xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 1c9138ce)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2016, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 		mac->type = e1000_pch_spt;
313 		break;
314 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
315 	case E1000_DEV_ID_PCH_CNP_I219_V6:
316 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
317 	case E1000_DEV_ID_PCH_CNP_I219_V7:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM8:
319 	case E1000_DEV_ID_PCH_CNP_I219_V8:
320 	case E1000_DEV_ID_PCH_CNP_I219_LM9:
321 	case E1000_DEV_ID_PCH_CNP_I219_V9:
322 	case E1000_DEV_ID_PCH_CNP_I219_LM10:
323 	case E1000_DEV_ID_PCH_CNP_I219_V10:
324 	case E1000_DEV_ID_PCH_CNP_I219_LM11:
325 	case E1000_DEV_ID_PCH_CNP_I219_V11:
326 	case E1000_DEV_ID_PCH_CNP_I219_LM12:
327 	case E1000_DEV_ID_PCH_CNP_I219_V12:
328 	case E1000_DEV_ID_PCH_CNP_I219_LM13:
329 	case E1000_DEV_ID_PCH_CNP_I219_V13:
330 	case E1000_DEV_ID_PCH_CNP_I219_LM14:
331 	case E1000_DEV_ID_PCH_CNP_I219_V14:
332 		mac->type = e1000_pch_cnp;
333 		break;
334 	case E1000_DEV_ID_82575EB_COPPER:
335 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
336 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
337 		mac->type = e1000_82575;
338 		break;
339 	case E1000_DEV_ID_82576:
340 	case E1000_DEV_ID_82576_FIBER:
341 	case E1000_DEV_ID_82576_SERDES:
342 	case E1000_DEV_ID_82576_QUAD_COPPER:
343 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
344 	case E1000_DEV_ID_82576_NS:
345 	case E1000_DEV_ID_82576_NS_SERDES:
346 	case E1000_DEV_ID_82576_SERDES_QUAD:
347 		mac->type = e1000_82576;
348 		break;
349 	case E1000_DEV_ID_82580_COPPER:
350 	case E1000_DEV_ID_82580_FIBER:
351 	case E1000_DEV_ID_82580_SERDES:
352 	case E1000_DEV_ID_82580_SGMII:
353 	case E1000_DEV_ID_82580_COPPER_DUAL:
354 	case E1000_DEV_ID_82580_QUAD_FIBER:
355 	case E1000_DEV_ID_DH89XXCC_SGMII:
356 	case E1000_DEV_ID_DH89XXCC_SERDES:
357 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
358 	case E1000_DEV_ID_DH89XXCC_SFP:
359 		mac->type = e1000_82580;
360 		break;
361 	case E1000_DEV_ID_I350_COPPER:
362 	case E1000_DEV_ID_I350_FIBER:
363 	case E1000_DEV_ID_I350_SERDES:
364 	case E1000_DEV_ID_I350_SGMII:
365 	case E1000_DEV_ID_I350_DA4:
366 		mac->type = e1000_i350;
367 		break;
368 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
369 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
370 	case E1000_DEV_ID_I210_COPPER:
371 	case E1000_DEV_ID_I210_COPPER_OEM1:
372 	case E1000_DEV_ID_I210_COPPER_IT:
373 	case E1000_DEV_ID_I210_FIBER:
374 	case E1000_DEV_ID_I210_SERDES:
375 	case E1000_DEV_ID_I210_SGMII:
376 		mac->type = e1000_i210;
377 		break;
378 	case E1000_DEV_ID_I211_COPPER:
379 		mac->type = e1000_i211;
380 		break;
381 	case E1000_DEV_ID_82576_VF:
382 	case E1000_DEV_ID_82576_VF_HV:
383 		mac->type = e1000_vfadapt;
384 		break;
385 	case E1000_DEV_ID_I350_VF:
386 	case E1000_DEV_ID_I350_VF_HV:
387 		mac->type = e1000_vfadapt_i350;
388 		break;
389 
390 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
391 	case E1000_DEV_ID_I354_SGMII:
392 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
393 		mac->type = e1000_i354;
394 		break;
395 	default:
396 		/* Should never have loaded on this device */
397 		ret_val = -E1000_ERR_MAC_INIT;
398 		break;
399 	}
400 
401 	return ret_val;
402 }
403 
404 /**
405  *  e1000_setup_init_funcs - Initializes function pointers
406  *  @hw: pointer to the HW structure
407  *  @init_device: TRUE will initialize the rest of the function pointers
408  *		  getting the device ready for use.  FALSE will only set
409  *		  MAC type and the function pointers for the other init
410  *		  functions.  Passing FALSE will not generate any hardware
411  *		  reads or writes.
412  *
413  *  This function must be called by a driver in order to use the rest
414  *  of the 'shared' code files. Called by drivers only.
415  **/
416 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
417 {
418 	s32 ret_val;
419 
420 	/* Can't do much good without knowing the MAC type. */
421 	ret_val = e1000_set_mac_type(hw);
422 	if (ret_val) {
423 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
424 		goto out;
425 	}
426 
427 	if (!hw->hw_addr) {
428 		DEBUGOUT("ERROR: Registers not mapped\n");
429 		ret_val = -E1000_ERR_CONFIG;
430 		goto out;
431 	}
432 
433 	/*
434 	 * Init function pointers to generic implementations. We do this first
435 	 * allowing a driver module to override it afterward.
436 	 */
437 	e1000_init_mac_ops_generic(hw);
438 	e1000_init_phy_ops_generic(hw);
439 	e1000_init_nvm_ops_generic(hw);
440 	e1000_init_mbx_ops_generic(hw);
441 
442 	/*
443 	 * Set up the init function pointers. These are functions within the
444 	 * adapter family file that sets up function pointers for the rest of
445 	 * the functions in that family.
446 	 */
447 	switch (hw->mac.type) {
448 	case e1000_82542:
449 		e1000_init_function_pointers_82542(hw);
450 		break;
451 	case e1000_82543:
452 	case e1000_82544:
453 		e1000_init_function_pointers_82543(hw);
454 		break;
455 	case e1000_82540:
456 	case e1000_82545:
457 	case e1000_82545_rev_3:
458 	case e1000_82546:
459 	case e1000_82546_rev_3:
460 		e1000_init_function_pointers_82540(hw);
461 		break;
462 	case e1000_82541:
463 	case e1000_82541_rev_2:
464 	case e1000_82547:
465 	case e1000_82547_rev_2:
466 		e1000_init_function_pointers_82541(hw);
467 		break;
468 	case e1000_82571:
469 	case e1000_82572:
470 	case e1000_82573:
471 	case e1000_82574:
472 	case e1000_82583:
473 		e1000_init_function_pointers_82571(hw);
474 		break;
475 	case e1000_80003es2lan:
476 		e1000_init_function_pointers_80003es2lan(hw);
477 		break;
478 	case e1000_ich8lan:
479 	case e1000_ich9lan:
480 	case e1000_ich10lan:
481 	case e1000_pchlan:
482 	case e1000_pch2lan:
483 	case e1000_pch_lpt:
484 	case e1000_pch_spt:
485 	case e1000_pch_cnp:
486 		e1000_init_function_pointers_ich8lan(hw);
487 		break;
488 	case e1000_82575:
489 	case e1000_82576:
490 	case e1000_82580:
491 	case e1000_i350:
492 	case e1000_i354:
493 		e1000_init_function_pointers_82575(hw);
494 		break;
495 	case e1000_i210:
496 	case e1000_i211:
497 		e1000_init_function_pointers_i210(hw);
498 		break;
499 	case e1000_vfadapt:
500 		e1000_init_function_pointers_vf(hw);
501 		break;
502 	case e1000_vfadapt_i350:
503 		e1000_init_function_pointers_vf(hw);
504 		break;
505 	default:
506 		DEBUGOUT("Hardware not supported\n");
507 		ret_val = -E1000_ERR_CONFIG;
508 		break;
509 	}
510 
511 	/*
512 	 * Initialize the rest of the function pointers. These require some
513 	 * register reads/writes in some cases.
514 	 */
515 	if (!(ret_val) && init_device) {
516 		ret_val = e1000_init_mac_params(hw);
517 		if (ret_val)
518 			goto out;
519 
520 		ret_val = e1000_init_nvm_params(hw);
521 		if (ret_val)
522 			goto out;
523 
524 		ret_val = e1000_init_phy_params(hw);
525 		if (ret_val)
526 			goto out;
527 
528 		ret_val = e1000_init_mbx_params(hw);
529 		if (ret_val)
530 			goto out;
531 	}
532 
533 out:
534 	return ret_val;
535 }
536 
537 /**
538  *  e1000_get_bus_info - Obtain bus information for adapter
539  *  @hw: pointer to the HW structure
540  *
541  *  This will obtain information about the HW bus for which the
542  *  adapter is attached and stores it in the hw structure. This is a
543  *  function pointer entry point called by drivers.
544  **/
545 s32 e1000_get_bus_info(struct e1000_hw *hw)
546 {
547 	if (hw->mac.ops.get_bus_info)
548 		return hw->mac.ops.get_bus_info(hw);
549 
550 	return E1000_SUCCESS;
551 }
552 
553 /**
554  *  e1000_clear_vfta - Clear VLAN filter table
555  *  @hw: pointer to the HW structure
556  *
557  *  This clears the VLAN filter table on the adapter. This is a function
558  *  pointer entry point called by drivers.
559  **/
560 void e1000_clear_vfta(struct e1000_hw *hw)
561 {
562 	if (hw->mac.ops.clear_vfta)
563 		hw->mac.ops.clear_vfta(hw);
564 }
565 
566 /**
567  *  e1000_write_vfta - Write value to VLAN filter table
568  *  @hw: pointer to the HW structure
569  *  @offset: the 32-bit offset in which to write the value to.
570  *  @value: the 32-bit value to write at location offset.
571  *
572  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
573  *  table. This is a function pointer entry point called by drivers.
574  **/
575 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
576 {
577 	if (hw->mac.ops.write_vfta)
578 		hw->mac.ops.write_vfta(hw, offset, value);
579 }
580 
581 /**
582  *  e1000_update_mc_addr_list - Update Multicast addresses
583  *  @hw: pointer to the HW structure
584  *  @mc_addr_list: array of multicast addresses to program
585  *  @mc_addr_count: number of multicast addresses to program
586  *
587  *  Updates the Multicast Table Array.
588  *  The caller must have a packed mc_addr_list of multicast addresses.
589  **/
590 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
591 			       u32 mc_addr_count)
592 {
593 	if (hw->mac.ops.update_mc_addr_list)
594 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
595 						mc_addr_count);
596 }
597 
598 /**
599  *  e1000_force_mac_fc - Force MAC flow control
600  *  @hw: pointer to the HW structure
601  *
602  *  Force the MAC's flow control settings. Currently no func pointer exists
603  *  and all implementations are handled in the generic version of this
604  *  function.
605  **/
606 s32 e1000_force_mac_fc(struct e1000_hw *hw)
607 {
608 	return e1000_force_mac_fc_generic(hw);
609 }
610 
611 /**
612  *  e1000_check_for_link - Check/Store link connection
613  *  @hw: pointer to the HW structure
614  *
615  *  This checks the link condition of the adapter and stores the
616  *  results in the hw->mac structure. This is a function pointer entry
617  *  point called by drivers.
618  **/
619 s32 e1000_check_for_link(struct e1000_hw *hw)
620 {
621 	if (hw->mac.ops.check_for_link)
622 		return hw->mac.ops.check_for_link(hw);
623 
624 	return -E1000_ERR_CONFIG;
625 }
626 
627 /**
628  *  e1000_check_mng_mode - Check management mode
629  *  @hw: pointer to the HW structure
630  *
631  *  This checks if the adapter has manageability enabled.
632  *  This is a function pointer entry point called by drivers.
633  **/
634 bool e1000_check_mng_mode(struct e1000_hw *hw)
635 {
636 	if (hw->mac.ops.check_mng_mode)
637 		return hw->mac.ops.check_mng_mode(hw);
638 
639 	return FALSE;
640 }
641 
642 /**
643  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
644  *  @hw: pointer to the HW structure
645  *  @buffer: pointer to the host interface
646  *  @length: size of the buffer
647  *
648  *  Writes the DHCP information to the host interface.
649  **/
650 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
651 {
652 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
653 }
654 
655 /**
656  *  e1000_reset_hw - Reset hardware
657  *  @hw: pointer to the HW structure
658  *
659  *  This resets the hardware into a known state. This is a function pointer
660  *  entry point called by drivers.
661  **/
662 s32 e1000_reset_hw(struct e1000_hw *hw)
663 {
664 	if (hw->mac.ops.reset_hw)
665 		return hw->mac.ops.reset_hw(hw);
666 
667 	return -E1000_ERR_CONFIG;
668 }
669 
670 /**
671  *  e1000_init_hw - Initialize hardware
672  *  @hw: pointer to the HW structure
673  *
674  *  This inits the hardware readying it for operation. This is a function
675  *  pointer entry point called by drivers.
676  **/
677 s32 e1000_init_hw(struct e1000_hw *hw)
678 {
679 	if (hw->mac.ops.init_hw)
680 		return hw->mac.ops.init_hw(hw);
681 
682 	return -E1000_ERR_CONFIG;
683 }
684 
685 /**
686  *  e1000_setup_link - Configures link and flow control
687  *  @hw: pointer to the HW structure
688  *
689  *  This configures link and flow control settings for the adapter. This
690  *  is a function pointer entry point called by drivers. While modules can
691  *  also call this, they probably call their own version of this function.
692  **/
693 s32 e1000_setup_link(struct e1000_hw *hw)
694 {
695 	if (hw->mac.ops.setup_link)
696 		return hw->mac.ops.setup_link(hw);
697 
698 	return -E1000_ERR_CONFIG;
699 }
700 
701 /**
702  *  e1000_get_speed_and_duplex - Returns current speed and duplex
703  *  @hw: pointer to the HW structure
704  *  @speed: pointer to a 16-bit value to store the speed
705  *  @duplex: pointer to a 16-bit value to store the duplex.
706  *
707  *  This returns the speed and duplex of the adapter in the two 'out'
708  *  variables passed in. This is a function pointer entry point called
709  *  by drivers.
710  **/
711 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
712 {
713 	if (hw->mac.ops.get_link_up_info)
714 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
715 
716 	return -E1000_ERR_CONFIG;
717 }
718 
719 /**
720  *  e1000_setup_led - Configures SW controllable LED
721  *  @hw: pointer to the HW structure
722  *
723  *  This prepares the SW controllable LED for use and saves the current state
724  *  of the LED so it can be later restored. This is a function pointer entry
725  *  point called by drivers.
726  **/
727 s32 e1000_setup_led(struct e1000_hw *hw)
728 {
729 	if (hw->mac.ops.setup_led)
730 		return hw->mac.ops.setup_led(hw);
731 
732 	return E1000_SUCCESS;
733 }
734 
735 /**
736  *  e1000_cleanup_led - Restores SW controllable LED
737  *  @hw: pointer to the HW structure
738  *
739  *  This restores the SW controllable LED to the value saved off by
740  *  e1000_setup_led. This is a function pointer entry point called by drivers.
741  **/
742 s32 e1000_cleanup_led(struct e1000_hw *hw)
743 {
744 	if (hw->mac.ops.cleanup_led)
745 		return hw->mac.ops.cleanup_led(hw);
746 
747 	return E1000_SUCCESS;
748 }
749 
750 /**
751  *  e1000_blink_led - Blink SW controllable LED
752  *  @hw: pointer to the HW structure
753  *
754  *  This starts the adapter LED blinking. Request the LED to be setup first
755  *  and cleaned up after. This is a function pointer entry point called by
756  *  drivers.
757  **/
758 s32 e1000_blink_led(struct e1000_hw *hw)
759 {
760 	if (hw->mac.ops.blink_led)
761 		return hw->mac.ops.blink_led(hw);
762 
763 	return E1000_SUCCESS;
764 }
765 
766 /**
767  *  e1000_id_led_init - store LED configurations in SW
768  *  @hw: pointer to the HW structure
769  *
770  *  Initializes the LED config in SW. This is a function pointer entry point
771  *  called by drivers.
772  **/
773 s32 e1000_id_led_init(struct e1000_hw *hw)
774 {
775 	if (hw->mac.ops.id_led_init)
776 		return hw->mac.ops.id_led_init(hw);
777 
778 	return E1000_SUCCESS;
779 }
780 
781 /**
782  *  e1000_led_on - Turn on SW controllable LED
783  *  @hw: pointer to the HW structure
784  *
785  *  Turns the SW defined LED on. This is a function pointer entry point
786  *  called by drivers.
787  **/
788 s32 e1000_led_on(struct e1000_hw *hw)
789 {
790 	if (hw->mac.ops.led_on)
791 		return hw->mac.ops.led_on(hw);
792 
793 	return E1000_SUCCESS;
794 }
795 
796 /**
797  *  e1000_led_off - Turn off SW controllable LED
798  *  @hw: pointer to the HW structure
799  *
800  *  Turns the SW defined LED off. This is a function pointer entry point
801  *  called by drivers.
802  **/
803 s32 e1000_led_off(struct e1000_hw *hw)
804 {
805 	if (hw->mac.ops.led_off)
806 		return hw->mac.ops.led_off(hw);
807 
808 	return E1000_SUCCESS;
809 }
810 
811 /**
812  *  e1000_reset_adaptive - Reset adaptive IFS
813  *  @hw: pointer to the HW structure
814  *
815  *  Resets the adaptive IFS. Currently no func pointer exists and all
816  *  implementations are handled in the generic version of this function.
817  **/
818 void e1000_reset_adaptive(struct e1000_hw *hw)
819 {
820 	e1000_reset_adaptive_generic(hw);
821 }
822 
823 /**
824  *  e1000_update_adaptive - Update adaptive IFS
825  *  @hw: pointer to the HW structure
826  *
827  *  Updates adapter IFS. Currently no func pointer exists and all
828  *  implementations are handled in the generic version of this function.
829  **/
830 void e1000_update_adaptive(struct e1000_hw *hw)
831 {
832 	e1000_update_adaptive_generic(hw);
833 }
834 
835 /**
836  *  e1000_disable_pcie_master - Disable PCI-Express master access
837  *  @hw: pointer to the HW structure
838  *
839  *  Disables PCI-Express master access and verifies there are no pending
840  *  requests. Currently no func pointer exists and all implementations are
841  *  handled in the generic version of this function.
842  **/
843 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
844 {
845 	return e1000_disable_pcie_master_generic(hw);
846 }
847 
848 /**
849  *  e1000_config_collision_dist - Configure collision distance
850  *  @hw: pointer to the HW structure
851  *
852  *  Configures the collision distance to the default value and is used
853  *  during link setup.
854  **/
855 void e1000_config_collision_dist(struct e1000_hw *hw)
856 {
857 	if (hw->mac.ops.config_collision_dist)
858 		hw->mac.ops.config_collision_dist(hw);
859 }
860 
861 /**
862  *  e1000_rar_set - Sets a receive address register
863  *  @hw: pointer to the HW structure
864  *  @addr: address to set the RAR to
865  *  @index: the RAR to set
866  *
867  *  Sets a Receive Address Register (RAR) to the specified address.
868  **/
869 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
870 {
871 	if (hw->mac.ops.rar_set)
872 		return hw->mac.ops.rar_set(hw, addr, index);
873 
874 	return E1000_SUCCESS;
875 }
876 
877 /**
878  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
879  *  @hw: pointer to the HW structure
880  *
881  *  Ensures that the MDI/MDIX SW state is valid.
882  **/
883 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
884 {
885 	if (hw->mac.ops.validate_mdi_setting)
886 		return hw->mac.ops.validate_mdi_setting(hw);
887 
888 	return E1000_SUCCESS;
889 }
890 
891 /**
892  *  e1000_hash_mc_addr - Determines address location in multicast table
893  *  @hw: pointer to the HW structure
894  *  @mc_addr: Multicast address to hash.
895  *
896  *  This hashes an address to determine its location in the multicast
897  *  table. Currently no func pointer exists and all implementations
898  *  are handled in the generic version of this function.
899  **/
900 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
901 {
902 	return e1000_hash_mc_addr_generic(hw, mc_addr);
903 }
904 
905 /**
906  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
907  *  @hw: pointer to the HW structure
908  *
909  *  Enables packet filtering on transmit packets if manageability is enabled
910  *  and host interface is enabled.
911  *  Currently no func pointer exists and all implementations are handled in the
912  *  generic version of this function.
913  **/
914 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
915 {
916 	return e1000_enable_tx_pkt_filtering_generic(hw);
917 }
918 
919 /**
920  *  e1000_mng_host_if_write - Writes to the manageability host interface
921  *  @hw: pointer to the HW structure
922  *  @buffer: pointer to the host interface buffer
923  *  @length: size of the buffer
924  *  @offset: location in the buffer to write to
925  *  @sum: sum of the data (not checksum)
926  *
927  *  This function writes the buffer content at the offset given on the host if.
928  *  It also does alignment considerations to do the writes in most efficient
929  *  way.  Also fills up the sum of the buffer in *buffer parameter.
930  **/
931 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
932 			    u16 offset, u8 *sum)
933 {
934 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
935 }
936 
937 /**
938  *  e1000_mng_write_cmd_header - Writes manageability command header
939  *  @hw: pointer to the HW structure
940  *  @hdr: pointer to the host interface command header
941  *
942  *  Writes the command header after does the checksum calculation.
943  **/
944 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
945 			       struct e1000_host_mng_command_header *hdr)
946 {
947 	return e1000_mng_write_cmd_header_generic(hw, hdr);
948 }
949 
950 /**
951  *  e1000_mng_enable_host_if - Checks host interface is enabled
952  *  @hw: pointer to the HW structure
953  *
954  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
955  *
956  *  This function checks whether the HOST IF is enabled for command operation
957  *  and also checks whether the previous command is completed.  It busy waits
958  *  in case of previous command is not completed.
959  **/
960 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
961 {
962 	return e1000_mng_enable_host_if_generic(hw);
963 }
964 
965 /**
966  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
967  *  @hw: pointer to the HW structure
968  *  @itr: u32 indicating itr value
969  *
970  *  Set the OBFF timer based on the given interrupt rate.
971  **/
972 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
973 {
974 	if (hw->mac.ops.set_obff_timer)
975 		return hw->mac.ops.set_obff_timer(hw, itr);
976 
977 	return E1000_SUCCESS;
978 }
979 
980 /**
981  *  e1000_check_reset_block - Verifies PHY can be reset
982  *  @hw: pointer to the HW structure
983  *
984  *  Checks if the PHY is in a state that can be reset or if manageability
985  *  has it tied up. This is a function pointer entry point called by drivers.
986  **/
987 s32 e1000_check_reset_block(struct e1000_hw *hw)
988 {
989 	if (hw->phy.ops.check_reset_block)
990 		return hw->phy.ops.check_reset_block(hw);
991 
992 	return E1000_SUCCESS;
993 }
994 
995 /**
996  *  e1000_read_phy_reg - Reads PHY register
997  *  @hw: pointer to the HW structure
998  *  @offset: the register to read
999  *  @data: the buffer to store the 16-bit read.
1000  *
1001  *  Reads the PHY register and returns the value in data.
1002  *  This is a function pointer entry point called by drivers.
1003  **/
1004 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1005 {
1006 	if (hw->phy.ops.read_reg)
1007 		return hw->phy.ops.read_reg(hw, offset, data);
1008 
1009 	return E1000_SUCCESS;
1010 }
1011 
1012 /**
1013  *  e1000_write_phy_reg - Writes PHY register
1014  *  @hw: pointer to the HW structure
1015  *  @offset: the register to write
1016  *  @data: the value to write.
1017  *
1018  *  Writes the PHY register at offset with the value in data.
1019  *  This is a function pointer entry point called by drivers.
1020  **/
1021 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1022 {
1023 	if (hw->phy.ops.write_reg)
1024 		return hw->phy.ops.write_reg(hw, offset, data);
1025 
1026 	return E1000_SUCCESS;
1027 }
1028 
1029 /**
1030  *  e1000_release_phy - Generic release PHY
1031  *  @hw: pointer to the HW structure
1032  *
1033  *  Return if silicon family does not require a semaphore when accessing the
1034  *  PHY.
1035  **/
1036 void e1000_release_phy(struct e1000_hw *hw)
1037 {
1038 	if (hw->phy.ops.release)
1039 		hw->phy.ops.release(hw);
1040 }
1041 
1042 /**
1043  *  e1000_acquire_phy - Generic acquire PHY
1044  *  @hw: pointer to the HW structure
1045  *
1046  *  Return success if silicon family does not require a semaphore when
1047  *  accessing the PHY.
1048  **/
1049 s32 e1000_acquire_phy(struct e1000_hw *hw)
1050 {
1051 	if (hw->phy.ops.acquire)
1052 		return hw->phy.ops.acquire(hw);
1053 
1054 	return E1000_SUCCESS;
1055 }
1056 
1057 /**
1058  *  e1000_cfg_on_link_up - Configure PHY upon link up
1059  *  @hw: pointer to the HW structure
1060  **/
1061 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1062 {
1063 	if (hw->phy.ops.cfg_on_link_up)
1064 		return hw->phy.ops.cfg_on_link_up(hw);
1065 
1066 	return E1000_SUCCESS;
1067 }
1068 
1069 /**
1070  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1071  *  @hw: pointer to the HW structure
1072  *  @offset: the register to read
1073  *  @data: the location to store the 16-bit value read.
1074  *
1075  *  Reads a register out of the Kumeran interface. Currently no func pointer
1076  *  exists and all implementations are handled in the generic version of
1077  *  this function.
1078  **/
1079 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1080 {
1081 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1082 }
1083 
1084 /**
1085  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1086  *  @hw: pointer to the HW structure
1087  *  @offset: the register to write
1088  *  @data: the value to write.
1089  *
1090  *  Writes a register to the Kumeran interface. Currently no func pointer
1091  *  exists and all implementations are handled in the generic version of
1092  *  this function.
1093  **/
1094 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1095 {
1096 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1097 }
1098 
1099 /**
1100  *  e1000_get_cable_length - Retrieves cable length estimation
1101  *  @hw: pointer to the HW structure
1102  *
1103  *  This function estimates the cable length and stores them in
1104  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1105  *  entry point called by drivers.
1106  **/
1107 s32 e1000_get_cable_length(struct e1000_hw *hw)
1108 {
1109 	if (hw->phy.ops.get_cable_length)
1110 		return hw->phy.ops.get_cable_length(hw);
1111 
1112 	return E1000_SUCCESS;
1113 }
1114 
1115 /**
1116  *  e1000_get_phy_info - Retrieves PHY information from registers
1117  *  @hw: pointer to the HW structure
1118  *
1119  *  This function gets some information from various PHY registers and
1120  *  populates hw->phy values with it. This is a function pointer entry
1121  *  point called by drivers.
1122  **/
1123 s32 e1000_get_phy_info(struct e1000_hw *hw)
1124 {
1125 	if (hw->phy.ops.get_info)
1126 		return hw->phy.ops.get_info(hw);
1127 
1128 	return E1000_SUCCESS;
1129 }
1130 
1131 /**
1132  *  e1000_phy_hw_reset - Hard PHY reset
1133  *  @hw: pointer to the HW structure
1134  *
1135  *  Performs a hard PHY reset. This is a function pointer entry point called
1136  *  by drivers.
1137  **/
1138 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1139 {
1140 	if (hw->phy.ops.reset)
1141 		return hw->phy.ops.reset(hw);
1142 
1143 	return E1000_SUCCESS;
1144 }
1145 
1146 /**
1147  *  e1000_phy_commit - Soft PHY reset
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Performs a soft PHY reset on those that apply. This is a function pointer
1151  *  entry point called by drivers.
1152  **/
1153 s32 e1000_phy_commit(struct e1000_hw *hw)
1154 {
1155 	if (hw->phy.ops.commit)
1156 		return hw->phy.ops.commit(hw);
1157 
1158 	return E1000_SUCCESS;
1159 }
1160 
1161 /**
1162  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1163  *  @hw: pointer to the HW structure
1164  *  @active: boolean used to enable/disable lplu
1165  *
1166  *  Success returns 0, Failure returns 1
1167  *
1168  *  The low power link up (lplu) state is set to the power management level D0
1169  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1170  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1171  *  is used during Dx states where the power conservation is most important.
1172  *  During driver activity, SmartSpeed should be enabled so performance is
1173  *  maintained.  This is a function pointer entry point called by drivers.
1174  **/
1175 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1176 {
1177 	if (hw->phy.ops.set_d0_lplu_state)
1178 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1179 
1180 	return E1000_SUCCESS;
1181 }
1182 
1183 /**
1184  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1185  *  @hw: pointer to the HW structure
1186  *  @active: boolean used to enable/disable lplu
1187  *
1188  *  Success returns 0, Failure returns 1
1189  *
1190  *  The low power link up (lplu) state is set to the power management level D3
1191  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1192  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1193  *  is used during Dx states where the power conservation is most important.
1194  *  During driver activity, SmartSpeed should be enabled so performance is
1195  *  maintained.  This is a function pointer entry point called by drivers.
1196  **/
1197 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1198 {
1199 	if (hw->phy.ops.set_d3_lplu_state)
1200 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1201 
1202 	return E1000_SUCCESS;
1203 }
1204 
1205 /**
1206  *  e1000_read_mac_addr - Reads MAC address
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1210  *  Currently no func pointer exists and all implementations are handled in the
1211  *  generic version of this function.
1212  **/
1213 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1214 {
1215 	if (hw->mac.ops.read_mac_addr)
1216 		return hw->mac.ops.read_mac_addr(hw);
1217 
1218 	return e1000_read_mac_addr_generic(hw);
1219 }
1220 
1221 /**
1222  *  e1000_read_pba_string - Read device part number string
1223  *  @hw: pointer to the HW structure
1224  *  @pba_num: pointer to device part number
1225  *  @pba_num_size: size of part number buffer
1226  *
1227  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1228  *  the value in pba_num.
1229  *  Currently no func pointer exists and all implementations are handled in the
1230  *  generic version of this function.
1231  **/
1232 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1233 {
1234 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1235 }
1236 
1237 /**
1238  *  e1000_read_pba_length - Read device part number string length
1239  *  @hw: pointer to the HW structure
1240  *  @pba_num_size: size of part number buffer
1241  *
1242  *  Reads the product board assembly (PBA) number length from the EEPROM and
1243  *  stores the value in pba_num.
1244  *  Currently no func pointer exists and all implementations are handled in the
1245  *  generic version of this function.
1246  **/
1247 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1248 {
1249 	return e1000_read_pba_length_generic(hw, pba_num_size);
1250 }
1251 
1252 /**
1253  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1254  *  @hw: pointer to the HW structure
1255  *
1256  *  Validates the NVM checksum is correct. This is a function pointer entry
1257  *  point called by drivers.
1258  **/
1259 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1260 {
1261 	if (hw->nvm.ops.validate)
1262 		return hw->nvm.ops.validate(hw);
1263 
1264 	return -E1000_ERR_CONFIG;
1265 }
1266 
1267 /**
1268  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1269  *  @hw: pointer to the HW structure
1270  *
1271  *  Updates the NVM checksum. Currently no func pointer exists and all
1272  *  implementations are handled in the generic version of this function.
1273  **/
1274 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1275 {
1276 	if (hw->nvm.ops.update)
1277 		return hw->nvm.ops.update(hw);
1278 
1279 	return -E1000_ERR_CONFIG;
1280 }
1281 
1282 /**
1283  *  e1000_reload_nvm - Reloads EEPROM
1284  *  @hw: pointer to the HW structure
1285  *
1286  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1287  *  extended control register.
1288  **/
1289 void e1000_reload_nvm(struct e1000_hw *hw)
1290 {
1291 	if (hw->nvm.ops.reload)
1292 		hw->nvm.ops.reload(hw);
1293 }
1294 
1295 /**
1296  *  e1000_read_nvm - Reads NVM (EEPROM)
1297  *  @hw: pointer to the HW structure
1298  *  @offset: the word offset to read
1299  *  @words: number of 16-bit words to read
1300  *  @data: pointer to the properly sized buffer for the data.
1301  *
1302  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1303  *  pointer entry point called by drivers.
1304  **/
1305 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1306 {
1307 	if (hw->nvm.ops.read)
1308 		return hw->nvm.ops.read(hw, offset, words, data);
1309 
1310 	return -E1000_ERR_CONFIG;
1311 }
1312 
1313 /**
1314  *  e1000_write_nvm - Writes to NVM (EEPROM)
1315  *  @hw: pointer to the HW structure
1316  *  @offset: the word offset to read
1317  *  @words: number of 16-bit words to write
1318  *  @data: pointer to the properly sized buffer for the data.
1319  *
1320  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1321  *  pointer entry point called by drivers.
1322  **/
1323 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1324 {
1325 	if (hw->nvm.ops.write)
1326 		return hw->nvm.ops.write(hw, offset, words, data);
1327 
1328 	return E1000_SUCCESS;
1329 }
1330 
1331 /**
1332  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1333  *  @hw: pointer to the HW structure
1334  *  @reg: 32bit register offset
1335  *  @offset: the register to write
1336  *  @data: the value to write.
1337  *
1338  *  Writes the PHY register at offset with the value in data.
1339  *  This is a function pointer entry point called by drivers.
1340  **/
1341 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1342 			      u8 data)
1343 {
1344 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1345 }
1346 
1347 /**
1348  * e1000_power_up_phy - Restores link in case of PHY power down
1349  * @hw: pointer to the HW structure
1350  *
1351  * The phy may be powered down to save power, to turn off link when the
1352  * driver is unloaded, or wake on lan is not enabled (among others).
1353  **/
1354 void e1000_power_up_phy(struct e1000_hw *hw)
1355 {
1356 	if (hw->phy.ops.power_up)
1357 		hw->phy.ops.power_up(hw);
1358 
1359 	e1000_setup_link(hw);
1360 }
1361 
1362 /**
1363  * e1000_power_down_phy - Power down PHY
1364  * @hw: pointer to the HW structure
1365  *
1366  * The phy may be powered down to save power, to turn off link when the
1367  * driver is unloaded, or wake on lan is not enabled (among others).
1368  **/
1369 void e1000_power_down_phy(struct e1000_hw *hw)
1370 {
1371 	if (hw->phy.ops.power_down)
1372 		hw->phy.ops.power_down(hw);
1373 }
1374 
1375 /**
1376  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1377  *  @hw: pointer to the HW structure
1378  *
1379  *  Power on the optics and PCS.
1380  **/
1381 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1382 {
1383 	if (hw->mac.ops.power_up_serdes)
1384 		hw->mac.ops.power_up_serdes(hw);
1385 }
1386 
1387 /**
1388  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1389  *  @hw: pointer to the HW structure
1390  *
1391  *  Shutdown the optics and PCS on driver unload.
1392  **/
1393 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1394 {
1395 	if (hw->mac.ops.shutdown_serdes)
1396 		hw->mac.ops.shutdown_serdes(hw);
1397 }
1398