xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision ad7194d9)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 #ifndef NO_82542_SUPPORT
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 #endif
163 	case E1000_DEV_ID_82543GC_FIBER:
164 	case E1000_DEV_ID_82543GC_COPPER:
165 		mac->type = e1000_82543;
166 		break;
167 	case E1000_DEV_ID_82544EI_COPPER:
168 	case E1000_DEV_ID_82544EI_FIBER:
169 	case E1000_DEV_ID_82544GC_COPPER:
170 	case E1000_DEV_ID_82544GC_LOM:
171 		mac->type = e1000_82544;
172 		break;
173 	case E1000_DEV_ID_82540EM:
174 	case E1000_DEV_ID_82540EM_LOM:
175 	case E1000_DEV_ID_82540EP:
176 	case E1000_DEV_ID_82540EP_LOM:
177 	case E1000_DEV_ID_82540EP_LP:
178 		mac->type = e1000_82540;
179 		break;
180 	case E1000_DEV_ID_82545EM_COPPER:
181 	case E1000_DEV_ID_82545EM_FIBER:
182 		mac->type = e1000_82545;
183 		break;
184 	case E1000_DEV_ID_82545GM_COPPER:
185 	case E1000_DEV_ID_82545GM_FIBER:
186 	case E1000_DEV_ID_82545GM_SERDES:
187 		mac->type = e1000_82545_rev_3;
188 		break;
189 	case E1000_DEV_ID_82546EB_COPPER:
190 	case E1000_DEV_ID_82546EB_FIBER:
191 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 		mac->type = e1000_82546;
193 		break;
194 	case E1000_DEV_ID_82546GB_COPPER:
195 	case E1000_DEV_ID_82546GB_FIBER:
196 	case E1000_DEV_ID_82546GB_SERDES:
197 	case E1000_DEV_ID_82546GB_PCIE:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 		mac->type = e1000_82546_rev_3;
201 		break;
202 	case E1000_DEV_ID_82541EI:
203 	case E1000_DEV_ID_82541EI_MOBILE:
204 	case E1000_DEV_ID_82541ER_LOM:
205 		mac->type = e1000_82541;
206 		break;
207 	case E1000_DEV_ID_82541ER:
208 	case E1000_DEV_ID_82541GI:
209 	case E1000_DEV_ID_82541GI_LF:
210 	case E1000_DEV_ID_82541GI_MOBILE:
211 		mac->type = e1000_82541_rev_2;
212 		break;
213 	case E1000_DEV_ID_82547EI:
214 	case E1000_DEV_ID_82547EI_MOBILE:
215 		mac->type = e1000_82547;
216 		break;
217 	case E1000_DEV_ID_82547GI:
218 		mac->type = e1000_82547_rev_2;
219 		break;
220 	case E1000_DEV_ID_82571EB_COPPER:
221 	case E1000_DEV_ID_82571EB_FIBER:
222 	case E1000_DEV_ID_82571EB_SERDES:
223 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
229 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
230 		mac->type = e1000_82571;
231 		break;
232 	case E1000_DEV_ID_82572EI:
233 	case E1000_DEV_ID_82572EI_COPPER:
234 	case E1000_DEV_ID_82572EI_FIBER:
235 	case E1000_DEV_ID_82572EI_SERDES:
236 		mac->type = e1000_82572;
237 		break;
238 	case E1000_DEV_ID_82573E:
239 	case E1000_DEV_ID_82573E_IAMT:
240 	case E1000_DEV_ID_82573L:
241 		mac->type = e1000_82573;
242 		break;
243 	case E1000_DEV_ID_82574L:
244 	case E1000_DEV_ID_82574LA:
245 		mac->type = e1000_82574;
246 		break;
247 	case E1000_DEV_ID_82583V:
248 		mac->type = e1000_82583;
249 		break;
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 		mac->type = e1000_80003es2lan;
255 		break;
256 	case E1000_DEV_ID_ICH8_IFE:
257 	case E1000_DEV_ID_ICH8_IFE_GT:
258 	case E1000_DEV_ID_ICH8_IFE_G:
259 	case E1000_DEV_ID_ICH8_IGP_M:
260 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 	case E1000_DEV_ID_ICH8_IGP_AMT:
262 	case E1000_DEV_ID_ICH8_IGP_C:
263 	case E1000_DEV_ID_ICH8_82567V_3:
264 		mac->type = e1000_ich8lan;
265 		break;
266 	case E1000_DEV_ID_ICH9_IFE:
267 	case E1000_DEV_ID_ICH9_IFE_GT:
268 	case E1000_DEV_ID_ICH9_IFE_G:
269 	case E1000_DEV_ID_ICH9_IGP_M:
270 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 	case E1000_DEV_ID_ICH9_IGP_M_V:
272 	case E1000_DEV_ID_ICH9_IGP_AMT:
273 	case E1000_DEV_ID_ICH9_BM:
274 	case E1000_DEV_ID_ICH9_IGP_C:
275 	case E1000_DEV_ID_ICH10_R_BM_LM:
276 	case E1000_DEV_ID_ICH10_R_BM_LF:
277 	case E1000_DEV_ID_ICH10_R_BM_V:
278 		mac->type = e1000_ich9lan;
279 		break;
280 	case E1000_DEV_ID_ICH10_D_BM_LM:
281 	case E1000_DEV_ID_ICH10_D_BM_LF:
282 	case E1000_DEV_ID_ICH10_D_BM_V:
283 		mac->type = e1000_ich10lan;
284 		break;
285 	case E1000_DEV_ID_PCH_D_HV_DM:
286 	case E1000_DEV_ID_PCH_D_HV_DC:
287 	case E1000_DEV_ID_PCH_M_HV_LM:
288 	case E1000_DEV_ID_PCH_M_HV_LC:
289 		mac->type = e1000_pchlan;
290 		break;
291 	case E1000_DEV_ID_PCH2_LV_LM:
292 	case E1000_DEV_ID_PCH2_LV_V:
293 		mac->type = e1000_pch2lan;
294 		break;
295 	case E1000_DEV_ID_PCH_LPT_I217_LM:
296 	case E1000_DEV_ID_PCH_LPT_I217_V:
297 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
298 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
299 	case E1000_DEV_ID_PCH_I218_LM2:
300 	case E1000_DEV_ID_PCH_I218_V2:
301 	case E1000_DEV_ID_PCH_I218_LM3:
302 	case E1000_DEV_ID_PCH_I218_V3:
303 		mac->type = e1000_pch_lpt;
304  		break;
305 	case E1000_DEV_ID_82575EB_COPPER:
306 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
307 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
308 		mac->type = e1000_82575;
309 		break;
310 	case E1000_DEV_ID_82576:
311 	case E1000_DEV_ID_82576_FIBER:
312 	case E1000_DEV_ID_82576_SERDES:
313 	case E1000_DEV_ID_82576_QUAD_COPPER:
314 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
315 	case E1000_DEV_ID_82576_NS:
316 	case E1000_DEV_ID_82576_NS_SERDES:
317 	case E1000_DEV_ID_82576_SERDES_QUAD:
318 		mac->type = e1000_82576;
319 		break;
320 	case E1000_DEV_ID_82580_COPPER:
321 	case E1000_DEV_ID_82580_FIBER:
322 	case E1000_DEV_ID_82580_SERDES:
323 	case E1000_DEV_ID_82580_SGMII:
324 	case E1000_DEV_ID_82580_COPPER_DUAL:
325 	case E1000_DEV_ID_82580_QUAD_FIBER:
326 	case E1000_DEV_ID_DH89XXCC_SGMII:
327 	case E1000_DEV_ID_DH89XXCC_SERDES:
328 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
329 	case E1000_DEV_ID_DH89XXCC_SFP:
330 		mac->type = e1000_82580;
331 		break;
332 	case E1000_DEV_ID_I350_COPPER:
333 	case E1000_DEV_ID_I350_FIBER:
334 	case E1000_DEV_ID_I350_SERDES:
335 	case E1000_DEV_ID_I350_SGMII:
336 	case E1000_DEV_ID_I350_DA4:
337 		mac->type = e1000_i350;
338 		break;
339 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
340 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
341 	case E1000_DEV_ID_I210_COPPER:
342 	case E1000_DEV_ID_I210_COPPER_OEM1:
343 	case E1000_DEV_ID_I210_COPPER_IT:
344 	case E1000_DEV_ID_I210_FIBER:
345 	case E1000_DEV_ID_I210_SERDES:
346 	case E1000_DEV_ID_I210_SGMII:
347 		mac->type = e1000_i210;
348 		break;
349 	case E1000_DEV_ID_I211_COPPER:
350 		mac->type = e1000_i211;
351 		break;
352 	case E1000_DEV_ID_82576_VF:
353 	case E1000_DEV_ID_82576_VF_HV:
354 		mac->type = e1000_vfadapt;
355 		break;
356 	case E1000_DEV_ID_I350_VF:
357 	case E1000_DEV_ID_I350_VF_HV:
358 		mac->type = e1000_vfadapt_i350;
359 		break;
360 
361 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
362 	case E1000_DEV_ID_I354_SGMII:
363 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
364 		mac->type = e1000_i354;
365 		break;
366 	default:
367 		/* Should never have loaded on this device */
368 		ret_val = -E1000_ERR_MAC_INIT;
369 		break;
370 	}
371 
372 	return ret_val;
373 }
374 
375 /**
376  *  e1000_setup_init_funcs - Initializes function pointers
377  *  @hw: pointer to the HW structure
378  *  @init_device: TRUE will initialize the rest of the function pointers
379  *		  getting the device ready for use.  FALSE will only set
380  *		  MAC type and the function pointers for the other init
381  *		  functions.  Passing FALSE will not generate any hardware
382  *		  reads or writes.
383  *
384  *  This function must be called by a driver in order to use the rest
385  *  of the 'shared' code files. Called by drivers only.
386  **/
387 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
388 {
389 	s32 ret_val;
390 
391 	/* Can't do much good without knowing the MAC type. */
392 	ret_val = e1000_set_mac_type(hw);
393 	if (ret_val) {
394 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
395 		goto out;
396 	}
397 
398 	if (!hw->hw_addr) {
399 		DEBUGOUT("ERROR: Registers not mapped\n");
400 		ret_val = -E1000_ERR_CONFIG;
401 		goto out;
402 	}
403 
404 	/*
405 	 * Init function pointers to generic implementations. We do this first
406 	 * allowing a driver module to override it afterward.
407 	 */
408 	e1000_init_mac_ops_generic(hw);
409 	e1000_init_phy_ops_generic(hw);
410 	e1000_init_nvm_ops_generic(hw);
411 	e1000_init_mbx_ops_generic(hw);
412 
413 	/*
414 	 * Set up the init function pointers. These are functions within the
415 	 * adapter family file that sets up function pointers for the rest of
416 	 * the functions in that family.
417 	 */
418 	switch (hw->mac.type) {
419 #ifndef NO_82542_SUPPORT
420 	case e1000_82542:
421 		e1000_init_function_pointers_82542(hw);
422 		break;
423 #endif
424 	case e1000_82543:
425 	case e1000_82544:
426 		e1000_init_function_pointers_82543(hw);
427 		break;
428 	case e1000_82540:
429 	case e1000_82545:
430 	case e1000_82545_rev_3:
431 	case e1000_82546:
432 	case e1000_82546_rev_3:
433 		e1000_init_function_pointers_82540(hw);
434 		break;
435 	case e1000_82541:
436 	case e1000_82541_rev_2:
437 	case e1000_82547:
438 	case e1000_82547_rev_2:
439 		e1000_init_function_pointers_82541(hw);
440 		break;
441 	case e1000_82571:
442 	case e1000_82572:
443 	case e1000_82573:
444 	case e1000_82574:
445 	case e1000_82583:
446 		e1000_init_function_pointers_82571(hw);
447 		break;
448 	case e1000_80003es2lan:
449 		e1000_init_function_pointers_80003es2lan(hw);
450 		break;
451 	case e1000_ich8lan:
452 	case e1000_ich9lan:
453 	case e1000_ich10lan:
454 	case e1000_pchlan:
455 	case e1000_pch2lan:
456 	case e1000_pch_lpt:
457 		e1000_init_function_pointers_ich8lan(hw);
458 		break;
459 	case e1000_82575:
460 	case e1000_82576:
461 	case e1000_82580:
462 	case e1000_i350:
463 	case e1000_i354:
464 		e1000_init_function_pointers_82575(hw);
465 		break;
466 	case e1000_i210:
467 	case e1000_i211:
468 		e1000_init_function_pointers_i210(hw);
469 		break;
470 	case e1000_vfadapt:
471 		e1000_init_function_pointers_vf(hw);
472 		break;
473 	case e1000_vfadapt_i350:
474 		e1000_init_function_pointers_vf(hw);
475 		break;
476 	default:
477 		DEBUGOUT("Hardware not supported\n");
478 		ret_val = -E1000_ERR_CONFIG;
479 		break;
480 	}
481 
482 	/*
483 	 * Initialize the rest of the function pointers. These require some
484 	 * register reads/writes in some cases.
485 	 */
486 	if (!(ret_val) && init_device) {
487 		ret_val = e1000_init_mac_params(hw);
488 		if (ret_val)
489 			goto out;
490 
491 		ret_val = e1000_init_nvm_params(hw);
492 		if (ret_val)
493 			goto out;
494 
495 		ret_val = e1000_init_phy_params(hw);
496 		if (ret_val)
497 			goto out;
498 
499 		ret_val = e1000_init_mbx_params(hw);
500 		if (ret_val)
501 			goto out;
502 	}
503 
504 out:
505 	return ret_val;
506 }
507 
508 /**
509  *  e1000_get_bus_info - Obtain bus information for adapter
510  *  @hw: pointer to the HW structure
511  *
512  *  This will obtain information about the HW bus for which the
513  *  adapter is attached and stores it in the hw structure. This is a
514  *  function pointer entry point called by drivers.
515  **/
516 s32 e1000_get_bus_info(struct e1000_hw *hw)
517 {
518 	if (hw->mac.ops.get_bus_info)
519 		return hw->mac.ops.get_bus_info(hw);
520 
521 	return E1000_SUCCESS;
522 }
523 
524 /**
525  *  e1000_clear_vfta - Clear VLAN filter table
526  *  @hw: pointer to the HW structure
527  *
528  *  This clears the VLAN filter table on the adapter. This is a function
529  *  pointer entry point called by drivers.
530  **/
531 void e1000_clear_vfta(struct e1000_hw *hw)
532 {
533 	if (hw->mac.ops.clear_vfta)
534 		hw->mac.ops.clear_vfta(hw);
535 }
536 
537 /**
538  *  e1000_write_vfta - Write value to VLAN filter table
539  *  @hw: pointer to the HW structure
540  *  @offset: the 32-bit offset in which to write the value to.
541  *  @value: the 32-bit value to write at location offset.
542  *
543  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
544  *  table. This is a function pointer entry point called by drivers.
545  **/
546 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
547 {
548 	if (hw->mac.ops.write_vfta)
549 		hw->mac.ops.write_vfta(hw, offset, value);
550 }
551 
552 /**
553  *  e1000_update_mc_addr_list - Update Multicast addresses
554  *  @hw: pointer to the HW structure
555  *  @mc_addr_list: array of multicast addresses to program
556  *  @mc_addr_count: number of multicast addresses to program
557  *
558  *  Updates the Multicast Table Array.
559  *  The caller must have a packed mc_addr_list of multicast addresses.
560  **/
561 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
562 			       u32 mc_addr_count)
563 {
564 	if (hw->mac.ops.update_mc_addr_list)
565 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
566 						mc_addr_count);
567 }
568 
569 /**
570  *  e1000_force_mac_fc - Force MAC flow control
571  *  @hw: pointer to the HW structure
572  *
573  *  Force the MAC's flow control settings. Currently no func pointer exists
574  *  and all implementations are handled in the generic version of this
575  *  function.
576  **/
577 s32 e1000_force_mac_fc(struct e1000_hw *hw)
578 {
579 	return e1000_force_mac_fc_generic(hw);
580 }
581 
582 /**
583  *  e1000_check_for_link - Check/Store link connection
584  *  @hw: pointer to the HW structure
585  *
586  *  This checks the link condition of the adapter and stores the
587  *  results in the hw->mac structure. This is a function pointer entry
588  *  point called by drivers.
589  **/
590 s32 e1000_check_for_link(struct e1000_hw *hw)
591 {
592 	if (hw->mac.ops.check_for_link)
593 		return hw->mac.ops.check_for_link(hw);
594 
595 	return -E1000_ERR_CONFIG;
596 }
597 
598 /**
599  *  e1000_check_mng_mode - Check management mode
600  *  @hw: pointer to the HW structure
601  *
602  *  This checks if the adapter has manageability enabled.
603  *  This is a function pointer entry point called by drivers.
604  **/
605 bool e1000_check_mng_mode(struct e1000_hw *hw)
606 {
607 	if (hw->mac.ops.check_mng_mode)
608 		return hw->mac.ops.check_mng_mode(hw);
609 
610 	return FALSE;
611 }
612 
613 /**
614  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
615  *  @hw: pointer to the HW structure
616  *  @buffer: pointer to the host interface
617  *  @length: size of the buffer
618  *
619  *  Writes the DHCP information to the host interface.
620  **/
621 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
622 {
623 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
624 }
625 
626 /**
627  *  e1000_reset_hw - Reset hardware
628  *  @hw: pointer to the HW structure
629  *
630  *  This resets the hardware into a known state. This is a function pointer
631  *  entry point called by drivers.
632  **/
633 s32 e1000_reset_hw(struct e1000_hw *hw)
634 {
635 	if (hw->mac.ops.reset_hw)
636 		return hw->mac.ops.reset_hw(hw);
637 
638 	return -E1000_ERR_CONFIG;
639 }
640 
641 /**
642  *  e1000_init_hw - Initialize hardware
643  *  @hw: pointer to the HW structure
644  *
645  *  This inits the hardware readying it for operation. This is a function
646  *  pointer entry point called by drivers.
647  **/
648 s32 e1000_init_hw(struct e1000_hw *hw)
649 {
650 	if (hw->mac.ops.init_hw)
651 		return hw->mac.ops.init_hw(hw);
652 
653 	return -E1000_ERR_CONFIG;
654 }
655 
656 /**
657  *  e1000_setup_link - Configures link and flow control
658  *  @hw: pointer to the HW structure
659  *
660  *  This configures link and flow control settings for the adapter. This
661  *  is a function pointer entry point called by drivers. While modules can
662  *  also call this, they probably call their own version of this function.
663  **/
664 s32 e1000_setup_link(struct e1000_hw *hw)
665 {
666 	if (hw->mac.ops.setup_link)
667 		return hw->mac.ops.setup_link(hw);
668 
669 	return -E1000_ERR_CONFIG;
670 }
671 
672 /**
673  *  e1000_get_speed_and_duplex - Returns current speed and duplex
674  *  @hw: pointer to the HW structure
675  *  @speed: pointer to a 16-bit value to store the speed
676  *  @duplex: pointer to a 16-bit value to store the duplex.
677  *
678  *  This returns the speed and duplex of the adapter in the two 'out'
679  *  variables passed in. This is a function pointer entry point called
680  *  by drivers.
681  **/
682 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
683 {
684 	if (hw->mac.ops.get_link_up_info)
685 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
686 
687 	return -E1000_ERR_CONFIG;
688 }
689 
690 /**
691  *  e1000_setup_led - Configures SW controllable LED
692  *  @hw: pointer to the HW structure
693  *
694  *  This prepares the SW controllable LED for use and saves the current state
695  *  of the LED so it can be later restored. This is a function pointer entry
696  *  point called by drivers.
697  **/
698 s32 e1000_setup_led(struct e1000_hw *hw)
699 {
700 	if (hw->mac.ops.setup_led)
701 		return hw->mac.ops.setup_led(hw);
702 
703 	return E1000_SUCCESS;
704 }
705 
706 /**
707  *  e1000_cleanup_led - Restores SW controllable LED
708  *  @hw: pointer to the HW structure
709  *
710  *  This restores the SW controllable LED to the value saved off by
711  *  e1000_setup_led. This is a function pointer entry point called by drivers.
712  **/
713 s32 e1000_cleanup_led(struct e1000_hw *hw)
714 {
715 	if (hw->mac.ops.cleanup_led)
716 		return hw->mac.ops.cleanup_led(hw);
717 
718 	return E1000_SUCCESS;
719 }
720 
721 /**
722  *  e1000_blink_led - Blink SW controllable LED
723  *  @hw: pointer to the HW structure
724  *
725  *  This starts the adapter LED blinking. Request the LED to be setup first
726  *  and cleaned up after. This is a function pointer entry point called by
727  *  drivers.
728  **/
729 s32 e1000_blink_led(struct e1000_hw *hw)
730 {
731 	if (hw->mac.ops.blink_led)
732 		return hw->mac.ops.blink_led(hw);
733 
734 	return E1000_SUCCESS;
735 }
736 
737 /**
738  *  e1000_id_led_init - store LED configurations in SW
739  *  @hw: pointer to the HW structure
740  *
741  *  Initializes the LED config in SW. This is a function pointer entry point
742  *  called by drivers.
743  **/
744 s32 e1000_id_led_init(struct e1000_hw *hw)
745 {
746 	if (hw->mac.ops.id_led_init)
747 		return hw->mac.ops.id_led_init(hw);
748 
749 	return E1000_SUCCESS;
750 }
751 
752 /**
753  *  e1000_led_on - Turn on SW controllable LED
754  *  @hw: pointer to the HW structure
755  *
756  *  Turns the SW defined LED on. This is a function pointer entry point
757  *  called by drivers.
758  **/
759 s32 e1000_led_on(struct e1000_hw *hw)
760 {
761 	if (hw->mac.ops.led_on)
762 		return hw->mac.ops.led_on(hw);
763 
764 	return E1000_SUCCESS;
765 }
766 
767 /**
768  *  e1000_led_off - Turn off SW controllable LED
769  *  @hw: pointer to the HW structure
770  *
771  *  Turns the SW defined LED off. This is a function pointer entry point
772  *  called by drivers.
773  **/
774 s32 e1000_led_off(struct e1000_hw *hw)
775 {
776 	if (hw->mac.ops.led_off)
777 		return hw->mac.ops.led_off(hw);
778 
779 	return E1000_SUCCESS;
780 }
781 
782 /**
783  *  e1000_reset_adaptive - Reset adaptive IFS
784  *  @hw: pointer to the HW structure
785  *
786  *  Resets the adaptive IFS. Currently no func pointer exists and all
787  *  implementations are handled in the generic version of this function.
788  **/
789 void e1000_reset_adaptive(struct e1000_hw *hw)
790 {
791 	e1000_reset_adaptive_generic(hw);
792 }
793 
794 /**
795  *  e1000_update_adaptive - Update adaptive IFS
796  *  @hw: pointer to the HW structure
797  *
798  *  Updates adapter IFS. Currently no func pointer exists and all
799  *  implementations are handled in the generic version of this function.
800  **/
801 void e1000_update_adaptive(struct e1000_hw *hw)
802 {
803 	e1000_update_adaptive_generic(hw);
804 }
805 
806 /**
807  *  e1000_disable_pcie_master - Disable PCI-Express master access
808  *  @hw: pointer to the HW structure
809  *
810  *  Disables PCI-Express master access and verifies there are no pending
811  *  requests. Currently no func pointer exists and all implementations are
812  *  handled in the generic version of this function.
813  **/
814 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
815 {
816 	return e1000_disable_pcie_master_generic(hw);
817 }
818 
819 /**
820  *  e1000_config_collision_dist - Configure collision distance
821  *  @hw: pointer to the HW structure
822  *
823  *  Configures the collision distance to the default value and is used
824  *  during link setup.
825  **/
826 void e1000_config_collision_dist(struct e1000_hw *hw)
827 {
828 	if (hw->mac.ops.config_collision_dist)
829 		hw->mac.ops.config_collision_dist(hw);
830 }
831 
832 /**
833  *  e1000_rar_set - Sets a receive address register
834  *  @hw: pointer to the HW structure
835  *  @addr: address to set the RAR to
836  *  @index: the RAR to set
837  *
838  *  Sets a Receive Address Register (RAR) to the specified address.
839  **/
840 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
841 {
842 	if (hw->mac.ops.rar_set)
843 		return hw->mac.ops.rar_set(hw, addr, index);
844 
845 	return E1000_SUCCESS;
846 }
847 
848 /**
849  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
850  *  @hw: pointer to the HW structure
851  *
852  *  Ensures that the MDI/MDIX SW state is valid.
853  **/
854 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
855 {
856 	if (hw->mac.ops.validate_mdi_setting)
857 		return hw->mac.ops.validate_mdi_setting(hw);
858 
859 	return E1000_SUCCESS;
860 }
861 
862 /**
863  *  e1000_hash_mc_addr - Determines address location in multicast table
864  *  @hw: pointer to the HW structure
865  *  @mc_addr: Multicast address to hash.
866  *
867  *  This hashes an address to determine its location in the multicast
868  *  table. Currently no func pointer exists and all implementations
869  *  are handled in the generic version of this function.
870  **/
871 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
872 {
873 	return e1000_hash_mc_addr_generic(hw, mc_addr);
874 }
875 
876 /**
877  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
878  *  @hw: pointer to the HW structure
879  *
880  *  Enables packet filtering on transmit packets if manageability is enabled
881  *  and host interface is enabled.
882  *  Currently no func pointer exists and all implementations are handled in the
883  *  generic version of this function.
884  **/
885 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
886 {
887 	return e1000_enable_tx_pkt_filtering_generic(hw);
888 }
889 
890 /**
891  *  e1000_mng_host_if_write - Writes to the manageability host interface
892  *  @hw: pointer to the HW structure
893  *  @buffer: pointer to the host interface buffer
894  *  @length: size of the buffer
895  *  @offset: location in the buffer to write to
896  *  @sum: sum of the data (not checksum)
897  *
898  *  This function writes the buffer content at the offset given on the host if.
899  *  It also does alignment considerations to do the writes in most efficient
900  *  way.  Also fills up the sum of the buffer in *buffer parameter.
901  **/
902 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
903 			    u16 offset, u8 *sum)
904 {
905 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
906 }
907 
908 /**
909  *  e1000_mng_write_cmd_header - Writes manageability command header
910  *  @hw: pointer to the HW structure
911  *  @hdr: pointer to the host interface command header
912  *
913  *  Writes the command header after does the checksum calculation.
914  **/
915 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
916 			       struct e1000_host_mng_command_header *hdr)
917 {
918 	return e1000_mng_write_cmd_header_generic(hw, hdr);
919 }
920 
921 /**
922  *  e1000_mng_enable_host_if - Checks host interface is enabled
923  *  @hw: pointer to the HW structure
924  *
925  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
926  *
927  *  This function checks whether the HOST IF is enabled for command operation
928  *  and also checks whether the previous command is completed.  It busy waits
929  *  in case of previous command is not completed.
930  **/
931 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
932 {
933 	return e1000_mng_enable_host_if_generic(hw);
934 }
935 
936 /**
937  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
938  *  @hw: pointer to the HW structure
939  *  @itr: u32 indicating itr value
940  *
941  *  Set the OBFF timer based on the given interrupt rate.
942  **/
943 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
944 {
945 	if (hw->mac.ops.set_obff_timer)
946 		return hw->mac.ops.set_obff_timer(hw, itr);
947 
948 	return E1000_SUCCESS;
949 }
950 
951 /**
952  *  e1000_check_reset_block - Verifies PHY can be reset
953  *  @hw: pointer to the HW structure
954  *
955  *  Checks if the PHY is in a state that can be reset or if manageability
956  *  has it tied up. This is a function pointer entry point called by drivers.
957  **/
958 s32 e1000_check_reset_block(struct e1000_hw *hw)
959 {
960 	if (hw->phy.ops.check_reset_block)
961 		return hw->phy.ops.check_reset_block(hw);
962 
963 	return E1000_SUCCESS;
964 }
965 
966 /**
967  *  e1000_read_phy_reg - Reads PHY register
968  *  @hw: pointer to the HW structure
969  *  @offset: the register to read
970  *  @data: the buffer to store the 16-bit read.
971  *
972  *  Reads the PHY register and returns the value in data.
973  *  This is a function pointer entry point called by drivers.
974  **/
975 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
976 {
977 	if (hw->phy.ops.read_reg)
978 		return hw->phy.ops.read_reg(hw, offset, data);
979 
980 	return E1000_SUCCESS;
981 }
982 
983 /**
984  *  e1000_write_phy_reg - Writes PHY register
985  *  @hw: pointer to the HW structure
986  *  @offset: the register to write
987  *  @data: the value to write.
988  *
989  *  Writes the PHY register at offset with the value in data.
990  *  This is a function pointer entry point called by drivers.
991  **/
992 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
993 {
994 	if (hw->phy.ops.write_reg)
995 		return hw->phy.ops.write_reg(hw, offset, data);
996 
997 	return E1000_SUCCESS;
998 }
999 
1000 /**
1001  *  e1000_release_phy - Generic release PHY
1002  *  @hw: pointer to the HW structure
1003  *
1004  *  Return if silicon family does not require a semaphore when accessing the
1005  *  PHY.
1006  **/
1007 void e1000_release_phy(struct e1000_hw *hw)
1008 {
1009 	if (hw->phy.ops.release)
1010 		hw->phy.ops.release(hw);
1011 }
1012 
1013 /**
1014  *  e1000_acquire_phy - Generic acquire PHY
1015  *  @hw: pointer to the HW structure
1016  *
1017  *  Return success if silicon family does not require a semaphore when
1018  *  accessing the PHY.
1019  **/
1020 s32 e1000_acquire_phy(struct e1000_hw *hw)
1021 {
1022 	if (hw->phy.ops.acquire)
1023 		return hw->phy.ops.acquire(hw);
1024 
1025 	return E1000_SUCCESS;
1026 }
1027 
1028 /**
1029  *  e1000_cfg_on_link_up - Configure PHY upon link up
1030  *  @hw: pointer to the HW structure
1031  **/
1032 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1033 {
1034 	if (hw->phy.ops.cfg_on_link_up)
1035 		return hw->phy.ops.cfg_on_link_up(hw);
1036 
1037 	return E1000_SUCCESS;
1038 }
1039 
1040 /**
1041  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1042  *  @hw: pointer to the HW structure
1043  *  @offset: the register to read
1044  *  @data: the location to store the 16-bit value read.
1045  *
1046  *  Reads a register out of the Kumeran interface. Currently no func pointer
1047  *  exists and all implementations are handled in the generic version of
1048  *  this function.
1049  **/
1050 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1051 {
1052 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1053 }
1054 
1055 /**
1056  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1057  *  @hw: pointer to the HW structure
1058  *  @offset: the register to write
1059  *  @data: the value to write.
1060  *
1061  *  Writes a register to the Kumeran interface. Currently no func pointer
1062  *  exists and all implementations are handled in the generic version of
1063  *  this function.
1064  **/
1065 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1066 {
1067 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1068 }
1069 
1070 /**
1071  *  e1000_get_cable_length - Retrieves cable length estimation
1072  *  @hw: pointer to the HW structure
1073  *
1074  *  This function estimates the cable length and stores them in
1075  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1076  *  entry point called by drivers.
1077  **/
1078 s32 e1000_get_cable_length(struct e1000_hw *hw)
1079 {
1080 	if (hw->phy.ops.get_cable_length)
1081 		return hw->phy.ops.get_cable_length(hw);
1082 
1083 	return E1000_SUCCESS;
1084 }
1085 
1086 /**
1087  *  e1000_get_phy_info - Retrieves PHY information from registers
1088  *  @hw: pointer to the HW structure
1089  *
1090  *  This function gets some information from various PHY registers and
1091  *  populates hw->phy values with it. This is a function pointer entry
1092  *  point called by drivers.
1093  **/
1094 s32 e1000_get_phy_info(struct e1000_hw *hw)
1095 {
1096 	if (hw->phy.ops.get_info)
1097 		return hw->phy.ops.get_info(hw);
1098 
1099 	return E1000_SUCCESS;
1100 }
1101 
1102 /**
1103  *  e1000_phy_hw_reset - Hard PHY reset
1104  *  @hw: pointer to the HW structure
1105  *
1106  *  Performs a hard PHY reset. This is a function pointer entry point called
1107  *  by drivers.
1108  **/
1109 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1110 {
1111 	if (hw->phy.ops.reset)
1112 		return hw->phy.ops.reset(hw);
1113 
1114 	return E1000_SUCCESS;
1115 }
1116 
1117 /**
1118  *  e1000_phy_commit - Soft PHY reset
1119  *  @hw: pointer to the HW structure
1120  *
1121  *  Performs a soft PHY reset on those that apply. This is a function pointer
1122  *  entry point called by drivers.
1123  **/
1124 s32 e1000_phy_commit(struct e1000_hw *hw)
1125 {
1126 	if (hw->phy.ops.commit)
1127 		return hw->phy.ops.commit(hw);
1128 
1129 	return E1000_SUCCESS;
1130 }
1131 
1132 /**
1133  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1134  *  @hw: pointer to the HW structure
1135  *  @active: boolean used to enable/disable lplu
1136  *
1137  *  Success returns 0, Failure returns 1
1138  *
1139  *  The low power link up (lplu) state is set to the power management level D0
1140  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1141  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1142  *  is used during Dx states where the power conservation is most important.
1143  *  During driver activity, SmartSpeed should be enabled so performance is
1144  *  maintained.  This is a function pointer entry point called by drivers.
1145  **/
1146 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1147 {
1148 	if (hw->phy.ops.set_d0_lplu_state)
1149 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1150 
1151 	return E1000_SUCCESS;
1152 }
1153 
1154 /**
1155  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1156  *  @hw: pointer to the HW structure
1157  *  @active: boolean used to enable/disable lplu
1158  *
1159  *  Success returns 0, Failure returns 1
1160  *
1161  *  The low power link up (lplu) state is set to the power management level D3
1162  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1163  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1164  *  is used during Dx states where the power conservation is most important.
1165  *  During driver activity, SmartSpeed should be enabled so performance is
1166  *  maintained.  This is a function pointer entry point called by drivers.
1167  **/
1168 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1169 {
1170 	if (hw->phy.ops.set_d3_lplu_state)
1171 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1172 
1173 	return E1000_SUCCESS;
1174 }
1175 
1176 /**
1177  *  e1000_read_mac_addr - Reads MAC address
1178  *  @hw: pointer to the HW structure
1179  *
1180  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1181  *  Currently no func pointer exists and all implementations are handled in the
1182  *  generic version of this function.
1183  **/
1184 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1185 {
1186 	if (hw->mac.ops.read_mac_addr)
1187 		return hw->mac.ops.read_mac_addr(hw);
1188 
1189 	return e1000_read_mac_addr_generic(hw);
1190 }
1191 
1192 /**
1193  *  e1000_read_pba_string - Read device part number string
1194  *  @hw: pointer to the HW structure
1195  *  @pba_num: pointer to device part number
1196  *  @pba_num_size: size of part number buffer
1197  *
1198  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1199  *  the value in pba_num.
1200  *  Currently no func pointer exists and all implementations are handled in the
1201  *  generic version of this function.
1202  **/
1203 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1204 {
1205 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1206 }
1207 
1208 /**
1209  *  e1000_read_pba_length - Read device part number string length
1210  *  @hw: pointer to the HW structure
1211  *  @pba_num_size: size of part number buffer
1212  *
1213  *  Reads the product board assembly (PBA) number length from the EEPROM and
1214  *  stores the value in pba_num.
1215  *  Currently no func pointer exists and all implementations are handled in the
1216  *  generic version of this function.
1217  **/
1218 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1219 {
1220 	return e1000_read_pba_length_generic(hw, pba_num_size);
1221 }
1222 
1223 /**
1224  *  e1000_read_pba_num - Read device part number
1225  *  @hw: pointer to the HW structure
1226  *  @pba_num: pointer to device part number
1227  *
1228  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1229  *  the value in pba_num.
1230  *  Currently no func pointer exists and all implementations are handled in the
1231  *  generic version of this function.
1232  **/
1233 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1234 {
1235 	return e1000_read_pba_num_generic(hw, pba_num);
1236 }
1237 
1238 /**
1239  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1240  *  @hw: pointer to the HW structure
1241  *
1242  *  Validates the NVM checksum is correct. This is a function pointer entry
1243  *  point called by drivers.
1244  **/
1245 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1246 {
1247 	if (hw->nvm.ops.validate)
1248 		return hw->nvm.ops.validate(hw);
1249 
1250 	return -E1000_ERR_CONFIG;
1251 }
1252 
1253 /**
1254  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1255  *  @hw: pointer to the HW structure
1256  *
1257  *  Updates the NVM checksum. Currently no func pointer exists and all
1258  *  implementations are handled in the generic version of this function.
1259  **/
1260 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1261 {
1262 	if (hw->nvm.ops.update)
1263 		return hw->nvm.ops.update(hw);
1264 
1265 	return -E1000_ERR_CONFIG;
1266 }
1267 
1268 /**
1269  *  e1000_reload_nvm - Reloads EEPROM
1270  *  @hw: pointer to the HW structure
1271  *
1272  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1273  *  extended control register.
1274  **/
1275 void e1000_reload_nvm(struct e1000_hw *hw)
1276 {
1277 	if (hw->nvm.ops.reload)
1278 		hw->nvm.ops.reload(hw);
1279 }
1280 
1281 /**
1282  *  e1000_read_nvm - Reads NVM (EEPROM)
1283  *  @hw: pointer to the HW structure
1284  *  @offset: the word offset to read
1285  *  @words: number of 16-bit words to read
1286  *  @data: pointer to the properly sized buffer for the data.
1287  *
1288  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1289  *  pointer entry point called by drivers.
1290  **/
1291 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1292 {
1293 	if (hw->nvm.ops.read)
1294 		return hw->nvm.ops.read(hw, offset, words, data);
1295 
1296 	return -E1000_ERR_CONFIG;
1297 }
1298 
1299 /**
1300  *  e1000_write_nvm - Writes to NVM (EEPROM)
1301  *  @hw: pointer to the HW structure
1302  *  @offset: the word offset to read
1303  *  @words: number of 16-bit words to write
1304  *  @data: pointer to the properly sized buffer for the data.
1305  *
1306  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1307  *  pointer entry point called by drivers.
1308  **/
1309 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1310 {
1311 	if (hw->nvm.ops.write)
1312 		return hw->nvm.ops.write(hw, offset, words, data);
1313 
1314 	return E1000_SUCCESS;
1315 }
1316 
1317 /**
1318  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1319  *  @hw: pointer to the HW structure
1320  *  @reg: 32bit register offset
1321  *  @offset: the register to write
1322  *  @data: the value to write.
1323  *
1324  *  Writes the PHY register at offset with the value in data.
1325  *  This is a function pointer entry point called by drivers.
1326  **/
1327 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1328 			      u8 data)
1329 {
1330 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1331 }
1332 
1333 /**
1334  * e1000_power_up_phy - Restores link in case of PHY power down
1335  * @hw: pointer to the HW structure
1336  *
1337  * The phy may be powered down to save power, to turn off link when the
1338  * driver is unloaded, or wake on lan is not enabled (among others).
1339  **/
1340 void e1000_power_up_phy(struct e1000_hw *hw)
1341 {
1342 	if (hw->phy.ops.power_up)
1343 		hw->phy.ops.power_up(hw);
1344 
1345 	e1000_setup_link(hw);
1346 }
1347 
1348 /**
1349  * e1000_power_down_phy - Power down PHY
1350  * @hw: pointer to the HW structure
1351  *
1352  * The phy may be powered down to save power, to turn off link when the
1353  * driver is unloaded, or wake on lan is not enabled (among others).
1354  **/
1355 void e1000_power_down_phy(struct e1000_hw *hw)
1356 {
1357 	if (hw->phy.ops.power_down)
1358 		hw->phy.ops.power_down(hw);
1359 }
1360 
1361 /**
1362  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1363  *  @hw: pointer to the HW structure
1364  *
1365  *  Power on the optics and PCS.
1366  **/
1367 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1368 {
1369 	if (hw->mac.ops.power_up_serdes)
1370 		hw->mac.ops.power_up_serdes(hw);
1371 }
1372 
1373 /**
1374  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1375  *  @hw: pointer to the HW structure
1376  *
1377  *  Shutdown the optics and PCS on driver unload.
1378  **/
1379 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1380 {
1381 	if (hw->mac.ops.shutdown_serdes)
1382 		hw->mac.ops.shutdown_serdes(hw);
1383 }
1384