xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision a563ca70)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2009, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD: $*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 
116 /**
117  *  e1000_set_mac_type - Sets MAC type
118  *  @hw: pointer to the HW structure
119  *
120  *  This function sets the mac type of the adapter based on the
121  *  device ID stored in the hw structure.
122  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
123  *  e1000_setup_init_funcs()).
124  **/
125 s32 e1000_set_mac_type(struct e1000_hw *hw)
126 {
127 	struct e1000_mac_info *mac = &hw->mac;
128 	s32 ret_val = E1000_SUCCESS;
129 
130 	DEBUGFUNC("e1000_set_mac_type");
131 
132 	switch (hw->device_id) {
133 #ifndef NO_82542_SUPPORT
134 	case E1000_DEV_ID_82542:
135 		mac->type = e1000_82542;
136 		break;
137 #endif
138 	case E1000_DEV_ID_82543GC_FIBER:
139 	case E1000_DEV_ID_82543GC_COPPER:
140 		mac->type = e1000_82543;
141 		break;
142 	case E1000_DEV_ID_82544EI_COPPER:
143 	case E1000_DEV_ID_82544EI_FIBER:
144 	case E1000_DEV_ID_82544GC_COPPER:
145 	case E1000_DEV_ID_82544GC_LOM:
146 		mac->type = e1000_82544;
147 		break;
148 	case E1000_DEV_ID_82540EM:
149 	case E1000_DEV_ID_82540EM_LOM:
150 	case E1000_DEV_ID_82540EP:
151 	case E1000_DEV_ID_82540EP_LOM:
152 	case E1000_DEV_ID_82540EP_LP:
153 		mac->type = e1000_82540;
154 		break;
155 	case E1000_DEV_ID_82545EM_COPPER:
156 	case E1000_DEV_ID_82545EM_FIBER:
157 		mac->type = e1000_82545;
158 		break;
159 	case E1000_DEV_ID_82545GM_COPPER:
160 	case E1000_DEV_ID_82545GM_FIBER:
161 	case E1000_DEV_ID_82545GM_SERDES:
162 		mac->type = e1000_82545_rev_3;
163 		break;
164 	case E1000_DEV_ID_82546EB_COPPER:
165 	case E1000_DEV_ID_82546EB_FIBER:
166 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
167 		mac->type = e1000_82546;
168 		break;
169 	case E1000_DEV_ID_82546GB_COPPER:
170 	case E1000_DEV_ID_82546GB_FIBER:
171 	case E1000_DEV_ID_82546GB_SERDES:
172 	case E1000_DEV_ID_82546GB_PCIE:
173 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
174 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
175 		mac->type = e1000_82546_rev_3;
176 		break;
177 	case E1000_DEV_ID_82541EI:
178 	case E1000_DEV_ID_82541EI_MOBILE:
179 	case E1000_DEV_ID_82541ER_LOM:
180 		mac->type = e1000_82541;
181 		break;
182 	case E1000_DEV_ID_82541ER:
183 	case E1000_DEV_ID_82541GI:
184 	case E1000_DEV_ID_82541GI_LF:
185 	case E1000_DEV_ID_82541GI_MOBILE:
186 		mac->type = e1000_82541_rev_2;
187 		break;
188 	case E1000_DEV_ID_82547EI:
189 	case E1000_DEV_ID_82547EI_MOBILE:
190 		mac->type = e1000_82547;
191 		break;
192 	case E1000_DEV_ID_82547GI:
193 		mac->type = e1000_82547_rev_2;
194 		break;
195 	case E1000_DEV_ID_82571EB_COPPER:
196 	case E1000_DEV_ID_82571EB_FIBER:
197 	case E1000_DEV_ID_82571EB_SERDES:
198 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
199 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
200 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
201 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
202 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
203 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
204 		mac->type = e1000_82571;
205 		break;
206 	case E1000_DEV_ID_82572EI:
207 	case E1000_DEV_ID_82572EI_COPPER:
208 	case E1000_DEV_ID_82572EI_FIBER:
209 	case E1000_DEV_ID_82572EI_SERDES:
210 		mac->type = e1000_82572;
211 		break;
212 	case E1000_DEV_ID_82573E:
213 	case E1000_DEV_ID_82573E_IAMT:
214 	case E1000_DEV_ID_82573L:
215 		mac->type = e1000_82573;
216 		break;
217 	case E1000_DEV_ID_82574L:
218 	case E1000_DEV_ID_82574LA:
219 		mac->type = e1000_82574;
220 		break;
221 	case E1000_DEV_ID_82583V:
222 		mac->type = e1000_82583;
223 		break;
224 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
225 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
226 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
227 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
228 		mac->type = e1000_80003es2lan;
229 		break;
230 	case E1000_DEV_ID_ICH8_IFE:
231 	case E1000_DEV_ID_ICH8_IFE_GT:
232 	case E1000_DEV_ID_ICH8_IFE_G:
233 	case E1000_DEV_ID_ICH8_IGP_M:
234 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
235 	case E1000_DEV_ID_ICH8_IGP_AMT:
236 	case E1000_DEV_ID_ICH8_IGP_C:
237 	case E1000_DEV_ID_ICH8_82567V_3:
238 		mac->type = e1000_ich8lan;
239 		break;
240 	case E1000_DEV_ID_ICH9_IFE:
241 	case E1000_DEV_ID_ICH9_IFE_GT:
242 	case E1000_DEV_ID_ICH9_IFE_G:
243 	case E1000_DEV_ID_ICH9_IGP_M:
244 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
245 	case E1000_DEV_ID_ICH9_IGP_M_V:
246 	case E1000_DEV_ID_ICH9_IGP_AMT:
247 	case E1000_DEV_ID_ICH9_BM:
248 	case E1000_DEV_ID_ICH9_IGP_C:
249 	case E1000_DEV_ID_ICH10_R_BM_LM:
250 	case E1000_DEV_ID_ICH10_R_BM_LF:
251 	case E1000_DEV_ID_ICH10_R_BM_V:
252 		mac->type = e1000_ich9lan;
253 		break;
254 	case E1000_DEV_ID_ICH10_D_BM_LM:
255 	case E1000_DEV_ID_ICH10_D_BM_LF:
256 	case E1000_DEV_ID_ICH10_D_BM_V:
257 	case E1000_DEV_ID_ICH10_HANKSVILLE:
258 		mac->type = e1000_ich10lan;
259 		break;
260 	case E1000_DEV_ID_PCH_D_HV_DM:
261 	case E1000_DEV_ID_PCH_D_HV_DC:
262 	case E1000_DEV_ID_PCH_M_HV_LM:
263 	case E1000_DEV_ID_PCH_M_HV_LC:
264 		mac->type = e1000_pchlan;
265 		break;
266 	case E1000_DEV_ID_PCH2_LV_LM:
267 	case E1000_DEV_ID_PCH2_LV_V:
268 		mac->type = e1000_pch2lan;
269 		break;
270 	default:
271 		/* Should never have loaded on this device */
272 		ret_val = -E1000_ERR_MAC_INIT;
273 		break;
274 	}
275 
276 	return ret_val;
277 }
278 
279 /**
280  *  e1000_setup_init_funcs - Initializes function pointers
281  *  @hw: pointer to the HW structure
282  *  @init_device: TRUE will initialize the rest of the function pointers
283  *                 getting the device ready for use.  FALSE will only set
284  *                 MAC type and the function pointers for the other init
285  *                 functions.  Passing FALSE will not generate any hardware
286  *                 reads or writes.
287  *
288  *  This function must be called by a driver in order to use the rest
289  *  of the 'shared' code files. Called by drivers only.
290  **/
291 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
292 {
293 	s32 ret_val;
294 
295 	/* Can't do much good without knowing the MAC type. */
296 	ret_val = e1000_set_mac_type(hw);
297 	if (ret_val) {
298 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
299 		goto out;
300 	}
301 
302 	if (!hw->hw_addr) {
303 		DEBUGOUT("ERROR: Registers not mapped\n");
304 		ret_val = -E1000_ERR_CONFIG;
305 		goto out;
306 	}
307 
308 	/*
309 	 * Init function pointers to generic implementations. We do this first
310 	 * allowing a driver module to override it afterward.
311 	 */
312 	e1000_init_mac_ops_generic(hw);
313 	e1000_init_phy_ops_generic(hw);
314 	e1000_init_nvm_ops_generic(hw);
315 
316 	/*
317 	 * Set up the init function pointers. These are functions within the
318 	 * adapter family file that sets up function pointers for the rest of
319 	 * the functions in that family.
320 	 */
321 	switch (hw->mac.type) {
322 #ifndef NO_82542_SUPPORT
323 	case e1000_82542:
324 		e1000_init_function_pointers_82542(hw);
325 		break;
326 #endif
327 	case e1000_82543:
328 	case e1000_82544:
329 		e1000_init_function_pointers_82543(hw);
330 		break;
331 	case e1000_82540:
332 	case e1000_82545:
333 	case e1000_82545_rev_3:
334 	case e1000_82546:
335 	case e1000_82546_rev_3:
336 		e1000_init_function_pointers_82540(hw);
337 		break;
338 	case e1000_82541:
339 	case e1000_82541_rev_2:
340 	case e1000_82547:
341 	case e1000_82547_rev_2:
342 		e1000_init_function_pointers_82541(hw);
343 		break;
344 	case e1000_82571:
345 	case e1000_82572:
346 	case e1000_82573:
347 	case e1000_82574:
348 	case e1000_82583:
349 		e1000_init_function_pointers_82571(hw);
350 		break;
351 	case e1000_80003es2lan:
352 		e1000_init_function_pointers_80003es2lan(hw);
353 		break;
354 	case e1000_ich8lan:
355 	case e1000_ich9lan:
356 	case e1000_ich10lan:
357 	case e1000_pchlan:
358 	case e1000_pch2lan:
359 		e1000_init_function_pointers_ich8lan(hw);
360 		break;
361 	default:
362 		DEBUGOUT("Hardware not supported\n");
363 		ret_val = -E1000_ERR_CONFIG;
364 		break;
365 	}
366 
367 	/*
368 	 * Initialize the rest of the function pointers. These require some
369 	 * register reads/writes in some cases.
370 	 */
371 	if (!(ret_val) && init_device) {
372 		ret_val = e1000_init_mac_params(hw);
373 		if (ret_val)
374 			goto out;
375 
376 		ret_val = e1000_init_nvm_params(hw);
377 		if (ret_val)
378 			goto out;
379 
380 		ret_val = e1000_init_phy_params(hw);
381 		if (ret_val)
382 			goto out;
383 	}
384 
385 out:
386 	return ret_val;
387 }
388 
389 /**
390  *  e1000_get_bus_info - Obtain bus information for adapter
391  *  @hw: pointer to the HW structure
392  *
393  *  This will obtain information about the HW bus for which the
394  *  adapter is attached and stores it in the hw structure. This is a
395  *  function pointer entry point called by drivers.
396  **/
397 s32 e1000_get_bus_info(struct e1000_hw *hw)
398 {
399 	if (hw->mac.ops.get_bus_info)
400 		return hw->mac.ops.get_bus_info(hw);
401 
402 	return E1000_SUCCESS;
403 }
404 
405 /**
406  *  e1000_clear_vfta - Clear VLAN filter table
407  *  @hw: pointer to the HW structure
408  *
409  *  This clears the VLAN filter table on the adapter. This is a function
410  *  pointer entry point called by drivers.
411  **/
412 void e1000_clear_vfta(struct e1000_hw *hw)
413 {
414 	if (hw->mac.ops.clear_vfta)
415 		hw->mac.ops.clear_vfta(hw);
416 }
417 
418 /**
419  *  e1000_write_vfta - Write value to VLAN filter table
420  *  @hw: pointer to the HW structure
421  *  @offset: the 32-bit offset in which to write the value to.
422  *  @value: the 32-bit value to write at location offset.
423  *
424  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
425  *  table. This is a function pointer entry point called by drivers.
426  **/
427 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
428 {
429 	if (hw->mac.ops.write_vfta)
430 		hw->mac.ops.write_vfta(hw, offset, value);
431 }
432 
433 /**
434  *  e1000_update_mc_addr_list - Update Multicast addresses
435  *  @hw: pointer to the HW structure
436  *  @mc_addr_list: array of multicast addresses to program
437  *  @mc_addr_count: number of multicast addresses to program
438  *
439  *  Updates the Multicast Table Array.
440  *  The caller must have a packed mc_addr_list of multicast addresses.
441  **/
442 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
443                                u32 mc_addr_count)
444 {
445 	if (hw->mac.ops.update_mc_addr_list)
446 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
447 		                                mc_addr_count);
448 }
449 
450 /**
451  *  e1000_force_mac_fc - Force MAC flow control
452  *  @hw: pointer to the HW structure
453  *
454  *  Force the MAC's flow control settings. Currently no func pointer exists
455  *  and all implementations are handled in the generic version of this
456  *  function.
457  **/
458 s32 e1000_force_mac_fc(struct e1000_hw *hw)
459 {
460 	return e1000_force_mac_fc_generic(hw);
461 }
462 
463 /**
464  *  e1000_check_for_link - Check/Store link connection
465  *  @hw: pointer to the HW structure
466  *
467  *  This checks the link condition of the adapter and stores the
468  *  results in the hw->mac structure. This is a function pointer entry
469  *  point called by drivers.
470  **/
471 s32 e1000_check_for_link(struct e1000_hw *hw)
472 {
473 	if (hw->mac.ops.check_for_link)
474 		return hw->mac.ops.check_for_link(hw);
475 
476 	return -E1000_ERR_CONFIG;
477 }
478 
479 /**
480  *  e1000_check_mng_mode - Check management mode
481  *  @hw: pointer to the HW structure
482  *
483  *  This checks if the adapter has manageability enabled.
484  *  This is a function pointer entry point called by drivers.
485  **/
486 bool e1000_check_mng_mode(struct e1000_hw *hw)
487 {
488 	if (hw->mac.ops.check_mng_mode)
489 		return hw->mac.ops.check_mng_mode(hw);
490 
491 	return FALSE;
492 }
493 
494 /**
495  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
496  *  @hw: pointer to the HW structure
497  *  @buffer: pointer to the host interface
498  *  @length: size of the buffer
499  *
500  *  Writes the DHCP information to the host interface.
501  **/
502 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
503 {
504 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
505 }
506 
507 /**
508  *  e1000_reset_hw - Reset hardware
509  *  @hw: pointer to the HW structure
510  *
511  *  This resets the hardware into a known state. This is a function pointer
512  *  entry point called by drivers.
513  **/
514 s32 e1000_reset_hw(struct e1000_hw *hw)
515 {
516 	if (hw->mac.ops.reset_hw)
517 		return hw->mac.ops.reset_hw(hw);
518 
519 	return -E1000_ERR_CONFIG;
520 }
521 
522 /**
523  *  e1000_init_hw - Initialize hardware
524  *  @hw: pointer to the HW structure
525  *
526  *  This inits the hardware readying it for operation. This is a function
527  *  pointer entry point called by drivers.
528  **/
529 s32 e1000_init_hw(struct e1000_hw *hw)
530 {
531 	if (hw->mac.ops.init_hw)
532 		return hw->mac.ops.init_hw(hw);
533 
534 	return -E1000_ERR_CONFIG;
535 }
536 
537 /**
538  *  e1000_setup_link - Configures link and flow control
539  *  @hw: pointer to the HW structure
540  *
541  *  This configures link and flow control settings for the adapter. This
542  *  is a function pointer entry point called by drivers. While modules can
543  *  also call this, they probably call their own version of this function.
544  **/
545 s32 e1000_setup_link(struct e1000_hw *hw)
546 {
547 	if (hw->mac.ops.setup_link)
548 		return hw->mac.ops.setup_link(hw);
549 
550 	return -E1000_ERR_CONFIG;
551 }
552 
553 /**
554  *  e1000_get_speed_and_duplex - Returns current speed and duplex
555  *  @hw: pointer to the HW structure
556  *  @speed: pointer to a 16-bit value to store the speed
557  *  @duplex: pointer to a 16-bit value to store the duplex.
558  *
559  *  This returns the speed and duplex of the adapter in the two 'out'
560  *  variables passed in. This is a function pointer entry point called
561  *  by drivers.
562  **/
563 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
564 {
565 	if (hw->mac.ops.get_link_up_info)
566 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
567 
568 	return -E1000_ERR_CONFIG;
569 }
570 
571 /**
572  *  e1000_setup_led - Configures SW controllable LED
573  *  @hw: pointer to the HW structure
574  *
575  *  This prepares the SW controllable LED for use and saves the current state
576  *  of the LED so it can be later restored. This is a function pointer entry
577  *  point called by drivers.
578  **/
579 s32 e1000_setup_led(struct e1000_hw *hw)
580 {
581 	if (hw->mac.ops.setup_led)
582 		return hw->mac.ops.setup_led(hw);
583 
584 	return E1000_SUCCESS;
585 }
586 
587 /**
588  *  e1000_cleanup_led - Restores SW controllable LED
589  *  @hw: pointer to the HW structure
590  *
591  *  This restores the SW controllable LED to the value saved off by
592  *  e1000_setup_led. This is a function pointer entry point called by drivers.
593  **/
594 s32 e1000_cleanup_led(struct e1000_hw *hw)
595 {
596 	if (hw->mac.ops.cleanup_led)
597 		return hw->mac.ops.cleanup_led(hw);
598 
599 	return E1000_SUCCESS;
600 }
601 
602 /**
603  *  e1000_blink_led - Blink SW controllable LED
604  *  @hw: pointer to the HW structure
605  *
606  *  This starts the adapter LED blinking. Request the LED to be setup first
607  *  and cleaned up after. This is a function pointer entry point called by
608  *  drivers.
609  **/
610 s32 e1000_blink_led(struct e1000_hw *hw)
611 {
612 	if (hw->mac.ops.blink_led)
613 		return hw->mac.ops.blink_led(hw);
614 
615 	return E1000_SUCCESS;
616 }
617 
618 /**
619  *  e1000_id_led_init - store LED configurations in SW
620  *  @hw: pointer to the HW structure
621  *
622  *  Initializes the LED config in SW. This is a function pointer entry point
623  *  called by drivers.
624  **/
625 s32 e1000_id_led_init(struct e1000_hw *hw)
626 {
627 	if (hw->mac.ops.id_led_init)
628 		return hw->mac.ops.id_led_init(hw);
629 
630 	return E1000_SUCCESS;
631 }
632 
633 /**
634  *  e1000_led_on - Turn on SW controllable LED
635  *  @hw: pointer to the HW structure
636  *
637  *  Turns the SW defined LED on. This is a function pointer entry point
638  *  called by drivers.
639  **/
640 s32 e1000_led_on(struct e1000_hw *hw)
641 {
642 	if (hw->mac.ops.led_on)
643 		return hw->mac.ops.led_on(hw);
644 
645 	return E1000_SUCCESS;
646 }
647 
648 /**
649  *  e1000_led_off - Turn off SW controllable LED
650  *  @hw: pointer to the HW structure
651  *
652  *  Turns the SW defined LED off. This is a function pointer entry point
653  *  called by drivers.
654  **/
655 s32 e1000_led_off(struct e1000_hw *hw)
656 {
657 	if (hw->mac.ops.led_off)
658 		return hw->mac.ops.led_off(hw);
659 
660 	return E1000_SUCCESS;
661 }
662 
663 /**
664  *  e1000_reset_adaptive - Reset adaptive IFS
665  *  @hw: pointer to the HW structure
666  *
667  *  Resets the adaptive IFS. Currently no func pointer exists and all
668  *  implementations are handled in the generic version of this function.
669  **/
670 void e1000_reset_adaptive(struct e1000_hw *hw)
671 {
672 	e1000_reset_adaptive_generic(hw);
673 }
674 
675 /**
676  *  e1000_update_adaptive - Update adaptive IFS
677  *  @hw: pointer to the HW structure
678  *
679  *  Updates adapter IFS. Currently no func pointer exists and all
680  *  implementations are handled in the generic version of this function.
681  **/
682 void e1000_update_adaptive(struct e1000_hw *hw)
683 {
684 	e1000_update_adaptive_generic(hw);
685 }
686 
687 /**
688  *  e1000_disable_pcie_master - Disable PCI-Express master access
689  *  @hw: pointer to the HW structure
690  *
691  *  Disables PCI-Express master access and verifies there are no pending
692  *  requests. Currently no func pointer exists and all implementations are
693  *  handled in the generic version of this function.
694  **/
695 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
696 {
697 	return e1000_disable_pcie_master_generic(hw);
698 }
699 
700 /**
701  *  e1000_config_collision_dist - Configure collision distance
702  *  @hw: pointer to the HW structure
703  *
704  *  Configures the collision distance to the default value and is used
705  *  during link setup.
706  **/
707 void e1000_config_collision_dist(struct e1000_hw *hw)
708 {
709 	if (hw->mac.ops.config_collision_dist)
710 		hw->mac.ops.config_collision_dist(hw);
711 }
712 
713 /**
714  *  e1000_rar_set - Sets a receive address register
715  *  @hw: pointer to the HW structure
716  *  @addr: address to set the RAR to
717  *  @index: the RAR to set
718  *
719  *  Sets a Receive Address Register (RAR) to the specified address.
720  **/
721 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
722 {
723 	if (hw->mac.ops.rar_set)
724 		hw->mac.ops.rar_set(hw, addr, index);
725 }
726 
727 /**
728  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
729  *  @hw: pointer to the HW structure
730  *
731  *  Ensures that the MDI/MDIX SW state is valid.
732  **/
733 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
734 {
735 	if (hw->mac.ops.validate_mdi_setting)
736 		return hw->mac.ops.validate_mdi_setting(hw);
737 
738 	return E1000_SUCCESS;
739 }
740 
741 /**
742  *  e1000_hash_mc_addr - Determines address location in multicast table
743  *  @hw: pointer to the HW structure
744  *  @mc_addr: Multicast address to hash.
745  *
746  *  This hashes an address to determine its location in the multicast
747  *  table. Currently no func pointer exists and all implementations
748  *  are handled in the generic version of this function.
749  **/
750 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
751 {
752 	return e1000_hash_mc_addr_generic(hw, mc_addr);
753 }
754 
755 /**
756  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
757  *  @hw: pointer to the HW structure
758  *
759  *  Enables packet filtering on transmit packets if manageability is enabled
760  *  and host interface is enabled.
761  *  Currently no func pointer exists and all implementations are handled in the
762  *  generic version of this function.
763  **/
764 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
765 {
766 	return e1000_enable_tx_pkt_filtering_generic(hw);
767 }
768 
769 /**
770  *  e1000_mng_host_if_write - Writes to the manageability host interface
771  *  @hw: pointer to the HW structure
772  *  @buffer: pointer to the host interface buffer
773  *  @length: size of the buffer
774  *  @offset: location in the buffer to write to
775  *  @sum: sum of the data (not checksum)
776  *
777  *  This function writes the buffer content at the offset given on the host if.
778  *  It also does alignment considerations to do the writes in most efficient
779  *  way.  Also fills up the sum of the buffer in *buffer parameter.
780  **/
781 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
782                             u16 offset, u8 *sum)
783 {
784 	if (hw->mac.ops.mng_host_if_write)
785 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
786 		                                     offset, sum);
787 
788 	return E1000_NOT_IMPLEMENTED;
789 }
790 
791 /**
792  *  e1000_mng_write_cmd_header - Writes manageability command header
793  *  @hw: pointer to the HW structure
794  *  @hdr: pointer to the host interface command header
795  *
796  *  Writes the command header after does the checksum calculation.
797  **/
798 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
799                                struct e1000_host_mng_command_header *hdr)
800 {
801 	if (hw->mac.ops.mng_write_cmd_header)
802 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
803 
804 	return E1000_NOT_IMPLEMENTED;
805 }
806 
807 /**
808  *  e1000_mng_enable_host_if - Checks host interface is enabled
809  *  @hw: pointer to the HW structure
810  *
811  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
812  *
813  *  This function checks whether the HOST IF is enabled for command operation
814  *  and also checks whether the previous command is completed.  It busy waits
815  *  in case of previous command is not completed.
816  **/
817 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
818 {
819 	if (hw->mac.ops.mng_enable_host_if)
820 		return hw->mac.ops.mng_enable_host_if(hw);
821 
822 	return E1000_NOT_IMPLEMENTED;
823 }
824 
825 /**
826  *  e1000_wait_autoneg - Waits for autonegotiation completion
827  *  @hw: pointer to the HW structure
828  *
829  *  Waits for autoneg to complete. Currently no func pointer exists and all
830  *  implementations are handled in the generic version of this function.
831  **/
832 s32 e1000_wait_autoneg(struct e1000_hw *hw)
833 {
834 	if (hw->mac.ops.wait_autoneg)
835 		return hw->mac.ops.wait_autoneg(hw);
836 
837 	return E1000_SUCCESS;
838 }
839 
840 /**
841  *  e1000_check_reset_block - Verifies PHY can be reset
842  *  @hw: pointer to the HW structure
843  *
844  *  Checks if the PHY is in a state that can be reset or if manageability
845  *  has it tied up. This is a function pointer entry point called by drivers.
846  **/
847 s32 e1000_check_reset_block(struct e1000_hw *hw)
848 {
849 	if (hw->phy.ops.check_reset_block)
850 		return hw->phy.ops.check_reset_block(hw);
851 
852 	return E1000_SUCCESS;
853 }
854 
855 /**
856  *  e1000_read_phy_reg - Reads PHY register
857  *  @hw: pointer to the HW structure
858  *  @offset: the register to read
859  *  @data: the buffer to store the 16-bit read.
860  *
861  *  Reads the PHY register and returns the value in data.
862  *  This is a function pointer entry point called by drivers.
863  **/
864 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
865 {
866 	if (hw->phy.ops.read_reg)
867 		return hw->phy.ops.read_reg(hw, offset, data);
868 
869 	return E1000_SUCCESS;
870 }
871 
872 /**
873  *  e1000_write_phy_reg - Writes PHY register
874  *  @hw: pointer to the HW structure
875  *  @offset: the register to write
876  *  @data: the value to write.
877  *
878  *  Writes the PHY register at offset with the value in data.
879  *  This is a function pointer entry point called by drivers.
880  **/
881 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
882 {
883 	if (hw->phy.ops.write_reg)
884 		return hw->phy.ops.write_reg(hw, offset, data);
885 
886 	return E1000_SUCCESS;
887 }
888 
889 /**
890  *  e1000_release_phy - Generic release PHY
891  *  @hw: pointer to the HW structure
892  *
893  *  Return if silicon family does not require a semaphore when accessing the
894  *  PHY.
895  **/
896 void e1000_release_phy(struct e1000_hw *hw)
897 {
898 	if (hw->phy.ops.release)
899 		hw->phy.ops.release(hw);
900 }
901 
902 /**
903  *  e1000_acquire_phy - Generic acquire PHY
904  *  @hw: pointer to the HW structure
905  *
906  *  Return success if silicon family does not require a semaphore when
907  *  accessing the PHY.
908  **/
909 s32 e1000_acquire_phy(struct e1000_hw *hw)
910 {
911 	if (hw->phy.ops.acquire)
912 		return hw->phy.ops.acquire(hw);
913 
914 	return E1000_SUCCESS;
915 }
916 
917 /**
918  *  e1000_cfg_on_link_up - Configure PHY upon link up
919  *  @hw: pointer to the HW structure
920  **/
921 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
922 {
923 	if (hw->phy.ops.cfg_on_link_up)
924 		return hw->phy.ops.cfg_on_link_up(hw);
925 
926 	return E1000_SUCCESS;
927 }
928 
929 /**
930  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
931  *  @hw: pointer to the HW structure
932  *  @offset: the register to read
933  *  @data: the location to store the 16-bit value read.
934  *
935  *  Reads a register out of the Kumeran interface. Currently no func pointer
936  *  exists and all implementations are handled in the generic version of
937  *  this function.
938  **/
939 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
940 {
941 	return e1000_read_kmrn_reg_generic(hw, offset, data);
942 }
943 
944 /**
945  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
946  *  @hw: pointer to the HW structure
947  *  @offset: the register to write
948  *  @data: the value to write.
949  *
950  *  Writes a register to the Kumeran interface. Currently no func pointer
951  *  exists and all implementations are handled in the generic version of
952  *  this function.
953  **/
954 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
955 {
956 	return e1000_write_kmrn_reg_generic(hw, offset, data);
957 }
958 
959 /**
960  *  e1000_get_cable_length - Retrieves cable length estimation
961  *  @hw: pointer to the HW structure
962  *
963  *  This function estimates the cable length and stores them in
964  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
965  *  entry point called by drivers.
966  **/
967 s32 e1000_get_cable_length(struct e1000_hw *hw)
968 {
969 	if (hw->phy.ops.get_cable_length)
970 		return hw->phy.ops.get_cable_length(hw);
971 
972 	return E1000_SUCCESS;
973 }
974 
975 /**
976  *  e1000_get_phy_info - Retrieves PHY information from registers
977  *  @hw: pointer to the HW structure
978  *
979  *  This function gets some information from various PHY registers and
980  *  populates hw->phy values with it. This is a function pointer entry
981  *  point called by drivers.
982  **/
983 s32 e1000_get_phy_info(struct e1000_hw *hw)
984 {
985 	if (hw->phy.ops.get_info)
986 		return hw->phy.ops.get_info(hw);
987 
988 	return E1000_SUCCESS;
989 }
990 
991 /**
992  *  e1000_phy_hw_reset - Hard PHY reset
993  *  @hw: pointer to the HW structure
994  *
995  *  Performs a hard PHY reset. This is a function pointer entry point called
996  *  by drivers.
997  **/
998 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
999 {
1000 	if (hw->phy.ops.reset)
1001 		return hw->phy.ops.reset(hw);
1002 
1003 	return E1000_SUCCESS;
1004 }
1005 
1006 /**
1007  *  e1000_phy_commit - Soft PHY reset
1008  *  @hw: pointer to the HW structure
1009  *
1010  *  Performs a soft PHY reset on those that apply. This is a function pointer
1011  *  entry point called by drivers.
1012  **/
1013 s32 e1000_phy_commit(struct e1000_hw *hw)
1014 {
1015 	if (hw->phy.ops.commit)
1016 		return hw->phy.ops.commit(hw);
1017 
1018 	return E1000_SUCCESS;
1019 }
1020 
1021 /**
1022  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1023  *  @hw: pointer to the HW structure
1024  *  @active: boolean used to enable/disable lplu
1025  *
1026  *  Success returns 0, Failure returns 1
1027  *
1028  *  The low power link up (lplu) state is set to the power management level D0
1029  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1030  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1031  *  is used during Dx states where the power conservation is most important.
1032  *  During driver activity, SmartSpeed should be enabled so performance is
1033  *  maintained.  This is a function pointer entry point called by drivers.
1034  **/
1035 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1036 {
1037 	if (hw->phy.ops.set_d0_lplu_state)
1038 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1039 
1040 	return E1000_SUCCESS;
1041 }
1042 
1043 /**
1044  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1045  *  @hw: pointer to the HW structure
1046  *  @active: boolean used to enable/disable lplu
1047  *
1048  *  Success returns 0, Failure returns 1
1049  *
1050  *  The low power link up (lplu) state is set to the power management level D3
1051  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1052  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1053  *  is used during Dx states where the power conservation is most important.
1054  *  During driver activity, SmartSpeed should be enabled so performance is
1055  *  maintained.  This is a function pointer entry point called by drivers.
1056  **/
1057 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1058 {
1059 	if (hw->phy.ops.set_d3_lplu_state)
1060 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1061 
1062 	return E1000_SUCCESS;
1063 }
1064 
1065 /**
1066  *  e1000_read_mac_addr - Reads MAC address
1067  *  @hw: pointer to the HW structure
1068  *
1069  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1070  *  Currently no func pointer exists and all implementations are handled in the
1071  *  generic version of this function.
1072  **/
1073 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1074 {
1075 	if (hw->mac.ops.read_mac_addr)
1076 		return hw->mac.ops.read_mac_addr(hw);
1077 
1078 	return e1000_read_mac_addr_generic(hw);
1079 }
1080 
1081 /**
1082  *  e1000_read_pba_string - Read device part number string
1083  *  @hw: pointer to the HW structure
1084  *  @pba_num: pointer to device part number
1085  *  @pba_num_size: size of part number buffer
1086  *
1087  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1088  *  the value in pba_num.
1089  *  Currently no func pointer exists and all implementations are handled in the
1090  *  generic version of this function.
1091  **/
1092 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1093 {
1094 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1095 }
1096 
1097 /**
1098  *  e1000_read_pba_length - Read device part number string length
1099  *  @hw: pointer to the HW structure
1100  *  @pba_num_size: size of part number buffer
1101  *
1102  *  Reads the product board assembly (PBA) number length from the EEPROM and
1103  *  stores the value in pba_num.
1104  *  Currently no func pointer exists and all implementations are handled in the
1105  *  generic version of this function.
1106  **/
1107 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1108 {
1109 	return e1000_read_pba_length_generic(hw, pba_num_size);
1110 }
1111 
1112 /**
1113  *  e1000_read_pba_num - Read device part number
1114  *  @hw: pointer to the HW structure
1115  *  @pba_num: pointer to device part number
1116  *
1117  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1118  *  the value in pba_num.
1119  *  Currently no func pointer exists and all implementations are handled in the
1120  *  generic version of this function.
1121  **/
1122 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1123 {
1124 	return e1000_read_pba_num_generic(hw, pba_num);
1125 }
1126 
1127 /**
1128  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  Validates the NVM checksum is correct. This is a function pointer entry
1132  *  point called by drivers.
1133  **/
1134 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1135 {
1136 	if (hw->nvm.ops.validate)
1137 		return hw->nvm.ops.validate(hw);
1138 
1139 	return -E1000_ERR_CONFIG;
1140 }
1141 
1142 /**
1143  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  Updates the NVM checksum. Currently no func pointer exists and all
1147  *  implementations are handled in the generic version of this function.
1148  **/
1149 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1150 {
1151 	if (hw->nvm.ops.update)
1152 		return hw->nvm.ops.update(hw);
1153 
1154 	return -E1000_ERR_CONFIG;
1155 }
1156 
1157 /**
1158  *  e1000_reload_nvm - Reloads EEPROM
1159  *  @hw: pointer to the HW structure
1160  *
1161  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1162  *  extended control register.
1163  **/
1164 void e1000_reload_nvm(struct e1000_hw *hw)
1165 {
1166 	if (hw->nvm.ops.reload)
1167 		hw->nvm.ops.reload(hw);
1168 }
1169 
1170 /**
1171  *  e1000_read_nvm - Reads NVM (EEPROM)
1172  *  @hw: pointer to the HW structure
1173  *  @offset: the word offset to read
1174  *  @words: number of 16-bit words to read
1175  *  @data: pointer to the properly sized buffer for the data.
1176  *
1177  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1178  *  pointer entry point called by drivers.
1179  **/
1180 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1181 {
1182 	if (hw->nvm.ops.read)
1183 		return hw->nvm.ops.read(hw, offset, words, data);
1184 
1185 	return -E1000_ERR_CONFIG;
1186 }
1187 
1188 /**
1189  *  e1000_write_nvm - Writes to NVM (EEPROM)
1190  *  @hw: pointer to the HW structure
1191  *  @offset: the word offset to read
1192  *  @words: number of 16-bit words to write
1193  *  @data: pointer to the properly sized buffer for the data.
1194  *
1195  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1196  *  pointer entry point called by drivers.
1197  **/
1198 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1199 {
1200 	if (hw->nvm.ops.write)
1201 		return hw->nvm.ops.write(hw, offset, words, data);
1202 
1203 	return E1000_SUCCESS;
1204 }
1205 
1206 /**
1207  * e1000_power_up_phy - Restores link in case of PHY power down
1208  * @hw: pointer to the HW structure
1209  *
1210  * The phy may be powered down to save power, to turn off link when the
1211  * driver is unloaded, or wake on lan is not enabled (among others).
1212  **/
1213 void e1000_power_up_phy(struct e1000_hw *hw)
1214 {
1215 	if (hw->phy.ops.power_up)
1216 		hw->phy.ops.power_up(hw);
1217 
1218 	e1000_setup_link(hw);
1219 }
1220 
1221 /**
1222  * e1000_power_down_phy - Power down PHY
1223  * @hw: pointer to the HW structure
1224  *
1225  * The phy may be powered down to save power, to turn off link when the
1226  * driver is unloaded, or wake on lan is not enabled (among others).
1227  **/
1228 void e1000_power_down_phy(struct e1000_hw *hw)
1229 {
1230 	if (hw->phy.ops.power_down)
1231 		hw->phy.ops.power_down(hw);
1232 }
1233 
1234