xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 0db87cb7)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 #ifndef NO_82542_SUPPORT
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 #endif
163 	case E1000_DEV_ID_82543GC_FIBER:
164 	case E1000_DEV_ID_82543GC_COPPER:
165 		mac->type = e1000_82543;
166 		break;
167 	case E1000_DEV_ID_82544EI_COPPER:
168 	case E1000_DEV_ID_82544EI_FIBER:
169 	case E1000_DEV_ID_82544GC_COPPER:
170 	case E1000_DEV_ID_82544GC_LOM:
171 		mac->type = e1000_82544;
172 		break;
173 	case E1000_DEV_ID_82540EM:
174 	case E1000_DEV_ID_82540EM_LOM:
175 	case E1000_DEV_ID_82540EP:
176 	case E1000_DEV_ID_82540EP_LOM:
177 	case E1000_DEV_ID_82540EP_LP:
178 		mac->type = e1000_82540;
179 		break;
180 	case E1000_DEV_ID_82545EM_COPPER:
181 	case E1000_DEV_ID_82545EM_FIBER:
182 		mac->type = e1000_82545;
183 		break;
184 	case E1000_DEV_ID_82545GM_COPPER:
185 	case E1000_DEV_ID_82545GM_FIBER:
186 	case E1000_DEV_ID_82545GM_SERDES:
187 		mac->type = e1000_82545_rev_3;
188 		break;
189 	case E1000_DEV_ID_82546EB_COPPER:
190 	case E1000_DEV_ID_82546EB_FIBER:
191 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 		mac->type = e1000_82546;
193 		break;
194 	case E1000_DEV_ID_82546GB_COPPER:
195 	case E1000_DEV_ID_82546GB_FIBER:
196 	case E1000_DEV_ID_82546GB_SERDES:
197 	case E1000_DEV_ID_82546GB_PCIE:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 		mac->type = e1000_82546_rev_3;
201 		break;
202 	case E1000_DEV_ID_82541EI:
203 	case E1000_DEV_ID_82541EI_MOBILE:
204 	case E1000_DEV_ID_82541ER_LOM:
205 		mac->type = e1000_82541;
206 		break;
207 	case E1000_DEV_ID_82541ER:
208 	case E1000_DEV_ID_82541GI:
209 	case E1000_DEV_ID_82541GI_LF:
210 	case E1000_DEV_ID_82541GI_MOBILE:
211 		mac->type = e1000_82541_rev_2;
212 		break;
213 	case E1000_DEV_ID_82547EI:
214 	case E1000_DEV_ID_82547EI_MOBILE:
215 		mac->type = e1000_82547;
216 		break;
217 	case E1000_DEV_ID_82547GI:
218 		mac->type = e1000_82547_rev_2;
219 		break;
220 	case E1000_DEV_ID_82571EB_COPPER:
221 	case E1000_DEV_ID_82571EB_FIBER:
222 	case E1000_DEV_ID_82571EB_SERDES:
223 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
229 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
230 		mac->type = e1000_82571;
231 		break;
232 	case E1000_DEV_ID_82572EI:
233 	case E1000_DEV_ID_82572EI_COPPER:
234 	case E1000_DEV_ID_82572EI_FIBER:
235 	case E1000_DEV_ID_82572EI_SERDES:
236 		mac->type = e1000_82572;
237 		break;
238 	case E1000_DEV_ID_82573E:
239 	case E1000_DEV_ID_82573E_IAMT:
240 	case E1000_DEV_ID_82573L:
241 		mac->type = e1000_82573;
242 		break;
243 	case E1000_DEV_ID_82574L:
244 	case E1000_DEV_ID_82574LA:
245 		mac->type = e1000_82574;
246 		break;
247 	case E1000_DEV_ID_82583V:
248 		mac->type = e1000_82583;
249 		break;
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 		mac->type = e1000_80003es2lan;
255 		break;
256 	case E1000_DEV_ID_ICH8_IFE:
257 	case E1000_DEV_ID_ICH8_IFE_GT:
258 	case E1000_DEV_ID_ICH8_IFE_G:
259 	case E1000_DEV_ID_ICH8_IGP_M:
260 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 	case E1000_DEV_ID_ICH8_IGP_AMT:
262 	case E1000_DEV_ID_ICH8_IGP_C:
263 	case E1000_DEV_ID_ICH8_82567V_3:
264 		mac->type = e1000_ich8lan;
265 		break;
266 	case E1000_DEV_ID_ICH9_IFE:
267 	case E1000_DEV_ID_ICH9_IFE_GT:
268 	case E1000_DEV_ID_ICH9_IFE_G:
269 	case E1000_DEV_ID_ICH9_IGP_M:
270 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 	case E1000_DEV_ID_ICH9_IGP_M_V:
272 	case E1000_DEV_ID_ICH9_IGP_AMT:
273 	case E1000_DEV_ID_ICH9_BM:
274 	case E1000_DEV_ID_ICH9_IGP_C:
275 	case E1000_DEV_ID_ICH10_R_BM_LM:
276 	case E1000_DEV_ID_ICH10_R_BM_LF:
277 	case E1000_DEV_ID_ICH10_R_BM_V:
278 		mac->type = e1000_ich9lan;
279 		break;
280 	case E1000_DEV_ID_ICH10_D_BM_LM:
281 	case E1000_DEV_ID_ICH10_D_BM_LF:
282 	case E1000_DEV_ID_ICH10_D_BM_V:
283 		mac->type = e1000_ich10lan;
284 		break;
285 	case E1000_DEV_ID_PCH_D_HV_DM:
286 	case E1000_DEV_ID_PCH_D_HV_DC:
287 	case E1000_DEV_ID_PCH_M_HV_LM:
288 	case E1000_DEV_ID_PCH_M_HV_LC:
289 		mac->type = e1000_pchlan;
290 		break;
291 	case E1000_DEV_ID_PCH2_LV_LM:
292 	case E1000_DEV_ID_PCH2_LV_V:
293 		mac->type = e1000_pch2lan;
294 		break;
295 	case E1000_DEV_ID_PCH_LPT_I217_LM:
296 	case E1000_DEV_ID_PCH_LPT_I217_V:
297 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
298 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
299 	case E1000_DEV_ID_PCH_I218_LM2:
300 	case E1000_DEV_ID_PCH_I218_V2:
301 	case E1000_DEV_ID_PCH_I218_LM3:
302 	case E1000_DEV_ID_PCH_I218_V3:
303 		mac->type = e1000_pch_lpt;
304  		break;
305 	case E1000_DEV_ID_82575EB_COPPER:
306 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
307 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
308 		mac->type = e1000_82575;
309 		break;
310 	case E1000_DEV_ID_82576:
311 	case E1000_DEV_ID_82576_FIBER:
312 	case E1000_DEV_ID_82576_SERDES:
313 	case E1000_DEV_ID_82576_QUAD_COPPER:
314 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
315 	case E1000_DEV_ID_82576_NS:
316 	case E1000_DEV_ID_82576_NS_SERDES:
317 	case E1000_DEV_ID_82576_SERDES_QUAD:
318 		mac->type = e1000_82576;
319 		break;
320 	case E1000_DEV_ID_82580_COPPER:
321 	case E1000_DEV_ID_82580_FIBER:
322 	case E1000_DEV_ID_82580_SERDES:
323 	case E1000_DEV_ID_82580_SGMII:
324 	case E1000_DEV_ID_82580_COPPER_DUAL:
325 	case E1000_DEV_ID_82580_QUAD_FIBER:
326 	case E1000_DEV_ID_DH89XXCC_SGMII:
327 	case E1000_DEV_ID_DH89XXCC_SERDES:
328 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
329 	case E1000_DEV_ID_DH89XXCC_SFP:
330 		mac->type = e1000_82580;
331 		break;
332 	case E1000_DEV_ID_I350_COPPER:
333 	case E1000_DEV_ID_I350_FIBER:
334 	case E1000_DEV_ID_I350_SERDES:
335 	case E1000_DEV_ID_I350_SGMII:
336 	case E1000_DEV_ID_I350_DA4:
337 		mac->type = e1000_i350;
338 		break;
339 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
340 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
341 	case E1000_DEV_ID_I210_COPPER:
342 	case E1000_DEV_ID_I210_COPPER_OEM1:
343 	case E1000_DEV_ID_I210_COPPER_IT:
344 	case E1000_DEV_ID_I210_FIBER:
345 	case E1000_DEV_ID_I210_SERDES:
346 	case E1000_DEV_ID_I210_SGMII:
347 		mac->type = e1000_i210;
348 		break;
349 	case E1000_DEV_ID_I211_COPPER:
350 		mac->type = e1000_i211;
351 		break;
352 	case E1000_DEV_ID_82576_VF:
353 	case E1000_DEV_ID_82576_VF_HV:
354 		mac->type = e1000_vfadapt;
355 		break;
356 	case E1000_DEV_ID_I350_VF:
357 	case E1000_DEV_ID_I350_VF_HV:
358 		mac->type = e1000_vfadapt_i350;
359 		break;
360 
361 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
362 	case E1000_DEV_ID_I354_SGMII:
363 		mac->type = e1000_i354;
364 		break;
365 	default:
366 		/* Should never have loaded on this device */
367 		ret_val = -E1000_ERR_MAC_INIT;
368 		break;
369 	}
370 
371 	return ret_val;
372 }
373 
374 /**
375  *  e1000_setup_init_funcs - Initializes function pointers
376  *  @hw: pointer to the HW structure
377  *  @init_device: TRUE will initialize the rest of the function pointers
378  *		  getting the device ready for use.  FALSE will only set
379  *		  MAC type and the function pointers for the other init
380  *		  functions.  Passing FALSE will not generate any hardware
381  *		  reads or writes.
382  *
383  *  This function must be called by a driver in order to use the rest
384  *  of the 'shared' code files. Called by drivers only.
385  **/
386 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
387 {
388 	s32 ret_val;
389 
390 	/* Can't do much good without knowing the MAC type. */
391 	ret_val = e1000_set_mac_type(hw);
392 	if (ret_val) {
393 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
394 		goto out;
395 	}
396 
397 	if (!hw->hw_addr) {
398 		DEBUGOUT("ERROR: Registers not mapped\n");
399 		ret_val = -E1000_ERR_CONFIG;
400 		goto out;
401 	}
402 
403 	/*
404 	 * Init function pointers to generic implementations. We do this first
405 	 * allowing a driver module to override it afterward.
406 	 */
407 	e1000_init_mac_ops_generic(hw);
408 	e1000_init_phy_ops_generic(hw);
409 	e1000_init_nvm_ops_generic(hw);
410 	e1000_init_mbx_ops_generic(hw);
411 
412 	/*
413 	 * Set up the init function pointers. These are functions within the
414 	 * adapter family file that sets up function pointers for the rest of
415 	 * the functions in that family.
416 	 */
417 	switch (hw->mac.type) {
418 #ifndef NO_82542_SUPPORT
419 	case e1000_82542:
420 		e1000_init_function_pointers_82542(hw);
421 		break;
422 #endif
423 	case e1000_82543:
424 	case e1000_82544:
425 		e1000_init_function_pointers_82543(hw);
426 		break;
427 	case e1000_82540:
428 	case e1000_82545:
429 	case e1000_82545_rev_3:
430 	case e1000_82546:
431 	case e1000_82546_rev_3:
432 		e1000_init_function_pointers_82540(hw);
433 		break;
434 	case e1000_82541:
435 	case e1000_82541_rev_2:
436 	case e1000_82547:
437 	case e1000_82547_rev_2:
438 		e1000_init_function_pointers_82541(hw);
439 		break;
440 	case e1000_82571:
441 	case e1000_82572:
442 	case e1000_82573:
443 	case e1000_82574:
444 	case e1000_82583:
445 		e1000_init_function_pointers_82571(hw);
446 		break;
447 	case e1000_80003es2lan:
448 		e1000_init_function_pointers_80003es2lan(hw);
449 		break;
450 	case e1000_ich8lan:
451 	case e1000_ich9lan:
452 	case e1000_ich10lan:
453 	case e1000_pchlan:
454 	case e1000_pch2lan:
455 	case e1000_pch_lpt:
456 		e1000_init_function_pointers_ich8lan(hw);
457 		break;
458 	case e1000_82575:
459 	case e1000_82576:
460 	case e1000_82580:
461 	case e1000_i350:
462 	case e1000_i354:
463 		e1000_init_function_pointers_82575(hw);
464 		break;
465 	case e1000_i210:
466 	case e1000_i211:
467 		e1000_init_function_pointers_i210(hw);
468 		break;
469 	case e1000_vfadapt:
470 		e1000_init_function_pointers_vf(hw);
471 		break;
472 	case e1000_vfadapt_i350:
473 		e1000_init_function_pointers_vf(hw);
474 		break;
475 	default:
476 		DEBUGOUT("Hardware not supported\n");
477 		ret_val = -E1000_ERR_CONFIG;
478 		break;
479 	}
480 
481 	/*
482 	 * Initialize the rest of the function pointers. These require some
483 	 * register reads/writes in some cases.
484 	 */
485 	if (!(ret_val) && init_device) {
486 		ret_val = e1000_init_mac_params(hw);
487 		if (ret_val)
488 			goto out;
489 
490 		ret_val = e1000_init_nvm_params(hw);
491 		if (ret_val)
492 			goto out;
493 
494 		ret_val = e1000_init_phy_params(hw);
495 		if (ret_val)
496 			goto out;
497 
498 		ret_val = e1000_init_mbx_params(hw);
499 		if (ret_val)
500 			goto out;
501 	}
502 
503 out:
504 	return ret_val;
505 }
506 
507 /**
508  *  e1000_get_bus_info - Obtain bus information for adapter
509  *  @hw: pointer to the HW structure
510  *
511  *  This will obtain information about the HW bus for which the
512  *  adapter is attached and stores it in the hw structure. This is a
513  *  function pointer entry point called by drivers.
514  **/
515 s32 e1000_get_bus_info(struct e1000_hw *hw)
516 {
517 	if (hw->mac.ops.get_bus_info)
518 		return hw->mac.ops.get_bus_info(hw);
519 
520 	return E1000_SUCCESS;
521 }
522 
523 /**
524  *  e1000_clear_vfta - Clear VLAN filter table
525  *  @hw: pointer to the HW structure
526  *
527  *  This clears the VLAN filter table on the adapter. This is a function
528  *  pointer entry point called by drivers.
529  **/
530 void e1000_clear_vfta(struct e1000_hw *hw)
531 {
532 	if (hw->mac.ops.clear_vfta)
533 		hw->mac.ops.clear_vfta(hw);
534 }
535 
536 /**
537  *  e1000_write_vfta - Write value to VLAN filter table
538  *  @hw: pointer to the HW structure
539  *  @offset: the 32-bit offset in which to write the value to.
540  *  @value: the 32-bit value to write at location offset.
541  *
542  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
543  *  table. This is a function pointer entry point called by drivers.
544  **/
545 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
546 {
547 	if (hw->mac.ops.write_vfta)
548 		hw->mac.ops.write_vfta(hw, offset, value);
549 }
550 
551 /**
552  *  e1000_update_mc_addr_list - Update Multicast addresses
553  *  @hw: pointer to the HW structure
554  *  @mc_addr_list: array of multicast addresses to program
555  *  @mc_addr_count: number of multicast addresses to program
556  *
557  *  Updates the Multicast Table Array.
558  *  The caller must have a packed mc_addr_list of multicast addresses.
559  **/
560 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
561 			       u32 mc_addr_count)
562 {
563 	if (hw->mac.ops.update_mc_addr_list)
564 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
565 						mc_addr_count);
566 }
567 
568 /**
569  *  e1000_force_mac_fc - Force MAC flow control
570  *  @hw: pointer to the HW structure
571  *
572  *  Force the MAC's flow control settings. Currently no func pointer exists
573  *  and all implementations are handled in the generic version of this
574  *  function.
575  **/
576 s32 e1000_force_mac_fc(struct e1000_hw *hw)
577 {
578 	return e1000_force_mac_fc_generic(hw);
579 }
580 
581 /**
582  *  e1000_check_for_link - Check/Store link connection
583  *  @hw: pointer to the HW structure
584  *
585  *  This checks the link condition of the adapter and stores the
586  *  results in the hw->mac structure. This is a function pointer entry
587  *  point called by drivers.
588  **/
589 s32 e1000_check_for_link(struct e1000_hw *hw)
590 {
591 	if (hw->mac.ops.check_for_link)
592 		return hw->mac.ops.check_for_link(hw);
593 
594 	return -E1000_ERR_CONFIG;
595 }
596 
597 /**
598  *  e1000_check_mng_mode - Check management mode
599  *  @hw: pointer to the HW structure
600  *
601  *  This checks if the adapter has manageability enabled.
602  *  This is a function pointer entry point called by drivers.
603  **/
604 bool e1000_check_mng_mode(struct e1000_hw *hw)
605 {
606 	if (hw->mac.ops.check_mng_mode)
607 		return hw->mac.ops.check_mng_mode(hw);
608 
609 	return FALSE;
610 }
611 
612 /**
613  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
614  *  @hw: pointer to the HW structure
615  *  @buffer: pointer to the host interface
616  *  @length: size of the buffer
617  *
618  *  Writes the DHCP information to the host interface.
619  **/
620 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
621 {
622 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
623 }
624 
625 /**
626  *  e1000_reset_hw - Reset hardware
627  *  @hw: pointer to the HW structure
628  *
629  *  This resets the hardware into a known state. This is a function pointer
630  *  entry point called by drivers.
631  **/
632 s32 e1000_reset_hw(struct e1000_hw *hw)
633 {
634 	if (hw->mac.ops.reset_hw)
635 		return hw->mac.ops.reset_hw(hw);
636 
637 	return -E1000_ERR_CONFIG;
638 }
639 
640 /**
641  *  e1000_init_hw - Initialize hardware
642  *  @hw: pointer to the HW structure
643  *
644  *  This inits the hardware readying it for operation. This is a function
645  *  pointer entry point called by drivers.
646  **/
647 s32 e1000_init_hw(struct e1000_hw *hw)
648 {
649 	if (hw->mac.ops.init_hw)
650 		return hw->mac.ops.init_hw(hw);
651 
652 	return -E1000_ERR_CONFIG;
653 }
654 
655 /**
656  *  e1000_setup_link - Configures link and flow control
657  *  @hw: pointer to the HW structure
658  *
659  *  This configures link and flow control settings for the adapter. This
660  *  is a function pointer entry point called by drivers. While modules can
661  *  also call this, they probably call their own version of this function.
662  **/
663 s32 e1000_setup_link(struct e1000_hw *hw)
664 {
665 	if (hw->mac.ops.setup_link)
666 		return hw->mac.ops.setup_link(hw);
667 
668 	return -E1000_ERR_CONFIG;
669 }
670 
671 /**
672  *  e1000_get_speed_and_duplex - Returns current speed and duplex
673  *  @hw: pointer to the HW structure
674  *  @speed: pointer to a 16-bit value to store the speed
675  *  @duplex: pointer to a 16-bit value to store the duplex.
676  *
677  *  This returns the speed and duplex of the adapter in the two 'out'
678  *  variables passed in. This is a function pointer entry point called
679  *  by drivers.
680  **/
681 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
682 {
683 	if (hw->mac.ops.get_link_up_info)
684 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
685 
686 	return -E1000_ERR_CONFIG;
687 }
688 
689 /**
690  *  e1000_setup_led - Configures SW controllable LED
691  *  @hw: pointer to the HW structure
692  *
693  *  This prepares the SW controllable LED for use and saves the current state
694  *  of the LED so it can be later restored. This is a function pointer entry
695  *  point called by drivers.
696  **/
697 s32 e1000_setup_led(struct e1000_hw *hw)
698 {
699 	if (hw->mac.ops.setup_led)
700 		return hw->mac.ops.setup_led(hw);
701 
702 	return E1000_SUCCESS;
703 }
704 
705 /**
706  *  e1000_cleanup_led - Restores SW controllable LED
707  *  @hw: pointer to the HW structure
708  *
709  *  This restores the SW controllable LED to the value saved off by
710  *  e1000_setup_led. This is a function pointer entry point called by drivers.
711  **/
712 s32 e1000_cleanup_led(struct e1000_hw *hw)
713 {
714 	if (hw->mac.ops.cleanup_led)
715 		return hw->mac.ops.cleanup_led(hw);
716 
717 	return E1000_SUCCESS;
718 }
719 
720 /**
721  *  e1000_blink_led - Blink SW controllable LED
722  *  @hw: pointer to the HW structure
723  *
724  *  This starts the adapter LED blinking. Request the LED to be setup first
725  *  and cleaned up after. This is a function pointer entry point called by
726  *  drivers.
727  **/
728 s32 e1000_blink_led(struct e1000_hw *hw)
729 {
730 	if (hw->mac.ops.blink_led)
731 		return hw->mac.ops.blink_led(hw);
732 
733 	return E1000_SUCCESS;
734 }
735 
736 /**
737  *  e1000_id_led_init - store LED configurations in SW
738  *  @hw: pointer to the HW structure
739  *
740  *  Initializes the LED config in SW. This is a function pointer entry point
741  *  called by drivers.
742  **/
743 s32 e1000_id_led_init(struct e1000_hw *hw)
744 {
745 	if (hw->mac.ops.id_led_init)
746 		return hw->mac.ops.id_led_init(hw);
747 
748 	return E1000_SUCCESS;
749 }
750 
751 /**
752  *  e1000_led_on - Turn on SW controllable LED
753  *  @hw: pointer to the HW structure
754  *
755  *  Turns the SW defined LED on. This is a function pointer entry point
756  *  called by drivers.
757  **/
758 s32 e1000_led_on(struct e1000_hw *hw)
759 {
760 	if (hw->mac.ops.led_on)
761 		return hw->mac.ops.led_on(hw);
762 
763 	return E1000_SUCCESS;
764 }
765 
766 /**
767  *  e1000_led_off - Turn off SW controllable LED
768  *  @hw: pointer to the HW structure
769  *
770  *  Turns the SW defined LED off. This is a function pointer entry point
771  *  called by drivers.
772  **/
773 s32 e1000_led_off(struct e1000_hw *hw)
774 {
775 	if (hw->mac.ops.led_off)
776 		return hw->mac.ops.led_off(hw);
777 
778 	return E1000_SUCCESS;
779 }
780 
781 /**
782  *  e1000_reset_adaptive - Reset adaptive IFS
783  *  @hw: pointer to the HW structure
784  *
785  *  Resets the adaptive IFS. Currently no func pointer exists and all
786  *  implementations are handled in the generic version of this function.
787  **/
788 void e1000_reset_adaptive(struct e1000_hw *hw)
789 {
790 	e1000_reset_adaptive_generic(hw);
791 }
792 
793 /**
794  *  e1000_update_adaptive - Update adaptive IFS
795  *  @hw: pointer to the HW structure
796  *
797  *  Updates adapter IFS. Currently no func pointer exists and all
798  *  implementations are handled in the generic version of this function.
799  **/
800 void e1000_update_adaptive(struct e1000_hw *hw)
801 {
802 	e1000_update_adaptive_generic(hw);
803 }
804 
805 /**
806  *  e1000_disable_pcie_master - Disable PCI-Express master access
807  *  @hw: pointer to the HW structure
808  *
809  *  Disables PCI-Express master access and verifies there are no pending
810  *  requests. Currently no func pointer exists and all implementations are
811  *  handled in the generic version of this function.
812  **/
813 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
814 {
815 	return e1000_disable_pcie_master_generic(hw);
816 }
817 
818 /**
819  *  e1000_config_collision_dist - Configure collision distance
820  *  @hw: pointer to the HW structure
821  *
822  *  Configures the collision distance to the default value and is used
823  *  during link setup.
824  **/
825 void e1000_config_collision_dist(struct e1000_hw *hw)
826 {
827 	if (hw->mac.ops.config_collision_dist)
828 		hw->mac.ops.config_collision_dist(hw);
829 }
830 
831 /**
832  *  e1000_rar_set - Sets a receive address register
833  *  @hw: pointer to the HW structure
834  *  @addr: address to set the RAR to
835  *  @index: the RAR to set
836  *
837  *  Sets a Receive Address Register (RAR) to the specified address.
838  **/
839 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
840 {
841 	if (hw->mac.ops.rar_set)
842 		return hw->mac.ops.rar_set(hw, addr, index);
843 
844 	return E1000_SUCCESS;
845 }
846 
847 /**
848  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
849  *  @hw: pointer to the HW structure
850  *
851  *  Ensures that the MDI/MDIX SW state is valid.
852  **/
853 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
854 {
855 	if (hw->mac.ops.validate_mdi_setting)
856 		return hw->mac.ops.validate_mdi_setting(hw);
857 
858 	return E1000_SUCCESS;
859 }
860 
861 /**
862  *  e1000_hash_mc_addr - Determines address location in multicast table
863  *  @hw: pointer to the HW structure
864  *  @mc_addr: Multicast address to hash.
865  *
866  *  This hashes an address to determine its location in the multicast
867  *  table. Currently no func pointer exists and all implementations
868  *  are handled in the generic version of this function.
869  **/
870 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
871 {
872 	return e1000_hash_mc_addr_generic(hw, mc_addr);
873 }
874 
875 /**
876  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
877  *  @hw: pointer to the HW structure
878  *
879  *  Enables packet filtering on transmit packets if manageability is enabled
880  *  and host interface is enabled.
881  *  Currently no func pointer exists and all implementations are handled in the
882  *  generic version of this function.
883  **/
884 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
885 {
886 	return e1000_enable_tx_pkt_filtering_generic(hw);
887 }
888 
889 /**
890  *  e1000_mng_host_if_write - Writes to the manageability host interface
891  *  @hw: pointer to the HW structure
892  *  @buffer: pointer to the host interface buffer
893  *  @length: size of the buffer
894  *  @offset: location in the buffer to write to
895  *  @sum: sum of the data (not checksum)
896  *
897  *  This function writes the buffer content at the offset given on the host if.
898  *  It also does alignment considerations to do the writes in most efficient
899  *  way.  Also fills up the sum of the buffer in *buffer parameter.
900  **/
901 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
902 			    u16 offset, u8 *sum)
903 {
904 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
905 }
906 
907 /**
908  *  e1000_mng_write_cmd_header - Writes manageability command header
909  *  @hw: pointer to the HW structure
910  *  @hdr: pointer to the host interface command header
911  *
912  *  Writes the command header after does the checksum calculation.
913  **/
914 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
915 			       struct e1000_host_mng_command_header *hdr)
916 {
917 	return e1000_mng_write_cmd_header_generic(hw, hdr);
918 }
919 
920 /**
921  *  e1000_mng_enable_host_if - Checks host interface is enabled
922  *  @hw: pointer to the HW structure
923  *
924  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
925  *
926  *  This function checks whether the HOST IF is enabled for command operation
927  *  and also checks whether the previous command is completed.  It busy waits
928  *  in case of previous command is not completed.
929  **/
930 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
931 {
932 	return e1000_mng_enable_host_if_generic(hw);
933 }
934 
935 /**
936  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
937  *  @hw: pointer to the HW structure
938  *  @itr: u32 indicating itr value
939  *
940  *  Set the OBFF timer based on the given interrupt rate.
941  **/
942 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
943 {
944 	if (hw->mac.ops.set_obff_timer)
945 		return hw->mac.ops.set_obff_timer(hw, itr);
946 
947 	return E1000_SUCCESS;
948 }
949 
950 /**
951  *  e1000_check_reset_block - Verifies PHY can be reset
952  *  @hw: pointer to the HW structure
953  *
954  *  Checks if the PHY is in a state that can be reset or if manageability
955  *  has it tied up. This is a function pointer entry point called by drivers.
956  **/
957 s32 e1000_check_reset_block(struct e1000_hw *hw)
958 {
959 	if (hw->phy.ops.check_reset_block)
960 		return hw->phy.ops.check_reset_block(hw);
961 
962 	return E1000_SUCCESS;
963 }
964 
965 /**
966  *  e1000_read_phy_reg - Reads PHY register
967  *  @hw: pointer to the HW structure
968  *  @offset: the register to read
969  *  @data: the buffer to store the 16-bit read.
970  *
971  *  Reads the PHY register and returns the value in data.
972  *  This is a function pointer entry point called by drivers.
973  **/
974 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
975 {
976 	if (hw->phy.ops.read_reg)
977 		return hw->phy.ops.read_reg(hw, offset, data);
978 
979 	return E1000_SUCCESS;
980 }
981 
982 /**
983  *  e1000_write_phy_reg - Writes PHY register
984  *  @hw: pointer to the HW structure
985  *  @offset: the register to write
986  *  @data: the value to write.
987  *
988  *  Writes the PHY register at offset with the value in data.
989  *  This is a function pointer entry point called by drivers.
990  **/
991 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
992 {
993 	if (hw->phy.ops.write_reg)
994 		return hw->phy.ops.write_reg(hw, offset, data);
995 
996 	return E1000_SUCCESS;
997 }
998 
999 /**
1000  *  e1000_release_phy - Generic release PHY
1001  *  @hw: pointer to the HW structure
1002  *
1003  *  Return if silicon family does not require a semaphore when accessing the
1004  *  PHY.
1005  **/
1006 void e1000_release_phy(struct e1000_hw *hw)
1007 {
1008 	if (hw->phy.ops.release)
1009 		hw->phy.ops.release(hw);
1010 }
1011 
1012 /**
1013  *  e1000_acquire_phy - Generic acquire PHY
1014  *  @hw: pointer to the HW structure
1015  *
1016  *  Return success if silicon family does not require a semaphore when
1017  *  accessing the PHY.
1018  **/
1019 s32 e1000_acquire_phy(struct e1000_hw *hw)
1020 {
1021 	if (hw->phy.ops.acquire)
1022 		return hw->phy.ops.acquire(hw);
1023 
1024 	return E1000_SUCCESS;
1025 }
1026 
1027 /**
1028  *  e1000_cfg_on_link_up - Configure PHY upon link up
1029  *  @hw: pointer to the HW structure
1030  **/
1031 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1032 {
1033 	if (hw->phy.ops.cfg_on_link_up)
1034 		return hw->phy.ops.cfg_on_link_up(hw);
1035 
1036 	return E1000_SUCCESS;
1037 }
1038 
1039 /**
1040  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1041  *  @hw: pointer to the HW structure
1042  *  @offset: the register to read
1043  *  @data: the location to store the 16-bit value read.
1044  *
1045  *  Reads a register out of the Kumeran interface. Currently no func pointer
1046  *  exists and all implementations are handled in the generic version of
1047  *  this function.
1048  **/
1049 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1050 {
1051 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1052 }
1053 
1054 /**
1055  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1056  *  @hw: pointer to the HW structure
1057  *  @offset: the register to write
1058  *  @data: the value to write.
1059  *
1060  *  Writes a register to the Kumeran interface. Currently no func pointer
1061  *  exists and all implementations are handled in the generic version of
1062  *  this function.
1063  **/
1064 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1065 {
1066 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1067 }
1068 
1069 /**
1070  *  e1000_get_cable_length - Retrieves cable length estimation
1071  *  @hw: pointer to the HW structure
1072  *
1073  *  This function estimates the cable length and stores them in
1074  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1075  *  entry point called by drivers.
1076  **/
1077 s32 e1000_get_cable_length(struct e1000_hw *hw)
1078 {
1079 	if (hw->phy.ops.get_cable_length)
1080 		return hw->phy.ops.get_cable_length(hw);
1081 
1082 	return E1000_SUCCESS;
1083 }
1084 
1085 /**
1086  *  e1000_get_phy_info - Retrieves PHY information from registers
1087  *  @hw: pointer to the HW structure
1088  *
1089  *  This function gets some information from various PHY registers and
1090  *  populates hw->phy values with it. This is a function pointer entry
1091  *  point called by drivers.
1092  **/
1093 s32 e1000_get_phy_info(struct e1000_hw *hw)
1094 {
1095 	if (hw->phy.ops.get_info)
1096 		return hw->phy.ops.get_info(hw);
1097 
1098 	return E1000_SUCCESS;
1099 }
1100 
1101 /**
1102  *  e1000_phy_hw_reset - Hard PHY reset
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Performs a hard PHY reset. This is a function pointer entry point called
1106  *  by drivers.
1107  **/
1108 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1109 {
1110 	if (hw->phy.ops.reset)
1111 		return hw->phy.ops.reset(hw);
1112 
1113 	return E1000_SUCCESS;
1114 }
1115 
1116 /**
1117  *  e1000_phy_commit - Soft PHY reset
1118  *  @hw: pointer to the HW structure
1119  *
1120  *  Performs a soft PHY reset on those that apply. This is a function pointer
1121  *  entry point called by drivers.
1122  **/
1123 s32 e1000_phy_commit(struct e1000_hw *hw)
1124 {
1125 	if (hw->phy.ops.commit)
1126 		return hw->phy.ops.commit(hw);
1127 
1128 	return E1000_SUCCESS;
1129 }
1130 
1131 /**
1132  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1133  *  @hw: pointer to the HW structure
1134  *  @active: boolean used to enable/disable lplu
1135  *
1136  *  Success returns 0, Failure returns 1
1137  *
1138  *  The low power link up (lplu) state is set to the power management level D0
1139  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1140  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1141  *  is used during Dx states where the power conservation is most important.
1142  *  During driver activity, SmartSpeed should be enabled so performance is
1143  *  maintained.  This is a function pointer entry point called by drivers.
1144  **/
1145 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1146 {
1147 	if (hw->phy.ops.set_d0_lplu_state)
1148 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1149 
1150 	return E1000_SUCCESS;
1151 }
1152 
1153 /**
1154  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1155  *  @hw: pointer to the HW structure
1156  *  @active: boolean used to enable/disable lplu
1157  *
1158  *  Success returns 0, Failure returns 1
1159  *
1160  *  The low power link up (lplu) state is set to the power management level D3
1161  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1162  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1163  *  is used during Dx states where the power conservation is most important.
1164  *  During driver activity, SmartSpeed should be enabled so performance is
1165  *  maintained.  This is a function pointer entry point called by drivers.
1166  **/
1167 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1168 {
1169 	if (hw->phy.ops.set_d3_lplu_state)
1170 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1171 
1172 	return E1000_SUCCESS;
1173 }
1174 
1175 /**
1176  *  e1000_read_mac_addr - Reads MAC address
1177  *  @hw: pointer to the HW structure
1178  *
1179  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1180  *  Currently no func pointer exists and all implementations are handled in the
1181  *  generic version of this function.
1182  **/
1183 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1184 {
1185 	if (hw->mac.ops.read_mac_addr)
1186 		return hw->mac.ops.read_mac_addr(hw);
1187 
1188 	return e1000_read_mac_addr_generic(hw);
1189 }
1190 
1191 /**
1192  *  e1000_read_pba_string - Read device part number string
1193  *  @hw: pointer to the HW structure
1194  *  @pba_num: pointer to device part number
1195  *  @pba_num_size: size of part number buffer
1196  *
1197  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1198  *  the value in pba_num.
1199  *  Currently no func pointer exists and all implementations are handled in the
1200  *  generic version of this function.
1201  **/
1202 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1203 {
1204 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1205 }
1206 
1207 /**
1208  *  e1000_read_pba_length - Read device part number string length
1209  *  @hw: pointer to the HW structure
1210  *  @pba_num_size: size of part number buffer
1211  *
1212  *  Reads the product board assembly (PBA) number length from the EEPROM and
1213  *  stores the value in pba_num.
1214  *  Currently no func pointer exists and all implementations are handled in the
1215  *  generic version of this function.
1216  **/
1217 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1218 {
1219 	return e1000_read_pba_length_generic(hw, pba_num_size);
1220 }
1221 
1222 /**
1223  *  e1000_read_pba_num - Read device part number
1224  *  @hw: pointer to the HW structure
1225  *  @pba_num: pointer to device part number
1226  *
1227  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1228  *  the value in pba_num.
1229  *  Currently no func pointer exists and all implementations are handled in the
1230  *  generic version of this function.
1231  **/
1232 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1233 {
1234 	return e1000_read_pba_num_generic(hw, pba_num);
1235 }
1236 
1237 /**
1238  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1239  *  @hw: pointer to the HW structure
1240  *
1241  *  Validates the NVM checksum is correct. This is a function pointer entry
1242  *  point called by drivers.
1243  **/
1244 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1245 {
1246 	if (hw->nvm.ops.validate)
1247 		return hw->nvm.ops.validate(hw);
1248 
1249 	return -E1000_ERR_CONFIG;
1250 }
1251 
1252 /**
1253  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1254  *  @hw: pointer to the HW structure
1255  *
1256  *  Updates the NVM checksum. Currently no func pointer exists and all
1257  *  implementations are handled in the generic version of this function.
1258  **/
1259 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1260 {
1261 	if (hw->nvm.ops.update)
1262 		return hw->nvm.ops.update(hw);
1263 
1264 	return -E1000_ERR_CONFIG;
1265 }
1266 
1267 /**
1268  *  e1000_reload_nvm - Reloads EEPROM
1269  *  @hw: pointer to the HW structure
1270  *
1271  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1272  *  extended control register.
1273  **/
1274 void e1000_reload_nvm(struct e1000_hw *hw)
1275 {
1276 	if (hw->nvm.ops.reload)
1277 		hw->nvm.ops.reload(hw);
1278 }
1279 
1280 /**
1281  *  e1000_read_nvm - Reads NVM (EEPROM)
1282  *  @hw: pointer to the HW structure
1283  *  @offset: the word offset to read
1284  *  @words: number of 16-bit words to read
1285  *  @data: pointer to the properly sized buffer for the data.
1286  *
1287  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1288  *  pointer entry point called by drivers.
1289  **/
1290 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1291 {
1292 	if (hw->nvm.ops.read)
1293 		return hw->nvm.ops.read(hw, offset, words, data);
1294 
1295 	return -E1000_ERR_CONFIG;
1296 }
1297 
1298 /**
1299  *  e1000_write_nvm - Writes to NVM (EEPROM)
1300  *  @hw: pointer to the HW structure
1301  *  @offset: the word offset to read
1302  *  @words: number of 16-bit words to write
1303  *  @data: pointer to the properly sized buffer for the data.
1304  *
1305  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1306  *  pointer entry point called by drivers.
1307  **/
1308 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1309 {
1310 	if (hw->nvm.ops.write)
1311 		return hw->nvm.ops.write(hw, offset, words, data);
1312 
1313 	return E1000_SUCCESS;
1314 }
1315 
1316 /**
1317  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1318  *  @hw: pointer to the HW structure
1319  *  @reg: 32bit register offset
1320  *  @offset: the register to write
1321  *  @data: the value to write.
1322  *
1323  *  Writes the PHY register at offset with the value in data.
1324  *  This is a function pointer entry point called by drivers.
1325  **/
1326 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1327 			      u8 data)
1328 {
1329 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1330 }
1331 
1332 /**
1333  * e1000_power_up_phy - Restores link in case of PHY power down
1334  * @hw: pointer to the HW structure
1335  *
1336  * The phy may be powered down to save power, to turn off link when the
1337  * driver is unloaded, or wake on lan is not enabled (among others).
1338  **/
1339 void e1000_power_up_phy(struct e1000_hw *hw)
1340 {
1341 	if (hw->phy.ops.power_up)
1342 		hw->phy.ops.power_up(hw);
1343 
1344 	e1000_setup_link(hw);
1345 }
1346 
1347 /**
1348  * e1000_power_down_phy - Power down PHY
1349  * @hw: pointer to the HW structure
1350  *
1351  * The phy may be powered down to save power, to turn off link when the
1352  * driver is unloaded, or wake on lan is not enabled (among others).
1353  **/
1354 void e1000_power_down_phy(struct e1000_hw *hw)
1355 {
1356 	if (hw->phy.ops.power_down)
1357 		hw->phy.ops.power_down(hw);
1358 }
1359 
1360 /**
1361  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1362  *  @hw: pointer to the HW structure
1363  *
1364  *  Power on the optics and PCS.
1365  **/
1366 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1367 {
1368 	if (hw->mac.ops.power_up_serdes)
1369 		hw->mac.ops.power_up_serdes(hw);
1370 }
1371 
1372 /**
1373  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1374  *  @hw: pointer to the HW structure
1375  *
1376  *  Shutdown the optics and PCS on driver unload.
1377  **/
1378 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1379 {
1380 	if (hw->mac.ops.shutdown_serdes)
1381 		hw->mac.ops.shutdown_serdes(hw);
1382 }
1383