xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 6a3cbbc2)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2016, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 		mac->type = e1000_pch_spt;
313 		break;
314 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
315 	case E1000_DEV_ID_PCH_CNP_I219_V6:
316 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
317 	case E1000_DEV_ID_PCH_CNP_I219_V7:
318 		mac->type = e1000_pch_cnp;
319 		break;
320 	case E1000_DEV_ID_82575EB_COPPER:
321 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
322 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
323 		mac->type = e1000_82575;
324 		break;
325 	case E1000_DEV_ID_82576:
326 	case E1000_DEV_ID_82576_FIBER:
327 	case E1000_DEV_ID_82576_SERDES:
328 	case E1000_DEV_ID_82576_QUAD_COPPER:
329 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
330 	case E1000_DEV_ID_82576_NS:
331 	case E1000_DEV_ID_82576_NS_SERDES:
332 	case E1000_DEV_ID_82576_SERDES_QUAD:
333 		mac->type = e1000_82576;
334 		break;
335 	case E1000_DEV_ID_82580_COPPER:
336 	case E1000_DEV_ID_82580_FIBER:
337 	case E1000_DEV_ID_82580_SERDES:
338 	case E1000_DEV_ID_82580_SGMII:
339 	case E1000_DEV_ID_82580_COPPER_DUAL:
340 	case E1000_DEV_ID_82580_QUAD_FIBER:
341 	case E1000_DEV_ID_DH89XXCC_SGMII:
342 	case E1000_DEV_ID_DH89XXCC_SERDES:
343 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
344 	case E1000_DEV_ID_DH89XXCC_SFP:
345 		mac->type = e1000_82580;
346 		break;
347 	case E1000_DEV_ID_I350_COPPER:
348 	case E1000_DEV_ID_I350_FIBER:
349 	case E1000_DEV_ID_I350_SERDES:
350 	case E1000_DEV_ID_I350_SGMII:
351 	case E1000_DEV_ID_I350_DA4:
352 		mac->type = e1000_i350;
353 		break;
354 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
355 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
356 	case E1000_DEV_ID_I210_COPPER:
357 	case E1000_DEV_ID_I210_COPPER_OEM1:
358 	case E1000_DEV_ID_I210_COPPER_IT:
359 	case E1000_DEV_ID_I210_FIBER:
360 	case E1000_DEV_ID_I210_SERDES:
361 	case E1000_DEV_ID_I210_SGMII:
362 		mac->type = e1000_i210;
363 		break;
364 	case E1000_DEV_ID_I211_COPPER:
365 		mac->type = e1000_i211;
366 		break;
367 	case E1000_DEV_ID_82576_VF:
368 	case E1000_DEV_ID_82576_VF_HV:
369 		mac->type = e1000_vfadapt;
370 		break;
371 	case E1000_DEV_ID_I350_VF:
372 	case E1000_DEV_ID_I350_VF_HV:
373 		mac->type = e1000_vfadapt_i350;
374 		break;
375 
376 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
377 	case E1000_DEV_ID_I354_SGMII:
378 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
379 		mac->type = e1000_i354;
380 		break;
381 	default:
382 		/* Should never have loaded on this device */
383 		ret_val = -E1000_ERR_MAC_INIT;
384 		break;
385 	}
386 
387 	return ret_val;
388 }
389 
390 /**
391  *  e1000_setup_init_funcs - Initializes function pointers
392  *  @hw: pointer to the HW structure
393  *  @init_device: TRUE will initialize the rest of the function pointers
394  *		  getting the device ready for use.  FALSE will only set
395  *		  MAC type and the function pointers for the other init
396  *		  functions.  Passing FALSE will not generate any hardware
397  *		  reads or writes.
398  *
399  *  This function must be called by a driver in order to use the rest
400  *  of the 'shared' code files. Called by drivers only.
401  **/
402 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
403 {
404 	s32 ret_val;
405 
406 	/* Can't do much good without knowing the MAC type. */
407 	ret_val = e1000_set_mac_type(hw);
408 	if (ret_val) {
409 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
410 		goto out;
411 	}
412 
413 	if (!hw->hw_addr) {
414 		DEBUGOUT("ERROR: Registers not mapped\n");
415 		ret_val = -E1000_ERR_CONFIG;
416 		goto out;
417 	}
418 
419 	/*
420 	 * Init function pointers to generic implementations. We do this first
421 	 * allowing a driver module to override it afterward.
422 	 */
423 	e1000_init_mac_ops_generic(hw);
424 	e1000_init_phy_ops_generic(hw);
425 	e1000_init_nvm_ops_generic(hw);
426 	e1000_init_mbx_ops_generic(hw);
427 
428 	/*
429 	 * Set up the init function pointers. These are functions within the
430 	 * adapter family file that sets up function pointers for the rest of
431 	 * the functions in that family.
432 	 */
433 	switch (hw->mac.type) {
434 	case e1000_82542:
435 		e1000_init_function_pointers_82542(hw);
436 		break;
437 	case e1000_82543:
438 	case e1000_82544:
439 		e1000_init_function_pointers_82543(hw);
440 		break;
441 	case e1000_82540:
442 	case e1000_82545:
443 	case e1000_82545_rev_3:
444 	case e1000_82546:
445 	case e1000_82546_rev_3:
446 		e1000_init_function_pointers_82540(hw);
447 		break;
448 	case e1000_82541:
449 	case e1000_82541_rev_2:
450 	case e1000_82547:
451 	case e1000_82547_rev_2:
452 		e1000_init_function_pointers_82541(hw);
453 		break;
454 	case e1000_82571:
455 	case e1000_82572:
456 	case e1000_82573:
457 	case e1000_82574:
458 	case e1000_82583:
459 		e1000_init_function_pointers_82571(hw);
460 		break;
461 	case e1000_80003es2lan:
462 		e1000_init_function_pointers_80003es2lan(hw);
463 		break;
464 	case e1000_ich8lan:
465 	case e1000_ich9lan:
466 	case e1000_ich10lan:
467 	case e1000_pchlan:
468 	case e1000_pch2lan:
469 	case e1000_pch_lpt:
470 	case e1000_pch_spt:
471 	case e1000_pch_cnp:
472 		e1000_init_function_pointers_ich8lan(hw);
473 		break;
474 	case e1000_82575:
475 	case e1000_82576:
476 	case e1000_82580:
477 	case e1000_i350:
478 	case e1000_i354:
479 		e1000_init_function_pointers_82575(hw);
480 		break;
481 	case e1000_i210:
482 	case e1000_i211:
483 		e1000_init_function_pointers_i210(hw);
484 		break;
485 	case e1000_vfadapt:
486 		e1000_init_function_pointers_vf(hw);
487 		break;
488 	case e1000_vfadapt_i350:
489 		e1000_init_function_pointers_vf(hw);
490 		break;
491 	default:
492 		DEBUGOUT("Hardware not supported\n");
493 		ret_val = -E1000_ERR_CONFIG;
494 		break;
495 	}
496 
497 	/*
498 	 * Initialize the rest of the function pointers. These require some
499 	 * register reads/writes in some cases.
500 	 */
501 	if (!(ret_val) && init_device) {
502 		ret_val = e1000_init_mac_params(hw);
503 		if (ret_val)
504 			goto out;
505 
506 		ret_val = e1000_init_nvm_params(hw);
507 		if (ret_val)
508 			goto out;
509 
510 		ret_val = e1000_init_phy_params(hw);
511 		if (ret_val)
512 			goto out;
513 
514 		ret_val = e1000_init_mbx_params(hw);
515 		if (ret_val)
516 			goto out;
517 	}
518 
519 out:
520 	return ret_val;
521 }
522 
523 /**
524  *  e1000_get_bus_info - Obtain bus information for adapter
525  *  @hw: pointer to the HW structure
526  *
527  *  This will obtain information about the HW bus for which the
528  *  adapter is attached and stores it in the hw structure. This is a
529  *  function pointer entry point called by drivers.
530  **/
531 s32 e1000_get_bus_info(struct e1000_hw *hw)
532 {
533 	if (hw->mac.ops.get_bus_info)
534 		return hw->mac.ops.get_bus_info(hw);
535 
536 	return E1000_SUCCESS;
537 }
538 
539 /**
540  *  e1000_clear_vfta - Clear VLAN filter table
541  *  @hw: pointer to the HW structure
542  *
543  *  This clears the VLAN filter table on the adapter. This is a function
544  *  pointer entry point called by drivers.
545  **/
546 void e1000_clear_vfta(struct e1000_hw *hw)
547 {
548 	if (hw->mac.ops.clear_vfta)
549 		hw->mac.ops.clear_vfta(hw);
550 }
551 
552 /**
553  *  e1000_write_vfta - Write value to VLAN filter table
554  *  @hw: pointer to the HW structure
555  *  @offset: the 32-bit offset in which to write the value to.
556  *  @value: the 32-bit value to write at location offset.
557  *
558  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
559  *  table. This is a function pointer entry point called by drivers.
560  **/
561 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
562 {
563 	if (hw->mac.ops.write_vfta)
564 		hw->mac.ops.write_vfta(hw, offset, value);
565 }
566 
567 /**
568  *  e1000_update_mc_addr_list - Update Multicast addresses
569  *  @hw: pointer to the HW structure
570  *  @mc_addr_list: array of multicast addresses to program
571  *  @mc_addr_count: number of multicast addresses to program
572  *
573  *  Updates the Multicast Table Array.
574  *  The caller must have a packed mc_addr_list of multicast addresses.
575  **/
576 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
577 			       u32 mc_addr_count)
578 {
579 	if (hw->mac.ops.update_mc_addr_list)
580 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
581 						mc_addr_count);
582 }
583 
584 /**
585  *  e1000_force_mac_fc - Force MAC flow control
586  *  @hw: pointer to the HW structure
587  *
588  *  Force the MAC's flow control settings. Currently no func pointer exists
589  *  and all implementations are handled in the generic version of this
590  *  function.
591  **/
592 s32 e1000_force_mac_fc(struct e1000_hw *hw)
593 {
594 	return e1000_force_mac_fc_generic(hw);
595 }
596 
597 /**
598  *  e1000_check_for_link - Check/Store link connection
599  *  @hw: pointer to the HW structure
600  *
601  *  This checks the link condition of the adapter and stores the
602  *  results in the hw->mac structure. This is a function pointer entry
603  *  point called by drivers.
604  **/
605 s32 e1000_check_for_link(struct e1000_hw *hw)
606 {
607 	if (hw->mac.ops.check_for_link)
608 		return hw->mac.ops.check_for_link(hw);
609 
610 	return -E1000_ERR_CONFIG;
611 }
612 
613 /**
614  *  e1000_check_mng_mode - Check management mode
615  *  @hw: pointer to the HW structure
616  *
617  *  This checks if the adapter has manageability enabled.
618  *  This is a function pointer entry point called by drivers.
619  **/
620 bool e1000_check_mng_mode(struct e1000_hw *hw)
621 {
622 	if (hw->mac.ops.check_mng_mode)
623 		return hw->mac.ops.check_mng_mode(hw);
624 
625 	return FALSE;
626 }
627 
628 /**
629  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
630  *  @hw: pointer to the HW structure
631  *  @buffer: pointer to the host interface
632  *  @length: size of the buffer
633  *
634  *  Writes the DHCP information to the host interface.
635  **/
636 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
637 {
638 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
639 }
640 
641 /**
642  *  e1000_reset_hw - Reset hardware
643  *  @hw: pointer to the HW structure
644  *
645  *  This resets the hardware into a known state. This is a function pointer
646  *  entry point called by drivers.
647  **/
648 s32 e1000_reset_hw(struct e1000_hw *hw)
649 {
650 	if (hw->mac.ops.reset_hw)
651 		return hw->mac.ops.reset_hw(hw);
652 
653 	return -E1000_ERR_CONFIG;
654 }
655 
656 /**
657  *  e1000_init_hw - Initialize hardware
658  *  @hw: pointer to the HW structure
659  *
660  *  This inits the hardware readying it for operation. This is a function
661  *  pointer entry point called by drivers.
662  **/
663 s32 e1000_init_hw(struct e1000_hw *hw)
664 {
665 	if (hw->mac.ops.init_hw)
666 		return hw->mac.ops.init_hw(hw);
667 
668 	return -E1000_ERR_CONFIG;
669 }
670 
671 /**
672  *  e1000_setup_link - Configures link and flow control
673  *  @hw: pointer to the HW structure
674  *
675  *  This configures link and flow control settings for the adapter. This
676  *  is a function pointer entry point called by drivers. While modules can
677  *  also call this, they probably call their own version of this function.
678  **/
679 s32 e1000_setup_link(struct e1000_hw *hw)
680 {
681 	if (hw->mac.ops.setup_link)
682 		return hw->mac.ops.setup_link(hw);
683 
684 	return -E1000_ERR_CONFIG;
685 }
686 
687 /**
688  *  e1000_get_speed_and_duplex - Returns current speed and duplex
689  *  @hw: pointer to the HW structure
690  *  @speed: pointer to a 16-bit value to store the speed
691  *  @duplex: pointer to a 16-bit value to store the duplex.
692  *
693  *  This returns the speed and duplex of the adapter in the two 'out'
694  *  variables passed in. This is a function pointer entry point called
695  *  by drivers.
696  **/
697 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
698 {
699 	if (hw->mac.ops.get_link_up_info)
700 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
701 
702 	return -E1000_ERR_CONFIG;
703 }
704 
705 /**
706  *  e1000_setup_led - Configures SW controllable LED
707  *  @hw: pointer to the HW structure
708  *
709  *  This prepares the SW controllable LED for use and saves the current state
710  *  of the LED so it can be later restored. This is a function pointer entry
711  *  point called by drivers.
712  **/
713 s32 e1000_setup_led(struct e1000_hw *hw)
714 {
715 	if (hw->mac.ops.setup_led)
716 		return hw->mac.ops.setup_led(hw);
717 
718 	return E1000_SUCCESS;
719 }
720 
721 /**
722  *  e1000_cleanup_led - Restores SW controllable LED
723  *  @hw: pointer to the HW structure
724  *
725  *  This restores the SW controllable LED to the value saved off by
726  *  e1000_setup_led. This is a function pointer entry point called by drivers.
727  **/
728 s32 e1000_cleanup_led(struct e1000_hw *hw)
729 {
730 	if (hw->mac.ops.cleanup_led)
731 		return hw->mac.ops.cleanup_led(hw);
732 
733 	return E1000_SUCCESS;
734 }
735 
736 /**
737  *  e1000_blink_led - Blink SW controllable LED
738  *  @hw: pointer to the HW structure
739  *
740  *  This starts the adapter LED blinking. Request the LED to be setup first
741  *  and cleaned up after. This is a function pointer entry point called by
742  *  drivers.
743  **/
744 s32 e1000_blink_led(struct e1000_hw *hw)
745 {
746 	if (hw->mac.ops.blink_led)
747 		return hw->mac.ops.blink_led(hw);
748 
749 	return E1000_SUCCESS;
750 }
751 
752 /**
753  *  e1000_id_led_init - store LED configurations in SW
754  *  @hw: pointer to the HW structure
755  *
756  *  Initializes the LED config in SW. This is a function pointer entry point
757  *  called by drivers.
758  **/
759 s32 e1000_id_led_init(struct e1000_hw *hw)
760 {
761 	if (hw->mac.ops.id_led_init)
762 		return hw->mac.ops.id_led_init(hw);
763 
764 	return E1000_SUCCESS;
765 }
766 
767 /**
768  *  e1000_led_on - Turn on SW controllable LED
769  *  @hw: pointer to the HW structure
770  *
771  *  Turns the SW defined LED on. This is a function pointer entry point
772  *  called by drivers.
773  **/
774 s32 e1000_led_on(struct e1000_hw *hw)
775 {
776 	if (hw->mac.ops.led_on)
777 		return hw->mac.ops.led_on(hw);
778 
779 	return E1000_SUCCESS;
780 }
781 
782 /**
783  *  e1000_led_off - Turn off SW controllable LED
784  *  @hw: pointer to the HW structure
785  *
786  *  Turns the SW defined LED off. This is a function pointer entry point
787  *  called by drivers.
788  **/
789 s32 e1000_led_off(struct e1000_hw *hw)
790 {
791 	if (hw->mac.ops.led_off)
792 		return hw->mac.ops.led_off(hw);
793 
794 	return E1000_SUCCESS;
795 }
796 
797 /**
798  *  e1000_reset_adaptive - Reset adaptive IFS
799  *  @hw: pointer to the HW structure
800  *
801  *  Resets the adaptive IFS. Currently no func pointer exists and all
802  *  implementations are handled in the generic version of this function.
803  **/
804 void e1000_reset_adaptive(struct e1000_hw *hw)
805 {
806 	e1000_reset_adaptive_generic(hw);
807 }
808 
809 /**
810  *  e1000_update_adaptive - Update adaptive IFS
811  *  @hw: pointer to the HW structure
812  *
813  *  Updates adapter IFS. Currently no func pointer exists and all
814  *  implementations are handled in the generic version of this function.
815  **/
816 void e1000_update_adaptive(struct e1000_hw *hw)
817 {
818 	e1000_update_adaptive_generic(hw);
819 }
820 
821 /**
822  *  e1000_disable_pcie_master - Disable PCI-Express master access
823  *  @hw: pointer to the HW structure
824  *
825  *  Disables PCI-Express master access and verifies there are no pending
826  *  requests. Currently no func pointer exists and all implementations are
827  *  handled in the generic version of this function.
828  **/
829 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
830 {
831 	return e1000_disable_pcie_master_generic(hw);
832 }
833 
834 /**
835  *  e1000_config_collision_dist - Configure collision distance
836  *  @hw: pointer to the HW structure
837  *
838  *  Configures the collision distance to the default value and is used
839  *  during link setup.
840  **/
841 void e1000_config_collision_dist(struct e1000_hw *hw)
842 {
843 	if (hw->mac.ops.config_collision_dist)
844 		hw->mac.ops.config_collision_dist(hw);
845 }
846 
847 /**
848  *  e1000_rar_set - Sets a receive address register
849  *  @hw: pointer to the HW structure
850  *  @addr: address to set the RAR to
851  *  @index: the RAR to set
852  *
853  *  Sets a Receive Address Register (RAR) to the specified address.
854  **/
855 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
856 {
857 	if (hw->mac.ops.rar_set)
858 		return hw->mac.ops.rar_set(hw, addr, index);
859 
860 	return E1000_SUCCESS;
861 }
862 
863 /**
864  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
865  *  @hw: pointer to the HW structure
866  *
867  *  Ensures that the MDI/MDIX SW state is valid.
868  **/
869 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
870 {
871 	if (hw->mac.ops.validate_mdi_setting)
872 		return hw->mac.ops.validate_mdi_setting(hw);
873 
874 	return E1000_SUCCESS;
875 }
876 
877 /**
878  *  e1000_hash_mc_addr - Determines address location in multicast table
879  *  @hw: pointer to the HW structure
880  *  @mc_addr: Multicast address to hash.
881  *
882  *  This hashes an address to determine its location in the multicast
883  *  table. Currently no func pointer exists and all implementations
884  *  are handled in the generic version of this function.
885  **/
886 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
887 {
888 	return e1000_hash_mc_addr_generic(hw, mc_addr);
889 }
890 
891 /**
892  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
893  *  @hw: pointer to the HW structure
894  *
895  *  Enables packet filtering on transmit packets if manageability is enabled
896  *  and host interface is enabled.
897  *  Currently no func pointer exists and all implementations are handled in the
898  *  generic version of this function.
899  **/
900 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
901 {
902 	return e1000_enable_tx_pkt_filtering_generic(hw);
903 }
904 
905 /**
906  *  e1000_mng_host_if_write - Writes to the manageability host interface
907  *  @hw: pointer to the HW structure
908  *  @buffer: pointer to the host interface buffer
909  *  @length: size of the buffer
910  *  @offset: location in the buffer to write to
911  *  @sum: sum of the data (not checksum)
912  *
913  *  This function writes the buffer content at the offset given on the host if.
914  *  It also does alignment considerations to do the writes in most efficient
915  *  way.  Also fills up the sum of the buffer in *buffer parameter.
916  **/
917 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
918 			    u16 offset, u8 *sum)
919 {
920 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
921 }
922 
923 /**
924  *  e1000_mng_write_cmd_header - Writes manageability command header
925  *  @hw: pointer to the HW structure
926  *  @hdr: pointer to the host interface command header
927  *
928  *  Writes the command header after does the checksum calculation.
929  **/
930 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
931 			       struct e1000_host_mng_command_header *hdr)
932 {
933 	return e1000_mng_write_cmd_header_generic(hw, hdr);
934 }
935 
936 /**
937  *  e1000_mng_enable_host_if - Checks host interface is enabled
938  *  @hw: pointer to the HW structure
939  *
940  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
941  *
942  *  This function checks whether the HOST IF is enabled for command operation
943  *  and also checks whether the previous command is completed.  It busy waits
944  *  in case of previous command is not completed.
945  **/
946 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
947 {
948 	return e1000_mng_enable_host_if_generic(hw);
949 }
950 
951 /**
952  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
953  *  @hw: pointer to the HW structure
954  *  @itr: u32 indicating itr value
955  *
956  *  Set the OBFF timer based on the given interrupt rate.
957  **/
958 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
959 {
960 	if (hw->mac.ops.set_obff_timer)
961 		return hw->mac.ops.set_obff_timer(hw, itr);
962 
963 	return E1000_SUCCESS;
964 }
965 
966 /**
967  *  e1000_check_reset_block - Verifies PHY can be reset
968  *  @hw: pointer to the HW structure
969  *
970  *  Checks if the PHY is in a state that can be reset or if manageability
971  *  has it tied up. This is a function pointer entry point called by drivers.
972  **/
973 s32 e1000_check_reset_block(struct e1000_hw *hw)
974 {
975 	if (hw->phy.ops.check_reset_block)
976 		return hw->phy.ops.check_reset_block(hw);
977 
978 	return E1000_SUCCESS;
979 }
980 
981 /**
982  *  e1000_read_phy_reg - Reads PHY register
983  *  @hw: pointer to the HW structure
984  *  @offset: the register to read
985  *  @data: the buffer to store the 16-bit read.
986  *
987  *  Reads the PHY register and returns the value in data.
988  *  This is a function pointer entry point called by drivers.
989  **/
990 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
991 {
992 	if (hw->phy.ops.read_reg)
993 		return hw->phy.ops.read_reg(hw, offset, data);
994 
995 	return E1000_SUCCESS;
996 }
997 
998 /**
999  *  e1000_write_phy_reg - Writes PHY register
1000  *  @hw: pointer to the HW structure
1001  *  @offset: the register to write
1002  *  @data: the value to write.
1003  *
1004  *  Writes the PHY register at offset with the value in data.
1005  *  This is a function pointer entry point called by drivers.
1006  **/
1007 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1008 {
1009 	if (hw->phy.ops.write_reg)
1010 		return hw->phy.ops.write_reg(hw, offset, data);
1011 
1012 	return E1000_SUCCESS;
1013 }
1014 
1015 /**
1016  *  e1000_release_phy - Generic release PHY
1017  *  @hw: pointer to the HW structure
1018  *
1019  *  Return if silicon family does not require a semaphore when accessing the
1020  *  PHY.
1021  **/
1022 void e1000_release_phy(struct e1000_hw *hw)
1023 {
1024 	if (hw->phy.ops.release)
1025 		hw->phy.ops.release(hw);
1026 }
1027 
1028 /**
1029  *  e1000_acquire_phy - Generic acquire PHY
1030  *  @hw: pointer to the HW structure
1031  *
1032  *  Return success if silicon family does not require a semaphore when
1033  *  accessing the PHY.
1034  **/
1035 s32 e1000_acquire_phy(struct e1000_hw *hw)
1036 {
1037 	if (hw->phy.ops.acquire)
1038 		return hw->phy.ops.acquire(hw);
1039 
1040 	return E1000_SUCCESS;
1041 }
1042 
1043 /**
1044  *  e1000_cfg_on_link_up - Configure PHY upon link up
1045  *  @hw: pointer to the HW structure
1046  **/
1047 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1048 {
1049 	if (hw->phy.ops.cfg_on_link_up)
1050 		return hw->phy.ops.cfg_on_link_up(hw);
1051 
1052 	return E1000_SUCCESS;
1053 }
1054 
1055 /**
1056  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1057  *  @hw: pointer to the HW structure
1058  *  @offset: the register to read
1059  *  @data: the location to store the 16-bit value read.
1060  *
1061  *  Reads a register out of the Kumeran interface. Currently no func pointer
1062  *  exists and all implementations are handled in the generic version of
1063  *  this function.
1064  **/
1065 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1066 {
1067 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1068 }
1069 
1070 /**
1071  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1072  *  @hw: pointer to the HW structure
1073  *  @offset: the register to write
1074  *  @data: the value to write.
1075  *
1076  *  Writes a register to the Kumeran interface. Currently no func pointer
1077  *  exists and all implementations are handled in the generic version of
1078  *  this function.
1079  **/
1080 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1081 {
1082 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1083 }
1084 
1085 /**
1086  *  e1000_get_cable_length - Retrieves cable length estimation
1087  *  @hw: pointer to the HW structure
1088  *
1089  *  This function estimates the cable length and stores them in
1090  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1091  *  entry point called by drivers.
1092  **/
1093 s32 e1000_get_cable_length(struct e1000_hw *hw)
1094 {
1095 	if (hw->phy.ops.get_cable_length)
1096 		return hw->phy.ops.get_cable_length(hw);
1097 
1098 	return E1000_SUCCESS;
1099 }
1100 
1101 /**
1102  *  e1000_get_phy_info - Retrieves PHY information from registers
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  This function gets some information from various PHY registers and
1106  *  populates hw->phy values with it. This is a function pointer entry
1107  *  point called by drivers.
1108  **/
1109 s32 e1000_get_phy_info(struct e1000_hw *hw)
1110 {
1111 	if (hw->phy.ops.get_info)
1112 		return hw->phy.ops.get_info(hw);
1113 
1114 	return E1000_SUCCESS;
1115 }
1116 
1117 /**
1118  *  e1000_phy_hw_reset - Hard PHY reset
1119  *  @hw: pointer to the HW structure
1120  *
1121  *  Performs a hard PHY reset. This is a function pointer entry point called
1122  *  by drivers.
1123  **/
1124 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1125 {
1126 	if (hw->phy.ops.reset)
1127 		return hw->phy.ops.reset(hw);
1128 
1129 	return E1000_SUCCESS;
1130 }
1131 
1132 /**
1133  *  e1000_phy_commit - Soft PHY reset
1134  *  @hw: pointer to the HW structure
1135  *
1136  *  Performs a soft PHY reset on those that apply. This is a function pointer
1137  *  entry point called by drivers.
1138  **/
1139 s32 e1000_phy_commit(struct e1000_hw *hw)
1140 {
1141 	if (hw->phy.ops.commit)
1142 		return hw->phy.ops.commit(hw);
1143 
1144 	return E1000_SUCCESS;
1145 }
1146 
1147 /**
1148  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1149  *  @hw: pointer to the HW structure
1150  *  @active: boolean used to enable/disable lplu
1151  *
1152  *  Success returns 0, Failure returns 1
1153  *
1154  *  The low power link up (lplu) state is set to the power management level D0
1155  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1156  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1157  *  is used during Dx states where the power conservation is most important.
1158  *  During driver activity, SmartSpeed should be enabled so performance is
1159  *  maintained.  This is a function pointer entry point called by drivers.
1160  **/
1161 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1162 {
1163 	if (hw->phy.ops.set_d0_lplu_state)
1164 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1165 
1166 	return E1000_SUCCESS;
1167 }
1168 
1169 /**
1170  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1171  *  @hw: pointer to the HW structure
1172  *  @active: boolean used to enable/disable lplu
1173  *
1174  *  Success returns 0, Failure returns 1
1175  *
1176  *  The low power link up (lplu) state is set to the power management level D3
1177  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1178  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1179  *  is used during Dx states where the power conservation is most important.
1180  *  During driver activity, SmartSpeed should be enabled so performance is
1181  *  maintained.  This is a function pointer entry point called by drivers.
1182  **/
1183 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1184 {
1185 	if (hw->phy.ops.set_d3_lplu_state)
1186 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1187 
1188 	return E1000_SUCCESS;
1189 }
1190 
1191 /**
1192  *  e1000_read_mac_addr - Reads MAC address
1193  *  @hw: pointer to the HW structure
1194  *
1195  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1196  *  Currently no func pointer exists and all implementations are handled in the
1197  *  generic version of this function.
1198  **/
1199 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1200 {
1201 	if (hw->mac.ops.read_mac_addr)
1202 		return hw->mac.ops.read_mac_addr(hw);
1203 
1204 	return e1000_read_mac_addr_generic(hw);
1205 }
1206 
1207 /**
1208  *  e1000_read_pba_string - Read device part number string
1209  *  @hw: pointer to the HW structure
1210  *  @pba_num: pointer to device part number
1211  *  @pba_num_size: size of part number buffer
1212  *
1213  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1214  *  the value in pba_num.
1215  *  Currently no func pointer exists and all implementations are handled in the
1216  *  generic version of this function.
1217  **/
1218 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1219 {
1220 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1221 }
1222 
1223 /**
1224  *  e1000_read_pba_length - Read device part number string length
1225  *  @hw: pointer to the HW structure
1226  *  @pba_num_size: size of part number buffer
1227  *
1228  *  Reads the product board assembly (PBA) number length from the EEPROM and
1229  *  stores the value in pba_num.
1230  *  Currently no func pointer exists and all implementations are handled in the
1231  *  generic version of this function.
1232  **/
1233 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1234 {
1235 	return e1000_read_pba_length_generic(hw, pba_num_size);
1236 }
1237 
1238 /**
1239  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1240  *  @hw: pointer to the HW structure
1241  *
1242  *  Validates the NVM checksum is correct. This is a function pointer entry
1243  *  point called by drivers.
1244  **/
1245 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1246 {
1247 	if (hw->nvm.ops.validate)
1248 		return hw->nvm.ops.validate(hw);
1249 
1250 	return -E1000_ERR_CONFIG;
1251 }
1252 
1253 /**
1254  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1255  *  @hw: pointer to the HW structure
1256  *
1257  *  Updates the NVM checksum. Currently no func pointer exists and all
1258  *  implementations are handled in the generic version of this function.
1259  **/
1260 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1261 {
1262 	if (hw->nvm.ops.update)
1263 		return hw->nvm.ops.update(hw);
1264 
1265 	return -E1000_ERR_CONFIG;
1266 }
1267 
1268 /**
1269  *  e1000_reload_nvm - Reloads EEPROM
1270  *  @hw: pointer to the HW structure
1271  *
1272  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1273  *  extended control register.
1274  **/
1275 void e1000_reload_nvm(struct e1000_hw *hw)
1276 {
1277 	if (hw->nvm.ops.reload)
1278 		hw->nvm.ops.reload(hw);
1279 }
1280 
1281 /**
1282  *  e1000_read_nvm - Reads NVM (EEPROM)
1283  *  @hw: pointer to the HW structure
1284  *  @offset: the word offset to read
1285  *  @words: number of 16-bit words to read
1286  *  @data: pointer to the properly sized buffer for the data.
1287  *
1288  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1289  *  pointer entry point called by drivers.
1290  **/
1291 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1292 {
1293 	if (hw->nvm.ops.read)
1294 		return hw->nvm.ops.read(hw, offset, words, data);
1295 
1296 	return -E1000_ERR_CONFIG;
1297 }
1298 
1299 /**
1300  *  e1000_write_nvm - Writes to NVM (EEPROM)
1301  *  @hw: pointer to the HW structure
1302  *  @offset: the word offset to read
1303  *  @words: number of 16-bit words to write
1304  *  @data: pointer to the properly sized buffer for the data.
1305  *
1306  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1307  *  pointer entry point called by drivers.
1308  **/
1309 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1310 {
1311 	if (hw->nvm.ops.write)
1312 		return hw->nvm.ops.write(hw, offset, words, data);
1313 
1314 	return E1000_SUCCESS;
1315 }
1316 
1317 /**
1318  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1319  *  @hw: pointer to the HW structure
1320  *  @reg: 32bit register offset
1321  *  @offset: the register to write
1322  *  @data: the value to write.
1323  *
1324  *  Writes the PHY register at offset with the value in data.
1325  *  This is a function pointer entry point called by drivers.
1326  **/
1327 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1328 			      u8 data)
1329 {
1330 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1331 }
1332 
1333 /**
1334  * e1000_power_up_phy - Restores link in case of PHY power down
1335  * @hw: pointer to the HW structure
1336  *
1337  * The phy may be powered down to save power, to turn off link when the
1338  * driver is unloaded, or wake on lan is not enabled (among others).
1339  **/
1340 void e1000_power_up_phy(struct e1000_hw *hw)
1341 {
1342 	if (hw->phy.ops.power_up)
1343 		hw->phy.ops.power_up(hw);
1344 
1345 	e1000_setup_link(hw);
1346 }
1347 
1348 /**
1349  * e1000_power_down_phy - Power down PHY
1350  * @hw: pointer to the HW structure
1351  *
1352  * The phy may be powered down to save power, to turn off link when the
1353  * driver is unloaded, or wake on lan is not enabled (among others).
1354  **/
1355 void e1000_power_down_phy(struct e1000_hw *hw)
1356 {
1357 	if (hw->phy.ops.power_down)
1358 		hw->phy.ops.power_down(hw);
1359 }
1360 
1361 /**
1362  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1363  *  @hw: pointer to the HW structure
1364  *
1365  *  Power on the optics and PCS.
1366  **/
1367 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1368 {
1369 	if (hw->mac.ops.power_up_serdes)
1370 		hw->mac.ops.power_up_serdes(hw);
1371 }
1372 
1373 /**
1374  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1375  *  @hw: pointer to the HW structure
1376  *
1377  *  Shutdown the optics and PCS on driver unload.
1378  **/
1379 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1380 {
1381 	if (hw->mac.ops.shutdown_serdes)
1382 		hw->mac.ops.shutdown_serdes(hw);
1383 }
1384