xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision 9f3fc534)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2008, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_set_mac_type - Sets MAC type
117  *  @hw: pointer to the HW structure
118  *
119  *  This function sets the mac type of the adapter based on the
120  *  device ID stored in the hw structure.
121  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
122  *  e1000_setup_init_funcs()).
123  **/
124 s32 e1000_set_mac_type(struct e1000_hw *hw)
125 {
126 	struct e1000_mac_info *mac = &hw->mac;
127 	s32 ret_val = E1000_SUCCESS;
128 
129 	DEBUGFUNC("e1000_set_mac_type");
130 
131 	switch (hw->device_id) {
132 	case E1000_DEV_ID_82542:
133 		mac->type = e1000_82542;
134 		break;
135 	case E1000_DEV_ID_82543GC_FIBER:
136 	case E1000_DEV_ID_82543GC_COPPER:
137 		mac->type = e1000_82543;
138 		break;
139 	case E1000_DEV_ID_82544EI_COPPER:
140 	case E1000_DEV_ID_82544EI_FIBER:
141 	case E1000_DEV_ID_82544GC_COPPER:
142 	case E1000_DEV_ID_82544GC_LOM:
143 		mac->type = e1000_82544;
144 		break;
145 	case E1000_DEV_ID_82540EM:
146 	case E1000_DEV_ID_82540EM_LOM:
147 	case E1000_DEV_ID_82540EP:
148 	case E1000_DEV_ID_82540EP_LOM:
149 	case E1000_DEV_ID_82540EP_LP:
150 		mac->type = e1000_82540;
151 		break;
152 	case E1000_DEV_ID_82545EM_COPPER:
153 	case E1000_DEV_ID_82545EM_FIBER:
154 		mac->type = e1000_82545;
155 		break;
156 	case E1000_DEV_ID_82545GM_COPPER:
157 	case E1000_DEV_ID_82545GM_FIBER:
158 	case E1000_DEV_ID_82545GM_SERDES:
159 		mac->type = e1000_82545_rev_3;
160 		break;
161 	case E1000_DEV_ID_82546EB_COPPER:
162 	case E1000_DEV_ID_82546EB_FIBER:
163 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
164 		mac->type = e1000_82546;
165 		break;
166 	case E1000_DEV_ID_82546GB_COPPER:
167 	case E1000_DEV_ID_82546GB_FIBER:
168 	case E1000_DEV_ID_82546GB_SERDES:
169 	case E1000_DEV_ID_82546GB_PCIE:
170 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
171 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
172 		mac->type = e1000_82546_rev_3;
173 		break;
174 	case E1000_DEV_ID_82541EI:
175 	case E1000_DEV_ID_82541EI_MOBILE:
176 	case E1000_DEV_ID_82541ER_LOM:
177 		mac->type = e1000_82541;
178 		break;
179 	case E1000_DEV_ID_82541ER:
180 	case E1000_DEV_ID_82541GI:
181 	case E1000_DEV_ID_82541GI_LF:
182 	case E1000_DEV_ID_82541GI_MOBILE:
183 		mac->type = e1000_82541_rev_2;
184 		break;
185 	case E1000_DEV_ID_82547EI:
186 	case E1000_DEV_ID_82547EI_MOBILE:
187 		mac->type = e1000_82547;
188 		break;
189 	case E1000_DEV_ID_82547GI:
190 		mac->type = e1000_82547_rev_2;
191 		break;
192 	case E1000_DEV_ID_82571EB_COPPER:
193 	case E1000_DEV_ID_82571EB_FIBER:
194 	case E1000_DEV_ID_82571EB_SERDES:
195 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
196 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
197 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
198 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
199 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
200 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
201 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
202 		mac->type = e1000_82571;
203 		break;
204 	case E1000_DEV_ID_82572EI:
205 	case E1000_DEV_ID_82572EI_COPPER:
206 	case E1000_DEV_ID_82572EI_FIBER:
207 	case E1000_DEV_ID_82572EI_SERDES:
208 		mac->type = e1000_82572;
209 		break;
210 	case E1000_DEV_ID_82573E:
211 	case E1000_DEV_ID_82573E_IAMT:
212 	case E1000_DEV_ID_82573L:
213 		mac->type = e1000_82573;
214 		break;
215 	case E1000_DEV_ID_82574L:
216 		mac->type = e1000_82574;
217 		break;
218 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
219 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
220 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
221 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
222 		mac->type = e1000_80003es2lan;
223 		break;
224 	case E1000_DEV_ID_ICH8_IFE:
225 	case E1000_DEV_ID_ICH8_IFE_GT:
226 	case E1000_DEV_ID_ICH8_IFE_G:
227 	case E1000_DEV_ID_ICH8_IGP_M:
228 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
229 	case E1000_DEV_ID_ICH8_IGP_AMT:
230 	case E1000_DEV_ID_ICH8_IGP_C:
231 		mac->type = e1000_ich8lan;
232 		break;
233 	case E1000_DEV_ID_ICH9_IFE:
234 	case E1000_DEV_ID_ICH9_IFE_GT:
235 	case E1000_DEV_ID_ICH9_IFE_G:
236 	case E1000_DEV_ID_ICH9_IGP_M:
237 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
238 	case E1000_DEV_ID_ICH9_IGP_M_V:
239 	case E1000_DEV_ID_ICH9_IGP_AMT:
240 	case E1000_DEV_ID_ICH9_BM:
241 	case E1000_DEV_ID_ICH9_IGP_C:
242 	case E1000_DEV_ID_ICH10_R_BM_LM:
243 	case E1000_DEV_ID_ICH10_R_BM_LF:
244 	case E1000_DEV_ID_ICH10_R_BM_V:
245 		mac->type = e1000_ich9lan;
246 		break;
247 	case E1000_DEV_ID_ICH10_D_BM_LM:
248 	case E1000_DEV_ID_ICH10_D_BM_LF:
249 		mac->type = e1000_ich10lan;
250 		break;
251 	case E1000_DEV_ID_82575EB_COPPER:
252 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
253 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
254 		mac->type = e1000_82575;
255 		break;
256 	case E1000_DEV_ID_82576:
257 	case E1000_DEV_ID_82576_FIBER:
258 	case E1000_DEV_ID_82576_SERDES:
259 	case E1000_DEV_ID_82576_QUAD_COPPER:
260 		mac->type = e1000_82576;
261 		break;
262 	default:
263 		/* Should never have loaded on this device */
264 		ret_val = -E1000_ERR_MAC_INIT;
265 		break;
266 	}
267 
268 	return ret_val;
269 }
270 
271 /**
272  *  e1000_setup_init_funcs - Initializes function pointers
273  *  @hw: pointer to the HW structure
274  *  @init_device: TRUE will initialize the rest of the function pointers
275  *                 getting the device ready for use.  FALSE will only set
276  *                 MAC type and the function pointers for the other init
277  *                 functions.  Passing FALSE will not generate any hardware
278  *                 reads or writes.
279  *
280  *  This function must be called by a driver in order to use the rest
281  *  of the 'shared' code files. Called by drivers only.
282  **/
283 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
284 {
285 	s32 ret_val;
286 
287 	/* Can't do much good without knowing the MAC type. */
288 	ret_val = e1000_set_mac_type(hw);
289 	if (ret_val) {
290 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
291 		goto out;
292 	}
293 
294 	if (!hw->hw_addr) {
295 		DEBUGOUT("ERROR: Registers not mapped\n");
296 		ret_val = -E1000_ERR_CONFIG;
297 		goto out;
298 	}
299 
300 	/*
301 	 * Init function pointers to generic implementations. We do this first
302 	 * allowing a driver module to override it afterward.
303 	 */
304 	e1000_init_mac_ops_generic(hw);
305 	e1000_init_phy_ops_generic(hw);
306 	e1000_init_nvm_ops_generic(hw);
307 
308 	/*
309 	 * Set up the init function pointers. These are functions within the
310 	 * adapter family file that sets up function pointers for the rest of
311 	 * the functions in that family.
312 	 */
313 	switch (hw->mac.type) {
314 	case e1000_82542:
315 		e1000_init_function_pointers_82542(hw);
316 		break;
317 	case e1000_82543:
318 	case e1000_82544:
319 		e1000_init_function_pointers_82543(hw);
320 		break;
321 	case e1000_82540:
322 	case e1000_82545:
323 	case e1000_82545_rev_3:
324 	case e1000_82546:
325 	case e1000_82546_rev_3:
326 		e1000_init_function_pointers_82540(hw);
327 		break;
328 	case e1000_82541:
329 	case e1000_82541_rev_2:
330 	case e1000_82547:
331 	case e1000_82547_rev_2:
332 		e1000_init_function_pointers_82541(hw);
333 		break;
334 	case e1000_82571:
335 	case e1000_82572:
336 	case e1000_82573:
337 	case e1000_82574:
338 		e1000_init_function_pointers_82571(hw);
339 		break;
340 	case e1000_80003es2lan:
341 		e1000_init_function_pointers_80003es2lan(hw);
342 		break;
343 	case e1000_ich8lan:
344 	case e1000_ich9lan:
345 	case e1000_ich10lan:
346 		e1000_init_function_pointers_ich8lan(hw);
347 		break;
348 	case e1000_82575:
349 	case e1000_82576:
350 		e1000_init_function_pointers_82575(hw);
351 		break;
352 	default:
353 		DEBUGOUT("Hardware not supported\n");
354 		ret_val = -E1000_ERR_CONFIG;
355 		break;
356 	}
357 
358 	/*
359 	 * Initialize the rest of the function pointers. These require some
360 	 * register reads/writes in some cases.
361 	 */
362 	if (!(ret_val) && init_device) {
363 		ret_val = e1000_init_mac_params(hw);
364 		if (ret_val)
365 			goto out;
366 
367 		ret_val = e1000_init_nvm_params(hw);
368 		if (ret_val)
369 			goto out;
370 
371 		ret_val = e1000_init_phy_params(hw);
372 		if (ret_val)
373 			goto out;
374 
375 	}
376 
377 out:
378 	return ret_val;
379 }
380 
381 /**
382  *  e1000_get_bus_info - Obtain bus information for adapter
383  *  @hw: pointer to the HW structure
384  *
385  *  This will obtain information about the HW bus for which the
386  *  adapter is attached and stores it in the hw structure. This is a
387  *  function pointer entry point called by drivers.
388  **/
389 s32 e1000_get_bus_info(struct e1000_hw *hw)
390 {
391 	if (hw->mac.ops.get_bus_info)
392 		return hw->mac.ops.get_bus_info(hw);
393 
394 	return E1000_SUCCESS;
395 }
396 
397 /**
398  *  e1000_clear_vfta - Clear VLAN filter table
399  *  @hw: pointer to the HW structure
400  *
401  *  This clears the VLAN filter table on the adapter. This is a function
402  *  pointer entry point called by drivers.
403  **/
404 void e1000_clear_vfta(struct e1000_hw *hw)
405 {
406 	if (hw->mac.ops.clear_vfta)
407 		hw->mac.ops.clear_vfta(hw);
408 }
409 
410 /**
411  *  e1000_write_vfta - Write value to VLAN filter table
412  *  @hw: pointer to the HW structure
413  *  @offset: the 32-bit offset in which to write the value to.
414  *  @value: the 32-bit value to write at location offset.
415  *
416  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
417  *  table. This is a function pointer entry point called by drivers.
418  **/
419 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
420 {
421 	if (hw->mac.ops.write_vfta)
422 		hw->mac.ops.write_vfta(hw, offset, value);
423 }
424 
425 /**
426  *  e1000_update_mc_addr_list - Update Multicast addresses
427  *  @hw: pointer to the HW structure
428  *  @mc_addr_list: array of multicast addresses to program
429  *  @mc_addr_count: number of multicast addresses to program
430  *  @rar_used_count: the first RAR register free to program
431  *  @rar_count: total number of supported Receive Address Registers
432  *
433  *  Updates the Receive Address Registers and Multicast Table Array.
434  *  The caller must have a packed mc_addr_list of multicast addresses.
435  *  The parameter rar_count will usually be hw->mac.rar_entry_count
436  *  unless there are workarounds that change this.  Currently no func pointer
437  *  exists and all implementations are handled in the generic version of this
438  *  function.
439  **/
440 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
441                                u32 mc_addr_count, u32 rar_used_count,
442                                u32 rar_count)
443 {
444 	if (hw->mac.ops.update_mc_addr_list)
445 		hw->mac.ops.update_mc_addr_list(hw,
446 		                                mc_addr_list,
447 		                                mc_addr_count,
448 		                                rar_used_count,
449 		                                rar_count);
450 }
451 
452 /**
453  *  e1000_force_mac_fc - Force MAC flow control
454  *  @hw: pointer to the HW structure
455  *
456  *  Force the MAC's flow control settings. Currently no func pointer exists
457  *  and all implementations are handled in the generic version of this
458  *  function.
459  **/
460 s32 e1000_force_mac_fc(struct e1000_hw *hw)
461 {
462 	return e1000_force_mac_fc_generic(hw);
463 }
464 
465 /**
466  *  e1000_check_for_link - Check/Store link connection
467  *  @hw: pointer to the HW structure
468  *
469  *  This checks the link condition of the adapter and stores the
470  *  results in the hw->mac structure. This is a function pointer entry
471  *  point called by drivers.
472  **/
473 s32 e1000_check_for_link(struct e1000_hw *hw)
474 {
475 	if (hw->mac.ops.check_for_link)
476 		return hw->mac.ops.check_for_link(hw);
477 
478 	return -E1000_ERR_CONFIG;
479 }
480 
481 /**
482  *  e1000_check_mng_mode - Check management mode
483  *  @hw: pointer to the HW structure
484  *
485  *  This checks if the adapter has manageability enabled.
486  *  This is a function pointer entry point called by drivers.
487  **/
488 bool e1000_check_mng_mode(struct e1000_hw *hw)
489 {
490 	if (hw->mac.ops.check_mng_mode)
491 		return hw->mac.ops.check_mng_mode(hw);
492 
493 	return FALSE;
494 }
495 
496 /**
497  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
498  *  @hw: pointer to the HW structure
499  *  @buffer: pointer to the host interface
500  *  @length: size of the buffer
501  *
502  *  Writes the DHCP information to the host interface.
503  **/
504 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
505 {
506 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
507 }
508 
509 /**
510  *  e1000_reset_hw - Reset hardware
511  *  @hw: pointer to the HW structure
512  *
513  *  This resets the hardware into a known state. This is a function pointer
514  *  entry point called by drivers.
515  **/
516 s32 e1000_reset_hw(struct e1000_hw *hw)
517 {
518 	if (hw->mac.ops.reset_hw)
519 		return hw->mac.ops.reset_hw(hw);
520 
521 	return -E1000_ERR_CONFIG;
522 }
523 
524 /**
525  *  e1000_init_hw - Initialize hardware
526  *  @hw: pointer to the HW structure
527  *
528  *  This inits the hardware readying it for operation. This is a function
529  *  pointer entry point called by drivers.
530  **/
531 s32 e1000_init_hw(struct e1000_hw *hw)
532 {
533 	if (hw->mac.ops.init_hw)
534 		return hw->mac.ops.init_hw(hw);
535 
536 	return -E1000_ERR_CONFIG;
537 }
538 
539 /**
540  *  e1000_setup_link - Configures link and flow control
541  *  @hw: pointer to the HW structure
542  *
543  *  This configures link and flow control settings for the adapter. This
544  *  is a function pointer entry point called by drivers. While modules can
545  *  also call this, they probably call their own version of this function.
546  **/
547 s32 e1000_setup_link(struct e1000_hw *hw)
548 {
549 	if (hw->mac.ops.setup_link)
550 		return hw->mac.ops.setup_link(hw);
551 
552 	return -E1000_ERR_CONFIG;
553 }
554 
555 /**
556  *  e1000_get_speed_and_duplex - Returns current speed and duplex
557  *  @hw: pointer to the HW structure
558  *  @speed: pointer to a 16-bit value to store the speed
559  *  @duplex: pointer to a 16-bit value to store the duplex.
560  *
561  *  This returns the speed and duplex of the adapter in the two 'out'
562  *  variables passed in. This is a function pointer entry point called
563  *  by drivers.
564  **/
565 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
566 {
567 	if (hw->mac.ops.get_link_up_info)
568 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
569 
570 	return -E1000_ERR_CONFIG;
571 }
572 
573 /**
574  *  e1000_setup_led - Configures SW controllable LED
575  *  @hw: pointer to the HW structure
576  *
577  *  This prepares the SW controllable LED for use and saves the current state
578  *  of the LED so it can be later restored. This is a function pointer entry
579  *  point called by drivers.
580  **/
581 s32 e1000_setup_led(struct e1000_hw *hw)
582 {
583 	if (hw->mac.ops.setup_led)
584 		return hw->mac.ops.setup_led(hw);
585 
586 	return E1000_SUCCESS;
587 }
588 
589 /**
590  *  e1000_cleanup_led - Restores SW controllable LED
591  *  @hw: pointer to the HW structure
592  *
593  *  This restores the SW controllable LED to the value saved off by
594  *  e1000_setup_led. This is a function pointer entry point called by drivers.
595  **/
596 s32 e1000_cleanup_led(struct e1000_hw *hw)
597 {
598 	if (hw->mac.ops.cleanup_led)
599 		return hw->mac.ops.cleanup_led(hw);
600 
601 	return E1000_SUCCESS;
602 }
603 
604 /**
605  *  e1000_blink_led - Blink SW controllable LED
606  *  @hw: pointer to the HW structure
607  *
608  *  This starts the adapter LED blinking. Request the LED to be setup first
609  *  and cleaned up after. This is a function pointer entry point called by
610  *  drivers.
611  **/
612 s32 e1000_blink_led(struct e1000_hw *hw)
613 {
614 	if (hw->mac.ops.blink_led)
615 		return hw->mac.ops.blink_led(hw);
616 
617 	return E1000_SUCCESS;
618 }
619 
620 /**
621  *  e1000_led_on - Turn on SW controllable LED
622  *  @hw: pointer to the HW structure
623  *
624  *  Turns the SW defined LED on. This is a function pointer entry point
625  *  called by drivers.
626  **/
627 s32 e1000_led_on(struct e1000_hw *hw)
628 {
629 	if (hw->mac.ops.led_on)
630 		return hw->mac.ops.led_on(hw);
631 
632 	return E1000_SUCCESS;
633 }
634 
635 /**
636  *  e1000_led_off - Turn off SW controllable LED
637  *  @hw: pointer to the HW structure
638  *
639  *  Turns the SW defined LED off. This is a function pointer entry point
640  *  called by drivers.
641  **/
642 s32 e1000_led_off(struct e1000_hw *hw)
643 {
644 	if (hw->mac.ops.led_off)
645 		return hw->mac.ops.led_off(hw);
646 
647 	return E1000_SUCCESS;
648 }
649 
650 /**
651  *  e1000_reset_adaptive - Reset adaptive IFS
652  *  @hw: pointer to the HW structure
653  *
654  *  Resets the adaptive IFS. Currently no func pointer exists and all
655  *  implementations are handled in the generic version of this function.
656  **/
657 void e1000_reset_adaptive(struct e1000_hw *hw)
658 {
659 	e1000_reset_adaptive_generic(hw);
660 }
661 
662 /**
663  *  e1000_update_adaptive - Update adaptive IFS
664  *  @hw: pointer to the HW structure
665  *
666  *  Updates adapter IFS. Currently no func pointer exists and all
667  *  implementations are handled in the generic version of this function.
668  **/
669 void e1000_update_adaptive(struct e1000_hw *hw)
670 {
671 	e1000_update_adaptive_generic(hw);
672 }
673 
674 /**
675  *  e1000_disable_pcie_master - Disable PCI-Express master access
676  *  @hw: pointer to the HW structure
677  *
678  *  Disables PCI-Express master access and verifies there are no pending
679  *  requests. Currently no func pointer exists and all implementations are
680  *  handled in the generic version of this function.
681  **/
682 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
683 {
684 	return e1000_disable_pcie_master_generic(hw);
685 }
686 
687 /**
688  *  e1000_config_collision_dist - Configure collision distance
689  *  @hw: pointer to the HW structure
690  *
691  *  Configures the collision distance to the default value and is used
692  *  during link setup.
693  **/
694 void e1000_config_collision_dist(struct e1000_hw *hw)
695 {
696 	if (hw->mac.ops.config_collision_dist)
697 		hw->mac.ops.config_collision_dist(hw);
698 }
699 
700 /**
701  *  e1000_rar_set - Sets a receive address register
702  *  @hw: pointer to the HW structure
703  *  @addr: address to set the RAR to
704  *  @index: the RAR to set
705  *
706  *  Sets a Receive Address Register (RAR) to the specified address.
707  **/
708 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
709 {
710 	if (hw->mac.ops.rar_set)
711 		hw->mac.ops.rar_set(hw, addr, index);
712 }
713 
714 /**
715  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
716  *  @hw: pointer to the HW structure
717  *
718  *  Ensures that the MDI/MDIX SW state is valid.
719  **/
720 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
721 {
722 	if (hw->mac.ops.validate_mdi_setting)
723 		return hw->mac.ops.validate_mdi_setting(hw);
724 
725 	return E1000_SUCCESS;
726 }
727 
728 /**
729  *  e1000_mta_set - Sets multicast table bit
730  *  @hw: pointer to the HW structure
731  *  @hash_value: Multicast hash value.
732  *
733  *  This sets the bit in the multicast table corresponding to the
734  *  hash value.  This is a function pointer entry point called by drivers.
735  **/
736 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
737 {
738 	if (hw->mac.ops.mta_set)
739 		hw->mac.ops.mta_set(hw, hash_value);
740 }
741 
742 /**
743  *  e1000_hash_mc_addr - Determines address location in multicast table
744  *  @hw: pointer to the HW structure
745  *  @mc_addr: Multicast address to hash.
746  *
747  *  This hashes an address to determine its location in the multicast
748  *  table. Currently no func pointer exists and all implementations
749  *  are handled in the generic version of this function.
750  **/
751 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
752 {
753 	return e1000_hash_mc_addr_generic(hw, mc_addr);
754 }
755 
756 /**
757  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
758  *  @hw: pointer to the HW structure
759  *
760  *  Enables packet filtering on transmit packets if manageability is enabled
761  *  and host interface is enabled.
762  *  Currently no func pointer exists and all implementations are handled in the
763  *  generic version of this function.
764  **/
765 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
766 {
767 	return e1000_enable_tx_pkt_filtering_generic(hw);
768 }
769 
770 /**
771  *  e1000_mng_host_if_write - Writes to the manageability host interface
772  *  @hw: pointer to the HW structure
773  *  @buffer: pointer to the host interface buffer
774  *  @length: size of the buffer
775  *  @offset: location in the buffer to write to
776  *  @sum: sum of the data (not checksum)
777  *
778  *  This function writes the buffer content at the offset given on the host if.
779  *  It also does alignment considerations to do the writes in most efficient
780  *  way.  Also fills up the sum of the buffer in *buffer parameter.
781  **/
782 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
783                             u16 offset, u8 *sum)
784 {
785 	if (hw->mac.ops.mng_host_if_write)
786 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
787 		                                     offset, sum);
788 
789 	return E1000_NOT_IMPLEMENTED;
790 }
791 
792 /**
793  *  e1000_mng_write_cmd_header - Writes manageability command header
794  *  @hw: pointer to the HW structure
795  *  @hdr: pointer to the host interface command header
796  *
797  *  Writes the command header after does the checksum calculation.
798  **/
799 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
800                                struct e1000_host_mng_command_header *hdr)
801 {
802 	if (hw->mac.ops.mng_write_cmd_header)
803 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
804 
805 	return E1000_NOT_IMPLEMENTED;
806 }
807 
808 /**
809  *  e1000_mng_enable_host_if - Checks host interface is enabled
810  *  @hw: pointer to the HW structure
811  *
812  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
813  *
814  *  This function checks whether the HOST IF is enabled for command operation
815  *  and also checks whether the previous command is completed.  It busy waits
816  *  in case of previous command is not completed.
817  **/
818 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
819 {
820 	if (hw->mac.ops.mng_enable_host_if)
821 		return hw->mac.ops.mng_enable_host_if(hw);
822 
823 	return E1000_NOT_IMPLEMENTED;
824 }
825 
826 /**
827  *  e1000_wait_autoneg - Waits for autonegotiation completion
828  *  @hw: pointer to the HW structure
829  *
830  *  Waits for autoneg to complete. Currently no func pointer exists and all
831  *  implementations are handled in the generic version of this function.
832  **/
833 s32 e1000_wait_autoneg(struct e1000_hw *hw)
834 {
835 	if (hw->mac.ops.wait_autoneg)
836 		return hw->mac.ops.wait_autoneg(hw);
837 
838 	return E1000_SUCCESS;
839 }
840 
841 /**
842  *  e1000_check_reset_block - Verifies PHY can be reset
843  *  @hw: pointer to the HW structure
844  *
845  *  Checks if the PHY is in a state that can be reset or if manageability
846  *  has it tied up. This is a function pointer entry point called by drivers.
847  **/
848 s32 e1000_check_reset_block(struct e1000_hw *hw)
849 {
850 	if (hw->phy.ops.check_reset_block)
851 		return hw->phy.ops.check_reset_block(hw);
852 
853 	return E1000_SUCCESS;
854 }
855 
856 /**
857  *  e1000_read_phy_reg - Reads PHY register
858  *  @hw: pointer to the HW structure
859  *  @offset: the register to read
860  *  @data: the buffer to store the 16-bit read.
861  *
862  *  Reads the PHY register and returns the value in data.
863  *  This is a function pointer entry point called by drivers.
864  **/
865 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
866 {
867 	if (hw->phy.ops.read_reg)
868 		return hw->phy.ops.read_reg(hw, offset, data);
869 
870 	return E1000_SUCCESS;
871 }
872 
873 /**
874  *  e1000_write_phy_reg - Writes PHY register
875  *  @hw: pointer to the HW structure
876  *  @offset: the register to write
877  *  @data: the value to write.
878  *
879  *  Writes the PHY register at offset with the value in data.
880  *  This is a function pointer entry point called by drivers.
881  **/
882 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
883 {
884 	if (hw->phy.ops.write_reg)
885 		return hw->phy.ops.write_reg(hw, offset, data);
886 
887 	return E1000_SUCCESS;
888 }
889 
890 /**
891  *  e1000_release_phy - Generic release PHY
892  *  @hw: pointer to the HW structure
893  *
894  *  Return if silicon family does not require a semaphore when accessing the
895  *  PHY.
896  **/
897 void e1000_release_phy(struct e1000_hw *hw)
898 {
899 	if (hw->phy.ops.release)
900 		hw->phy.ops.release(hw);
901 }
902 
903 /**
904  *  e1000_acquire_phy - Generic acquire PHY
905  *  @hw: pointer to the HW structure
906  *
907  *  Return success if silicon family does not require a semaphore when
908  *  accessing the PHY.
909  **/
910 s32 e1000_acquire_phy(struct e1000_hw *hw)
911 {
912 	if (hw->phy.ops.acquire)
913 		return hw->phy.ops.acquire(hw);
914 
915 	return E1000_SUCCESS;
916 }
917 
918 /**
919  *  e1000_cfg_on_link_up - Configure PHY upon link up
920  *  @hw: pointer to the HW structure
921  **/
922 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
923 {
924 	if (hw->phy.ops.cfg_on_link_up)
925 		return hw->phy.ops.cfg_on_link_up(hw);
926 
927 	return E1000_SUCCESS;
928 }
929 
930 /**
931  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
932  *  @hw: pointer to the HW structure
933  *  @offset: the register to read
934  *  @data: the location to store the 16-bit value read.
935  *
936  *  Reads a register out of the Kumeran interface. Currently no func pointer
937  *  exists and all implementations are handled in the generic version of
938  *  this function.
939  **/
940 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
941 {
942 	return e1000_read_kmrn_reg_generic(hw, offset, data);
943 }
944 
945 /**
946  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
947  *  @hw: pointer to the HW structure
948  *  @offset: the register to write
949  *  @data: the value to write.
950  *
951  *  Writes a register to the Kumeran interface. Currently no func pointer
952  *  exists and all implementations are handled in the generic version of
953  *  this function.
954  **/
955 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
956 {
957 	return e1000_write_kmrn_reg_generic(hw, offset, data);
958 }
959 
960 /**
961  *  e1000_get_cable_length - Retrieves cable length estimation
962  *  @hw: pointer to the HW structure
963  *
964  *  This function estimates the cable length and stores them in
965  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
966  *  entry point called by drivers.
967  **/
968 s32 e1000_get_cable_length(struct e1000_hw *hw)
969 {
970 	if (hw->phy.ops.get_cable_length)
971 		return hw->phy.ops.get_cable_length(hw);
972 
973 	return E1000_SUCCESS;
974 }
975 
976 /**
977  *  e1000_get_phy_info - Retrieves PHY information from registers
978  *  @hw: pointer to the HW structure
979  *
980  *  This function gets some information from various PHY registers and
981  *  populates hw->phy values with it. This is a function pointer entry
982  *  point called by drivers.
983  **/
984 s32 e1000_get_phy_info(struct e1000_hw *hw)
985 {
986 	if (hw->phy.ops.get_info)
987 		return hw->phy.ops.get_info(hw);
988 
989 	return E1000_SUCCESS;
990 }
991 
992 /**
993  *  e1000_phy_hw_reset - Hard PHY reset
994  *  @hw: pointer to the HW structure
995  *
996  *  Performs a hard PHY reset. This is a function pointer entry point called
997  *  by drivers.
998  **/
999 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1000 {
1001 	if (hw->phy.ops.reset)
1002 		return hw->phy.ops.reset(hw);
1003 
1004 	return E1000_SUCCESS;
1005 }
1006 
1007 /**
1008  *  e1000_phy_commit - Soft PHY reset
1009  *  @hw: pointer to the HW structure
1010  *
1011  *  Performs a soft PHY reset on those that apply. This is a function pointer
1012  *  entry point called by drivers.
1013  **/
1014 s32 e1000_phy_commit(struct e1000_hw *hw)
1015 {
1016 	if (hw->phy.ops.commit)
1017 		return hw->phy.ops.commit(hw);
1018 
1019 	return E1000_SUCCESS;
1020 }
1021 
1022 /**
1023  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1024  *  @hw: pointer to the HW structure
1025  *  @active: boolean used to enable/disable lplu
1026  *
1027  *  Success returns 0, Failure returns 1
1028  *
1029  *  The low power link up (lplu) state is set to the power management level D0
1030  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1031  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1032  *  is used during Dx states where the power conservation is most important.
1033  *  During driver activity, SmartSpeed should be enabled so performance is
1034  *  maintained.  This is a function pointer entry point called by drivers.
1035  **/
1036 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1037 {
1038 	if (hw->phy.ops.set_d0_lplu_state)
1039 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1040 
1041 	return E1000_SUCCESS;
1042 }
1043 
1044 /**
1045  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1046  *  @hw: pointer to the HW structure
1047  *  @active: boolean used to enable/disable lplu
1048  *
1049  *  Success returns 0, Failure returns 1
1050  *
1051  *  The low power link up (lplu) state is set to the power management level D3
1052  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1053  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1054  *  is used during Dx states where the power conservation is most important.
1055  *  During driver activity, SmartSpeed should be enabled so performance is
1056  *  maintained.  This is a function pointer entry point called by drivers.
1057  **/
1058 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1059 {
1060 	if (hw->phy.ops.set_d3_lplu_state)
1061 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1062 
1063 	return E1000_SUCCESS;
1064 }
1065 
1066 /**
1067  *  e1000_read_mac_addr - Reads MAC address
1068  *  @hw: pointer to the HW structure
1069  *
1070  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1071  *  Currently no func pointer exists and all implementations are handled in the
1072  *  generic version of this function.
1073  **/
1074 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1075 {
1076 	if (hw->mac.ops.read_mac_addr)
1077 		return hw->mac.ops.read_mac_addr(hw);
1078 
1079 	return e1000_read_mac_addr_generic(hw);
1080 }
1081 
1082 /**
1083  *  e1000_read_pba_num - Read device part number
1084  *  @hw: pointer to the HW structure
1085  *  @pba_num: pointer to device part number
1086  *
1087  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1088  *  the value in pba_num.
1089  *  Currently no func pointer exists and all implementations are handled in the
1090  *  generic version of this function.
1091  **/
1092 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1093 {
1094 	return e1000_read_pba_num_generic(hw, pba_num);
1095 }
1096 
1097 /**
1098  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1099  *  @hw: pointer to the HW structure
1100  *
1101  *  Validates the NVM checksum is correct. This is a function pointer entry
1102  *  point called by drivers.
1103  **/
1104 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1105 {
1106 	if (hw->nvm.ops.validate)
1107 		return hw->nvm.ops.validate(hw);
1108 
1109 	return -E1000_ERR_CONFIG;
1110 }
1111 
1112 /**
1113  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1114  *  @hw: pointer to the HW structure
1115  *
1116  *  Updates the NVM checksum. Currently no func pointer exists and all
1117  *  implementations are handled in the generic version of this function.
1118  **/
1119 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1120 {
1121 	if (hw->nvm.ops.update)
1122 		return hw->nvm.ops.update(hw);
1123 
1124 	return -E1000_ERR_CONFIG;
1125 }
1126 
1127 /**
1128  *  e1000_reload_nvm - Reloads EEPROM
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1132  *  extended control register.
1133  **/
1134 void e1000_reload_nvm(struct e1000_hw *hw)
1135 {
1136 	if (hw->nvm.ops.reload)
1137 		hw->nvm.ops.reload(hw);
1138 }
1139 
1140 /**
1141  *  e1000_read_nvm - Reads NVM (EEPROM)
1142  *  @hw: pointer to the HW structure
1143  *  @offset: the word offset to read
1144  *  @words: number of 16-bit words to read
1145  *  @data: pointer to the properly sized buffer for the data.
1146  *
1147  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1148  *  pointer entry point called by drivers.
1149  **/
1150 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1151 {
1152 	if (hw->nvm.ops.read)
1153 		return hw->nvm.ops.read(hw, offset, words, data);
1154 
1155 	return -E1000_ERR_CONFIG;
1156 }
1157 
1158 /**
1159  *  e1000_write_nvm - Writes to NVM (EEPROM)
1160  *  @hw: pointer to the HW structure
1161  *  @offset: the word offset to read
1162  *  @words: number of 16-bit words to write
1163  *  @data: pointer to the properly sized buffer for the data.
1164  *
1165  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1166  *  pointer entry point called by drivers.
1167  **/
1168 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1169 {
1170 	if (hw->nvm.ops.write)
1171 		return hw->nvm.ops.write(hw, offset, words, data);
1172 
1173 	return E1000_SUCCESS;
1174 }
1175 
1176 /**
1177  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1178  *  @hw: pointer to the HW structure
1179  *  @reg: 32bit register offset
1180  *  @offset: the register to write
1181  *  @data: the value to write.
1182  *
1183  *  Writes the PHY register at offset with the value in data.
1184  *  This is a function pointer entry point called by drivers.
1185  **/
1186 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1187                               u8 data)
1188 {
1189 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1190 }
1191 
1192 /**
1193  * e1000_power_up_phy - Restores link in case of PHY power down
1194  * @hw: pointer to the HW structure
1195  *
1196  * The phy may be powered down to save power, to turn off link when the
1197  * driver is unloaded, or wake on lan is not enabled (among others).
1198  **/
1199 void e1000_power_up_phy(struct e1000_hw *hw)
1200 {
1201 	if (hw->phy.ops.power_up)
1202 		hw->phy.ops.power_up(hw);
1203 
1204 	e1000_setup_link(hw);
1205 }
1206 
1207 /**
1208  * e1000_power_down_phy - Power down PHY
1209  * @hw: pointer to the HW structure
1210  *
1211  * The phy may be powered down to save power, to turn off link when the
1212  * driver is unloaded, or wake on lan is not enabled (among others).
1213  **/
1214 void e1000_power_down_phy(struct e1000_hw *hw)
1215 {
1216 	if (hw->phy.ops.power_down)
1217 		hw->phy.ops.power_down(hw);
1218 }
1219 
1220 /**
1221  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Shutdown the optics and PCS on driver unload.
1225  **/
1226 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1227 {
1228 	if (hw->mac.ops.shutdown_serdes)
1229 		hw->mac.ops.shutdown_serdes(hw);
1230 }
1231 
1232