xref: /dragonfly/sys/dev/netif/ig_hal/e1000_82543.c (revision 10cbe914)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2008, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /*
36  * 82543GC Gigabit Ethernet Controller (Fiber)
37  * 82543GC Gigabit Ethernet Controller (Copper)
38  * 82544EI Gigabit Ethernet Controller (Copper)
39  * 82544EI Gigabit Ethernet Controller (Fiber)
40  * 82544GC Gigabit Ethernet Controller (Copper)
41  * 82544GC Gigabit Ethernet Controller (LOM)
42  */
43 
44 #include "e1000_api.h"
45 
46 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50                                      u16 *data);
51 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52                                       u16 data);
53 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62 static s32  e1000_led_on_82543(struct e1000_hw *hw);
63 static s32  e1000_led_off_82543(struct e1000_hw *hw);
64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65                                    u32 value);
66 static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value);
67 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
68 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
69 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
70 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
71 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
72 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
73 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
74 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
75                                            u16 count);
76 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
77 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
78 
79 /**
80  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
81  *  @hw: pointer to the HW structure
82  **/
83 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
84 {
85 	struct e1000_phy_info *phy = &hw->phy;
86 	s32 ret_val = E1000_SUCCESS;
87 
88 	DEBUGFUNC("e1000_init_phy_params_82543");
89 
90 	if (hw->phy.media_type != e1000_media_type_copper) {
91 		phy->type               = e1000_phy_none;
92 		goto out;
93 	} else {
94 		phy->ops.power_up       = e1000_power_up_phy_copper;
95 		phy->ops.power_down     = e1000_power_down_phy_copper;
96 	}
97 
98 	phy->addr                       = 1;
99 	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 	phy->reset_delay_us             = 10000;
101 	phy->type                       = e1000_phy_m88;
102 
103 	/* Function Pointers */
104 	phy->ops.check_polarity         = e1000_check_polarity_m88;
105 	phy->ops.commit                 = e1000_phy_sw_reset_generic;
106 	phy->ops.force_speed_duplex     = e1000_phy_force_speed_duplex_82543;
107 	phy->ops.get_cable_length       = e1000_get_cable_length_m88;
108 	phy->ops.get_cfg_done           = e1000_get_cfg_done_generic;
109 	phy->ops.read_reg               = (hw->mac.type == e1000_82543)
110 	                                  ? e1000_read_phy_reg_82543
111 	                                  : e1000_read_phy_reg_m88;
112 	phy->ops.reset                  = (hw->mac.type == e1000_82543)
113 	                                  ? e1000_phy_hw_reset_82543
114 	                                  : e1000_phy_hw_reset_generic;
115 	phy->ops.write_reg              = (hw->mac.type == e1000_82543)
116 	                                  ? e1000_write_phy_reg_82543
117 	                                  : e1000_write_phy_reg_m88;
118 	phy->ops.get_info               = e1000_get_phy_info_m88;
119 
120 	/*
121 	 * The external PHY of the 82543 can be in a funky state.
122 	 * Resetting helps us read the PHY registers for acquiring
123 	 * the PHY ID.
124 	 */
125 	if (!e1000_init_phy_disabled_82543(hw)) {
126 		ret_val = phy->ops.reset(hw);
127 		if (ret_val) {
128 			DEBUGOUT("Resetting PHY during init failed.\n");
129 			goto out;
130 		}
131 		msec_delay(20);
132 	}
133 
134 	ret_val = e1000_get_phy_id(hw);
135 	if (ret_val)
136 		goto out;
137 
138 	/* Verify phy id */
139 	switch (hw->mac.type) {
140 	case e1000_82543:
141 		if (phy->id != M88E1000_E_PHY_ID) {
142 			ret_val = -E1000_ERR_PHY;
143 			goto out;
144 		}
145 		break;
146 	case e1000_82544:
147 		if (phy->id != M88E1000_I_PHY_ID) {
148 			ret_val = -E1000_ERR_PHY;
149 			goto out;
150 		}
151 		break;
152 	default:
153 		ret_val = -E1000_ERR_PHY;
154 		goto out;
155 		break;
156 	}
157 
158 out:
159 	return ret_val;
160 }
161 
162 /**
163  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
164  *  @hw: pointer to the HW structure
165  **/
166 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
167 {
168 	struct e1000_nvm_info *nvm = &hw->nvm;
169 
170 	DEBUGFUNC("e1000_init_nvm_params_82543");
171 
172 	nvm->type               = e1000_nvm_eeprom_microwire;
173 	nvm->word_size          = 64;
174 	nvm->delay_usec         = 50;
175 	nvm->address_bits       =  6;
176 	nvm->opcode_bits        =  3;
177 
178 	/* Function Pointers */
179 	nvm->ops.read           = e1000_read_nvm_microwire;
180 	nvm->ops.update         = e1000_update_nvm_checksum_generic;
181 	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
182 	nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
183 	nvm->ops.write          = e1000_write_nvm_microwire;
184 
185 	return E1000_SUCCESS;
186 }
187 
188 /**
189  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
190  *  @hw: pointer to the HW structure
191  **/
192 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
193 {
194 	struct e1000_mac_info *mac = &hw->mac;
195 
196 	DEBUGFUNC("e1000_init_mac_params_82543");
197 
198 	/* Set media type */
199 	switch (hw->device_id) {
200 	case E1000_DEV_ID_82543GC_FIBER:
201 	case E1000_DEV_ID_82544EI_FIBER:
202 		hw->phy.media_type = e1000_media_type_fiber;
203 		break;
204 	default:
205 		hw->phy.media_type = e1000_media_type_copper;
206 		break;
207 	}
208 
209 	/* Set mta register count */
210 	mac->mta_reg_count = 128;
211 	/* Set rar entry count */
212 	mac->rar_entry_count = E1000_RAR_ENTRIES;
213 
214 	/* Function pointers */
215 
216 	/* bus type/speed/width */
217 	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
218 	/* function id */
219 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
220 	/* reset */
221 	mac->ops.reset_hw = e1000_reset_hw_82543;
222 	/* hw initialization */
223 	mac->ops.init_hw = e1000_init_hw_82543;
224 	/* link setup */
225 	mac->ops.setup_link = e1000_setup_link_82543;
226 	/* physical interface setup */
227 	mac->ops.setup_physical_interface =
228 	        (hw->phy.media_type == e1000_media_type_copper)
229 	                ? e1000_setup_copper_link_82543
230 	                : e1000_setup_fiber_link_82543;
231 	/* check for link */
232 	mac->ops.check_for_link =
233 	        (hw->phy.media_type == e1000_media_type_copper)
234 	                ? e1000_check_for_copper_link_82543
235 	                : e1000_check_for_fiber_link_82543;
236 	/* link info */
237 	mac->ops.get_link_up_info =
238 	        (hw->phy.media_type == e1000_media_type_copper)
239 	                ? e1000_get_speed_and_duplex_copper_generic
240 	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
241 	/* multicast address update */
242 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
243 	/* writing VFTA */
244 	mac->ops.write_vfta = e1000_write_vfta_82543;
245 	/* clearing VFTA */
246 	mac->ops.clear_vfta = e1000_clear_vfta_generic;
247 	/* setting MTA */
248 	mac->ops.mta_set = e1000_mta_set_82543;
249 	/* turn on/off LED */
250 	mac->ops.led_on = e1000_led_on_82543;
251 	mac->ops.led_off = e1000_led_off_82543;
252 	/* clear hardware counters */
253 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
254 
255 	/* Set tbi compatibility */
256 	if ((hw->mac.type != e1000_82543) ||
257 	    (hw->phy.media_type == e1000_media_type_fiber))
258 		e1000_set_tbi_compatibility_82543(hw, FALSE);
259 
260 	return E1000_SUCCESS;
261 }
262 
263 /**
264  *  e1000_init_function_pointers_82543 - Init func ptrs.
265  *  @hw: pointer to the HW structure
266  *
267  *  Called to initialize all function pointers and parameters.
268  **/
269 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
270 {
271 	DEBUGFUNC("e1000_init_function_pointers_82543");
272 
273 	hw->mac.ops.init_params = e1000_init_mac_params_82543;
274 	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
275 	hw->phy.ops.init_params = e1000_init_phy_params_82543;
276 }
277 
278 /**
279  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
280  *  @hw: pointer to the HW structure
281  *
282  *  Returns the current status of 10-bit Interface (TBI) compatibility
283  *  (enabled/disabled).
284  **/
285 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
286 {
287 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
288 	bool state = FALSE;
289 
290 	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
291 
292 	if (hw->mac.type != e1000_82543) {
293 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
294 		goto out;
295 	}
296 
297 	state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
298 	        ? TRUE : FALSE;
299 
300 out:
301 	return state;
302 }
303 
304 /**
305  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
306  *  @hw: pointer to the HW structure
307  *  @state: enable/disable TBI compatibility
308  *
309  *  Enables or disabled 10-bit Interface (TBI) compatibility.
310  **/
311 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
312 {
313 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
314 
315 	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
316 
317 	if (hw->mac.type != e1000_82543) {
318 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
319 		goto out;
320 	}
321 
322 	if (state)
323 		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
324 	else
325 		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
326 
327 out:
328 	return;
329 }
330 
331 /**
332  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
333  *  @hw: pointer to the HW structure
334  *
335  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
336  *  (enabled/disabled).
337  **/
338 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
339 {
340 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
341 	bool state = FALSE;
342 
343 	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
344 
345 	if (hw->mac.type != e1000_82543) {
346 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
347 		goto out;
348 	}
349 
350 	state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
351 	        ? TRUE : FALSE;
352 
353 out:
354 	return state;
355 }
356 
357 /**
358  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
359  *  @hw: pointer to the HW structure
360  *  @state: enable/disable TBI store bad packet
361  *
362  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
363  **/
364 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
365 {
366 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
367 
368 	DEBUGFUNC("e1000_set_tbi_sbp_82543");
369 
370 	if (state && e1000_tbi_compatibility_enabled_82543(hw))
371 		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
372 	else
373 		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
374 
375 	return;
376 }
377 
378 /**
379  *  e1000_init_phy_disabled_82543 - Returns init PHY status
380  *  @hw: pointer to the HW structure
381  *
382  *  Returns the current status of whether PHY initialization is disabled.
383  *  True if PHY initialization is disabled else FALSE.
384  **/
385 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
386 {
387 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
388 	bool ret_val;
389 
390 	DEBUGFUNC("e1000_init_phy_disabled_82543");
391 
392 	if (hw->mac.type != e1000_82543) {
393 		ret_val = FALSE;
394 		goto out;
395 	}
396 
397 	ret_val = dev_spec->init_phy_disabled;
398 
399 out:
400 	return ret_val;
401 }
402 
403 /**
404  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
405  *  @hw: pointer to the HW structure
406  *  @stats: Struct containing statistic register values
407  *  @frame_len: The length of the frame in question
408  *  @mac_addr: The Ethernet destination address of the frame in question
409  *  @max_frame_size: The maximum frame size
410  *
411  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
412  **/
413 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
414                                   struct e1000_hw_stats *stats, u32 frame_len,
415                                   u8 *mac_addr, u32 max_frame_size)
416 {
417 	if (!(e1000_tbi_sbp_enabled_82543(hw)))
418 		goto out;
419 
420 	/* First adjust the frame length. */
421 	frame_len--;
422 	/*
423 	 * We need to adjust the statistics counters, since the hardware
424 	 * counters overcount this packet as a CRC error and undercount
425 	 * the packet as a good packet
426 	 */
427 	/* This packet should not be counted as a CRC error.    */
428 	stats->crcerrs--;
429 	/* This packet does count as a Good Packet Received.    */
430 	stats->gprc++;
431 
432 	/* Adjust the Good Octets received counters             */
433 	stats->gorc += frame_len;
434 
435 	/*
436 	 * Is this a broadcast or multicast?  Check broadcast first,
437 	 * since the test for a multicast frame will test positive on
438 	 * a broadcast frame.
439 	 */
440 	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
441 		/* Broadcast packet */
442 		stats->bprc++;
443 	else if (*mac_addr & 0x01)
444 		/* Multicast packet */
445 		stats->mprc++;
446 
447 	/*
448 	 * In this case, the hardware has overcounted the number of
449 	 * oversize frames.
450 	 */
451 	if ((frame_len == max_frame_size) && (stats->roc > 0))
452 		stats->roc--;
453 
454 	/*
455 	 * Adjust the bin counters when the extra byte put the frame in the
456 	 * wrong bin. Remember that the frame_len was adjusted above.
457 	 */
458 	if (frame_len == 64) {
459 		stats->prc64++;
460 		stats->prc127--;
461 	} else if (frame_len == 127) {
462 		stats->prc127++;
463 		stats->prc255--;
464 	} else if (frame_len == 255) {
465 		stats->prc255++;
466 		stats->prc511--;
467 	} else if (frame_len == 511) {
468 		stats->prc511++;
469 		stats->prc1023--;
470 	} else if (frame_len == 1023) {
471 		stats->prc1023++;
472 		stats->prc1522--;
473 	} else if (frame_len == 1522) {
474 		stats->prc1522++;
475 	}
476 
477 out:
478 	return;
479 }
480 
481 /**
482  *  e1000_read_phy_reg_82543 - Read PHY register
483  *  @hw: pointer to the HW structure
484  *  @offset: register offset to be read
485  *  @data: pointer to the read data
486  *
487  *  Reads the PHY at offset and stores the information read to data.
488  **/
489 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
490 {
491 	u32 mdic;
492 	s32 ret_val = E1000_SUCCESS;
493 
494 	DEBUGFUNC("e1000_read_phy_reg_82543");
495 
496 	if (offset > MAX_PHY_REG_ADDRESS) {
497 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
498 		ret_val = -E1000_ERR_PARAM;
499 		goto out;
500 	}
501 
502 	/*
503 	 * We must first send a preamble through the MDIO pin to signal the
504 	 * beginning of an MII instruction.  This is done by sending 32
505 	 * consecutive "1" bits.
506 	 */
507 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
508 
509 	/*
510 	 * Now combine the next few fields that are required for a read
511 	 * operation.  We use this method instead of calling the
512 	 * e1000_shift_out_mdi_bits routine five different times.  The format
513 	 * of an MII read instruction consists of a shift out of 14 bits and
514 	 * is defined as follows:
515 	 * 	<Preamble><SOF><Op Code><Phy Addr><Offset>
516 	 * followed by a shift in of 18 bits.  This first two bits shifted in
517 	 * are TurnAround bits used to avoid contention on the MDIO pin when a
518 	 * READ operation is performed.  These two bits are thrown away
519 	 * followed by a shift in of 16 bits which contains the desired data.
520 	 */
521 	mdic = (offset | (hw->phy.addr << 5) |
522 		(PHY_OP_READ << 10) | (PHY_SOF << 12));
523 
524 	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
525 
526 	/*
527 	 * Now that we've shifted out the read command to the MII, we need to
528 	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
529 	 * register address.
530 	 */
531 	*data = e1000_shift_in_mdi_bits_82543(hw);
532 
533 out:
534 	return ret_val;
535 }
536 
537 /**
538  *  e1000_write_phy_reg_82543 - Write PHY register
539  *  @hw: pointer to the HW structure
540  *  @offset: register offset to be written
541  *  @data: pointer to the data to be written at offset
542  *
543  *  Writes data to the PHY at offset.
544  **/
545 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
546 {
547 	u32 mdic;
548 	s32 ret_val = E1000_SUCCESS;
549 
550 	DEBUGFUNC("e1000_write_phy_reg_82543");
551 
552 	if (offset > MAX_PHY_REG_ADDRESS) {
553 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
554 		ret_val = -E1000_ERR_PARAM;
555 		goto out;
556 	}
557 
558 	/*
559 	 * We'll need to use the SW defined pins to shift the write command
560 	 * out to the PHY. We first send a preamble to the PHY to signal the
561 	 * beginning of the MII instruction.  This is done by sending 32
562 	 * consecutive "1" bits.
563 	 */
564 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
565 
566 	/*
567 	 * Now combine the remaining required fields that will indicate a
568 	 * write operation. We use this method instead of calling the
569 	 * e1000_shift_out_mdi_bits routine for each field in the command. The
570 	 * format of a MII write instruction is as follows:
571 	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
572 	 */
573 	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
574 	        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
575 	mdic <<= 16;
576 	mdic |= (u32) data;
577 
578 	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
579 
580 out:
581 	return ret_val;
582 }
583 
584 /**
585  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
586  *  @hw: pointer to the HW structure
587  *  @ctrl: pointer to the control register
588  *
589  *  Raise the management data input clock by setting the MDC bit in the control
590  *  register.
591  **/
592 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
593 {
594 	/*
595 	 * Raise the clock input to the Management Data Clock (by setting the
596 	 * MDC bit), and then delay a sufficient amount of time.
597 	 */
598 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
599 	E1000_WRITE_FLUSH(hw);
600 	usec_delay(10);
601 }
602 
603 /**
604  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
605  *  @hw: pointer to the HW structure
606  *  @ctrl: pointer to the control register
607  *
608  *  Lower the management data input clock by clearing the MDC bit in the
609  *  control register.
610  **/
611 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
612 {
613 	/*
614 	 * Lower the clock input to the Management Data Clock (by clearing the
615 	 * MDC bit), and then delay a sufficient amount of time.
616 	 */
617 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
618 	E1000_WRITE_FLUSH(hw);
619 	usec_delay(10);
620 }
621 
622 /**
623  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
624  *  @hw: pointer to the HW structure
625  *  @data: data to send to the PHY
626  *  @count: number of bits to shift out
627  *
628  *  We need to shift 'count' bits out to the PHY.  So, the value in the
629  *  "data" parameter will be shifted out to the PHY one bit at a time.
630  *  In order to do this, "data" must be broken down into bits.
631  **/
632 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
633                                            u16 count)
634 {
635 	u32 ctrl, mask;
636 
637 	/*
638 	 * We need to shift "count" number of bits out to the PHY.  So, the
639 	 * value in the "data" parameter will be shifted out to the PHY one
640 	 * bit at a time.  In order to do this, "data" must be broken down
641 	 * into bits.
642 	 */
643 	mask = 0x01;
644 	mask <<= (count -1);
645 
646 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
647 
648 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
649 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
650 
651 	while (mask) {
652 		/*
653 		 * A "1" is shifted out to the PHY by setting the MDIO bit to
654 		 * "1" and then raising and lowering the Management Data Clock.
655 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
656 		 * "0" and then raising and lowering the clock.
657 		 */
658 		if (data & mask) ctrl |= E1000_CTRL_MDIO;
659 		else ctrl &= ~E1000_CTRL_MDIO;
660 
661 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
662 		E1000_WRITE_FLUSH(hw);
663 
664 		usec_delay(10);
665 
666 		e1000_raise_mdi_clk_82543(hw, &ctrl);
667 		e1000_lower_mdi_clk_82543(hw, &ctrl);
668 
669 		mask >>= 1;
670 	}
671 }
672 
673 /**
674  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
675  *  @hw: pointer to the HW structure
676  *
677  *  In order to read a register from the PHY, we need to shift 18 bits
678  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
679  *  the PHY (setting the MDC bit), and then reading the value of the data out
680  *  MDIO bit.
681  **/
682 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
683 {
684 	u32 ctrl;
685 	u16 data = 0;
686 	u8 i;
687 
688 	/*
689 	 * In order to read a register from the PHY, we need to shift in a
690 	 * total of 18 bits from the PHY.  The first two bit (turnaround)
691 	 * times are used to avoid contention on the MDIO pin when a read
692 	 * operation is performed.  These two bits are ignored by us and
693 	 * thrown away.  Bits are "shifted in" by raising the input to the
694 	 * Management Data Clock (setting the MDC bit) and then reading the
695 	 * value of the MDIO bit.
696 	 */
697 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
698 
699 	/*
700 	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
701 	 * input.
702 	 */
703 	ctrl &= ~E1000_CTRL_MDIO_DIR;
704 	ctrl &= ~E1000_CTRL_MDIO;
705 
706 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
707 	E1000_WRITE_FLUSH(hw);
708 
709 	/*
710 	 * Raise and lower the clock before reading in the data.  This accounts
711 	 * for the turnaround bits.  The first clock occurred when we clocked
712 	 * out the last bit of the Register Address.
713 	 */
714 	e1000_raise_mdi_clk_82543(hw, &ctrl);
715 	e1000_lower_mdi_clk_82543(hw, &ctrl);
716 
717 	for (data = 0, i = 0; i < 16; i++) {
718 		data <<= 1;
719 		e1000_raise_mdi_clk_82543(hw, &ctrl);
720 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
721 		/* Check to see if we shifted in a "1". */
722 		if (ctrl & E1000_CTRL_MDIO)
723 			data |= 1;
724 		e1000_lower_mdi_clk_82543(hw, &ctrl);
725 	}
726 
727 	e1000_raise_mdi_clk_82543(hw, &ctrl);
728 	e1000_lower_mdi_clk_82543(hw, &ctrl);
729 
730 	return data;
731 }
732 
733 /**
734  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
735  *  @hw: pointer to the HW structure
736  *
737  *  Calls the function to force speed and duplex for the m88 PHY, and
738  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
739  *  then call the function for polarity reversal workaround.
740  **/
741 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
742 {
743 	s32 ret_val;
744 
745 	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
746 
747 	ret_val = e1000_phy_force_speed_duplex_m88(hw);
748 	if (ret_val)
749 		goto out;
750 
751 	if (!hw->mac.autoneg &&
752 	    (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
753 		ret_val = e1000_polarity_reversal_workaround_82543(hw);
754 
755 out:
756 	return ret_val;
757 }
758 
759 /**
760  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
761  *  @hw: pointer to the HW structure
762  *
763  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
764  *  inadvertently.  To workaround the issue, we disable the transmitter on
765  *  the PHY until we have established the link partner's link parameters.
766  **/
767 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
768 {
769 	s32 ret_val = E1000_SUCCESS;
770 	u16 mii_status_reg;
771 	u16 i;
772 	bool link;
773 
774 	if (!(hw->phy.ops.write_reg))
775 		goto out;
776 
777 	/* Polarity reversal workaround for forced 10F/10H links. */
778 
779 	/* Disable the transmitter on the PHY */
780 
781 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
782 	if (ret_val)
783 		goto out;
784 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
785 	if (ret_val)
786 		goto out;
787 
788 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
789 	if (ret_val)
790 		goto out;
791 
792 	/*
793 	 * This loop will early-out if the NO link condition has been met.
794 	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
795 	 */
796 	for (i = PHY_FORCE_TIME; i > 0; i--) {
797 		/*
798 		 * Read the MII Status Register and wait for Link Status bit
799 		 * to be clear.
800 		 */
801 
802 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
803 		if (ret_val)
804 			goto out;
805 
806 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
807 		if (ret_val)
808 			goto out;
809 
810 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
811 			break;
812 		msec_delay_irq(100);
813 	}
814 
815 	/* Recommended delay time after link has been lost */
816 	msec_delay_irq(1000);
817 
818 	/* Now we will re-enable the transmitter on the PHY */
819 
820 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
821 	if (ret_val)
822 		goto out;
823 	msec_delay_irq(50);
824 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
825 	if (ret_val)
826 		goto out;
827 	msec_delay_irq(50);
828 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
829 	if (ret_val)
830 		goto out;
831 	msec_delay_irq(50);
832 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
833 	if (ret_val)
834 		goto out;
835 
836 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
837 	if (ret_val)
838 		goto out;
839 
840 	/*
841 	 * Read the MII Status Register and wait for Link Status bit
842 	 * to be set.
843 	 */
844 	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
845 	if (ret_val)
846 		goto out;
847 
848 out:
849 	return ret_val;
850 }
851 
852 /**
853  *  e1000_phy_hw_reset_82543 - PHY hardware reset
854  *  @hw: pointer to the HW structure
855  *
856  *  Sets the PHY_RESET_DIR bit in the extended device control register
857  *  to put the PHY into a reset and waits for completion.  Once the reset
858  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
859  *  of reset.
860  **/
861 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
862 {
863 	u32 ctrl_ext;
864 	s32 ret_val;
865 
866 	DEBUGFUNC("e1000_phy_hw_reset_82543");
867 
868 	/*
869 	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
870 	 * bit to put the PHY into reset...
871 	 */
872 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
873 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
874 	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
875 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
876 	E1000_WRITE_FLUSH(hw);
877 
878 	msec_delay(10);
879 
880 	/* ...then take it out of reset. */
881 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
882 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
883 	E1000_WRITE_FLUSH(hw);
884 
885 	usec_delay(150);
886 
887 	if (!(hw->phy.ops.get_cfg_done))
888 		return E1000_SUCCESS;
889 
890 	ret_val = hw->phy.ops.get_cfg_done(hw);
891 
892 	return ret_val;
893 }
894 
895 /**
896  *  e1000_reset_hw_82543 - Reset hardware
897  *  @hw: pointer to the HW structure
898  *
899  *  This resets the hardware into a known state.
900  **/
901 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
902 {
903 	u32 ctrl, icr;
904 	s32 ret_val = E1000_SUCCESS;
905 
906 	DEBUGFUNC("e1000_reset_hw_82543");
907 
908 	DEBUGOUT("Masking off all interrupts\n");
909 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
910 
911 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
912 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
913 	E1000_WRITE_FLUSH(hw);
914 
915 	e1000_set_tbi_sbp_82543(hw, FALSE);
916 
917 	/*
918 	 * Delay to allow any outstanding PCI transactions to complete before
919 	 * resetting the device
920 	 */
921 	msec_delay(10);
922 
923 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
924 
925 	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
926 	if (hw->mac.type == e1000_82543) {
927 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
928 	} else {
929 		/*
930 		 * The 82544 can't ACK the 64-bit write when issuing the
931 		 * reset, so use IO-mapping as a workaround.
932 		 */
933 		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
934 	}
935 
936 	/*
937 	 * After MAC reset, force reload of NVM to restore power-on
938 	 * settings to device.
939 	 */
940 	hw->nvm.ops.reload(hw);
941 	msec_delay(2);
942 
943 	/* Masking off and clearing any pending interrupts */
944 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
945 	icr = E1000_READ_REG(hw, E1000_ICR);
946 
947 	return ret_val;
948 }
949 
950 /**
951  *  e1000_init_hw_82543 - Initialize hardware
952  *  @hw: pointer to the HW structure
953  *
954  *  This inits the hardware readying it for operation.
955  **/
956 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
957 {
958 	struct e1000_mac_info *mac = &hw->mac;
959 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
960 	u32 ctrl;
961 	s32 ret_val;
962 	u16 i;
963 
964 	DEBUGFUNC("e1000_init_hw_82543");
965 
966 	/* Disabling VLAN filtering */
967 	E1000_WRITE_REG(hw, E1000_VET, 0);
968 	mac->ops.clear_vfta(hw);
969 
970 	/* Setup the receive address. */
971 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
972 
973 	/* Zero out the Multicast HASH table */
974 	DEBUGOUT("Zeroing the MTA\n");
975 	for (i = 0; i < mac->mta_reg_count; i++) {
976 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
977 		E1000_WRITE_FLUSH(hw);
978 	}
979 
980 	/*
981 	 * Set the PCI priority bit correctly in the CTRL register.  This
982 	 * determines if the adapter gives priority to receives, or if it
983 	 * gives equal priority to transmits and receives.
984 	 */
985 	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
986 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
987 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
988 	}
989 
990 	e1000_pcix_mmrbc_workaround_generic(hw);
991 
992 	/* Setup link and flow control */
993 	ret_val = mac->ops.setup_link(hw);
994 
995 	/*
996 	 * Clear all of the statistics registers (clear on read).  It is
997 	 * important that we do this after we have tried to establish link
998 	 * because the symbol error count will increment wildly if there
999 	 * is no link.
1000 	 */
1001 	e1000_clear_hw_cntrs_82543(hw);
1002 
1003 	return ret_val;
1004 }
1005 
1006 /**
1007  *  e1000_setup_link_82543 - Setup flow control and link settings
1008  *  @hw: pointer to the HW structure
1009  *
1010  *  Read the EEPROM to determine the initial polarity value and write the
1011  *  extended device control register with the information before calling
1012  *  the generic setup link function, which does the following:
1013  *  Determines which flow control settings to use, then configures flow
1014  *  control.  Calls the appropriate media-specific link configuration
1015  *  function.  Assuming the adapter has a valid link partner, a valid link
1016  *  should be established.  Assumes the hardware has previously been reset
1017  *  and the transmitter and receiver are not enabled.
1018  **/
1019 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1020 {
1021 	u32 ctrl_ext;
1022 	s32  ret_val;
1023 	u16 data;
1024 
1025 	DEBUGFUNC("e1000_setup_link_82543");
1026 
1027 	/*
1028 	 * Take the 4 bits from NVM word 0xF that determine the initial
1029 	 * polarity value for the SW controlled pins, and setup the
1030 	 * Extended Device Control reg with that info.
1031 	 * This is needed because one of the SW controlled pins is used for
1032 	 * signal detection.  So this should be done before phy setup.
1033 	 */
1034 	if (hw->mac.type == e1000_82543) {
1035 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1036 		if (ret_val) {
1037 			DEBUGOUT("NVM Read Error\n");
1038 			ret_val = -E1000_ERR_NVM;
1039 			goto out;
1040 		}
1041 		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1042 		            NVM_SWDPIO_EXT_SHIFT);
1043 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1044 	}
1045 
1046 	ret_val = e1000_setup_link_generic(hw);
1047 
1048 out:
1049 	return ret_val;
1050 }
1051 
1052 /**
1053  *  e1000_setup_copper_link_82543 - Configure copper link settings
1054  *  @hw: pointer to the HW structure
1055  *
1056  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1057  *  for link, once link is established calls to configure collision distance
1058  *  and flow control are called.
1059  **/
1060 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1061 {
1062 	u32 ctrl;
1063 	s32 ret_val;
1064 	bool link;
1065 
1066 	DEBUGFUNC("e1000_setup_copper_link_82543");
1067 
1068 	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1069 	/*
1070 	 * With 82543, we need to force speed and duplex on the MAC
1071 	 * equal to what the PHY speed and duplex configuration is.
1072 	 * In addition, we need to perform a hardware reset on the
1073 	 * PHY to take it out of reset.
1074 	 */
1075 	if (hw->mac.type == e1000_82543) {
1076 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1077 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1078 		ret_val = hw->phy.ops.reset(hw);
1079 		if (ret_val)
1080 			goto out;
1081 		hw->phy.reset_disable = FALSE;
1082 	} else {
1083 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1084 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1085 	}
1086 
1087 	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1088 	ret_val = e1000_copper_link_setup_m88(hw);
1089 	if (ret_val)
1090 		goto out;
1091 
1092 	if (hw->mac.autoneg) {
1093 		/*
1094 		 * Setup autoneg and flow control advertisement and perform
1095 		 * autonegotiation.
1096 		 */
1097 		ret_val = e1000_copper_link_autoneg(hw);
1098 		if (ret_val)
1099 			goto out;
1100 	} else {
1101 		/*
1102 		 * PHY will be set to 10H, 10F, 100H or 100F
1103 		 * depending on user settings.
1104 		 */
1105 		DEBUGOUT("Forcing Speed and Duplex\n");
1106 		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1107 		if (ret_val) {
1108 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1109 			goto out;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Check link status. Wait up to 100 microseconds for link to become
1115 	 * valid.
1116 	 */
1117 	ret_val = e1000_phy_has_link_generic(hw,
1118 	                                     COPPER_LINK_UP_LIMIT,
1119 	                                     10,
1120 	                                     &link);
1121 	if (ret_val)
1122 		goto out;
1123 
1124 
1125 	if (link) {
1126 		DEBUGOUT("Valid link established!!!\n");
1127 		/* Config the MAC and PHY after link is up */
1128 		if (hw->mac.type == e1000_82544) {
1129 			e1000_config_collision_dist_generic(hw);
1130 		} else {
1131 			ret_val = e1000_config_mac_to_phy_82543(hw);
1132 			if (ret_val)
1133 				goto out;
1134 		}
1135 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1136 	} else {
1137 		DEBUGOUT("Unable to establish link!!!\n");
1138 	}
1139 
1140 out:
1141 	return ret_val;
1142 }
1143 
1144 /**
1145  *  e1000_setup_fiber_link_82543 - Setup link for fiber
1146  *  @hw: pointer to the HW structure
1147  *
1148  *  Configures collision distance and flow control for fiber links.  Upon
1149  *  successful setup, poll for link.
1150  **/
1151 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1152 {
1153 	u32 ctrl;
1154 	s32 ret_val;
1155 
1156 	DEBUGFUNC("e1000_setup_fiber_link_82543");
1157 
1158 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1159 
1160 	/* Take the link out of reset */
1161 	ctrl &= ~E1000_CTRL_LRST;
1162 
1163 	e1000_config_collision_dist_generic(hw);
1164 
1165 	ret_val = e1000_commit_fc_settings_generic(hw);
1166 	if (ret_val)
1167 		goto out;
1168 
1169 	DEBUGOUT("Auto-negotiation enabled\n");
1170 
1171 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1172 	E1000_WRITE_FLUSH(hw);
1173 	msec_delay(1);
1174 
1175 	/*
1176 	 * For these adapters, the SW definable pin 1 is cleared when the
1177 	 * optics detect a signal.  If we have a signal, then poll for a
1178 	 * "Link-Up" indication.
1179 	 */
1180 	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1181 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1182 	} else {
1183 		DEBUGOUT("No signal detected\n");
1184 	}
1185 
1186 out:
1187 	return ret_val;
1188 }
1189 
1190 /**
1191  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1192  *  @hw: pointer to the HW structure
1193  *
1194  *  Checks the phy for link, if link exists, do the following:
1195  *   - check for downshift
1196  *   - do polarity workaround (if necessary)
1197  *   - configure collision distance
1198  *   - configure flow control after link up
1199  *   - configure tbi compatibility
1200  **/
1201 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1202 {
1203 	struct e1000_mac_info *mac = &hw->mac;
1204 	u32 icr, rctl;
1205 	s32 ret_val;
1206 	u16 speed, duplex;
1207 	bool link;
1208 
1209 	DEBUGFUNC("e1000_check_for_copper_link_82543");
1210 
1211 	if (!mac->get_link_status) {
1212 		ret_val = E1000_SUCCESS;
1213 		goto out;
1214 	}
1215 
1216 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1217 	if (ret_val)
1218 		goto out;
1219 
1220 	if (!link)
1221 		goto out; /* No link detected */
1222 
1223 	mac->get_link_status = FALSE;
1224 
1225 	e1000_check_downshift_generic(hw);
1226 
1227 	/*
1228 	 * If we are forcing speed/duplex, then we can return since
1229 	 * we have already determined whether we have link or not.
1230 	 */
1231 	if (!mac->autoneg) {
1232 		/*
1233 		 * If speed and duplex are forced to 10H or 10F, then we will
1234 		 * implement the polarity reversal workaround.  We disable
1235 		 * interrupts first, and upon returning, place the devices
1236 		 * interrupt state to its previous value except for the link
1237 		 * status change interrupt which will happened due to the
1238 		 * execution of this workaround.
1239 		 */
1240 		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1241 			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1242 			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1243 			icr = E1000_READ_REG(hw, E1000_ICR);
1244 			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1245 			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1246 		}
1247 
1248 		ret_val = -E1000_ERR_CONFIG;
1249 		goto out;
1250 	}
1251 
1252 	/*
1253 	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1254 	 * have Si on board that is 82544 or newer, Auto
1255 	 * Speed Detection takes care of MAC speed/duplex
1256 	 * configuration.  So we only need to configure Collision
1257 	 * Distance in the MAC.  Otherwise, we need to force
1258 	 * speed/duplex on the MAC to the current PHY speed/duplex
1259 	 * settings.
1260 	 */
1261 	if (mac->type == e1000_82544)
1262 		e1000_config_collision_dist_generic(hw);
1263 	else {
1264 		ret_val = e1000_config_mac_to_phy_82543(hw);
1265 		if (ret_val) {
1266 			DEBUGOUT("Error configuring MAC to PHY settings\n");
1267 			goto out;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * Configure Flow Control now that Auto-Neg has completed.
1273 	 * First, we need to restore the desired flow control
1274 	 * settings because we may have had to re-autoneg with a
1275 	 * different link partner.
1276 	 */
1277 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1278 	if (ret_val) {
1279 		DEBUGOUT("Error configuring flow control\n");
1280 	}
1281 
1282 	/*
1283 	 * At this point we know that we are on copper and we have
1284 	 * auto-negotiated link.  These are conditions for checking the link
1285 	 * partner capability register.  We use the link speed to determine if
1286 	 * TBI compatibility needs to be turned on or off.  If the link is not
1287 	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1288 	 * at gigabit speed, we turn on TBI compatibility.
1289 	 */
1290 	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1291 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1292 		if (ret_val) {
1293 			DEBUGOUT("Error getting link speed and duplex\n");
1294 			return ret_val;
1295 		}
1296 		if (speed != SPEED_1000) {
1297 			/*
1298 			 * If link speed is not set to gigabit speed,
1299 			 * we do not need to enable TBI compatibility.
1300 			 */
1301 			if (e1000_tbi_sbp_enabled_82543(hw)) {
1302 				/*
1303 				 * If we previously were in the mode,
1304 				 * turn it off.
1305 				 */
1306 				e1000_set_tbi_sbp_82543(hw, FALSE);
1307 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1308 				rctl &= ~E1000_RCTL_SBP;
1309 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1310 			}
1311 		} else {
1312 			/*
1313 			 * If TBI compatibility is was previously off,
1314 			 * turn it on. For compatibility with a TBI link
1315 			 * partner, we will store bad packets. Some
1316 			 * frames have an additional byte on the end and
1317 			 * will look like CRC errors to to the hardware.
1318 			 */
1319 			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1320 				e1000_set_tbi_sbp_82543(hw, TRUE);
1321 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1322 				rctl |= E1000_RCTL_SBP;
1323 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1324 			}
1325 		}
1326 	}
1327 out:
1328 	return ret_val;
1329 }
1330 
1331 /**
1332  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1333  *  @hw: pointer to the HW structure
1334  *
1335  *  Checks for link up on the hardware.  If link is not up and we have
1336  *  a signal, then we need to force link up.
1337  **/
1338 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1339 {
1340 	struct e1000_mac_info *mac = &hw->mac;
1341 	u32 rxcw, ctrl, status;
1342 	s32 ret_val = E1000_SUCCESS;
1343 
1344 	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1345 
1346 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1347 	status = E1000_READ_REG(hw, E1000_STATUS);
1348 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1349 
1350 	/*
1351 	 * If we don't have link (auto-negotiation failed or link partner
1352 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1353 	 * and our link partner is not trying to auto-negotiate with us (we
1354 	 * are receiving idles or data), we need to force link up. We also
1355 	 * need to give auto-negotiation time to complete, in case the cable
1356 	 * was just plugged in. The autoneg_failed flag does this.
1357 	 */
1358 	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1359 	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1360 	    (!(status & E1000_STATUS_LU)) &&
1361 	    (!(rxcw & E1000_RXCW_C))) {
1362 		if (mac->autoneg_failed == 0) {
1363 			mac->autoneg_failed = 1;
1364 			ret_val = 0;
1365 			goto out;
1366 		}
1367 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1368 
1369 		/* Disable auto-negotiation in the TXCW register */
1370 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1371 
1372 		/* Force link-up and also force full-duplex. */
1373 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1374 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1375 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1376 
1377 		/* Configure Flow Control after forcing link up. */
1378 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1379 		if (ret_val) {
1380 			DEBUGOUT("Error configuring flow control\n");
1381 			goto out;
1382 		}
1383 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1384 		/*
1385 		 * If we are forcing link and we are receiving /C/ ordered
1386 		 * sets, re-enable auto-negotiation in the TXCW register
1387 		 * and disable forced link in the Device Control register
1388 		 * in an attempt to auto-negotiate with our link partner.
1389 		 */
1390 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1391 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1392 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1393 
1394 		mac->serdes_has_link = TRUE;
1395 	}
1396 
1397 out:
1398 	return ret_val;
1399 }
1400 
1401 /**
1402  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1403  *  @hw: pointer to the HW structure
1404  *
1405  *  For the 82543 silicon, we need to set the MAC to match the settings
1406  *  of the PHY, even if the PHY is auto-negotiating.
1407  **/
1408 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1409 {
1410 	u32 ctrl;
1411 	s32 ret_val = E1000_SUCCESS;
1412 	u16 phy_data;
1413 
1414 	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1415 
1416 	if (!(hw->phy.ops.read_reg))
1417 		goto out;
1418 
1419 	/* Set the bits to force speed and duplex */
1420 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1421 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1422 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1423 
1424 	/*
1425 	 * Set up duplex in the Device Control and Transmit Control
1426 	 * registers depending on negotiated values.
1427 	 */
1428 	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1429 	if (ret_val)
1430 		goto out;
1431 
1432 	ctrl &= ~E1000_CTRL_FD;
1433 	if (phy_data & M88E1000_PSSR_DPLX)
1434 		ctrl |= E1000_CTRL_FD;
1435 
1436 	e1000_config_collision_dist_generic(hw);
1437 
1438 	/*
1439 	 * Set up speed in the Device Control register depending on
1440 	 * negotiated values.
1441 	 */
1442 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1443 		ctrl |= E1000_CTRL_SPD_1000;
1444 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1445 		ctrl |= E1000_CTRL_SPD_100;
1446 
1447 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1448 
1449 out:
1450 	return ret_val;
1451 }
1452 
1453 /**
1454  *  e1000_write_vfta_82543 - Write value to VLAN filter table
1455  *  @hw: pointer to the HW structure
1456  *  @offset: the 32-bit offset in which to write the value to.
1457  *  @value: the 32-bit value to write at location offset.
1458  *
1459  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1460  *  table.
1461  **/
1462 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1463 {
1464 	u32 temp;
1465 
1466 	DEBUGFUNC("e1000_write_vfta_82543");
1467 
1468 	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1469 		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1470 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1471 		E1000_WRITE_FLUSH(hw);
1472 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1473 		E1000_WRITE_FLUSH(hw);
1474 	} else {
1475 		e1000_write_vfta_generic(hw, offset, value);
1476 	}
1477 }
1478 
1479 /**
1480  *  e1000_mta_set_82543 - Set multicast filter table address
1481  *  @hw: pointer to the HW structure
1482  *  @hash_value: determines the MTA register and bit to set
1483  *
1484  *  The multicast table address is a register array of 32-bit registers.
1485  *  The hash_value is used to determine what register the bit is in, the
1486  *  current value is read, the new bit is OR'd in and the new value is
1487  *  written back into the register.
1488  **/
1489 static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value)
1490 {
1491 	u32 hash_bit, hash_reg, mta, temp;
1492 
1493 	DEBUGFUNC("e1000_mta_set_82543");
1494 
1495 	hash_reg = (hash_value >> 5);
1496 
1497 	/*
1498 	 * If we are on an 82544 and we are trying to write an odd offset
1499 	 * in the MTA, save off the previous entry before writing and
1500 	 * restore the old value after writing.
1501 	 */
1502 	if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) {
1503 		hash_reg &= (hw->mac.mta_reg_count - 1);
1504 		hash_bit = hash_value & 0x1F;
1505 		mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
1506 		mta |= (1 << hash_bit);
1507 		temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1);
1508 
1509 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
1510 		E1000_WRITE_FLUSH(hw);
1511 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp);
1512 		E1000_WRITE_FLUSH(hw);
1513 	} else {
1514 		e1000_mta_set_generic(hw, hash_value);
1515 	}
1516 }
1517 
1518 /**
1519  *  e1000_led_on_82543 - Turn on SW controllable LED
1520  *  @hw: pointer to the HW structure
1521  *
1522  *  Turns the SW defined LED on.
1523  **/
1524 static s32 e1000_led_on_82543(struct e1000_hw *hw)
1525 {
1526 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1527 
1528 	DEBUGFUNC("e1000_led_on_82543");
1529 
1530 	if (hw->mac.type == e1000_82544 &&
1531 	    hw->phy.media_type == e1000_media_type_copper) {
1532 		/* Clear SW-definable Pin 0 to turn on the LED */
1533 		ctrl &= ~E1000_CTRL_SWDPIN0;
1534 		ctrl |= E1000_CTRL_SWDPIO0;
1535 	} else {
1536 		/* Fiber 82544 and all 82543 use this method */
1537 		ctrl |= E1000_CTRL_SWDPIN0;
1538 		ctrl |= E1000_CTRL_SWDPIO0;
1539 	}
1540 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1541 
1542 	return E1000_SUCCESS;
1543 }
1544 
1545 /**
1546  *  e1000_led_off_82543 - Turn off SW controllable LED
1547  *  @hw: pointer to the HW structure
1548  *
1549  *  Turns the SW defined LED off.
1550  **/
1551 static s32 e1000_led_off_82543(struct e1000_hw *hw)
1552 {
1553 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1554 
1555 	DEBUGFUNC("e1000_led_off_82543");
1556 
1557 	if (hw->mac.type == e1000_82544 &&
1558 	    hw->phy.media_type == e1000_media_type_copper) {
1559 		/* Set SW-definable Pin 0 to turn off the LED */
1560 		ctrl |= E1000_CTRL_SWDPIN0;
1561 		ctrl |= E1000_CTRL_SWDPIO0;
1562 	} else {
1563 		ctrl &= ~E1000_CTRL_SWDPIN0;
1564 		ctrl |= E1000_CTRL_SWDPIO0;
1565 	}
1566 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1567 
1568 	return E1000_SUCCESS;
1569 }
1570 
1571 /**
1572  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1573  *  @hw: pointer to the HW structure
1574  *
1575  *  Clears the hardware counters by reading the counter registers.
1576  **/
1577 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1578 {
1579 	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1580 
1581 	e1000_clear_hw_cntrs_base_generic(hw);
1582 
1583 	E1000_READ_REG(hw, E1000_PRC64);
1584 	E1000_READ_REG(hw, E1000_PRC127);
1585 	E1000_READ_REG(hw, E1000_PRC255);
1586 	E1000_READ_REG(hw, E1000_PRC511);
1587 	E1000_READ_REG(hw, E1000_PRC1023);
1588 	E1000_READ_REG(hw, E1000_PRC1522);
1589 	E1000_READ_REG(hw, E1000_PTC64);
1590 	E1000_READ_REG(hw, E1000_PTC127);
1591 	E1000_READ_REG(hw, E1000_PTC255);
1592 	E1000_READ_REG(hw, E1000_PTC511);
1593 	E1000_READ_REG(hw, E1000_PTC1023);
1594 	E1000_READ_REG(hw, E1000_PTC1522);
1595 
1596 	E1000_READ_REG(hw, E1000_ALGNERRC);
1597 	E1000_READ_REG(hw, E1000_RXERRC);
1598 	E1000_READ_REG(hw, E1000_TNCRS);
1599 	E1000_READ_REG(hw, E1000_CEXTERR);
1600 	E1000_READ_REG(hw, E1000_TSCTC);
1601 	E1000_READ_REG(hw, E1000_TSCTFC);
1602 }
1603