struct fxp_softc *sc = ifp->if_softc;
1046 	struct fxp_cb_tx *txp;
1047 
1048 	ASSERT_SERIALIZED(ifp->if_serializer);
1049 
1050 	/*
1051 	 * See if we need to suspend xmit until the multicast filter
1052 	 * has been reprogrammed (which can only be done at the head
1053 	 * of the command chain).
1054 	 */
1055 	if (sc->need_mcsetup) {
1056 		ifq_purge(&ifp->if_snd);
1057 		return;
1058 	}
1059 
1060 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1061 		return;
1062 
1063 	txp = NULL;
1064 
1065 	/*
1066 	 * We're finished if there is nothing more to add to the list or if
1067 	 * we're all filled up with buffers to transmit.
1068 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1069 	 *       a NOP command when needed.
1070 	 */
1071 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1072 		struct mbuf *m, *mb_head;
1073 		int segment, ntries = 0;
1074 
1075 		/*
1076 		 * Grab a packet to transmit.
1077 		 */
1078 		mb_head = ifq_dequeue(&ifp->if_snd, NULL);
1079 		if (mb_head == NULL)
1080 			break;
1081 tbdinit:
1082 		/*
1083 		 * Make sure that the packet fits into one TX desc
1084 		 */
1085 		segment = 0;
1086 		for (m = mb_head; m != NULL; m = m->m_next) {
1087 			if (m->m_len != 0) {
1088 				++segment;
1089 				if (segment >= FXP_NTXSEG)
1090 					break;
1091 			}
1092 		}
1093 		if (segment >= FXP_NTXSEG) {
1094 			struct mbuf *mn;
1095 
1096 			if (ntries) {
1097 				/*
1098 				 * Packet is excessively fragmented,
1099 				 * and will never fit into one TX
1100 				 * desc.  Give it up.
1101 				 */
1102 				m_freem(mb_head);
1103 				ifp->if_oerrors++;
1104 				continue;
1105 			}
1106 
1107 			mn = m_dup(mb_head, MB_DONTWAIT);
1108 			if (mn == NULL) {
1109 				m_freem(mb_head);
1110 				ifp->if_oerrors++;
1111 				continue;
1112 			}
1113 
1114 			m_freem(mb_head);
1115 			mb_head = mn;
1116 			ntries = 1;
1117 			goto tbdinit;
1118 		}
1119 
1120 		/*
1121 		 * Get pointer to next available tx desc.
1122 		 */
1123 		txp = sc->cbl_last->next;
1124 
1125 		/*
1126 		 * Go through each of the mbufs in the chain and initialize
1127 		 * the transmit buffer descriptors with the physical address
1128 		 * and size of the mbuf.
1129 		 */
1130 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1131 			if (m->m_len != 0) {
1132 				KKASSERT(segment < FXP_NTXSEG);
1133 
1134 				txp->tbd[segment].tb_addr =
1135 				    vtophys(mtod(m, vm_offset_t));
1136 				txp->tbd[segment].tb_size = m->m_len;
1137 				segment++;
1138 			}
1139 		}
1140 		KKASSERT(m == NULL);
1141 
1142 		txp->tbd_number = segment;
1143 		txp->mb_head = mb_head;
1144 		txp->cb_status = 0;
1145 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1146 			txp->cb_command =
1147 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1148 			    FXP_CB_COMMAND_S;
1149 		} else {
1150 			txp->cb_command =
1151 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1152 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1153 		}
1154 		txp->tx_threshold = tx_threshold;
1155 
1156 		/*
1157 		 * Advance the end of list forward.
1158 		 */
1159 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1160 		sc->cbl_last = txp;
1161 
1162 		/*
1163 		 * Advance the beginning of the list forward if there are
1164 		 * no other packets queued (when nothing is queued, cbl_first
1165 		 * sits on the last TxCB that was sent out).
1166 		 */
1167 		if (sc->tx_queued == 0)
1168 			sc->cbl_first = txp;
1169 
1170 		sc->tx_queued++;
1171 		/*
1172 		 * Set a 5 second timer just in case we don't hear
1173 		 * from the card again.
1174 		 */
1175 		ifp->if_timer = 5;
1176 
1177 		BPF_MTAP(ifp, mb_head);
1178 	}
1179 
1180 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1181 		ifp->if_flags |= IFF_OACTIVE;
1182 
1183 	/*
1184 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1185 	 * going again if suspended.
1186 	 */
1187 	if (txp != NULL) {
1188 		fxp_scb_wait(sc);
1189 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1190 	}
1191 }
1192 
1193 #ifdef DEVICE_POLLING
1194 
1195 static void
1196 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1197 {
1198 	struct fxp_softc *sc = ifp->if_softc;
1199 	u_int8_t statack;
1200 
1201 	ASSERT_SERIALIZED(ifp->if_serializer);
1202 
1203 	switch(cmd) {
1204 	case POLL_REGISTER:
1205 		/* disable interrupts */
1206 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1207 		break;
1208 	case POLL_DEREGISTER:
1209 		/* enable interrupts */
1210 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1211 		break;
1212 	default:
1213 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1214 			  FXP_SCB_STATACK_FR;
1215 		if (cmd == POLL_AND_CHECK_STATUS) {
1216 			u_int8_t tmp;
1217 
1218 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1219 			if (tmp == 0xff || tmp == 0)
1220 				return; /* nothing to do */
1221 			tmp &= ~statack;
1222 			/* ack what we can */
1223 			if (tmp != 0)
1224 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1225 			statack |= tmp;
1226 		}
1227 		fxp_intr_body(sc, statack, count);
1228 		break;
1229 	}
1230 }
1231 
1232 #endif /* DEVICE_POLLING */
1233 
1234 /*
1235  * Process interface interrupts.
1236  */
1237 static void
1238 fxp_intr(void *xsc)
1239 {
1240 	struct fxp_softc *sc = xsc;
1241 	u_int8_t statack;
1242 
1243 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1244 
1245 	if (sc->suspended) {
1246 		return;
1247 	}
1248 
1249 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1250 		/*
1251 		 * It should not be possible to have all bits set; the
1252 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1253 		 * all bits are set, this may indicate that the card has
1254 		 * been physically ejected, so ignore it.
1255 		 */
1256 		if (statack == 0xff)
1257 			return;
1258 
1259 		/*
1260 		 * First ACK all the interrupts in this pass.
1261 		 */
1262 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1263 		fxp_intr_body(sc, statack, -1);
1264 	}
1265 }
1266 
1267 static void
1268 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1269 {
1270 	struct ifnet *ifp = &sc->arpcom.ac_if;
1271 	struct mbuf *m;
1272 	struct fxp_rfa *rfa;
1273 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1274 	struct mbuf_chain chain[MAXCPU];
1275 
1276 	if (rnr)
1277 		fxp_rnr++;
1278 #ifdef DEVICE_POLLING
1279 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1280 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1281 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1282 		rnr = 1;
1283 	}
1284 #endif
1285 
1286 	/*
1287 	 * Free any finished transmit mbuf chains.
1288 	 *
1289 	 * Handle the CNA event likt a CXTNO event. It used to
1290 	 * be that this event (control unit not ready) was not
1291 	 * encountered, but it is now with the SMPng modifications.
1292 	 * The exact sequence of events that occur when the interface
1293 	 * is brought up are different now, and if this event
1294 	 * goes unhandled, the configuration/rxfilter setup sequence
1295 	 * can stall for several seconds. The result is that no
1296 	 * packets go out onto the wire for about 5 to 10 seconds
1297 	 * after the interface is ifconfig'ed for the first time.
1298 	 */
1299 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1300 		struct fxp_cb_tx *txp;
1301 
1302 		for (txp = sc->cbl_first; sc->tx_queued &&
1303 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1304 		    txp = txp->next) {
1305 			if ((m = txp->mb_head) != NULL) {
1306 				txp->mb_head = NULL;
1307 				sc->tx_queued--;
1308 				m_freem(m);
1309 			} else {
1310 				sc->tx_queued--;
1311 			}
1312 		}
1313 		sc->cbl_first = txp;
1314 
1315 		if (sc->tx_queued < FXP_USABLE_TXCB)
1316 			ifp->if_flags &= ~IFF_OACTIVE;
1317 
1318 		if (sc->tx_queued == 0) {
1319 			ifp->if_timer = 0;
1320 			if (sc->need_mcsetup)
1321 				fxp_mc_setup(sc);
1322 		}
1323 
1324 		/*
1325 		 * Try to start more packets transmitting.
1326 		 */
1327 		if (!ifq_is_empty(&ifp->if_snd))
1328 			if_devstart(ifp);
1329 	}
1330 
1331 	/*
1332 	 * Just return if nothing happened on the receive side.
1333 	 */
1334 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1335 		return;
1336 
1337 	ether_input_chain_init(chain);
1338 
1339 	/*
1340 	 * Process receiver interrupts. If a no-resource (RNR)
1341 	 * condition exists, get whatever packets we can and
1342 	 * re-start the receiver.
1343 	 *
1344 	 * When using polling, we do not process the list to completion,
1345 	 * so when we get an RNR interrupt we must defer the restart
1346 	 * until we hit the last buffer with the C bit set.
1347 	 * If we run out of cycles and rfa_headm has the C bit set,
1348 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1349 	 * that the info will be used in the subsequent polling cycle.
1350 	 */
1351 	for (;;) {
1352 		m = sc->rfa_headm;
1353 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1354 					 RFA_ALIGNMENT_FUDGE);
1355 
1356 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1357 		if (count >= 0 && count-- == 0) {
1358 			if (rnr) {
1359 				/* Defer RNR processing until the next time. */
1360 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1361 				rnr = 0;
1362 			}
1363 			break;
1364 		}
1365 #endif /* DEVICE_POLLING */
1366 
1367 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1368 			break;
1369 
1370 		/*
1371 		 * Remove first packet from the chain.
1372 		 */
1373 		sc->rfa_headm = m->m_next;
1374 		if (sc->rfa_headm == NULL)
1375 			sc->rfa_tailm = NULL;
1376 		m->m_next = NULL;
1377 
1378 		/*
1379 		 * Add a new buffer to the receive chain.
1380 		 * If this fails, the old buffer is recycled
1381 		 * instead.
1382 		 */
1383 		if (fxp_add_rfabuf(sc, m) == 0) {
1384 			int total_len;
1385 
1386 			/*
1387 			 * Fetch packet length (the top 2 bits of
1388 			 * actual_size are flags set by the controller
1389 			 * upon completion), and drop the packet in case
1390 			 * of bogus length or CRC errors.
1391 			 */
1392 			total_len = rfa->actual_size & 0x3fff;
1393 			if (total_len < sizeof(struct ether_header) ||
1394 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1395 					sizeof(struct fxp_rfa) ||
1396 			    (rfa->rfa_status & FXP_RFA_STATUS_CRC)) {
1397 				m_freem(m);
1398 				continue;
1399 			}
1400 			m->m_pkthdr.len = m->m_len = total_len;
1401 			ether_input_chain(ifp, m, NULL, chain);
1402 		}
1403 	}
1404 
1405 	ether_input_dispatch(chain);
1406 
1407 	if (rnr) {
1408 		fxp_scb_wait(sc);
1409 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1410 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1411 		    RFA_ALIGNMENT_FUDGE);
1412 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1413 	}
1414 }
1415 
1416 /*
1417  * Update packet in/out/collision statistics. The i82557 doesn't
1418  * allow you to access these counters without doing a fairly
1419  * expensive DMA to get _all_ of the statistics it maintains, so
1420  * we do this operation here only once per second. The statistics
1421  * counters in the kernel are updated from the previous dump-stats
1422  * DMA and then a new dump-stats DMA is started. The on-chip
1423  * counters are zeroed when the DMA completes. If we can't start
1424  * the DMA immediately, we don't wait - we just prepare to read
1425  * them again next time.
1426  */
1427 static void
1428 fxp_tick(void *xsc)
1429 {
1430 	struct fxp_softc *sc = xsc;
1431 	struct ifnet *ifp = &sc->arpcom.ac_if;
1432 	struct fxp_stats *sp = sc->fxp_stats;
1433 	struct fxp_cb_tx *txp;
1434 	struct mbuf *m;
1435 
1436 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1437 
1438 	ifp->if_opackets += sp->tx_good;
1439 	ifp->if_collisions += sp->tx_total_collisions;
1440 	if (sp->rx_good) {
1441 		ifp->if_ipackets += sp->rx_good;
1442 		sc->rx_idle_secs = 0;
1443 	} else {
1444 		/*
1445 		 * Receiver's been idle for another second.
1446 		 */
1447 		sc->rx_idle_secs++;
1448 	}
1449 	ifp->if_ierrors +=
1450 	    sp->rx_crc_errors +
1451 	    sp->rx_alignment_errors +
1452 	    sp->rx_rnr_errors +
1453 	    sp->rx_overrun_errors;
1454 	/*
1455 	 * If any transmit underruns occured, bump up the transmit
1456 	 * threshold by another 512 bytes (64 * 8).
1457 	 */
1458 	if (sp->tx_underruns) {
1459 		ifp->if_oerrors += sp->tx_underruns;
1460 		if (tx_threshold < 192)
1461 			tx_threshold += 64;
1462 	}
1463 
1464 	/*
1465 	 * Release any xmit buffers that have completed DMA. This isn't
1466 	 * strictly necessary to do here, but it's advantagous for mbufs
1467 	 * with external storage to be released in a timely manner rather
1468 	 * than being defered for a potentially long time. This limits
1469 	 * the delay to a maximum of one second.
1470 	 */
1471 	for (txp = sc->cbl_first; sc->tx_queued &&
1472 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1473 	    txp = txp->next) {
1474 		if ((m = txp->mb_head) != NULL) {
1475 			txp->mb_head = NULL;
1476 			sc->tx_queued--;
1477 			m_freem(m);
1478 		} else {
1479 			sc->tx_queued--;
1480 		}
1481 	}
1482 	sc->cbl_first = txp;
1483 
1484 	if (sc->tx_queued < FXP_USABLE_TXCB)
1485 		ifp->if_flags &= ~IFF_OACTIVE;
1486 	if (sc->tx_queued == 0)
1487 		ifp->if_timer = 0;
1488 
1489  	/*
1490 	 * Try to start more packets transmitting.
1491 	 */
1492 	if (!ifq_is_empty(&ifp->if_snd))
1493 		if_devstart(ifp);
1494 
1495 	/*
1496 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1497 	 * then assume the receiver has locked up and attempt to clear
1498 	 * the condition by reprogramming the multicast filter. This is
1499 	 * a work-around for a bug in the 82557 where the receiver locks
1500 	 * up if it gets certain types of garbage in the syncronization
1501 	 * bits prior to the packet header. This bug is supposed to only
1502 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1503 	 * mode as well (perhaps due to a 10/100 speed transition).
1504 	 */
1505 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1506 		sc->rx_idle_secs = 0;
1507 		fxp_mc_setup(sc);
1508 	}
1509 	/*
1510 	 * If there is no pending command, start another stats
1511 	 * dump. Otherwise punt for now.
1512 	 */
1513 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1514 		/*
1515 		 * Start another stats dump.
1516 		 */
1517 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1518 	} else {
1519 		/*
1520 		 * A previous command is still waiting to be accepted.
1521 		 * Just zero our copy of the stats and wait for the
1522 		 * next timer event to update them.
1523 		 */
1524 		sp->tx_good = 0;
1525 		sp->tx_underruns = 0;
1526 		sp->tx_total_collisions = 0;
1527 
1528 		sp->rx_good = 0;
1529 		sp->rx_crc_errors = 0;
1530 		sp->rx_alignment_errors = 0;
1531 		sp->rx_rnr_errors = 0;
1532 		sp->rx_overrun_errors = 0;
1533 	}
1534 	if (sc->miibus != NULL)
1535 		mii_tick(device_get_softc(sc->miibus));
1536 	/*
1537 	 * Schedule another timeout one second from now.
1538 	 */
1539 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1540 
1541 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1542 }
1543 
1544 /*
1545  * Stop the interface. Cancels the statistics updater and resets
1546  * the interface.
1547  */
1548 static void
1549 fxp_stop(struct fxp_softc *sc)
1550 {
1551 	struct ifnet *ifp = &sc->arpcom.ac_if;
1552 	struct fxp_cb_tx *txp;
1553 	int i;
1554 
1555 	ASSERT_SERIALIZED(ifp->if_serializer);
1556 
1557 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1558 	ifp->if_timer = 0;
1559 
1560 	/*
1561 	 * Cancel stats updater.
1562 	 */
1563 	callout_stop(&sc->fxp_stat_timer);
1564 
1565 	/*
1566 	 * Issue software reset, which also unloads the microcode.
1567 	 */
1568 	sc->flags &= ~FXP_FLAG_UCODE;
1569 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1570 	DELAY(50);
1571 
1572 	/*
1573 	 * Release any xmit buffers.
1574 	 */
1575 	txp = sc->cbl_base;
1576 	if (txp != NULL) {
1577 		for (i = 0; i < FXP_NTXCB; i++) {
1578 			if (txp[i].mb_head != NULL) {
1579 				m_freem(txp[i].mb_head);
1580 				txp[i].mb_head = NULL;
1581 			}
1582 		}
1583 	}
1584 	sc->tx_queued = 0;
1585 
1586 	/*
1587 	 * Free all the receive buffers then reallocate/reinitialize
1588 	 */
1589 	if (sc->rfa_headm != NULL)
1590 		m_freem(sc->rfa_headm);
1591 	sc->rfa_headm = NULL;
1592 	sc->rfa_tailm = NULL;
1593 	for (i = 0; i < FXP_NRFABUFS; i++) {
1594 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1595 			/*
1596 			 * This "can't happen" - we're at splimp()
1597 			 * and we just freed all the buffers we need
1598 			 * above.
1599 			 */
1600 			panic("fxp_stop: no buffers!");
1601 		}
1602 	}
1603 }
1604 
1605 /*
1606  * Watchdog/transmission transmit timeout handler. Called when a
1607  * transmission is started on the interface, but no interrupt is
1608  * received before the timeout. This usually indicates that the
1609  * card has wedged for some reason.
1610  */
1611 static void
1612 fxp_watchdog(struct ifnet *ifp)
1613 {
1614 	ASSERT_SERIALIZED(ifp->if_serializer);
1615 
1616 	if_printf(ifp, "device timeout\n");
1617 	ifp->if_oerrors++;
1618 	fxp_init(ifp->if_softc);
1619 }
1620 
1621 static void
1622 fxp_init(void *xsc)
1623 {
1624 	struct fxp_softc *sc = xsc;
1625 	struct ifnet *ifp = &sc->arpcom.ac_if;
1626 	struct fxp_cb_config *cbp;
1627 	struct fxp_cb_ias *cb_ias;
1628 	struct fxp_cb_tx *txp;
1629 	struct fxp_cb_mcs *mcsp;
1630 	int i, prm;
1631 
1632 	ASSERT_SERIALIZED(ifp->if_serializer);
1633 
1634 	/*
1635 	 * Cancel any pending I/O
1636 	 */
1637 	fxp_stop(sc);
1638 
1639 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1640 
1641 	/*
1642 	 * Initialize base of CBL and RFA memory. Loading with zero
1643 	 * sets it up for regular linear addressing.
1644 	 */
1645 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1646 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1647 
1648 	fxp_scb_wait(sc);
1649 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1650 
1651 	/*
1652 	 * Initialize base of dump-stats buffer.
1653 	 */
1654 	fxp_scb_wait(sc);
1655 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1656 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1657 
1658 	/*
1659 	 * Attempt to load microcode if requested.
1660 	 */
1661 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1662 		fxp_load_ucode(sc);
1663 
1664 	/*
1665 	 * Initialize the multicast address list.
1666 	 */
1667 	if (fxp_mc_addrs(sc)) {
1668 		mcsp = sc->mcsp;
1669 		mcsp->cb_status = 0;
1670 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1671 		mcsp->link_addr = -1;
1672 		/*
1673 	 	 * Start the multicast setup command.
1674 		 */
1675 		fxp_scb_wait(sc);
1676 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1677 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1678 		/* ...and wait for it to complete. */
1679 		fxp_dma_wait(&mcsp->cb_status, sc);
1680 	}
1681 
1682 	/*
1683 	 * We temporarily use memory that contains the TxCB list to
1684 	 * construct the config CB. The TxCB list memory is rebuilt
1685 	 * later.
1686 	 */
1687 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1688 
1689 	/*
1690 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1691 	 * zero and must be one bits in this structure and this is the easiest
1692 	 * way to initialize them all to proper values.
1693 	 */
1694 	bcopy(fxp_cb_config_template,
1695 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1696 		sizeof(fxp_cb_config_template));
1697 
1698 	cbp->cb_status =	0;
1699 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1700 	cbp->link_addr =	-1;	/* (no) next command */
1701 	cbp->byte_count =	22;	/* (22) bytes to config */
1702 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1703 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1704 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1705 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1706 	cbp->type_enable =	0;	/* actually reserved */
1707 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1708 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1709 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1710 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1711 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1712 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1713 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1714 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1715 	cbp->ci_int =		1;	/* interrupt on CU idle */
1716 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1717 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1718 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1719 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1720 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1721 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1722 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1723 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1724 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1725 	cbp->csma_dis =		0;	/* (don't) disable link */
1726 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1727 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1728 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1729 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1730 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1731 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1732 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1733 	cbp->loopback =		0;	/* (don't) loopback */
1734 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1735 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1736 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1737 	cbp->promiscuous =	prm;	/* promiscuous mode */
1738 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1739 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1740 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1741 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1742 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1743 
1744 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1745 	cbp->padding =		1;	/* (do) pad short tx packets */
1746 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1747 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1748 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1749 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1750 					/* must set wake_en in PMCSR also */
1751 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1752 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1753 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1754 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1755 
1756 	if (sc->revision == FXP_REV_82557) {
1757 		/*
1758 		 * The 82557 has no hardware flow control, the values
1759 		 * below are the defaults for the chip.
1760 		 */
1761 		cbp->fc_delay_lsb =	0;
1762 		cbp->fc_delay_msb =	0x40;
1763 		cbp->pri_fc_thresh =	3;
1764 		cbp->tx_fc_dis =	0;
1765 		cbp->rx_fc_restop =	0;
1766 		cbp->rx_fc_restart =	0;
1767 		cbp->fc_filter =	0;
1768 		cbp->pri_fc_loc =	1;
1769 	} else {
1770 		cbp->fc_delay_lsb =	0x1f;
1771 		cbp->fc_delay_msb =	0x01;
1772 		cbp->pri_fc_thresh =	3;
1773 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1774 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1775 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1776 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1777 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1778 	}
1779 
1780 	/*
1781 	 * Start the config command/DMA.
1782 	 */
1783 	fxp_scb_wait(sc);
1784 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1785 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1786 	/* ...and wait for it to complete. */
1787 	fxp_dma_wait(&cbp->cb_status, sc);
1788 
1789 	/*
1790 	 * Now initialize the station address. Temporarily use the TxCB
1791 	 * memory area like we did above for the config CB.
1792 	 */
1793 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1794 	cb_ias->cb_status = 0;
1795 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1796 	cb_ias->link_addr = -1;
1797 	bcopy(sc->arpcom.ac_enaddr,
1798 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1799 	    sizeof(sc->arpcom.ac_enaddr));
1800 
1801 	/*
1802 	 * Start the IAS (Individual Address Setup) command/DMA.
1803 	 */
1804 	fxp_scb_wait(sc);
1805 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1806 	/* ...and wait for it to complete. */
1807 	fxp_dma_wait(&cb_ias->cb_status, sc);
1808 
1809 	/*
1810 	 * Initialize transmit control block (TxCB) list.
1811 	 */
1812 
1813 	txp = sc->cbl_base;
1814 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1815 	for (i = 0; i < FXP_NTXCB; i++) {
1816 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1817 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1818 		txp[i].link_addr =
1819 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1820 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1821 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1822 		else
1823 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1824 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1825 	}
1826 	/*
1827 	 * Set the suspend flag on the first TxCB and start the control
1828 	 * unit. It will execute the NOP and then suspend.
1829 	 */
1830 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1831 	sc->cbl_first = sc->cbl_last = txp;
1832 	sc->tx_queued = 1;
1833 
1834 	fxp_scb_wait(sc);
1835 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1836 
1837 	/*
1838 	 * Initialize receiver buffer area - RFA.
1839 	 */
1840 	fxp_scb_wait(sc);
1841 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1842 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1843 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1844 
1845 	/*
1846 	 * Set current media.
1847 	 */
1848 	if (sc->miibus != NULL)
1849 		mii_mediachg(device_get_softc(sc->miibus));
1850 
1851 	ifp->if_flags |= IFF_RUNNING;
1852 	ifp->if_flags &= ~IFF_OACTIVE;
1853 
1854 	/*
1855 	 * Enable interrupts.
1856 	 */
1857 #ifdef DEVICE_POLLING
1858 	/*
1859 	 * ... but only do that if we are not polling. And because (presumably)
1860 	 * the default is interrupts on, we need to disable them explicitly!
1861 	 */
1862 	if ( ifp->if_flags & IFF_POLLING )
1863 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1864 	else
1865 #endif /* DEVICE_POLLING */
1866 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1867 
1868 	/*
1869 	 * Start stats updater.
1870 	 */
1871 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1872 }
1873 
1874 static int
1875 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1876 {
1877 	ASSERT_SERIALIZED(ifp->if_serializer);
1878 	return (0);
1879 }
1880 
1881 static void
1882 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1883 {
1884 	ASSERT_SERIALIZED(ifp->if_serializer);
1885 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1886 }
1887 
1888 /*
1889  * Change media according to request.
1890  */
1891 static int
1892 fxp_ifmedia_upd(struct ifnet *ifp)
1893 {
1894 	struct fxp_softc *sc = ifp->if_softc;
1895 	struct mii_data *mii;
1896 
1897 	ASSERT_SERIALIZED(ifp->if_serializer);
1898 
1899 	mii = device_get_softc(sc->miibus);
1900 	mii_mediachg(mii);
1901 	return (0);
1902 }
1903 
1904 /*
1905  * Notify the world which media we're using.
1906  */
1907 static void
1908 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1909 {
1910 	struct fxp_softc *sc = ifp->if_softc;
1911 	struct mii_data *mii;
1912 
1913 	ASSERT_SERIALIZED(ifp->if_serializer);
1914 
1915 	mii = device_get_softc(sc->miibus);
1916 	mii_pollstat(mii);
1917 	ifmr->ifm_active = mii->mii_media_active;
1918 	ifmr->ifm_status = mii->mii_media_status;
1919 
1920 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1921 		sc->cu_resume_bug = 1;
1922 	else
1923 		sc->cu_resume_bug = 0;
1924 }
1925 
1926 /*
1927  * Add a buffer to the end of the RFA buffer list.
1928  * Return 0 if successful, 1 for failure. A failure results in
1929  * adding the 'oldm' (if non-NULL) on to the end of the list -
1930  * tossing out its old contents and recycling it.
1931  * The RFA struct is stuck at the beginning of mbuf cluster and the
1932  * data pointer is fixed up to point just past it.
1933  */
1934 static int
1935 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1936 {
1937 	u_int32_t v;
1938 	struct mbuf *m;
1939 	struct fxp_rfa *rfa, *p_rfa;
1940 
1941 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1942 	if (m == NULL) { /* try to recycle the old mbuf instead */
1943 		if (oldm == NULL)
1944 			return 1;
1945 		m = oldm;
1946 		m->m_data = m->m_ext.ext_buf;
1947 	}
1948 
1949 	/*
1950 	 * Move the data pointer up so that the incoming data packet
1951 	 * will be 32-bit aligned.
1952 	 */
1953 	m->m_data += RFA_ALIGNMENT_FUDGE;
1954 
1955 	/*
1956 	 * Get a pointer to the base of the mbuf cluster and move
1957 	 * data start past it.
1958 	 */
1959 	rfa = mtod(m, struct fxp_rfa *);
1960 	m->m_data += sizeof(struct fxp_rfa);
1961 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
1962 				RFA_ALIGNMENT_FUDGE);
1963 
1964 	/*
1965 	 * Initialize the rest of the RFA.  Note that since the RFA
1966 	 * is misaligned, we cannot store values directly.  Instead,
1967 	 * we use an optimized, inline copy.
1968 	 */
1969 
1970 	rfa->rfa_status = 0;
1971 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1972 	rfa->actual_size = 0;
1973 
1974 	v = -1;
1975 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1976 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1977 
1978 	/*
1979 	 * If there are other buffers already on the list, attach this
1980 	 * one to the end by fixing up the tail to point to this one.
1981 	 */
1982 	if (sc->rfa_headm != NULL) {
1983 		p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf +
1984 					   RFA_ALIGNMENT_FUDGE);
1985 		sc->rfa_tailm->m_next = m;
1986 		v = vtophys(rfa);
1987 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1988 		p_rfa->rfa_control = 0;
1989 	} else {
1990 		sc->rfa_headm = m;
1991 	}
1992 	sc->rfa_tailm = m;
1993 
1994 	return (m == oldm);
1995 }
1996 
1997 static int
1998 fxp_miibus_readreg(device_t dev, int phy, int reg)
1999 {
2000 	struct fxp_softc *sc = device_get_softc(dev);
2001 	int count = 10000;
2002 	int value;
2003 
2004 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2005 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2006 
2007 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2008 	    && count--)
2009 		DELAY(10);
2010 
2011 	if (count <= 0)
2012 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2013 
2014 	return (value & 0xffff);
2015 }
2016 
2017 static void
2018 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2019 {
2020 	struct fxp_softc *sc = device_get_softc(dev);
2021 	int count = 10000;
2022 
2023 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2024 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2025 	    (value & 0xffff));
2026 
2027 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2028 	    count--)
2029 		DELAY(10);
2030 
2031 	if (count <= 0)
2032 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2033 }
2034 
2035 static int
2036 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2037 {
2038 	struct fxp_softc *sc = ifp->if_softc;
2039 	struct ifreq *ifr = (struct ifreq *)data;
2040 	struct mii_data *mii;
2041 	int error = 0;
2042 
2043 	ASSERT_SERIALIZED(ifp->if_serializer);
2044 
2045 	switch (command) {
2046 
2047 	case SIOCSIFFLAGS:
2048 		if (ifp->if_flags & IFF_ALLMULTI)
2049 			sc->flags |= FXP_FLAG_ALL_MCAST;
2050 		else
2051 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2052 
2053 		/*
2054 		 * If interface is marked up and not running, then start it.
2055 		 * If it is marked down and running, stop it.
2056 		 * XXX If it's up then re-initialize it. This is so flags
2057 		 * such as IFF_PROMISC are handled.
2058 		 */
2059 		if (ifp->if_flags & IFF_UP) {
2060 			fxp_init(sc);
2061 		} else {
2062 			if (ifp->if_flags & IFF_RUNNING)
2063 				fxp_stop(sc);
2064 		}
2065 		break;
2066 
2067 	case SIOCADDMULTI:
2068 	case SIOCDELMULTI:
2069 		if (ifp->if_flags & IFF_ALLMULTI)
2070 			sc->flags |= FXP_FLAG_ALL_MCAST;
2071 		else
2072 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2073 		/*
2074 		 * Multicast list has changed; set the hardware filter
2075 		 * accordingly.
2076 		 */
2077 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2078 			fxp_mc_setup(sc);
2079 		/*
2080 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2081 		 * again rather than else {}.
2082 		 */
2083 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2084 			fxp_init(sc);
2085 		error = 0;
2086 		break;
2087 
2088 	case SIOCSIFMEDIA:
2089 	case SIOCGIFMEDIA:
2090 		if (sc->miibus != NULL) {
2091 			mii = device_get_softc(sc->miibus);
2092                         error = ifmedia_ioctl(ifp, ifr,
2093                             &mii->mii_media, command);
2094 		} else {
2095                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2096 		}
2097 		break;
2098 
2099 	default:
2100 		error = ether_ioctl(ifp, command, data);
2101 		break;
2102 	}
2103 	return (error);
2104 }
2105 
2106 /*
2107  * Fill in the multicast address list and return number of entries.
2108  */
2109 static int
2110 fxp_mc_addrs(struct fxp_softc *sc)
2111 {
2112 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2113 	struct ifnet *ifp = &sc->arpcom.ac_if;
2114 	struct ifmultiaddr *ifma;
2115 	int nmcasts;
2116 
2117 	nmcasts = 0;
2118 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2119 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2120 			if (ifma->ifma_addr->sa_family != AF_LINK)
2121 				continue;
2122 			if (nmcasts >= MAXMCADDR) {
2123 				sc->flags |= FXP_FLAG_ALL_MCAST;
2124 				nmcasts = 0;
2125 				break;
2126 			}
2127 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2128 			    (void *)(uintptr_t)(volatile void *)
2129 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2130 			nmcasts++;
2131 		}
2132 	}
2133 	mcsp->mc_cnt = nmcasts * 6;
2134 	return (nmcasts);
2135 }
2136 
2137 /*
2138  * Program the multicast filter.
2139  *
2140  * We have an artificial restriction that the multicast setup command
2141  * must be the first command in the chain, so we take steps to ensure
2142  * this. By requiring this, it allows us to keep up the performance of
2143  * the pre-initialized command ring (esp. link pointers) by not actually
2144  * inserting the mcsetup command in the ring - i.e. its link pointer
2145  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2146  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2147  * lead into the regular TxCB ring when it completes.
2148  *
2149  * This function must be called at splimp.
2150  */
2151 static void
2152 fxp_mc_setup(struct fxp_softc *sc)
2153 {
2154 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2155 	struct ifnet *ifp = &sc->arpcom.ac_if;
2156 	int count;
2157 
2158 	/*
2159 	 * If there are queued commands, we must wait until they are all
2160 	 * completed. If we are already waiting, then add a NOP command
2161 	 * with interrupt option so that we're notified when all commands
2162 	 * have been completed - fxp_start() ensures that no additional
2163 	 * TX commands will be added when need_mcsetup is true.
2164 	 */
2165 	if (sc->tx_queued) {
2166 		struct fxp_cb_tx *txp;
2167 
2168 		/*
2169 		 * need_mcsetup will be true if we are already waiting for the
2170 		 * NOP command to be completed (see below). In this case, bail.
2171 		 */
2172 		if (sc->need_mcsetup)
2173 			return;
2174 		sc->need_mcsetup = 1;
2175 
2176 		/*
2177 		 * Add a NOP command with interrupt so that we are notified
2178 		 * when all TX commands have been processed.
2179 		 */
2180 		txp = sc->cbl_last->next;
2181 		txp->mb_head = NULL;
2182 		txp->cb_status = 0;
2183 		txp->cb_command = FXP_CB_COMMAND_NOP |
2184 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2185 		/*
2186 		 * Advance the end of list forward.
2187 		 */
2188 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2189 		sc->cbl_last = txp;
2190 		sc->tx_queued++;
2191 		/*
2192 		 * Issue a resume in case the CU has just suspended.
2193 		 */
2194 		fxp_scb_wait(sc);
2195 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2196 		/*
2197 		 * Set a 5 second timer just in case we don't hear from the
2198 		 * card again.
2199 		 */
2200 		ifp->if_timer = 5;
2201 
2202 		return;
2203 	}
2204 	sc->need_mcsetup = 0;
2205 
2206 	/*
2207 	 * Initialize multicast setup descriptor.
2208 	 */
2209 	mcsp->next = sc->cbl_base;
2210 	mcsp->mb_head = NULL;
2211 	mcsp->cb_status = 0;
2212 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2213 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2214 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2215 	fxp_mc_addrs(sc);
2216 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2217 	sc->tx_queued = 1;
2218 
2219 	/*
2220 	 * Wait until command unit is not active. This should never
2221 	 * be the case when nothing is queued, but make sure anyway.
2222 	 */
2223 	count = 100;
2224 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2225 	    FXP_SCB_CUS_ACTIVE && --count)
2226 		DELAY(10);
2227 	if (count == 0) {
2228 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2229 		return;
2230 	}
2231 
2232 	/*
2233 	 * Start the multicast setup command.
2234 	 */
2235 	fxp_scb_wait(sc);
2236 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2237 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2238 
2239 	ifp->if_timer = 2;
2240 	return;
2241 }
2242 
2243 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2244 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2245 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2246 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2247 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2248 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2249 
2250 #define UCODE(x)	x, sizeof(x)
2251 
2252 struct ucode {
2253 	u_int32_t	revision;
2254 	u_int32_t	*ucode;
2255 	int		length;
2256 	u_short		int_delay_offset;
2257 	u_short		bundle_max_offset;
2258 } ucode_table[] = {
2259 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2260 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2261 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2262 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2263 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2264 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2265 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2266 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2267 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2268 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2269 	{ 0, NULL, 0, 0, 0 }
2270 };
2271 
2272 static void
2273 fxp_load_ucode(struct fxp_softc *sc)
2274 {
2275 	struct ucode *uc;
2276 	struct fxp_cb_ucode *cbp;
2277 
2278 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2279 		if (sc->revision == uc->revision)
2280 			break;
2281 	if (uc->ucode == NULL)
2282 		return;
2283 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2284 	cbp->cb_status = 0;
2285 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2286 	cbp->link_addr = -1;    	/* (no) next command */
2287 	memcpy(cbp->ucode, uc->ucode, uc->length);
2288 	if (uc->int_delay_offset)
2289 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2290 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2291 	if (uc->bundle_max_offset)
2292 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2293 		    sc->tunable_bundle_max;
2294 	/*
2295 	 * Download the ucode to the chip.
2296 	 */
2297 	fxp_scb_wait(sc);
2298 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2299 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2300 	/* ...and wait for it to complete. */
2301 	fxp_dma_wait(&cbp->cb_status, sc);
2302 	if_printf(&sc->arpcom.ac_if,
2303 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2304 	    sc->tunable_int_delay,
2305 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2306 	sc->flags |= FXP_FLAG_UCODE;
2307 }
2308 
2309 /*
2310  * Interrupt delay is expressed in microseconds, a multiplier is used
2311  * to convert this to the appropriate clock ticks before using.
2312  */
2313 static int
2314 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2315 {
2316 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2317 }
2318 
2319 static int
2320 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2321 {
2322 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2323 }
2324