xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision cab8bf9b)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2012, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 #ifndef NO_82542_SUPPORT
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 #endif
163 	case E1000_DEV_ID_82543GC_FIBER:
164 	case E1000_DEV_ID_82543GC_COPPER:
165 		mac->type = e1000_82543;
166 		break;
167 	case E1000_DEV_ID_82544EI_COPPER:
168 	case E1000_DEV_ID_82544EI_FIBER:
169 	case E1000_DEV_ID_82544GC_COPPER:
170 	case E1000_DEV_ID_82544GC_LOM:
171 		mac->type = e1000_82544;
172 		break;
173 	case E1000_DEV_ID_82540EM:
174 	case E1000_DEV_ID_82540EM_LOM:
175 	case E1000_DEV_ID_82540EP:
176 	case E1000_DEV_ID_82540EP_LOM:
177 	case E1000_DEV_ID_82540EP_LP:
178 		mac->type = e1000_82540;
179 		break;
180 	case E1000_DEV_ID_82545EM_COPPER:
181 	case E1000_DEV_ID_82545EM_FIBER:
182 		mac->type = e1000_82545;
183 		break;
184 	case E1000_DEV_ID_82545GM_COPPER:
185 	case E1000_DEV_ID_82545GM_FIBER:
186 	case E1000_DEV_ID_82545GM_SERDES:
187 		mac->type = e1000_82545_rev_3;
188 		break;
189 	case E1000_DEV_ID_82546EB_COPPER:
190 	case E1000_DEV_ID_82546EB_FIBER:
191 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 		mac->type = e1000_82546;
193 		break;
194 	case E1000_DEV_ID_82546GB_COPPER:
195 	case E1000_DEV_ID_82546GB_FIBER:
196 	case E1000_DEV_ID_82546GB_SERDES:
197 	case E1000_DEV_ID_82546GB_PCIE:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 		mac->type = e1000_82546_rev_3;
201 		break;
202 	case E1000_DEV_ID_82541EI:
203 	case E1000_DEV_ID_82541EI_MOBILE:
204 	case E1000_DEV_ID_82541ER_LOM:
205 		mac->type = e1000_82541;
206 		break;
207 	case E1000_DEV_ID_82541ER:
208 	case E1000_DEV_ID_82541GI:
209 	case E1000_DEV_ID_82541GI_LF:
210 	case E1000_DEV_ID_82541GI_MOBILE:
211 		mac->type = e1000_82541_rev_2;
212 		break;
213 	case E1000_DEV_ID_82547EI:
214 	case E1000_DEV_ID_82547EI_MOBILE:
215 		mac->type = e1000_82547;
216 		break;
217 	case E1000_DEV_ID_82547GI:
218 		mac->type = e1000_82547_rev_2;
219 		break;
220 	case E1000_DEV_ID_82571EB_COPPER:
221 	case E1000_DEV_ID_82571EB_FIBER:
222 	case E1000_DEV_ID_82571EB_SERDES:
223 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
229 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
230 		mac->type = e1000_82571;
231 		break;
232 	case E1000_DEV_ID_82572EI:
233 	case E1000_DEV_ID_82572EI_COPPER:
234 	case E1000_DEV_ID_82572EI_FIBER:
235 	case E1000_DEV_ID_82572EI_SERDES:
236 		mac->type = e1000_82572;
237 		break;
238 	case E1000_DEV_ID_82573E:
239 	case E1000_DEV_ID_82573E_IAMT:
240 	case E1000_DEV_ID_82573L:
241 		mac->type = e1000_82573;
242 		break;
243 	case E1000_DEV_ID_82574L:
244 	case E1000_DEV_ID_82574LA:
245 		mac->type = e1000_82574;
246 		break;
247 	case E1000_DEV_ID_82583V:
248 		mac->type = e1000_82583;
249 		break;
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 		mac->type = e1000_80003es2lan;
255 		break;
256 	case E1000_DEV_ID_ICH8_IFE:
257 	case E1000_DEV_ID_ICH8_IFE_GT:
258 	case E1000_DEV_ID_ICH8_IFE_G:
259 	case E1000_DEV_ID_ICH8_IGP_M:
260 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 	case E1000_DEV_ID_ICH8_IGP_AMT:
262 	case E1000_DEV_ID_ICH8_IGP_C:
263 	case E1000_DEV_ID_ICH8_82567V_3:
264 		mac->type = e1000_ich8lan;
265 		break;
266 	case E1000_DEV_ID_ICH9_IFE:
267 	case E1000_DEV_ID_ICH9_IFE_GT:
268 	case E1000_DEV_ID_ICH9_IFE_G:
269 	case E1000_DEV_ID_ICH9_IGP_M:
270 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 	case E1000_DEV_ID_ICH9_IGP_M_V:
272 	case E1000_DEV_ID_ICH9_IGP_AMT:
273 	case E1000_DEV_ID_ICH9_BM:
274 	case E1000_DEV_ID_ICH9_IGP_C:
275 	case E1000_DEV_ID_ICH10_R_BM_LM:
276 	case E1000_DEV_ID_ICH10_R_BM_LF:
277 	case E1000_DEV_ID_ICH10_R_BM_V:
278 		mac->type = e1000_ich9lan;
279 		break;
280 	case E1000_DEV_ID_ICH10_D_BM_LM:
281 	case E1000_DEV_ID_ICH10_D_BM_LF:
282 	case E1000_DEV_ID_ICH10_D_BM_V:
283 		mac->type = e1000_ich10lan;
284 		break;
285 	case E1000_DEV_ID_PCH_D_HV_DM:
286 	case E1000_DEV_ID_PCH_D_HV_DC:
287 	case E1000_DEV_ID_PCH_M_HV_LM:
288 	case E1000_DEV_ID_PCH_M_HV_LC:
289 		mac->type = e1000_pchlan;
290 		break;
291 	case E1000_DEV_ID_PCH2_LV_LM:
292 	case E1000_DEV_ID_PCH2_LV_V:
293 		mac->type = e1000_pch2lan;
294 		break;
295 	case E1000_DEV_ID_PCH_LPT_I217_LM:
296 	case E1000_DEV_ID_PCH_LPT_I217_V:
297 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
298 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
299 		mac->type = e1000_pch_lpt;
300  		break;
301 	case E1000_DEV_ID_82575EB_COPPER:
302 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
303 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
304 		mac->type = e1000_82575;
305 		break;
306 	case E1000_DEV_ID_82576:
307 	case E1000_DEV_ID_82576_FIBER:
308 	case E1000_DEV_ID_82576_SERDES:
309 	case E1000_DEV_ID_82576_QUAD_COPPER:
310 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
311 	case E1000_DEV_ID_82576_NS:
312 	case E1000_DEV_ID_82576_NS_SERDES:
313 	case E1000_DEV_ID_82576_SERDES_QUAD:
314 		mac->type = e1000_82576;
315 		break;
316 	case E1000_DEV_ID_82580_COPPER:
317 	case E1000_DEV_ID_82580_FIBER:
318 	case E1000_DEV_ID_82580_SERDES:
319 	case E1000_DEV_ID_82580_SGMII:
320 	case E1000_DEV_ID_82580_COPPER_DUAL:
321 	case E1000_DEV_ID_82580_QUAD_FIBER:
322 	case E1000_DEV_ID_DH89XXCC_SGMII:
323 	case E1000_DEV_ID_DH89XXCC_SERDES:
324 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
325 	case E1000_DEV_ID_DH89XXCC_SFP:
326 		mac->type = e1000_82580;
327 		break;
328 	case E1000_DEV_ID_I350_COPPER:
329 	case E1000_DEV_ID_I350_FIBER:
330 	case E1000_DEV_ID_I350_SERDES:
331 	case E1000_DEV_ID_I350_SGMII:
332 	case E1000_DEV_ID_I350_DA4:
333 		mac->type = e1000_i350;
334 		break;
335 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
336 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
337 	case E1000_DEV_ID_I210_COPPER:
338 	case E1000_DEV_ID_I210_COPPER_OEM1:
339 	case E1000_DEV_ID_I210_COPPER_IT:
340 	case E1000_DEV_ID_I210_FIBER:
341 	case E1000_DEV_ID_I210_SERDES:
342 	case E1000_DEV_ID_I210_SGMII:
343 		mac->type = e1000_i210;
344 		break;
345 	case E1000_DEV_ID_I211_COPPER:
346 		mac->type = e1000_i211;
347 		break;
348 	case E1000_DEV_ID_82576_VF:
349 	case E1000_DEV_ID_82576_VF_HV:
350 		mac->type = e1000_vfadapt;
351 		break;
352 	case E1000_DEV_ID_I350_VF:
353 	case E1000_DEV_ID_I350_VF_HV:
354 		mac->type = e1000_vfadapt_i350;
355 		break;
356 
357 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
358 	case E1000_DEV_ID_I354_SGMII:
359 		mac->type = e1000_i354;
360 		break;
361 	default:
362 		/* Should never have loaded on this device */
363 		ret_val = -E1000_ERR_MAC_INIT;
364 		break;
365 	}
366 
367 	return ret_val;
368 }
369 
370 /**
371  *  e1000_setup_init_funcs - Initializes function pointers
372  *  @hw: pointer to the HW structure
373  *  @init_device: TRUE will initialize the rest of the function pointers
374  *		  getting the device ready for use.  FALSE will only set
375  *		  MAC type and the function pointers for the other init
376  *		  functions.  Passing FALSE will not generate any hardware
377  *		  reads or writes.
378  *
379  *  This function must be called by a driver in order to use the rest
380  *  of the 'shared' code files. Called by drivers only.
381  **/
382 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
383 {
384 	s32 ret_val;
385 
386 	/* Can't do much good without knowing the MAC type. */
387 	ret_val = e1000_set_mac_type(hw);
388 	if (ret_val) {
389 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
390 		goto out;
391 	}
392 
393 	if (!hw->hw_addr) {
394 		DEBUGOUT("ERROR: Registers not mapped\n");
395 		ret_val = -E1000_ERR_CONFIG;
396 		goto out;
397 	}
398 
399 	/*
400 	 * Init function pointers to generic implementations. We do this first
401 	 * allowing a driver module to override it afterward.
402 	 */
403 	e1000_init_mac_ops_generic(hw);
404 	e1000_init_phy_ops_generic(hw);
405 	e1000_init_nvm_ops_generic(hw);
406 	e1000_init_mbx_ops_generic(hw);
407 
408 	/*
409 	 * Set up the init function pointers. These are functions within the
410 	 * adapter family file that sets up function pointers for the rest of
411 	 * the functions in that family.
412 	 */
413 	switch (hw->mac.type) {
414 #ifndef NO_82542_SUPPORT
415 	case e1000_82542:
416 		e1000_init_function_pointers_82542(hw);
417 		break;
418 #endif
419 	case e1000_82543:
420 	case e1000_82544:
421 		e1000_init_function_pointers_82543(hw);
422 		break;
423 	case e1000_82540:
424 	case e1000_82545:
425 	case e1000_82545_rev_3:
426 	case e1000_82546:
427 	case e1000_82546_rev_3:
428 		e1000_init_function_pointers_82540(hw);
429 		break;
430 	case e1000_82541:
431 	case e1000_82541_rev_2:
432 	case e1000_82547:
433 	case e1000_82547_rev_2:
434 		e1000_init_function_pointers_82541(hw);
435 		break;
436 	case e1000_82571:
437 	case e1000_82572:
438 	case e1000_82573:
439 	case e1000_82574:
440 	case e1000_82583:
441 		e1000_init_function_pointers_82571(hw);
442 		break;
443 	case e1000_80003es2lan:
444 		e1000_init_function_pointers_80003es2lan(hw);
445 		break;
446 	case e1000_ich8lan:
447 	case e1000_ich9lan:
448 	case e1000_ich10lan:
449 	case e1000_pchlan:
450 	case e1000_pch2lan:
451 	case e1000_pch_lpt:
452 		e1000_init_function_pointers_ich8lan(hw);
453 		break;
454 	case e1000_82575:
455 	case e1000_82576:
456 	case e1000_82580:
457 	case e1000_i350:
458 	case e1000_i354:
459 		e1000_init_function_pointers_82575(hw);
460 		break;
461 	case e1000_i210:
462 	case e1000_i211:
463 		e1000_init_function_pointers_i210(hw);
464 		break;
465 	case e1000_vfadapt:
466 		e1000_init_function_pointers_vf(hw);
467 		break;
468 	case e1000_vfadapt_i350:
469 		e1000_init_function_pointers_vf(hw);
470 		break;
471 	default:
472 		DEBUGOUT("Hardware not supported\n");
473 		ret_val = -E1000_ERR_CONFIG;
474 		break;
475 	}
476 
477 	/*
478 	 * Initialize the rest of the function pointers. These require some
479 	 * register reads/writes in some cases.
480 	 */
481 	if (!(ret_val) && init_device) {
482 		ret_val = e1000_init_mac_params(hw);
483 		if (ret_val)
484 			goto out;
485 
486 		ret_val = e1000_init_nvm_params(hw);
487 		if (ret_val)
488 			goto out;
489 
490 		ret_val = e1000_init_phy_params(hw);
491 		if (ret_val)
492 			goto out;
493 
494 		ret_val = e1000_init_mbx_params(hw);
495 		if (ret_val)
496 			goto out;
497 	}
498 
499 out:
500 	return ret_val;
501 }
502 
503 /**
504  *  e1000_get_bus_info - Obtain bus information for adapter
505  *  @hw: pointer to the HW structure
506  *
507  *  This will obtain information about the HW bus for which the
508  *  adapter is attached and stores it in the hw structure. This is a
509  *  function pointer entry point called by drivers.
510  **/
511 s32 e1000_get_bus_info(struct e1000_hw *hw)
512 {
513 	if (hw->mac.ops.get_bus_info)
514 		return hw->mac.ops.get_bus_info(hw);
515 
516 	return E1000_SUCCESS;
517 }
518 
519 /**
520  *  e1000_clear_vfta - Clear VLAN filter table
521  *  @hw: pointer to the HW structure
522  *
523  *  This clears the VLAN filter table on the adapter. This is a function
524  *  pointer entry point called by drivers.
525  **/
526 void e1000_clear_vfta(struct e1000_hw *hw)
527 {
528 	if (hw->mac.ops.clear_vfta)
529 		hw->mac.ops.clear_vfta(hw);
530 }
531 
532 /**
533  *  e1000_write_vfta - Write value to VLAN filter table
534  *  @hw: pointer to the HW structure
535  *  @offset: the 32-bit offset in which to write the value to.
536  *  @value: the 32-bit value to write at location offset.
537  *
538  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
539  *  table. This is a function pointer entry point called by drivers.
540  **/
541 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
542 {
543 	if (hw->mac.ops.write_vfta)
544 		hw->mac.ops.write_vfta(hw, offset, value);
545 }
546 
547 /**
548  *  e1000_update_mc_addr_list - Update Multicast addresses
549  *  @hw: pointer to the HW structure
550  *  @mc_addr_list: array of multicast addresses to program
551  *  @mc_addr_count: number of multicast addresses to program
552  *
553  *  Updates the Multicast Table Array.
554  *  The caller must have a packed mc_addr_list of multicast addresses.
555  **/
556 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
557 			       u32 mc_addr_count)
558 {
559 	if (hw->mac.ops.update_mc_addr_list)
560 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
561 						mc_addr_count);
562 }
563 
564 /**
565  *  e1000_force_mac_fc - Force MAC flow control
566  *  @hw: pointer to the HW structure
567  *
568  *  Force the MAC's flow control settings. Currently no func pointer exists
569  *  and all implementations are handled in the generic version of this
570  *  function.
571  **/
572 s32 e1000_force_mac_fc(struct e1000_hw *hw)
573 {
574 	return e1000_force_mac_fc_generic(hw);
575 }
576 
577 /**
578  *  e1000_check_for_link - Check/Store link connection
579  *  @hw: pointer to the HW structure
580  *
581  *  This checks the link condition of the adapter and stores the
582  *  results in the hw->mac structure. This is a function pointer entry
583  *  point called by drivers.
584  **/
585 s32 e1000_check_for_link(struct e1000_hw *hw)
586 {
587 	if (hw->mac.ops.check_for_link)
588 		return hw->mac.ops.check_for_link(hw);
589 
590 	return -E1000_ERR_CONFIG;
591 }
592 
593 /**
594  *  e1000_check_mng_mode - Check management mode
595  *  @hw: pointer to the HW structure
596  *
597  *  This checks if the adapter has manageability enabled.
598  *  This is a function pointer entry point called by drivers.
599  **/
600 bool e1000_check_mng_mode(struct e1000_hw *hw)
601 {
602 	if (hw->mac.ops.check_mng_mode)
603 		return hw->mac.ops.check_mng_mode(hw);
604 
605 	return FALSE;
606 }
607 
608 /**
609  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
610  *  @hw: pointer to the HW structure
611  *  @buffer: pointer to the host interface
612  *  @length: size of the buffer
613  *
614  *  Writes the DHCP information to the host interface.
615  **/
616 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
617 {
618 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
619 }
620 
621 /**
622  *  e1000_reset_hw - Reset hardware
623  *  @hw: pointer to the HW structure
624  *
625  *  This resets the hardware into a known state. This is a function pointer
626  *  entry point called by drivers.
627  **/
628 s32 e1000_reset_hw(struct e1000_hw *hw)
629 {
630 	if (hw->mac.ops.reset_hw)
631 		return hw->mac.ops.reset_hw(hw);
632 
633 	return -E1000_ERR_CONFIG;
634 }
635 
636 /**
637  *  e1000_init_hw - Initialize hardware
638  *  @hw: pointer to the HW structure
639  *
640  *  This inits the hardware readying it for operation. This is a function
641  *  pointer entry point called by drivers.
642  **/
643 s32 e1000_init_hw(struct e1000_hw *hw)
644 {
645 	if (hw->mac.ops.init_hw)
646 		return hw->mac.ops.init_hw(hw);
647 
648 	return -E1000_ERR_CONFIG;
649 }
650 
651 /**
652  *  e1000_setup_link - Configures link and flow control
653  *  @hw: pointer to the HW structure
654  *
655  *  This configures link and flow control settings for the adapter. This
656  *  is a function pointer entry point called by drivers. While modules can
657  *  also call this, they probably call their own version of this function.
658  **/
659 s32 e1000_setup_link(struct e1000_hw *hw)
660 {
661 	if (hw->mac.ops.setup_link)
662 		return hw->mac.ops.setup_link(hw);
663 
664 	return -E1000_ERR_CONFIG;
665 }
666 
667 /**
668  *  e1000_get_speed_and_duplex - Returns current speed and duplex
669  *  @hw: pointer to the HW structure
670  *  @speed: pointer to a 16-bit value to store the speed
671  *  @duplex: pointer to a 16-bit value to store the duplex.
672  *
673  *  This returns the speed and duplex of the adapter in the two 'out'
674  *  variables passed in. This is a function pointer entry point called
675  *  by drivers.
676  **/
677 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
678 {
679 	if (hw->mac.ops.get_link_up_info)
680 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
681 
682 	return -E1000_ERR_CONFIG;
683 }
684 
685 /**
686  *  e1000_setup_led - Configures SW controllable LED
687  *  @hw: pointer to the HW structure
688  *
689  *  This prepares the SW controllable LED for use and saves the current state
690  *  of the LED so it can be later restored. This is a function pointer entry
691  *  point called by drivers.
692  **/
693 s32 e1000_setup_led(struct e1000_hw *hw)
694 {
695 	if (hw->mac.ops.setup_led)
696 		return hw->mac.ops.setup_led(hw);
697 
698 	return E1000_SUCCESS;
699 }
700 
701 /**
702  *  e1000_cleanup_led - Restores SW controllable LED
703  *  @hw: pointer to the HW structure
704  *
705  *  This restores the SW controllable LED to the value saved off by
706  *  e1000_setup_led. This is a function pointer entry point called by drivers.
707  **/
708 s32 e1000_cleanup_led(struct e1000_hw *hw)
709 {
710 	if (hw->mac.ops.cleanup_led)
711 		return hw->mac.ops.cleanup_led(hw);
712 
713 	return E1000_SUCCESS;
714 }
715 
716 /**
717  *  e1000_blink_led - Blink SW controllable LED
718  *  @hw: pointer to the HW structure
719  *
720  *  This starts the adapter LED blinking. Request the LED to be setup first
721  *  and cleaned up after. This is a function pointer entry point called by
722  *  drivers.
723  **/
724 s32 e1000_blink_led(struct e1000_hw *hw)
725 {
726 	if (hw->mac.ops.blink_led)
727 		return hw->mac.ops.blink_led(hw);
728 
729 	return E1000_SUCCESS;
730 }
731 
732 /**
733  *  e1000_id_led_init - store LED configurations in SW
734  *  @hw: pointer to the HW structure
735  *
736  *  Initializes the LED config in SW. This is a function pointer entry point
737  *  called by drivers.
738  **/
739 s32 e1000_id_led_init(struct e1000_hw *hw)
740 {
741 	if (hw->mac.ops.id_led_init)
742 		return hw->mac.ops.id_led_init(hw);
743 
744 	return E1000_SUCCESS;
745 }
746 
747 /**
748  *  e1000_led_on - Turn on SW controllable LED
749  *  @hw: pointer to the HW structure
750  *
751  *  Turns the SW defined LED on. This is a function pointer entry point
752  *  called by drivers.
753  **/
754 s32 e1000_led_on(struct e1000_hw *hw)
755 {
756 	if (hw->mac.ops.led_on)
757 		return hw->mac.ops.led_on(hw);
758 
759 	return E1000_SUCCESS;
760 }
761 
762 /**
763  *  e1000_led_off - Turn off SW controllable LED
764  *  @hw: pointer to the HW structure
765  *
766  *  Turns the SW defined LED off. This is a function pointer entry point
767  *  called by drivers.
768  **/
769 s32 e1000_led_off(struct e1000_hw *hw)
770 {
771 	if (hw->mac.ops.led_off)
772 		return hw->mac.ops.led_off(hw);
773 
774 	return E1000_SUCCESS;
775 }
776 
777 /**
778  *  e1000_reset_adaptive - Reset adaptive IFS
779  *  @hw: pointer to the HW structure
780  *
781  *  Resets the adaptive IFS. Currently no func pointer exists and all
782  *  implementations are handled in the generic version of this function.
783  **/
784 void e1000_reset_adaptive(struct e1000_hw *hw)
785 {
786 	e1000_reset_adaptive_generic(hw);
787 }
788 
789 /**
790  *  e1000_update_adaptive - Update adaptive IFS
791  *  @hw: pointer to the HW structure
792  *
793  *  Updates adapter IFS. Currently no func pointer exists and all
794  *  implementations are handled in the generic version of this function.
795  **/
796 void e1000_update_adaptive(struct e1000_hw *hw)
797 {
798 	e1000_update_adaptive_generic(hw);
799 }
800 
801 /**
802  *  e1000_disable_pcie_master - Disable PCI-Express master access
803  *  @hw: pointer to the HW structure
804  *
805  *  Disables PCI-Express master access and verifies there are no pending
806  *  requests. Currently no func pointer exists and all implementations are
807  *  handled in the generic version of this function.
808  **/
809 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
810 {
811 	return e1000_disable_pcie_master_generic(hw);
812 }
813 
814 /**
815  *  e1000_config_collision_dist - Configure collision distance
816  *  @hw: pointer to the HW structure
817  *
818  *  Configures the collision distance to the default value and is used
819  *  during link setup.
820  **/
821 void e1000_config_collision_dist(struct e1000_hw *hw)
822 {
823 	if (hw->mac.ops.config_collision_dist)
824 		hw->mac.ops.config_collision_dist(hw);
825 }
826 
827 /**
828  *  e1000_rar_set - Sets a receive address register
829  *  @hw: pointer to the HW structure
830  *  @addr: address to set the RAR to
831  *  @index: the RAR to set
832  *
833  *  Sets a Receive Address Register (RAR) to the specified address.
834  **/
835 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
836 {
837 	if (hw->mac.ops.rar_set)
838 		hw->mac.ops.rar_set(hw, addr, index);
839 }
840 
841 /**
842  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
843  *  @hw: pointer to the HW structure
844  *
845  *  Ensures that the MDI/MDIX SW state is valid.
846  **/
847 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
848 {
849 	if (hw->mac.ops.validate_mdi_setting)
850 		return hw->mac.ops.validate_mdi_setting(hw);
851 
852 	return E1000_SUCCESS;
853 }
854 
855 /**
856  *  e1000_hash_mc_addr - Determines address location in multicast table
857  *  @hw: pointer to the HW structure
858  *  @mc_addr: Multicast address to hash.
859  *
860  *  This hashes an address to determine its location in the multicast
861  *  table. Currently no func pointer exists and all implementations
862  *  are handled in the generic version of this function.
863  **/
864 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
865 {
866 	return e1000_hash_mc_addr_generic(hw, mc_addr);
867 }
868 
869 /**
870  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
871  *  @hw: pointer to the HW structure
872  *
873  *  Enables packet filtering on transmit packets if manageability is enabled
874  *  and host interface is enabled.
875  *  Currently no func pointer exists and all implementations are handled in the
876  *  generic version of this function.
877  **/
878 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
879 {
880 	return e1000_enable_tx_pkt_filtering_generic(hw);
881 }
882 
883 /**
884  *  e1000_mng_host_if_write - Writes to the manageability host interface
885  *  @hw: pointer to the HW structure
886  *  @buffer: pointer to the host interface buffer
887  *  @length: size of the buffer
888  *  @offset: location in the buffer to write to
889  *  @sum: sum of the data (not checksum)
890  *
891  *  This function writes the buffer content at the offset given on the host if.
892  *  It also does alignment considerations to do the writes in most efficient
893  *  way.  Also fills up the sum of the buffer in *buffer parameter.
894  **/
895 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
896 			    u16 offset, u8 *sum)
897 {
898 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
899 }
900 
901 /**
902  *  e1000_mng_write_cmd_header - Writes manageability command header
903  *  @hw: pointer to the HW structure
904  *  @hdr: pointer to the host interface command header
905  *
906  *  Writes the command header after does the checksum calculation.
907  **/
908 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
909 			       struct e1000_host_mng_command_header *hdr)
910 {
911 	return e1000_mng_write_cmd_header_generic(hw, hdr);
912 }
913 
914 /**
915  *  e1000_mng_enable_host_if - Checks host interface is enabled
916  *  @hw: pointer to the HW structure
917  *
918  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
919  *
920  *  This function checks whether the HOST IF is enabled for command operation
921  *  and also checks whether the previous command is completed.  It busy waits
922  *  in case of previous command is not completed.
923  **/
924 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
925 {
926 	return e1000_mng_enable_host_if_generic(hw);
927 }
928 
929 /**
930  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
931  *  @hw: pointer to the HW structure
932  *  @itr: u32 indicating itr value
933  *
934  *  Set the OBFF timer based on the given interrupt rate.
935  **/
936 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
937 {
938 	if (hw->mac.ops.set_obff_timer)
939 		return hw->mac.ops.set_obff_timer(hw, itr);
940 
941 	return E1000_SUCCESS;
942 }
943 
944 /**
945  *  e1000_check_reset_block - Verifies PHY can be reset
946  *  @hw: pointer to the HW structure
947  *
948  *  Checks if the PHY is in a state that can be reset or if manageability
949  *  has it tied up. This is a function pointer entry point called by drivers.
950  **/
951 s32 e1000_check_reset_block(struct e1000_hw *hw)
952 {
953 	if (hw->phy.ops.check_reset_block)
954 		return hw->phy.ops.check_reset_block(hw);
955 
956 	return E1000_SUCCESS;
957 }
958 
959 /**
960  *  e1000_read_phy_reg - Reads PHY register
961  *  @hw: pointer to the HW structure
962  *  @offset: the register to read
963  *  @data: the buffer to store the 16-bit read.
964  *
965  *  Reads the PHY register and returns the value in data.
966  *  This is a function pointer entry point called by drivers.
967  **/
968 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
969 {
970 	if (hw->phy.ops.read_reg)
971 		return hw->phy.ops.read_reg(hw, offset, data);
972 
973 	return E1000_SUCCESS;
974 }
975 
976 /**
977  *  e1000_write_phy_reg - Writes PHY register
978  *  @hw: pointer to the HW structure
979  *  @offset: the register to write
980  *  @data: the value to write.
981  *
982  *  Writes the PHY register at offset with the value in data.
983  *  This is a function pointer entry point called by drivers.
984  **/
985 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
986 {
987 	if (hw->phy.ops.write_reg)
988 		return hw->phy.ops.write_reg(hw, offset, data);
989 
990 	return E1000_SUCCESS;
991 }
992 
993 /**
994  *  e1000_release_phy - Generic release PHY
995  *  @hw: pointer to the HW structure
996  *
997  *  Return if silicon family does not require a semaphore when accessing the
998  *  PHY.
999  **/
1000 void e1000_release_phy(struct e1000_hw *hw)
1001 {
1002 	if (hw->phy.ops.release)
1003 		hw->phy.ops.release(hw);
1004 }
1005 
1006 /**
1007  *  e1000_acquire_phy - Generic acquire PHY
1008  *  @hw: pointer to the HW structure
1009  *
1010  *  Return success if silicon family does not require a semaphore when
1011  *  accessing the PHY.
1012  **/
1013 s32 e1000_acquire_phy(struct e1000_hw *hw)
1014 {
1015 	if (hw->phy.ops.acquire)
1016 		return hw->phy.ops.acquire(hw);
1017 
1018 	return E1000_SUCCESS;
1019 }
1020 
1021 /**
1022  *  e1000_cfg_on_link_up - Configure PHY upon link up
1023  *  @hw: pointer to the HW structure
1024  **/
1025 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1026 {
1027 	if (hw->phy.ops.cfg_on_link_up)
1028 		return hw->phy.ops.cfg_on_link_up(hw);
1029 
1030 	return E1000_SUCCESS;
1031 }
1032 
1033 /**
1034  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1035  *  @hw: pointer to the HW structure
1036  *  @offset: the register to read
1037  *  @data: the location to store the 16-bit value read.
1038  *
1039  *  Reads a register out of the Kumeran interface. Currently no func pointer
1040  *  exists and all implementations are handled in the generic version of
1041  *  this function.
1042  **/
1043 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1044 {
1045 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1046 }
1047 
1048 /**
1049  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1050  *  @hw: pointer to the HW structure
1051  *  @offset: the register to write
1052  *  @data: the value to write.
1053  *
1054  *  Writes a register to the Kumeran interface. Currently no func pointer
1055  *  exists and all implementations are handled in the generic version of
1056  *  this function.
1057  **/
1058 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1059 {
1060 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1061 }
1062 
1063 /**
1064  *  e1000_get_cable_length - Retrieves cable length estimation
1065  *  @hw: pointer to the HW structure
1066  *
1067  *  This function estimates the cable length and stores them in
1068  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1069  *  entry point called by drivers.
1070  **/
1071 s32 e1000_get_cable_length(struct e1000_hw *hw)
1072 {
1073 	if (hw->phy.ops.get_cable_length)
1074 		return hw->phy.ops.get_cable_length(hw);
1075 
1076 	return E1000_SUCCESS;
1077 }
1078 
1079 /**
1080  *  e1000_get_phy_info - Retrieves PHY information from registers
1081  *  @hw: pointer to the HW structure
1082  *
1083  *  This function gets some information from various PHY registers and
1084  *  populates hw->phy values with it. This is a function pointer entry
1085  *  point called by drivers.
1086  **/
1087 s32 e1000_get_phy_info(struct e1000_hw *hw)
1088 {
1089 	if (hw->phy.ops.get_info)
1090 		return hw->phy.ops.get_info(hw);
1091 
1092 	return E1000_SUCCESS;
1093 }
1094 
1095 /**
1096  *  e1000_phy_hw_reset - Hard PHY reset
1097  *  @hw: pointer to the HW structure
1098  *
1099  *  Performs a hard PHY reset. This is a function pointer entry point called
1100  *  by drivers.
1101  **/
1102 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1103 {
1104 	if (hw->phy.ops.reset)
1105 		return hw->phy.ops.reset(hw);
1106 
1107 	return E1000_SUCCESS;
1108 }
1109 
1110 /**
1111  *  e1000_phy_commit - Soft PHY reset
1112  *  @hw: pointer to the HW structure
1113  *
1114  *  Performs a soft PHY reset on those that apply. This is a function pointer
1115  *  entry point called by drivers.
1116  **/
1117 s32 e1000_phy_commit(struct e1000_hw *hw)
1118 {
1119 	if (hw->phy.ops.commit)
1120 		return hw->phy.ops.commit(hw);
1121 
1122 	return E1000_SUCCESS;
1123 }
1124 
1125 /**
1126  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1127  *  @hw: pointer to the HW structure
1128  *  @active: boolean used to enable/disable lplu
1129  *
1130  *  Success returns 0, Failure returns 1
1131  *
1132  *  The low power link up (lplu) state is set to the power management level D0
1133  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1134  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1135  *  is used during Dx states where the power conservation is most important.
1136  *  During driver activity, SmartSpeed should be enabled so performance is
1137  *  maintained.  This is a function pointer entry point called by drivers.
1138  **/
1139 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1140 {
1141 	if (hw->phy.ops.set_d0_lplu_state)
1142 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1143 
1144 	return E1000_SUCCESS;
1145 }
1146 
1147 /**
1148  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1149  *  @hw: pointer to the HW structure
1150  *  @active: boolean used to enable/disable lplu
1151  *
1152  *  Success returns 0, Failure returns 1
1153  *
1154  *  The low power link up (lplu) state is set to the power management level D3
1155  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1156  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1157  *  is used during Dx states where the power conservation is most important.
1158  *  During driver activity, SmartSpeed should be enabled so performance is
1159  *  maintained.  This is a function pointer entry point called by drivers.
1160  **/
1161 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1162 {
1163 	if (hw->phy.ops.set_d3_lplu_state)
1164 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1165 
1166 	return E1000_SUCCESS;
1167 }
1168 
1169 /**
1170  *  e1000_read_mac_addr - Reads MAC address
1171  *  @hw: pointer to the HW structure
1172  *
1173  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1174  *  Currently no func pointer exists and all implementations are handled in the
1175  *  generic version of this function.
1176  **/
1177 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1178 {
1179 	if (hw->mac.ops.read_mac_addr)
1180 		return hw->mac.ops.read_mac_addr(hw);
1181 
1182 	return e1000_read_mac_addr_generic(hw);
1183 }
1184 
1185 /**
1186  *  e1000_read_pba_string - Read device part number string
1187  *  @hw: pointer to the HW structure
1188  *  @pba_num: pointer to device part number
1189  *  @pba_num_size: size of part number buffer
1190  *
1191  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1192  *  the value in pba_num.
1193  *  Currently no func pointer exists and all implementations are handled in the
1194  *  generic version of this function.
1195  **/
1196 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1197 {
1198 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1199 }
1200 
1201 /**
1202  *  e1000_read_pba_length - Read device part number string length
1203  *  @hw: pointer to the HW structure
1204  *  @pba_num_size: size of part number buffer
1205  *
1206  *  Reads the product board assembly (PBA) number length from the EEPROM and
1207  *  stores the value in pba_num.
1208  *  Currently no func pointer exists and all implementations are handled in the
1209  *  generic version of this function.
1210  **/
1211 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1212 {
1213 	return e1000_read_pba_length_generic(hw, pba_num_size);
1214 }
1215 
1216 /**
1217  *  e1000_read_pba_num - Read device part number
1218  *  @hw: pointer to the HW structure
1219  *  @pba_num: pointer to device part number
1220  *
1221  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1222  *  the value in pba_num.
1223  *  Currently no func pointer exists and all implementations are handled in the
1224  *  generic version of this function.
1225  **/
1226 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1227 {
1228 	return e1000_read_pba_num_generic(hw, pba_num);
1229 }
1230 
1231 /**
1232  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1233  *  @hw: pointer to the HW structure
1234  *
1235  *  Validates the NVM checksum is correct. This is a function pointer entry
1236  *  point called by drivers.
1237  **/
1238 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1239 {
1240 	if (hw->nvm.ops.validate)
1241 		return hw->nvm.ops.validate(hw);
1242 
1243 	return -E1000_ERR_CONFIG;
1244 }
1245 
1246 /**
1247  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1248  *  @hw: pointer to the HW structure
1249  *
1250  *  Updates the NVM checksum. Currently no func pointer exists and all
1251  *  implementations are handled in the generic version of this function.
1252  **/
1253 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1254 {
1255 	if (hw->nvm.ops.update)
1256 		return hw->nvm.ops.update(hw);
1257 
1258 	return -E1000_ERR_CONFIG;
1259 }
1260 
1261 /**
1262  *  e1000_reload_nvm - Reloads EEPROM
1263  *  @hw: pointer to the HW structure
1264  *
1265  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1266  *  extended control register.
1267  **/
1268 void e1000_reload_nvm(struct e1000_hw *hw)
1269 {
1270 	if (hw->nvm.ops.reload)
1271 		hw->nvm.ops.reload(hw);
1272 }
1273 
1274 /**
1275  *  e1000_read_nvm - Reads NVM (EEPROM)
1276  *  @hw: pointer to the HW structure
1277  *  @offset: the word offset to read
1278  *  @words: number of 16-bit words to read
1279  *  @data: pointer to the properly sized buffer for the data.
1280  *
1281  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1282  *  pointer entry point called by drivers.
1283  **/
1284 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1285 {
1286 	if (hw->nvm.ops.read)
1287 		return hw->nvm.ops.read(hw, offset, words, data);
1288 
1289 	return -E1000_ERR_CONFIG;
1290 }
1291 
1292 /**
1293  *  e1000_write_nvm - Writes to NVM (EEPROM)
1294  *  @hw: pointer to the HW structure
1295  *  @offset: the word offset to read
1296  *  @words: number of 16-bit words to write
1297  *  @data: pointer to the properly sized buffer for the data.
1298  *
1299  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1300  *  pointer entry point called by drivers.
1301  **/
1302 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1303 {
1304 	if (hw->nvm.ops.write)
1305 		return hw->nvm.ops.write(hw, offset, words, data);
1306 
1307 	return E1000_SUCCESS;
1308 }
1309 
1310 /**
1311  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1312  *  @hw: pointer to the HW structure
1313  *  @reg: 32bit register offset
1314  *  @offset: the register to write
1315  *  @data: the value to write.
1316  *
1317  *  Writes the PHY register at offset with the value in data.
1318  *  This is a function pointer entry point called by drivers.
1319  **/
1320 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1321 			      u8 data)
1322 {
1323 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1324 }
1325 
1326 /**
1327  * e1000_power_up_phy - Restores link in case of PHY power down
1328  * @hw: pointer to the HW structure
1329  *
1330  * The phy may be powered down to save power, to turn off link when the
1331  * driver is unloaded, or wake on lan is not enabled (among others).
1332  **/
1333 void e1000_power_up_phy(struct e1000_hw *hw)
1334 {
1335 	if (hw->phy.ops.power_up)
1336 		hw->phy.ops.power_up(hw);
1337 
1338 	e1000_setup_link(hw);
1339 }
1340 
1341 /**
1342  * e1000_power_down_phy - Power down PHY
1343  * @hw: pointer to the HW structure
1344  *
1345  * The phy may be powered down to save power, to turn off link when the
1346  * driver is unloaded, or wake on lan is not enabled (among others).
1347  **/
1348 void e1000_power_down_phy(struct e1000_hw *hw)
1349 {
1350 	if (hw->phy.ops.power_down)
1351 		hw->phy.ops.power_down(hw);
1352 }
1353 
1354 /**
1355  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1356  *  @hw: pointer to the HW structure
1357  *
1358  *  Power on the optics and PCS.
1359  **/
1360 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1361 {
1362 	if (hw->mac.ops.power_up_serdes)
1363 		hw->mac.ops.power_up_serdes(hw);
1364 }
1365 
1366 /**
1367  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1368  *  @hw: pointer to the HW structure
1369  *
1370  *  Shutdown the optics and PCS on driver unload.
1371  **/
1372 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1373 {
1374 	if (hw->mac.ops.shutdown_serdes)
1375 		hw->mac.ops.shutdown_serdes(hw);
1376 }
1377