xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 7d3e9a5b)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2019, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
313 	case E1000_DEV_ID_PCH_CMP_I219_V12:
314 		mac->type = e1000_pch_spt;
315 		break;
316 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
317 	case E1000_DEV_ID_PCH_CNP_I219_V6:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
319 	case E1000_DEV_ID_PCH_CNP_I219_V7:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
321 	case E1000_DEV_ID_PCH_ICP_I219_V8:
322 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
323 	case E1000_DEV_ID_PCH_ICP_I219_V9:
324 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
325 	case E1000_DEV_ID_PCH_CMP_I219_V10:
326 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
327 	case E1000_DEV_ID_PCH_CMP_I219_V11:
328 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
329 	case E1000_DEV_ID_PCH_TGP_I219_V13:
330 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
331 	case E1000_DEV_ID_PCH_TGP_I219_V14:
332 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
333 	case E1000_DEV_ID_PCH_TGP_I219_V15:
334 	case E1000_DEV_ID_PCH_ADP_I219_LM16:
335 	case E1000_DEV_ID_PCH_ADP_I219_V16:
336 	case E1000_DEV_ID_PCH_ADP_I219_LM17:
337 	case E1000_DEV_ID_PCH_ADP_I219_V17:
338 	case E1000_DEV_ID_PCH_MTP_I219_LM18:
339 	case E1000_DEV_ID_PCH_MTP_I219_V18:
340 	case E1000_DEV_ID_PCH_MTP_I219_LM19:
341 	case E1000_DEV_ID_PCH_MTP_I219_V19:
342 		mac->type = e1000_pch_cnp;
343 		break;
344 	case E1000_DEV_ID_82575EB_COPPER:
345 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
346 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
347 		mac->type = e1000_82575;
348 		break;
349 	case E1000_DEV_ID_82576:
350 	case E1000_DEV_ID_82576_FIBER:
351 	case E1000_DEV_ID_82576_SERDES:
352 	case E1000_DEV_ID_82576_QUAD_COPPER:
353 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
354 	case E1000_DEV_ID_82576_NS:
355 	case E1000_DEV_ID_82576_NS_SERDES:
356 	case E1000_DEV_ID_82576_SERDES_QUAD:
357 		mac->type = e1000_82576;
358 		break;
359 	case E1000_DEV_ID_82580_COPPER:
360 	case E1000_DEV_ID_82580_FIBER:
361 	case E1000_DEV_ID_82580_SERDES:
362 	case E1000_DEV_ID_82580_SGMII:
363 	case E1000_DEV_ID_82580_COPPER_DUAL:
364 	case E1000_DEV_ID_82580_QUAD_FIBER:
365 	case E1000_DEV_ID_DH89XXCC_SGMII:
366 	case E1000_DEV_ID_DH89XXCC_SERDES:
367 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
368 	case E1000_DEV_ID_DH89XXCC_SFP:
369 		mac->type = e1000_82580;
370 		break;
371 	case E1000_DEV_ID_I350_COPPER:
372 	case E1000_DEV_ID_I350_FIBER:
373 	case E1000_DEV_ID_I350_SERDES:
374 	case E1000_DEV_ID_I350_SGMII:
375 	case E1000_DEV_ID_I350_DA4:
376 		mac->type = e1000_i350;
377 		break;
378 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
379 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
380 	case E1000_DEV_ID_I210_COPPER:
381 	case E1000_DEV_ID_I210_COPPER_OEM1:
382 	case E1000_DEV_ID_I210_COPPER_IT:
383 	case E1000_DEV_ID_I210_FIBER:
384 	case E1000_DEV_ID_I210_SERDES:
385 	case E1000_DEV_ID_I210_SGMII:
386 		mac->type = e1000_i210;
387 		break;
388 	case E1000_DEV_ID_I211_COPPER:
389 		mac->type = e1000_i211;
390 		break;
391 	case E1000_DEV_ID_82576_VF:
392 	case E1000_DEV_ID_82576_VF_HV:
393 		mac->type = e1000_vfadapt;
394 		break;
395 	case E1000_DEV_ID_I350_VF:
396 	case E1000_DEV_ID_I350_VF_HV:
397 		mac->type = e1000_vfadapt_i350;
398 		break;
399 
400 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
401 	case E1000_DEV_ID_I354_SGMII:
402 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
403 		mac->type = e1000_i354;
404 		break;
405 	default:
406 		/* Should never have loaded on this device */
407 		ret_val = -E1000_ERR_MAC_INIT;
408 		break;
409 	}
410 
411 	return ret_val;
412 }
413 
414 /**
415  *  e1000_setup_init_funcs - Initializes function pointers
416  *  @hw: pointer to the HW structure
417  *  @init_device: TRUE will initialize the rest of the function pointers
418  *		  getting the device ready for use.  FALSE will only set
419  *		  MAC type and the function pointers for the other init
420  *		  functions.  Passing FALSE will not generate any hardware
421  *		  reads or writes.
422  *
423  *  This function must be called by a driver in order to use the rest
424  *  of the 'shared' code files. Called by drivers only.
425  **/
426 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
427 {
428 	s32 ret_val;
429 
430 	/* Can't do much good without knowing the MAC type. */
431 	ret_val = e1000_set_mac_type(hw);
432 	if (ret_val) {
433 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
434 		goto out;
435 	}
436 
437 	if (!hw->hw_addr) {
438 		DEBUGOUT("ERROR: Registers not mapped\n");
439 		ret_val = -E1000_ERR_CONFIG;
440 		goto out;
441 	}
442 
443 	/*
444 	 * Init function pointers to generic implementations. We do this first
445 	 * allowing a driver module to override it afterward.
446 	 */
447 	e1000_init_mac_ops_generic(hw);
448 	e1000_init_phy_ops_generic(hw);
449 	e1000_init_nvm_ops_generic(hw);
450 	e1000_init_mbx_ops_generic(hw);
451 
452 	/*
453 	 * Set up the init function pointers. These are functions within the
454 	 * adapter family file that sets up function pointers for the rest of
455 	 * the functions in that family.
456 	 */
457 	switch (hw->mac.type) {
458 	case e1000_82542:
459 		e1000_init_function_pointers_82542(hw);
460 		break;
461 	case e1000_82543:
462 	case e1000_82544:
463 		e1000_init_function_pointers_82543(hw);
464 		break;
465 	case e1000_82540:
466 	case e1000_82545:
467 	case e1000_82545_rev_3:
468 	case e1000_82546:
469 	case e1000_82546_rev_3:
470 		e1000_init_function_pointers_82540(hw);
471 		break;
472 	case e1000_82541:
473 	case e1000_82541_rev_2:
474 	case e1000_82547:
475 	case e1000_82547_rev_2:
476 		e1000_init_function_pointers_82541(hw);
477 		break;
478 	case e1000_82571:
479 	case e1000_82572:
480 	case e1000_82573:
481 	case e1000_82574:
482 	case e1000_82583:
483 		e1000_init_function_pointers_82571(hw);
484 		break;
485 	case e1000_80003es2lan:
486 		e1000_init_function_pointers_80003es2lan(hw);
487 		break;
488 	case e1000_ich8lan:
489 	case e1000_ich9lan:
490 	case e1000_ich10lan:
491 	case e1000_pchlan:
492 	case e1000_pch2lan:
493 	case e1000_pch_lpt:
494 	case e1000_pch_spt:
495 	case e1000_pch_cnp:
496 	/* fall-through */
497 		e1000_init_function_pointers_ich8lan(hw);
498 		break;
499 	case e1000_82575:
500 	case e1000_82576:
501 	case e1000_82580:
502 	case e1000_i350:
503 	case e1000_i354:
504 		e1000_init_function_pointers_82575(hw);
505 		break;
506 	case e1000_i210:
507 	case e1000_i211:
508 		e1000_init_function_pointers_i210(hw);
509 		break;
510 	case e1000_vfadapt:
511 		e1000_init_function_pointers_vf(hw);
512 		break;
513 	case e1000_vfadapt_i350:
514 		e1000_init_function_pointers_vf(hw);
515 		break;
516 	default:
517 		DEBUGOUT("Hardware not supported\n");
518 		ret_val = -E1000_ERR_CONFIG;
519 		break;
520 	}
521 
522 	/*
523 	 * Initialize the rest of the function pointers. These require some
524 	 * register reads/writes in some cases.
525 	 */
526 	if (!(ret_val) && init_device) {
527 		ret_val = e1000_init_mac_params(hw);
528 		if (ret_val)
529 			goto out;
530 
531 		ret_val = e1000_init_nvm_params(hw);
532 		if (ret_val)
533 			goto out;
534 
535 		ret_val = e1000_init_phy_params(hw);
536 		if (ret_val)
537 			goto out;
538 
539 		ret_val = e1000_init_mbx_params(hw);
540 		if (ret_val)
541 			goto out;
542 	}
543 
544 out:
545 	return ret_val;
546 }
547 
548 /**
549  *  e1000_get_bus_info - Obtain bus information for adapter
550  *  @hw: pointer to the HW structure
551  *
552  *  This will obtain information about the HW bus for which the
553  *  adapter is attached and stores it in the hw structure. This is a
554  *  function pointer entry point called by drivers.
555  **/
556 s32 e1000_get_bus_info(struct e1000_hw *hw)
557 {
558 	if (hw->mac.ops.get_bus_info)
559 		return hw->mac.ops.get_bus_info(hw);
560 
561 	return E1000_SUCCESS;
562 }
563 
564 /**
565  *  e1000_clear_vfta - Clear VLAN filter table
566  *  @hw: pointer to the HW structure
567  *
568  *  This clears the VLAN filter table on the adapter. This is a function
569  *  pointer entry point called by drivers.
570  **/
571 void e1000_clear_vfta(struct e1000_hw *hw)
572 {
573 	if (hw->mac.ops.clear_vfta)
574 		hw->mac.ops.clear_vfta(hw);
575 }
576 
577 /**
578  *  e1000_write_vfta - Write value to VLAN filter table
579  *  @hw: pointer to the HW structure
580  *  @offset: the 32-bit offset in which to write the value to.
581  *  @value: the 32-bit value to write at location offset.
582  *
583  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
584  *  table. This is a function pointer entry point called by drivers.
585  **/
586 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
587 {
588 	if (hw->mac.ops.write_vfta)
589 		hw->mac.ops.write_vfta(hw, offset, value);
590 }
591 
592 /**
593  *  e1000_update_mc_addr_list - Update Multicast addresses
594  *  @hw: pointer to the HW structure
595  *  @mc_addr_list: array of multicast addresses to program
596  *  @mc_addr_count: number of multicast addresses to program
597  *
598  *  Updates the Multicast Table Array.
599  *  The caller must have a packed mc_addr_list of multicast addresses.
600  **/
601 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
602 			       u32 mc_addr_count)
603 {
604 	if (hw->mac.ops.update_mc_addr_list)
605 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
606 						mc_addr_count);
607 }
608 
609 /**
610  *  e1000_force_mac_fc - Force MAC flow control
611  *  @hw: pointer to the HW structure
612  *
613  *  Force the MAC's flow control settings. Currently no func pointer exists
614  *  and all implementations are handled in the generic version of this
615  *  function.
616  **/
617 s32 e1000_force_mac_fc(struct e1000_hw *hw)
618 {
619 	return e1000_force_mac_fc_generic(hw);
620 }
621 
622 /**
623  *  e1000_check_for_link - Check/Store link connection
624  *  @hw: pointer to the HW structure
625  *
626  *  This checks the link condition of the adapter and stores the
627  *  results in the hw->mac structure. This is a function pointer entry
628  *  point called by drivers.
629  **/
630 s32 e1000_check_for_link(struct e1000_hw *hw)
631 {
632 	if (hw->mac.ops.check_for_link)
633 		return hw->mac.ops.check_for_link(hw);
634 
635 	return -E1000_ERR_CONFIG;
636 }
637 
638 /**
639  *  e1000_check_mng_mode - Check management mode
640  *  @hw: pointer to the HW structure
641  *
642  *  This checks if the adapter has manageability enabled.
643  *  This is a function pointer entry point called by drivers.
644  **/
645 bool e1000_check_mng_mode(struct e1000_hw *hw)
646 {
647 	if (hw->mac.ops.check_mng_mode)
648 		return hw->mac.ops.check_mng_mode(hw);
649 
650 	return FALSE;
651 }
652 
653 /**
654  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
655  *  @hw: pointer to the HW structure
656  *  @buffer: pointer to the host interface
657  *  @length: size of the buffer
658  *
659  *  Writes the DHCP information to the host interface.
660  **/
661 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
662 {
663 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
664 }
665 
666 /**
667  *  e1000_reset_hw - Reset hardware
668  *  @hw: pointer to the HW structure
669  *
670  *  This resets the hardware into a known state. This is a function pointer
671  *  entry point called by drivers.
672  **/
673 s32 e1000_reset_hw(struct e1000_hw *hw)
674 {
675 	if (hw->mac.ops.reset_hw)
676 		return hw->mac.ops.reset_hw(hw);
677 
678 	return -E1000_ERR_CONFIG;
679 }
680 
681 /**
682  *  e1000_init_hw - Initialize hardware
683  *  @hw: pointer to the HW structure
684  *
685  *  This inits the hardware readying it for operation. This is a function
686  *  pointer entry point called by drivers.
687  **/
688 s32 e1000_init_hw(struct e1000_hw *hw)
689 {
690 	if (hw->mac.ops.init_hw)
691 		return hw->mac.ops.init_hw(hw);
692 
693 	return -E1000_ERR_CONFIG;
694 }
695 
696 /**
697  *  e1000_setup_link - Configures link and flow control
698  *  @hw: pointer to the HW structure
699  *
700  *  This configures link and flow control settings for the adapter. This
701  *  is a function pointer entry point called by drivers. While modules can
702  *  also call this, they probably call their own version of this function.
703  **/
704 s32 e1000_setup_link(struct e1000_hw *hw)
705 {
706 	if (hw->mac.ops.setup_link)
707 		return hw->mac.ops.setup_link(hw);
708 
709 	return -E1000_ERR_CONFIG;
710 }
711 
712 /**
713  *  e1000_get_speed_and_duplex - Returns current speed and duplex
714  *  @hw: pointer to the HW structure
715  *  @speed: pointer to a 16-bit value to store the speed
716  *  @duplex: pointer to a 16-bit value to store the duplex.
717  *
718  *  This returns the speed and duplex of the adapter in the two 'out'
719  *  variables passed in. This is a function pointer entry point called
720  *  by drivers.
721  **/
722 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
723 {
724 	if (hw->mac.ops.get_link_up_info)
725 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
726 
727 	return -E1000_ERR_CONFIG;
728 }
729 
730 /**
731  *  e1000_setup_led - Configures SW controllable LED
732  *  @hw: pointer to the HW structure
733  *
734  *  This prepares the SW controllable LED for use and saves the current state
735  *  of the LED so it can be later restored. This is a function pointer entry
736  *  point called by drivers.
737  **/
738 s32 e1000_setup_led(struct e1000_hw *hw)
739 {
740 	if (hw->mac.ops.setup_led)
741 		return hw->mac.ops.setup_led(hw);
742 
743 	return E1000_SUCCESS;
744 }
745 
746 /**
747  *  e1000_cleanup_led - Restores SW controllable LED
748  *  @hw: pointer to the HW structure
749  *
750  *  This restores the SW controllable LED to the value saved off by
751  *  e1000_setup_led. This is a function pointer entry point called by drivers.
752  **/
753 s32 e1000_cleanup_led(struct e1000_hw *hw)
754 {
755 	if (hw->mac.ops.cleanup_led)
756 		return hw->mac.ops.cleanup_led(hw);
757 
758 	return E1000_SUCCESS;
759 }
760 
761 /**
762  *  e1000_blink_led - Blink SW controllable LED
763  *  @hw: pointer to the HW structure
764  *
765  *  This starts the adapter LED blinking. Request the LED to be setup first
766  *  and cleaned up after. This is a function pointer entry point called by
767  *  drivers.
768  **/
769 s32 e1000_blink_led(struct e1000_hw *hw)
770 {
771 	if (hw->mac.ops.blink_led)
772 		return hw->mac.ops.blink_led(hw);
773 
774 	return E1000_SUCCESS;
775 }
776 
777 /**
778  *  e1000_id_led_init - store LED configurations in SW
779  *  @hw: pointer to the HW structure
780  *
781  *  Initializes the LED config in SW. This is a function pointer entry point
782  *  called by drivers.
783  **/
784 s32 e1000_id_led_init(struct e1000_hw *hw)
785 {
786 	if (hw->mac.ops.id_led_init)
787 		return hw->mac.ops.id_led_init(hw);
788 
789 	return E1000_SUCCESS;
790 }
791 
792 /**
793  *  e1000_led_on - Turn on SW controllable LED
794  *  @hw: pointer to the HW structure
795  *
796  *  Turns the SW defined LED on. This is a function pointer entry point
797  *  called by drivers.
798  **/
799 s32 e1000_led_on(struct e1000_hw *hw)
800 {
801 	if (hw->mac.ops.led_on)
802 		return hw->mac.ops.led_on(hw);
803 
804 	return E1000_SUCCESS;
805 }
806 
807 /**
808  *  e1000_led_off - Turn off SW controllable LED
809  *  @hw: pointer to the HW structure
810  *
811  *  Turns the SW defined LED off. This is a function pointer entry point
812  *  called by drivers.
813  **/
814 s32 e1000_led_off(struct e1000_hw *hw)
815 {
816 	if (hw->mac.ops.led_off)
817 		return hw->mac.ops.led_off(hw);
818 
819 	return E1000_SUCCESS;
820 }
821 
822 /**
823  *  e1000_reset_adaptive - Reset adaptive IFS
824  *  @hw: pointer to the HW structure
825  *
826  *  Resets the adaptive IFS. Currently no func pointer exists and all
827  *  implementations are handled in the generic version of this function.
828  **/
829 void e1000_reset_adaptive(struct e1000_hw *hw)
830 {
831 	e1000_reset_adaptive_generic(hw);
832 }
833 
834 /**
835  *  e1000_update_adaptive - Update adaptive IFS
836  *  @hw: pointer to the HW structure
837  *
838  *  Updates adapter IFS. Currently no func pointer exists and all
839  *  implementations are handled in the generic version of this function.
840  **/
841 void e1000_update_adaptive(struct e1000_hw *hw)
842 {
843 	e1000_update_adaptive_generic(hw);
844 }
845 
846 /**
847  *  e1000_disable_pcie_master - Disable PCI-Express master access
848  *  @hw: pointer to the HW structure
849  *
850  *  Disables PCI-Express master access and verifies there are no pending
851  *  requests. Currently no func pointer exists and all implementations are
852  *  handled in the generic version of this function.
853  **/
854 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
855 {
856 	return e1000_disable_pcie_master_generic(hw);
857 }
858 
859 /**
860  *  e1000_config_collision_dist - Configure collision distance
861  *  @hw: pointer to the HW structure
862  *
863  *  Configures the collision distance to the default value and is used
864  *  during link setup.
865  **/
866 void e1000_config_collision_dist(struct e1000_hw *hw)
867 {
868 	if (hw->mac.ops.config_collision_dist)
869 		hw->mac.ops.config_collision_dist(hw);
870 }
871 
872 /**
873  *  e1000_rar_set - Sets a receive address register
874  *  @hw: pointer to the HW structure
875  *  @addr: address to set the RAR to
876  *  @index: the RAR to set
877  *
878  *  Sets a Receive Address Register (RAR) to the specified address.
879  **/
880 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
881 {
882 	if (hw->mac.ops.rar_set)
883 		return hw->mac.ops.rar_set(hw, addr, index);
884 
885 	return E1000_SUCCESS;
886 }
887 
888 /**
889  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
890  *  @hw: pointer to the HW structure
891  *
892  *  Ensures that the MDI/MDIX SW state is valid.
893  **/
894 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
895 {
896 	if (hw->mac.ops.validate_mdi_setting)
897 		return hw->mac.ops.validate_mdi_setting(hw);
898 
899 	return E1000_SUCCESS;
900 }
901 
902 /**
903  *  e1000_hash_mc_addr - Determines address location in multicast table
904  *  @hw: pointer to the HW structure
905  *  @mc_addr: Multicast address to hash.
906  *
907  *  This hashes an address to determine its location in the multicast
908  *  table. Currently no func pointer exists and all implementations
909  *  are handled in the generic version of this function.
910  **/
911 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
912 {
913 	return e1000_hash_mc_addr_generic(hw, mc_addr);
914 }
915 
916 /**
917  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
918  *  @hw: pointer to the HW structure
919  *
920  *  Enables packet filtering on transmit packets if manageability is enabled
921  *  and host interface is enabled.
922  *  Currently no func pointer exists and all implementations are handled in the
923  *  generic version of this function.
924  **/
925 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
926 {
927 	return e1000_enable_tx_pkt_filtering_generic(hw);
928 }
929 
930 /**
931  *  e1000_mng_host_if_write - Writes to the manageability host interface
932  *  @hw: pointer to the HW structure
933  *  @buffer: pointer to the host interface buffer
934  *  @length: size of the buffer
935  *  @offset: location in the buffer to write to
936  *  @sum: sum of the data (not checksum)
937  *
938  *  This function writes the buffer content at the offset given on the host if.
939  *  It also does alignment considerations to do the writes in most efficient
940  *  way.  Also fills up the sum of the buffer in *buffer parameter.
941  **/
942 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
943 			    u16 offset, u8 *sum)
944 {
945 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
946 }
947 
948 /**
949  *  e1000_mng_write_cmd_header - Writes manageability command header
950  *  @hw: pointer to the HW structure
951  *  @hdr: pointer to the host interface command header
952  *
953  *  Writes the command header after does the checksum calculation.
954  **/
955 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
956 			       struct e1000_host_mng_command_header *hdr)
957 {
958 	return e1000_mng_write_cmd_header_generic(hw, hdr);
959 }
960 
961 /**
962  *  e1000_mng_enable_host_if - Checks host interface is enabled
963  *  @hw: pointer to the HW structure
964  *
965  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
966  *
967  *  This function checks whether the HOST IF is enabled for command operation
968  *  and also checks whether the previous command is completed.  It busy waits
969  *  in case of previous command is not completed.
970  **/
971 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
972 {
973 	return e1000_mng_enable_host_if_generic(hw);
974 }
975 
976 /**
977  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
978  *  @hw: pointer to the HW structure
979  *  @itr: u32 indicating itr value
980  *
981  *  Set the OBFF timer based on the given interrupt rate.
982  **/
983 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
984 {
985 	if (hw->mac.ops.set_obff_timer)
986 		return hw->mac.ops.set_obff_timer(hw, itr);
987 
988 	return E1000_SUCCESS;
989 }
990 
991 /**
992  *  e1000_check_reset_block - Verifies PHY can be reset
993  *  @hw: pointer to the HW structure
994  *
995  *  Checks if the PHY is in a state that can be reset or if manageability
996  *  has it tied up. This is a function pointer entry point called by drivers.
997  **/
998 s32 e1000_check_reset_block(struct e1000_hw *hw)
999 {
1000 	if (hw->phy.ops.check_reset_block)
1001 		return hw->phy.ops.check_reset_block(hw);
1002 
1003 	return E1000_SUCCESS;
1004 }
1005 
1006 /**
1007  *  e1000_read_phy_reg - Reads PHY register
1008  *  @hw: pointer to the HW structure
1009  *  @offset: the register to read
1010  *  @data: the buffer to store the 16-bit read.
1011  *
1012  *  Reads the PHY register and returns the value in data.
1013  *  This is a function pointer entry point called by drivers.
1014  **/
1015 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1016 {
1017 	if (hw->phy.ops.read_reg)
1018 		return hw->phy.ops.read_reg(hw, offset, data);
1019 
1020 	return E1000_SUCCESS;
1021 }
1022 
1023 /**
1024  *  e1000_write_phy_reg - Writes PHY register
1025  *  @hw: pointer to the HW structure
1026  *  @offset: the register to write
1027  *  @data: the value to write.
1028  *
1029  *  Writes the PHY register at offset with the value in data.
1030  *  This is a function pointer entry point called by drivers.
1031  **/
1032 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1033 {
1034 	if (hw->phy.ops.write_reg)
1035 		return hw->phy.ops.write_reg(hw, offset, data);
1036 
1037 	return E1000_SUCCESS;
1038 }
1039 
1040 /**
1041  *  e1000_release_phy - Generic release PHY
1042  *  @hw: pointer to the HW structure
1043  *
1044  *  Return if silicon family does not require a semaphore when accessing the
1045  *  PHY.
1046  **/
1047 void e1000_release_phy(struct e1000_hw *hw)
1048 {
1049 	if (hw->phy.ops.release)
1050 		hw->phy.ops.release(hw);
1051 }
1052 
1053 /**
1054  *  e1000_acquire_phy - Generic acquire PHY
1055  *  @hw: pointer to the HW structure
1056  *
1057  *  Return success if silicon family does not require a semaphore when
1058  *  accessing the PHY.
1059  **/
1060 s32 e1000_acquire_phy(struct e1000_hw *hw)
1061 {
1062 	if (hw->phy.ops.acquire)
1063 		return hw->phy.ops.acquire(hw);
1064 
1065 	return E1000_SUCCESS;
1066 }
1067 
1068 /**
1069  *  e1000_cfg_on_link_up - Configure PHY upon link up
1070  *  @hw: pointer to the HW structure
1071  **/
1072 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1073 {
1074 	if (hw->phy.ops.cfg_on_link_up)
1075 		return hw->phy.ops.cfg_on_link_up(hw);
1076 
1077 	return E1000_SUCCESS;
1078 }
1079 
1080 /**
1081  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1082  *  @hw: pointer to the HW structure
1083  *  @offset: the register to read
1084  *  @data: the location to store the 16-bit value read.
1085  *
1086  *  Reads a register out of the Kumeran interface. Currently no func pointer
1087  *  exists and all implementations are handled in the generic version of
1088  *  this function.
1089  **/
1090 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1091 {
1092 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1093 }
1094 
1095 /**
1096  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1097  *  @hw: pointer to the HW structure
1098  *  @offset: the register to write
1099  *  @data: the value to write.
1100  *
1101  *  Writes a register to the Kumeran interface. Currently no func pointer
1102  *  exists and all implementations are handled in the generic version of
1103  *  this function.
1104  **/
1105 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1106 {
1107 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1108 }
1109 
1110 /**
1111  *  e1000_get_cable_length - Retrieves cable length estimation
1112  *  @hw: pointer to the HW structure
1113  *
1114  *  This function estimates the cable length and stores them in
1115  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1116  *  entry point called by drivers.
1117  **/
1118 s32 e1000_get_cable_length(struct e1000_hw *hw)
1119 {
1120 	if (hw->phy.ops.get_cable_length)
1121 		return hw->phy.ops.get_cable_length(hw);
1122 
1123 	return E1000_SUCCESS;
1124 }
1125 
1126 /**
1127  *  e1000_get_phy_info - Retrieves PHY information from registers
1128  *  @hw: pointer to the HW structure
1129  *
1130  *  This function gets some information from various PHY registers and
1131  *  populates hw->phy values with it. This is a function pointer entry
1132  *  point called by drivers.
1133  **/
1134 s32 e1000_get_phy_info(struct e1000_hw *hw)
1135 {
1136 	if (hw->phy.ops.get_info)
1137 		return hw->phy.ops.get_info(hw);
1138 
1139 	return E1000_SUCCESS;
1140 }
1141 
1142 /**
1143  *  e1000_phy_hw_reset - Hard PHY reset
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  Performs a hard PHY reset. This is a function pointer entry point called
1147  *  by drivers.
1148  **/
1149 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1150 {
1151 	if (hw->phy.ops.reset)
1152 		return hw->phy.ops.reset(hw);
1153 
1154 	return E1000_SUCCESS;
1155 }
1156 
1157 /**
1158  *  e1000_phy_commit - Soft PHY reset
1159  *  @hw: pointer to the HW structure
1160  *
1161  *  Performs a soft PHY reset on those that apply. This is a function pointer
1162  *  entry point called by drivers.
1163  **/
1164 s32 e1000_phy_commit(struct e1000_hw *hw)
1165 {
1166 	if (hw->phy.ops.commit)
1167 		return hw->phy.ops.commit(hw);
1168 
1169 	return E1000_SUCCESS;
1170 }
1171 
1172 /**
1173  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1174  *  @hw: pointer to the HW structure
1175  *  @active: boolean used to enable/disable lplu
1176  *
1177  *  Success returns 0, Failure returns 1
1178  *
1179  *  The low power link up (lplu) state is set to the power management level D0
1180  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1181  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1182  *  is used during Dx states where the power conservation is most important.
1183  *  During driver activity, SmartSpeed should be enabled so performance is
1184  *  maintained.  This is a function pointer entry point called by drivers.
1185  **/
1186 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1187 {
1188 	if (hw->phy.ops.set_d0_lplu_state)
1189 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1190 
1191 	return E1000_SUCCESS;
1192 }
1193 
1194 /**
1195  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1196  *  @hw: pointer to the HW structure
1197  *  @active: boolean used to enable/disable lplu
1198  *
1199  *  Success returns 0, Failure returns 1
1200  *
1201  *  The low power link up (lplu) state is set to the power management level D3
1202  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1203  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1204  *  is used during Dx states where the power conservation is most important.
1205  *  During driver activity, SmartSpeed should be enabled so performance is
1206  *  maintained.  This is a function pointer entry point called by drivers.
1207  **/
1208 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1209 {
1210 	if (hw->phy.ops.set_d3_lplu_state)
1211 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1212 
1213 	return E1000_SUCCESS;
1214 }
1215 
1216 /**
1217  *  e1000_read_mac_addr - Reads MAC address
1218  *  @hw: pointer to the HW structure
1219  *
1220  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1221  *  Currently no func pointer exists and all implementations are handled in the
1222  *  generic version of this function.
1223  **/
1224 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1225 {
1226 	if (hw->mac.ops.read_mac_addr)
1227 		return hw->mac.ops.read_mac_addr(hw);
1228 
1229 	return e1000_read_mac_addr_generic(hw);
1230 }
1231 
1232 /**
1233  *  e1000_read_pba_string - Read device part number string
1234  *  @hw: pointer to the HW structure
1235  *  @pba_num: pointer to device part number
1236  *  @pba_num_size: size of part number buffer
1237  *
1238  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1239  *  the value in pba_num.
1240  *  Currently no func pointer exists and all implementations are handled in the
1241  *  generic version of this function.
1242  **/
1243 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1244 {
1245 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1246 }
1247 
1248 /**
1249  *  e1000_read_pba_length - Read device part number string length
1250  *  @hw: pointer to the HW structure
1251  *  @pba_num_size: size of part number buffer
1252  *
1253  *  Reads the product board assembly (PBA) number length from the EEPROM and
1254  *  stores the value in pba_num.
1255  *  Currently no func pointer exists and all implementations are handled in the
1256  *  generic version of this function.
1257  **/
1258 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1259 {
1260 	return e1000_read_pba_length_generic(hw, pba_num_size);
1261 }
1262 
1263 /**
1264  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1265  *  @hw: pointer to the HW structure
1266  *
1267  *  Validates the NVM checksum is correct. This is a function pointer entry
1268  *  point called by drivers.
1269  **/
1270 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1271 {
1272 	if (hw->nvm.ops.validate)
1273 		return hw->nvm.ops.validate(hw);
1274 
1275 	return -E1000_ERR_CONFIG;
1276 }
1277 
1278 /**
1279  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1280  *  @hw: pointer to the HW structure
1281  *
1282  *  Updates the NVM checksum. Currently no func pointer exists and all
1283  *  implementations are handled in the generic version of this function.
1284  **/
1285 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1286 {
1287 	if (hw->nvm.ops.update)
1288 		return hw->nvm.ops.update(hw);
1289 
1290 	return -E1000_ERR_CONFIG;
1291 }
1292 
1293 /**
1294  *  e1000_reload_nvm - Reloads EEPROM
1295  *  @hw: pointer to the HW structure
1296  *
1297  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1298  *  extended control register.
1299  **/
1300 void e1000_reload_nvm(struct e1000_hw *hw)
1301 {
1302 	if (hw->nvm.ops.reload)
1303 		hw->nvm.ops.reload(hw);
1304 }
1305 
1306 /**
1307  *  e1000_read_nvm - Reads NVM (EEPROM)
1308  *  @hw: pointer to the HW structure
1309  *  @offset: the word offset to read
1310  *  @words: number of 16-bit words to read
1311  *  @data: pointer to the properly sized buffer for the data.
1312  *
1313  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1314  *  pointer entry point called by drivers.
1315  **/
1316 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1317 {
1318 	if (hw->nvm.ops.read)
1319 		return hw->nvm.ops.read(hw, offset, words, data);
1320 
1321 	return -E1000_ERR_CONFIG;
1322 }
1323 
1324 /**
1325  *  e1000_write_nvm - Writes to NVM (EEPROM)
1326  *  @hw: pointer to the HW structure
1327  *  @offset: the word offset to read
1328  *  @words: number of 16-bit words to write
1329  *  @data: pointer to the properly sized buffer for the data.
1330  *
1331  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1332  *  pointer entry point called by drivers.
1333  **/
1334 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1335 {
1336 	if (hw->nvm.ops.write)
1337 		return hw->nvm.ops.write(hw, offset, words, data);
1338 
1339 	return E1000_SUCCESS;
1340 }
1341 
1342 /**
1343  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1344  *  @hw: pointer to the HW structure
1345  *  @reg: 32bit register offset
1346  *  @offset: the register to write
1347  *  @data: the value to write.
1348  *
1349  *  Writes the PHY register at offset with the value in data.
1350  *  This is a function pointer entry point called by drivers.
1351  **/
1352 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1353 			      u8 data)
1354 {
1355 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1356 }
1357 
1358 /**
1359  * e1000_power_up_phy - Restores link in case of PHY power down
1360  * @hw: pointer to the HW structure
1361  *
1362  * The phy may be powered down to save power, to turn off link when the
1363  * driver is unloaded, or wake on lan is not enabled (among others).
1364  **/
1365 void e1000_power_up_phy(struct e1000_hw *hw)
1366 {
1367 	if (hw->phy.ops.power_up)
1368 		hw->phy.ops.power_up(hw);
1369 
1370 	e1000_setup_link(hw);
1371 }
1372 
1373 /**
1374  * e1000_power_down_phy - Power down PHY
1375  * @hw: pointer to the HW structure
1376  *
1377  * The phy may be powered down to save power, to turn off link when the
1378  * driver is unloaded, or wake on lan is not enabled (among others).
1379  **/
1380 void e1000_power_down_phy(struct e1000_hw *hw)
1381 {
1382 	if (hw->phy.ops.power_down)
1383 		hw->phy.ops.power_down(hw);
1384 }
1385 
1386 /**
1387  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1388  *  @hw: pointer to the HW structure
1389  *
1390  *  Power on the optics and PCS.
1391  **/
1392 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1393 {
1394 	if (hw->mac.ops.power_up_serdes)
1395 		hw->mac.ops.power_up_serdes(hw);
1396 }
1397 
1398 /**
1399  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1400  *  @hw: pointer to the HW structure
1401  *
1402  *  Shutdown the optics and PCS on driver unload.
1403  **/
1404 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1405 {
1406 	if (hw->mac.ops.shutdown_serdes)
1407 		hw->mac.ops.shutdown_serdes(hw);
1408 }
1409