xref: /dragonfly/sys/dev/netif/ig_hal/e1000_82543.c (revision 7d3e9a5b)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2019, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /*
36  * 82543GC Gigabit Ethernet Controller (Fiber)
37  * 82543GC Gigabit Ethernet Controller (Copper)
38  * 82544EI Gigabit Ethernet Controller (Copper)
39  * 82544EI Gigabit Ethernet Controller (Fiber)
40  * 82544GC Gigabit Ethernet Controller (Copper)
41  * 82544GC Gigabit Ethernet Controller (LOM)
42  */
43 
44 #include "e1000_api.h"
45 
46 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50 				     u16 *data);
51 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52 				      u16 data);
53 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62 static s32  e1000_led_on_82543(struct e1000_hw *hw);
63 static s32  e1000_led_off_82543(struct e1000_hw *hw);
64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65 				   u32 value);
66 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
67 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
68 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
69 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
70 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
71 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
72 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
73 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
74 					   u16 count);
75 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
76 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
77 
78 /**
79  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
80  *  @hw: pointer to the HW structure
81  **/
82 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
83 {
84 	struct e1000_phy_info *phy = &hw->phy;
85 	s32 ret_val = E1000_SUCCESS;
86 
87 	DEBUGFUNC("e1000_init_phy_params_82543");
88 
89 	if (hw->phy.media_type != e1000_media_type_copper) {
90 		phy->type = e1000_phy_none;
91 		goto out;
92 	} else {
93 		phy->ops.power_up = e1000_power_up_phy_copper;
94 		phy->ops.power_down = e1000_power_down_phy_copper;
95 	}
96 
97 	phy->addr		= 1;
98 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
99 	phy->reset_delay_us	= 10000;
100 	phy->type		= e1000_phy_m88;
101 
102 	/* Function Pointers */
103 	phy->ops.check_polarity	= e1000_check_polarity_m88;
104 	phy->ops.commit		= e1000_phy_sw_reset_generic;
105 	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
106 	phy->ops.get_cable_length = e1000_get_cable_length_m88;
107 	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
108 	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
109 				  ? e1000_read_phy_reg_82543
110 				  : e1000_read_phy_reg_m88;
111 	phy->ops.reset		= (hw->mac.type == e1000_82543)
112 				  ? e1000_phy_hw_reset_82543
113 				  : e1000_phy_hw_reset_generic;
114 	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
115 				  ? e1000_write_phy_reg_82543
116 				  : e1000_write_phy_reg_m88;
117 	phy->ops.get_info	= e1000_get_phy_info_m88;
118 
119 	/*
120 	 * The external PHY of the 82543 can be in a funky state.
121 	 * Resetting helps us read the PHY registers for acquiring
122 	 * the PHY ID.
123 	 */
124 	if (!e1000_init_phy_disabled_82543(hw)) {
125 		ret_val = phy->ops.reset(hw);
126 		if (ret_val) {
127 			DEBUGOUT("Resetting PHY during init failed.\n");
128 			goto out;
129 		}
130 		msec_delay(20);
131 	}
132 
133 	ret_val = e1000_get_phy_id(hw);
134 	if (ret_val)
135 		goto out;
136 
137 	/* Verify phy id */
138 	switch (hw->mac.type) {
139 	case e1000_82543:
140 		if (phy->id != M88E1000_E_PHY_ID) {
141 			ret_val = -E1000_ERR_PHY;
142 			goto out;
143 		}
144 		break;
145 	case e1000_82544:
146 		if (phy->id != M88E1000_I_PHY_ID) {
147 			ret_val = -E1000_ERR_PHY;
148 			goto out;
149 		}
150 		break;
151 	default:
152 		ret_val = -E1000_ERR_PHY;
153 		goto out;
154 		break;
155 	}
156 
157 out:
158 	return ret_val;
159 }
160 
161 /**
162  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
163  *  @hw: pointer to the HW structure
164  **/
165 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
166 {
167 	struct e1000_nvm_info *nvm = &hw->nvm;
168 
169 	DEBUGFUNC("e1000_init_nvm_params_82543");
170 
171 	nvm->type		= e1000_nvm_eeprom_microwire;
172 	nvm->word_size		= 64;
173 	nvm->delay_usec		= 50;
174 	nvm->address_bits	=  6;
175 	nvm->opcode_bits	=  3;
176 
177 	/* Function Pointers */
178 	nvm->ops.read		= e1000_read_nvm_microwire;
179 	nvm->ops.update		= e1000_update_nvm_checksum_generic;
180 	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
181 	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
182 	nvm->ops.write		= e1000_write_nvm_microwire;
183 
184 	return E1000_SUCCESS;
185 }
186 
187 /**
188  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
189  *  @hw: pointer to the HW structure
190  **/
191 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
192 {
193 	struct e1000_mac_info *mac = &hw->mac;
194 
195 	DEBUGFUNC("e1000_init_mac_params_82543");
196 
197 	/* Set media type */
198 	switch (hw->device_id) {
199 	case E1000_DEV_ID_82543GC_FIBER:
200 	case E1000_DEV_ID_82544EI_FIBER:
201 		hw->phy.media_type = e1000_media_type_fiber;
202 		break;
203 	default:
204 		hw->phy.media_type = e1000_media_type_copper;
205 		break;
206 	}
207 
208 	/* Set mta register count */
209 	mac->mta_reg_count = 128;
210 	/* Set rar entry count */
211 	mac->rar_entry_count = E1000_RAR_ENTRIES;
212 
213 	/* Function pointers */
214 
215 	/* bus type/speed/width */
216 	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
217 	/* function id */
218 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
219 	/* reset */
220 	mac->ops.reset_hw = e1000_reset_hw_82543;
221 	/* hw initialization */
222 	mac->ops.init_hw = e1000_init_hw_82543;
223 	/* link setup */
224 	mac->ops.setup_link = e1000_setup_link_82543;
225 	/* physical interface setup */
226 	mac->ops.setup_physical_interface =
227 		(hw->phy.media_type == e1000_media_type_copper)
228 		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
229 	/* check for link */
230 	mac->ops.check_for_link =
231 		(hw->phy.media_type == e1000_media_type_copper)
232 		 ? e1000_check_for_copper_link_82543
233 		 : e1000_check_for_fiber_link_82543;
234 	/* link info */
235 	mac->ops.get_link_up_info =
236 		(hw->phy.media_type == e1000_media_type_copper)
237 		 ? e1000_get_speed_and_duplex_copper_generic
238 		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
239 	/* multicast address update */
240 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
241 	/* writing VFTA */
242 	mac->ops.write_vfta = e1000_write_vfta_82543;
243 	/* clearing VFTA */
244 	mac->ops.clear_vfta = e1000_clear_vfta_generic;
245 	/* turn on/off LED */
246 	mac->ops.led_on = e1000_led_on_82543;
247 	mac->ops.led_off = e1000_led_off_82543;
248 	/* clear hardware counters */
249 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
250 
251 	/* Set tbi compatibility */
252 	if ((hw->mac.type != e1000_82543) ||
253 	    (hw->phy.media_type == e1000_media_type_fiber))
254 		e1000_set_tbi_compatibility_82543(hw, FALSE);
255 
256 	return E1000_SUCCESS;
257 }
258 
259 /**
260  *  e1000_init_function_pointers_82543 - Init func ptrs.
261  *  @hw: pointer to the HW structure
262  *
263  *  Called to initialize all function pointers and parameters.
264  **/
265 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
266 {
267 	DEBUGFUNC("e1000_init_function_pointers_82543");
268 
269 	hw->mac.ops.init_params = e1000_init_mac_params_82543;
270 	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
271 	hw->phy.ops.init_params = e1000_init_phy_params_82543;
272 }
273 
274 /**
275  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
276  *  @hw: pointer to the HW structure
277  *
278  *  Returns the current status of 10-bit Interface (TBI) compatibility
279  *  (enabled/disabled).
280  **/
281 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
282 {
283 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
284 	bool state = FALSE;
285 
286 	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
287 
288 	if (hw->mac.type != e1000_82543) {
289 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
290 		goto out;
291 	}
292 
293 	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
294 
295 out:
296 	return state;
297 }
298 
299 /**
300  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
301  *  @hw: pointer to the HW structure
302  *  @state: enable/disable TBI compatibility
303  *
304  *  Enables or disabled 10-bit Interface (TBI) compatibility.
305  **/
306 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
307 {
308 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
309 
310 	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
311 
312 	if (hw->mac.type != e1000_82543) {
313 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
314 		goto out;
315 	}
316 
317 	if (state)
318 		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
319 	else
320 		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
321 
322 out:
323 	return;
324 }
325 
326 /**
327  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
328  *  @hw: pointer to the HW structure
329  *
330  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
331  *  (enabled/disabled).
332  **/
333 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
334 {
335 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
336 	bool state = FALSE;
337 
338 	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
339 
340 	if (hw->mac.type != e1000_82543) {
341 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
342 		goto out;
343 	}
344 
345 	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
346 
347 out:
348 	return state;
349 }
350 
351 /**
352  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
353  *  @hw: pointer to the HW structure
354  *  @state: enable/disable TBI store bad packet
355  *
356  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
357  **/
358 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
359 {
360 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
361 
362 	DEBUGFUNC("e1000_set_tbi_sbp_82543");
363 
364 	if (state && e1000_tbi_compatibility_enabled_82543(hw))
365 		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
366 	else
367 		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
368 
369 	return;
370 }
371 
372 /**
373  *  e1000_init_phy_disabled_82543 - Returns init PHY status
374  *  @hw: pointer to the HW structure
375  *
376  *  Returns the current status of whether PHY initialization is disabled.
377  *  True if PHY initialization is disabled else FALSE.
378  **/
379 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
380 {
381 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
382 	bool ret_val;
383 
384 	DEBUGFUNC("e1000_init_phy_disabled_82543");
385 
386 	if (hw->mac.type != e1000_82543) {
387 		ret_val = FALSE;
388 		goto out;
389 	}
390 
391 	ret_val = dev_spec->init_phy_disabled;
392 
393 out:
394 	return ret_val;
395 }
396 
397 /**
398  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
399  *  @hw: pointer to the HW structure
400  *  @stats: Struct containing statistic register values
401  *  @frame_len: The length of the frame in question
402  *  @mac_addr: The Ethernet destination address of the frame in question
403  *  @max_frame_size: The maximum frame size
404  *
405  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
406  **/
407 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
408 				  struct e1000_hw_stats *stats, u32 frame_len,
409 				  u8 *mac_addr, u32 max_frame_size)
410 {
411 	if (!(e1000_tbi_sbp_enabled_82543(hw)))
412 		goto out;
413 
414 	/* First adjust the frame length. */
415 	frame_len--;
416 	/*
417 	 * We need to adjust the statistics counters, since the hardware
418 	 * counters overcount this packet as a CRC error and undercount
419 	 * the packet as a good packet
420 	 */
421 	/* This packet should not be counted as a CRC error. */
422 	stats->crcerrs--;
423 	/* This packet does count as a Good Packet Received. */
424 	stats->gprc++;
425 
426 	/* Adjust the Good Octets received counters */
427 	stats->gorc += frame_len;
428 
429 	/*
430 	 * Is this a broadcast or multicast?  Check broadcast first,
431 	 * since the test for a multicast frame will test positive on
432 	 * a broadcast frame.
433 	 */
434 	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
435 		/* Broadcast packet */
436 		stats->bprc++;
437 	else if (*mac_addr & 0x01)
438 		/* Multicast packet */
439 		stats->mprc++;
440 
441 	/*
442 	 * In this case, the hardware has over counted the number of
443 	 * oversize frames.
444 	 */
445 	if ((frame_len == max_frame_size) && (stats->roc > 0))
446 		stats->roc--;
447 
448 	/*
449 	 * Adjust the bin counters when the extra byte put the frame in the
450 	 * wrong bin. Remember that the frame_len was adjusted above.
451 	 */
452 	if (frame_len == 64) {
453 		stats->prc64++;
454 		stats->prc127--;
455 	} else if (frame_len == 127) {
456 		stats->prc127++;
457 		stats->prc255--;
458 	} else if (frame_len == 255) {
459 		stats->prc255++;
460 		stats->prc511--;
461 	} else if (frame_len == 511) {
462 		stats->prc511++;
463 		stats->prc1023--;
464 	} else if (frame_len == 1023) {
465 		stats->prc1023++;
466 		stats->prc1522--;
467 	} else if (frame_len == 1522) {
468 		stats->prc1522++;
469 	}
470 
471 out:
472 	return;
473 }
474 
475 /**
476  *  e1000_read_phy_reg_82543 - Read PHY register
477  *  @hw: pointer to the HW structure
478  *  @offset: register offset to be read
479  *  @data: pointer to the read data
480  *
481  *  Reads the PHY at offset and stores the information read to data.
482  **/
483 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
484 {
485 	u32 mdic;
486 	s32 ret_val = E1000_SUCCESS;
487 
488 	DEBUGFUNC("e1000_read_phy_reg_82543");
489 
490 	if (offset > MAX_PHY_REG_ADDRESS) {
491 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
492 		ret_val = -E1000_ERR_PARAM;
493 		goto out;
494 	}
495 
496 	/*
497 	 * We must first send a preamble through the MDIO pin to signal the
498 	 * beginning of an MII instruction.  This is done by sending 32
499 	 * consecutive "1" bits.
500 	 */
501 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
502 
503 	/*
504 	 * Now combine the next few fields that are required for a read
505 	 * operation.  We use this method instead of calling the
506 	 * e1000_shift_out_mdi_bits routine five different times.  The format
507 	 * of an MII read instruction consists of a shift out of 14 bits and
508 	 * is defined as follows:
509 	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
510 	 * followed by a shift in of 18 bits.  This first two bits shifted in
511 	 * are TurnAround bits used to avoid contention on the MDIO pin when a
512 	 * READ operation is performed.  These two bits are thrown away
513 	 * followed by a shift in of 16 bits which contains the desired data.
514 	 */
515 	mdic = (offset | (hw->phy.addr << 5) |
516 		(PHY_OP_READ << 10) | (PHY_SOF << 12));
517 
518 	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
519 
520 	/*
521 	 * Now that we've shifted out the read command to the MII, we need to
522 	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
523 	 * register address.
524 	 */
525 	*data = e1000_shift_in_mdi_bits_82543(hw);
526 
527 out:
528 	return ret_val;
529 }
530 
531 /**
532  *  e1000_write_phy_reg_82543 - Write PHY register
533  *  @hw: pointer to the HW structure
534  *  @offset: register offset to be written
535  *  @data: pointer to the data to be written at offset
536  *
537  *  Writes data to the PHY at offset.
538  **/
539 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
540 {
541 	u32 mdic;
542 	s32 ret_val = E1000_SUCCESS;
543 
544 	DEBUGFUNC("e1000_write_phy_reg_82543");
545 
546 	if (offset > MAX_PHY_REG_ADDRESS) {
547 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
548 		ret_val = -E1000_ERR_PARAM;
549 		goto out;
550 	}
551 
552 	/*
553 	 * We'll need to use the SW defined pins to shift the write command
554 	 * out to the PHY. We first send a preamble to the PHY to signal the
555 	 * beginning of the MII instruction.  This is done by sending 32
556 	 * consecutive "1" bits.
557 	 */
558 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
559 
560 	/*
561 	 * Now combine the remaining required fields that will indicate a
562 	 * write operation. We use this method instead of calling the
563 	 * e1000_shift_out_mdi_bits routine for each field in the command. The
564 	 * format of a MII write instruction is as follows:
565 	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
566 	 */
567 	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
568 		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
569 	mdic <<= 16;
570 	mdic |= (u32)data;
571 
572 	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
573 
574 out:
575 	return ret_val;
576 }
577 
578 /**
579  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
580  *  @hw: pointer to the HW structure
581  *  @ctrl: pointer to the control register
582  *
583  *  Raise the management data input clock by setting the MDC bit in the control
584  *  register.
585  **/
586 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
587 {
588 	/*
589 	 * Raise the clock input to the Management Data Clock (by setting the
590 	 * MDC bit), and then delay a sufficient amount of time.
591 	 */
592 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
593 	E1000_WRITE_FLUSH(hw);
594 	usec_delay(10);
595 }
596 
597 /**
598  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
599  *  @hw: pointer to the HW structure
600  *  @ctrl: pointer to the control register
601  *
602  *  Lower the management data input clock by clearing the MDC bit in the
603  *  control register.
604  **/
605 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
606 {
607 	/*
608 	 * Lower the clock input to the Management Data Clock (by clearing the
609 	 * MDC bit), and then delay a sufficient amount of time.
610 	 */
611 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
612 	E1000_WRITE_FLUSH(hw);
613 	usec_delay(10);
614 }
615 
616 /**
617  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
618  *  @hw: pointer to the HW structure
619  *  @data: data to send to the PHY
620  *  @count: number of bits to shift out
621  *
622  *  We need to shift 'count' bits out to the PHY.  So, the value in the
623  *  "data" parameter will be shifted out to the PHY one bit at a time.
624  *  In order to do this, "data" must be broken down into bits.
625  **/
626 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
627 					   u16 count)
628 {
629 	u32 ctrl, mask;
630 
631 	/*
632 	 * We need to shift "count" number of bits out to the PHY.  So, the
633 	 * value in the "data" parameter will be shifted out to the PHY one
634 	 * bit at a time.  In order to do this, "data" must be broken down
635 	 * into bits.
636 	 */
637 	mask = 0x01;
638 	mask <<= (count - 1);
639 
640 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
641 
642 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
643 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
644 
645 	while (mask) {
646 		/*
647 		 * A "1" is shifted out to the PHY by setting the MDIO bit to
648 		 * "1" and then raising and lowering the Management Data Clock.
649 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
650 		 * "0" and then raising and lowering the clock.
651 		 */
652 		if (data & mask)
653 			ctrl |= E1000_CTRL_MDIO;
654 		else
655 			ctrl &= ~E1000_CTRL_MDIO;
656 
657 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
658 		E1000_WRITE_FLUSH(hw);
659 
660 		usec_delay(10);
661 
662 		e1000_raise_mdi_clk_82543(hw, &ctrl);
663 		e1000_lower_mdi_clk_82543(hw, &ctrl);
664 
665 		mask >>= 1;
666 	}
667 }
668 
669 /**
670  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
671  *  @hw: pointer to the HW structure
672  *
673  *  In order to read a register from the PHY, we need to shift 18 bits
674  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
675  *  the PHY (setting the MDC bit), and then reading the value of the data out
676  *  MDIO bit.
677  **/
678 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
679 {
680 	u32 ctrl;
681 	u16 data = 0;
682 	u8 i;
683 
684 	/*
685 	 * In order to read a register from the PHY, we need to shift in a
686 	 * total of 18 bits from the PHY.  The first two bit (turnaround)
687 	 * times are used to avoid contention on the MDIO pin when a read
688 	 * operation is performed.  These two bits are ignored by us and
689 	 * thrown away.  Bits are "shifted in" by raising the input to the
690 	 * Management Data Clock (setting the MDC bit) and then reading the
691 	 * value of the MDIO bit.
692 	 */
693 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
694 
695 	/*
696 	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
697 	 * input.
698 	 */
699 	ctrl &= ~E1000_CTRL_MDIO_DIR;
700 	ctrl &= ~E1000_CTRL_MDIO;
701 
702 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
703 	E1000_WRITE_FLUSH(hw);
704 
705 	/*
706 	 * Raise and lower the clock before reading in the data.  This accounts
707 	 * for the turnaround bits.  The first clock occurred when we clocked
708 	 * out the last bit of the Register Address.
709 	 */
710 	e1000_raise_mdi_clk_82543(hw, &ctrl);
711 	e1000_lower_mdi_clk_82543(hw, &ctrl);
712 
713 	for (data = 0, i = 0; i < 16; i++) {
714 		data <<= 1;
715 		e1000_raise_mdi_clk_82543(hw, &ctrl);
716 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
717 		/* Check to see if we shifted in a "1". */
718 		if (ctrl & E1000_CTRL_MDIO)
719 			data |= 1;
720 		e1000_lower_mdi_clk_82543(hw, &ctrl);
721 	}
722 
723 	e1000_raise_mdi_clk_82543(hw, &ctrl);
724 	e1000_lower_mdi_clk_82543(hw, &ctrl);
725 
726 	return data;
727 }
728 
729 /**
730  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
731  *  @hw: pointer to the HW structure
732  *
733  *  Calls the function to force speed and duplex for the m88 PHY, and
734  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
735  *  then call the function for polarity reversal workaround.
736  **/
737 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
738 {
739 	s32 ret_val;
740 
741 	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
742 
743 	ret_val = e1000_phy_force_speed_duplex_m88(hw);
744 	if (ret_val)
745 		goto out;
746 
747 	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
748 	    E1000_ALL_10_SPEED))
749 		ret_val = e1000_polarity_reversal_workaround_82543(hw);
750 
751 out:
752 	return ret_val;
753 }
754 
755 /**
756  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
757  *  @hw: pointer to the HW structure
758  *
759  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
760  *  inadvertently.  To workaround the issue, we disable the transmitter on
761  *  the PHY until we have established the link partner's link parameters.
762  **/
763 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
764 {
765 	s32 ret_val = E1000_SUCCESS;
766 	u16 mii_status_reg;
767 	u16 i;
768 	bool link;
769 
770 	if (!(hw->phy.ops.write_reg))
771 		goto out;
772 
773 	/* Polarity reversal workaround for forced 10F/10H links. */
774 
775 	/* Disable the transmitter on the PHY */
776 
777 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
778 	if (ret_val)
779 		goto out;
780 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
781 	if (ret_val)
782 		goto out;
783 
784 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
785 	if (ret_val)
786 		goto out;
787 
788 	/*
789 	 * This loop will early-out if the NO link condition has been met.
790 	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
791 	 */
792 	for (i = PHY_FORCE_TIME; i > 0; i--) {
793 		/*
794 		 * Read the MII Status Register and wait for Link Status bit
795 		 * to be clear.
796 		 */
797 
798 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
799 		if (ret_val)
800 			goto out;
801 
802 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
803 		if (ret_val)
804 			goto out;
805 
806 		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
807 			break;
808 		msec_delay_irq(100);
809 	}
810 
811 	/* Recommended delay time after link has been lost */
812 	msec_delay_irq(1000);
813 
814 	/* Now we will re-enable the transmitter on the PHY */
815 
816 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
817 	if (ret_val)
818 		goto out;
819 	msec_delay_irq(50);
820 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
821 	if (ret_val)
822 		goto out;
823 	msec_delay_irq(50);
824 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
825 	if (ret_val)
826 		goto out;
827 	msec_delay_irq(50);
828 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
829 	if (ret_val)
830 		goto out;
831 
832 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
833 	if (ret_val)
834 		goto out;
835 
836 	/*
837 	 * Read the MII Status Register and wait for Link Status bit
838 	 * to be set.
839 	 */
840 	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
841 	if (ret_val)
842 		goto out;
843 
844 out:
845 	return ret_val;
846 }
847 
848 /**
849  *  e1000_phy_hw_reset_82543 - PHY hardware reset
850  *  @hw: pointer to the HW structure
851  *
852  *  Sets the PHY_RESET_DIR bit in the extended device control register
853  *  to put the PHY into a reset and waits for completion.  Once the reset
854  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
855  *  of reset.
856  **/
857 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
858 {
859 	u32 ctrl_ext;
860 	s32 ret_val;
861 
862 	DEBUGFUNC("e1000_phy_hw_reset_82543");
863 
864 	/*
865 	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
866 	 * bit to put the PHY into reset...
867 	 */
868 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
869 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
870 	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
871 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
872 	E1000_WRITE_FLUSH(hw);
873 
874 	msec_delay(10);
875 
876 	/* ...then take it out of reset. */
877 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
878 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
879 	E1000_WRITE_FLUSH(hw);
880 
881 	usec_delay(150);
882 
883 	if (!(hw->phy.ops.get_cfg_done))
884 		return E1000_SUCCESS;
885 
886 	ret_val = hw->phy.ops.get_cfg_done(hw);
887 
888 	return ret_val;
889 }
890 
891 /**
892  *  e1000_reset_hw_82543 - Reset hardware
893  *  @hw: pointer to the HW structure
894  *
895  *  This resets the hardware into a known state.
896  **/
897 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
898 {
899 	u32 ctrl;
900 	s32 ret_val = E1000_SUCCESS;
901 
902 	DEBUGFUNC("e1000_reset_hw_82543");
903 
904 	DEBUGOUT("Masking off all interrupts\n");
905 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
906 
907 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
908 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
909 	E1000_WRITE_FLUSH(hw);
910 
911 	e1000_set_tbi_sbp_82543(hw, FALSE);
912 
913 	/*
914 	 * Delay to allow any outstanding PCI transactions to complete before
915 	 * resetting the device
916 	 */
917 	msec_delay(10);
918 
919 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
920 
921 	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
922 	if (hw->mac.type == e1000_82543) {
923 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
924 	} else {
925 		/*
926 		 * The 82544 can't ACK the 64-bit write when issuing the
927 		 * reset, so use IO-mapping as a workaround.
928 		 */
929 		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
930 	}
931 
932 	/*
933 	 * After MAC reset, force reload of NVM to restore power-on
934 	 * settings to device.
935 	 */
936 	hw->nvm.ops.reload(hw);
937 	msec_delay(2);
938 
939 	/* Masking off and clearing any pending interrupts */
940 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
941 	E1000_READ_REG(hw, E1000_ICR);
942 
943 	return ret_val;
944 }
945 
946 /**
947  *  e1000_init_hw_82543 - Initialize hardware
948  *  @hw: pointer to the HW structure
949  *
950  *  This inits the hardware readying it for operation.
951  **/
952 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
953 {
954 	struct e1000_mac_info *mac = &hw->mac;
955 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
956 	u32 ctrl;
957 	s32 ret_val;
958 	u16 i;
959 
960 	DEBUGFUNC("e1000_init_hw_82543");
961 
962 	/* Disabling VLAN filtering */
963 	E1000_WRITE_REG(hw, E1000_VET, 0);
964 	mac->ops.clear_vfta(hw);
965 
966 	/* Setup the receive address. */
967 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
968 
969 	/* Zero out the Multicast HASH table */
970 	DEBUGOUT("Zeroing the MTA\n");
971 	for (i = 0; i < mac->mta_reg_count; i++) {
972 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
973 		E1000_WRITE_FLUSH(hw);
974 	}
975 
976 	/*
977 	 * Set the PCI priority bit correctly in the CTRL register.  This
978 	 * determines if the adapter gives priority to receives, or if it
979 	 * gives equal priority to transmits and receives.
980 	 */
981 	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
982 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
983 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
984 	}
985 
986 	e1000_pcix_mmrbc_workaround_generic(hw);
987 
988 	/* Setup link and flow control */
989 	ret_val = mac->ops.setup_link(hw);
990 
991 	/*
992 	 * Clear all of the statistics registers (clear on read).  It is
993 	 * important that we do this after we have tried to establish link
994 	 * because the symbol error count will increment wildly if there
995 	 * is no link.
996 	 */
997 	e1000_clear_hw_cntrs_82543(hw);
998 
999 	return ret_val;
1000 }
1001 
1002 /**
1003  *  e1000_setup_link_82543 - Setup flow control and link settings
1004  *  @hw: pointer to the HW structure
1005  *
1006  *  Read the EEPROM to determine the initial polarity value and write the
1007  *  extended device control register with the information before calling
1008  *  the generic setup link function, which does the following:
1009  *  Determines which flow control settings to use, then configures flow
1010  *  control.  Calls the appropriate media-specific link configuration
1011  *  function.  Assuming the adapter has a valid link partner, a valid link
1012  *  should be established.  Assumes the hardware has previously been reset
1013  *  and the transmitter and receiver are not enabled.
1014  **/
1015 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1016 {
1017 	u32 ctrl_ext;
1018 	s32  ret_val;
1019 	u16 data;
1020 
1021 	DEBUGFUNC("e1000_setup_link_82543");
1022 
1023 	/*
1024 	 * Take the 4 bits from NVM word 0xF that determine the initial
1025 	 * polarity value for the SW controlled pins, and setup the
1026 	 * Extended Device Control reg with that info.
1027 	 * This is needed because one of the SW controlled pins is used for
1028 	 * signal detection.  So this should be done before phy setup.
1029 	 */
1030 	if (hw->mac.type == e1000_82543) {
1031 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1032 		if (ret_val) {
1033 			DEBUGOUT("NVM Read Error\n");
1034 			ret_val = -E1000_ERR_NVM;
1035 			goto out;
1036 		}
1037 		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1038 			    NVM_SWDPIO_EXT_SHIFT);
1039 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1040 	}
1041 
1042 	ret_val = e1000_setup_link_generic(hw);
1043 
1044 out:
1045 	return ret_val;
1046 }
1047 
1048 /**
1049  *  e1000_setup_copper_link_82543 - Configure copper link settings
1050  *  @hw: pointer to the HW structure
1051  *
1052  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1053  *  for link, once link is established calls to configure collision distance
1054  *  and flow control are called.
1055  **/
1056 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1057 {
1058 	u32 ctrl;
1059 	s32 ret_val;
1060 	bool link;
1061 
1062 	DEBUGFUNC("e1000_setup_copper_link_82543");
1063 
1064 	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1065 	/*
1066 	 * With 82543, we need to force speed and duplex on the MAC
1067 	 * equal to what the PHY speed and duplex configuration is.
1068 	 * In addition, we need to perform a hardware reset on the
1069 	 * PHY to take it out of reset.
1070 	 */
1071 	if (hw->mac.type == e1000_82543) {
1072 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1073 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1074 		ret_val = hw->phy.ops.reset(hw);
1075 		if (ret_val)
1076 			goto out;
1077 	} else {
1078 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1079 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1080 	}
1081 
1082 	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1083 	ret_val = e1000_copper_link_setup_m88(hw);
1084 	if (ret_val)
1085 		goto out;
1086 
1087 	if (hw->mac.autoneg) {
1088 		/*
1089 		 * Setup autoneg and flow control advertisement and perform
1090 		 * autonegotiation.
1091 		 */
1092 		ret_val = e1000_copper_link_autoneg(hw);
1093 		if (ret_val)
1094 			goto out;
1095 	} else {
1096 		/*
1097 		 * PHY will be set to 10H, 10F, 100H or 100F
1098 		 * depending on user settings.
1099 		 */
1100 		DEBUGOUT("Forcing Speed and Duplex\n");
1101 		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1102 		if (ret_val) {
1103 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Check link status. Wait up to 100 microseconds for link to become
1110 	 * valid.
1111 	 */
1112 	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1113 					     &link);
1114 	if (ret_val)
1115 		goto out;
1116 
1117 
1118 	if (link) {
1119 		DEBUGOUT("Valid link established!!!\n");
1120 		/* Config the MAC and PHY after link is up */
1121 		if (hw->mac.type == e1000_82544) {
1122 			hw->mac.ops.config_collision_dist(hw);
1123 		} else {
1124 			ret_val = e1000_config_mac_to_phy_82543(hw);
1125 			if (ret_val)
1126 				goto out;
1127 		}
1128 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1129 	} else {
1130 		DEBUGOUT("Unable to establish link!!!\n");
1131 	}
1132 
1133 out:
1134 	return ret_val;
1135 }
1136 
1137 /**
1138  *  e1000_setup_fiber_link_82543 - Setup link for fiber
1139  *  @hw: pointer to the HW structure
1140  *
1141  *  Configures collision distance and flow control for fiber links.  Upon
1142  *  successful setup, poll for link.
1143  **/
1144 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1145 {
1146 	u32 ctrl;
1147 	s32 ret_val;
1148 
1149 	DEBUGFUNC("e1000_setup_fiber_link_82543");
1150 
1151 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1152 
1153 	/* Take the link out of reset */
1154 	ctrl &= ~E1000_CTRL_LRST;
1155 
1156 	hw->mac.ops.config_collision_dist(hw);
1157 
1158 	ret_val = e1000_commit_fc_settings_generic(hw);
1159 	if (ret_val)
1160 		goto out;
1161 
1162 	DEBUGOUT("Auto-negotiation enabled\n");
1163 
1164 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1165 	E1000_WRITE_FLUSH(hw);
1166 	msec_delay(1);
1167 
1168 	/*
1169 	 * For these adapters, the SW definable pin 1 is cleared when the
1170 	 * optics detect a signal.  If we have a signal, then poll for a
1171 	 * "Link-Up" indication.
1172 	 */
1173 	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1174 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1175 	else
1176 		DEBUGOUT("No signal detected\n");
1177 
1178 out:
1179 	return ret_val;
1180 }
1181 
1182 /**
1183  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1184  *  @hw: pointer to the HW structure
1185  *
1186  *  Checks the phy for link, if link exists, do the following:
1187  *   - check for downshift
1188  *   - do polarity workaround (if necessary)
1189  *   - configure collision distance
1190  *   - configure flow control after link up
1191  *   - configure tbi compatibility
1192  **/
1193 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1194 {
1195 	struct e1000_mac_info *mac = &hw->mac;
1196 	u32 icr, rctl;
1197 	s32 ret_val;
1198 	u16 speed, duplex;
1199 	bool link;
1200 
1201 	DEBUGFUNC("e1000_check_for_copper_link_82543");
1202 
1203 	if (!mac->get_link_status) {
1204 		ret_val = E1000_SUCCESS;
1205 		goto out;
1206 	}
1207 
1208 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1209 	if (ret_val)
1210 		goto out;
1211 
1212 	if (!link)
1213 		goto out; /* No link detected */
1214 
1215 	mac->get_link_status = FALSE;
1216 
1217 	e1000_check_downshift_generic(hw);
1218 
1219 	/*
1220 	 * If we are forcing speed/duplex, then we can return since
1221 	 * we have already determined whether we have link or not.
1222 	 */
1223 	if (!mac->autoneg) {
1224 		/*
1225 		 * If speed and duplex are forced to 10H or 10F, then we will
1226 		 * implement the polarity reversal workaround.  We disable
1227 		 * interrupts first, and upon returning, place the devices
1228 		 * interrupt state to its previous value except for the link
1229 		 * status change interrupt which will happened due to the
1230 		 * execution of this workaround.
1231 		 */
1232 		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1233 			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1234 			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1235 			icr = E1000_READ_REG(hw, E1000_ICR);
1236 			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1237 			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1238 		}
1239 
1240 		ret_val = -E1000_ERR_CONFIG;
1241 		goto out;
1242 	}
1243 
1244 	/*
1245 	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1246 	 * have Si on board that is 82544 or newer, Auto
1247 	 * Speed Detection takes care of MAC speed/duplex
1248 	 * configuration.  So we only need to configure Collision
1249 	 * Distance in the MAC.  Otherwise, we need to force
1250 	 * speed/duplex on the MAC to the current PHY speed/duplex
1251 	 * settings.
1252 	 */
1253 	if (mac->type == e1000_82544)
1254 		hw->mac.ops.config_collision_dist(hw);
1255 	else {
1256 		ret_val = e1000_config_mac_to_phy_82543(hw);
1257 		if (ret_val) {
1258 			DEBUGOUT("Error configuring MAC to PHY settings\n");
1259 			goto out;
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * Configure Flow Control now that Auto-Neg has completed.
1265 	 * First, we need to restore the desired flow control
1266 	 * settings because we may have had to re-autoneg with a
1267 	 * different link partner.
1268 	 */
1269 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1270 	if (ret_val)
1271 		DEBUGOUT("Error configuring flow control\n");
1272 
1273 	/*
1274 	 * At this point we know that we are on copper and we have
1275 	 * auto-negotiated link.  These are conditions for checking the link
1276 	 * partner capability register.  We use the link speed to determine if
1277 	 * TBI compatibility needs to be turned on or off.  If the link is not
1278 	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1279 	 * at gigabit speed, we turn on TBI compatibility.
1280 	 */
1281 	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1282 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1283 		if (ret_val) {
1284 			DEBUGOUT("Error getting link speed and duplex\n");
1285 			return ret_val;
1286 		}
1287 		if (speed != SPEED_1000) {
1288 			/*
1289 			 * If link speed is not set to gigabit speed,
1290 			 * we do not need to enable TBI compatibility.
1291 			 */
1292 			if (e1000_tbi_sbp_enabled_82543(hw)) {
1293 				/*
1294 				 * If we previously were in the mode,
1295 				 * turn it off.
1296 				 */
1297 				e1000_set_tbi_sbp_82543(hw, FALSE);
1298 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1299 				rctl &= ~E1000_RCTL_SBP;
1300 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1301 			}
1302 		} else {
1303 			/*
1304 			 * If TBI compatibility is was previously off,
1305 			 * turn it on. For compatibility with a TBI link
1306 			 * partner, we will store bad packets. Some
1307 			 * frames have an additional byte on the end and
1308 			 * will look like CRC errors to to the hardware.
1309 			 */
1310 			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1311 				e1000_set_tbi_sbp_82543(hw, TRUE);
1312 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1313 				rctl |= E1000_RCTL_SBP;
1314 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1315 			}
1316 		}
1317 	}
1318 out:
1319 	return ret_val;
1320 }
1321 
1322 /**
1323  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1324  *  @hw: pointer to the HW structure
1325  *
1326  *  Checks for link up on the hardware.  If link is not up and we have
1327  *  a signal, then we need to force link up.
1328  **/
1329 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1330 {
1331 	struct e1000_mac_info *mac = &hw->mac;
1332 	u32 rxcw, ctrl, status;
1333 	s32 ret_val = E1000_SUCCESS;
1334 
1335 	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1336 
1337 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1338 	status = E1000_READ_REG(hw, E1000_STATUS);
1339 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1340 
1341 	/*
1342 	 * If we don't have link (auto-negotiation failed or link partner
1343 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1344 	 * and our link partner is not trying to auto-negotiate with us (we
1345 	 * are receiving idles or data), we need to force link up. We also
1346 	 * need to give auto-negotiation time to complete, in case the cable
1347 	 * was just plugged in. The autoneg_failed flag does this.
1348 	 */
1349 	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1350 	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1351 	    (!(status & E1000_STATUS_LU)) &&
1352 	    (!(rxcw & E1000_RXCW_C))) {
1353 		if (!mac->autoneg_failed) {
1354 			mac->autoneg_failed = TRUE;
1355 			ret_val = 0;
1356 			goto out;
1357 		}
1358 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1359 
1360 		/* Disable auto-negotiation in the TXCW register */
1361 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1362 
1363 		/* Force link-up and also force full-duplex. */
1364 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1365 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1366 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1367 
1368 		/* Configure Flow Control after forcing link up. */
1369 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1370 		if (ret_val) {
1371 			DEBUGOUT("Error configuring flow control\n");
1372 			goto out;
1373 		}
1374 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1375 		/*
1376 		 * If we are forcing link and we are receiving /C/ ordered
1377 		 * sets, re-enable auto-negotiation in the TXCW register
1378 		 * and disable forced link in the Device Control register
1379 		 * in an attempt to auto-negotiate with our link partner.
1380 		 */
1381 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1382 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1383 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1384 
1385 		mac->serdes_has_link = TRUE;
1386 	}
1387 
1388 out:
1389 	return ret_val;
1390 }
1391 
1392 /**
1393  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1394  *  @hw: pointer to the HW structure
1395  *
1396  *  For the 82543 silicon, we need to set the MAC to match the settings
1397  *  of the PHY, even if the PHY is auto-negotiating.
1398  **/
1399 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1400 {
1401 	u32 ctrl;
1402 	s32 ret_val = E1000_SUCCESS;
1403 	u16 phy_data;
1404 
1405 	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1406 
1407 	if (!(hw->phy.ops.read_reg))
1408 		goto out;
1409 
1410 	/* Set the bits to force speed and duplex */
1411 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1412 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1413 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1414 
1415 	/*
1416 	 * Set up duplex in the Device Control and Transmit Control
1417 	 * registers depending on negotiated values.
1418 	 */
1419 	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1420 	if (ret_val)
1421 		goto out;
1422 
1423 	ctrl &= ~E1000_CTRL_FD;
1424 	if (phy_data & M88E1000_PSSR_DPLX)
1425 		ctrl |= E1000_CTRL_FD;
1426 
1427 	hw->mac.ops.config_collision_dist(hw);
1428 
1429 	/*
1430 	 * Set up speed in the Device Control register depending on
1431 	 * negotiated values.
1432 	 */
1433 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1434 		ctrl |= E1000_CTRL_SPD_1000;
1435 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1436 		ctrl |= E1000_CTRL_SPD_100;
1437 
1438 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1439 
1440 out:
1441 	return ret_val;
1442 }
1443 
1444 /**
1445  *  e1000_write_vfta_82543 - Write value to VLAN filter table
1446  *  @hw: pointer to the HW structure
1447  *  @offset: the 32-bit offset in which to write the value to.
1448  *  @value: the 32-bit value to write at location offset.
1449  *
1450  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1451  *  table.
1452  **/
1453 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1454 {
1455 	u32 temp;
1456 
1457 	DEBUGFUNC("e1000_write_vfta_82543");
1458 
1459 	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1460 		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1461 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1462 		E1000_WRITE_FLUSH(hw);
1463 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1464 		E1000_WRITE_FLUSH(hw);
1465 	} else {
1466 		e1000_write_vfta_generic(hw, offset, value);
1467 	}
1468 }
1469 
1470 /**
1471  *  e1000_led_on_82543 - Turn on SW controllable LED
1472  *  @hw: pointer to the HW structure
1473  *
1474  *  Turns the SW defined LED on.
1475  **/
1476 static s32 e1000_led_on_82543(struct e1000_hw *hw)
1477 {
1478 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1479 
1480 	DEBUGFUNC("e1000_led_on_82543");
1481 
1482 	if (hw->mac.type == e1000_82544 &&
1483 	    hw->phy.media_type == e1000_media_type_copper) {
1484 		/* Clear SW-definable Pin 0 to turn on the LED */
1485 		ctrl &= ~E1000_CTRL_SWDPIN0;
1486 		ctrl |= E1000_CTRL_SWDPIO0;
1487 	} else {
1488 		/* Fiber 82544 and all 82543 use this method */
1489 		ctrl |= E1000_CTRL_SWDPIN0;
1490 		ctrl |= E1000_CTRL_SWDPIO0;
1491 	}
1492 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1493 
1494 	return E1000_SUCCESS;
1495 }
1496 
1497 /**
1498  *  e1000_led_off_82543 - Turn off SW controllable LED
1499  *  @hw: pointer to the HW structure
1500  *
1501  *  Turns the SW defined LED off.
1502  **/
1503 static s32 e1000_led_off_82543(struct e1000_hw *hw)
1504 {
1505 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1506 
1507 	DEBUGFUNC("e1000_led_off_82543");
1508 
1509 	if (hw->mac.type == e1000_82544 &&
1510 	    hw->phy.media_type == e1000_media_type_copper) {
1511 		/* Set SW-definable Pin 0 to turn off the LED */
1512 		ctrl |= E1000_CTRL_SWDPIN0;
1513 		ctrl |= E1000_CTRL_SWDPIO0;
1514 	} else {
1515 		ctrl &= ~E1000_CTRL_SWDPIN0;
1516 		ctrl |= E1000_CTRL_SWDPIO0;
1517 	}
1518 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1519 
1520 	return E1000_SUCCESS;
1521 }
1522 
1523 /**
1524  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1525  *  @hw: pointer to the HW structure
1526  *
1527  *  Clears the hardware counters by reading the counter registers.
1528  **/
1529 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1530 {
1531 	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1532 
1533 	e1000_clear_hw_cntrs_base_generic(hw);
1534 
1535 	E1000_READ_REG(hw, E1000_PRC64);
1536 	E1000_READ_REG(hw, E1000_PRC127);
1537 	E1000_READ_REG(hw, E1000_PRC255);
1538 	E1000_READ_REG(hw, E1000_PRC511);
1539 	E1000_READ_REG(hw, E1000_PRC1023);
1540 	E1000_READ_REG(hw, E1000_PRC1522);
1541 	E1000_READ_REG(hw, E1000_PTC64);
1542 	E1000_READ_REG(hw, E1000_PTC127);
1543 	E1000_READ_REG(hw, E1000_PTC255);
1544 	E1000_READ_REG(hw, E1000_PTC511);
1545 	E1000_READ_REG(hw, E1000_PTC1023);
1546 	E1000_READ_REG(hw, E1000_PTC1522);
1547 
1548 	E1000_READ_REG(hw, E1000_ALGNERRC);
1549 	E1000_READ_REG(hw, E1000_RXERRC);
1550 	E1000_READ_REG(hw, E1000_TNCRS);
1551 	E1000_READ_REG(hw, E1000_CEXTERR);
1552 	E1000_READ_REG(hw, E1000_TSCTC);
1553 	E1000_READ_REG(hw, E1000_TSCTFC);
1554 }
1555