xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 8edfbc5e)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 #ifndef NO_82542_SUPPORT
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 #endif
163 	case E1000_DEV_ID_82543GC_FIBER:
164 	case E1000_DEV_ID_82543GC_COPPER:
165 		mac->type = e1000_82543;
166 		break;
167 	case E1000_DEV_ID_82544EI_COPPER:
168 	case E1000_DEV_ID_82544EI_FIBER:
169 	case E1000_DEV_ID_82544GC_COPPER:
170 	case E1000_DEV_ID_82544GC_LOM:
171 		mac->type = e1000_82544;
172 		break;
173 	case E1000_DEV_ID_82540EM:
174 	case E1000_DEV_ID_82540EM_LOM:
175 	case E1000_DEV_ID_82540EP:
176 	case E1000_DEV_ID_82540EP_LOM:
177 	case E1000_DEV_ID_82540EP_LP:
178 		mac->type = e1000_82540;
179 		break;
180 	case E1000_DEV_ID_82545EM_COPPER:
181 	case E1000_DEV_ID_82545EM_FIBER:
182 		mac->type = e1000_82545;
183 		break;
184 	case E1000_DEV_ID_82545GM_COPPER:
185 	case E1000_DEV_ID_82545GM_FIBER:
186 	case E1000_DEV_ID_82545GM_SERDES:
187 		mac->type = e1000_82545_rev_3;
188 		break;
189 	case E1000_DEV_ID_82546EB_COPPER:
190 	case E1000_DEV_ID_82546EB_FIBER:
191 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 		mac->type = e1000_82546;
193 		break;
194 	case E1000_DEV_ID_82546GB_COPPER:
195 	case E1000_DEV_ID_82546GB_FIBER:
196 	case E1000_DEV_ID_82546GB_SERDES:
197 	case E1000_DEV_ID_82546GB_PCIE:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 		mac->type = e1000_82546_rev_3;
201 		break;
202 	case E1000_DEV_ID_82541EI:
203 	case E1000_DEV_ID_82541EI_MOBILE:
204 	case E1000_DEV_ID_82541ER_LOM:
205 		mac->type = e1000_82541;
206 		break;
207 	case E1000_DEV_ID_82541ER:
208 	case E1000_DEV_ID_82541GI:
209 	case E1000_DEV_ID_82541GI_LF:
210 	case E1000_DEV_ID_82541GI_MOBILE:
211 		mac->type = e1000_82541_rev_2;
212 		break;
213 	case E1000_DEV_ID_82547EI:
214 	case E1000_DEV_ID_82547EI_MOBILE:
215 		mac->type = e1000_82547;
216 		break;
217 	case E1000_DEV_ID_82547GI:
218 		mac->type = e1000_82547_rev_2;
219 		break;
220 	case E1000_DEV_ID_82571EB_COPPER:
221 	case E1000_DEV_ID_82571EB_FIBER:
222 	case E1000_DEV_ID_82571EB_SERDES:
223 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
229 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
230 		mac->type = e1000_82571;
231 		break;
232 	case E1000_DEV_ID_82572EI:
233 	case E1000_DEV_ID_82572EI_COPPER:
234 	case E1000_DEV_ID_82572EI_FIBER:
235 	case E1000_DEV_ID_82572EI_SERDES:
236 		mac->type = e1000_82572;
237 		break;
238 	case E1000_DEV_ID_82573E:
239 	case E1000_DEV_ID_82573E_IAMT:
240 	case E1000_DEV_ID_82573L:
241 		mac->type = e1000_82573;
242 		break;
243 	case E1000_DEV_ID_82574L:
244 	case E1000_DEV_ID_82574LA:
245 		mac->type = e1000_82574;
246 		break;
247 	case E1000_DEV_ID_82583V:
248 		mac->type = e1000_82583;
249 		break;
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 		mac->type = e1000_80003es2lan;
255 		break;
256 	case E1000_DEV_ID_ICH8_IFE:
257 	case E1000_DEV_ID_ICH8_IFE_GT:
258 	case E1000_DEV_ID_ICH8_IFE_G:
259 	case E1000_DEV_ID_ICH8_IGP_M:
260 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 	case E1000_DEV_ID_ICH8_IGP_AMT:
262 	case E1000_DEV_ID_ICH8_IGP_C:
263 	case E1000_DEV_ID_ICH8_82567V_3:
264 		mac->type = e1000_ich8lan;
265 		break;
266 	case E1000_DEV_ID_ICH9_IFE:
267 	case E1000_DEV_ID_ICH9_IFE_GT:
268 	case E1000_DEV_ID_ICH9_IFE_G:
269 	case E1000_DEV_ID_ICH9_IGP_M:
270 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 	case E1000_DEV_ID_ICH9_IGP_M_V:
272 	case E1000_DEV_ID_ICH9_IGP_AMT:
273 	case E1000_DEV_ID_ICH9_BM:
274 	case E1000_DEV_ID_ICH9_IGP_C:
275 	case E1000_DEV_ID_ICH10_R_BM_LM:
276 	case E1000_DEV_ID_ICH10_R_BM_LF:
277 	case E1000_DEV_ID_ICH10_R_BM_V:
278 		mac->type = e1000_ich9lan;
279 		break;
280 	case E1000_DEV_ID_ICH10_D_BM_LM:
281 	case E1000_DEV_ID_ICH10_D_BM_LF:
282 	case E1000_DEV_ID_ICH10_D_BM_V:
283 		mac->type = e1000_ich10lan;
284 		break;
285 	case E1000_DEV_ID_PCH_D_HV_DM:
286 	case E1000_DEV_ID_PCH_D_HV_DC:
287 	case E1000_DEV_ID_PCH_M_HV_LM:
288 	case E1000_DEV_ID_PCH_M_HV_LC:
289 		mac->type = e1000_pchlan;
290 		break;
291 	case E1000_DEV_ID_PCH2_LV_LM:
292 	case E1000_DEV_ID_PCH2_LV_V:
293 		mac->type = e1000_pch2lan;
294 		break;
295 	case E1000_DEV_ID_PCH_LPT_I217_LM:
296 	case E1000_DEV_ID_PCH_LPT_I217_V:
297 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
298 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
299 	case E1000_DEV_ID_PCH_I218_LM2:
300 	case E1000_DEV_ID_PCH_I218_V2:
301 	case E1000_DEV_ID_PCH_I218_LM3:
302 	case E1000_DEV_ID_PCH_I218_V3:
303 		mac->type = e1000_pch_lpt;
304  		break;
305 	case E1000_DEV_ID_PCH_SPT_I219_LM:
306 	case E1000_DEV_ID_PCH_SPT_I219_V:
307 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
308 	case E1000_DEV_ID_PCH_SPT_I219_V2:
309 		mac->type = e1000_pch_spt;
310  		break;
311 	case E1000_DEV_ID_82575EB_COPPER:
312 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
313 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
314 		mac->type = e1000_82575;
315 		break;
316 	case E1000_DEV_ID_82576:
317 	case E1000_DEV_ID_82576_FIBER:
318 	case E1000_DEV_ID_82576_SERDES:
319 	case E1000_DEV_ID_82576_QUAD_COPPER:
320 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
321 	case E1000_DEV_ID_82576_NS:
322 	case E1000_DEV_ID_82576_NS_SERDES:
323 	case E1000_DEV_ID_82576_SERDES_QUAD:
324 		mac->type = e1000_82576;
325 		break;
326 	case E1000_DEV_ID_82580_COPPER:
327 	case E1000_DEV_ID_82580_FIBER:
328 	case E1000_DEV_ID_82580_SERDES:
329 	case E1000_DEV_ID_82580_SGMII:
330 	case E1000_DEV_ID_82580_COPPER_DUAL:
331 	case E1000_DEV_ID_82580_QUAD_FIBER:
332 	case E1000_DEV_ID_DH89XXCC_SGMII:
333 	case E1000_DEV_ID_DH89XXCC_SERDES:
334 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
335 	case E1000_DEV_ID_DH89XXCC_SFP:
336 		mac->type = e1000_82580;
337 		break;
338 	case E1000_DEV_ID_I350_COPPER:
339 	case E1000_DEV_ID_I350_FIBER:
340 	case E1000_DEV_ID_I350_SERDES:
341 	case E1000_DEV_ID_I350_SGMII:
342 	case E1000_DEV_ID_I350_DA4:
343 		mac->type = e1000_i350;
344 		break;
345 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
346 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
347 	case E1000_DEV_ID_I210_COPPER:
348 	case E1000_DEV_ID_I210_COPPER_OEM1:
349 	case E1000_DEV_ID_I210_COPPER_IT:
350 	case E1000_DEV_ID_I210_FIBER:
351 	case E1000_DEV_ID_I210_SERDES:
352 	case E1000_DEV_ID_I210_SGMII:
353 		mac->type = e1000_i210;
354 		break;
355 	case E1000_DEV_ID_I211_COPPER:
356 		mac->type = e1000_i211;
357 		break;
358 	case E1000_DEV_ID_82576_VF:
359 	case E1000_DEV_ID_82576_VF_HV:
360 		mac->type = e1000_vfadapt;
361 		break;
362 	case E1000_DEV_ID_I350_VF:
363 	case E1000_DEV_ID_I350_VF_HV:
364 		mac->type = e1000_vfadapt_i350;
365 		break;
366 
367 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
368 	case E1000_DEV_ID_I354_SGMII:
369 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
370 		mac->type = e1000_i354;
371 		break;
372 	default:
373 		/* Should never have loaded on this device */
374 		ret_val = -E1000_ERR_MAC_INIT;
375 		break;
376 	}
377 
378 	return ret_val;
379 }
380 
381 /**
382  *  e1000_setup_init_funcs - Initializes function pointers
383  *  @hw: pointer to the HW structure
384  *  @init_device: TRUE will initialize the rest of the function pointers
385  *		  getting the device ready for use.  FALSE will only set
386  *		  MAC type and the function pointers for the other init
387  *		  functions.  Passing FALSE will not generate any hardware
388  *		  reads or writes.
389  *
390  *  This function must be called by a driver in order to use the rest
391  *  of the 'shared' code files. Called by drivers only.
392  **/
393 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
394 {
395 	s32 ret_val;
396 
397 	/* Can't do much good without knowing the MAC type. */
398 	ret_val = e1000_set_mac_type(hw);
399 	if (ret_val) {
400 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
401 		goto out;
402 	}
403 
404 	if (!hw->hw_addr) {
405 		DEBUGOUT("ERROR: Registers not mapped\n");
406 		ret_val = -E1000_ERR_CONFIG;
407 		goto out;
408 	}
409 
410 	/*
411 	 * Init function pointers to generic implementations. We do this first
412 	 * allowing a driver module to override it afterward.
413 	 */
414 	e1000_init_mac_ops_generic(hw);
415 	e1000_init_phy_ops_generic(hw);
416 	e1000_init_nvm_ops_generic(hw);
417 	e1000_init_mbx_ops_generic(hw);
418 
419 	/*
420 	 * Set up the init function pointers. These are functions within the
421 	 * adapter family file that sets up function pointers for the rest of
422 	 * the functions in that family.
423 	 */
424 	switch (hw->mac.type) {
425 #ifndef NO_82542_SUPPORT
426 	case e1000_82542:
427 		e1000_init_function_pointers_82542(hw);
428 		break;
429 #endif
430 	case e1000_82543:
431 	case e1000_82544:
432 		e1000_init_function_pointers_82543(hw);
433 		break;
434 	case e1000_82540:
435 	case e1000_82545:
436 	case e1000_82545_rev_3:
437 	case e1000_82546:
438 	case e1000_82546_rev_3:
439 		e1000_init_function_pointers_82540(hw);
440 		break;
441 	case e1000_82541:
442 	case e1000_82541_rev_2:
443 	case e1000_82547:
444 	case e1000_82547_rev_2:
445 		e1000_init_function_pointers_82541(hw);
446 		break;
447 	case e1000_82571:
448 	case e1000_82572:
449 	case e1000_82573:
450 	case e1000_82574:
451 	case e1000_82583:
452 		e1000_init_function_pointers_82571(hw);
453 		break;
454 	case e1000_80003es2lan:
455 		e1000_init_function_pointers_80003es2lan(hw);
456 		break;
457 	case e1000_ich8lan:
458 	case e1000_ich9lan:
459 	case e1000_ich10lan:
460 	case e1000_pchlan:
461 	case e1000_pch2lan:
462 	case e1000_pch_lpt:
463 	case e1000_pch_spt:
464 		e1000_init_function_pointers_ich8lan(hw);
465 		break;
466 	case e1000_82575:
467 	case e1000_82576:
468 	case e1000_82580:
469 	case e1000_i350:
470 	case e1000_i354:
471 		e1000_init_function_pointers_82575(hw);
472 		break;
473 	case e1000_i210:
474 	case e1000_i211:
475 		e1000_init_function_pointers_i210(hw);
476 		break;
477 	case e1000_vfadapt:
478 		e1000_init_function_pointers_vf(hw);
479 		break;
480 	case e1000_vfadapt_i350:
481 		e1000_init_function_pointers_vf(hw);
482 		break;
483 	default:
484 		DEBUGOUT("Hardware not supported\n");
485 		ret_val = -E1000_ERR_CONFIG;
486 		break;
487 	}
488 
489 	/*
490 	 * Initialize the rest of the function pointers. These require some
491 	 * register reads/writes in some cases.
492 	 */
493 	if (!(ret_val) && init_device) {
494 		ret_val = e1000_init_mac_params(hw);
495 		if (ret_val)
496 			goto out;
497 
498 		ret_val = e1000_init_nvm_params(hw);
499 		if (ret_val)
500 			goto out;
501 
502 		ret_val = e1000_init_phy_params(hw);
503 		if (ret_val)
504 			goto out;
505 
506 		ret_val = e1000_init_mbx_params(hw);
507 		if (ret_val)
508 			goto out;
509 	}
510 
511 out:
512 	return ret_val;
513 }
514 
515 /**
516  *  e1000_get_bus_info - Obtain bus information for adapter
517  *  @hw: pointer to the HW structure
518  *
519  *  This will obtain information about the HW bus for which the
520  *  adapter is attached and stores it in the hw structure. This is a
521  *  function pointer entry point called by drivers.
522  **/
523 s32 e1000_get_bus_info(struct e1000_hw *hw)
524 {
525 	if (hw->mac.ops.get_bus_info)
526 		return hw->mac.ops.get_bus_info(hw);
527 
528 	return E1000_SUCCESS;
529 }
530 
531 /**
532  *  e1000_clear_vfta - Clear VLAN filter table
533  *  @hw: pointer to the HW structure
534  *
535  *  This clears the VLAN filter table on the adapter. This is a function
536  *  pointer entry point called by drivers.
537  **/
538 void e1000_clear_vfta(struct e1000_hw *hw)
539 {
540 	if (hw->mac.ops.clear_vfta)
541 		hw->mac.ops.clear_vfta(hw);
542 }
543 
544 /**
545  *  e1000_write_vfta - Write value to VLAN filter table
546  *  @hw: pointer to the HW structure
547  *  @offset: the 32-bit offset in which to write the value to.
548  *  @value: the 32-bit value to write at location offset.
549  *
550  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
551  *  table. This is a function pointer entry point called by drivers.
552  **/
553 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
554 {
555 	if (hw->mac.ops.write_vfta)
556 		hw->mac.ops.write_vfta(hw, offset, value);
557 }
558 
559 /**
560  *  e1000_update_mc_addr_list - Update Multicast addresses
561  *  @hw: pointer to the HW structure
562  *  @mc_addr_list: array of multicast addresses to program
563  *  @mc_addr_count: number of multicast addresses to program
564  *
565  *  Updates the Multicast Table Array.
566  *  The caller must have a packed mc_addr_list of multicast addresses.
567  **/
568 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
569 			       u32 mc_addr_count)
570 {
571 	if (hw->mac.ops.update_mc_addr_list)
572 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
573 						mc_addr_count);
574 }
575 
576 /**
577  *  e1000_force_mac_fc - Force MAC flow control
578  *  @hw: pointer to the HW structure
579  *
580  *  Force the MAC's flow control settings. Currently no func pointer exists
581  *  and all implementations are handled in the generic version of this
582  *  function.
583  **/
584 s32 e1000_force_mac_fc(struct e1000_hw *hw)
585 {
586 	return e1000_force_mac_fc_generic(hw);
587 }
588 
589 /**
590  *  e1000_check_for_link - Check/Store link connection
591  *  @hw: pointer to the HW structure
592  *
593  *  This checks the link condition of the adapter and stores the
594  *  results in the hw->mac structure. This is a function pointer entry
595  *  point called by drivers.
596  **/
597 s32 e1000_check_for_link(struct e1000_hw *hw)
598 {
599 	if (hw->mac.ops.check_for_link)
600 		return hw->mac.ops.check_for_link(hw);
601 
602 	return -E1000_ERR_CONFIG;
603 }
604 
605 /**
606  *  e1000_check_mng_mode - Check management mode
607  *  @hw: pointer to the HW structure
608  *
609  *  This checks if the adapter has manageability enabled.
610  *  This is a function pointer entry point called by drivers.
611  **/
612 bool e1000_check_mng_mode(struct e1000_hw *hw)
613 {
614 	if (hw->mac.ops.check_mng_mode)
615 		return hw->mac.ops.check_mng_mode(hw);
616 
617 	return FALSE;
618 }
619 
620 /**
621  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
622  *  @hw: pointer to the HW structure
623  *  @buffer: pointer to the host interface
624  *  @length: size of the buffer
625  *
626  *  Writes the DHCP information to the host interface.
627  **/
628 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
629 {
630 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
631 }
632 
633 /**
634  *  e1000_reset_hw - Reset hardware
635  *  @hw: pointer to the HW structure
636  *
637  *  This resets the hardware into a known state. This is a function pointer
638  *  entry point called by drivers.
639  **/
640 s32 e1000_reset_hw(struct e1000_hw *hw)
641 {
642 	if (hw->mac.ops.reset_hw)
643 		return hw->mac.ops.reset_hw(hw);
644 
645 	return -E1000_ERR_CONFIG;
646 }
647 
648 /**
649  *  e1000_init_hw - Initialize hardware
650  *  @hw: pointer to the HW structure
651  *
652  *  This inits the hardware readying it for operation. This is a function
653  *  pointer entry point called by drivers.
654  **/
655 s32 e1000_init_hw(struct e1000_hw *hw)
656 {
657 	if (hw->mac.ops.init_hw)
658 		return hw->mac.ops.init_hw(hw);
659 
660 	return -E1000_ERR_CONFIG;
661 }
662 
663 /**
664  *  e1000_setup_link - Configures link and flow control
665  *  @hw: pointer to the HW structure
666  *
667  *  This configures link and flow control settings for the adapter. This
668  *  is a function pointer entry point called by drivers. While modules can
669  *  also call this, they probably call their own version of this function.
670  **/
671 s32 e1000_setup_link(struct e1000_hw *hw)
672 {
673 	if (hw->mac.ops.setup_link)
674 		return hw->mac.ops.setup_link(hw);
675 
676 	return -E1000_ERR_CONFIG;
677 }
678 
679 /**
680  *  e1000_get_speed_and_duplex - Returns current speed and duplex
681  *  @hw: pointer to the HW structure
682  *  @speed: pointer to a 16-bit value to store the speed
683  *  @duplex: pointer to a 16-bit value to store the duplex.
684  *
685  *  This returns the speed and duplex of the adapter in the two 'out'
686  *  variables passed in. This is a function pointer entry point called
687  *  by drivers.
688  **/
689 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
690 {
691 	if (hw->mac.ops.get_link_up_info)
692 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
693 
694 	return -E1000_ERR_CONFIG;
695 }
696 
697 /**
698  *  e1000_setup_led - Configures SW controllable LED
699  *  @hw: pointer to the HW structure
700  *
701  *  This prepares the SW controllable LED for use and saves the current state
702  *  of the LED so it can be later restored. This is a function pointer entry
703  *  point called by drivers.
704  **/
705 s32 e1000_setup_led(struct e1000_hw *hw)
706 {
707 	if (hw->mac.ops.setup_led)
708 		return hw->mac.ops.setup_led(hw);
709 
710 	return E1000_SUCCESS;
711 }
712 
713 /**
714  *  e1000_cleanup_led - Restores SW controllable LED
715  *  @hw: pointer to the HW structure
716  *
717  *  This restores the SW controllable LED to the value saved off by
718  *  e1000_setup_led. This is a function pointer entry point called by drivers.
719  **/
720 s32 e1000_cleanup_led(struct e1000_hw *hw)
721 {
722 	if (hw->mac.ops.cleanup_led)
723 		return hw->mac.ops.cleanup_led(hw);
724 
725 	return E1000_SUCCESS;
726 }
727 
728 /**
729  *  e1000_blink_led - Blink SW controllable LED
730  *  @hw: pointer to the HW structure
731  *
732  *  This starts the adapter LED blinking. Request the LED to be setup first
733  *  and cleaned up after. This is a function pointer entry point called by
734  *  drivers.
735  **/
736 s32 e1000_blink_led(struct e1000_hw *hw)
737 {
738 	if (hw->mac.ops.blink_led)
739 		return hw->mac.ops.blink_led(hw);
740 
741 	return E1000_SUCCESS;
742 }
743 
744 /**
745  *  e1000_id_led_init - store LED configurations in SW
746  *  @hw: pointer to the HW structure
747  *
748  *  Initializes the LED config in SW. This is a function pointer entry point
749  *  called by drivers.
750  **/
751 s32 e1000_id_led_init(struct e1000_hw *hw)
752 {
753 	if (hw->mac.ops.id_led_init)
754 		return hw->mac.ops.id_led_init(hw);
755 
756 	return E1000_SUCCESS;
757 }
758 
759 /**
760  *  e1000_led_on - Turn on SW controllable LED
761  *  @hw: pointer to the HW structure
762  *
763  *  Turns the SW defined LED on. This is a function pointer entry point
764  *  called by drivers.
765  **/
766 s32 e1000_led_on(struct e1000_hw *hw)
767 {
768 	if (hw->mac.ops.led_on)
769 		return hw->mac.ops.led_on(hw);
770 
771 	return E1000_SUCCESS;
772 }
773 
774 /**
775  *  e1000_led_off - Turn off SW controllable LED
776  *  @hw: pointer to the HW structure
777  *
778  *  Turns the SW defined LED off. This is a function pointer entry point
779  *  called by drivers.
780  **/
781 s32 e1000_led_off(struct e1000_hw *hw)
782 {
783 	if (hw->mac.ops.led_off)
784 		return hw->mac.ops.led_off(hw);
785 
786 	return E1000_SUCCESS;
787 }
788 
789 /**
790  *  e1000_reset_adaptive - Reset adaptive IFS
791  *  @hw: pointer to the HW structure
792  *
793  *  Resets the adaptive IFS. Currently no func pointer exists and all
794  *  implementations are handled in the generic version of this function.
795  **/
796 void e1000_reset_adaptive(struct e1000_hw *hw)
797 {
798 	e1000_reset_adaptive_generic(hw);
799 }
800 
801 /**
802  *  e1000_update_adaptive - Update adaptive IFS
803  *  @hw: pointer to the HW structure
804  *
805  *  Updates adapter IFS. Currently no func pointer exists and all
806  *  implementations are handled in the generic version of this function.
807  **/
808 void e1000_update_adaptive(struct e1000_hw *hw)
809 {
810 	e1000_update_adaptive_generic(hw);
811 }
812 
813 /**
814  *  e1000_disable_pcie_master - Disable PCI-Express master access
815  *  @hw: pointer to the HW structure
816  *
817  *  Disables PCI-Express master access and verifies there are no pending
818  *  requests. Currently no func pointer exists and all implementations are
819  *  handled in the generic version of this function.
820  **/
821 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
822 {
823 	return e1000_disable_pcie_master_generic(hw);
824 }
825 
826 /**
827  *  e1000_config_collision_dist - Configure collision distance
828  *  @hw: pointer to the HW structure
829  *
830  *  Configures the collision distance to the default value and is used
831  *  during link setup.
832  **/
833 void e1000_config_collision_dist(struct e1000_hw *hw)
834 {
835 	if (hw->mac.ops.config_collision_dist)
836 		hw->mac.ops.config_collision_dist(hw);
837 }
838 
839 /**
840  *  e1000_rar_set - Sets a receive address register
841  *  @hw: pointer to the HW structure
842  *  @addr: address to set the RAR to
843  *  @index: the RAR to set
844  *
845  *  Sets a Receive Address Register (RAR) to the specified address.
846  **/
847 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
848 {
849 	if (hw->mac.ops.rar_set)
850 		return hw->mac.ops.rar_set(hw, addr, index);
851 
852 	return E1000_SUCCESS;
853 }
854 
855 /**
856  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
857  *  @hw: pointer to the HW structure
858  *
859  *  Ensures that the MDI/MDIX SW state is valid.
860  **/
861 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
862 {
863 	if (hw->mac.ops.validate_mdi_setting)
864 		return hw->mac.ops.validate_mdi_setting(hw);
865 
866 	return E1000_SUCCESS;
867 }
868 
869 /**
870  *  e1000_hash_mc_addr - Determines address location in multicast table
871  *  @hw: pointer to the HW structure
872  *  @mc_addr: Multicast address to hash.
873  *
874  *  This hashes an address to determine its location in the multicast
875  *  table. Currently no func pointer exists and all implementations
876  *  are handled in the generic version of this function.
877  **/
878 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
879 {
880 	return e1000_hash_mc_addr_generic(hw, mc_addr);
881 }
882 
883 /**
884  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
885  *  @hw: pointer to the HW structure
886  *
887  *  Enables packet filtering on transmit packets if manageability is enabled
888  *  and host interface is enabled.
889  *  Currently no func pointer exists and all implementations are handled in the
890  *  generic version of this function.
891  **/
892 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
893 {
894 	return e1000_enable_tx_pkt_filtering_generic(hw);
895 }
896 
897 /**
898  *  e1000_mng_host_if_write - Writes to the manageability host interface
899  *  @hw: pointer to the HW structure
900  *  @buffer: pointer to the host interface buffer
901  *  @length: size of the buffer
902  *  @offset: location in the buffer to write to
903  *  @sum: sum of the data (not checksum)
904  *
905  *  This function writes the buffer content at the offset given on the host if.
906  *  It also does alignment considerations to do the writes in most efficient
907  *  way.  Also fills up the sum of the buffer in *buffer parameter.
908  **/
909 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
910 			    u16 offset, u8 *sum)
911 {
912 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
913 }
914 
915 /**
916  *  e1000_mng_write_cmd_header - Writes manageability command header
917  *  @hw: pointer to the HW structure
918  *  @hdr: pointer to the host interface command header
919  *
920  *  Writes the command header after does the checksum calculation.
921  **/
922 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
923 			       struct e1000_host_mng_command_header *hdr)
924 {
925 	return e1000_mng_write_cmd_header_generic(hw, hdr);
926 }
927 
928 /**
929  *  e1000_mng_enable_host_if - Checks host interface is enabled
930  *  @hw: pointer to the HW structure
931  *
932  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
933  *
934  *  This function checks whether the HOST IF is enabled for command operation
935  *  and also checks whether the previous command is completed.  It busy waits
936  *  in case of previous command is not completed.
937  **/
938 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
939 {
940 	return e1000_mng_enable_host_if_generic(hw);
941 }
942 
943 /**
944  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
945  *  @hw: pointer to the HW structure
946  *  @itr: u32 indicating itr value
947  *
948  *  Set the OBFF timer based on the given interrupt rate.
949  **/
950 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
951 {
952 	if (hw->mac.ops.set_obff_timer)
953 		return hw->mac.ops.set_obff_timer(hw, itr);
954 
955 	return E1000_SUCCESS;
956 }
957 
958 /**
959  *  e1000_check_reset_block - Verifies PHY can be reset
960  *  @hw: pointer to the HW structure
961  *
962  *  Checks if the PHY is in a state that can be reset or if manageability
963  *  has it tied up. This is a function pointer entry point called by drivers.
964  **/
965 s32 e1000_check_reset_block(struct e1000_hw *hw)
966 {
967 	if (hw->phy.ops.check_reset_block)
968 		return hw->phy.ops.check_reset_block(hw);
969 
970 	return E1000_SUCCESS;
971 }
972 
973 /**
974  *  e1000_read_phy_reg - Reads PHY register
975  *  @hw: pointer to the HW structure
976  *  @offset: the register to read
977  *  @data: the buffer to store the 16-bit read.
978  *
979  *  Reads the PHY register and returns the value in data.
980  *  This is a function pointer entry point called by drivers.
981  **/
982 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
983 {
984 	if (hw->phy.ops.read_reg)
985 		return hw->phy.ops.read_reg(hw, offset, data);
986 
987 	return E1000_SUCCESS;
988 }
989 
990 /**
991  *  e1000_write_phy_reg - Writes PHY register
992  *  @hw: pointer to the HW structure
993  *  @offset: the register to write
994  *  @data: the value to write.
995  *
996  *  Writes the PHY register at offset with the value in data.
997  *  This is a function pointer entry point called by drivers.
998  **/
999 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1000 {
1001 	if (hw->phy.ops.write_reg)
1002 		return hw->phy.ops.write_reg(hw, offset, data);
1003 
1004 	return E1000_SUCCESS;
1005 }
1006 
1007 /**
1008  *  e1000_release_phy - Generic release PHY
1009  *  @hw: pointer to the HW structure
1010  *
1011  *  Return if silicon family does not require a semaphore when accessing the
1012  *  PHY.
1013  **/
1014 void e1000_release_phy(struct e1000_hw *hw)
1015 {
1016 	if (hw->phy.ops.release)
1017 		hw->phy.ops.release(hw);
1018 }
1019 
1020 /**
1021  *  e1000_acquire_phy - Generic acquire PHY
1022  *  @hw: pointer to the HW structure
1023  *
1024  *  Return success if silicon family does not require a semaphore when
1025  *  accessing the PHY.
1026  **/
1027 s32 e1000_acquire_phy(struct e1000_hw *hw)
1028 {
1029 	if (hw->phy.ops.acquire)
1030 		return hw->phy.ops.acquire(hw);
1031 
1032 	return E1000_SUCCESS;
1033 }
1034 
1035 /**
1036  *  e1000_cfg_on_link_up - Configure PHY upon link up
1037  *  @hw: pointer to the HW structure
1038  **/
1039 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1040 {
1041 	if (hw->phy.ops.cfg_on_link_up)
1042 		return hw->phy.ops.cfg_on_link_up(hw);
1043 
1044 	return E1000_SUCCESS;
1045 }
1046 
1047 /**
1048  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1049  *  @hw: pointer to the HW structure
1050  *  @offset: the register to read
1051  *  @data: the location to store the 16-bit value read.
1052  *
1053  *  Reads a register out of the Kumeran interface. Currently no func pointer
1054  *  exists and all implementations are handled in the generic version of
1055  *  this function.
1056  **/
1057 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1058 {
1059 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1060 }
1061 
1062 /**
1063  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1064  *  @hw: pointer to the HW structure
1065  *  @offset: the register to write
1066  *  @data: the value to write.
1067  *
1068  *  Writes a register to the Kumeran interface. Currently no func pointer
1069  *  exists and all implementations are handled in the generic version of
1070  *  this function.
1071  **/
1072 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1073 {
1074 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1075 }
1076 
1077 /**
1078  *  e1000_get_cable_length - Retrieves cable length estimation
1079  *  @hw: pointer to the HW structure
1080  *
1081  *  This function estimates the cable length and stores them in
1082  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1083  *  entry point called by drivers.
1084  **/
1085 s32 e1000_get_cable_length(struct e1000_hw *hw)
1086 {
1087 	if (hw->phy.ops.get_cable_length)
1088 		return hw->phy.ops.get_cable_length(hw);
1089 
1090 	return E1000_SUCCESS;
1091 }
1092 
1093 /**
1094  *  e1000_get_phy_info - Retrieves PHY information from registers
1095  *  @hw: pointer to the HW structure
1096  *
1097  *  This function gets some information from various PHY registers and
1098  *  populates hw->phy values with it. This is a function pointer entry
1099  *  point called by drivers.
1100  **/
1101 s32 e1000_get_phy_info(struct e1000_hw *hw)
1102 {
1103 	if (hw->phy.ops.get_info)
1104 		return hw->phy.ops.get_info(hw);
1105 
1106 	return E1000_SUCCESS;
1107 }
1108 
1109 /**
1110  *  e1000_phy_hw_reset - Hard PHY reset
1111  *  @hw: pointer to the HW structure
1112  *
1113  *  Performs a hard PHY reset. This is a function pointer entry point called
1114  *  by drivers.
1115  **/
1116 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1117 {
1118 	if (hw->phy.ops.reset)
1119 		return hw->phy.ops.reset(hw);
1120 
1121 	return E1000_SUCCESS;
1122 }
1123 
1124 /**
1125  *  e1000_phy_commit - Soft PHY reset
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  Performs a soft PHY reset on those that apply. This is a function pointer
1129  *  entry point called by drivers.
1130  **/
1131 s32 e1000_phy_commit(struct e1000_hw *hw)
1132 {
1133 	if (hw->phy.ops.commit)
1134 		return hw->phy.ops.commit(hw);
1135 
1136 	return E1000_SUCCESS;
1137 }
1138 
1139 /**
1140  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1141  *  @hw: pointer to the HW structure
1142  *  @active: boolean used to enable/disable lplu
1143  *
1144  *  Success returns 0, Failure returns 1
1145  *
1146  *  The low power link up (lplu) state is set to the power management level D0
1147  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1148  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1149  *  is used during Dx states where the power conservation is most important.
1150  *  During driver activity, SmartSpeed should be enabled so performance is
1151  *  maintained.  This is a function pointer entry point called by drivers.
1152  **/
1153 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1154 {
1155 	if (hw->phy.ops.set_d0_lplu_state)
1156 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1157 
1158 	return E1000_SUCCESS;
1159 }
1160 
1161 /**
1162  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1163  *  @hw: pointer to the HW structure
1164  *  @active: boolean used to enable/disable lplu
1165  *
1166  *  Success returns 0, Failure returns 1
1167  *
1168  *  The low power link up (lplu) state is set to the power management level D3
1169  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1170  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1171  *  is used during Dx states where the power conservation is most important.
1172  *  During driver activity, SmartSpeed should be enabled so performance is
1173  *  maintained.  This is a function pointer entry point called by drivers.
1174  **/
1175 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1176 {
1177 	if (hw->phy.ops.set_d3_lplu_state)
1178 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1179 
1180 	return E1000_SUCCESS;
1181 }
1182 
1183 /**
1184  *  e1000_read_mac_addr - Reads MAC address
1185  *  @hw: pointer to the HW structure
1186  *
1187  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1188  *  Currently no func pointer exists and all implementations are handled in the
1189  *  generic version of this function.
1190  **/
1191 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1192 {
1193 	if (hw->mac.ops.read_mac_addr)
1194 		return hw->mac.ops.read_mac_addr(hw);
1195 
1196 	return e1000_read_mac_addr_generic(hw);
1197 }
1198 
1199 /**
1200  *  e1000_read_pba_string - Read device part number string
1201  *  @hw: pointer to the HW structure
1202  *  @pba_num: pointer to device part number
1203  *  @pba_num_size: size of part number buffer
1204  *
1205  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1206  *  the value in pba_num.
1207  *  Currently no func pointer exists and all implementations are handled in the
1208  *  generic version of this function.
1209  **/
1210 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1211 {
1212 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1213 }
1214 
1215 /**
1216  *  e1000_read_pba_length - Read device part number string length
1217  *  @hw: pointer to the HW structure
1218  *  @pba_num_size: size of part number buffer
1219  *
1220  *  Reads the product board assembly (PBA) number length from the EEPROM and
1221  *  stores the value in pba_num.
1222  *  Currently no func pointer exists and all implementations are handled in the
1223  *  generic version of this function.
1224  **/
1225 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1226 {
1227 	return e1000_read_pba_length_generic(hw, pba_num_size);
1228 }
1229 
1230 /**
1231  *  e1000_read_pba_num - Read device part number
1232  *  @hw: pointer to the HW structure
1233  *  @pba_num: pointer to device part number
1234  *
1235  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1236  *  the value in pba_num.
1237  *  Currently no func pointer exists and all implementations are handled in the
1238  *  generic version of this function.
1239  **/
1240 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1241 {
1242 	return e1000_read_pba_num_generic(hw, pba_num);
1243 }
1244 
1245 /**
1246  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1247  *  @hw: pointer to the HW structure
1248  *
1249  *  Validates the NVM checksum is correct. This is a function pointer entry
1250  *  point called by drivers.
1251  **/
1252 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1253 {
1254 	if (hw->nvm.ops.validate)
1255 		return hw->nvm.ops.validate(hw);
1256 
1257 	return -E1000_ERR_CONFIG;
1258 }
1259 
1260 /**
1261  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1262  *  @hw: pointer to the HW structure
1263  *
1264  *  Updates the NVM checksum. Currently no func pointer exists and all
1265  *  implementations are handled in the generic version of this function.
1266  **/
1267 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1268 {
1269 	if (hw->nvm.ops.update)
1270 		return hw->nvm.ops.update(hw);
1271 
1272 	return -E1000_ERR_CONFIG;
1273 }
1274 
1275 /**
1276  *  e1000_reload_nvm - Reloads EEPROM
1277  *  @hw: pointer to the HW structure
1278  *
1279  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1280  *  extended control register.
1281  **/
1282 void e1000_reload_nvm(struct e1000_hw *hw)
1283 {
1284 	if (hw->nvm.ops.reload)
1285 		hw->nvm.ops.reload(hw);
1286 }
1287 
1288 /**
1289  *  e1000_read_nvm - Reads NVM (EEPROM)
1290  *  @hw: pointer to the HW structure
1291  *  @offset: the word offset to read
1292  *  @words: number of 16-bit words to read
1293  *  @data: pointer to the properly sized buffer for the data.
1294  *
1295  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1296  *  pointer entry point called by drivers.
1297  **/
1298 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1299 {
1300 	if (hw->nvm.ops.read)
1301 		return hw->nvm.ops.read(hw, offset, words, data);
1302 
1303 	return -E1000_ERR_CONFIG;
1304 }
1305 
1306 /**
1307  *  e1000_write_nvm - Writes to NVM (EEPROM)
1308  *  @hw: pointer to the HW structure
1309  *  @offset: the word offset to read
1310  *  @words: number of 16-bit words to write
1311  *  @data: pointer to the properly sized buffer for the data.
1312  *
1313  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1314  *  pointer entry point called by drivers.
1315  **/
1316 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1317 {
1318 	if (hw->nvm.ops.write)
1319 		return hw->nvm.ops.write(hw, offset, words, data);
1320 
1321 	return E1000_SUCCESS;
1322 }
1323 
1324 /**
1325  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1326  *  @hw: pointer to the HW structure
1327  *  @reg: 32bit register offset
1328  *  @offset: the register to write
1329  *  @data: the value to write.
1330  *
1331  *  Writes the PHY register at offset with the value in data.
1332  *  This is a function pointer entry point called by drivers.
1333  **/
1334 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1335 			      u8 data)
1336 {
1337 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1338 }
1339 
1340 /**
1341  * e1000_power_up_phy - Restores link in case of PHY power down
1342  * @hw: pointer to the HW structure
1343  *
1344  * The phy may be powered down to save power, to turn off link when the
1345  * driver is unloaded, or wake on lan is not enabled (among others).
1346  **/
1347 void e1000_power_up_phy(struct e1000_hw *hw)
1348 {
1349 	if (hw->phy.ops.power_up)
1350 		hw->phy.ops.power_up(hw);
1351 
1352 	e1000_setup_link(hw);
1353 }
1354 
1355 /**
1356  * e1000_power_down_phy - Power down PHY
1357  * @hw: pointer to the HW structure
1358  *
1359  * The phy may be powered down to save power, to turn off link when the
1360  * driver is unloaded, or wake on lan is not enabled (among others).
1361  **/
1362 void e1000_power_down_phy(struct e1000_hw *hw)
1363 {
1364 	if (hw->phy.ops.power_down)
1365 		hw->phy.ops.power_down(hw);
1366 }
1367 
1368 /**
1369  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1370  *  @hw: pointer to the HW structure
1371  *
1372  *  Power on the optics and PCS.
1373  **/
1374 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1375 {
1376 	if (hw->mac.ops.power_up_serdes)
1377 		hw->mac.ops.power_up_serdes(hw);
1378 }
1379 
1380 /**
1381  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1382  *  @hw: pointer to the HW structure
1383  *
1384  *  Shutdown the optics and PCS on driver unload.
1385  **/
1386 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1387 {
1388 	if (hw->mac.ops.shutdown_serdes)
1389 		hw->mac.ops.shutdown_serdes(hw);
1390 }
1391