xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 7ce1da6a)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 		mac->type = e1000_pch_spt;
313  		break;
314 	case E1000_DEV_ID_82575EB_COPPER:
315 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
316 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
317 		mac->type = e1000_82575;
318 		break;
319 	case E1000_DEV_ID_82576:
320 	case E1000_DEV_ID_82576_FIBER:
321 	case E1000_DEV_ID_82576_SERDES:
322 	case E1000_DEV_ID_82576_QUAD_COPPER:
323 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
324 	case E1000_DEV_ID_82576_NS:
325 	case E1000_DEV_ID_82576_NS_SERDES:
326 	case E1000_DEV_ID_82576_SERDES_QUAD:
327 		mac->type = e1000_82576;
328 		break;
329 	case E1000_DEV_ID_82580_COPPER:
330 	case E1000_DEV_ID_82580_FIBER:
331 	case E1000_DEV_ID_82580_SERDES:
332 	case E1000_DEV_ID_82580_SGMII:
333 	case E1000_DEV_ID_82580_COPPER_DUAL:
334 	case E1000_DEV_ID_82580_QUAD_FIBER:
335 	case E1000_DEV_ID_DH89XXCC_SGMII:
336 	case E1000_DEV_ID_DH89XXCC_SERDES:
337 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
338 	case E1000_DEV_ID_DH89XXCC_SFP:
339 		mac->type = e1000_82580;
340 		break;
341 	case E1000_DEV_ID_I350_COPPER:
342 	case E1000_DEV_ID_I350_FIBER:
343 	case E1000_DEV_ID_I350_SERDES:
344 	case E1000_DEV_ID_I350_SGMII:
345 	case E1000_DEV_ID_I350_DA4:
346 		mac->type = e1000_i350;
347 		break;
348 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
349 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
350 	case E1000_DEV_ID_I210_COPPER:
351 	case E1000_DEV_ID_I210_COPPER_OEM1:
352 	case E1000_DEV_ID_I210_COPPER_IT:
353 	case E1000_DEV_ID_I210_FIBER:
354 	case E1000_DEV_ID_I210_SERDES:
355 	case E1000_DEV_ID_I210_SGMII:
356 		mac->type = e1000_i210;
357 		break;
358 	case E1000_DEV_ID_I211_COPPER:
359 		mac->type = e1000_i211;
360 		break;
361 	case E1000_DEV_ID_82576_VF:
362 	case E1000_DEV_ID_82576_VF_HV:
363 		mac->type = e1000_vfadapt;
364 		break;
365 	case E1000_DEV_ID_I350_VF:
366 	case E1000_DEV_ID_I350_VF_HV:
367 		mac->type = e1000_vfadapt_i350;
368 		break;
369 
370 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
371 	case E1000_DEV_ID_I354_SGMII:
372 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
373 		mac->type = e1000_i354;
374 		break;
375 	default:
376 		/* Should never have loaded on this device */
377 		ret_val = -E1000_ERR_MAC_INIT;
378 		break;
379 	}
380 
381 	return ret_val;
382 }
383 
384 /**
385  *  e1000_setup_init_funcs - Initializes function pointers
386  *  @hw: pointer to the HW structure
387  *  @init_device: TRUE will initialize the rest of the function pointers
388  *		  getting the device ready for use.  FALSE will only set
389  *		  MAC type and the function pointers for the other init
390  *		  functions.  Passing FALSE will not generate any hardware
391  *		  reads or writes.
392  *
393  *  This function must be called by a driver in order to use the rest
394  *  of the 'shared' code files. Called by drivers only.
395  **/
396 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
397 {
398 	s32 ret_val;
399 
400 	/* Can't do much good without knowing the MAC type. */
401 	ret_val = e1000_set_mac_type(hw);
402 	if (ret_val) {
403 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
404 		goto out;
405 	}
406 
407 	if (!hw->hw_addr) {
408 		DEBUGOUT("ERROR: Registers not mapped\n");
409 		ret_val = -E1000_ERR_CONFIG;
410 		goto out;
411 	}
412 
413 	/*
414 	 * Init function pointers to generic implementations. We do this first
415 	 * allowing a driver module to override it afterward.
416 	 */
417 	e1000_init_mac_ops_generic(hw);
418 	e1000_init_phy_ops_generic(hw);
419 	e1000_init_nvm_ops_generic(hw);
420 	e1000_init_mbx_ops_generic(hw);
421 
422 	/*
423 	 * Set up the init function pointers. These are functions within the
424 	 * adapter family file that sets up function pointers for the rest of
425 	 * the functions in that family.
426 	 */
427 	switch (hw->mac.type) {
428 	case e1000_82542:
429 		e1000_init_function_pointers_82542(hw);
430 		break;
431 	case e1000_82543:
432 	case e1000_82544:
433 		e1000_init_function_pointers_82543(hw);
434 		break;
435 	case e1000_82540:
436 	case e1000_82545:
437 	case e1000_82545_rev_3:
438 	case e1000_82546:
439 	case e1000_82546_rev_3:
440 		e1000_init_function_pointers_82540(hw);
441 		break;
442 	case e1000_82541:
443 	case e1000_82541_rev_2:
444 	case e1000_82547:
445 	case e1000_82547_rev_2:
446 		e1000_init_function_pointers_82541(hw);
447 		break;
448 	case e1000_82571:
449 	case e1000_82572:
450 	case e1000_82573:
451 	case e1000_82574:
452 	case e1000_82583:
453 		e1000_init_function_pointers_82571(hw);
454 		break;
455 	case e1000_80003es2lan:
456 		e1000_init_function_pointers_80003es2lan(hw);
457 		break;
458 	case e1000_ich8lan:
459 	case e1000_ich9lan:
460 	case e1000_ich10lan:
461 	case e1000_pchlan:
462 	case e1000_pch2lan:
463 	case e1000_pch_lpt:
464 	case e1000_pch_spt:
465 		e1000_init_function_pointers_ich8lan(hw);
466 		break;
467 	case e1000_82575:
468 	case e1000_82576:
469 	case e1000_82580:
470 	case e1000_i350:
471 	case e1000_i354:
472 		e1000_init_function_pointers_82575(hw);
473 		break;
474 	case e1000_i210:
475 	case e1000_i211:
476 		e1000_init_function_pointers_i210(hw);
477 		break;
478 	case e1000_vfadapt:
479 		e1000_init_function_pointers_vf(hw);
480 		break;
481 	case e1000_vfadapt_i350:
482 		e1000_init_function_pointers_vf(hw);
483 		break;
484 	default:
485 		DEBUGOUT("Hardware not supported\n");
486 		ret_val = -E1000_ERR_CONFIG;
487 		break;
488 	}
489 
490 	/*
491 	 * Initialize the rest of the function pointers. These require some
492 	 * register reads/writes in some cases.
493 	 */
494 	if (!(ret_val) && init_device) {
495 		ret_val = e1000_init_mac_params(hw);
496 		if (ret_val)
497 			goto out;
498 
499 		ret_val = e1000_init_nvm_params(hw);
500 		if (ret_val)
501 			goto out;
502 
503 		ret_val = e1000_init_phy_params(hw);
504 		if (ret_val)
505 			goto out;
506 
507 		ret_val = e1000_init_mbx_params(hw);
508 		if (ret_val)
509 			goto out;
510 	}
511 
512 out:
513 	return ret_val;
514 }
515 
516 /**
517  *  e1000_get_bus_info - Obtain bus information for adapter
518  *  @hw: pointer to the HW structure
519  *
520  *  This will obtain information about the HW bus for which the
521  *  adapter is attached and stores it in the hw structure. This is a
522  *  function pointer entry point called by drivers.
523  **/
524 s32 e1000_get_bus_info(struct e1000_hw *hw)
525 {
526 	if (hw->mac.ops.get_bus_info)
527 		return hw->mac.ops.get_bus_info(hw);
528 
529 	return E1000_SUCCESS;
530 }
531 
532 /**
533  *  e1000_clear_vfta - Clear VLAN filter table
534  *  @hw: pointer to the HW structure
535  *
536  *  This clears the VLAN filter table on the adapter. This is a function
537  *  pointer entry point called by drivers.
538  **/
539 void e1000_clear_vfta(struct e1000_hw *hw)
540 {
541 	if (hw->mac.ops.clear_vfta)
542 		hw->mac.ops.clear_vfta(hw);
543 }
544 
545 /**
546  *  e1000_write_vfta - Write value to VLAN filter table
547  *  @hw: pointer to the HW structure
548  *  @offset: the 32-bit offset in which to write the value to.
549  *  @value: the 32-bit value to write at location offset.
550  *
551  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
552  *  table. This is a function pointer entry point called by drivers.
553  **/
554 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
555 {
556 	if (hw->mac.ops.write_vfta)
557 		hw->mac.ops.write_vfta(hw, offset, value);
558 }
559 
560 /**
561  *  e1000_update_mc_addr_list - Update Multicast addresses
562  *  @hw: pointer to the HW structure
563  *  @mc_addr_list: array of multicast addresses to program
564  *  @mc_addr_count: number of multicast addresses to program
565  *
566  *  Updates the Multicast Table Array.
567  *  The caller must have a packed mc_addr_list of multicast addresses.
568  **/
569 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
570 			       u32 mc_addr_count)
571 {
572 	if (hw->mac.ops.update_mc_addr_list)
573 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
574 						mc_addr_count);
575 }
576 
577 /**
578  *  e1000_force_mac_fc - Force MAC flow control
579  *  @hw: pointer to the HW structure
580  *
581  *  Force the MAC's flow control settings. Currently no func pointer exists
582  *  and all implementations are handled in the generic version of this
583  *  function.
584  **/
585 s32 e1000_force_mac_fc(struct e1000_hw *hw)
586 {
587 	return e1000_force_mac_fc_generic(hw);
588 }
589 
590 /**
591  *  e1000_check_for_link - Check/Store link connection
592  *  @hw: pointer to the HW structure
593  *
594  *  This checks the link condition of the adapter and stores the
595  *  results in the hw->mac structure. This is a function pointer entry
596  *  point called by drivers.
597  **/
598 s32 e1000_check_for_link(struct e1000_hw *hw)
599 {
600 	if (hw->mac.ops.check_for_link)
601 		return hw->mac.ops.check_for_link(hw);
602 
603 	return -E1000_ERR_CONFIG;
604 }
605 
606 /**
607  *  e1000_check_mng_mode - Check management mode
608  *  @hw: pointer to the HW structure
609  *
610  *  This checks if the adapter has manageability enabled.
611  *  This is a function pointer entry point called by drivers.
612  **/
613 bool e1000_check_mng_mode(struct e1000_hw *hw)
614 {
615 	if (hw->mac.ops.check_mng_mode)
616 		return hw->mac.ops.check_mng_mode(hw);
617 
618 	return FALSE;
619 }
620 
621 /**
622  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
623  *  @hw: pointer to the HW structure
624  *  @buffer: pointer to the host interface
625  *  @length: size of the buffer
626  *
627  *  Writes the DHCP information to the host interface.
628  **/
629 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
630 {
631 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
632 }
633 
634 /**
635  *  e1000_reset_hw - Reset hardware
636  *  @hw: pointer to the HW structure
637  *
638  *  This resets the hardware into a known state. This is a function pointer
639  *  entry point called by drivers.
640  **/
641 s32 e1000_reset_hw(struct e1000_hw *hw)
642 {
643 	if (hw->mac.ops.reset_hw)
644 		return hw->mac.ops.reset_hw(hw);
645 
646 	return -E1000_ERR_CONFIG;
647 }
648 
649 /**
650  *  e1000_init_hw - Initialize hardware
651  *  @hw: pointer to the HW structure
652  *
653  *  This inits the hardware readying it for operation. This is a function
654  *  pointer entry point called by drivers.
655  **/
656 s32 e1000_init_hw(struct e1000_hw *hw)
657 {
658 	if (hw->mac.ops.init_hw)
659 		return hw->mac.ops.init_hw(hw);
660 
661 	return -E1000_ERR_CONFIG;
662 }
663 
664 /**
665  *  e1000_setup_link - Configures link and flow control
666  *  @hw: pointer to the HW structure
667  *
668  *  This configures link and flow control settings for the adapter. This
669  *  is a function pointer entry point called by drivers. While modules can
670  *  also call this, they probably call their own version of this function.
671  **/
672 s32 e1000_setup_link(struct e1000_hw *hw)
673 {
674 	if (hw->mac.ops.setup_link)
675 		return hw->mac.ops.setup_link(hw);
676 
677 	return -E1000_ERR_CONFIG;
678 }
679 
680 /**
681  *  e1000_get_speed_and_duplex - Returns current speed and duplex
682  *  @hw: pointer to the HW structure
683  *  @speed: pointer to a 16-bit value to store the speed
684  *  @duplex: pointer to a 16-bit value to store the duplex.
685  *
686  *  This returns the speed and duplex of the adapter in the two 'out'
687  *  variables passed in. This is a function pointer entry point called
688  *  by drivers.
689  **/
690 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
691 {
692 	if (hw->mac.ops.get_link_up_info)
693 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
694 
695 	return -E1000_ERR_CONFIG;
696 }
697 
698 /**
699  *  e1000_setup_led - Configures SW controllable LED
700  *  @hw: pointer to the HW structure
701  *
702  *  This prepares the SW controllable LED for use and saves the current state
703  *  of the LED so it can be later restored. This is a function pointer entry
704  *  point called by drivers.
705  **/
706 s32 e1000_setup_led(struct e1000_hw *hw)
707 {
708 	if (hw->mac.ops.setup_led)
709 		return hw->mac.ops.setup_led(hw);
710 
711 	return E1000_SUCCESS;
712 }
713 
714 /**
715  *  e1000_cleanup_led - Restores SW controllable LED
716  *  @hw: pointer to the HW structure
717  *
718  *  This restores the SW controllable LED to the value saved off by
719  *  e1000_setup_led. This is a function pointer entry point called by drivers.
720  **/
721 s32 e1000_cleanup_led(struct e1000_hw *hw)
722 {
723 	if (hw->mac.ops.cleanup_led)
724 		return hw->mac.ops.cleanup_led(hw);
725 
726 	return E1000_SUCCESS;
727 }
728 
729 /**
730  *  e1000_blink_led - Blink SW controllable LED
731  *  @hw: pointer to the HW structure
732  *
733  *  This starts the adapter LED blinking. Request the LED to be setup first
734  *  and cleaned up after. This is a function pointer entry point called by
735  *  drivers.
736  **/
737 s32 e1000_blink_led(struct e1000_hw *hw)
738 {
739 	if (hw->mac.ops.blink_led)
740 		return hw->mac.ops.blink_led(hw);
741 
742 	return E1000_SUCCESS;
743 }
744 
745 /**
746  *  e1000_id_led_init - store LED configurations in SW
747  *  @hw: pointer to the HW structure
748  *
749  *  Initializes the LED config in SW. This is a function pointer entry point
750  *  called by drivers.
751  **/
752 s32 e1000_id_led_init(struct e1000_hw *hw)
753 {
754 	if (hw->mac.ops.id_led_init)
755 		return hw->mac.ops.id_led_init(hw);
756 
757 	return E1000_SUCCESS;
758 }
759 
760 /**
761  *  e1000_led_on - Turn on SW controllable LED
762  *  @hw: pointer to the HW structure
763  *
764  *  Turns the SW defined LED on. This is a function pointer entry point
765  *  called by drivers.
766  **/
767 s32 e1000_led_on(struct e1000_hw *hw)
768 {
769 	if (hw->mac.ops.led_on)
770 		return hw->mac.ops.led_on(hw);
771 
772 	return E1000_SUCCESS;
773 }
774 
775 /**
776  *  e1000_led_off - Turn off SW controllable LED
777  *  @hw: pointer to the HW structure
778  *
779  *  Turns the SW defined LED off. This is a function pointer entry point
780  *  called by drivers.
781  **/
782 s32 e1000_led_off(struct e1000_hw *hw)
783 {
784 	if (hw->mac.ops.led_off)
785 		return hw->mac.ops.led_off(hw);
786 
787 	return E1000_SUCCESS;
788 }
789 
790 /**
791  *  e1000_reset_adaptive - Reset adaptive IFS
792  *  @hw: pointer to the HW structure
793  *
794  *  Resets the adaptive IFS. Currently no func pointer exists and all
795  *  implementations are handled in the generic version of this function.
796  **/
797 void e1000_reset_adaptive(struct e1000_hw *hw)
798 {
799 	e1000_reset_adaptive_generic(hw);
800 }
801 
802 /**
803  *  e1000_update_adaptive - Update adaptive IFS
804  *  @hw: pointer to the HW structure
805  *
806  *  Updates adapter IFS. Currently no func pointer exists and all
807  *  implementations are handled in the generic version of this function.
808  **/
809 void e1000_update_adaptive(struct e1000_hw *hw)
810 {
811 	e1000_update_adaptive_generic(hw);
812 }
813 
814 /**
815  *  e1000_disable_pcie_master - Disable PCI-Express master access
816  *  @hw: pointer to the HW structure
817  *
818  *  Disables PCI-Express master access and verifies there are no pending
819  *  requests. Currently no func pointer exists and all implementations are
820  *  handled in the generic version of this function.
821  **/
822 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
823 {
824 	return e1000_disable_pcie_master_generic(hw);
825 }
826 
827 /**
828  *  e1000_config_collision_dist - Configure collision distance
829  *  @hw: pointer to the HW structure
830  *
831  *  Configures the collision distance to the default value and is used
832  *  during link setup.
833  **/
834 void e1000_config_collision_dist(struct e1000_hw *hw)
835 {
836 	if (hw->mac.ops.config_collision_dist)
837 		hw->mac.ops.config_collision_dist(hw);
838 }
839 
840 /**
841  *  e1000_rar_set - Sets a receive address register
842  *  @hw: pointer to the HW structure
843  *  @addr: address to set the RAR to
844  *  @index: the RAR to set
845  *
846  *  Sets a Receive Address Register (RAR) to the specified address.
847  **/
848 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
849 {
850 	if (hw->mac.ops.rar_set)
851 		return hw->mac.ops.rar_set(hw, addr, index);
852 
853 	return E1000_SUCCESS;
854 }
855 
856 /**
857  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
858  *  @hw: pointer to the HW structure
859  *
860  *  Ensures that the MDI/MDIX SW state is valid.
861  **/
862 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
863 {
864 	if (hw->mac.ops.validate_mdi_setting)
865 		return hw->mac.ops.validate_mdi_setting(hw);
866 
867 	return E1000_SUCCESS;
868 }
869 
870 /**
871  *  e1000_hash_mc_addr - Determines address location in multicast table
872  *  @hw: pointer to the HW structure
873  *  @mc_addr: Multicast address to hash.
874  *
875  *  This hashes an address to determine its location in the multicast
876  *  table. Currently no func pointer exists and all implementations
877  *  are handled in the generic version of this function.
878  **/
879 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
880 {
881 	return e1000_hash_mc_addr_generic(hw, mc_addr);
882 }
883 
884 /**
885  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
886  *  @hw: pointer to the HW structure
887  *
888  *  Enables packet filtering on transmit packets if manageability is enabled
889  *  and host interface is enabled.
890  *  Currently no func pointer exists and all implementations are handled in the
891  *  generic version of this function.
892  **/
893 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
894 {
895 	return e1000_enable_tx_pkt_filtering_generic(hw);
896 }
897 
898 /**
899  *  e1000_mng_host_if_write - Writes to the manageability host interface
900  *  @hw: pointer to the HW structure
901  *  @buffer: pointer to the host interface buffer
902  *  @length: size of the buffer
903  *  @offset: location in the buffer to write to
904  *  @sum: sum of the data (not checksum)
905  *
906  *  This function writes the buffer content at the offset given on the host if.
907  *  It also does alignment considerations to do the writes in most efficient
908  *  way.  Also fills up the sum of the buffer in *buffer parameter.
909  **/
910 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
911 			    u16 offset, u8 *sum)
912 {
913 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
914 }
915 
916 /**
917  *  e1000_mng_write_cmd_header - Writes manageability command header
918  *  @hw: pointer to the HW structure
919  *  @hdr: pointer to the host interface command header
920  *
921  *  Writes the command header after does the checksum calculation.
922  **/
923 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
924 			       struct e1000_host_mng_command_header *hdr)
925 {
926 	return e1000_mng_write_cmd_header_generic(hw, hdr);
927 }
928 
929 /**
930  *  e1000_mng_enable_host_if - Checks host interface is enabled
931  *  @hw: pointer to the HW structure
932  *
933  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
934  *
935  *  This function checks whether the HOST IF is enabled for command operation
936  *  and also checks whether the previous command is completed.  It busy waits
937  *  in case of previous command is not completed.
938  **/
939 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
940 {
941 	return e1000_mng_enable_host_if_generic(hw);
942 }
943 
944 /**
945  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
946  *  @hw: pointer to the HW structure
947  *  @itr: u32 indicating itr value
948  *
949  *  Set the OBFF timer based on the given interrupt rate.
950  **/
951 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
952 {
953 	if (hw->mac.ops.set_obff_timer)
954 		return hw->mac.ops.set_obff_timer(hw, itr);
955 
956 	return E1000_SUCCESS;
957 }
958 
959 /**
960  *  e1000_check_reset_block - Verifies PHY can be reset
961  *  @hw: pointer to the HW structure
962  *
963  *  Checks if the PHY is in a state that can be reset or if manageability
964  *  has it tied up. This is a function pointer entry point called by drivers.
965  **/
966 s32 e1000_check_reset_block(struct e1000_hw *hw)
967 {
968 	if (hw->phy.ops.check_reset_block)
969 		return hw->phy.ops.check_reset_block(hw);
970 
971 	return E1000_SUCCESS;
972 }
973 
974 /**
975  *  e1000_read_phy_reg - Reads PHY register
976  *  @hw: pointer to the HW structure
977  *  @offset: the register to read
978  *  @data: the buffer to store the 16-bit read.
979  *
980  *  Reads the PHY register and returns the value in data.
981  *  This is a function pointer entry point called by drivers.
982  **/
983 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
984 {
985 	if (hw->phy.ops.read_reg)
986 		return hw->phy.ops.read_reg(hw, offset, data);
987 
988 	return E1000_SUCCESS;
989 }
990 
991 /**
992  *  e1000_write_phy_reg - Writes PHY register
993  *  @hw: pointer to the HW structure
994  *  @offset: the register to write
995  *  @data: the value to write.
996  *
997  *  Writes the PHY register at offset with the value in data.
998  *  This is a function pointer entry point called by drivers.
999  **/
1000 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1001 {
1002 	if (hw->phy.ops.write_reg)
1003 		return hw->phy.ops.write_reg(hw, offset, data);
1004 
1005 	return E1000_SUCCESS;
1006 }
1007 
1008 /**
1009  *  e1000_release_phy - Generic release PHY
1010  *  @hw: pointer to the HW structure
1011  *
1012  *  Return if silicon family does not require a semaphore when accessing the
1013  *  PHY.
1014  **/
1015 void e1000_release_phy(struct e1000_hw *hw)
1016 {
1017 	if (hw->phy.ops.release)
1018 		hw->phy.ops.release(hw);
1019 }
1020 
1021 /**
1022  *  e1000_acquire_phy - Generic acquire PHY
1023  *  @hw: pointer to the HW structure
1024  *
1025  *  Return success if silicon family does not require a semaphore when
1026  *  accessing the PHY.
1027  **/
1028 s32 e1000_acquire_phy(struct e1000_hw *hw)
1029 {
1030 	if (hw->phy.ops.acquire)
1031 		return hw->phy.ops.acquire(hw);
1032 
1033 	return E1000_SUCCESS;
1034 }
1035 
1036 /**
1037  *  e1000_cfg_on_link_up - Configure PHY upon link up
1038  *  @hw: pointer to the HW structure
1039  **/
1040 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1041 {
1042 	if (hw->phy.ops.cfg_on_link_up)
1043 		return hw->phy.ops.cfg_on_link_up(hw);
1044 
1045 	return E1000_SUCCESS;
1046 }
1047 
1048 /**
1049  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1050  *  @hw: pointer to the HW structure
1051  *  @offset: the register to read
1052  *  @data: the location to store the 16-bit value read.
1053  *
1054  *  Reads a register out of the Kumeran interface. Currently no func pointer
1055  *  exists and all implementations are handled in the generic version of
1056  *  this function.
1057  **/
1058 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1059 {
1060 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1061 }
1062 
1063 /**
1064  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1065  *  @hw: pointer to the HW structure
1066  *  @offset: the register to write
1067  *  @data: the value to write.
1068  *
1069  *  Writes a register to the Kumeran interface. Currently no func pointer
1070  *  exists and all implementations are handled in the generic version of
1071  *  this function.
1072  **/
1073 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1074 {
1075 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1076 }
1077 
1078 /**
1079  *  e1000_get_cable_length - Retrieves cable length estimation
1080  *  @hw: pointer to the HW structure
1081  *
1082  *  This function estimates the cable length and stores them in
1083  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1084  *  entry point called by drivers.
1085  **/
1086 s32 e1000_get_cable_length(struct e1000_hw *hw)
1087 {
1088 	if (hw->phy.ops.get_cable_length)
1089 		return hw->phy.ops.get_cable_length(hw);
1090 
1091 	return E1000_SUCCESS;
1092 }
1093 
1094 /**
1095  *  e1000_get_phy_info - Retrieves PHY information from registers
1096  *  @hw: pointer to the HW structure
1097  *
1098  *  This function gets some information from various PHY registers and
1099  *  populates hw->phy values with it. This is a function pointer entry
1100  *  point called by drivers.
1101  **/
1102 s32 e1000_get_phy_info(struct e1000_hw *hw)
1103 {
1104 	if (hw->phy.ops.get_info)
1105 		return hw->phy.ops.get_info(hw);
1106 
1107 	return E1000_SUCCESS;
1108 }
1109 
1110 /**
1111  *  e1000_phy_hw_reset - Hard PHY reset
1112  *  @hw: pointer to the HW structure
1113  *
1114  *  Performs a hard PHY reset. This is a function pointer entry point called
1115  *  by drivers.
1116  **/
1117 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1118 {
1119 	if (hw->phy.ops.reset)
1120 		return hw->phy.ops.reset(hw);
1121 
1122 	return E1000_SUCCESS;
1123 }
1124 
1125 /**
1126  *  e1000_phy_commit - Soft PHY reset
1127  *  @hw: pointer to the HW structure
1128  *
1129  *  Performs a soft PHY reset on those that apply. This is a function pointer
1130  *  entry point called by drivers.
1131  **/
1132 s32 e1000_phy_commit(struct e1000_hw *hw)
1133 {
1134 	if (hw->phy.ops.commit)
1135 		return hw->phy.ops.commit(hw);
1136 
1137 	return E1000_SUCCESS;
1138 }
1139 
1140 /**
1141  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1142  *  @hw: pointer to the HW structure
1143  *  @active: boolean used to enable/disable lplu
1144  *
1145  *  Success returns 0, Failure returns 1
1146  *
1147  *  The low power link up (lplu) state is set to the power management level D0
1148  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1149  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1150  *  is used during Dx states where the power conservation is most important.
1151  *  During driver activity, SmartSpeed should be enabled so performance is
1152  *  maintained.  This is a function pointer entry point called by drivers.
1153  **/
1154 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1155 {
1156 	if (hw->phy.ops.set_d0_lplu_state)
1157 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1158 
1159 	return E1000_SUCCESS;
1160 }
1161 
1162 /**
1163  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1164  *  @hw: pointer to the HW structure
1165  *  @active: boolean used to enable/disable lplu
1166  *
1167  *  Success returns 0, Failure returns 1
1168  *
1169  *  The low power link up (lplu) state is set to the power management level D3
1170  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1171  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1172  *  is used during Dx states where the power conservation is most important.
1173  *  During driver activity, SmartSpeed should be enabled so performance is
1174  *  maintained.  This is a function pointer entry point called by drivers.
1175  **/
1176 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1177 {
1178 	if (hw->phy.ops.set_d3_lplu_state)
1179 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1180 
1181 	return E1000_SUCCESS;
1182 }
1183 
1184 /**
1185  *  e1000_read_mac_addr - Reads MAC address
1186  *  @hw: pointer to the HW structure
1187  *
1188  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1189  *  Currently no func pointer exists and all implementations are handled in the
1190  *  generic version of this function.
1191  **/
1192 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1193 {
1194 	if (hw->mac.ops.read_mac_addr)
1195 		return hw->mac.ops.read_mac_addr(hw);
1196 
1197 	return e1000_read_mac_addr_generic(hw);
1198 }
1199 
1200 /**
1201  *  e1000_read_pba_string - Read device part number string
1202  *  @hw: pointer to the HW structure
1203  *  @pba_num: pointer to device part number
1204  *  @pba_num_size: size of part number buffer
1205  *
1206  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1207  *  the value in pba_num.
1208  *  Currently no func pointer exists and all implementations are handled in the
1209  *  generic version of this function.
1210  **/
1211 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1212 {
1213 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1214 }
1215 
1216 /**
1217  *  e1000_read_pba_length - Read device part number string length
1218  *  @hw: pointer to the HW structure
1219  *  @pba_num_size: size of part number buffer
1220  *
1221  *  Reads the product board assembly (PBA) number length from the EEPROM and
1222  *  stores the value in pba_num.
1223  *  Currently no func pointer exists and all implementations are handled in the
1224  *  generic version of this function.
1225  **/
1226 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1227 {
1228 	return e1000_read_pba_length_generic(hw, pba_num_size);
1229 }
1230 
1231 /**
1232  *  e1000_read_pba_num - Read device part number
1233  *  @hw: pointer to the HW structure
1234  *  @pba_num: pointer to device part number
1235  *
1236  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1237  *  the value in pba_num.
1238  *  Currently no func pointer exists and all implementations are handled in the
1239  *  generic version of this function.
1240  **/
1241 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1242 {
1243 	return e1000_read_pba_num_generic(hw, pba_num);
1244 }
1245 
1246 /**
1247  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1248  *  @hw: pointer to the HW structure
1249  *
1250  *  Validates the NVM checksum is correct. This is a function pointer entry
1251  *  point called by drivers.
1252  **/
1253 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1254 {
1255 	if (hw->nvm.ops.validate)
1256 		return hw->nvm.ops.validate(hw);
1257 
1258 	return -E1000_ERR_CONFIG;
1259 }
1260 
1261 /**
1262  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1263  *  @hw: pointer to the HW structure
1264  *
1265  *  Updates the NVM checksum. Currently no func pointer exists and all
1266  *  implementations are handled in the generic version of this function.
1267  **/
1268 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1269 {
1270 	if (hw->nvm.ops.update)
1271 		return hw->nvm.ops.update(hw);
1272 
1273 	return -E1000_ERR_CONFIG;
1274 }
1275 
1276 /**
1277  *  e1000_reload_nvm - Reloads EEPROM
1278  *  @hw: pointer to the HW structure
1279  *
1280  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1281  *  extended control register.
1282  **/
1283 void e1000_reload_nvm(struct e1000_hw *hw)
1284 {
1285 	if (hw->nvm.ops.reload)
1286 		hw->nvm.ops.reload(hw);
1287 }
1288 
1289 /**
1290  *  e1000_read_nvm - Reads NVM (EEPROM)
1291  *  @hw: pointer to the HW structure
1292  *  @offset: the word offset to read
1293  *  @words: number of 16-bit words to read
1294  *  @data: pointer to the properly sized buffer for the data.
1295  *
1296  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1297  *  pointer entry point called by drivers.
1298  **/
1299 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1300 {
1301 	if (hw->nvm.ops.read)
1302 		return hw->nvm.ops.read(hw, offset, words, data);
1303 
1304 	return -E1000_ERR_CONFIG;
1305 }
1306 
1307 /**
1308  *  e1000_write_nvm - Writes to NVM (EEPROM)
1309  *  @hw: pointer to the HW structure
1310  *  @offset: the word offset to read
1311  *  @words: number of 16-bit words to write
1312  *  @data: pointer to the properly sized buffer for the data.
1313  *
1314  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1315  *  pointer entry point called by drivers.
1316  **/
1317 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1318 {
1319 	if (hw->nvm.ops.write)
1320 		return hw->nvm.ops.write(hw, offset, words, data);
1321 
1322 	return E1000_SUCCESS;
1323 }
1324 
1325 /**
1326  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1327  *  @hw: pointer to the HW structure
1328  *  @reg: 32bit register offset
1329  *  @offset: the register to write
1330  *  @data: the value to write.
1331  *
1332  *  Writes the PHY register at offset with the value in data.
1333  *  This is a function pointer entry point called by drivers.
1334  **/
1335 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1336 			      u8 data)
1337 {
1338 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1339 }
1340 
1341 /**
1342  * e1000_power_up_phy - Restores link in case of PHY power down
1343  * @hw: pointer to the HW structure
1344  *
1345  * The phy may be powered down to save power, to turn off link when the
1346  * driver is unloaded, or wake on lan is not enabled (among others).
1347  **/
1348 void e1000_power_up_phy(struct e1000_hw *hw)
1349 {
1350 	if (hw->phy.ops.power_up)
1351 		hw->phy.ops.power_up(hw);
1352 
1353 	e1000_setup_link(hw);
1354 }
1355 
1356 /**
1357  * e1000_power_down_phy - Power down PHY
1358  * @hw: pointer to the HW structure
1359  *
1360  * The phy may be powered down to save power, to turn off link when the
1361  * driver is unloaded, or wake on lan is not enabled (among others).
1362  **/
1363 void e1000_power_down_phy(struct e1000_hw *hw)
1364 {
1365 	if (hw->phy.ops.power_down)
1366 		hw->phy.ops.power_down(hw);
1367 }
1368 
1369 /**
1370  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1371  *  @hw: pointer to the HW structure
1372  *
1373  *  Power on the optics and PCS.
1374  **/
1375 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1376 {
1377 	if (hw->mac.ops.power_up_serdes)
1378 		hw->mac.ops.power_up_serdes(hw);
1379 }
1380 
1381 /**
1382  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1383  *  @hw: pointer to the HW structure
1384  *
1385  *  Shutdown the optics and PCS on driver unload.
1386  **/
1387 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1388 {
1389 	if (hw->mac.ops.shutdown_serdes)
1390 		hw->mac.ops.shutdown_serdes(hw);
1391 }
1392